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Models of Hierarchical 

Galaxy Formation 

by John Christopher Helly 

PhD Thesis, October 2003 

Abstract 

A semi-analytic galaxy formation model, N-body G A L F O R M , is developed which uses 

outputs from an N-body simulation to follow the merger histories of dark matter halos 

and treats baryonic processes using the semi-analytic model of Cole et al. We find that, 

apart from limited mass resolution, the only significant differences between this model 

and the Monte-Carlo based model of Cole et al. are due to known inaccuracies in the 

distribution of halo progenitor masses in the Monte-Carlo method. 

N-body G A L F O R M is used to compare Smooth Particle Hydrodynamics (SPH) and 

semi-analytic calculations of radiative cooling in the absence of star formation. We con­

sider two cases: firstly, a simulation of a representative volume of the Universe with 

relatively poor mass resolution, and, secondly, a high resolution simulation of the forma­

tion of a single galaxy. We find good agreement between the models in terms of the mass 

of gas which cools in each halo, the masses of individual galaxies, and the spatial distri­

bution of the galaxies. The semi-analytic model is then compared with a realistic, high 

resolution galaxy simulation which includes prescriptions for star formation and feedback. 

A semi-analytic model without feedback is found to best reproduce the masses of the sim­

ulated galaxy and its progenitors. This model is used to populate a large volume with 

semi-analytic galaxies. The resulting luminosity function has an order of magnitude too 

many galaxies at high and low luminosities. 

We conclude that, while SPH and semi-analytic cooling calculations are largely con­

sistent and therefore likely to be reasonably reliable, current numerical models of galaxy 

formation still contain major uncertainties due to the treatment of feedback, which will 

lead them to predict very different galaxy populations. Further work is required to find 

simulation algorithms which can simultaneously produce realistic individual galaxies and 

a population with reasonable statistical properties. 
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Chapter 1 
Introduction 

1.1 Background 

According to current theories of cosmology, the early universe was extremely hot and 

dense, and almost entirely homogeneous. However, since the universe as we know it to­

day is far from uniform on small scales, tiny density fluctuations must have been present. 

As the universe expanded, in accordance with the laws of General Relativity, these fluc­

tuations grew through gravitational instability and eventually collapsed to form galaxies 

and clusters of galaxies. 

This theory, known as the Hot Big Bang, provides the background for modern theories 

of galaxy formation. In these theories, the mass density of the universe is dominated by 

invisible, non-baryonic "dark matter", which collapses to create potential wells in which 

gas may collect and condense to form stars and galaxies. 

In this introductory Chapter, we1 present a short summary of the observational jus­

tification for this model. In particular, the evidence supporting the Big Bang and the 

existence of non-baryonic dark matter is considered. We briefly describe possible origins 

of the primordial density fluctuations, and the mechanisms which are thought to lead to 

the formation of structure in the Universe. The development of increasingly sophisticated 

techniques for modelling the subsequent formation of galaxies is reviewed, and details of 

the G A L F O R M semi-analytic model of Cole et al. (2000), which is used extensively in this 

thesis, are presented. 

1.1.1 The Big Bang 

Expansion of the Universe 

In 1929, Hubble announced his discovery of a linear relationship between the distances 

to galaxies and the recessional velocities obtained from their redshifts. This relationship 

is exactly what would be expected in a uniformly expanding universe. Hubble mea-

1 Throughout this thesis I will use the conventional 'we' to refer to the first person. 
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sured the constant of proportionality between velocity and distance, Ho, to be around 

SOOkms^Mpc - 1 (Hubble 1929). 

Modern measurements of the expansion rate of the universe are made in a number 

of ways. The relative distances of galaxies may be determined using "standard candles", 

such as Type la supernovae (e.g. Tonry et al. 2003), or by making use of empirical relations 

between galaxy luminosities and distance independent properties, such as the Tully-Fisher 

relation which relates luminosity to circular velocity (e.g. Tully & Fisher 1977). Distances 

to a few nearby galaxies are then required to calibrate the distance scale. These are 

typically obtained by using Cepheid variable stars as standard candles. See, for example, 

the recent results from the HST key project (Freedman et al. 2001). 

Alternatively, fundamental physics may be used to calculate distances directly, thus 

avoiding uncertainties in the calibration of the distance scale. For example, distances to 

Type I I supernovae may be obtained by comparing the expansion rate of the supernova 

envelope determined from its redshift with the increase in size inferred from its tempera­

ture and luminosity (e.g. Schmidt et al. 1992). The Sunyaev-Zel'dovich (S-Z) effect, the 

Compton scattering of microwave background photons by hot electrons in galaxy clusters, 

provides another direct measure of distance , since the S-Z effect and X-ray emission from 

the cluster scale differently with the its size and gas density (Birkinshaw 1979). Ho may 

also be estimated by measuring the time delay between multiple images of gravitationally 

lensed objects, because the time delay depends on the angular diameter distance which 

scales as HQ1. For a recent example, see Ofek & Maoz (2003). 

Recently, observations of the cosmic microwave background made using the Wilkin­

son Microwave Anisotropy Probe (WMAP, see Bennett et al. 2003) have placed strong 

constraints on a range of cosmological parameters. Encouragingly, the value of Ho in the 

model which best fits the W M A P results is in very good agreement with results from the 

HST Key Project, which obtained a value for the Hubble constant, expressed in units of 

lOOkms^Mpc- 1 , of h = 0.72 ± 0.08. 

The Cosmic Microwave Background 

The cosmic microwave background radiation (CMB) was discovered by Penzias and Wil­

son in 1965. Much of this background radiation lies roughly in the wavelength range 

from fractions of millimeters to tens of centimeters and it is almost entirely isotropic, 

suggesting that it may uniformly fill the universe. Observations made with the Cosmic 

Microwave Background Explorer (COBE) satellite, launched in 1989, have shown that the 
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CMB spectrum is that of a black body with a temperature of 2.7 K (Mather et al. 1994). 

COBE mapped the entire sky with a spatial resolution of 7-10 degrees and found only very 

small fluctuations in temperature, of the order of one part in 105 (Bennett et al. 1996). 

I t is difficult to see how such a radiation field could arise in the Universe as i t is 

today. Instead, the CMB is thought to have originated just after the Big Bang when 

the temperature of the Universe dropped enough to allow the recombination of protons 

and electrons. From this point onwards, photons were no longer able to interact with the 

baryons and propagated freely through space. The expansion of the Universe has since 

reduced the temperature of the radiation spectrum, but its black body shape has been 

preserved. Hence the detection of the CMB is a strong indication that the Universe was 

once much hotter and denser than it is now, in agreement with the Big Bang theory. 

Big Bang Nucleosynthesis 

In the 1950's and 60's i t was thought that elements heavier than Hydrogen may all have 

been produced as a by-product of stellar evolution (e.g. Burbidge et al. 1957). However, 

the observed masses and luminosities of galaxies indicate that if this were the only mech­

anism, Helium would make up 1-4% of the baryonic mass of the Universe, rather than 

about 25% as is observed. Hence, some other means of Helium production is required. 

The Big Bang provides ideal conditions for this to happen in the early Universe. 

At the time when Big Bang nucleosynthesis is thought to occur, the Universe contains 

large numbers of photons but far fewer baryons. The exact ratio of photons to baryons 

is not known precisely, and in fact this is the only free parameter in the theory of nu­

cleosynthesis. Weak reactions keep the neutron to proton ratio at its equilibrium value 

until neutrinos decouple. Subsequently, the neutron abundance falls as the neutrons de­

cay. Deuterium production has begun, but the high photon density and the low binding 

energy of deuterium means that heavier nuclei are only produced when the temperature 

falls further. There follows a short period during which heavier elements are created, 

which ends when the temperature falls to the point where Coulomb repulsion prevents 

nuclear reactions. The limited time available and the absence of stable nuclei with atomic 

masses of five or eight mean that only lighter species (deuterium, helium, lithium and 

beryllium) are created. Heavier elements can only be produced later, in the interiors of 

stars (e.g. Wagoner et al. 1967). 

Standard Big Bang Nucleosynthesis predicts the abundances of these elements as a 

function of the photon to baryon ratio, which is closely related to the baryon density. 
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Observational constraints on light element abundances (for example, by measuring the 

deuterium abundance from absorption in high redshift clouds) mean that this can be 

used to constrain the baryon density parameter, fif,, to the range Qi,h2 = 0.005 — 0.022 

(Kurki-Suonio 2002). However, there are are uncertainties in these measurements due to 

the effects of stellar populations on light element abundances. 

1.1.2 Inflation 

While the observations described above support the Big Bang theory, several problems 

remain. One of these is the horizon problem. The microwave background shows that 

the universe is extremely isotropic on large scales — the temperature of the radiation in 

completely different directions differs by only one part in 10 5. However, in the standard 

Big Bang theory these photons would have been emitted from regions too widely separated 

to be in causal contact at the time of recombination. These regions could therefore never 

have been in thermal equilibrium. 

The second problem is known as the flatness problem. In the standard Big Bang 

model, the density of the Universe rapidly evolves away from the critical density required 

to eventually halt the expansion of the Universe. Observations indicate that the current 

density is of the order of the critical density, which would require extremely fine tuning 

in the early Universe. 

Finally, Grand Unified Theories (GUTs) predict the existence of magnetic monopoles, 

which are not observed and which, in the standard Big Bang model, would contribute 

sufficient density to cause the Universe to have re-collapsed long before the present day. 

In the 1980's, Alan Guth proposed a possible resolution to all three of these problems 

in the form of a period of rapid, exponential expansion very early in the history of the 

Universe (Guth 1981). This solves the horizon problem by expanding initially causally 

connected regions to sizes greater than the present horizon. During inflation, the density 

of the Universe is driven towards the critical density, so that a flat universe is expected, 

and the density of magnetic monopoles is diluted down to a negligibly small value. 

As well as solving a number of problems with the standard Big Bang theory, inflation 

conveniently provides a mechanism to generate the primordial density fluctuations which 

are needed if structure is to form in the Universe. These fluctuations originate from 

quantum fluctuations of the same scalar field which provides the vacuum energy to drive 

the rapid expansion. 
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1.1.3 Dark Matter 

In the 1920's Hubble made the first attempt to calculate the mass density of the Universe. 

This was done by counting the number of visible galaxies and estimating the masses of 

individual galaxies by considering the potential required to contain their constituent gas 

and stars (Hubble 1926). 

However, it soon became apparent that significant amounts of mass were being missed 

in this accounting. The first such estimates were made by Zwicky (1933) and Smith 

(1936). The observed velocity dispersions of galaxies in dusters indicated total cluster 

masses an order of magnitude greater than the mass of the visible galaxies. Later, X-ray 

observations revealed the presence of a hot, diffuse intracluster medium contributing a 

quantity of mass similar to that of the luminous galaxies, but this still left the majority 

of the mass in galaxy clusters unaccounted for. 

Evidence for the existence of dark matter in smaller systems was found in the 1970's, 

when the rotation curves of spiral galaxies were shown to remain constant out to larger 

radii than would be expected if the visible stars and gas constituted the entire mass of the 

galaxy (e.g. Faber & Gallagher 1979). Nucleosynthesis places a strong constraint on the 

mean density of baryonic material in the Universe which is around an order of magnitude 

lower than the mass density inferred from studies of cluster dynamics and galaxy rotation 

curves. The majority of the dark matter must therefore be non-baryonic. Fortunately, 

particle physics provides several possible candidate dark matter particles. 

Each of these candidates may be classified as 'hot' (for example, massive neutrinos) 

or 'cold' dark matter (perhaps Weakly Interacting Massive Particles, W I M P s ) depending 

on whether they move relativistically or non-relativistically when they decouple from the 

radiation field in the early Universe. This distinction has important consequences for the 

formation of large scale structure, as will be seen in the next section. 

1.1.4 Formation of Large Scale Structure 

It has long been known that in an otherwise homogeneous universe, primordial density 

perturbations would be amplified by gravitational instability — this behaviour was first 

investigated by Lifshitz (1946). The presence of structure in the local Universe suggests 

that the primordial perturbations must have existed, and inflation provides a possible 

mechanism to generate them, but the subsequent evolution of these perturbations depends 

strongly on the nature of the dark matter which contributes the majority of the mass 
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density of the Universe. 

Bond et al. (1980) considered a Hot Dark Matter (HDM) model in which the mass 

density of the Universe was dominated by massive neutrinos. They found that free stream­

ing of the H D M particles erases density perturbations smaller than a characteristic mass 

which is a function of the particle mass. This mass is quite high — for a neutrino mass 

of 30eV, perturbations less massive than 4 X 1015h~1M.Q are suppressed. White et al. 

(1983) used numerical N-body simulations to show that massive, pancake-like structures 

were the first objects to form in such a model. Galaxies could then only form through 

the subsequent fragmentation of these "pancakes". 

Cold Dark Matter ( C D M ) particles are non-relativistic in the early Universe, and, 

in models where the mass density is dominated by C D M , structure is able to form on 

much smaller scales at early times. In this picture, low mass objects form first and 

grow through mergers to form more massive objects. Davis et al. (1985) used N-body 

techniques to simulate this process, and found that a model with a low density parameter, 

= 0.2, appeared to best match the observed galaxy distribution if the galaxies traced 

the underlying dark matter distribution. However, they noted that this might not be the 

case, and found that a "biased" model with Q = 1, in which galaxies were assumed to be 

associated with peaks in the initial density distribution, was consistent with observations. 

The hierarchical Cold Dark Matter scenario is now favoured, since on large scales the 

mass distribution seen in C D M simulations appears similar to that in the real Universe. 

For example, White et al. (1987) demonstrated that C D M N-body simulations were able 

to reproduce the observed abundance of galaxy clusters and produced filaments and voids 

similar to those observed. 

More recent evidence in favour of C D M has come from large scale galaxy redshift sur­

veys and improved observations of the microwave background. Redshift surveys provide 

detailed information on the present day, large scale distribution of galaxies which may be 

compared with models of structure and galaxy formation. For example, the 2dF Galaxy 

Redshift Survey (Colless & the 2 d F G R S team 2003, preprint (astro-ph/0306581)) ob­

tained reliable redshifts for over 200,000 galaxies. These data may, amongst other things, 

be used to determine galaxy clustering properties on scales as large as 300 / i _ 1 Mpc, to 

constrain the density and spatial distribution of dark matter, and to directly measure the 

galaxy bias parameter. 

An alternative approach is to use detailed measurements of the C M B to find out about 

conditions in the early Universe. The W M A P satellite has improved on the measurements 
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taken by C O B E by mapping the microwave background with greatly improved angular 

resolution (Bennett et al. 2003). This has allowed a determination of the power spectrum 

of the C M B temperature anisotropy down to smaller scales than was previously possible. 

The W M A P results are entirely consistent with the Big Bang theory and inflation and, 

when used in combination with other C M B observations and the 2dF survey, place tight 

constraints on the cosmological parameters. 

It now appears that the background cosmological model and the origin of large scale 

structure may be reasonably well understood. However, these processes alone cannot 

account for the galaxy populations we see today. In the next section, we summarise the 

development of current, hierarchical, models of galaxy formation. 

1.2 Theories of Galaxy Formation 

The baryonic material which makes up the galaxies we observe in the Universe today 

behaves quite differently from the dark matter. While on very large scales its distribution 

is likely to follow that of the dark matter, on smaller scales hydrodynamic processes such 

as shock heating and radiative cooling will become important. Rees & Ostriker (1977), 

Binney (1977) and Silk (1977) first recognised that radiative cooling would have significant 

consequences for galaxy formation. On small (i.e. galactic or sub-galactic) scales, and in 

the absence of any form of heating, gas in a virialised halo will quickly radiate away its 

thermal energy. This results in a loss of pressure support, and the gas will collapse to the 

centre of the halo. 

White & Rees (1978) suggested a model in which galaxies formed in this way at the 

centres of hierarchically assembled dark matter halos. It was realised that dissipation 

would allow the galaxies to become sufficiently concentrated to survive mergers between 

halos, thereby accounting for the observed groups and clusters of galaxies. By considering 

the rate at which gas would be able to cool in a dark matter halo, White & Rees (1978) 

were able to obtain a galaxy luminosity function with approximately the correct shape. 

Later, Cole (1991) developed a Monte-Carlo model, based on extensions to Press-

Schechter theory (Press &; Schechter 1974) developed by Bond et al. (1991) and Bower 

(1991), to investigate the radiative cooling of gas in dark matter halos. It was found 

that some form of heating, perhaps by supernovae, was required to prevent the cooling 

of a large fraction of the gas at high redshift. White & Frenk (1991) obtained similar 

results with their model, and were also able to show that mergers between galaxies were 
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necessary to avoid an overabundance of faint objects. At the same time, Lacey & Silk 

(1991) adopted a slightly different approach, associating galaxies with peaks in the linear 

density field and assuming that star formation was induced by tidal interactions. This 

model also included the effects of radiative cooling and energy injection by supernovae. 

Models of this type, which use a combination of numerical and analytic methods to 

calculate the evolution of the galaxy population from a set of initial conditions have come 

to be known as "semi-analytic" models. Subsequently, more sophisticated semi-analytic 

models, were developed which included additional physical processes. For example, the 

models of Kauffmann et al. (1993) and Cole et al. (1994) predicted galaxy luminosities 

using stellar population synthesis techniques and included estimates of the rate of galaxy-

galaxy mergers, and the models of Kauffmann (1996) and Cole et al. (2000) included more 

detailed treatments of metal enrichment. 

While early models considered only the formation of galactic disks, the models of 

Kauffmann et al. (1993) and Baugh et al. (1996) were able to produce a mix of galaxy 

morphologies by assuming that major mergers disrupted disks and resulted in the for­

mation of an elliptical galaxy. The accretion of additional gas could later lead to the 

formation of a new disk around the bulge component. 

Other developments have included allowing for the effects of mergers between satellite 

galaxies (Somerville &. Primack 1999) and modelling of the effects of dust extinction on 

galaxy colours and luminosities (Kauffmann et al. 1999a, Cole et al. 2000). Kauffmann 

k, Haehnelt (2000) used semi-analytic techniques to model quasar activity due to the 

growth of black holes at the centres of galaxies. Semi-analytic models have also been 

used to investigate variations in clustering properties with luminosity, morphology and 

redshift (Kauffmann et al. 1997, Kauffmann et al. 19996, Baugh et al. 1999), the properties 

of Lyman break galaxies (Baugh et al. 1998, Governato et al. 1998) and the evolution of 

cluster galaxies (e.g. Kauffmann & Chariot 1998). 

Attempts have also been made to model galaxy formation using hydrodynamical sim­

ulations. The most popular technique is known as Smooth Particle Hydrodynamics, or 

S P H , which was first described by Lucy (1977) and Gingold & Monaghan (1977). With 

the addition of radiative cooling, these simulations have been able to generate popula­

tions of objects with approximately galactic masses and reasonable abundances (e.g. Katz 

et al. 1992, Navarro & White 1993, Evrard et al. 1994, Steinmetz & Muller 1995, Katz 

et al. 1996, Frenk et al. 1996, Steinmetz & Navarro 1999, Pearce et al. 1999, Pearce 

et al. 2001). 
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The most recent simulations have been able to resolve the detailed structure of galaxies 

forming in a cosmological context, while including additional physics such as star forma­

tion, feedback and chemical enrichment (e.g. Abadi et al. 2003, Governato et al. 2002, 

preprint (astro-ph/0207044), Sommer-Larsen et al. 2002). These simulations have been 

able to produce galaxies which strongly resemble those observed, but are so computa­

tionally intensive that it is difficult to simulate a sufficient number of galaxies to derive 

statistical properties (such as the luminosity function), or to explore the effect of varying 

star formation and feedback prescriptions. 

In this work we make extensive use of the G A L F O R M semi-analytic galaxy formation model 

developed and described in detail by Cole et al. (2000). This model uses analytic solutions 

and physically motivated prescriptions to treat the processes thought to be important in 

the formation of galaxies. Here, we briefly summarise the physics included in the model, 

concentrating on those processes which are particularly relevant to the work carried out 

in this thesis. 

1.3.1 Formation of Dark Matter Halos 

The starting point for the G A L F O R M model is a set of present day dark matter halos with 

known merger histories. The Press-Schechter mass function (Press & Schechter 1974) 

is used to determine the number of halos to be simulated as a function of mass. Halo 

merger trees are then generated using a Monte-Carlo algorithm based on extensions to 

the Press-Schechter theory proposed by Bond et al. (1991) and Bower (1991). 

Most of the models employed in this thesis use halo merger histories determined from 

N-body simulations. However, we do make some use of the Monte-Carlo algorithm of Cole 

et al. (2000). In Chapter 2 it is used to investigate the effect of limited mass resolution on 

the semi-analytic model, and in Chapter 5 it is used to estimate the luminosity function 

which might be obtained if high resolution S P H simulations of large volumes could be 

carried out. We therefore describe the algorithm here. 

Lacey & Cole (1993) derive an expression for the fraction of mass, fn{Mi, M2)dM\, 

in halos of mass M<i at time t 2 which, at the earlier time t\ was contained in halos in the 

mass range between M\ and M\ + dM\: 

1.3 The GALFORM Semi-Analytic Model 

fn(MllM2)dM1 

1 (#cl - Sc2) 
<7|)3/2 V2n (a 1 
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X exp --77-^5 57- -777-aMi. (1.1) 
K \ 2(crj! - <rf) / dAfi ; 

where a\ and (T2 are the rms density fluctuations in spheres of mass M\ and Mi and Sci 

and 5C2 are the critical linear theory overdensity for collapse at times t\ and £2- Taking 

the limit t\ —• t2, the following equation is obtained: 

d / 19 , „ , 1 1 dSc\ dai , „. 

-jP- dM^dh = - 7 = 7 ^ — 2 ^ H - 3 r - ^ 7 - d A f i d * i - L 2 

rfti <i=t2 \/2TT {a\ - e r f ) 3 / 2 dii d M x 

This gives the average mass fraction of a halo of mass M2 at time t% which was in halos 

of mass M i at the time t\. This can be used to find the mean number of progenitors of 

mass Mi of the halo one time step, dt\, earlier: 

Binary merger trees are built by taking the final halo and dividing its merger history 

into a series of time steps sufficiently small that each halo in the merger tree is unlikely 

to have more than two progenitors. Eqn. 1.3 is used to determine the mean number of 

progenitors of each halo of mass Mi'-

rM2/2 dpf 

M r e 3 dMi -L 
where MTes is the mass resolution of the merger tree. If the timesteps are sufficiently small, 

so that P <C 1, P may be regarded as the probability that the halo has two progenitors. A 

random number is then drawn to determine whether the halo has one or two progenitors. 

If this is the case, the masses of the progenitors are chosen at random from a distribution 

consistent with Eqn. 1.3. The total mass available to form the progenitors is equal to the 

mass of the later halo minus the fraction of material accreted in the form of unresolved 

halos, given by: 

-L —-—}-dMx, 1.5 
dMi M2 

The merger tree is built up by carrying out this procedure for each time step, starting 

with the final halo and working back in time. The required inputs for this algorithm are 

the density fluctuation power spectrum, which determines a{M), and the cosmological 

parameters which are used to calculate Sc{t). Additionally, the minimum halo mass to be 

considered, M r e s , must be chosen. 

The binary merger tree created in this way has very high time resolution, and is 

used to produce a new, equivalent merger tree (with reduced temporal resolution) on a 

predefined grid of time steps. The new merger tree is no longer binary — several mergers 

may occur during one time step so that a halo may have more than two progenitors. 
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Before the semi-analytic galaxy formation rules are applied to the merger tree, it is 

split up into "branches" or halo lifetimes. The lifetime of a halo is said to end when it 

becomes part of a halo with /form times the mass it had when it formed. The new, more 

massive halo is then considered to be newly formed and it is said to exist until it, in turn, 

becomes part of a halo with more than / f o r m times its original mass. Halo formation times 

are assigned by first determining the lifetimes of halos with no progenitors and working 

forwards in time towards the final halo. During the lifetime of a halo, properties such as 

its mass, mean density and angular momentum are taken to be constant. The parameter 

/form is set to 2, but results from the G A L F O R M model are not very sensitive to the exact 

choice of /form, since halo lifetimes generally end when the halo merges onto a much more 

massive object. 

References to halo formation and the age of a halo later in this Chapter refer to this 

partitioning of the merger tree. 

1.3.2 Halo Properties 

Each halo in the merger tree is assumed to be spherically symmetric, with a density profile 

given by: 

p(r) = f v i r P c — 1 (r < r v i r ) , (1-6) 

/ ( f l N F w ) r/rv-ir ( r / r v i r + a N F \ v r 

where / ( < I N F W ) = ln ( l + 1 / C I N F W ) — l / ( l + a N F w ) , and the density profile is truncated at 

the virial radius, r v l T . The virial radius is taken to be the radius within which the mean 

density is A v i r times the critical density, pc = SH2/(8nG). A v n is calculated using the 

expressions given by Lacey &; Cole (1993) and Eke et al. (1996), for open and flat universes 

respectively. The parameter a^pw is set using the analytic model for the relation between 

« N F W and halo mass presented by Navarro et al. (1997). 

Each halo is also assigned an angular momentum, expressed in terms of the spin 

parameter 
-Mi = T T ^ - , (1-7) 

GMu' 

J h | ^ h | 1 / 2 

where Mh, Jh and Eh are the total mass, angular momentum and energy of the halo 

respectively. The spin parameter is assigned at random from a distribution consistent 

with the N-body simulation results of Cole & Lacey (1996). See also Barnes & Efstathiou 

(1987) and Warren et al. (1992). 

The spin parameter is used to calculate the mean rotational velocity of the halo, under 

the assumptions that it is constant with radius and always aligned in the same direction. 
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Again, these assumptions are chosen to be consistent with N-body simulations. The 

rotational velocity is required to calculate the angular momentum of cooling halo gas. 

1.3.3 Gas Cooling and Disk Formation 

Cooling gas in a dark matter halo is assumed to form a disk at the centre of the halo, 

supported by angular momentum acquired through tidal torques during the halo's for­

mation. The G A L F O R M model differentiates between "cold" gas, which is gas which has 

been incorporated into galaxies, and "hot" gas which is diffuse gas spread throughout the 

dark matter halo. All of the hot gas is assumed to have been shock heated during the 

formation process and to be distributed with a spherically symmetric density profile with 

a core of radius r c o r e : 

The gas is taken to be isothermal with a temperature equal to the virial temperature of 

the halo, 

where fee is the Boltzmann constant, fimu is the mean molecular mass of the gas and 

VH = (GMh/ry i , . ) 1 / 2 is the circular velocity of the halo. These assumptions are motivated 

by hydrodynamical simulations including those of Navarro et al. (1995), Eke et al. (1998) 

and Frenk et al. (1999). 

There are a number of possible choices for the core radius in the gas density profile, 

'"core- The reference model of Cole et al. (2000) has an initial core radius for each halo 

which is equal to r ° o r e = r N F \ v / 3 , where T N F W = ONFWvir - When a merger results in 

the formation of a new halo, the gas core radius is allowed to increase to obtain the 

density at the virial radius which would have been present if no gas had cooled. The 

justification for this is that the densest gas, with the lowest entropy, is the most able to 

cool. Cooling therefore increases the minimum entropy of the gas. Analytic work (Evrard 

& Henry 1991, Kay k Bower 1999, Wu et al. 2000) suggests that this has the effect of 

increasing the core radius of the halo gas. It also seems reasonable to assume that the 

pressure at the virial radius remains unaffected, since it is maintained by shocks caused 

by infalling material. 

In Chapter 3, we vary the treatment of cooling in the semi-analytic model slightly in 

order to find a prescription which provides the best possible match to results obtained 

from S P H simulations. To do this, we vary the initial core radius and also investigate 

/ W O « l/(r 2 + r c

2

o r e) (1.8) 
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models in which the core radius is fixed so that r c o r e = r ° o r e at all times. 

The cooling time of the halo gas is given by: 

rCoo.(r) = f - , **!r _ , (1.10) 
2 fimtt / 9 g a s ( r ) A ( T g a s , Z g a s ) 

where T g a s is the temperature of the gas and A ( T g a s , Z g a s ) is the cooling function, which 

depends on the temperature and metallicity, Z g a s . The rate at which gas cools in a halo 

is determined by calculating the cooling radius, the radius at which the cooling time of 

the gas is equal to the age of the halo. However, for gas to be accreted onto the disk, it 

must have sufficient time to fall to the centre of the halo. 

The mass of gas accreted during a time step is therefore found by calculating r m m = 

min[r c o o i , r^] at the beginning and end of the time step, where is the free-fall radius. 

The free fall radius is defined such that the time taken for an initially stationary particle 

to fall to the centre of the halo from this radius is equal to the age of the halo. Any gas 

in the spherical shell between the radii r c o o i and r$ is added to the disk. Disk sizes are 

calculated by assuming that the gas retains its angular momentum as it collapses. 

1.3.4 Galaxy Mergers and Spheroid Formation 

In the G A L F O R M model, elliptical galaxies, and the bulges of spiral galaxies, are created 

in galaxy mergers. When dark matter halos merge, any galaxies they contain do not 

immediately merge. Instead, the most massive galaxy becomes the central galaxy in the 

new halo and the others become satellites. These satellites may eventually lose energy 

and angular momentum through dynamical friction and merge onto the central galaxy. 

Merger timescales for the satellite galaxies are determined using the estimate obtained 

by Lacey k Cole (1993): 

0.3722 M h 

Tmrg = / d f ©orbit *dyn T-T7 T J7— • C 1 - 1 1 ) 

ln(Acoulomb) M s a t 

where Mh is the mass of the halo, M s a t is the mass of the satellite galaxy, T^yn = 7rr v i r /VH 

is the dynamical time of the halo and / d f is an adjustable parameter which allows for 

uncertainties due to the approximations made in this model. The Coulomb logarithm, 

ln(Acoulomb) is taken to be equal to ln(Mh/Mg a t ) . Cole et al. (2000) choose to set /<jf = 1, 

but note that a slightly higher value may be appropriate if the halo of the satellite galaxy 

is quickly strippped away. The factor ©orbit contains the dependence of the timescale on 

the orbit of the satellite galaxy: 

0 o r b i t = [ J / J c ( E ) f 7 8 [ r c ( E ) / r v [ r f , (1.12) 
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E and J are the initial energy and angular momentum of the orbit, and r c and J c are the 

radius and angular momentum of a circular orbit with the same energy. For each satellite, 

©orbit is drawn from a distribution based on the simulations of Tormen (1997). Satellites 

then merge when the age of the halo exceeds their merger timescale. If a satellite does 

not merge during the lifetime of the halo its merger timescale is recalculated when the 

new halo forms. 

A galaxy merger in the G A L F O R M model has several possible outcomes, depending on 

the ratio of the mass of the satellite galaxy, M s a t , to the mass of the central galaxy, M c e n . 

If the ratio M s a t / M c e n > / e l l ip i a major merger occurs. Al l of the gas and stars involved 

in the merger are incorporated into a single bulge component. A burst of star formation 

converts any gas present into stars. Minor mergers, with M s a t / M c e n < /e i i ipi result in the 

stars from the satellite galaxy being added to the bulge of the central galaxy. Any gas in 

the disk of the satellite galaxy is added to the disk of the central galaxy. 

1.3.5 Star Formation 

Star formation is assumed to take place in galactic disks at a rate proportional to the 

mass of cold gas, M c o [ d , present. The star formation rate is therefore given by: 

1> = Meoid/r* (1.13) 

where is the star formation timescale. Feedback is included in the model by assuming 

that energy released by young stars and supernovae reheats cold gas and ejects it from 

the disk at a rate M e j e c t > which is determined by a feedback efficiency parameter, /?: 

Meject = M (1.14) 

The star formation timescale and feedback efficiency are functions of the properties of the 

galactic disk. The star formation timescale is related to the circular velocity of the disk, 

Vdisk, by: 

r* = e'1 r d i s k (V d isk/200 kms" 1 )"* (1.15) 

where Tdj sk is the dynamical time of the disk, defined as its half mass radius divided by 

the circular velocity at the half mass radius. The feedback efficiency is: 

P = ( W V h o t ) - a h o t (1.16) 

where e*, a*, Vhot and «hot are dimensionless parameters. In the reference model of Cole 

et al. (2000), these parameters have the values e*=0.005, a* = —1.5, Vhot = 200.0 and 
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a h o t = 2.0. These values were obtained by requiring that the model galaxy population 

must reproduce observed properties of the local galaxy population, such as the faint end 

of the luminosity function, the Tully-Fisher relation, gas fractions, and the sizes of low 

luminosity spirals. 

1.3.6 Chemical Enrichment 

Chemical enrichment in the G A L F O R M model occurs when stars return metals to the cold 

gas of the interstellar medium. The metal enriched gas may then be reheated by feedback 

processes, resulting in enrichment of the hot halo gas. For each galaxy, the model traces 

the mean metallicity of the stars and the cold gas separately. The metallicity of the hot 

halo gas is also calculated, since this affects the cooling rate and the metallicity of the 

gas added to galactic disks. 

When stars form, it is assumed that a fraction, R, of the mass is instantaneously 

recycled into the interstellar medium. A fraction, p, of the mass is converted into metals. 

The G A L F O R M model allows for the direct enrichment of the hot halo gas by assuming 

that a fraction, e, of the metals are ejected from the disk into the hot gas phase. If 

the Initial Mass Function ( IMF) of the stars is known, the recycled fraction, R, may be 

found through stellar evolution calculations. It is also necessary to know the yield, p, 

which is defined as the fraction of the mass incorporated into stars which is converted 

into metals and returned to the interstellar medium. Theoretical predictions for the yield 

are somewhat uncertain, so p is determined by requiring that the model reproduces the 

observed metallicities of local elliptical galaxies. Cole et al. (2000) set p = 0.02, R = 0.31 

and assume that no metals are ejected from the disk by setting e = 0. 

1.3.7 Stellar Population Synthesis and Dust Extinction 

The model described so far generates a population of galaxies for which a large number 

of physical properties are known, including sizes and masses of the disk and bulge com­

ponents, metallicity of the gas and stars, and the star formation history. However, if the 

model galaxies are to be compared with observational data, luminosities must be assigned 

to them. This is done using stellar population synthesis techniques. 

The updated models of Bruzual A . & Chariot (1993) give the spectral energy dis­

tribution ( S E D ) , l\(t, Z), of a population of stars which all have the same age, t, and 

metallicity, Z. By convolving this with the star formation history of a model galaxy, its 
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S E D , L\(t), may be obtained: 

Lx(t)= f h(t-t',Z(t')) i/>(0 dt', (1.17) 

Here, Z(t') is the metallicity of the stars which formed at time t' and tp(t') is the corre­

sponding star formation rate. When galaxies merge, their contributions to the S E D of 

the new galaxy are summed. 

These calculations require that the I M F of the stars is known. In the model of Cole 

et al. (2000), the I M F is assumed to be the same for all stars in all galaxies at all times. 

Cole et al. consider models using the I M F s proposed by Kennicutt (1983) and Salpeter 

(1955). It is also assumed that some of the mass converted into stars becomes a population 

of brown dwarfs, which do not contribute any light to the S E D of the galaxy. The number 

of brown dwarfs present is expressed in terms of the parameter T , defined as: 

The masses here refer to the masses present before any recycling of material into the 

interstellar medium occurs. This has the effect of reducing all luminosities by a factor 

1 / T . Cole et al. (2000) choose T to obtain the best possible match to the local galaxy 

luminosity function. 

The effect of dust extinction on the galaxy luminosities is treated using the models of 

Ferrara et al. (1999), which include absorption and scattering of light by dust grains in a 

realistic, three dimensional distribution of stars and dust. 

1.4 Motivation for this Work 

Numerical models of galaxy formation have developed along two very different paths. 

Hydrodynamical simulations have the advantage of following the evolution of the baryonic 

and dark matter content of the Universe in complete generality, but have limited spatial 

and mass resolution. The algorithms used to carry out these simulations may also lead 

to unphysical results in certain circumstances. For example, Okamoto et al. (2003) show 

that S P H simulations have difficulty in correctly treating situations involving strong shear 

flows. In simulations of galaxy formation, this can lead to the artificial transfer of angular 

momentum from the galactic disk to the surrounding diffuse, halo gas. The problem is 

particularly serious if the disk is poorly resolved. 

Semi-analytic models are much less computationally intensive, and this allows a more 

thorough investigation of the effect of varying model parameters. It also means that mass 

T = 
(mass in visible stars + brown dwarfs) 

(1.18) 
(mass in visible stars) 
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resolution is generally not a problem. However, these models usually involve a number of 

rather uncertain assumptions, such as spherical symmetry. 

It is clearly important to know whether differences between these models and obser­

vations are real (perhaps due to the neglect of certain physical processes in the models, 

for example) or are due to poor approximations, invalid assumptions, or numerical prob­

lems. A detailed comparison between these two numerical treatments of the same physical 

processes could reveal failings of either or both of them and indicate possible areas for 

improvement. If the models are found to be consistent, this would suggest that their 

predictions may be robust, since they are unlikely to both suffer from the same problems. 

In Chapter 2 we develop a semi-analytic model, referred to here as the N-body G A L -

F O R M model, which uses semi-analytic techniques to populate dark matter halos in an 

N-body simulation volume with galaxies. We identify reasons for the differences between 

the galaxy populations predicted by the standard and N-body G A L F O R M models. 

In Chapter 3, we compare S P H and N-body G A L F O R M predictions for the galaxy 

population in a 5 0 / i - 3 M p c 3 simulation volume in the absence of star formation. This 

allows us to compare the mass of gas which cools in each model on a halo by halo basis. 

We also investigate the effect of varying the semi-analytic galaxy merger rate on the 

galaxy masses and two point correlation function. 

An improved version of the N-body G A L F O R M model, which determines galaxy mergers 

using halo substructure information from the N-body simulation, is developed in Chap­

ter 4. This is used to carry out a comparison with a high resolution S P H simulation of 

the formation of a halo containing a single galaxy. Star formation is included in these 

models, and feedback is approximated by the suppression of cooling at redshifts z > 1. 

Finally, in Chapter 5, we carry out a comparison between the N-body G A L F O R M model 

and a set of S P H simulations of galaxy formation in which both models are intended to 

be as realistic as possible. Our intention here is to investigate the differences between 

state of the art S P H and semi-analytic models of galaxy formation, including those due 

to the inclusion of different physics, assumptions and prescriptions. Chapter 6 presents a 

brief summary of the main conclusions of this thesis. It also identifies some possible areas 

for future research. 
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Chapter 2 
Galaxy Formation using 

N-body Halo Merger 

Histories 

2.1 Introduction 

Hierarchical models of galaxy formation must describe both the growth and collapse of 

density perturbations to form dark matter halos and the baryonic processes which lead 

to the formation of stars. Despite uncertainty as to the exact nature of the dark matter 

itself, the formation and evolution of dark matter halos appears to be reasonably well 

understood. The two main approaches to this problem are direct numerical simulations 

and analytic techniques such as the Press-Schechter theory (Press & Schechter 1974). 

Encouragingly, the mass functions of dark matter halos predicted using these very different 

approaches are found to agree to within 50% (Gross et al. 1998, Governato et al. 1999, 

Jenkins et al. 2001). The analytic model described by Sheth et al. (2001) based on the 

assumption that objects collapse ellipsoidally rather than spherically achieves even better 

agreement with N-body simulations. Mo & White (2002) present halo abundances from 

this and several other models. 

This understanding of the hierarchical build up of structure provides the starting point 

for semi-analytic models of galaxy formation, which attempt to follow the development of 

galaxies from primordial density fluctuations. In semi-analytic models, merger histories 

for dark matter halos may be taken directly from dark matter simulations (e.g. Kauffmann 

et al. 1999a, van Kampen et al. 1999). Alternatively, extensions to the Press-Schechter 

theory which predict the conditional halo mass function (Bond et al. 1991, Bower 1991) 

and halo survival times, formation times and merger rates (Lacey &; Cole 1993) may be 

used to construct realisations of merger histories for individual halos. Simple analytic 

modelling is then used to follow the evolution of the baryonic component, including pre-

19 
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scriptions for processes such as star formation and its possible effects on the remaining 

gas. Semi-analytic models (e.g. Cole 1991, Lacey & Silk 1991, White & Frenk 1991, Cole 

et al. 1994, Somerville & Primack 1999, Cole et al. 2000) have successfully reproduced 

many observable properties of galaxies, such as the local field galaxy luminosity function 

and distributions of colour and morphology. When combined with N-body simulations, 

semi-analytic models have also successfully reproduced galaxy clustering properties (e.g. 

Governato et al. 1998, Kauffmann et al. 1999a, Benson et al. 2000, Wechsler et al. 2001). 

Semi-analytic models utilising merger trees generated using algorithms based on the 

extended Press-Schechter ( E P S ) formalism have two closely related advantages over mod­

els which take merger histories from N-body simulations. Creating Monte-Carlo realisa­

tions of merger trees for a set of halos generally requires fewer computing resorces than 

carrying out an N-body simulation of a similar number of halos. In both cases, improving 

the mass resolution increases the computational load, but since the load is much less in 

the Monte-Carlo case, significantly better mass resolution may be achieved. Methods 

based on the Press-Schechter theory, however are only applicable to initially Gaussian 

fluctation fields. N-body simulations, on the other hand, have the advantage that the 

non-linear evolution of density fluctuations is followed in complete generality, without the 

need for any of the assumptions involved in creating E P S merger trees. 

There are advantages to both of these methods, and which is more appropriate depends 

on the problem being addressed. In this Chapter we investigate the effects of the choice 

of merger trees on the predictions of one particular semi-analytic model. We describe a 

new method of extracting merger trees from an N-body simulation and incorporate these 

merger trees into a semi-analytic galaxy formation model based on that of Cole et al. 

(2000). We compare the predictions of this model to those of a similar model utilising 

Monte-Carlo realisations of halo merging histories. In order to identify the reasons for the 

discrepancies that we find, we determine the changes that must be made to the Monte-

Carlo model to reproduce the N-body results. 

The use of N-body merger trees in semi-analytic models allows a halo-by-halo com­

parison between the semi-analytic treatment of baryonic processes, such as gas cooling, 

and direct numerical simulations of galaxy formation. In the next Chapter we will carry 

out such a comparison between a "stripped down" version of the semi-analytic model de­

scribed here and a smoothed particle hydrodynamics simulation of a cosmological volume. 

This Chapter is laid out as follows. In Section 2.2 we explain how we obtain merger 

trees from an N-body simulation. In Section 2.3 we investigate the effect on our semi-
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analytic model of utilising merger trees derived from N-body simulations rather than 

Monte-Carlo realisations. In Section 2.4 we present our conclusions. 

2.2 Extracting Merger Trees 

We now present the method we used to calculate the merger histories of dark matter 

halos identified in an N-body simulation. The simulation, which will be referred to as 

the GIF simulation, was carried out by the Virgo Consortium using a parallel adaptive 

particle-particle/particle-mesh (AP 3 M) code known as Hydra (Couchman et al. 1995, 

Pearce & Couchman 1997) as part of the GIF project. The simulation assumes the 

ACDM cosmology with mean mass density parameter = 0.3, cosmological constant 

Ao = 0.7 in units of 3HQ/C2, power spectrum shape parameter T = 0.21, present day 

rms linear fluctuation amplitude in 8 / i _ 1 Mpc spheres ag = 0.90, and Hubble constant 

h = 0.7 in units of 100kms _ 1 Mpc _ 1 . I t contains 256 3 dark matter particles each of mass 

1.4 X l O l o / i - 1 M 0 in a box of side 141.3/i - 1Mpc. The gravitational softening length in the 

simulation is 30/ i - 1 kpc at z = 0. This simulation is described in more detail by Jenkins 

et al. (1998), where i t is referred to as ACDM2, and by Kauffmann et al. (1999a). While 

halo catalogues and merger trees based on this simulation are publically available, here 

we make use of only the simulation outputs themselves and construct merger trees using 

a somewhat different algorithm to that of Kauffmann et al. We use 44 output times from 

the simulation which are spaced equally in l o g 1 0 ( l + z) between 2 = 0 and z ~ 20. 

2.2.1 Ident i fy ing Halos 

In order to construct merger histories for dark matter halos in an N-body simulation, a 

catalogue of halos must be produced for each simulation output using a group finding 

algorithm. The algorithm used here is the "friends of friends" (FOF) method of Davis 

et al. (1985), which simply links together any particles with separations less than the 

linking length fr, usually expressed in terms of the mean interparticle separation. Given 

sufficiently large numbers of particles in each object, the FOF algorithm finds regions 

bounded by a surface of constant density. The density threshold is proportional to 1/63. 

The FOF approach has the advantage that i t imposes no constraints on the geometry 

of the halos identified, but it may occasionally artificially join two nearby halos if a 

transient "bridge" of a few particles forms between them. I t will be seen in Section 2.2.2 

that this can cause problems when attempting to generate merger trees using FOF group 
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catalogues, and a method of identifying and splitting artificially joined halos is described 

in Section 2.2.2. 

The usual choice for the linking length in cosmologies with Q = 1 is b = 0.2 (e.g. 

Lacey & Cole 1994), which identifies halos with a mean density similar to that predicted 

by the top hat spherical collapse model (Cole & Lacey 1996). However, in cosmologies 

with Q < 1 there is no rigorous justification for any particular choice. Here, we choose to 

set b = 0.2 at all redshifts as in the Q = 1 case. See Eke et al. (1996) and Jenkins et al. 

(2001) for further discussion. 

The other parameter needed by the FOF algorithm is the minimum number of par­

ticles, i V m j n , required to constitute a group. I t is important that N m m be as small as 

possible, since detailed merger trees can only be obtained for halos much larger than 

the smallest resolvable group. Kauffmann et al. (1999a) found that in their simulations 

groups as small as 10 particles are dynamically stable systems and that for 95% of these 

groups, 80% of the particles remain in the same group at subsequent times. 

We therefore identify halos using a linking length b — 0.2 at all redshifts, with a 

minimum group size of ten particles. The resulting catalogues may still contain some 

groups which consist of unbound particles which happen to be close together at this 

particular timestep. To remove these, we follow Benson, Frenk, Baugh, Cole & Lacey 

(2001) and calculate the total energy of each group. Unbound groups are not immediately 

discarded, because they may only be unbound due to the presence of a small number of 

fast moving particles. The binding energy of each particle is calculated, and the least 

bound particle is removed from the group. This is repeated until the group becomes 

bound. If half of the particles are removed or the group is reduced to less than i V m j n 

particles we discard i t . Up to 5% of all groups are discarded, with a similar number of 

groups being reduced in mass by this procedure. The affected groups generally consist of 

around 10-20 particles. 

We use the procedure described above to generate halo catalogues for 44 simulation 

outputs between redshifts z = 20 and z = 0, spaced approximately evenly in l o g 1 0 ( l + z). 

2.2.2 Cons truc t ing N-body Merger Trees 

In an idealised picture of the process of hierarchical structure formation (e.g. Press-

Schechter theory), dark matter halos may increase in mass by mergers, but cannot lose 

mass. Consequently, any halo identified in a simulation prior to the final output time 

should still exist at subsequent output times, although it may have become subsumed 
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within a larger halo through a merger. In any case, the constituent particles of the 

original halo should still all be members of a single group. I t should therefore be possible 

to identify each halo in the simulation as a progenitor of a single halo at the next output 

time. 

In practice there are several ways in which a halo can lose particles. Halos may be 

disrupted by tidal forces caused by other nearby halos. The masses of simulated halos 

can also fluctuate because the FOF algorithm imposes a somewhat arbitrary boundary 

on the halo and outlying particles which are considered group members at one timestep 

may lie just beyond the boundary at the next timestep. 

The technique we use to determine merger histories is intended to take into account 

this uncertainty in the definition of a halo and a possible loss of particles. First, we 

consider two adjacent output times from the simulation, t\ and £2 , where t\ < t^. Each 

halo at time t\ is labelled as a progenitor of whichever halo at time ti contains the largest 

fraction of its particles. This process is repeated for all pairs of adjacent output times. It 

is then straightforward to trace the merger history of each halo which exists at the final 

output time. Fig. 2.1 shows an example of a merger tree created in this way for a halo 

with a final mass of about 9 x 1 0 1 2 f t _ / M © , or around 700 particles. 

In the semi-analytic model used here, galaxies are assumed to form at the centres of 

dark matter halos, so the centre of each halo in the merger tree must be defined. We 

choose to follow Kauffmann et al. (1999a), who identified the most bound dark matter 

particle as the position of any galaxy which forms in the halo. We define the binding 

energy of a particle as the sum of its kinetic energy and the gravitational potential energy 

due to the other particles in the halo. This approach differs from that of Benson, Pearce, 

Frenk, Baugh & Jenkins (2001), who associated the central galaxy in a halo with the 

centre of mass. Once a galaxy forms it is assumed to follow this particle until the parent 

halo merges with another halo and dynamical friction, calculated as described in Cole 

et al. (2000), causes the galaxy to merge with the central galaxy of the new halo. We 

therefore check that the most bound particle of a halo remains a member of the same 

halo as the majority of the halo's constituent particles at the next output time. I f this 

is not so, we choose the most bound particle from those which are in the correct halo at 

the later output time. This problem generally only occurs in smaller halos which may be 

easily disrupted. 

During the construction of the merger trees, we also attempt to deal with the problem 

mentioned in Section 2.2.1 — the possibility that nearby halos may be artificially linked 
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by the FOF algorithm. The problem occurs if two halos become temporarily linked by 

a transient "bridge" of particles which causes the FOF group finder to consider them 

as a single, large group. When the bridge is later broken, the group splits, leaving the 

two original halos. Our tree building method would identify the large, joined group as a 

progenitor of the larger of the two final groups. 

These situations are identified by looking for groups at the earlier time tx whose 

particles are shared between two or more groups at the subsequent output time ti- This 

indicates that between times t\ and £2 the group has split into smaller groups which we 

refer to here as "fragments". 

We split such spuriously joined groups into one new group for each fragment which 

contains more than Nmin of its constituent particles. Particles belonging to one of these 

fragments at time t<i are assigned to the corresponding new group at the earlier time . 

Particles belonging to no fragment, or to a fragment with fewer than i V m j n particles from 

the joined group, are assigned to the new group corresponding to the fragment "closest" 

to their position at time t\. The separations used are weighted by a factor M - 1 / 3 to 

account for the spatial extent of the groups, where M is the mass of the fragment. 

The splitting procedure is first carried out for halos at the penultimate timestep and 

then repeated for each earlier output time in order of increasing redshift. For each timestep 

a modified group catalogue is produced, which is then used to determine whether any halos 

at the previous timestep need to be split. This ensures that if any bridge between a pair 

of halos persists for more than one timestep the halos are split at each timestep where 

the bridge exists. 

2.2.3 Mass Conservat ion 

In the GALFORM semi-analytic model of Cole et al. (2000), halos may gain mass through 

mergers with other halos. The mass of a halo always increases with time, and the difference 

between the mass of a halo and the sum of the masses of its progenitors is due to the 

accretion of small, unresolved dark matter halos. 

The N-body merger trees may contain halos which decrease in mass from one timestep 

to the next for the reasons described in Section 2.2.2 — the nature of the definition of a 

halo imposed by the FOF group finder and the possibility of disruption by tidal forces. 

Consequently, a halo in a N-body merger tree may be somewhat less massive than its 

progenitors. In the GALFORM model this corresponds to the unphysical situation where 

a negative amount of mass is accreted in the form of sub-resolution halos. 
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Figure 2 . 1 : An example of a merger tree obtained from the GIF simulation for a halo 

of mass 9 x 1 O 1 2 / I _ 1 M 0 at redshift z = 0. Each circle represents a dark matter halo 

identified in the simulation, the area of the circle being proportional to the halo mass. 

The vertical position of each halo on the plot is determined by l o g 1 0 ( l + 2) at the redshift 

at which i t exists, the horizontal positioning is arbitrary. The solid lines connect halos to 

their progenitors. The solid line in the panel on the left-hand side shows the fraction of 

the final mass contained in resolved progenitors as a function of redshift. The dotted line 

shows the fraction of the final mass contained in the largest progenitor as a function of 

redshift. 
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The solid lines in Fig. 2.2 show the distribution of the ratio SM p r o g/Mhaio) where 

Mhalo is the mass of a halo and X M p r o g is the total mass of the immediate progenitors 

of the halo, which exist at the previous timestep. Halos at all timesteps (other than the 

first) are included. I f these merger trees had been created using the technique of Cole 

et al. (2000), then this ratio would always be less than one. I t can be seen from Fig. 2.2 

that for halos less massive than about l O 1 2 / i _ 1 M 0 the total mass in the progenitors can 

occasionally exceed the mass of the halo they form at the next timestep by up to 50%. 

More massive halos are less affected, but there are still rare instances where the largest 

halos have progenitors with masses 5-10% greater than the mass of the halo. 

Mass conservation can be forced on the N-body merger trees by simply adjusting the 

masses of some of the halos. Two opposite approaches to the problem are possible. Mass 

can be added to those halos which are less massive than their progenitors, or mass can 

be removed from the progenitors themselves. In order to show that the changes made to 

the halo masses have little effect on the semi-analytic model, we create merger trees using 

both methods. 

Enforcing the conservation of mass in merger trees by adding mass is relatively 

straightforward. I f a halo is less massive than its progenitors, its mass is increased to 

match that of the progenitors. The halo may, in turn, be a progenitor of a later halo 

which may now become less massive than its own progenitors. This later halo's mass 

will then also be increased. Changes made to halo masses at early times may therefore 

propagate to later times. 

Similarly, if mass is removed from a halo to force conservation of mass, it may become 

less massive than its progenitors and reductions in mass could then propagate to earlier 

times. We attempt to remove mass in such a way as to minimize the effects on earlier 

halos. Each halo has a certain amount of "excess" mass beyond that of its progenitors, 

which was accreted over the last timestep in the form of sub-resolution objects. This 

mass, if i t exists, may be removed without the change propagating to earlier halos. When 

a halo which is less massive than its progenitors is found, mass is first removed from the 

excess mass of the largest progenitor. If still more mass must be removed, it is taken from 

the excess mass of the other progenitors in decreasing order of mass. If all of the excess 

mass of the progenitors is removed and yet more mass needs to be taken away, the masses 

of all of the progenitor halos are simply scaled down by a constant factor. 

The dotted lines in Fig. 2.2 show the sizes of the changes we are forced to make when 

we enforce mass conservation by adding mass to halos. These lines show the distribution 
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Figure 2.2: The solid lines show the distribution of the ratio of the total mass of the 

immediate progenitors of a halo, S M p r o g , to the mass of the halo at the next timestep, 

Mhalo- Each panel shows the distribution of S M p r 0 g / M h a i 0 for halos in the mass range 

shown at the top of the panel. The dotted lines show the distribution of S M p r o 6 / M h a i o if 

SMp r 0 g is evaluated after the progenitors have been increased in mass to at least the total 

mass of their progenitors. Where this ratio is greater than 1, it is the factor by which 

Mhalo must be changed to ensure mass conservation if we choose to add mass. 
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of the ratio £M p r 0 g/Mhaio if S M p r o g is evaluated after the progenitors of the halo at all 

previous timesteps have been made at least as massive as their own progenitors. M h a i 0 is 

still the original halo mass. Where this ratio exceeds 1, i t is the factor by which Mhalo 

must be scaled to ensure that the halo is at least as massive as its progenitors. I t can be 

seen that the required changes to individual halos are generally small, and adjustments 

are required much less frequently in well resolved halos. However, the masses of a minority 

of halos are affected quite significantly and it is necessary to show that these changes do 

not affect the galaxy population predicted by the semi-analytic model. The algorithms 

described above are two opposite ways of dealing with the problem of mass conservation 

in the merger trees. While artificially altering the halo masses is clearly not ideal, if, 

as is the case, both methods produce very similar results when the merger trees are fed 

into the semi-analytic model we can then conclude that the changes we have made are 

insignificant. This comparison is carried out in Section 2.3.3. 

2.3 Comparison between G A L F O R M and N-body G A L -

F O R M 

In this section we describe our semi-analytic model, indicating how it differs from the 

model of Cole et al. (2000) on which i t is based. We also explain how merger trees 

obtained from a simulation may be incorporated into the model. 

2.3.1 T h e N-body G A L F O R M model 

We use the GALFORM semi-analytic model to treat the process of galaxy formation within 

the dark matter halos in the GIF simulation. The model is described in detail by Cole 

et al. (2000) so here we present only a brief description of features that are important to 

this work. The original model of Cole et al. will be referred to as "standard GALFORM", 

and the version using merger trees taken from a simulation will be referred to as "N-body 

G A L F O R M " . 

The starting point for the standard GALFORM model is a set of merger trees created 

using a Monte-Carlo technique. The history of each halo is divided into a number of 

discrete timesteps. Extended Press-Schechter theory is used to estimate the probability 

that a halo "fragments" into two progenitors when a step back in time of size St is taken. 

The masses of the fragments are chosen at random from a distribution consistent with 

extended Press-Schechter theory. Halos are repeatedly split in this way to create merger 
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trees. A mass resolution limit is imposed on the merger trees, below which progenitors are 

considered to be material acquired through continuous accretion. The mass resolution is 

normally set sufficiently high that the results of interest are not sensitive to its value. In 

the N-body G A L F O R M model, we replace these merger trees with those calculated directly 

from the GIF simulation as described in Section 2.2.2. The mass resolution limit is then 

determined by the mass of the smallest halo which can be resolved in the simulation. 

The dark matter halos in the merger tree are assumed to be spherically symmetric 

with the radial density profile of Navarro et al. (1996): 

where TNFW is the scale radius of the halo and is related to the concentration parameter, 

c, defined by Navarro et al. (1997) through r N F W = r 2 0 o / c , where T2oo is the radius within 

which the mean density of the enclosed material is 200 times the critical density required 

for a closed universe. Note that we choose to define the virial radius of a halo, r v ; r i a i , to be 

the radius within which the mean density is A v i r i a i times the critical density, where A v i r i a i 

is the virial overdensity obtained from the spherical collapse model. The concentration 

parameter is set using the method described in the appendix of Navarro et al. (1997), 

but adapted to our definition of the virial radius. We do not allow for any scatter in the 

concentration parameter as a function of halo mass. 

Our treatment of the cooling of gas within halos is identical to that of Cole et al. 

(2000). Initially, the amount of gas in each halo is taken to be equal to the mass of the 

halo times the universal baryon fraction. The gas is assumed to be shock-heated to the 

virial temperature of the halo when it forms. We assume that the radial density profile 

of the gas is given by 

where the core radius is given by r c o r e / r N F w ~ 1/3 in accordance with the simulations of 

Navarro et al. (1995). This core radius is allowed to grow with time from an initial value, 

r £ o r e , as gas is removed by cooling in order to maintain the same gas density at the virial 

radius. This ensures that the pressure at the virial radius, which would be maintained by 

shocks from infalling material, remains unchanged. 

To determine the rate at which gas can cool and form a disk at the centre of the halo, 

the cooling time of the gas is calculated as a function of radius using the cooling function 

of Sutherland & Dopita (1993). Gas which has had time to cool and fall to the centre of 

the halo is added to the disk where i t is available to form stars. 

p(r) oc 
1 

(2.1) 
r / r N F w ( r / r N F W + 1) 2 ' 

Pgas(r) oc l / ( r + r c o r e ) , (2.2) 
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When halos merge, the most massive galaxy becomes the central galaxy in the new 

halo. The resolution of the simulations used here is insufficient to follow the evolution of 

substructure within the dark matter halos. Instead, the dynamical friction time scale, as 

defined by Lacey & Cole (1993), is used to determine when each satellite will merge on 

to the central galaxy. I t should be noted at this point that the orbital parameters used 

to determine the dynamical friction time for each galaxy are assigned at random from 

a distribution consistent with the numerical results of Tormen (1997), even when using 

merger trees obtained from the simulation. 

2.3.2 P a r a m e t e r s in the N-body G A L F O R M model 

The GALFORM semi-analytic model requires a number of parameters to be specified, which 

can be divided into three categories. There are numerical parameters, parameters describ­

ing the background cosmology and parameters which describe the physical model of galaxy 

formation. 

The numerical parameters are the mass resolution, M r e s , the number of timesteps in 

the merger tree and the starting redshift. In the N-body GALFORM model these are all 

constrained by the properties of the simulation used to obtain the merger trees. The mass 

resolution is the mass of the smallest halo which our group finding algorithm can resolve, 

there is one timestep for each simulation output and the starting redshift is the redshift 

of the first output. The cosmological parameters f ^ o i Ao, h, as, T and, in the case of a 

simulation with a baryonic component, fif,, are also fixed by the simulation. 

The remaining parameters allow us to vary the treatment of the processes involved in 

galaxy formation. The parameters we are interested in are: 

• r ° o r e : the initial size of the core in the radial gas density profile, specified in terms 

°f R N F W (see eqn. 2.2). 

• The evolution of r c o r e with time. The radius r c o r e may be a fixed fraction of TNFW 

or i t may be allowed to increase with time as described in Section 2.3.1 

• fd{- A factor by which the dynamical friction time scale for a satellite galaxy, which 

is used to determine when the galaxy merges with the central galaxy of the halo, 

may be scaled. Increasing /df reduces the rate at which galaxy mergers occur within 

halos. 

The other parameters in the model are the same as those in the reference model of 

Cole et al. (2000), with the following minor changes: t>hot = 250kms _ 1 and / e i i i p = 0.5. 
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The parameter Uhot determines the efficiency with which energy injection from supernovae 

and young stars reheats and ejects cold gas from galactic disks. The parameter / e i i i p is 

used to decide the outcome of mergers between central and satellite galaxies. If the ratio 

of the mass of the satellite to the mass of the central galaxy is greater than / e i i i p , any gas 

in the disks of the two galaxies is converted into stars and an elliptical galaxy is produced. 

If the ratio is smaller than / e i i i p , any stars present in the satellite are added to the bulge 

of the central galaxy and any gas is added to the disk. These changes to the Cole et 

al. model are required to obtain a realistic luminosity function at z — 0 with the higher 

baryon density, — 0.038, which we use here. 

Our prescription for star formation differs slightly from that of Cole et al. In our 

model, the time scale for star formation is given by 

^ ^ ( V d i s k ^ O O k m s - 1 ) " * , (2.3) 

where V^isk is the circular velocity of the galaxy disk and the time scale, r ° , is set to 

3Gyr. We set a* = -2.5. The way r* scales with redshift in this model results in reduced 

star formation and more gas rich mergers at high redshift and has been shown (Lacey 

et al. 2002) to better reproduce the properties of SCUBA and Lyman break galaxies. 

Kauffmann & Haehnelt (2000) also find that a star formation scheme with an increased 

star formation timescale at high redshift is required to reproduce observations of damped 

Lya absorption systems and the increase in number density of bright quasars from z = 0 

to z = 2. I t should also be noted that, for the purposes of this comparison, the details 

of our star formation prescription are not critical, since the same scheme is used in both 

the standard and N-body GALFORM models. 

2.3.3 Effects of mass conservation 

The upper panels of Fig. 2.3 show the galaxy luminosity functions in the b j and K bands 

predicted by the N-body GALFORM model with the parameters of Section 2.3.2, using 

the two different methods described in Section 2.2.3 to enforce mass conservation in the 

merger trees. Over most of the luminosity range plotted, the two curves are essentially 

identical but there appear to be more galaxies at very faint b j magnitudes when mass 

is removed from the merger trees. The majority of these galaxies formed in halos near 

the 10 particle (~ 1.4 x 1 O 1 1 / I _ 1 M 0 ) mass resolution limit imposed by the FOF group 

finder and their halos subsequently merged with other, larger dark matter halos. When 

mass conservation is enforced by removing mass from the merger trees (the dotted lines in 
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Fig. 2.3) i t is possible to end up with some halos with mass less than the resolution limit 

which can harbour galaxies with b j band magnitudes around -14 or fainter. If, instead, 

mass is added to halos less massive than their progenitors, then the merger trees contain 

no halos with masses below the FOF resolution threshold and hence fewer faint galaxies. 

These sub-resolution halos often exist in the merger trees of larger halos and could 

affect the evolution of larger, brighter galaxies. However, the agreement of the luminosity 

functions suggests that any effect is insignificant. The global star formation history and 

Tully-Fisher relation shown in the lower panels of Fig. 2.3 are similarly unaffected. 

Overall, the choice of mass conservation method appears to make very little difference 

to the quantities plotted in Fig. 2.3, which suggests that the small amounts of mass being 

added to or removed from the merger trees do not significantly affect the properties of the 

resulting galaxies. The only region of the luminosity function which is affected is largely 

populated by galaxies which formed in halos with little or no resolved merger history, 

where the model cannot be expected to give reliable results. For the remainder of this 

Chapter we choose to enforce mass conservation by adding mass to the merger trees since 

this does not introduce halos with masses below the resolution limit. 

2.3.4 C o m p a r i s o n wi th s tandard G A L F O R M 

The mass resolution of the merger trees taken from the GIF simulation is equal to 10 

particle masses or 1.4 X 10llh~1M.Q, i.e. Nmin = 10. This is much larger than the mass 

resolution, M r e s = 5.0 X 1 O 9 / I - 1 M 0 , used by Cole et al. (2000). This will clearly affect 

the properties of the galaxies predicted by the N-body GALFORM model, since gas will be 

unable to cool and start forming stars until lower redshifts when halos with masses greater 

than M r e s have formed. In order to investigate the effect of limited mass resolution on 

the N-body GALFORM model, we identify the properties of the merger trees which differ 

between standard and N-body GALFORM and use this knowledge to produce a modified 

version of the standard GALFORM model which reproduces the behaviour of the N-body 

GALFORM model. We can then increase the mass resolution of the merger trees in the 

modified model and observe the effects on the predicted galaxy properties. 

There are four main reasons why the merger trees in the two models may differ. 

Firstly, there is the difference in mass resolution described above. Therefore, we initially 

degrade the mass resolution of the standard GALFORM model to match that of the GIF 

simulation by setting the minimum halo mass, M r e s , equal to the mass of (Nm-m - 1) dark 

matter particles — any halo of this mass or less in the N-body simulation would not be 
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Figure 2.3: Luminosity functions, star formation histories and Tully-Fisher relations for 

galaxies predicted by the N-body G A L F O R M model using merger trees obtained from the 

GIF simulation with two different methods of enforcing mass conservation. The solid 

lines show results obtained when mass conservation in the merger trees is enforced by 

increasing the masses of halos less massive than their progenitors. The dotted lines show 

the results obtained if, instead, the masses of the progenitors of such halos are reduced. 
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identified by the FOF group finder and would not be included in the N-body merger trees. 

Secondly, Jenkins et al. (2001) have shown that the Press & Schechter (1974) halo mass 

function (used in the standard GALFORM model) differs somewhat from the mass function 

determined from N-body simulations. We replace the Press-Schechter mass function in 

the standard GALFORM model with the mass function determined by Jenkins et al. This 

ensures that the distribution of halo masses at z — 0 in the standard GALFORM model 

matches the distribution in the simulation. 

The number of timesteps also differs between the two models. In the standard G A L ­

FORM model we use 150 timesteps evenly spaced in l o g 1 0 ( l + 2), whereas in the N-body 

case we have only 44 simulation outputs. However, we find that i f we degrade the time 

resolution of the standard GALFORM model to match that of the N-body model the prop­

erties of the galaxy populations predicted change very little. 

Finally, the distribution of progenitor masses for halos of a given mass predicted 

by the standard GALFORM model does not reproduce the distribution found in N-body 

simulations with complete accuracy. Benson, Pearce, Frenk, Baugh &; Jenkins (2001) 

show that an empirical correction can be used to bring the progenitor mass distributions 

in the semi-analytic and N-body merger trees into closer agreement. The threshold linear 

overdensity for collapse from the spherical collapse model, Sc, is replaced with an effective 

threshold <^ f f = fsc$c- In the ACDM cosmology employed in the GIF simulation, the 

following form for fgc was found by Benson et al. to give reasonable agreement between 

the progenitor mass functions between redshifts 0 and 3: 

f S e = l + O . 1 4 [ l o g l o ( M h a l o / / T ' M 0 ) - 15.64], (2.4) 

where Mhalo is the mass of the final halo at redshift z = 0. This form of modification was 

suggested by Tormen (1998). 

These modifications are intended to produce semi-analytic merger trees with statistical 

properties closely matched to those of the N-body merger trees. Fig. 2.4 shows the 

galaxy luminosity functions in the bj and K bands, Tully-Fisher relations and global star 

formation histories for both the modified GALFORM model described above (dotted lines) 

and the N-body GALFORM model (dashed lines). It can be seen from the figure that these 

two models predict populations of galaxies with very similar statistical properties. The 

luminosity functions are in reasonable agreement for K brighter than about -18 and b j 

brighter than about -15. The Tully-Fisher relations and star formation histories are also 

in close agreement. 
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As pointed out previously, the fainter galaxies in these models occupy halos with very 

poorly resolved merger histories and their properties may be largely determined by the 

effects of limited mass resolution. The solid lines in Fig. 2.4 show the properties of the 

galaxies in the modified GALFORM model when the minimum halo mass MTea is reduced 

to 5.0 x 109h~1M.Q. This is much less massive than the smallest halo Benson et al. were 

able to resolve in their simulations and consequently, in this regime, eqn. (2.4) has not 

been tested and cannot be relied upon to produce a realistic distribution of progenitor 

masses. We do not expect this model to reproduce the results of Cole et al. but we show 

it only to provide some indication of the magnitude of the effect of introducing low mass 

halos into the merger trees. 

This "improvement" in mass resolution increases the number of faint galaxies, which 

form in small, previously unresolved halos. With a higher minimum halo mass the gas in 

these small halos is unable to cool until i t becomes incorporated into objects more massive 

than M r e s . This is reflected in the luminosity functions which show that there are slightly 

more bright galaxies and far fewer faint galaxies at z = 0 in the model with poor mass 

resolution. The star formation history is consistent with this, showing that poor mass 

resolution results in reduced star formation at z > 1 and increased star formation at 

2 « 0 . However, calculating the global star formation rate involves a sum over all halos. 

At high redshifts this includes a large number of halos of low mass whose abundances 

may be unrealistic due to our extrapolation of eqn. (2.4). Reducing M r e s appears to have 

little or no effect on the Tully-Fisher plot. 

Overall, the predictions of the N-body GALFORM model closely match those of the 

standard GALFORM model when we take into account the differences in the halo mass 

function, the progenitor mass distribution and the mass resolution. The differences be­

tween the modified GALFORM models with high and low mass resolution indicate that, at 

low luminosities, the properties of the galaxies in the N-body model are seriously affected 

by the resolution of the simulation. In order to attempt accurately to reproduce the 

properties of observed galaxy populations with b j band magnitudes fainter than about 

-17, an N-body simulation with significantly improved mass resolution would be required. 

2.4 Conclusions 

In this Chapter we have examined how the statistical properties of the galaxies predicted 

by a semi-analytic model depend on the way in which the dark matter halo merger 
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Figure 2.4: Luminosity functions, star formation histories and Tully-Fisher relations for 

three different models. The solid lines correspond to the GALFORM model using Monte 

Carlo generated merger trees, with the modifications explained in the text and a mass 

resolution of 5 X 109h~1M.Q. The dotted lines show results from the same model with 

a mass resolution of 1.4 X l0llh~1M.&, equivalent to that of the GIF simulation. The 

dashed lines show results obtained from the N-body GALFORM model which uses merger 

trees derived from the simulation. 
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histories are created. We have developed a method for calculating merger histories from 

N-body simulations and used the resulting merger trees in a semi-analytic model of galaxy 

formation based on that of Cole et al. (2000). We refer to this model as N-body G A L F O R M 

and compare i t to an otherwise identical "standard G A L F O R M " model, which uses halo 

merger histories generated using the Monte-Carlo algorithm of Cole et al. This algorithm 

is based on the extended Press-Schechter (EPS) theory. 

We find that in a significant number of cases, halos in the N-body merger trees are 

less massive than their progenitors at the previous timestep. When this happens we 

are forced artificially to adjust the masses of the halo or its progenitors, since in our 

semi-analytic galaxy formation model halos may not lose mass. However, the luminosity 

function, Tully-Fisher relation and global star formation history of the galaxies predicted 

by the semi-analytic model remain almost exactly the same whether we add mass to the 

halo or remove mass from the progenitors when we encounter this problem. We conclude 

that the changes we are forced to make to the halo masses have very little effect on the 

semi-analytic model. 

If the mass resolution in the standard G A L F O R M model is degraded to that of the N-

body simulation and the empirical fit of Benson, Pearce, Frenk, Baugh & Jenkins (2001) is 

used to correct the distribution of halo progenitor masses, we obtain luminosity functions 

and Tully-Fisher relations in very good agreement with the N-body G A L F O R M model. 

This shows that, apart from the issue of mass resolution, the only significant statistical 

differences between the N-body merger trees and those of Cole et al. are due to the known 

discrepancy between EPS theory and the results of N-body simulations. 

By improving the mass resolution in the standard G A L F O R M model to that used by 

Cole et al. we were able to obtain an indication of the effects of limited mass resolu­

tion on the N-body model. The mass resolution in the N-body merger trees is imposed 

by the particle mass in the GIF simulation, since halos with fewer than 10 particles 

(1.4 x 10llh~1 MQ) are not resolved. This limitation has a noticeable effect on the galaxy 

luminosity function and we find slightly more very bright galaxies, since gas may only 

cool in resolved halos. I f only massive halos are resolved, cooling is delayed resulting in 

brighter galaxies at z = 0. However, the most obvious effect of poor mass resolution is 

a drastic reduction in the number of galaxies with 6j magnitudes fainter than about -17. 

This demonstrates that the mass resolution of the GIF simulation is insufficient to make 

reliable predictions at these magnitudes. At brighter magnitudes the luminosity functions 

remain in good agreement. 
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In conclusion, when used as the starting point for semi-analytic modelling of galaxy 

formation, merger trees taken from an N-body simulation using the technique described 

here result in similar galaxy populations to those obtained using the (slightly modified) 

Monte-Carlo algorithm of Cole et al. This supports the reliability of our method and 

provides a means to populate large cosmological N-body simulations with semi-analytic 

galaxies at a fraction of the computational cost of a hydrodynamic simulation of the same 

volume. When applied to the dark matter component of an Smooth Particle Hydrody­

namics (SPH) simulation, our model will also allow us to compare SPH and semi-analytic 

treatments of galaxy formation, and in particular the cooling of gas within halos, on a 

halo-by-halo basis. This comparison is reported in the next Chapter. 



Chapter 3 
Gas Dynamics in SPH 

and Semi-analytic 

Models of Galaxy 

Formation 

3.1 Introduction 

A range of physical processes are responsible for the formation and evolution of the 

galaxies we see in the universe today. The starting point for current hierarchical cold 

dark matter models of galaxy formation is the gravitational amplification and eventual 

collapse of primordial density fluctuations to form the dark matter halos in which stars 

and galaxies may form. This process is now quite well understood, and predictions of 

halo mass functions from analytic techniques such as Press-Schechter theory (Press & 

Schechter 1974) and its extensions (Bond et al. 1991, Bower 1991, Lacey & Cole 1993, 

Sheth et al. 2001) are in good agreement with numerical simulations (e.g. Gross et al. 

1998, Governatoet al. 1999, Jenkins et al. 2001). 

Unfortunately, the behaviour of the baryonic component of the universe is more com­

plex and less well understood. While the dynamics of the dark matter are determined by 

gravitational forces alone, gas is subject to hydrodynamical forces and radiative effects. 

The situation is further complicated by the absence of a complete theory of star formation 

and the fact that star formation involves length and mass scales many orders of magnitude 

smaller than the galaxies themselves forces those modelling galaxy formation to resort to 

recipes and prescriptions to obtain star formation rates. Nevertheless, semi-analytic mod­

els have met with considerable success, for example in reproducing the local field galaxy 

luminosity function and distributions of colour and morphology (e.g. Cole 1991, Cole 

et al. 1994, Cole et al. 2000, White & Frenk 1991, Lacey & Silk 1991, Somerville k 
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Primack 1999) and galaxy clustering properties (e.g. Kauffmann et al. 1999a, Benson 
et al. 2000, Wechsler et al. 2001). In this Chapter, we compare two possible ways of 
modelling the process which provides the raw material for star formation - the cooling of 
gas within dark matter halos. Such a model is a necessary part of almost any treatment 
of the hierarchical formation of galaxies, yet there is still some uncertainty as to which of 
the approaches currently in use are reliable and whether they are in good agreement. 

While Eulerian numerical techniques may be employed in the modelling of galaxy 

formation in cosmological volumes (e.g. Cen & Ostriker 2000), here we concentrate on the 

Lagrangian method known as smoothed particle hydrodynamics (SPH), first described by 

Lucy (1977) and Gingold & Monaghan (1977). SPH simulations have been able to predict 

the formation of objects of approximately galactic mass with appropriate abundances in 

a cosmological context (e.g. Katz et al. 1992, Navarro & White 1993, Evrard et al. 1994, 

Steinmetz & Muller 1995, Katz et al. 1996, Frenk et al. 1996, Steinmetz k Navarro 1999, 

Pearce et al. 1999, Pearce et al. 2001) and allow the investigation of the dynamics of 

galaxies within clusters and the spatial distribution of galaxies. 

Semi-analytic and SPH galaxy formation models rely on very different sets of assump­

tions and approximations. For example, semi-analytic models assume that dark matter 

halos are spherically symmetric and that infalling gas is shock-heated to the virial tem­

perature of the halo, whereas SPH simulations impose no restrictions on halo geometry 

but assume that continuous distributions of gas and dark matter may be well represented 

by a limited number of discrete particles. Consequently, SPH and semi-analytic models 

have complementary strengths and weaknesses. Semi-analytic models are computation­

ally much cheaper than simulations, which allows extremely high mass resolution in halo 

merger trees and more thorough investigation of the effects of varying parameters or the 

treatment of particular processes. SPH simulations contain fewer simplifying assumptions 

but have limited dynamic range and without sufficiently large numbers of particles may 

suffer from numerical effects. 

The aim of this Chapter is to compare SPH and semi-analytic treatments of the gas 

dynamics involved in galaxy formation in order to gauge the effects of the uncertainties 

present in the two techniques. A previous comparison carried out by Benson, Pearce, 

Frenk, Baugh & Jenkins (2001) found that SPH and semi-analytic models give similar 

results for the thermodynamic evolution of cooling gas in cosmological volumes. In par­

ticular, the global fractions of hot gas, cold dense gas and uncollapsed gas agreed to 

within 25% and the mass of gas in galaxies in the most massive halos differed by no 
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more than 50%. However, their analysis was restricted to a statistical comparison be­
cause their semi-analytic model employed merger histories created using a Monte-Carlo 
algorithm, that of Cole et al. (2000). We improve on the work of Benson et al. by cal­
culating the merger trees directly from the simulations so that the merger histories of 
the halos in the semi-analytic and SPH treatments are the same. This removes a source 
of uncertainty from the comparison, since any differences between the models must be 
due entirely to differences in the treatment of the baryonic component. Our method also 
allows a comparison between halos on an individual basis and lets us investigate whether 
the dependence of the cold gas mass on the halo's merger history is the same in the SPH 
and semi-analytic cases. 

Our approach is that of "modelling a model", using a semi-analytic model to reproduce 

the behaviour of the simulation including the effects of limited mass resolution. Since we 

are interested primarily in the rate at which cooling occurs in the two models, we use 

a simulation which allows radiative cooling but which does not include any prescription 

for star formation or feedback. We attempt to model this simulation using a "stripped 

down" semi-analytic model which also neglects these phenomena. Hierarchical models of 

galaxy formation without feedback predict that most of the gas in the universe cools in low 

mass objects at high redshift (e.g. White k Rees 1978, Cole 1991, White k Frenk 1991). 

Consequently, we cannot expect either our SPH simulation or our stripped down semi-

analytic model to cool realistic quantities of gas, and where differences between the two 

approaches are found it may not be possible to conclude that one is more "correct" than 

the other. However, the changes which must be made to the semi-analytic model to 

match the SPH simulation may provide insight into the level of agreement between the 

two techniques and the reasons for any discrepancies. 

The layout of this Chapter is as follows. In Section 3.2 we describe our semi-analytic 

model and give details of the SPH simulation we use. In Section 3.3 we compare properties 

of the two models, including galaxy masses, cold gas mass in halos as a function of redshift 

and the spatial distribution of the galaxies. In Section 3.4 we present our conclusions. 

3.2 The Models 

3.2.1 The S P H Simulation 

SPH is a Lagrangian numerical method which follows the motion of a set of gas elements 

represented by discrete particles. The thermal energy and velocity of each particle are 
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known at any given time and each particle has a fixed mass. Properties of the gas at 
the position of a particle can be estimated by smoothing these quantities over the iVsPH 
nearest neighbouring particles. The gas properties are then used to calculate the forces 
acting on each particle in order to update the positions and velocities. In cosmological 
simulations both dark matter and gas particles are included and the particles are initially 
distributed in a manner consistent with a cosmological power spectrum. If the process 
of galaxy formation is to be simulated then radiative cooling of the gas must also be 
included. 

The SPH simulation used here was performed using the Hydra code. This particular 

implementation includes a modification, described by Pearce et al. (2001), to prevent the 

rate of cooling of hot gas being artificially increased by nearby clumps of cold, dense 

gas, or "galaxies". Any gas hotter than 10 5 K is assumed not to interact with gas at 

temperatures below 12 000K. Thus, for cooling purposes the density estimate for a hot 

particle near a galaxy is based only on the neighbouring hot particles and the cooling rate 

is unaffected by the presence of the galaxy. 

The simulation has 80 3 gas and 80 3 dark matter particles with individual masses 

of 2.57 x 1 O 9 / I _ 1 M 0 and 2.37 x l O l o / i _ 1 M 0 respectively, contained in a cube of side 

50/ i - 1 Mpc. The power spectrum is that appropriate to a cold dark matter universe with 

the following parameter values: mean mass density parameter Qq — 0.35, cosmological 

constant Ao = 0.65, baryon density parameter Qt, = 0.0377, Hubble constant h = 0.71, 

power spectrum shape parameter T = 0.21 and rms linear fluctuation amplitude erg = 0.90. 

The gravitational softening length is 25/i _ 1 kpc, fixed in physical coordinates. 

The metallicity of the gas in the simulation, measured in terms of the mass fraction 

of metals, Z, is uniform and varies linearly with time according to: 

Z = 0.3Z®t(z)/t0, (3.1) 

where ZQ denotes the solar metallicity, t{z) is the age of the universe at redshift z and to 

is the age of the universe at z = 0. 

This simulation makes no attempt to treat star formation and does not include any 

heating or feedback processes. 

3.2.2 The Semi-analytic Model 

The semi-analytic model used here is the N-body G A L F O R M model described in the pre­

vious Chapter. The model uses the output from an N-body simulation to calculate halo 
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merger histories and semi-analytic techniques to model baryonic processes. Briefly, halo 
merger trees are constructed by identifying halos at each simulation output time using 
the friends-of-friends (FOF) algorithm of Davis et al. (1985). Each halo at each output 
time is identified as a progenitor of whichever halo contains the largest fraction of its 
mass at the next output time. The merger history of each halo at the final time can 
then be traced back. Semi-analytic techniques are used to treat the shock heating of gas 
during the formation of a halo, the cooling of gas within halos and, in the general case, 
the formation of stars and the merging of galaxies within halos. The full model predicts 
a wide range of galaxy properties including luminosity, stellar masses of the bulge and 
disk components and cold gas mass. Galaxy positions can be obtained since each galaxy 
is associated with a particle in the N-body simulation. Initially, this will be taken to 
be the most bound particle of the halo in which the galaxy formed, but if the galaxy 
subsequently merges with the central galaxy of another halo i t will be associated with the 
most bound particle of that halo. 

In order to allow a direct comparison between the predictions of this model and 

those of the SPH simulation, the merger trees must be calculated from the dark matter 

component of the SPH simulation. Consequently, the time and mass resolution in the 

halo merger trees are determined by the properties of the SPH simulation and differ from 

the time and mass resolution of the simulation employed by Helly et al. We have a total 

of 61 outputs from the SPH simulation, the first 26 of which are logarithmically spaced 

in expansion factor between redshifts z ~ 10 and z ~ 1.5. The remaining outputs are 

equally spaced in time between z ~ 1.5 and z = 0. This is something of an improvement 

in time resolution over the GIF simulation used in the previous Chapter. However, the 

predictions of the G A L F O R M model were not significantly affected when the number of 

timesteps was increased, so we do not expect this difference to be important. 

There are two parameters which we vary in order to model the SPH simulation. The 

N-body G A L F O R M model assumes that the distribution of mass in dark matter halos is 

described by the radial density profile found by Navarro et al. (1996). This profile contains 

a single free parameter, which can be expressed as the concentration parameter, c, defined 

by Navarro, Frenk & White or a halo scale radius, r^Fw = »~20o/c, where r2oo is the radius 

within which the mean density is 200 times the critical density for a closed universe. Like 

Cole et al. (2000), we set T N F W using the method described in the appendix of Navarro 

et al. (1997). No scatter is included in the scale radius as a function of halo mass. The 

radial density profile we assume for the hot gas within halos is given by Eqn. 2.2. This 
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profile also contains one parameter, the core radius r c o r e , which we specify as a fraction 

of T N F W a n d may be held at a fixed value or allowed to increase with time from an initial 

value r ° o r e . 

We also allow ourselves the freedom to vary the rate at which mergers occur between 

galaxies in the same dark matter halo. This is specified in terms of a merger timescale 

parameter, /<jf, which is a prefactor in the standard dynamical friction timescale. Reduc­

ing fdf increases the rate at which mergers occur. See Cole et al. ( 2000 ) for details of the 

merger scheme we use. 

3.3 Comparison between SPH and N-body GALFORM 

In this section we compare the results of the SPH simulation with the N-body G A L F O R M 

model, which uses merger trees derived from the dark matter component of the SPH 

simulation. Fig. 3 .1 shows the positions and masses of the galaxies which form in a 

5 / i - 1 M p c thick region in both the SPH simulation and N-body G A L F O R M . The SPH 

"galaxies" (i.e. clumps of cold gas) shown here were identified using a FOF group finder 

on gas particles with temperatures between 8 000 and 1 2 0 0 0 K (see Section 3 .3 .1 ) . 

3.3.1 Modelling S P H with N-body G A L F O R M 

In order to produce a semi-analytic model of the SPH gas simulation using N-body G A L -

F O R M we must first remove the treatment of star formation, feedback and chemical en­

richment from G A L F O R M . We set the metallicity of the gas to be the same as that in the 

simulation, using eqn. ( 3 . 1 ) . 

The cooling rate of the gas in our simulation depends on its density, which is estimated 

by searching for the ./VSPH nearest neighbours. The density of gas in halos with less than 

./VSPH = 32 gas particles, or a total gas mass less than 8.2 X 10loh~1M.Q, will in general be 

severely underestimated with an associated suppression of the cooling rate. Consequently, 

the mass of gas which cools is dependent on the particle mass. 

In order to model this effect in the semi-analytic treatment, we first investigate the 

variation of the mean estimated density of gas in halos in the SPH simulation with halo 

mass. A characteristic volume for each gas particle can be obtained by dividing its mass 

by its SPH density estimate. The total volume of the gas in a halo is calculated by 

summing the volumes of its constituent gas particles. The total volume is then divided by 

the mass of gas in the halo to obtain an estimate of the mean gas density. Fig. 3.2 shows 
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Figure 3.1: Positions and masses of galaxies in a 5 / i - 1 Mpc thick slice through the simu­

lation volume. The panel on the left shows galaxies found in the SPH simulation using 

a friends of friends algorithm to identify clumps of cold gas particles. The panel on the 

right shows the galaxies predicted by the N-body GALFORM model. Each circle represents 

a galaxy, and the area is proportional to the mass of the galaxy. Dark matter particles 

are shown as dots. Only galaxies with masses greater than 32 gas particle masses, or 

8.2 X 10 1 0 / i _ 1 M®, are shown. 

this density estimate plotted against halo mass, at redshift z = 0. In halos identified using 

the FOF group finder with 6 = 0.2 we expect the mean gas density to be several hundred 

times the universal mean gas density. The dotted line shows the median of the mean 

densities of halos of a given mass. Halos with more than 32 particles have approximately 

constant mean density, although the density does increase somewhat with halo mass. 

The estimated density rapidly drops once the halo mass falls below 32 dark matter 

particle masses. Since the cooling time of the gas is inversely proportional to its density 

this could significantly affect the amount of gas which cools in the smaller halos in the 

simulation. We incorporate this effect into the semi-analytic model by increasing the 

cooling time for gas in halos of fewer than 32 particles. A least squares fit to Fig. 3.2 

gives: 

where />SPH is the mean gas density estimated from the SPH simulation and M h a i o is the 

log 1 0 

PSPH = 1 . 2 3 1 o g 1 0 M h a , o - 11.79, (3.2) 
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mass of the halo. The cooling time in our model is inversely proportional to the mean 

density of the gas in the halo. In halos of fewer than 32 particles we replace the cooling 

time, r c o o i , with a longer cooling time, r ^ j 1 , given by 

T S P H _ k r ttb p c r i t . 
"cool —KTcoo\— ) (o-o) 

PSPH 

where p c r i t is the critical density. We set the constant of proportionality, k, in this relation 

by requiring that the cooling time for halos of 32 particles be unchanged. 

Halo by halo comparison 

The masses of individual galaxies in the N-body G A L F O R M model depend on the rate at 

which galaxy mergers occur within dark matter halos. Since the merger rate in the SPH 

simulation may not be the same as that in the semi-analytic model, we first compare 

the total amount of gas which cools in halos of a given mass. This quantity should be 

independent of the merger rate, at least in the semi-analytic case, and can be used to 

compare the treatment of cooling in the two models. In the SPH simulation a large galaxy 

forming at the centre of a halo through mergers may gravitationally affect the density, 

and hence the cooling rate, of nearby gas, but we do not expect this to be a large effect 

and the mass of gas which cools should be only weakly dependent on the merger rate. 

We adopt two different models for the evolution of the gas density profile in the semi-

analytic treatment. The first is that used by Cole et al. (2000) in which the core radius 

in the gas profile increases with time in order to maintain the gas density at the virial 

radius. We may vary the initial core radius, r ° o r e , in order to adjust the amount of gas 

which cools (the standard choice adopted by Cole et al. was r|? o r e = 0 .33rNpw- The second 

is a simpler model in which the core radius remains a constant fraction of the halo scale 

radius, T N F W Again, the size of this fixed core may be varied in order to adjust the rate 

at which cooling occurs. 

In order to quantify the mass of cold gas present in halos in the SPH simulation, we 

first associate gas particles with dark matter halos. A gas particle is considered to belong 

to a halo if it lies within a linking length b = 0.2 of a dark matter particle which belongs 

to that halo. In the unlikely event that dark matter particles from more than one halo 

are found within the linking length, the gas particle is assigned to the halo containing the 

nearest dark matter particle. The linking length used in this procedure is the same as 

that used to identify dark matter halos with the FOF group finder. This ensures that the 

condition for a gas particle to be associated with a halo is consistent with the definition 
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Figure 3.2: Mean halo gas density PSPH plotted against halo mass Mh aio at redshift z — 0. 

The density is expressed in terms of the universal baryon density. The mean density is 

calculated from density estimates for individual particles in the SPH simulation. The 

dotted line shows the median of the mean halo gas densities as a function of halo mass. 

The error bars show 10 and 90 percentile limits. The vertical dashed line is at a halo 

mass corresponding to 32 dark matter particles. The solid line is a power law f i t to the 

median density for halos of fewer than 32 particles. 
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of halo membership used for the dark matter particles. 

The cooling function in our simulation permits gas to cool only to a temperature of 

10 4K. This allows us to distinguish between gas which has been heated and has subse­

quently cooled to 10 4K and the diffuse cold gas in voids which has never been heated 

and is at much lower temperatures. The mass of gas which has cooled in each halo is 

obtained by summing the masses of all gas particles associated with the halo and having 

temperatures between 8 00OK and 12 000K. In the N-body G A L F O R M model, the amount 

of cold gas in each halo is simply the mass of gas which has cooled from the hot phase, 

since the model includes no star formation. 

Fig. 3.3 shows the mean fraction of gas which has cooled as a function of halo mass, 

in both N-body G A L F O R M and the SPH simulation. Here we consider four different 

N-body G A L F O R M models. We vary the initial core radius in the gas profile between 

rcore = 1-O^NFW and 0.15rNFW and either fix the core radius as a fraction of the NFW 

scale radius or allow it to increase with time as described earlier. In the case of a fixed 

core, r c o r e = r ° o r e at all times. 

The dotted lines in Fig. 3.3 show N-body G A L F O R M models which include the mod­

ification to the cooling time in low mass halos described by eqn. (3.3). Al l four models 

reproduce the quantities of cold gas observed at redshift z = 0 in the SPH simulation re­

markably well, for halos of mass greater than about 1012h~1M.Q or around 40 dark matter 

particles — in all but the worst case the difference is less than 50%. We find that if the 

core radius in the gas density profile is allowed to increase as gas cools, the fraction of 

cold gas is not particularly sensitive to the choice of intitial core radius, although a small 

initial value, r|? o r e = 0.15rNFWi gives a slightly better match than if the core is initially 

larger. I f the core radius is fixed as a fraction of the NFW scale radius a much larger 

value, r ° o r e = l.OrNFWi is necessary. 

The dashed lines in the figure show the fraction of gas which cools if cooling is allowed 

to occur at the normal rate in halos of all masses down to the mass of the smallest halo 

we can resolve in the simulation. Surprisingly, this appears to have little effect on halos 

with fewer than 32 dark matter particles for which the cooling rate has been altered. The 

fraction of gas which has cooled in larger halos also increases by a similar amount. The 

extra cold gas in these halos must have cooled in progenitors of fewer than 32 particles 

before being incorporated into larger halos. Overall, the change is not large, with some 

halos having around 10-20% more cold gas on average. This suggests that our results are 

not particularly sensitive to the way in which we model the loss of cooling efficiency in 
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low mass halos, although in both cases the agreement between the SPH simulation and 
the semi-analytic model is poor in such halos. 

Fig. 3.4 shows a direct comparison between the masses of cold gas in individual halos 

in the SPH simulation and the four N-body G A L F O R M models of Fig. 3.3, again using 

the modified cooling time for low mass halos. The mass of cold gas predicted by N-body 

G A L F O R M is plotted against the mass of cold gas in the simulation for each halo, with the 

initial core radius set to rupw m * n e upper panels and 0.15rNFW in the lower panels. In 

the models shown on the left-hand side the core radius remains fixed at its initial value 

at all times. The long-dashed lines show where the points would lie if the simulation and 

the semi-analytic models were in perfect agreement. 

Again, in all four cases the mass of cold gas in the SPH simulation is well correlated 

with the mass of cold gas in the N-body G A L F O R M model. The small scatter, at least 

at high masses, shows that the dependence of cold gas mass on merger history must be 

similar in the SPH simulation and the semi-analytic model. N-body G A L F O R M with a gas 

density profile with a fixed core radius appears to cool on average more gas in halos of 

all masses than the SPH simulation. This can be alleviated to some extent by increasing 

the size of the core in the gas profile but i t appears that a rather large core in the gas 

distribution would be required to obtain good agreement. Allowing the core radius to 

increase as gas cools reduces the rate of cooling and results in closer agreement with 

the simulation; the best agreement is obtained for a small initial core radius of around 

0.15rNFW, although the mass of cold gas in each halo is clearly not particularly sensitive 

to the initial core radius in this G A L F O R M model. 

Fig. 3.5 shows the mass of cold gas in progenitors of four of the larger halos in the 

simulation as a function of redshift. The mass of cold gas in the simulation (solid lines) 

at a given redshift is obtained by summing the masses of all cold gas particles associated 

with the progenitors of the final halo at that redshift. Particles are associated with halos 

using the method described earlier in this section and, as before, "cold" particles are those 

with temperatures in the range 8 000-12 000K. Similarly, the mass of cold gas in the N-

body G A L F O R M model is obtained by summing the masses of the galaxies in the progenitor 

halos. Here we show results for two models, one with r c o r e fixed at r ° o r e = l.OrNFW (dotted 

lines) and the other with a growing core which has an initial core radius r ° o r e = 0.15rNFW 

(dashed lines). The model of Cole et al. used a gas profile with a larger initial core radius, 
r?ore = 0 . 3 3 r N F W . 

The long dashed lines show the mass of cold gas in progenitors in the simulation if 
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Figure 3.3: Mean fraction of halo gas which has cooled at redshift z = 0 as a function 

of halo mass. The solid lines show the mean cooled gas fraction in halos in the SPH 

simulation and are the same in all four panels. The dotted lines show the cold gas 

fraction in N-body G A L F O R M models where the cooling time in low mass halos is increased 

according to eqn (3.3). The dashed lines show N-body G A L F O R M models without this 

adjustment. In the upper panels the initial core radius is set equal to the NFW scale 

radius of the halo. In the lower panels the core radius is set to 0.15 times the scale radius. 

In the panels on the left hand side the core radius remains fixed at its initial value for all 

redshifts, in the panels on the right i t is allowed to increase to maintain the density of 

gas at the virial radius. 
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Figure 3.4: Halo cold gas mass, M c o i a , in four different N-body G A L F O R M models plotted 

against halo cold gas mass in the SPH simulation at redshift z = 0. Each point corresponds 

to a single dark matter halo. The upper panels show N-body G A L F O R M models with 

rcore = 1-OrNFW- The lower panels have r ° o r e = 0.15rNpvv- In the panels on the left, the 

core radius in the gas density profile is a fixed fraction of the NFW scale radius. In the 

panels on the right the core radius is allowed to grow in order to maintain the gas density 

at the virial radius. 
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instead of associating gas particles with halos directly, we use the FOF group finder to 
first identify clumps of cold gas and then associate clumps with dark matter halos. A 
clump is assigned to a halo if a dark matter particle from that halo is found within a 
dark matter linking length of the clump's centre of mass. If particles belonging to several 
halos are found in this region, the nearest to the centre of mass is used. A linking length 
b = 0.02 is used to identify the clumps and a minimum group size of 10 particles is 
imposed on the clumps. These lines are shown in Fig. 3.5 only to illustrate that there 
is some dependence on the way in which we define "cold halo gas" in the simulation. 
This second method will certainly underestimate the mass of cold gas because the group 
finder imposes a minimum mass on the clumps, missing smaller groups of cold particles. 
Also, at high redshift the gravitational softening length exceeds the linking length used 
to identify the clumps, so particles which ought to be considered part of a clump may 
not have collapsed to sufficiently high densities to be picked up by the group finder. We 
find that most of the discrepancy between these two SPH results is due to cold particles 
in small groups of fewer than five particles, at least with b = 0.02. 

I t is also possible that the first method of counting individual gas particles associated 

with halos overestimates the mass of cold gas in smaller halos, where the linking length 

becomes a significant fraction of the radius of the halo. Any particle within a linking 

length of the outer dark matter particles of the halo may be associated with that halo. 

Despite this uncertainty, it appears that more of the cold gas found in the simulation 

cooled at high redshift than in either of the N-body G A L F O R M cases considered. At 

redshift 2 the discrepancy is approximately a factor of 2. Allowing the core radius to 

increase from a small initial value helps somewhat by encouraging more cooling initially 

and slightly suppressing i t later, but the improvement is small compared to the size of 

the discrepancy with the SPH simulation for redshifts greater than around 2. Reducing 

the initial core radius in this model further has little effect on these results. 

We have tried to model the effect of limited resolution on cooling in SPH blobs of fewer 

than 32 dark matter particles, but in the N-body G A L F O R M model no cooling is possible 

in halos of fewer than 10 dark matter particles. I t appears that in our SPH simulation 

some cooling does occur in these halos. However, it may not be useful to model the 

rate of cooling in this regime, since i t is entirely artificial and likely to be dependent on 

the details of the particular SPH implementation. In any case, when halos in the SPH 

simulation first grow to 10 dark matter particles they may have already cooled some gas. 

These halos will eventually be incorporated into larger halos, where the cold gas mass 
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Figure 3.5: Mass of cold gas in the progenitors of four halos as a function of redshift. 

Each panel corresponds to a single halo at z = 0. The solid line shows the mass of cold 

gas in the SPH simulation obtained by summing the masses of all cold gas particles in the 

progenitors. The long dashed line shows the mass of cold gas obtained by summing the 

masses of all FOF groups of cold particles in the progenitors. The dotted lines correspond 

to an N-body G A L F O R M model with a fixed core radius in the gas density profile with 

''core = r N F W - The short dashed lines correspond to a model with a growing core radius 

of initial value rJ?ore = 0.15rNFW-



3. Gas Dynamics in S P H and Semi-analytic Models of Galaxy Formation 54 

becomes dominated by material which cooled in well resolved halos so that at late times 
the SPH and GALFORM calculations converge. 

Galaxy by galaxy comparison 

Fig. 3.6 shows the number density of galaxies as a function of mass in the SPH simulation 

and in the N-body GALFORM model at redshift z = 0. Here, SPH "galaxies" are groups of 

particles identified by the FOF group finder applied to all particles with temperatures in 

the range 8 0 0 0 - 1 2 0 0 0 K . We use a linking length b = 0 .02 and impose a minimum group 

size of 1 0 particles. The results are insensitive to the specific choice of b within reasonable 

bounds. Two N-body GALFORM cases are shown, one with a core of fixed size r c o r e = r^FW 

in the gas density profile, the other with a growing core of initial size r ° o r e = 0.15rNFW-

In both cases N-body GALFORM predicts about 5 0 % more galaxies with masses around 

3 x 10nh~1Mo or less and fewer galaxies with masses greater than this for the latter choice 

of r{? o r e. The deficit in the number of massive galaxies is more apparent in the model with 

a large, fixed gas core radius. Since we know that the total amount of gas cooled in the 

semi-analytic models in each halo is similar to the amount that cooled in the simulation 

(see Fig. 3 . 4 ) , this suggests that there is more merging occurring in the simulation. This 

does not necessarily indicate a failure of the semi-analytic model, however, since i t is 

possible that numerical effects in the simulation contribute significantly to the merger 

rate. 

To test this hypothesis, we varied the merger timescale parameter, /df in the semi-

analytic models. Fig. 3.7 shows galaxy number density as a function of mass for three N-

body GALFORM models with / j f = 0 . 5 , 1 . 0 and 2 .0 . A l l three have gas profiles with growing 

cores of initial radius r ° o r e = 0.15rNFW- Doubling the merger timescale (fdf = 2 .0 ) 

drastically reduces the number of more massive galaxies and prevents the formation of 

any galaxies more massive than 1 O 1 2 / I - 1 M 0 . Halving the merger timescale (/df = 0 .5) 

improves agreement with the simulation by increasing the masses of the largest galaxies 

and reducing the number of small galaxies. However, the improvement is relatively small 

and, in any case, the treatment of mergers in the N-body GALFORM model reproduces 

the distribution of masses observed in the simulation reasonably well with our default 

/df = 1.0. 

The N-body GALFORM model described in Section 3.3 does not allow semi-analytic 

galaxies to be compared with their SPH counterparts on a one to one basis because 

mergers between galaxies in N-body GALFORM are treated in a statistical manner. While 
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Figure 3.6: Galaxy number density as a function of cold gas mass at redshift z = 0. The 

solid line shows galaxy number density in the SPH simulation. The other lines correspond 

to N-body GALFORM models with 1) a fixed core radius r c o r e = TNFW (dotted line) and 

2) a growing core which initially has r|? o r e = 0.15rNpw (dashed line). The horizontal dot-

dashed line shows the number density equal to one object per simulation volume. The 

vertical dot-dashed line is at a mass equal to 32 gas particle masses. 
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Figure 3.7: Galaxy number density as a function of cold gas mass at redshift z = 0 for 

N-body G A L F O R M models with three different merger rates. Al l three models have gas 

profiles with a growing core radius which is initially set to r ° o r e = 0.15rNFW- The merger 

timescale parameter /df is varied between 0.5 (dotted line), 1.0 (short dashed line) and 2.0 

(long dashed line). The short dashed line is identical to the short dashed line in Fig. 3.6. 

The solid line shows the galaxy number density in the SPH simulation and is identical 

to the solid line in Fig. 3.6. The horizontal dot-dashed line shows the number density 

corresponding to one object per simulation volume. The vertical dot-dashed line is at a 

mass equal to 32 gas particle masses. The curves are truncated at 10 gas particle masses. 
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the agreement between the galaxy mass distributions suggests that the overall merger 
rate in the N-body GALFORM model is similar to that seen in the simulation, we cannot 
expect mergers to occur between the same galaxies in the two cases, and hence it is not 
possible to identify clumps of cold gas particles with individual semi-analytic galaxies. 

This problem could be avoided by following the substructure within dark matter halos 

to determine when mergers between galaxies occur, using a method similar to that of 

Springel, White, Tormen &; Kauffmann (2001). Unfortunately the halos in our simulation 

typically contain too few particles for this to be practical. Any dark matter substructure 

is rapidly destroyed by numerical effects. 

In order to compare the masses of individual galaxies directly, we need an alterna­

tive way to ensure that the same galaxies merge in each model. We do this by using 

information from the baryonic component of the SPH simulation to merge N-body G A L -

FORM galaxies. We first populate the simulation volume with galaxies calculated using 

the N-body GALFORM model, with merging of galaxies completely suppressed. We find 

the halo in which each semi-analytic galaxy first formed, and identify the gas particles 

associated with that halo as those with indices corresponding to the indices of the dark 

matter particles in the halo — this is possible because in our SPH simulation gas and 

dark matter particles with the same indicies are initially at the same locations and tend to 

remain in the same halos at later times. By redshift z — 0 some of these particles will be 

contained within SPH galaxies. Each semi-analytic galaxy is assigned to the SPH galaxy 

which contains the largest number of gas particles from the halo in which i t formed. This 

procedure often results in several semi-analytic galaxies being assigned to the same blob of 

cold gas at redshift 2 = 0. These galaxies are assumed to have merged and their masses 

are added together. It is possible to think of rare situations where our method might 

incorrectly merge galaxies, but this is the best that can be done within the limitations of 

the SPH simulation. 

We are only able to detect SPH galaxies with 10 particles or more, so i t is inevitable 

that sometimes a semi-analytic galaxy will not be assigned to any SPH galaxy. This would 

occur if the semi-analytic galaxy formed in a halo which, in the simulation, failed to cool 

enough particles to constitute a group by redshift 2 = 0. Such galaxies are generally 

found in small, recently formed halos and typically have masses of around 10 gas particle 

masses or less. These galaxies account for about 20% of the total semi-analytic galactic 

mass in the simulation volume. We also find that a small number (about 2%) of the 

SPH galaxies have no corresponding semi-analytic galaxy. Almost all of these are poorly 
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resolved objects close to the 10 particle threshold. 

Since the unmatched semi-analytic galaxies largely correspond to SPH galaxies which 

have yet to gain enough cold particles to be identified by the group finder, we simply 

omit them from the comparison shown in Fig. 3.8. Here, we compare the masses of the 

merged semi-analytic galaxies with the corresponding galaxies in the SPH simulation. 

Each point on the plot represents a single SPH galaxy which has been associated with 

one or more semi-analytic galaxies. We have split the galaxies into two categories -

central galaxies (left panel) and satellite galaxies (right panel). This allows us to test 

the assumption made in the GALFORM model that no gas cools onto satellite galaxies. If 

this is not true, galaxies which are considered to be satellites in the N-body GALFORM 

model will have systematically lower masses than their SPH counterparts. I t therefore 

makes sense, for this purpose, to use information from the semi-analytic model (and not 

the SPH simulation) to determine whether each galaxy is a satellite. The semi-analytic 

mass of each galaxy shown in Fig. 3.8 is the sum of the masses of the GALFORM galaxy 

fragments which have been associated with the corresponding SPH galaxy. We identify 

the galaxy as a central galaxy if any one of those fragements was a central galaxy before 

we applied our SPH merging scheme. If all of the fragments were satellites, the galaxy is 

considered to be a satellite. 

There is clearly a very strong correlation between the mass of each simulated galaxy 

and its semi-analytic counterpart, although the N-body GALFORM galaxies appear to 

be systematically more massive by up to 25% at low masses. The scatter in this plot 

is comparable to that in Fig. 3.4. There appears to be little or no systematic difference 

between satellite and central galaxies, which suggests that no significant amount of cooling 

of gas onto satellite galaxies is occurring in the simulation. There are a few outlying points 

where the GALFORM and SPH masses are drastically different - these are mainly satellites, 

but there are as many with much higher GALFORM masses than SPH masses as there are 

with lower masses. These are most likely a result of the SPH merging algorithm assigning 

GALFORM galaxy fragments to the wrong SPH galaxy. 

Finally, we compare the clustering of galaxies in the two models. While the spatial 

distribution of dark matter halos in the N-body GALFORM model is identical to that in 

the simulation, the number of galaxies in each halo and their distribution within the halo 

may differ. Fig. 3.9 shows two point galaxy correlation functions for galaxies in the SPH 

simulation and two different N-body GALFORM models, both of which have gas profiles 

with growing core radii which are initially set to r ° o r e = 0.15rNFW- In the first GALFORM 
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Figure 3.8: Comparison between galaxy masses in the SPH and N-body GALFORM models. 

The merger scheme described in Section 3.3.1 is used to identify N-body GALFORM galaxies 

with SPH galaxies. Galaxies lying on the dashed line have equal masses in both models. 

The panel on the left shows only galaxies which are considered to be central galaxies 

in the N-body GALFORM model. The panel on the right shows only galaxies which are 

satellites in the N-body GALFORM model. 

model, merging between galaxies is treated using the dynamical friction approach of Cole 

et al. with /<jf = 0.5, which gives a closer match to the distribution of galaxy masses in the 

simulation than our default value of 1.0 (see Fig. 3.7.) In the second GALFORM model, we 

use the SPH based merging scheme described earlier in this section and put each merged 

GALFORM galaxy at the position of its associated SPH galaxy. In each case, we include 

only the 700 (left panel of Fig. 3.9) or 300 (right panel) most massive galaxies in our 

calculation. This ensures that the overall density of galaxies in the volume is the same 

in each sample. Picking the 700 largest galaxies excludes all galaxies less massive than 

about 8 x l O l o / i - 1 M 0 or 30 gas particles. Picking the 300 largest galaxies corresponds to 

a minimum mass of approximately 1.5 X l0nh~1M.Q or around 60 gas particles. 

The correlation function has been calculated on scales of up to 25 / i - 1 Mpc. This is 

half of the size of the simulation box, so the results presented here should not be treated 

as predictions of the true galaxy correlation function. Instead, the plots in Fig. 3.9 

are intended to compare the relative clustering of GALFORM and SPH galaxies in our 

small simulation volume. Al l three models show qualitatively similar behaviour. When 
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we consider the larger sample of galaxies (left panel in Fig. 3.9), we see an anti-bias 
relative to the dark matter on scales of less than a few / i _ 1 M p c , with galaxies tracing 
the dark matter on larger scales. This behaviour agrees with previous semi-analytic (e.g. 
Kauffmann et al. 1999a, Benson et al. 2000) and SPH simulation (e.g. Pearce et al. 2001) 
results. I f we include only the 300 most massive galaxies in the simulation volume (right 
panel in Fig. 3.9), we see that on large scales these more massive galaxies are more strongly 
clustered than the dark matter in all three cases. 

The N-body GALFORM model with /df = 0.5 is in close agreement with the SPH 

simulation on scales larger than a few / i - 1 M p c when we use the 700 most massive galaxies. 

This is to be expected since we have the same distribution of dark matter halos in each case 

and the merger rate in the semi-analytic model has been adjusted to reproduce roughly 

the distribution of galaxy masses in the simulation. On length scales smaller than this, 

where the correlation function is sensitive to the details of our treatment of galaxy mergers 

within halos, there is a difference of almost a factor of 2 between the SPH simulation and 

the GALFORM model with /df = 0.5. The treatment of mergers in this model reproduces 

the overall distribution of galaxy masses but the merger rates and galaxy distributions in 

halos of a given mass may not be in close agreement. When we merge GALFORM galaxies 

by associating them with groups of cold gas in the SPH simulation (short dashed lines 

in Fig. 3.9), the correlation functions agree to within about 25% on these small scales. I f 

we consider only the 300 most massive galaxies in each case, the correlation function for 

the model with /df = 0.5 drops to almost an order of magnitude below that of the SPH 

simulation on scales of about 0 .3/ i - 1 Mpc. Again, this is due to differences in the merger 

rates in halos of a given mass since the discrepancy disappears if we use our SPH-based 

merging algorithm. 

Once we ensure that the same galaxies merge in each model, any remaining differences 

between the correlation functions shown must be due to differences in the galaxy masses. 

The most massive 700 objects in the SPH model must be a somewhat different population 

to the 700 most massive objects in the semi-analytic model. In fact, we find that the 

two samples possess only 590 objects (about 85%) in common. This is an inevitable 

consequence of the scatter in the relation between SPH and semi-analytic galaxy masses 

shown in Fig. 3.8. Unless there is zero scatter, there will always be galaxies just massive 

enough to be included in the correlation function for one model which will not be included 

in the sample for the other. This explains why the level of agreement is reduced when we 

consider only the most massive galaxies, where we might have expected to obtain improved 
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Figure 3.9: Two point galaxy correlation functions for three different models - the SPH 

simulation (solid lines), an N-body GALFORM model with merger rate parameter /df = 

0.5 (dotted lines) and an N-body GALFORM model using the SPH based merger scheme 

described in Section 3.3.1 (short dashed lines). The long dashed lines show the correlation 

function for the dark matter in the SPH simulation. The 700 most massive galaxies in 

each case are included in the calculation for the left panel and only the 300 most massive 

galaxies are included in the right panel. Both N-body GALFORM models have a gas density 

profile with a core radius which is allowed to grow from an initial value of r ° o r e = 0.15rNFw-

agreement. By increasing the minimum mass required for a galaxy to be included in each 

sample we increase the proportion of galaxies which have masses close to the threshold 

and the fraction of galaxies common to both samples falls slightly to 237 out of 300, or 

about 80%. 

3.4 Discussion and Conclusions 

In this Chapter we have used the N-body GALFORM model to compare the results of 

a semi-analytic calculation of the radiative cooling of gas in halos with results from a 

cosmological SPH simulation. We have tried to reproduce the results of the simulation 

by adjusting the semi-analytic cooling prescription and modelling the effects of limited 

mass resolution on the SPH cooling rate. 

We compared properties of halos in the simulation with the properties of the same 

halos in the N-body GALFORM model. First, we looked at a global property of the halo 
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population, the average fraction of cooled gas at redshift z = 0 as a function of halo mass. 
We found that a model in which the gas density profile with an initially small core radius 
which is able to increase with time provided the best match to the mean cold gas fractions 
seen in the SPH simulation among those considered. The level of agreement was excellent 
for halos with masses above the resolution limit of the SPH simulation. 

Our method also enabled us to compare the cool gas content of individual halos. For 

the gas density profile described above, and also for a profile with a fixed core radius, the 

total mass of cold gas in each halo was found to be in remarkably good agreement at cold 

gas masses greater than about 1 O 1 2 / I - 1 M 0 . In poorly resolved halos with lower cold gas 

masses the scatter in this comparison increased substantially, to a factor of about 3. We 

found that much of the cold gas found in the more massive halos in the N-body GALFORM 

model generally cooled at later times than the gas in the same halos in the SPH simulation. 

By a redshift of 2 in the N-body GALFORM case, the progenitors of the halos contained 

only half as much cold gas as was present in the simulation. As the redshift increases, 

the mass of cold gas in the SPH simulation becomes dominated by material which cooled 

in very small halos, where the cooling rate may be strongly affected by resolution effects 

and depends sensitively on the SPH implementation (Springel h Hernquist 2002). These 

effects are difficult to model reliably and so the discrepancy between the GALFORM and 

SPH cold gas masses increases at higher redshifts. 

We then turned our attention to the properties of individual "galaxies" (i.e. cold gas 

clumps) at redshift z = 0. Our best fit model gave a distribution of galaxy masses in 

good agreement with those in the SPH simulation for galaxies of more than 32 particles 

when we used the merger timescale of Cole et al. (2000), although the N-body GALFORM 

model contained a somewhat greater number of low mass galaxies and fewer very massive 

galaxies than the simulation. Doubling the merger rate in the GALFORM model improved 

the agreement at all masses, but note that the merger rates in the SPH simulation may 

not be reliable due to the effects of artificial viscosity (Frenk et al. 1996). 

In our semi-analytic approach, galaxy mergers are treated in a probabilistic fashion 

based on the dynamical friction timescale. Thus, a direct identification of semi-analytic 

and SPH galaxies is not possible. In order to circumvent this problem, we suppressed 

all merging in the N-body GALFORM model and then used information from the SPH 

simulation to merge the semi-analytic galaxies and to associate the merged galaxies with 

groups of cold gas particles in the simulation. This gave us a semi-analytic mass for each 

galaxy in the SPH simulation. We found that these masses were generally similar (within 
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about 50% for larger galaxies) with a scatter close to that seen in the comparison of halo 
cold gas masses. 

Finally, we examined the clustering properties of the more massive galaxies in the 

SPH simulation and two N-body G A L F O R M models. The first used the dynamical friction 

treatment of galaxy mergers, the second used our SPH merging scheme. We found that 

the correlation functions of galaxies in both G A L F O R M models agreed well with the SPH 

simulation on scales larger than typical group and cluster sizes, but that on scales of a few 

/ i _ 1 Mpc or less the correlation function of galaxies in the G A L F O R M model with merging 

based on the dynamical friction timescale was higher by almost a factor of 2. Using the 

SPH merging scheme reduced this discrepancy to about 25%. 

Our comparison shows that it is possible to reproduce accurately gas cooling, and to 

a lesser extent galaxy merger rates, in an SPH simulation using semi-analytic methods. 

Benson, Pearce, Frenk, Baugh & Jenkins (2001) demonstrated that the overall rate of 

cooling, globally and in halos of a given mass, predicted by SPH and semi-analytic models 

show remarkable consistency. They found that the overall fractions of hot gas, cold, dense 

gas and uncollapsed gas agreed to within 25% at z = 0. The cold gas fractions in halos of 

a given mass were found to agree to within 50%, with the SPH simulation cooling more 

gas than the semi-analytic model. This is consistent with the results presented here, since 

our best semi-analytic model assumes a gas density profile with a smaller core radius than 

that of Benson et al. , resulting in a higher central gas density in each halo and more 

rapid cooling. 

Here we have shown that, with only minor changes to the semi-analytic model, very 

close agreement can be obtained on a halo by halo basis when merger trees are taken from 

the SPH simulation. The agreement between SPH and semi-analytic masses for individual 

halos indicates that the dependence of the cooling rate on merger history is very similar in 

the two cases. Given the quite different limitations and assumptions inherent in the two 

techniques, this is a remarkable result. While we have allowed ourselves some freedom 

to adjust the semi-analytic model in order to maximise the level of agreement with the 

simulation, it should be noted that in our best fit model, the only changes we have made 

to the cooling model of Cole et al. (2000) are a slightly smaller core in the gas density 

profile and an increased cooling time in small halos. Neither of these changes have a large 

effect on the mean cold gas fraction at z = 0. 

Springel & Hernquist (2002) show that when SPH is formulated in terms of the ther­

mal energy equation, substantial overcooling may occur in halos of fewer than several 
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thousand particles - for example, gas may cool as i t passes through shocks which have 
been artificially smoothed out by the SPH algorithm. They demonstrate that a new for­
mulation ('entropy SPH') using entropy rather than thermal energy as an independent 
variable, which conserves both energy and entropy, can significantly reduce this problem. 
This conclusion would seem to suggest that the quantities of gas cooling in the majority of 
halos in our SPH simulation may be overestimated. This could explain why a gas profile 
with a smaller core radius than that used by Cole et al. is required in our semi-analytic 
model to reproduce the quantities of cold gas in the simulation. However, the Hydra 
SPH code which we use here is significantly difTerent from the GADGET code (Springel, 
Yoshida & White 2001) employed by Springel & Hernquist and it is not clear to what 
extent our simulation suffers from the overcooling effect. 

In an independent investigation carried out concurrently with this one, Yoshida et al. 

(2002) compared gas cooling in SPH simulations carried out using GADGET with a 

semi-analytic model based on that of Kauffmann et al. (1999a). This model contains a 

simpler cooling prescription than used in this work - the gas within each halo is assumed 

to trace the dark matter exactly at all times so there is no core radius. Yoshida et 

al. adopt a similar approach to our own, taking halo merger histories from the dark 

matter in their SPH simulations and neglecting star formation and feedback in both 

models. They show results for two of the SPH implementations investigated by Springel 

& Hernquist - one is the entropy SPH implementation discussed above, the other is 

a 'conventional' implementation based on taking the geometric means of the pairwise 

hydrodynamic forces between neighbouring particles. Yoshida et al. find good agreement 

between the masses of individual galaxies in their semi-analytic model and the entropy 

SPH implementation. SPH galaxy masses, however, can differ by a factor of 2 between the 

two SPH implementations considered, but Yoshida et al. believe the entropy SPH to be the 

more reliable technique and note that their 'conventional' SPH implementation actually 

suffers the overcooling problem more severely than other conventional implementations, 

including the Hydra code which we have used here. 

Overall, it appears that the differences between cooling rates predicted by SPH and 

semi-analytic techniques are small, and quite possibly comparable to the uncertainty in 

the SPH results. As well as providing evidence to support the treatment of cooling in 

current semi-analytic galaxy formation models, these results show that semi-analytic mod­

elling provides a convenient, alternative way to add a baryonic component to an N-body 

simulation, which is at least as reliable as an SPH simulation. When used to investigate 
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star formation and feedback prescriptions this approach allows the investigation of large 
regions of parameter space at little computational cost and so can provide an indication 
of how these phenomena may be included in ful l hydrodynamic simulations. 
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Chapter 4 
Formation of a Single 

Galaxy at High 

Resolution 

4.1 Introduction 

In Chapter 2 we developed a method of populating an N-body simulation volume with 

semi-analytic galaxies by taking halo merger histories from the dark matter component 

of the simulation. This allowed us to carry out a direct comparison between SPH and 

semi-analytic predictions for a 50 / i - 1 Mpc volume of a A C D M universe in the absence of 

star formation and feedback. However, there are at least two significant drawbacks to 

this approach. SPH calculations are computationally intensive; large volumes may only 

be simulated with relatively poor mass resolution. In the simulation used in Chapter 2 a 

halo which might be expected to harbour a galaxy of similar mass to the Milky Way would 

contain only around a hundred particles. Consequently our comparison was restricted to 

larger halos where mass resolution was less of a problem, and there was little to be learned 

by investigating individual galaxies in detail. 

Improved resolution may be obtained using the technique of "zooming in" on a region 

of interest in a simulation. Two of the earliest examples of simulations using this approach 

are described by Frenk et al. (1996) and Tormen et al. (1997). An initial simulation of 

a large volume with relatively poor mass resolution is carried out, then an object is 

picked out for resimulation. Al l of the particles in the object are traced back to their 

positions at the beginning of the simulation to determine the region from which the 

object formed. The particles in this region are replaced with a larger number of particles 

of lower mass. The initial conditions for the new simulation are created using the same 

density field as the original simulation, but with additional small scale fluctuations in the 

high resolution region. The simulation therefore initially consists of a volume largely filled 
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with the original, low resolution particles plus a region of interest populated with much 

higher resolution particles. If required, SPH gas particles may also be added to the high 

resolution region with the same distribution as the dark matter particles - for example, 

one gas particle may be placed on top of each high resolution dark matter particle. In this 

way very high resolution simulations of individual galaxies with realistic initial conditions 

and long range tidal forces may be carried out. 

The second problem is that the semi-analytic model we employed previously included 

a statistical treatment of mergers between galaxies that was largely independent of the 

simulation. A pair of galaxies which merged in one model would not necessarily merge at 

the same time in the other. We were able to work around this limitation by preventing 

mergers in the semi-analytic model and then using information from the simulation to 

merge the resulting galaxy fragments, but this is clearly far from ideal. Ultimately, we 

wish to carry out a detailed, object by object comparison between state of the art SPH 

simulations of the formation of individual galaxies and a ful l semi-analytic treatment of 

the same process. Since this will involve prescriptions for star formation and feedback, 

our previous approach is no longer appropriate. Preventing mergers in the semi-analytic 

model would affect the star formation rate and hence the mass of gas reheated by feedback. 

In any case, for an unbiased comparison between the two models, the semi-analytic model 

ought to be independent of the baryonic component of the SPH simulation. 

I t is therefore necessary to develop a semi-analytic model in which galaxy mergers are 

determined using the dark matter component of the simulation. This can be achieved 

by associating each satellite galaxy in a dark matter halo with the surviving core of 

the progenitor halo in which i t formed. When this core merges onto the centre of the 

halo, the satellite galaxy may be assumed to have merged. Given sufficient numerical 

resolution, this will also provide more reliable positions for the semi-analytic galaxies. 

Springel, White, Tormen & Kauffmann (2001) use this technique to populate a cluster 

mass halo with semi-analytic galaxies, which allows them to investigate the variation of 

galaxy morphology with distance from the cluster centre. 

In this Chapter we modify the N-body G A L F O R M semi-analytic model to use substruc­

ture within dark matter halos to determine galaxy positions and mergers. However, we 

do not immediately attempt to compare this model with a realistic SPH simulation. Any 

differences between ful l SPH and semi-analytic treatments of the formation of a galaxy 

could arise in a number of ways - cooling and star formation rates may differ, feedback im­

plementations may not be equivalent, limited resolution may affect the models in different 
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ways, or there may be differences in the initial properties and quantity of gas available in 

newly formed halos. There may also be evidence that SPH galaxies are able to obtain gas 

through mechanisms quite unlike the spherical cooling flows which supply semi-analytic 

galaxies. In the hydrodynamic simulations of Katz et al. (2003), galaxies appear to ac­

crete gas which is channelled along filaments to the centre of the halo without ever being 

shock heated to the virial temperature. In order to understand the possible differences 

which may arise, we will initially consider a simplified simulation which includes radiative 

cooling and star formation, but no attempt at modelling feedback. Additionally, cooling 

in this simulation is allowed only at redshifts z < 1, which ought to reduce the effects of 

limited resolution on the galaxy population and provides an opportunity to test some of 

the assumptions of the semi-analytic model regarding the state of the hot halo gas before 

cooling begins. 

The remainder of this chapter is laid out as follows. Details of the SPH simulation are 

presented in Section 4.2. In Section 4.3 we explain how halo catalogues and halo merger 

trees are obtained from the dark matter component of the simulation, and in Section 4.4 

the algorithm used to determine galaxy positions and mergers using substructure is de­

scribed. Section 4.5 tests some of the assumptions of the semi-analytic model regarding 

hot halo gas against the simulated halos at z = 1, and Section 4.6 compares the masses of 

the semi-analytic and SPH galaxies. Finally, our conclusions are presented in Section 4.7. 

4.2 The Simulation 

The simulation used here is an SPH simulation of the formation of a single galaxy in 

a cubic volume of side 35.325/i - 1Mpc. The total final mass of the galaxy, including its 

dark matter halo, is approximately l O 1 2 / i - 1 M 0 . The cosmological parameters for this 

simulation are Qq = 0.3, Ao = 0.7, fi& = 0.045, cr8 = 0.9 and h = 0.7. There are 50 output 

times, spaced logarithmically in terms of the expansion factor, between redshifts z = 50 

and z = 0. 

The region around the galaxy contains 161009 dark matter particles of mass 1.7 X 

1 O 7 / i - 1 M 0 and an equal number of SPH gas particles of mass 2.6 x 106h~lM.Q. Outside 

this central high resolution area the gas and dark matter are represented by approximately 

400,000 collisionless particles with much greater masses - these are present to provide the 

tidal forces which the galaxy would be subjected to during its formation. 

Before the simulation was run, the high resolution region was chosen to be large enough 
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that the galaxy and all of its progenitors would be composed entirely of high resolution 

particles. I t is particularly important that this be true because the low resolution particles 

have no SPH counterparts, and if a halo is composed partly of the high mass particles 

it will be missing gas particles. The behaviour of the gas within the halo will not then 

be treated correctly. While it is difficult to guarantee prior to running the simulation 

that this will not happen, it is possible to test for this problem once the simulation is 

complete. In this case, it turns out that there is little or no "contamination" of the 

simulated galaxy's progenitors by low resolution particles. 

The simulation includes radiative cooling, a prescription for star formation and an 

extremely simple attempt at modelling feedback - cooling is just switched off until redshift 

z = 1. While this cooling cut off is not at all realistic, i t conveniently reduces resolution 

problems in the simulation and can easily be reproduced in the semi-analytic model. 

Hydrodynamic simulations (e.g. Eke et al. 1998, Navarro et al. 1995) suggest that when 

the dark matter halos form, gas in the halo is shock heated to temperatures comparable 

to the virial temperature of the halo. The cooling function employed here does not allow 

gas to cool below temperatures of about 10 4K, so no cooling is likely to occur in halos 

with virial temperatures of less than this. This temperature corresponds to halo masses 

of between 40 and 80 dark matter particles between redshifts zero and one. 

The star formation rate, />*, for each SPH particle is given by: 

and C» = 0.04644. Here, psas is the SPH gas density and G is the gravitational constant. 

Stars are only allowed to form when the gas has a temperature of less than 3 X 10 4K and 

a density greater than 1.16 X 1 0 - 2 4 / i 2 g c m - 3 . This scheme was chosen to reproduce the 

Kennicut law (Kennicutt 1998) in simulations which include realistic feedback. Without 

feedback its only effect is to convert dense clumps of cooled gas particles into collisionless 

star particles, thereby reducing the complexity of the SPH calculations. 

p* — C*pg a s/£flf (4.1) 

where 

gas (4.2) 
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4.3 Obtaining a Merger Tree for the Simulated Galaxy Halo 
4.3.1 The Subfind Algorithm 

As in Chapter 2, the starting point for the semi-analytic model we use here is a catalogue 

of dark matter halos for each output time. However, since we now wish to associate 

semi-analytic satellite galaxies with substructure within the halos, a more sophisticated 

group finding algorithm than friends of friends is needed. We use the Subfind algorithm, 

described by Springel, White, Tormen & Kauffmann (2001) and implemented by Volker 

Springel, which identifies substructure in dark matter halos by looking for self-bound 

groups of particles which form local density maxima. Subfind is applied to halos located 

using the usual friends of friends algorithm and works as follows: 

For each particle in the halo, an estimate of the local dark matter density is obtained 

by averaging over nearby particles using a smoothing length equal to the distance to the 

A^jens nearest neighbour. 

The particles within the halo are then considered in decreasing order of density. For 

each particle i, with density />,-, the A^ n gb nearest neighbours are found, and within this 

set those with higher density than p; are picked out. Of these, the two nearest particles 

to particle i are selected. I f no particles are selected in this way, particle i is a local 

density maximum and is considered to be a new subgroup. I f one particle belonging to 

a subgroup is selected, or two belonging to the same subgroup are selected, particle i is 

added to that group. Finally, i f two particles belonging to different subgroups are selected 

the two subgroups are recorded and then joined to form a single subgroup. Particle i is 

added to the new subgroup. 

For each halo this produces a set of subgroups corresponding to local density maxima, 

including one which represents the background mass distribution of the halo. The subhalos 

are then required to be gravitationally self bound. Particles with positive total energy 

(gravitational plus kinetic) are removed one at a time, with the potential energy being 

re-calculated between removals. If fewer than jV n g b particles remain the subgroup is 

discarded. We choose to set 7Vngb = 10 and A^ens = 10. 

The algorithm will often assign particles to more than one subgroup. Almost all of 

the particles in the friends of friends halo will belong to the background group, and many 

will also be part of genuine substructures within the halo. In principle there could be 

any number of levels of substructure within substructure, so to simplify the subgroup 

catalogue particles are assigned to the least massive subgroup they have been identified 
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with. 

4.3.2 Building the Merger Tree 

In order to obtain a merger tree for the simulated galaxy, we first need a set of halos for 

each simulation output time. As in Chapter 2, we wish to avoid including chance groups 

of particles in the halo catalogue by requiring that the groups be bound. To do this, we 

apply the Subfind algorithm to a set of friends of friends halos identified using a linking 

length 6 = 0.2 and minimum group size j V m j n = 1 0 . We then attempt to identify one or 

more of the subgroups in each group as the background mass distribution of a halo. There 

may be more than one such background subgroup if friends of friends has artificially linked 

two or more halos. Particles belonging to subgroups within each background subgroup 

are added to the background subgroup to produce what we will refer to as a "main halo". 

Main halos are identified by considering all of the subgroups in a FOF halo in increas­

ing order of mass. The most massive subgroup is always considered to be a main halo. 

For each of the remaining subgroups we identify all particles which belong to a more 

massive subgroup and are within a linking length of at least one particle belonging to 

the subgroup. The subgroup is added to whichever more massive subgroup the greatest 

number of these particles belong to. I f no such particles are found, the subgroup must be 

joined to the rest of the FOF group by unbound particles and is considered to be a new 

main halo. This results in the assignment of all subgroups to a main halo. In the majority 

of cases, where the FOF algorithm has correctly identified a single halo, the main halo is 

simply the original friends of friends group minus particles not bound to any subgroup. 

Fig. 4.1 shows examples of the less common case, where FOF groups are split into more 

than one main halo. 

There are also cases where a friends of friends halo contains no self bound subgroups. 

These groups are generally close to the 10 particle minimum mass imposed by the FOF 

group finder and are discarded. Fig. 4.2 shows the six most massive examples of this. 

These groups tend to be simply loose collections of particles without the central dense 

regions that would be required for significant cooling to occur. Hence it seems reasonable 

to omit these halos from the merger tree and therefore from the semi-analytic cooling 

calculations. 

A catalogue of these main halos is produced for each simulation output time and 

used to construct a merger tree for the dark matter halo of the simulated galaxy. As in 

Chapter 2, each halo is considered to be a progenitor of whichever halo at the next output 
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Figure 4.1: Halos which are split into more than one main halo using the algorithm 

described in the text. Red dots indicate particles belonging to a main halo. Green 

dots are particles which belong to the friends of friends group but are not bound to any 

subgroup. In all five cases shown the FOF group is split into two main halos. 
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Figure 4.2: The six most massive friends of friends halos in the simulation with no bound 

subgroups at z = 1. 
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time contains the greatest number of its particles. 

Previously, we devised an algorithm to deal with situations where two halos were joined 

at one timestep but not at the next - if particles from a halo were in different halos at the 

next time step the halo would be broken up into two or more halos at all earlier times. 

This had the desired effect of splitting halos joined by tenuous "bridges" of particles. 

However, since we now make use of substructure information in the construction of our 

halo catalogues, as described earlier in this section, this procedure should be redundant. 

In fact, we find that i t can cause the semi-analytic model to behave unrealistically in 

certain circumstances. 

If the splitting algorithm is applied to the dark matter merger tree of the simulated 

galaxy, we find that halos which are split from a much more massive halo (usually the 

most massive progenitor of the final object) often contain very few SPH gas particles. 

This happens when the small halo falls into the more massive one, passes through i t , and 

emerges from the other side having been stripped of most of its hot gas. The small halo 

is considered to be separate from the more massive halo even while embedded within i t , 

and in the semi-analytic model i t will continue to cool gas during this time. I f we discard 

the splitting algorithm no cooling will be allowed in such objects, which would be more 

physically reasonable - this is what is usually assumed to happen in semi-analytic models 

and appears to happen in the simulation. Therefore we do not split halos during the 

construction of the merger tree. 

However, a new problem then arises. When one of these small halos first falls into 

the more massive halo, any semi-analytic galaxy it contains will become a satellite. But 

if the halo then emerges and becomes a separate object again it is likely that i t will 

quickly fall back into the massive halo, at which point i t may contribute another satellite 

galaxy. To avoid this, we look for situations where a subgroup within a halo (other than 

the background subgroup) is a progenitor of the background subgroup of a halo at the 

next timestep. Following Springel, White, Tormen & Kauffmann (2001), we consider a 

subgroup to be a progenitor of a subgroup at the next timestep if more than half of the 

Niink most bound particles are members of the later subgroup. I f this occurs, we remove 

the halo from the merger tree at this output time. We also remove its descendent halos 

at later output times as long as they remain separate from the massive halo. This will 

prevent the possibility of forming two satellite galaxies from a single progenitor halo. 
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4.4 Semi-analytic Galaxy Positions and Mergers using N-
body Substructure 

In the model described in Chapter 2, mergers between semi-analytic galaxies were treated 

in a statistical fashion. The energy and angular momentum of each satellite was assigned 

at random using a distribution consistent with numerical simulations. A dynamical fric­

tion timescale was then calculated to determine when the galaxy should merge. Satellite 

galaxies were placed at the position of the most bound particle of the halo in which they 

formed. Note that the velocity of this particle will not generally be consistent with the 

orbit assumed for the dynamical friction calculation and satellites will not necessarily be 

placed close to the central galaxy just prior to merging on to i t . Central galaxies in this 

model were placed on the most bound particle in their dark matter halo. 

Here, we wish to obtain positions by associating the galaxies with the dark matter 

subgroups found by the Subfind algorithm, and to use the subgroups to determine when 

galaxy-galaxy mergers occur. The centre of a halo is defined as the most bound particle 

of the most massive subgroup. Any gas which cools in the halo accretes onto a central 

galaxy at this location. When the halo merges onto a more massive halo, i t will survive 

for some time as a subgroup within the halo. Any central galaxy from the less massive 

halo is now a satellite and will be associated with this subgroup. If the subgroup merges 

onto the centre of the massive halo, the satellite galaxy is assumed to have merged onto 

the central galaxy. 

We implement this as follows. Having obtained a catalogue of halos and subgroups, 

as described in Section 4.3.2, we link the subgroups between consecutive timesteps by 

looking at the most bound particles, as explained in the previous Section. Note that 

usually one subgroup in each halo will be the background mass distribution ("background 

subgroup" for short) of a halo and will contain the bulk of its mass. 

We then examine the progenitors of the final halo, starting at the earliest output time 

where progenitor halos are detected and working towards redshift 2 = 0. Whenever a 

halo has more than one progenitor, the background subgroups of all but the most massive 

of these are registered as potential satellite galaxies. The descendents of these subgroups 

are found at subsequent output times and for each the coordinates of the most bound 

particle are recorded. For each progenitor halo, other than the most massive, we then 

have the coordinates of the substructure i t becomes at later output times as a function 

of time. This is where the central galaxy from the progenitor halo will be placed when it 
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becomes a satellite. 

Sometimes no descendent can be found for a subgroup, or the descendent may be the 

background subgroup of the parent halo. This happens when a substructure genuinely 

merges onto the centre of the halo or is just stripped of mass until i t is no longer detected 

by Subfind. We wish to distinguish between these two situations - in the first case, any 

galaxy assigned to the subgroup should merge onto the central galaxy. In the second case, 

it is possible that the subgroup may be some distance from the centre of the halo and we 

need to continue to track its position despite being unable to detect i t . 

We make this distinction by recording the indices of the particles which belonged to the 

subgroup at the last output time where i t was detected by Subfind. A t each subsequent 

output time, we calculate the centre of mass of these n particles and a characteristic 

radius, r s g , given by 

where r,- is the distance between the ith particle and the centre of mass of all n particles. 

This radius estimate is used because it is not strongly affected by single particles at large 

distances. If r s g becomes greater than the distance between the centre of mass of the 

particles and the centre of the halo, the subgroup is considered to have merged onto 

the centre of the parent halo. We record the timestep at which this occurs, so that any 

semi-analytic galaxy associated with this subgroup can be merged onto the central galaxy 

at the appropriate time. Otherwise, we record the coordinates of the centre of mass of 

the particles as if they were still an identifiable subgroup and continue to do so until the 

merger condition is met. 

4.5 Properties of the Simulated Halos 

Before we attempt to directly compare the semi-analytic model to the SPH simulation, 

we first examine the properties of the simulated halos at redshift z = 1. At this stage no 

cooling has occurred, so this allows us to test the assumptions of the semi-analytic model 

regarding the initial state of the hot halo gas. Here, we concentrate on those relevant to 

the treatment of cooling: 

1. The baryon fraction in each halo is equal to the universal baryon fraction. 

i—n 1 

n »=i 
(4.3) 

2. When a halo forms, the gas is shock heated to the virial temperature of the halo, 
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given by 

where pmu is the mean atomic mass of the gas, V h is the circular velocity of the 

halo and ks is the Boltzmann constant. 

3. The gas is taken to be isothermal. 

We do not expect large deviations from these assumptions because simulation results were 

used as a guide in the construction of the semi-analytic model. For example, the density 

profile of the hot halo gas is inspired by hydrodynamic simulations carried out by Eke 

et al. (1998). These simulations, as well as those of Navarro et al. (1995), also support 

the assumption that the gas is approximately isothermal and at the virial temperature. 

However, by first testing the assumptions made regarding the hot halo gas we hope to 

determine whether any differences we find between the SPH and semi-analytic models 

are due to differences in the initial hot gas distribution or if the models only diverge once 

cooling begins. 

4.5.1 The Baryon Fraction 

The most basic assumption made in the semi-analytic model regarding the hot halo gas is 

that the mass of gas is initially equal to the mass of the halo multiplied by the universal 

baryon fraction. This determines the total mass of material available for galaxy formation. 

Fig. 4.3 shows the mass of baryons in each halo at z = 1 in the SPH simulation plotted 

against the total halo mass. In the upper panel, the mass of gas and dark matter is 

measured within the virial radius of the halo, taking the most bound particle of the 

most massive subgroup in the halo as the centre. The virial radius is measured from 

the simulation by expanding a sphere around the most bound particle until the enclosed 

dark matter density falls to the overdensity predicted for virialised objects by the top hat 

spherical collapse model at this redshift. In the lower panel, the mass of dark matter in 

the halo is simply the total mass of dark matter particles considered to be part of the 

main halo. For each gas particle we then identify any dark matter particles which are 

within the friends of friends linking length and belong to a halo. I f any are found, the gas 

particle is assigned to whichever halo the closest of these belongs to. 

The most massive halos appear to have around 90% of the expected mass of baryons. 

This small shortfall may be due to our use of the dark matter only to define the boundaries 

of the halos - unlike the dark matter, the gas is subject to pressure forces and tends to 
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Figure 4.3: The baryon fraction in progenitor halos of the final galaxy at z = 1. In the 

upper panel, the mass of gas and dark matter is measured within the virial radius. In the 

lower panel, the dark matter mass is the mass of the main halo. The gas mass includes 

all particles within a linking length of dark matter particle belonging to the halo. 
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have a slightly more extended distribution. The missing gas is most likely just outside the 

(somewhat arbitrary) boundaries we have imposed on the halos. Halos with masses down 

to a few times 1 0 9 / i _ 1 M @ still typically have around 8 0 % of the expected mass of baryons, 

but at lower masses there are many halos containing very little gas. These objects are 

not well resolved, having fewer than 50 dark matter particles each, and may have been 

stripped of their baryonic mass in encounters with other, more massive halos. 

These results would suggest that assumption ( 1 ) , above, agrees well with the simula­

tion for halos consisting of 50-100 particles or more, but breaks down in poorly resolved 

halos. Thus we can expect the semi-analytic model to allow cooling and star formation 

in halos which, in the simulation, have not been able to retain any significant quantity of 

gas. 

4.5.2 The Gas Temperature 

Next, we test the assumption that gas within halos is shock heated to the virial tem­

perature of the halo. The SPH algorithm tracks the specific internal energy of each gas 

particle, so the mass weighted mean gas temperature for a halo is obtained by simply 

taking the mean of the temperatures of the particles belonging to the halo. I f assumption 

(2) holds, this ought to be in agreement with Equation 4.4. 

Fig. 4.4 shows the mean gas temperature in the SPH simulation as a function of halo 

mass. Here we assign gas particles to halos according to the halo membership of nearby 

dark matter particles, as described above. The temperature assumed in the semi-analytic 

model is shown in the figure as a solid line. At masses below around 1 O 9 / i - 1 M 0 there are 

many halos with unexpectedly high mean SPH gas temperatures. These may be objects 

which have undergone close encounters with much more massive halos - this is likely to 

occur quite frequently because at this stage the simulation contains a single, relatively 

massive halo surrounded by many much smaller objects. 

At higher masses, there is a strong correlation between halo mass and temperature 

with a slope very close to that expected. However, there is an offset between the SPH 

and semi-analytic gas temperatures, with the SPH temperatures typically being around 

7 5 % of what is assumed in the semi-analytic model. 

In the semi-analytic model, the halo is taken to be in hydrostatic equilibrium, and 

under this assumption the gas temperature can be calculated from the dark matter and 

gas density distributions. One possible explanation for the discrepancy between the SPH 

and semi-analytic temperatures is that this assumption is not entirely accurate. 
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Figure 4.4: The mass weighted mean gas temperature of each halo in the SPH simulation 

at z — 1 as a function of total halo mass. The solid line shows the temperature assumed 

by the semi-analytic model as a function of halo mass. 
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Since we know the distribution of gas and dark matter in the simulation, the gas 

temperature required for hydrostatic support may be calculated and compared with the 

SPH gas temperature. 

If we assume spherical symmetry, the pressure required for hydrostatic support may 

be obtained from: 

dP(r) = - G M ^ r ) d r (4.5) 

where P(r) is the gas pressure at a radius r, G is the gravitational constant, M ( r ) is the 

total mass interior to the radius r, and p{r) is the gas density as a function of radius. 

Our approach is to take the pressure at the virial radius to be zero, and numerically 

integrate this equation to obtain the pressure as a function of radius. The expected gas 

temperature, T ( r ) , may then be obtained from 

P ( r ) = 4 M M m 

The integration is performed by dividing the halo into spherical shells centered on the most 

bound particle of the main halo. The radii of the shells are chosen so that each contains 

one gas particle. The density of each shell is then a single gas particle mass divided by 

the volume of the shell, and the interior mass is the total mass of the particles within 

the radius of that shell's gas particle. In this way we obtain a hydrostatic temperature 

estimate for each gas particle. 

Fig. 4.5 shows a test of this numerical integration procedure. A spherical halo with 

gas and dark matter density profiles proportional to r - 2 , truncated at an outer radius 

'"max, was created by putting down gas and dark matter particles at random in such a 

way that all radii less than r m a x were equally likely. In the upper panel there are 40,000 

particles of gas and dark matter in the sphere, giving the halo a similar mass to that of 

the main progenitor of the simulated galaxy at z = 1. In the lower panel the number 

of particles was reduced to 2000 to determine how this would affect the accuracy of the 

results. The temperature obtained by numerical integration of Equation 4.5 is shown by 

the solid lines in the left panels. The analytic solution for the temperature, assuming 

zero pressure at r = r m a x , is indicated by the dotted lines. The panels on the right show 

the ratio of the correct (analytic) temperature to the temperature obtained by numerical 

integration. I t can be seen that this integration method appears to produce reasonably 

accurate results down to very small radii, even when the number of particles in the halo 

is reduced. 
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Figure 4.5: The temperature profile derived by integrating the equation of hydrostatic 

equilibrium for two N-body realisations of isothermal spheres containing 40 000 (upper 

panels) and 8 000 (lower panels) particles of gas and dark matter. Solid lines show the 

results of numerical integration as described in the text. The exact, analytic solution for a 

truncated isothermal sphere is shown by the dotted lines. Both the derived temperatures 

(left panels) and the ratio of the analytic to the numerical results (right panels) are shown. 
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Figure 4.6: Spherically averaged temperature profiles for the three most massive halos 

in the simulation at z = 1. Solid lines indicate the temperature obtained by integration 

of the equation of hydrostatic equilibrium (see text for details). The dotted lines show 

the SPH gas temperature, obtained by calculating the mean temperature of the particles 

in spherical shells. The panels on the left show the actual gas temperature profiles, and 

the panels on the right show the ratio of the SPH gas temperature to the temperature 

required for hydrostatic equilibrium. 
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In Fig. 4.6, the same integration technique is used to calculate the temperature re­

quired for hydrostatic equilibrium in the three most massive progenitor halos in the simu­

lation at z = 1. In the inner parts of all three halos, the temperature obtained is close to 

that calculated by the SPH algorithm. This indicates that the halos are indeed approx­

imately in equilibrium. The discrepancy between the temperatures in the outer regions 

may occur because the pressure at the outer radius will not be zero - in practice the pres­

sure in the outermost regions will be maintained by infalling material, which is certainly 

not in hydrostatic equilibrium. 

In the most massive, and hence best resolved, halo the gas temperature appears to be 

systematically lower than is required for hydrostatic equilibrium by around 10-20%. This 

due to the presence of a small amount of non-thermal support in the halo and has been 

observed previously in cluster simulations (e.g. Frenk et al. 1999) However, this is clearly 

too small an effect to account for the offset seen in Fig 4.4. 

A possible explanation for the offset is that the way in which we define halo masses in 

the simulation is not entirely equivalent to the definition used in the semi-analytic model. 

Alternatively, it may be that the gas density profile differs somewhat from that assumed 

in the model, in which case the temperature required for hydrostatic equilibrium would 

not be that given by Equation 4.4. The effect of this offset on the semi-analytic model 

may be investigated by varying the temperature assumed for the hot halo gas. Fig. 4.7 

compares the masses of galaxies in a model where the gas temperature is taken to be 

0.75r vi ri ai with the masses of the same galaxies if the gas temperature is assumed to be 

equal to the virial temperature. Galaxies present in one model but not the other are 

plotted near the axes. This change in temperature has very little effect, since without 

feedback the halos tend to cool all of the available gas. There are a few galaxies present in 

the standard model which disappear when the gas temperature is reduced. This happens 

because the cooling function for the halo gas is cut off at temperatures below 10 4K. The 

halos where these galaxies form have virial temperatures such that 0.75Tvi riai < 10 4K and 

are consequently unable to cool any gas in the low temperature model. 

4.6 Comparison between the models 

4.6.1 T h e Semi-analyt ic Mode l 

We now compare the masses of individual galaxies between the SPH and semi-analytic 

models. The semi-analytic model we use here has the same treatment of cooling as de-
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Figure 4.7: Masses of galaxies in a semi-analytic model in which the diffuse halo gas is 

assumed to be shock heated to 75% of the virial temperature of the halo plotted against 

the masses of the same galaxies if the gas is assumed to be shock heated to the virial 

temperature. The four plots correspond to four different redshifts, as indicated at the top 

of each panel. 
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scribed in Chapter 2, with the initial core radius, r ° o r e , set to 0.66rjvFW- This core radius 

is allowed to increase in such a way that the density of hot gas at the virial radius is 

maintained as cooling proceeds. Cooling is only allowed in halos of mass greater than 

iVsPH(mdark _|_ m g a 8 ) , where m<jark and m g a s are the masses of the dark matter and gas 

particles respectively. Halo masses and merger trees are obtained as described in Sec­

tion 4.3.2. Galaxy positions and mergers are determined using the methods explained in 

Section 4.4. In accordance with the SPH simulation, no feedback prescription is included, 

and cooling is only allowed to occur at redshifts z < 1. We have made no attempt to 

match the star formation rate in the semi-analytic model to the simulation. Instead, we 

will simply consider the total mass of cold gas and stars in each galaxy. Without feedback, 

this is independent of the star formation rate. 

4.6.2 Identifying SPH Galaxies 

Masses for the SPH galaxies are obtained by running a friends of friends group finder 

on the cold (temperatures less than 1 0 5 K ) gas and star particles in the simulation. The 

exact choice of temperature cut is not critical, since only gas which has cooled is likely 

to reach the very high overdensities required by friends of friends with a linking length 

b ~ 0.01. The gas and star particles in this simulation have equal masses, which allows 

us to use a single linking length for both species. The left hand panels in Fig. 4.8 show 

the effect of increasing b from 0.0075 to 0.015. The masses of the galaxies found using 

b = 0.0075 are plotted against the mass of the nearest galaxy identified using b = 0.015. 

The position of a galaxy is taken to be the position of its centre of mass. Increasing the 

linking length will sometimes join objects which would otherwise have been considered 

separate. In Fig. 4.8, such objects appear as multiple points at the same position on the 

y axis. The right hand panels show the effect of increasing b from 0.015 to 0.03. With 

a few exceptions, the galaxy masses are insensitive to the choice of b for masses greater 

than about 1 O 8 / I _ 1 M 0 , or around 50 particles. The exceptions are cases where friends of 

friends with 6 = 0.03 artificially links objects which, by eye, are clearly separate. In the 

following sections we use a linking length b = 0.015 and a minimum group mass of 10 

particles, although we note that groups of around 50 particles or less are likely to be very 

unreliable. 
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Figure 4.8: EfTect of varying the F O F linking length on the masses of SPH galaxies at 

redshifts z = 0 (top), z ~ 0.5 (middle) and z ~ 0.9 (bottom). In the panels on the 

left, the masses of galaxies identified using the F O F algorithm with b = 0.015 are plotted 

against the masses obtained with b — 0.0075. The panels on the right show the effect of 

increasing b to 0.03 on the galaxy masses. 
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4.6.3 G a l a x y by G a l a x y C o m p a r i s o n 

To compare galaxy masses, we require some way of identifying galaxies in one model 

with "the same" galaxies in the other. The simplest approach is to consider a single 

timestep and look at the galaxy positions. Since mergers in the semi-analytic model now 

correspond to mergers between dark matter subhalos in the simulation, we may expect 

the positions of semi-analytic galaxies to correspond closely to the positions of the SPH 

galaxies - unless clumps of cold gas and stars in the simulation become separated from 

their associated dark matter. For each SPH galaxy, we locate the closest G A L F O R M galaxy. 

If the SPH galaxy is also the closest to the G A L F O R M galaxy, we consider the galaxies 

to be a match. Only galaxies within a friends of friends linking length, b = 0.2, are 

considered. Galaxies with masses equivalent to fewer than 50 gas particles are excluded 

from the matching procedure. The distribution of galaxies at three different redshifts is 

shown in Fig. 4.9. Galaxies are plotted as coloured circles, with the area of the circle 

proportional to the mass of the galaxy. Galaxies in one model which are matched to 

galaxies in the other are shown in green. Here, we have set iVspH = 50. 

The semi-analytic model clearly produces many more low mass galaxies than the SPH 

simulation. This would appear to be consistent with the low baryon fraction seen in many 

poorly resolved halos in the simulation (see Fig.4.3), but occurs despite the suppression 

of cooling in halos of fewer than 50 particles. There are relatively few SPH galaxies which 

cannot be matched to G A L F O R M galaxies at z = 0, and only one containing a significant 

fraction of the total cooled mass - around 640 gas particle masses in cold gas and stars 

(the central galaxy contains around 20,000 gas particle masses). This particular galaxy 

is a consequence of the way cooling suddenly begins at redshift z — \. At z = 1, the 

halo in which this galaxy formed has, according to the halo finding algorithm we use, just 

merged with a more massive halo and is not able to cool any gas. However, the halos 

are only just linked and in dotplots the smaller halo is clearly still intact so that in the 

SPH simulation gas is able to cool here for a short time. This results in an SPH galaxy 

where no G A L F O R M galaxy could have formed. The second most massive unmatched 

galaxy, containing about 115 gas particle masses, formed in similar circumstances. The 

problem arises because in the semi-analytic model mergers are treated as instantaneous 

events, so we are forced to (somewhat arbitrarily) define the moment at which the halos 

are considered to be merged. In reality, mergers are events with a finite duration and 

our definition may not be appropriate in all cases - especially when we are forced to take 
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Figure 4.9: The distribution of SPH (right hand panels) and semi-analytic (left hand 

panels) galaxies at three different redshifts. Matched galaxies are plotted as green circles. 

Unmatched galaxies are shown in red. The area of each circle is proportional to the mass 

of the galaxy. Dark matter particles are plotted as black points if they belong to a halo, 

and cyan points otherwise. 
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one of the simulation output times as the time of the merger. Fortunately, this particular 

problem is rather less likely in simulations without the artificial cooling cut off at z = 1, 

where the galaxy would have accreted mass over many time steps before the merger. 

Of the remaining five unmatched SPH galaxies at z = 0, the three most massive 

(with 104, 49 and 47 gas particle masses) are matched to G A L F O R M galaxies for several 

timesteps after their formation, but cease to be matched soon after entering the main 

halo in the simulation. This would happen if the clump of cold gas and stars comprising 

the SPH galaxy became offset from the core of the halo in which it formed, possibly 

due to hydrodynamic forces (both real and, possibly, artificial) which would not affect 

the trajectory of the dark matter core. The position of the galaxy would then no longer 

correspond to the assumed position of the semi-analytic galaxy and no match would be 

found. The two remaining unmatched SPH galaxies, with 31 and 19 gas particle masses, 

are too poorly resolved for us to draw any useful conclusions regarding their origin. 

The number of unmatched G A L F O R M galaxies varies with the cooling threshold, NSPH-

Fig. 4.10 compares the masses of individual galaxies between the models for three different 

choices of iVspH a t six different redshifts. Unmatched SPH galaxies are plotted along the 

x axis and unmatched G A L F O R M galaxies are plotted along the y axis. The main effect of 

increasing A^SPH from 50 to 100 is to remove some of the low mass semi-analytic galaxies 

which have no SPH counterparts. The number of galaxies which are matched is almost 

completely unaffected. Setting iVspH as high as 200 removes most of the unmatched 

G A L F O R M galaxies but also prevents the formation of some of the galaxies which do 

exist in the SPH simulation. For the remainder of this section we employ a model with 

A^SPH = 100, which we use to investigate the reliability of our matching scheme and the 

nature of the remaining unmatched G A L F O R M galaxies. 

4.6.4 Re l iab i l i ty of the Match ing A l g o r i t h m 

As noted earlier, a few of the unmatched semi-analytic galaxies at low redshift are found 

to be matched to SPH galaxies for a number of time steps after their formation, only 

ceasing to match after existing for several time steps as satellite galaxies in the most 

massive halo in the simulation. Since galaxies are matched using their positions only, this 

would occur if the centre of mass of the cooled gas and stars comprising the SPH galaxy 

became offset from the dark matter substructure where the semi-analytic galaxy is placed. 

Upon entering the dense halo environment, the galaxy may be subject to hydrodynamic 

forces (some artificial) which do not affect its associated dark matter. Alternatively, the 
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Figure 4.10: Comparison between SPH and semi-analytic galaxy masses at six different 

redshifts for semi-analytic models with the cooling threshold parameter, ./VSPHI set to 

50 (plotted as diagonal crosses), 100 (horizontal/vertical crosses) and 200 (circles). The 

masses of unmatched galaxies are plotted along the appropriate axes using smaller sym­

bols. The unmatched points corresponding to the three different choices of A^SPH have 

been offset from each other for clarity. 
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position of the substructure may become unreliable once it is reduced to a small number of 

particles. In either case, the galaxies clearly ought to be considered matched at subsequent 

time steps even if their positions have diverged somewhat. 

In order to achieve this, we first carry out position based matching using the same 

scheme as before. We then consider adjacent pairs of timesteps, ti and £2 (where £2 > £ 1 ) , 

starting with the second earliest at which galaxies are found. For each SPH galaxy at 

time £ 2 , any progenitor SPH galaxies at time fi are located. If one or more of these are 

matched to galform galaxies, the semi-analytic descendents of these galaxies are found 

at time £ 2 . If exactly one unmatched semi-analytic galaxy at time £2 is found in this 

way, it is considered to be matched to the SPH galaxy. While this procedure could, in 

principle, identify more than one semi-analytic galaxy for each unmatched SPH galaxy, in 

practice we always find either zero or one possible matches. It is unlikely that more than 

one galaxy would ever be identified unless our positional matching algorithm incorrectly 

matched one of the progenitor SPH galaxies at the earlier timestep. 

This is repeated for all subsequent pairs of time steps. Any new matches obtained 

at early time steps are used in the analysis of later steps. This ensures that if an SPH 

galaxy is found to correspond to a semi-analytic galaxy at one timestep the galaxies will 

be considered to be matched at all later times, even if their positions begin to diverge. 

The effect of this approach on the results shown in Fig. 4.10 is to reduce the number 

of unmatched galaxies, but only by one to three per time step and only at redshifts 

z < 0.3. The galaxies affected have masses of around 1 O 8 / I - 1 M 0 , or approximately 50 

particles. Therefore, for all but the least well resolved galaxies, the simple position based 

scheme continues to match all galaxies after they become satellites. Of course, it may be 

that some of the galaxies being matched are at similar positions by chance, and did not 

originate in the same progenitor halo. 

It is possible to test whether this occurs if, in both the SPH and semi-analytic models, 

the "descendents" of each galaxy at subsequent timesteps can be found. If a pair of galax­

ies (one SPH and one semi-analytic) are matched at one timestep then their descendents 

at the next also ought to be matched to each other. With one exception, we find that 

in every case where the descendents of a matched pair of galaxies are both matched they 

are matched to each other. It follows that if a galaxy is correctly matched when it first 

forms (which is likely since it will generally be the only galaxy in the halo), then at later 

times it will almost always be correctly matched if it is matched at all. It is very unlikely 

that a semi-analytic galaxy could, by chance, be repeatedly matched to an SPH galaxy 
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which formed in a different progenitor halo. 

Any failure to match galaxies which really are present in both models would result 

in both unmatched SPH and unmatched G A L F O R M galaxies. While we find a relatively 

large number of unmatched G A L F O R M galaxies, there are fewer unmatched SPH galaxies 

- and some or even all of these appear to be due to the sharp cutoff in cooling at redshifts 

z > 1. The unmatched G A L F O R M galaxies must therefore genuinely have no counterparts 

in the SPH simulation, and are the result of some difference between the models. 

4.6.5 Improvements to the Semi-analyt ic M o d e l 

In the semi-analytic model, when a halo merges onto another more massive halo, any hot 

gas it contains is assumed to be stripped away so that no further cooling onto its central 

galaxy may occur. For consistency between the SPH simulation and the semi-analytic 

model, our halo finding algorithm should therefore consider two halos to be merged only 

when the merger has progressed to the point where the hot gas from the less massive halo 

is no longer able to cool. The massive, unmatched SPH galaxies noted above are present 

because this is not the case for the halo finding algorithm described in Section 4.3.2. This 

algorithm splits off subgroups which are only linked to the rest of the halo by particles 

which are not bound to any subgroup in the halo. In practice very few halos are split 

in this way (almost all of the particles are bound to some subgroup) and the resulting 

halo catalogues are extremely similar to the original friends of friends catalogues. Halos 

are usually considered merged as soon as member particles from each halo are within a 

linking length of each other. At this stage it is possible that the gas is not disturbed 

sufficiently to significantly affect cooling in the simulation. However, in the semi-analytic 

model this is exactly the point at which cooling onto the centre of the less massive halo 

is switched off. 

In an attempt to alleviate this problem, and possibly eliminate some of the unmatched 

galaxies, we modify our halo finding algorithm. When two halos merge, they become 

subgroups within the resulting halo. The more massive of the two will become the most 

massive subgroup, which we consider to be the main halo. The other becomes a satellite 

subgroup and gradually loses mass to the main halo. We choose to regard these satellite 

subgroups as independent galaxies if they have retained some fraction, Mf r a c , of the mass 

they had at the last timestep where they were considered to be a separate halo. This 

means that a halo is not considered merged until some of its outer layers of dark matter 

are lost to the main halo, which might plausibly be around the same time at which its 
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hot gas begins to be stripped away to become part of the main halo. Such an approach is 

rather arbitrary and not rigorously justified, but it does provide a way to vary the instant 

at which halo mergers are deemed to have occurred in the semi-analytic model, allowing 

us to investigate whether this choice has a large effect on the resulting galaxy population. 

Figure 4.11 shows how varying the parameter Mf r a c affects the comparison between 

the SPH and semi-analytic galaxies. From left to right the columns show results for semi-

analytic models with Mf r a c set to 10, 0.75 and 0.5. Setting Mf r a c > 1 prevents subhalos 

from being considered separate halos even if they have retained all of their original mass; 

the results obtained with Mf r a c = 10 are identical to those shown in Figure 4.10 (with 

NSPH = 100) and are shown for comparison. 

Reducing Mf r a c to 0.75 has several minor effects on the comparison between SPH and 

semi-analytic galaxies. Several G A L F O R M galaxies which are less massive than their SPH 

counterparts become slightly more massive, so that the overall level of agreement between 

the models is improved. This occurs because halo mergers are delayed slightly, which gives 

galaxies more time to accrete cooled gas before they become satellites in another halo. 

Setting Mf r a c < 1 also removes a couple of low mass, unmatched G A L F O R M galaxies. 

These are objects close to the minimum mass for cooling which, in the simulation, consist 

of two halos of similar mass in the process of merging. With Mf r a c > 1, the semi-analytic 

model treats these binary objects as single halos which are just massive enough for cooling 

to occur. In the SPH simulation, the mass is really shared between two similar subhalos, 

neither of which is sufficiently well resolved for cooling to be effective. Reducing Mf r a c 

causes these objects to be treated as separate halos in the semi-analytic model. As in the 

simulation, these separate semi-analytic halos have insufficient mass for cooling at z — 1 

and merge onto another, much more massive halo, before they are able to gain sufficient 

mass. 

If Mf r a c is reduced to 0.5, the semi-analytic model is able to produce a counterpart to 

the most massive, otherwise unmatched, SPH galaxy. The halo where this galaxy formed 

merged onto the most massive halo in the simulation prior to the onset of cooling at z = 1 

and consequently the galaxy was unable to form in the semi-analytic model. Delaying the 

merger allows cooling to occur and results in a galaxy of similar mass to the one seen in 

the simulation. 

Overall, setting Mf r a c < 1 does appear to improve agreement between the models, 

although the effects are not large. It appears that simply considering halos to be merged 

as soon as they are joined by the F O F algorithm (as we effectively do with Mf raC > 1) 
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Figure 4.11: Effect of varying the parameter Mf r a c on the comparison between SPH and 

semi-analytic galaxy masses. Results for Mf r a c = 10 (left), 0.75 (middle) and 0.5 (right) 

are shown at four different redshifts. Galaxies are matched between the SPH and semi-

analytic models using the method described in the text. 
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stops cooling onto satellite galaxies somewhat earlier in the semi-analytic model than in 

the simulation. This results in less massive, or even absent, semi-analytic galaxies and 

this is exacerbated by the sudden onset of cooling at z — 1. 

4.7 Conclusions 

In this Chapter we have compared a simplified, high resolution SPH simulation of the 

formation of a single galaxy to a similarly simplified semi-analytic model. We found the 

temperature and mass of the hot halo gas in the simulation prior to the onset of cooling 

to be approximately consistent with the assumptions used in the G A L F O R M model. We 

determined that the small difference in gas temperature between the simulation and the 

semi-analytic model had little or no effect on the mass of gas which cooled. It is not 

particularly surprising that the assumed temperatures and masses of hot halo gas are 

consistent with the simulation, since these assumptions were originally motivated by the 

results of non-radiative SPH simulations of galaxy clusters. 

We developed an improved version of the N-body G A L F O R M semi-analytic model which 

allows a more direct comparison between the models than was possible previously. As well 

as taking halo merger histories from the SPH simulation, this model uses halo substructure 

information to determine when semi-analytic galaxies should merge. Galaxy masses in 

the SPH and semi-analytic models can then be compared on a galaxy by galaxy basis. 

In poorly resolved halos, the SPH and semi-analytic models behave rather differently, 

since cooling in SPH becomes inefficient with small numbers of gas particles. We at­

tempted to model the limited mass resolution of the simulation by preventing cooling in 

halos with fewer than A^SPH dark matter particles. Setting NSPH = 100 appeared to be 

the best compromise between removing unmatched semi-analytic galaxies and not pre­

venting the formation of galaxies which did have SPH counterparts. However, there were 

still a number of (relatively low mass) semi-analytic galaxies in halos which contained no 

SPH galaxy. More sophisticated modelling of the SPH resolution limit may have helped 

to remove some of these. 

There were also a few quite massive SPH galaxies which did not appear in the semi-

analytic model. These were found to be due to a combination of the abrupt onset of 

cooling in the SPH simulation at z = 1 and the sudden cessation of cooling onto galaxies 

which had become satellites following a halo merger event. We attempted to solve this 

problem by changing the criteria for two halos to be considered merged. We found that by 
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delaying halo mergers (relative to the instant at which our original halo finding algorithm 

would have considered the halos to be merged) some of the previously unmatched SPH 

galaxies could now be matched. This also had a beneficial side effect - the agreement 

between SPH and G A L F O R M galaxy masses was slightly improved. 

In summary, the SPH simulation and the improved N-body G A L F O R M model appear 

to be in good agreement in terms of the state of the hot halo gas in the absence of cooling 

and the rate at which gas cools onto individual galaxies. However, the physics included 

in these models is deliberately simplified in order to avoid the worst effects of limited 

resolution and the extra complication introduced by the addition of stellar feedback. 



C h a p t e r 5 

Models with Star 

Formation and 

Feedback 

5.1 Introduction 

In the last Chapter, we considered an SPH simulation of the formation of a single galaxy 

which included only radiative cooling and star formation. This allowed us to investigate 

differences between SPH and semi-analytic treatments of the cooling of gas within dark 

matter halos without the extra uncertainty associated with feedback. Simplified simu­

lations like this provide a useful way to gain understanding of particular aspects of the 

process of galaxy formation. However, the ultimate goal of any galaxy formation model 

must be to reproduce the population of galaxies seen in the real universe, and ideally 

predict observations which have yet to be made. 

The latest simulations are now able to simultaneously resolve the detailed structure of 

galaxies and their cosmological context while including the additional physics required to 

produce realistic galaxies. This is achieved using the "zooming in" technique described in 

the previous Chapter along with numerical recipes for processes such as star formation, 

feedback and metal enrichment (e.g. Abadi et al. 2003, Governato et al. 2002, preprint 

(astro-ph/0207044), Sommer-Larsen et al. 2002). 

Here, we examine a set of such simulations in which cooling is allowed at all times 

and recently formed stars inject energy (both kinetic and thermal) into nearby gas. This 

is intended to mimic the regulatory effect of supernovae on the rate at which gas is 

converted into stars. This scheme results in model galaxies which are very similar to 

observed galaxies in many respects. 

These simulations are compared to a semi-analytic model similar to that of Chapter 4 

which also includes stellar feedback. However, we make no attempt at first to tune the 

99 
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semi-analytic feedback prescription to match the SPH algorithm. Instead, we adopt a 

standard prescription which is known to produce a population with realistic statistical 

properties when used to fill a large volume with semi-analytic galaxies (Benson et al. 2000). 

We then modify the semi-analytic model to reproduce the masses of the simulated galaxies, 

their satellites, and their progenitors as closely as possible. The size and nature of the 

changes required provide insight into the differences between the SPH simulations and 

the full semi-analytic model. This approach is intended to provide an indication of the 

uncertainties present in current numerical models of galaxy formation due to the poorly 

understood processes of star formation and feedback. 

The rest of the Chapter is laid out as follows. In Section 5.2 we describe the SPH sim­

ulations. We compare these simulations with the full semi-analytic model in Section 5.3, 

and with a feedback-free model in Section 5.4. In Section 5.5 we use the semi-analytic 

model to predict the luminosity function which might be obtained if SPH simulations of 

many more galaxies could be carried out. We present our conclusions in Section 5.6. 

5.2 The Simulations 

The simulations used in this Chapter are a set of four SPH simulations of the formation of 

individual galaxies, provided by Julio Navarro and Mario Abadi. Two of these simulations 

(which we refer to here as K I A l and KIA3) are described in detail by Abadi et al. (2003) 

and Meza et al. (2003). 

The simulations were carried out with the G R A P E S P H code (Steinmetz 1996), which 

computes gravitational interactions using specialised hardware. The physical processes 

modelled include gravitational and pressure forces, hydrodynamical shocks, Compton and 

radiative cooling, and heating by a photoionising UV background. 

These models assume the ACDM cosmology with the following parameters: Qo = 0.3, 

h — 0.65, fib = 0.019/i - 2, Ao = 0.7 and as = 0.9. The dark matter halo containing 

each galaxy was picked from a simulation of a large volume, and then resimulated at high 

resolution using methods similar to those described in Chapter 4. However, these models 

are more realistic than the one we considered previously: cooling is allowed at all redshifts 

and stellar feedback is included. 

Star formation is treated by allowing gas particles to form new star particles under 

certain conditions. Star particles are created in regions in which the gas is converging 

and Jeans unstable. The star formation rate, expressed in terms of mass of stars per unit 
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Name N D M 
m D M / h - l M Q N 

•i "gas 

K I A 1 92224 4.71 x 10 7 92 224 8.31 x 10 6 

K I A 2 104768 1.21 x 10 7 104768 2.14 x 10 6 

K I A 3 105729 1.21 x 10 7 105729 2.14 x 10 6 

K I A 5 129856 1.21 x 10 7 129856 2.14 x 10 6 

Table 5.1: In i t i a l numbers (./VDM and iV g as ) and masses ( m o M and m g a s ) of gas and dark 

matter particles in the high resolution regions of the four simulations. 

volume per unit t ime, in such regions is given by: 

P+= (5.1) 
m a x ( r c o o i , r d y n ) 

where p g a s is the local gas density, r c o o i and r a y n are the cooling and dynamical timescales 

of the gas respectively, and c* is a free parameter. Newly created star particles inject 

1 0 4 9 ergs of energy per solar mass of stars formed in to the surrounding gas over a period 

of 3 X 10 7 years. Most of this energy is used to heat the surrounding gas, but a f ract ion 

e v adds to the kinetic energy of the gas. A similar scheme was used by (Navarro & 

W h i t e 1993). Meta l enrichment is treated by assuming tha t stars contribute material 

enriched wi th 1 . 7 M @ of metals per 1 0 0 M S of stars formed to the surrounding gas over 

the same period of t ime. 

The numbers and masses of particles in the four simulations are shown in Table 5.2. 

Note tha t the number of gas particles shown here is only correct at early times, before 

the onset of star format ion which gradually transforms gas particles in to star particles. 

By redshift z = 0, in all four simulations much of the gas has been converted into stars. 

There are 100000-200000 star particles in each simulation at this t ime, w i t h mean masses 

of approximately 2.5 x 1 O 6 A _ 1 M 0 (in the K I A l simulation) and 6.5 X l O 5 / i - 1 M 0 (in the 

K I A 2 , K I A 3 and K I A 5 simulations). There are 40-50 ou tpu t times for each simulation 

between redshifts z = 50 and z — 0. 

5.3 Comparison with the Full Semi-analytic Model 

5.3.1 Description of the Full Semi-analytic Model 

Since these simulations are intended to treat the fo rmat ion of individual galaxies in as 

realistic a manner as current computat ional resources w i l l allow and result in galaxies 

which resemble those seen in the real universe, we begin by comparing the simulations 
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to a semi-analytic model which reproduces the properties of the observed local galaxy 

populat ion reasonably well. 

The version of the N-body G A L F O R M semi-analytic model employed in this chapter 

is similar to that described in Chapter 4, but w i t h cooling allowed at all redshifts and a 

feedback prescription included. As before, gas wi th in dark matter halos is assumed to be 

shock heated to the vi r ia l temperature when the halo forms, and any gas which has had 

t ime to radiate away its energy and flow to the centre of the halo is added to the disk 

of the central galaxy. We assume tha t the gas density profile is given by Equation 2.2, 

and set the in i t i a l core radius r ° o r e = 0.66rNpw- We allow the core radius to increase 

to mainta in the pressure at the vi r ia l radius. Cooling is allowed in all dark mat ter halos 

containing ten or more dark matter particles. 

The merger tree for the dark mat ter halo of each galaxy is determined f r o m the 

dark mat ter component of the simulation, and satellite galaxy positions and galaxy-

galaxy mergers are determined using halo substructures. The techniques used to do this 

are identical to those presented in Chapter 4. We set the parameter M f r a c in the halo 

finding a lgor i thm to 0.75 so tha t halos are considered to merge somewhat later than the 

F O F algor i thm would indicate. Previously, this appeared to slightly improve the level of 

agreement between the SPH and semi-analytic models, al though the effect is not large. 

For our in i t i a l comparison, we employ the same star fo rmat ion and feedback prescrip­

tions as in Chapter 2. See Section 2.3.2 for details. 

5.3.2 Identifying Galaxies in the Simulation 

We ident i fy galaxies in the SPH simulation by applying the F O F algor i thm to cool (T < 

IQ5K) gas and star particles as in Chapter 4. However, in this case the masses of the 

gas and star particles are not equal, and the mass of an individual gas or star particle 

may vary over the course of the simulation. I t is not immediately obvious whether F O F 

w i t h a single l inking length for all particles w i l l correctly ident i fy galaxies, or what an 

appropriate l inking length would be. 

For well resolved objects, the F O F algori thm approximately picks out regions enclosed 

by a surface of constant density. The l inking length corresponding to a particular mass 

density depends on the cube root of the particle mass. Since the masses of the gas and 

star particles are generally of the same order of magnitude, this weak dependence of the 

l inking length on the particle mass and the highly over-dense, well defined nature of the 

simulated galaxies, suggests tha t i t may be reasonable to use a single l inking length for 
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all of the cool gas and star particles. 

We therefore use a l inking length b = 0.015, in terms of the mean separation of gas 

particles before any star fo rmat ion occurs, for all particles at all ou tpu t times. We f ind 

tha t the masses of the resulting groups of particles are not par t icular ly sensitive to the 

choice of l inking length, although setting b to about 0.03 or greater causes the F O F 

algor i thm to j o i n galaxies which, by eye, are clearly separate objects. 

5.3.3 Comparison Between the Models 

We begin by comparing the to ta l mass of galactic (ie. cold and dense) material in halos 

in the SPH simulations and the semi-analytic model. SPH galaxies are identified using 

the F O F algor i thm as described above. A n SPH galaxy is considered to be " i n " a halo i f 

a dark matter particle belonging to the halo is w i th in a l ink ing length (b = 0.2 in terms 

of the mean separation of dark mat ter particles) of its centre of mass. Only gas and star 

particles found to be in galaxies by the F O F algori thm are included in this comparison. 

The thick lines in F ig . 5.1 show the to ta l mass of the galaxies in the most massive 

progenitor halo of each of the four simulated galaxies as a func t ion of redshift . The thick 

solid lines show to ta l galaxy masses f r o m the SPH simulation, and the thick dashed lines 

show the same quant i ty derived f r o m the semi-analytic model. There is a much greater 

mass of galactic material present in the SPH simulation than in the semi-analytic model 

at redshift z — 0 — in all four cases the difference is about a factor of five or more. The 

difference between the two models is even larger i f only the stellar mass (shown by the 

th in solid and th in dashed lines in the figure) is considered. A t high redshifts (z ~ 4) 

the difference in the to ta l galactic mass is smaller, but there are fa r fewer stars in the 

semi-analytic model. 

Since we know tha t the SPH and semi-analytic models generally cool similar quantities 

of gas (see Chapter 4) , these differences must be due to the quite different implementations 

of star fo rmat ion and feedback employed in the models. The semi-analytic feedback 

prescription appears to be much more effective at reheating cold gas and regulating star 

fo rmat ion than the prescription used in the simulations. A smaller f rac t ion of the cold, 

dense gas is converted into stars, and the overall mass of galaxies formed is smaller by 

almost an order of magnitude at low redshift . This is not entirely unexpected. Most 

of the energy released as a result of star fo rmat ion in the simulat ion is used to increase 

the temperature of the surrounding gas. However, Navarro &; Steinmetz (2000) note 

tha t simply inject ing thermal energy into the gas is not an efficient way to regulate 
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Figure 5 .1: Mass of cold, dense gas and stars in the most massive progenitor halos of the 

four simulated galaxies ( K I A l , K I A 2 , K I A 3 and K I A 5 ) as a func t ion of redshift. The 

th in lines indicate the mass of stars present in the progenitor halos while the thicker lines 

show the to ta l mass of cold, dense gas and stars. The unbroken lines show results f r o m 

the SPH simulations, and the dashed lines correspond to the semi-analytic model w i t h 

feedback included. 
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star fo rmat ion in dense environments because the gas in such regions wi l l be able to 

radiate the energy away almost immediately. Abadi et al . (2003), describing the feedback 

mechanism employed in the simulations used in this Chapter, say tha t while the small 

f ract ion (e v = 0.05) of the feedback energy which is added to the kinetic energy of the 

nearby gas prevents rapid transformation of cold gas into stars, only a minor f ract ion of 

the cooled gas is returned to a diffuse, intergalactic state. Consequently, the to t a l mass 

of material in galaxies in the simulation may be expected to be close to what would be 

found in the absence of feedback. 

There are two possible explanations for the discrepancy seen in F ig . 5.1. The semi-

analytic galaxies may simply be less massive than their SPH counterparts. Alternatively, 

in the SPH simulation galaxies may occur in halos where no semi-analytic galaxies are 

able to f o r m . In order to investigate which of these is the case, we compare the masses of 

individual galaxies between the models and determine whether any galaxies exist in one 

model but not the other. F i g . 5.2(a) and F ig . 5.2(b) show the results of this comparison for 

the four simulations. The algori thm described in Section 4.6.3 is used to ident i fy G A L F O R M 

galaxies w i t h their SPH counterparts using only the positions of the galaxies. Galaxies 

present in the semi-analytic model which are not identified w i t h any SPH galaxy are 

plotted close to the y axis. Galaxies present in the simulat ion which are not identified w i t h 

any G A L F O R M galaxy are plotted close to the x axis. The top, middle and bo t tom panels 

in each column show the comparison at redshifts z = 0, z = 1 and z. = 3 respectively, and 

each column shows results f r o m one of the four simulations. 

Whi le there are a number of SPH galaxies w i thou t semi-analytic counterparts, these 

are almost all two orders of magnitude less massive than the main galaxy. The most 

notable exception is at z = 0 in the K I A 1 simulat ion, where the second most massive 

SPH galaxy has no semi-analytic counterpart . This galaxy may have been produced by a 

merger between galaxies which formed in halos which, in the semi-analytic model, were 

of low enough mass that feedback prevented the creation of galaxies. The galaxies which 

are present in both models generally have much lower masses in the semi-analytic model 

than in the simulations, at least at lower redshifts. The difference is less pronounced, but 

s t i l l clearly present, at z = 3. Overall , i t appears tha t the feedback prescription in the 

semi-analytic model is preventing the fo rmat ion of small galaxies in low mass halos and 

greatly reducing the rate at which more massive galaxies can grow, whereas feedback in 

the simulation is having a much smaller effect on the galaxy masses. 
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(a) K I A 1 and K I A 2 simulations 

Figure 5.2: Comparison of galaxy masses between the SPH simulations and the f u l l semi-

analytic model. Galaxies are matched between the models using their positions only. The 

masses of galaxies appearing in one model but not the other are plot ted as points close to 

the relevant axis. The top, middle and bo t tom panels show the comparison at redshifts 

z — 0, z = 1 and z = 3 respectively. 
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(b) K I A 3 and KIA5 simulations 

Figure 5.2: Comparison of galaxy masses between the SPH simulations and the f u l l semi-

analytic model (continued) 
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5.4 Comparison with a Stripped Down Semi-analytic Model 

5.4.1 Description of the Model 

I f the differences seen in Section 5.3 are due to the relatively weak feedback prescription 

employed in the simulation, semi-analytic models w i t h l i t t l e or no feedback ought to 

more closely resemble the simulated galaxies. We now compare the SPH simulation w i t h 

a semi-analytic model in which feedback is neglected entirely. This may ini t ia l ly appear 

d i f f icu l t to j u s t i f y : the addit ion of a por t ion of the supernova energy to the kinetic energy 

of nearby gas particles is intended to ensure tha t feedback remains effective even in the 

presence of efficient radiative cooling. However, as noted above, this type of feedback is 

pr imar i ly effective at preventing the rapid t ransformat ion of all available cold, dense, gas 

into stars. I t does not appear to return large masses of galactic gas to the intergalactic 

medium (Abadi et al. 2003). I t w i l l therefore have l i t t l e direct effect on the to ta l masses 

of the simulated galaxies. 

Feedback w i l l , however, have an indirect effect on the rate at which gas cools through 

the metall ici ty of the diffuse halo gas. Recently formed star particles dis tr ibute a quant i ty 

of metals to their neighbouring gas particles. These particles w i l l tend to be in dense 

regions where cooling is underway. Increased metal l ici ty can significantly reduce the 

cooling t ime of hot gas and hence increase the masses of the resulting galaxies. 

In the semi-analytic model, metals are added to the hot halo gas through the reheating 

of cold, galactic gas which has been enriched by supernovae. Removing feedback f r o m 

the model ensures tha t no metals ever reach the hot halo gas. I t is therefore necessary to 

art i f icial ly assign a metall ici ty to the gas so tha t the cooling rate is not unduly reduced. 

Whi le i t would be possible to carefully match the assigned metal l ici ty to tha t observed 

in the simulation, we f i nd tha t galaxy masses in the semi-analytic model are largely 

insensitive to the exact choice of metallicity. 

I f we assume a constant metallicity, Z , for the hot halo gas at all redshifts we obtain 

very similar galaxy masses for Z between Z = O.OOIZ0 and Z = O . IZ0 , where ZQ is solar 

metallicity. Lower metallicities than this cause a reduction in galaxy masses at redshifts 

below about three. A t higher redshifts the galaxy masses are completely independent 

of metallicity. Perhaps surprisingly, assigning the hot gas solar metal l ic i ty reduces the 

masses of the most massive semi-analytic galaxies at low redshift by around 50%. This 

may be because increased cooling at earlier times reduces the mean density of gas in later 

halos and results in cooling times greater than the age of the halo. 
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In the analysis below, we set Z = O.OIZQ for all hot gas in the semi-analytic model 

at all redshifts. As before, we assume gas density profile which has an in i t ia l radius 

r ° o r e = 0.66rNpw- Again , the core radius increases as gas cools in order to maintain the 

pressure at the vi r ia l radius. Cooling is allowed only in halos w i t h a mass of gas greater 

than A^spH T Ogas, where m g a s is the mass of a gas particle before any star format ion occurs. 

In Chapter 4 we found this cooling model to be in reasonable agreement w i t h a high 

resolution SPH galaxy simulation. This choice of density profile is also the same as tha t 

used in the f u l l semi-analytic model of Section 5.3. 

We set N S P H = 75, since this minimises the number of low mass unmatched semi-

analytic galaxies w i thou t preventing the fo rmat ion of semi-analytic galaxies which have 

counterparts in the SPH simulation. This is a small change f r o m the cooling model used in 

Chapter 4 (which had ./VSPH = 100), but here we are using a different SPH implementation 

which may behave slightly differently in very poorly resolved halos. In any case, the choice 

of A^SPH has a negligible effect on galaxies which are not close to the resolution l i m i t of 

the simulation. 

W i t h o u t feedback, the semi-analytic star fo rmat ion rate has no effect on the masses 

of the model galaxies. I t does however, affect their luminosities, which w i l l be considered 

in Section 5.5.1. The star fo rmat ion rate in the simulat ion is given by Eqn. 5 .1. In the 

dense regions where stars are likely to f o r m , i t w i l l usually be the case tha t r c o o i < T d y n so 

tha t the star fo rmat ion rate per uni t mass is inversely proport ional to the local dynamical 

t ime. In the semi-analytic model the star fo rmat ion rate is given by: 

KU = ^ (5.2) 

where M c o i a is the mass of cold gas in the galactic disk and r* is the star format ion 

timescale. We may obtain a star format ion timescale w i t h a similar f o r m to tha t used in 

the SPH simulation i f we set 

r* = ^ (5.3) 

where i^isk is the dynamical t ime of the galactic disk. 

The f u l l semi-analytic model of Section 5.3 assumes tha t when stars f o r m , a f rac t ion , 

R, o f the stellar mass is instantaneously recycled into the interstellar medium. However, 

in the simulation stars only return metals to the interstellar medium. We a t tempt to 

reproduce this behaviour in the semi-analytic model by setting the recycled mass fract ion 

to R = 0 and the yield of metals per solar mass of stars formed, p, to 0.017 — each 
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1OOM 0 of stars formed in the simulation returns 1.7M© of metals to the surrounding gas 

particles. 

5.4.2 Comparison Between the Models 

For each of the four galaxies, the thick lines in F ig . 5.3 show the to ta l galactic mass in the 

most massive progenitor halo as a func t ion of redshift , for both the semi-analytic model 

(dashed lines) and the SPH simulation (solid lines). The dashed and solid th in lines show 

the mass of stars present in each case. 

This semi-analytic model is clearly in much closer agreement w i t h the SPH simulation. 

For three of the four galaxies, the to ta l mass agrees to w i t h i n 50% at all redshifts. The 

exception is the K I A 2 galaxy, which is significantly less massive at redshift z = 2 in the 

semi-analytic model than in the simulation. By redshift zero the difference has decreased 

somewhat. 

The stellar masses are also in much better agreement. The star fo rmat ion prescription 

in this semi-analytic model appears to convert almost all of the available gas into stars, 

and at low redshift this seems to be a fa i r approximation to what happens in the SPH 

simulations. A t higher redshifts, the simulations contain more galactic gas than is present 

in the semi-analytic model. This is not a part icularly significant result however. I t may 

not be possible to f ind a semi-analytic star format ion fo rmula which is exactly equivalent 

to the particle-based SPH star fo rmat ion algori thm, and, in the absence of feedback, the 

semi-analytic star format ion rate may be adjusted a rb i t ra r i ly w i thou t affecting the to ta l 

galaxy masses. 

The masses of individual galaxies in the SPH and semi-analytic models are compared 

in F ig . 5.4(a) ( K I A l and K I A 2 simulations) and F ig . 5.4(b) ( K I A 3 and K I A 5 simulations). 

G A L F O R M galaxies are identified w i t h objects in the SPH simulations using their positions 

as before. Again , the level of agreement between the models is greatly improved. The 

masses of the semi-analytic galaxies have increased, and galaxies are now able to f o r m 

in almost all locations where SPH galaxies are present. There are, however, a few semi-

analytic galaxies close to the 75 particle threshold for cooling which are not matched to 

SPH galaxies. The format ion of these objects was conveniently prevented by feedback in 

the f u l l semi-analytic treatment, but they are most likely a consequence of the simplistic 

way in which we model the l imi ted mass resolution of the s imulat ion. I t is perhaps not 

surprising tha t the behaviour of the SPH algori thm in poorly resolved halos cannot be 

exactly described by simply preventing cooling below some halo mass. 
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Figure 5.3: Mass of cold, dense gas and stars in the most massive progenitor halos of the 

four simulated galaxies ( K I A 1 , K I A 2 , K I A 3 and K I A 5 ) as a func t ion of redshift . The 

th in lines indicate the mass of stars present in the progenitor halos while the thicker lines 

show the t o t a l mass of cold, dense gas and stars. The unbroken lines show results f r o m 

the SPH simulations, and the dashed lines correspond to the semi-analytic model w i t h 

an increased star fo rmat ion rate but wi thou t feedback. 
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Figure 5.4: Comparison of galaxy masses between the SPH simulations and the stripped 

down semi-analytic model. Galaxies are matched between the models using their positions 

only. The masses of galaxies appearing in one model but not the other are plotted as 

points close to the relevant axis. The top, middle and bo t tom panels show the comparison 

at redshifts z = 0, z = 1 and z = 3 respectively. 
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Figure 5.4: Comparison of galaxy masses between the SPH simulations and the stripped 

down semi-analytic model (continued) 
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Galaxy masses in the SPH simulations are clearly more closely reproduced by a semi-

analytic model wi thou t feedback. The differences between models w i t h and wi thou t 

feedback are much greater than the small uncertainties due to our choice of metallicity, 

cooling threshold iVsPHi a n d F O F l inking length used for galaxy ident if icat ion. From the 

results presented in Chapter 4 we know tha t the semi-analytic and SPH treatments of 

cooling are in approximate agreement. The SPH feedback a lgor i thm is therefore having 

l i t t le effect on the mass of material which is incorporated in to galaxies. 

5.4.3 Angular Momentum of the Model Galaxies 

Abadi et al . (2003) show tha t the K I A 3 SPH galaxy has significantly lower specific an­

gular momentum than observed late type spirals w i t h similar ro ta t ional velocities. I t is 

suggested tha t significant changes to the star fo rmat ion a lgor i thm to prevent large quan­

tities of stars fo rming at high redshift may be needed to reconcile the simulation w i t h 

observations. The K I A 5 galaxy suffers f r o m the same problem. 

For each galaxy, the stripped down semi-analytic model predicts the circular velocity 

and scale radius of the disk. We find tha t the semi-analytic versions of the K I A 3 and 

K I A 5 galaxies have much higher disk circular velocities and much smaller scale radii than 

the SPH simulations. The magnitudes of these differences are such tha t the semi-analytic 

disks appear to contain even less angular momentum than the simulated objects. 

There are several possible reasons why the semi-analytic models may generate galaxies 

wi th quite different disk velocities f r o m those found in the s imulat ion. The semi-analytic 

model makes a number of assumptions in order to determine the angular momentum of 

the galactic disks. For example, i t assumes tha t in i t ia l ly the angular momentum of the 

gas increases linearly w i t h radius, tha t the angular momentum of collapsing halo gas is 

conserved, and tha t accretion of satellite galaxies in minor mergers does not affect the 

specific angular momentum of the galactic disk. These assumptions may not hold in the 

simulation. 

Secondly, the angular momentum content of the SPH and semi-analytic model galaxies 

is sensitive to the feedback prescription used. Since the feedback in the K I A 1 - K I A 5 galaxy 

simulations appears to have l i t t l e effect on the mass of gas which collapses and forms 

stars, we have modelled the SPH simulations using a semi-analytic scheme which neglects 

feedback entirely. In terms of galaxy masses, this works very well . However, the SPH 

feedback implementation may be having some effect on galaxy angular momenta. For 

example, the small amount of material which is ejected may preferentially be tha t w i t h 
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the lowest angular momentum. 

Finally, the bulge to disk ratios of the SPH galaxies are not the same as those in the 

semi-analytic model. For example, the ratio of bulge luminosi ty to to ta l luminosity of the 

K I A 3 galaxy (in the i j - b a n d ) is about 20% in the semi-analytic model and around 50% 

in the simulation. The circular velocity of the disk w i l l depend on its mass as well as on 

the specific angular momentum of the gas which forms i t . 

The angular momenta, sizes and circular velocities of model disk galaxies pose signif­

icant problems. SPH simulations of galaxy format ion typical ly have d i f f icu l ty in repro­

ducing observed disk sizes. The gas which collapses onto galaxies in these simulations 

generally does not retain its angular momentum, resulting in the fo rmat ion of smaller 

disks than are observed (e.g. Navarro & Benz 1991, Navarro & W h i t e 1994, Steinmetz & 

Navarro 1999). Rapid cooling at early times creates a c lumpy gas d is t r ibut ion in forming 

halos which allows angular momentum to be lost to the dark mat ter through dynamical 

f r i c t ion . 

Semi-analytic models are able to avoid this d i f f icu l ty and produce more realistic disks 

by assuming tha t the specific angular momentum of the gas is conserved. The jus t i f icat ion 

for this is tha t effective stellar feedback w i l l maintain the intergalactic halo gas in a diffuse 

state, thereby greatly reducing the effects of dynamical f r i c t i o n . However, these models 

have d i f f icu l ty in simultaneously matching the bright end of the luminosity funct ion and 

the Tully-Fisher relation. This is a long standing problem in semi-analytic modelling of 

galaxy format ion (e.g. W h i t e & Frenk 1991, Kauf fmann et al . 1993, Cole et al . 1994, Heyl 

et al . 1995). 

To investigate these issues, i t would be useful to be able to directly compare the 

angular momenta of the SPH and semi-analytic galaxies. Differences between them could 

indicate unrealistic aspects of the SPH simulations or failures of the assumptions made 

in the semi-analytic model. In order to do this, semi-analytic dark mat ter halos would 

have to be assigned spin parameters consistent w i t h the dark mat ter component of the 

simulation. The sensitivity of disk angular momenta to the feedback prescription used 

means that i t would also be necessary to include much more sophisticated modelling of 

the SPH feedback algori thm in the semi-analytic model. 

Given the simple nature of our a t tempt t o model the SPH simulations using N-body 

G A L F O R M , i t is not feasible to examine these issues here. This is, however, a possible 

direction for fu tu re work. 
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5.5 Simulating a Large Volume 

We now use semi-analytic models incorporat ing the same modelling of cooling, star for­

mat ion and feedback processes as those described in Sections 5.3 and 5.4 to simulate a 

representative volume of the universe and derive the statistical properties of the resulting 

galaxy populations. We wi l l refer to the model including feedback as the Full Semi-

Analy t ic (FSA) model, and to the model designed to better match the SPH simulations 

as the Stripped Down Semi-Analytic (SDSA) model. 

Dark mat ter halo merger trees for these models are obtained using the same Monte 

Carlo a lgor i thm as was used in Chapter 2. See Cole et al . (2000) for details. The min imum 

dark matter mass for a progenitor halo is set equal to ten times the mass of one high 

resolution dark mat ter particle f r o m the K I A 1 simulat ion. Realisations of halos on a 

grid of masses running f r o m about 10 8 to 1015h~lM.Q at redshift zero are generated and 

used to populate a volume of 1 0 6 / i _ 3 M p c 3 . The mass func t ion determined f r o m N-body 

simulations by Jenkins et al . (2001) is used to determine the number of halos required 

of each mass. Since no positional informat ion is available for galaxies in these halos, 

galaxy-galaxy mergers are treated using the dynamical f r i c t i on argument, also employed 

in Chapters 2 and 3 and described by Cole et al . (2000). 

5.5.1 Luminosity Functions 

Fig . 5.5 shows luminosity functions derived f r o m the F S A model. This model is in fair 

agreement w i t h observations of the local b j -band (Zucca et al . 1997, Norberg et al . 2002, 

Ratcl iffe et al . 1998, Loveday et al . 1992) and K-band (Glazebrook et al. 1995, Gardner 

et al. 1997, Mobasher et al . 1993, Cole et al . 2001) luminosi ty functions, when modelling 

of the effects of dust is included. 

The dot ted lines in F ig . 5.6 show the luminosi ty funct ions predicted by the SDSA 

model for a 1 0 6 / i - 3 M p c 3 volume. This model is much less successful at reproducing 

observed galaxy luminosities. In the b j -band there are around an order of magnitude too 

many galaxies at very bright and very fa int magnitudes. The model luminosity funct ion 

approaches the observational data most closely at magnitudes of around -19, but even here 

there are twice as many galaxies as are seen in the real universe. The K-band luminosity 

func t ion looks very similar, w i th too many galaxies at al l luminosities and an excess of 

extremely bright objects. This is due to the t ransformat ion of almost all of the available 

baryons into stars in this model. I f we improve the mass resolution of the model by 
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reducing the cooling threshold parameter, . /VSPH ) f r o m 75 to 10, we find tha t marginally 

more fa in t galaxies are produced and the abundance of brighter objects falls slightly. This 

is not unexpected, because wi thou t feedback gas cools extremely rapidly in small halos 

at high redshift and the to ta l mass of cooled material becomes dependent on the mass 

resolution of the calculation. Varying the mass resolution in this range has l i t t l e effect 

on the f u l l semi-analytic model because feedback inhibi ts the fo rmat ion of galaxies in low 

mass halos. 

From the results of Section 5.4, we know tha t the cooling and star fo rmat ion pre­

scriptions of the SDSA model reproduce the galaxy masses seen in the simulation much 

more closely than the prescriptions used in the FSA model. F ig . 5.6 therefore gives some 

indication of the luminosity func t ion which would be obtained i f sufficient computat ional 

resources were available to carry out SPH simulations of a large volume w i t h the same 

mass resolution and model assumptions as the galaxy simulations we consider here. 

This is something of an extrapolat ion of the semi-analytic model. The SDSA model 

contains halos at z = 0 w i t h masses both much greater and much smaller than the four 

simulated halos against which the N-body G A L F O R M model has been tested. However, 

we f ind reasonable agreement w i t h the SPH simulations in progenitor halos at redshifts 

z > 0, so the model may be expected to reproduce the behaviour of a large SPH simulation 

for the less massive halos. I t cannot be guaranteed tha t this agreement extends to more 

massive halos such as clusters of galaxies, but such halos are less common and have a 

smaller influence on the overall galaxy luminosi ty func t ion . 

I t seems reasonable to conclude tha t a large volume SPH simulat ion w i t h the same star 

fo rmat ion and feedback prescriptions as the K I A 1 - K I A 5 galaxy simulations w i l l convert 

halo gas in to stars too efficiently and over predict the abundance of very fa int and very 

bright galaxies. 

5.6 Conclusions 

In this Chapter we have examined four high resolution SPH simulations of the format ion 

of individual galaxies. These simulations include plausible treatments of star format ion 

and feedback and produce galaxies which strongly resemble galaxies seen in the real 

universe. The N-body G A L F O R M model was used to generate semi-analytic realisations of 

these galaxies using prescriptions for cooling, star fo rmat ion and feedback which, when 

applied to a large volume, result in a population of galaxies w i t h realistic statistical 
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properties. These properties include the local luminosity func t ion , Tully-Fisher relation 

and dis t r ibut ion of disk sizes. 

We f ind significant differences between these models. In the SPH simulations, almost 

all of the baryons in the dark matter halo of each galaxy are converted into stars, whereas 

in the semi-analytic model large amounts of hot halo gas remain at z = 0. The SPH 

feedback algori thm appears to have l i t t l e effect on the rate at which gas is incorporated 

into galaxies. 

We then carried out the same comparison w i t h a similar semi-analytic model in which 

feedback was neglected entirely. The model was able to closely reproduce the masses of 

individual SPH galaxies and their progenitors at redshifts between z — 0 and z ~ 3. 

There were uncertainties in this comparison due to the l imi ted mass resolution of the 

simulation and choice of metal l ici ty for the hot halo gas, but these were much smaller 

than the differences between models w i t h and wi thout feedback. 

T w o of the SPH simulations f o r m disk galaxies. We found tha t these also formed disks 

in the feedback-free semi-analytic model, but w i t h much higher circular velocities and 

smaller scale radi i . Both the SPH and semi-analytic objects appear to have less angular 

momentum than observed disk galaxies. However, the angular momentum of the galaxies 

is sensitive to the feedback prescription employed. Simply neglecting feedback in the 

semi-analytic model closely reproduces the SPH galaxy masses, but a more sophisticated 

approach would be required to investigate the build up of angular momentum. 

The semi-analytic model was then used to calculate the local galaxy luminosity func­

t ion w i t h and wi thou t feedback. In this case, halo merger histories were obtained using 

the Monte-Carlo algori thm of Cole et al . (2000). W i t h o u t feedback, too many galaxies 

of all luminosities are formed. The discrepancy between model and observed luminos­

i ty functions is greatest at very bright and very fa in t magnitudes. This model uses the 

cooling and star format ion prescriptions which most closely match the behaviour of the 

SPH simulations. I t is therefore probable tha t i f simulations similar to the K I A 1 - K I A 5 

simulations could be carried out in a much larger volume, the resulting galaxy luminosity 

funct ion would be quite unrealistic. 
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Chapter 6 
Conclusions 

6.1 The N-body GALFORM Model 

We have developed a semi-analytic galaxy format ion model, N-body G A L F O R M , which uses 

the methods of Cole et al . (2000) to populate dark matter halos in an N-body simulation 

w i t h semi-analytic galaxies. In this model, halo merger histories are determined f r o m the 

simulat ion. We have shown tha t the galaxy populations predicted by this model closely 

resemble those predicted by the model of Cole et al. (2000) when the effects of l imi ted 

mass resolution are accounted for . The remaining differences are due t o the dis t r ibut ion 

of progenitor masses in the Monte-Carlo generated merger trees of the Cole et al . model, 

which does not agree exactly w i t h the d is t r ibut ion found in N-body simulations. 

6.2 Radiative Cooling in SPH and Semi-analytic Galaxy 

Formation Models 

SPH and semi-analytic calculations of the mass of gas which cooled in dark matter halos 

in a 5 0 3 / i _ 3 M p c 3 simulation volume have been compared using the N-body G A L F O R M 

model. In order to s impl i fy the problem, star fo rmat ion was neglected. A t redshift z=0 , 

the cooled gas mass in well-resolved halos agreed remarkably well , and this agreement can 

be improved even fur ther w i t h minor changes to the semi-analytic cooling prescription. 

A t high redshift, resolution effects in the simulation become increasingly impor tan t and, 

as a result, more gas cools in low mass halos in the SPH simulat ion than in the semi-

analytic model. The cold gas mass funct ion of individual galaxies in the two treatments at 

z=0 also agrees very well and, when the effects of mergers are accounted for , the masses of 

individual galaxies and their 2-point correlation functions are also in excellent agreement. 

We have carried out a more detailed comparison between the N-body G A L F O R M model 

and a simplif ied, high resolution simulation of the fo rmat ion of a single galaxy. Whi le 

this simulation includes star fo rmat ion , there is no a t tempt to model its effects on the 

remaining gas. In order to minimise resolution effects, radiative cooling is only allowed to 
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occur at redshifts z < 1. This prevents the fo rmat ion of galaxies in very poorly resolved 

halos at high redshift, and allows us to investigate some of the assumptions made in the 

semi-analytic model regarding the state of the gas before any cooling occurs. We find tha t 

the temperature and mass of the gas in the simulated halos at z = 1 are approximately 

consistent w i t h the assumptions of the semi-analytic model, at least for halos of more 

than around 100 particles. 

We have examined the masses of individual galaxies in the SPH and semi-analytic 

models, and found tha t almost all of the well resolved galaxies present in one model 

also appear in the other w i t h similar masses. One or two massive SPH galaxies wi thou t 

semi-analytic counterparts led us to explore the effect of varying the instant at which 

two halos are considered to have merged. This is impor tan t because, in the G A L F O R M 

model, the accretion of gas onto a galaxy ceases as soon as i ts parent halo merges w i t h a 

more massive object . I t was found that delaying the point at which this occurs improves 

agreement between the models by removing some unmatched galaxies and t ightening the 

correlation between individual galaxy masses. 

These results conf i rm and extend the earlier conclusions of Benson, Pearce, Frenk, 

Baugh & Jenkins (2001) tha t SPH simulations and semi-analytic models give consistent 

results for the evolution of cooling galactic gas. Whi le Benson et al . were l imited to a 

statistical comparison, we have been able to demonstrate tha t this agreement holds on 

a halo by halo and galaxy by galaxy basis. Our results, along w i t h those of Yoshida 

et al . (2002), establish the combined N-body/semi-analyt ic approach as a viable, and 

less computat ional ly intensive, alternative to f u l l hydrodynamical simulations for some 

applications. 

6.3 Comparison between Full SPH and Semi-analytic Mod­

els 

We also carried out a comparison between the N-body G A L F O R M model and a set of 

much more realistic SPH simulations. Both the semi-analytic model and the SPH simu­

lations included radiative cooling (at all redshifts), star fo rmat ion , and feedback due to 

supernovae. The prescriptions used in the semi-analytic model were similar to those used 

by Cole et al . (2000), and result in a populat ion of galaxies w i t h a realistic luminosity 

func t ion , Tully-Fisher relation, and dis t r ibut ion of disk sizes. The algorithms employed 

in SPH simulations of galaxy format ion cannot be directly tested against this type of ob-
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servational data, because i t is not practical to simulate a large enough sample of galaxies 

wi th acceptable resolution. However, the star fo rmat ion and feedback algorithms used in 

the hydrodynamic simulations we considered here have been shown to produce individual 

galaxies which bear a strong resemblance to observed galaxies — see, for example, Meza 

et al . (2003). 

We were therefore directly comparing complete, state of the art SPH and semi-analytic 

models of galaxy format ion in order to f i nd differences due to our uncertain knowledge of 

the physical processes involved. This is in contrast to the previous Chapters, where we 

investigated different numerical treatments of a single, relatively well understood process, 

i.e. radiative cooling. 

We have found tha t there are very significant differences between the SPH simu­

lations and the N-body G A L F O R M model. The SPH galaxies are much more massive 

than those predicted to f o r m in the same dark mat ter halos by the f u l l semi-analytic 

model. This discrepancy must be due to the quite different star fo rmat ion and feedback 

algorithms employed. In particular, we have confirmed tha t , unlike the semi-analytic 

feedback prescription, the SPH feedback scheme has l i t t l e effect on the rate at which gas 

cools. Consequently, a semi-analytic model adjusted to reproduce the behaviour of the 

SPH simulations produces a luminosity func t ion w i t h a large excess of galaxies at very 

fa int and very br ight magnitudes. 

6.4 Directions for Future Work 

In this thesis we have shown tha t two currently popular numerical techniques used to treat 

the cooling of diffuse gas in dark matter halos give consistent results and are therefore 

likely to be reasonably reliable. We have also demonstrated tha t the dominant uncertainty 

in modern galaxy format ion models is the t reatment of star fo rmat ion and feedback. This 

is clearly an area in which our understanding is far f r o m complete. 

The approach adopted in Chapter 5, of adapting the semi-analytic model to mimic an 

SPH simulat ion, could be used to provide an indication of the effect of various feedback 

schemes on SPH simulations of galaxy fo rma t ion . The low computat ional cost associated 

w i t h semi-analytic modelling would allow a more thorough investigation of the parameter 

space associated w i t h each scheme. The ul t imate aim of such an investigation would be 

to ident i fy physically reasonable SPH star fo rmat ion and feedback algorithms such tha t 

the properties of individual galaxies and the statist ical properties of the model galaxy 
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population were both in agreement w i t h observations. This is a necessary condition i f 

the simulations are to reflect what happens in the real Universe. However, implementing 

equivalent star fo rmat ion and feedback algorithms in both models would be a non-tr ivial 

task. Detailed comparisons such as those in Chapter 5 would be required to ascertain 

tha t the SPH and semi-analytic implementations genuinely were equivalent. 

There are a number of assumptions in the G A L F O R M model relating to the build-up 

of angular momentum of the semi-analytic galaxies — for example, i t is assumed tha t 

halo gas retains its angular momentum as i t collapses and tha t this determines the size 

of the resulting disk. These assumptions are plausible, physically motivated and lead to 

realistic galaxy sizes. Nevertheless, they have s t i l l not been tested in detail . This is largely 

because the model could only be directly tested against hydrodynamic simulations, which 

can be unreliable in this respect due to numerical problems and the possible neglect 

of impor tan t physical processes. Indeed, in SPH galaxy simulations ar t i f ic ia l angular 

momentum losses typically lead to the fo rmat ion of galaxies w i t h much smaller disks than 

are observed. Better understanding of such problems (see, for example, Sommer-Larsen 

& Dolgov 2001, Okamoto et al . 2003) may now make such a comparison worthwhile . 

Finally, the combined N-body/semi-analytic approach provides a way to include a re­

alistic populat ion of galaxies w i t h a wide range of known properties in N-body simulations 

of volumes large enough tha t f u l l hydrodynamic calculations would be impract ical . This 

technique could, for example, be applied to the "Mi l l en ium" simulation planned by the 

Virgo Consor t ium. Such a model could be tested against large galaxy redshift surveys 

such as the 2dF Galaxy Redshift Survey or the Sloan Dig i t a l Sky Survey. Detailed and 

realistic theoretical models of large volumes of the Universe w i l l also be useful for testing 

the procedures used to analyse observational data. 
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