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Abstract

This thesis considers nonparametric predictive inference for lifetime data that in-

clude right-censored observations.

The assumption A,y proposed by Hill in 1968 provides a partially specified
predictive distribution for a future observation given past observations. But it does
not allow right-censored data among the observations. Although Berliner and Hill
in 1988 presented a related nonparametric method for dealing with right-censored
data based on A, they replaced ‘exact censoring information’ (ECI) by ‘partial
censoring information’ (PCI), enabling inference on the basis of A(;). We address if

ECI can be used via a generalization of Ay).

We solve this problem by presenting a new assumption ‘right-cenéoring Amy’
(rc-A(ny), which generalizes A¢,). The assumption rc-A,) presents a partially spec-
ified predictive distribution for a future observation, given the past observations
including right-censored data, and allows the use of ECIL. Based on rc-Ag,), we de-
rive nonparametric predictive inferences (NPI) for a future observation, which can
also be applied to a variety of predictive problems formulated in terms of the future
observation.

As applications of NPI, we discuss grouped data and comparison of two groups
of lifetime data, which are problems occurring frequently in reliability and survival

analysis.
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Chapter 1

Introduction

1.1 Overview

Statistical analysis of lifetime data is a topic of considerable interest in areas such as
medicine and engineering. The field has developed rapidly in the past half century,
and many statistical methods for lifetime data have been presented. By studying
these methods, we can find that most earlier methods mainly involved parametric
models. An advantage of parametric models is that they are often specified by only a
few parameters. However, it is often difficult to derive such parametric models, which
considerably affects the use of parametric models. A classical method presented by
Kaplan and Meier [46] proposed a nonparametric method for lifetime data. After
that, nonparametric methods have been widely applied in statistical analysis for

lifetime data.

We know that, in the study of lifetime data, incomplete observations due to
censoring often occur. As the most common form of incomplete observation, right-
censored data are considered in most nonparametric methods, such as the Kaplan-
Meier estimator of the survival function. Other nonparametric methods introduced
in Chapter 2, such as the ‘standard life table estimator’ [48] for grouped data, and
Mantel’s test [50] for comparison of two groups of lifetime data, present how to deal
with right-censored observations in different problem situations. These nonparamet-
ric methods have a common character on dealing with right-censored observations,
that is they do not take all censoring times precisely into account.

All methods mentioned above are based on estimation of the survival functions,
and they are not intended for prediction of a future observation, or other predictive
inferences. Estimation is often important, but prediction also plays a key role in

11



1  Introduction 12

real decision-making processes [1, 10, 37]. Talking of prediction, we may consider
Bayesian prediction. Conventional Bayesian methods yield a predictive posterior
distribution, using a prior distribution for a parameter. But in this procedure, the
selection of a statistical model and a prior distribution may be difficult. Particu-
larly, if there is no appropriate model, Bayesian prediction becomes difficult. Hill
[39] proposed the assumption A, for prediction in the case of extremely vague
a prior knowledge about characteristics of the underlying source of observations,
sometimes it is also called low structure Bayesian prediction [38]. Based on the
assumption A, Berliner and Hill [6] presented a nonparametric predictive method
based on lifetime data including right-censored observations. A disadvantage of their
method is that they use so-called ‘partial censoring information’ instead of the exact

censoring information, which makes a slight change to the censored data.

This thesis presents a new way to deal with censoring information in our non-
parametric predictive methods. By generalizing Hill’s A(,), a new assumption is
presented, called ‘right-censoring A(,)’. Based on this new assumption, we obtain
predictive inferences which take all censoring times precisely into account. At the
same time, we can also extend these inferences to other predictive problems, such

as grouped data and comparison of two groups of lifetime data.

1.2 Lifetime data

In statistical analysis, data may, for example, arise from the following situations:
(1) The survival times of patients in a clinical trial; (2) The lifetimes of machine
components in industrial reliability; (3) The duration of periods of unemployment in
economics; (4) The lengths of tracks on a photographic plate in particle physics; (5)
The number of years until death of people who have bought life assurance policies.
The data in such situations are often referred to as ‘lifetime data’ even though the
observations may not refer to lifetimes in the strictest sense. Mathematically we
can think of a ‘lifetime’ as a one-dimensional non-negative random variable. Let
T denote the lifetime random variable, then T' € [0,00). Lifetime data are often
encountered in both medicine and engineering applications such as those in cases
(1) and (2) respectively. The study of lifetime data in engineering applications is
normally referred to as reliability analysis, whilst in medicine we often talk about
survival analysis. Cases (3) and (4) illustrate that lifetime data are encountered in

a wide range of disciplines such as economics and science. Case (5) is an important
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consideration when setting premiums for life assurance policies.

In order to determine lifetime data precisely, three basic elements are needed:
(i) A starting point for measuring time (the time origin); (i1) A finishing point for
measuring time (ending event of interest); (iii) A scale for measuring time. The
time origin can be viewed as the starting point of the measuring process. The in-
dividuals in the study may have different time origins. For example, most clinical
trials have staggered entry, and each patient’s lifetime is measured from their date
of entry into the trial (first time), rather than from the date of the first entry into
the trial. For the end point, first there must be a defined event related to particular
time points. For example, in medical work, this event could be death from a specific
cause (e.g. lung cancer) or the recurrence of a disease after treatment. The scale for
measuring time is often real (clock) time, but could also be the operating time of a

system, the mileage of a car, or some measure of cumulative load encountered.
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Figure 1.1: (a) Real time; (b) time T from entry (X, death; (O, censoring).
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Figure 1.1 (a) gives the real times for ten individuals with staggered entry and
follow-up until 1990, and using death as point event. Figure 1.1 (b) illustrates the
lifetimes for these ten individuals respectively. It should be noticed that seven of
them are dead before 1990, and three of them are still alive at 1990. So we can ob-
tain the exact lifetimes for those who are dead before 1990. For those who are still
alive at 1990, we only know that their lifetimes exceed certain times. Such obser-
vations refer to a special feature of lifetime data, these are known as right-censored
observations and will be discussed in the next section.

1.3 Censoring

We review censoring, closely following Lawless [48]. Censoring arises in various
ways. Formally, an observation is said to be right-censored at c if it is only known
that the lifetime is greater than c. For example, when a patient has been given a
certain treatment, a right-censoring time might arise if the patient is still alive at
the end of the time period set aside for observation. Similarly, an observation is
said to be left-censored at c if it is known only that the observation is less than
c; this situation might arise if a patient were put on test, but only checked for
reaction every month. If at the first check after one month, the patient is found
to have died, then we only know that his lifetime was less than one month. In
this example, if the patient was found to have died between the second and third
checks (that is, the patient was alive at the second check, but had died by the
third check) then we would know that the patient had a lifetime between two and
three months. This is an example of interval censoring. Obviously, right-censoring
and left-censoring are two special types of interval censoring. As an incomplete
observation in the study of lifetime data, right-censoring is the most common form.
In this thesis, we present a nonparametric predictive method based on lifetime data,
including right-censored observations. Throughout the thesis, except Section 3.7
(where left-censored observations are considered), we will refer to all lifetime data
as ‘event time’, if it is a time at which the event of interest actually occurred, or

‘right-censoring time’.

On analysing censored data, there are some important assumptions about the
nature of the censoring and its relationship to the event process. Following Meeker
and Escobar [52], we describe these assumptions. First, a censoring time can be

random, but it is often a predetermined value due to practical reasons. For example,
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in a life test experiment of n patients, a decision is made to terminate a study
at a date on which not all patients’ lifetimes will be known, then right-censored
observations for such an experiment will occur. In order for standard censored data
analysis methods to be valid, it is necessary that the censoring time of an observation
depends only on the history of the observed event process. Using future events to
stop observation could cause bias. The second assumption is that censoring is non-
informative. For right-censoring, this means that such an event is only known not
yet to have taken place at the corresponding right-censoring time, and no further

information with regard to the corresponding event time is available.

As censored data are often encountered in collection of lifetime data, undoubt-
edly, we must be able to deal with it in statistical analysis. In Chapter 2, we will
review some nonparametric methods, and discuss how they deal with right-censored
data.

1.4 Qutline of the thesis

This thesis considers nonparametric predictive inference for lifetime data including
right-censored observations, based on the new assumption ‘right-censoring A’
In Chapter 2 we briefly review some nonparametric methods presented for lifetime
data and discuss how the right-censored data are dealt with in these methods. Hill’s
assumption Ay is also reviewed in this chapter. In Chapter 3, we generalize Hill's
A(n), and present the assumption right-censoring A,y (rc-A(n)). The assumption rc-
A(n) and corresponding nonparametric predictive inference (NPI) are the main topic
of this chapter, and indeed of this thesis. They present a new way for dealing with
right-censored data in the nonparametric situation. In Chapter 4, we apply rc-A,
and NPI to grouped data with right-censored observations. We also compare our
method with alternative nonparametric methods. In Chapter 5, we apply rc-A,) and
NPI to predictive comparison of two groups of lifetime data including right-censored
observations, and compare our approach with an alternative nonparametric method.
Finally, we summarize our main results, along with some concluding remarks, in
Chapter 6.



Chapter 2

Nonparametric inference and

right-censored data

2.1 Introduction

Nonparametric methods are widely used in statistics. In practice, they are often
attractive as they allow more flexibility than the use of parametric models. As
Hill [40] remarked: ‘In fact, nonparametric analyses represent the great majority of
statistical situations, whilst parametric models are appropriate only in quite limited
cases’.

In this chapter, we briefly review some nonparametric methods for lifetime data,
and discuss how these methods deal with right-censored data. In Section 2.2, we
introduce the classical nonparametric method by Kaplan and Meier [46]. As a non-
parametric estimator of a population survival function, the Kaplan-Meier method
[46] presents a tool for analyzing censored data. For nonparametric predictive anal-
ysis, the assumption A, has been proposed by Hill [39]. In Section 2.3 we present
Hill’s A(s) and briefly discuss possible inferences based on this assumption. Although
A(n) does not apply to censored data, it provides an important tool for nonpara-
metric predictive analysis. Later we will use this assumption to present our non-
parametric predictive inference with right-censored data. Based on the assumption
A(n), Berliner and Hill [6] present a nonparametric method for predictive analysis in
case of right-censored data, which is described in Section 2.4. Section 2.5 discusses
‘grouped data’, focusing on two methods, the standard life table estimator [48] and
the method by Coolen [13], based on Walley’s [58] imprecise Dirichlet model. These
two methods are also used to compare with our nonparametric method presented in

16



2  Nonparametric inference and right-censored data 17

Chapter 4. Section 2.6 reviews comparison of two groups of lifetime data with right-
censored observations, and Mantel’s test [50] is considered in this section. Later
in Chapter 5, Mantel’s test is used to compare with our nonparametric method.

Finally, in Section 2.7 we briefly add a few concluding remarks.

2.2 Kaplan-Meier estimator

In this section, we discuss the nonparametric estimator of the survival function for
data including right-censored observations, presented by Kaplan and Meier [46],
which is also known as the ‘Product-Limit’ (PL) estimator. This method is widely
used, and presented in about all textbooks on survival analysis, e.g. [23, 45, 48, 53,
55].

Before we introduce the Kaplan-Meier method, we first give an important concept
used in the method. If the events of interest are the deaths of individuals, the risk
set at time t is the set of individuals known to be alive (i.e. alive and uncensored)
at time ¢, and denoted as m;. In this thesis, at an event or censoring time ¢, n; does
not include the individual corresponding to the observation, so n; is always equal to
the number of event and censoring times greater than ¢. In addition, we use 7; to
denote the number of individuals known to be alive just prior to t.

Suppose that there are observations on n individuals, and there are k (k < n)
distinct observed event times t; < ¢, < ... < #;, where it is possible to have
multiple events at ¢;, let d; be the number of events at ¢;. In addition to the
lifetimes tq,...,, assume that there are n — Z§=1 d; right-censored observations
for individuals whose event times are not observed. Let there be [ different right-
censoring times, ¢; < ... < ¢. The PL estimator of the survival function, on the
basis of these observed data, is

sw= ] =%, (2.1)

i<t M
where 7i;; is the number of individuals at risk just prior to ¢;.

The PL estimator is a step function, which is constant on [t;,¢;41), for j =
0,1,...,k— 1 with to = 0, and decreases at event time t; by a factor (7, — d;)/7;.
If the largest observation is at event time ¢, then the PL estimator is zero on
[tx, 00). If the largest observation is a right-censoring at ¢;, then the PL estimator
is a positive constant on [tx,c;), but for interval [¢;, 00) it is often left undefined.
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On the interval [0,t,), the PL estimator is equal to one. In the PL estimator, every
drop of value happens at an event time, there is no change at censoring times. So
we can say that censoring times do not have any direct effects on the PL estimate,
their only effect is on the size of the later steps.

The PL estimator provides a nonparametric estimate of the survival function
corresponding to the lifetime distribution for a population, and it is the Maximum
Likelihood Estimator (MLE) [46), as such generalizing the empirical survival func-
tion in case of no censorings. It should be noted that, for the PL estimator to be the
nonparametric MLE, the implicit assumption is made that attention is restricted
to the class of all probability distribution functions [46]. The discrete model that
underlines this estimator is described in detail by Lawless [48, Section 2.3].

Now we illustrate the PL estimator via an example.

Example 1

The data for this example are from the Dukes’ C colorectal cancer patients of MclIll-
murray and Turkie [51]. The data are on survival of 24 patients with Dukes’ C
colorectal cancer randomly assigned to receive control treatment. These survival
times are being measured in months, and given in Table 2.1, together with the PL
estimator 5(t). Figure 2.1 is a plot of the PL estimator.

t; f, d;  S(t)
0 24 0 1
6 23 4 0.8261
8§ 19 2 0.7391
12 17 2 0.6522
20 10 1 0.5780
24 8 1 0.5136
30 4 1 03852
42 1 1 0

Table 2.1: Dukes’ C colorectal cancer survival data.

The Kaplan-Meier method is regularly used to graphically present data including
right-censored observations. Many nonparametric methods for inference based on
lifetime data, for example, the standard life table estimator [48] for grouped data,
are related to this method.



2 Nonparametric inference and right-censored data 19

0 10 20 30 40

Figure 2.1: PL estimator of survival function (Example 1).

2.3 Assumption A, and imprecise probability

In this section, we discuss Hill’s [39] assumption A,), together with predictive in-
ference based on this assumption. Our nonparametric methods which are presented
in this thesis, are based on this assumption, and generalize it for the case of data

including right-censored observations.

2.3.1 Overview of A,

The assumption Ag) was proposed by Hill [39, 40], for prediction in the case of
extremely vague a prior knowledge about characteristics of the underlying source of
the observation. Let t;, for ¢ = 1,...,n, be data values obtained by sampling from
a population, and let ¢(;y be their ordered values (in increasing order of magnitude).
Let T; be the corresponding pre-data random quantities, so that the data consist
of the observed values, T; = t;, < = 1,...,n. Following Hill [42], A, is defined as

follows.

1. The observable random quantities Ti,...,7; are exchangeable. (In
the original definition of A,y [39], exchangeability was not included

allowing more general situations.)

2. Ties have probability 0. (Generalization to include possible ties is
straightforward, see Hill [40], but leads to more awkward notation.)



2  Nonparametric inference and right-censored data 20

3. Given data t;, i1 = 1,...,n, the probability that the next observation
falls in the open interval I; = (t(;),t;+1)) is 1/(n + 1), for all j =
0,...,n, where we define tg) = —oo (or, for example, ¢y = 0 when

dealing with non-negative random quantities) and ¢(n4+1) = 0o.

It is clear that A, is a post-data assumption related to finite exchangeability
[30], see Hill [40] for a detailed presentation and discussion of A(,), and an overview
of related work, including important contributions by Dempster [31] and Lane and
Sudderth [47]. Hill [42] presents a class of parametric models, called ‘splitting pro-
cesses’, with a member which results exactly in A(,) as posterior predictive assuming

finite additivity, hence providing a nonparametric Bayesian justification for A,).

A natural interpretation of A, is in terms of ranks, namely the rank of the
next observation amongst all observations will be equal to any possible value with
probability 1/(n + 1). Prior to the data {¢1,...,t,}, this is just an implication of
exchangeability, so A(n) can be considered as a ‘post-data version of exchangeability’,
the data carry information on location, but no information whatsoever on the rank
of the future observation, which indeed corresponds to absence of prior knowledge.

De Finetti’s representation theorem [30] uses a similar setting to justify a Bayesian
framework for learning about an underlying parameter, and a probability distribu-
tion for that parameter, but he relies on the assumption that indeed there is an
infinite sequence of random quantities involved, whereas our interest is mostly in
inference on a single future observation. Even more, the Bayesian approach, as
justified by De Finetti’s [30] important results, explicitly needs a specified prior
distribution, and together with the conditional independence of future observations
(conditional on an unknown parameter) this adds quite a bit more structure to the
data.

2.3.2 Ay and imprecise probability

The assumption A, is not sufficient to derive precise probabilities for many pos-
sible events of interest. However, it does provide bounds for probabilities, by what
is essentially an application of De Finetti’s ‘fundamental theorem of probability’
[30] or Walley’s ‘natural extension’ [57]. In this situation, some related predictive
inferences, based on the assumption A,), can be expressed using imprecise proba-
bility. In this subsection we review the related concepts and properties of imprecise
probability, and describe A(,)-based imprecise probabilities which are bounds for
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the predictive survival function in case of no censoring.

(I) Imprecise probability

The idea to use imprecise probabilities dates back at least to the middle of the nine-
teenth century [8]. Since then, the use of imprecise probabilities has been suggested
in many areas of statistics. Recently, there has been increasing activity in this area
by researchers from widely varying backgrounds, resulting in a series of conferences
[27, 28], special issues of journals (7, 24, 26] and a webpage [29].

Extending De Finetti’s theory [30] to imprecise probability, or more generally
imprecise previsions, Walley [57] provides a rigorous generalization of the concept
of probability, based on a behavioural interpretation of subjective imprecise proba-
bility as bets with possibly differing maximum buying price P and minimum selling
price P. Augustin and Coolen [4] propose an expression for imprecise probability.
According to such an expression, the imprecise probability, for an event of interest
A, can be expressed by two optimal bounds,

P(A) = inf P(A),

P(A) = sup P(A).

An important consequence for these two bounds is that P(A4) and P(A) are conju-
gate,

P(A) =1- P(A°), (2.2)

where A€ is the complementary event to A. The conjugacy property can often be
used to simplify the calculation of imprecise probabilities for events of interest and

their complementary events (we will use this in Chapter 5).

Here we mainly introduced the related concepts and conjugacy property of im-
precise probability. They will be referred to throughout this thesis. For a complete

introduction and overview of imprecise probability, we refer to Walley [57].

(II) Imprecise survival functions
Now we illustrate how imprecise probabilities are derived for T, > t, giving im-
precise survival functions based on the assumption A [17].

The survival function represents the probability for an individual of surviving
past a certain moment of time. The survival function for an individual with random
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positive lifetime 7" is defined as Sr(t) = P(T > t). Assuming observed event times
for n individuals, ordered as f(;) < t@) < ... < t(), and denoting ¢, = 0 and
t(n+1) = 00, the assumption A, gives direct predictive probabilities for the lifetime
Ty of a further individual, at ¢(;) this leads to predictive survival function for T4
equal to '
St (tG)) = n—:z———kl—T—]—’ for j=0,...,n.

Without further assumptions it is not possible to give a precise value for this sur-
vival function at times other than previously observed event times, as A, assigns
probability mass 1/(n + 1) to the open intervals between observed event times, and
to the intervals [0,%(1)) and (f(n), 00), but does not put any further restrictions on
the distribution of the probability mass within each such interval. Therefore, the
only inference we can derive at, without additional assumptions, consists of lower
and upper bounds for the survival function, where we aim at deriving the maximum
lower bound, denoted by S, and the minimum upper bound, denoted by S, which
are consistent with the probability assessment according to A(,). To derive S(t),
one can shift the probability mass in the interval in which ¢ lies to the left end-point

of that interval (i.e. to the infimum value of the open interval), leading to
n—j cy
§Tn+l (t) = ST,,+1 (t(j+1)) = n——}—l for ¢t € (t(]‘), t(j+1))7 Wlth ] = 0, e, T

This Sr, ., (t) is the optimal lower bound of Sr,,,(t) based on A(,), without addi-
tional assumptions. We call this S the lower survival function for T, ,. Similarly,
one derives the optimal upper bound of Sr,,,(¢), called upper survival function S,
by shifting the probability mass per interval to the right end-point (the supremum
of the open interval), leading to

— n+l-—7 c

STn+1 (t) = ST,,.H(t(j)) = n—+1 fOI’ t e (t(j),t(j+1)), Wlth ] = 0, ceey N
Notice that, for any ¢ > t(,), we have Sy, . (t) = 0 and S1,,.,(t) = 1/(n + 1), while
for any value ¢ in (0,%(;)) we have S . (t) =n/(n+1) and St,,,(t) = 1.

Example 2 illustrates the lower and upper survival functions based on the as-

sumption A,.

Example 2
The following data are the ordered numbers of millions of revolutions to failure for
each of 23 ball bearings [25, Section 2.9].

17.88 28.92 33.00 41.52 4212 45.60 48.40 51.84

91.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 12792 128.04 173.40
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Based on these 23 observations, the assumption A3 provides predictive prob-
abilities for- T34 as described above, leading to lower and upper survival functions
for T54 as given in Figure 2.2. It should be remarked that there are two tied obser-
vations, at 68.64. Although A, is presented assuming no ties in the data, it can
be seen that we now get a predictive point probability P(T5, = 68.64) = 1/24. We
can think of these tied observations as being not really identical, with the tie being
caused by rounding, with the probability for the very small interval between such
two observations still equal to 1/24. One may, of course, doubt the correctness of
such a predictive point probability for an apparently continuous random quantity.
However, this point probability is actually caused by two identical values already

observed, so it merely indicates that this value could well occur again.

1 -
Upper
0.8
Lower
0.6
0.4+
0.2
e —
0 . . . . -
0 25 50 75 100 125 150 175

Figure 2.2: Ball bearings example: survival functions for T5,.

(III) Inference based on A,

The position of A,)-based inference in the theory of imprecise probability has been
studied in detail by Augustin and Coolen [4]. These inferences have a predictive and
nonparametric nature, which is referred to as nonparametric predictive inference
[4]. Several examples of A(n)-based nonparametric predictive inference have been
presented, e.g. [3, 15, 16, 18].

Inferences based on A,y seem suitable if there is hardly any knowledge about
the random quantities of interest, other than the first n observations, or, which may
be more realistic, if one explicitly does not want to use such information. This may
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occur, for example, if one wants to study the (often hidden) effects of additional
structural assumptions underlying statistical models or methods. Inferences based
on such restricted knowledge have also been called ‘low structure inferences’ [38] and
‘black-box inferences’ [47]. In addition, A(,)-based inferences are entirely flexible,
valid for few data, although high imprecision may be the fair price of only little
information, and valid for many data as its asymptotics are closely related to those

of the empirical distribution function.

2.4 Berliner-Hill method

By using the assumption A), Berliner and Hill [6] presented a nonparametric pre-
dictive method on the basis of data including right-censored observations.

Let T3, ..., T, be observable random quantities, assume that they are exchange-
able, and that ties have probability 0. Suppose we have observations from these n
random quantities, consisting of u event times and v = n — u right-censored obser-
vations. Let (1) < 2y < ... < f(y) denote the order statistics for observed event
times, and c(1) < ¢2) < ... < c(y) denote the order statistics for the right-censoring
times. For convenience, let the random quantities 73, . .., T, correspond to the event
times £y, ..., %), and the random quantities T, ;, for j = 1,..., v, correspond to
the v censored observations c),...,cw). So the data consist of the survival times
T; = tu), fori=1,...,u, and censoring times Ty, 1; > c(;), for j = 1,...,v. Let T,y

denote the next observation.

The censoring information provided by the right-censoring times, is called ezact

censoring information (ECI), and denoted as
ECI={Tys; > ¢y :7=1,...,v}.

A further concept, called partial censoring information (PCI), is used in the Berliner-
Hill method. For each censored observation c(;, 7 = 1,...,v, let fj be the largest

observed event time (or 0) smaller than c(;). Then PCI is defined as
PCI = {Tu+j zijtjzl,...,’l}}.

Following the Berliner-Hill method [6], predictive probabilities for the next observa-
tion can be derived as below.
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Assuming Ay, let l; denote the number of censored observations in interval
(tay,tasny), and i = 3%_ I for 4 = 0,1,...,u, then the Berliner-Hill method
specifies the following predictive probabilities

P(Thy1 € (0,ty) | PCI) = )y,
P(Tn+1 S (t(i),t(,‘_{_l)) | PCI) = (1 - /\0) X X (1 - /\i—l) X /\1‘,

fori=1,...,u,

where .
Ai = - =, fori=0,1,...,u.
n—(G—-1)—1

Berliner and Hill [40] use PCI instead of ECI in their method, which allows them
to deal with the censoring information by computation of the appropriate conditional
probabilities for 7}, ,, conditioned on the observed event times and PCI for the ran-
dom quantities corresponding to the censoring times, and using A,y without further

assumptions.

Berliner and Hill [40] also give upper and lower bounds of predictive probabil-
ities for the next observation T,,;;. The upper bound is obtained by moving the
censored observations in an interval (¢, t(i+1)) just to the right of its left end-point,
which is identical to replacing ECI by PCI. The lower bound is obtained by mov-
ing the censored observations in (¢(;),+1)) just to the right of its right end-point.
Although indeed this provides bounds for predictive probabilities for the next ob-
servation 7,1, it adds some information to the data, which is not justified by these
data.

Berliner and Hill [40] present a survival function based on PCI by assuming that
the probability mass is uniform per interval, which leads to a continuous survival
function. Let us denote this ‘uniform Berliner-Hill survival function’ by SE (¢),

Tn+l
then
t— 170)
ta+rn) — L)
for t € (t(i),t(i+1)), where S:II?H (t(i)) =1- Z;=1 P(Tyy, € (t(j_l),t(j)) | PCI) with

n-1
Sﬁ’il(t(o)) = 1, for ¢(g) = 0. Obviously, the uniform Berliner-Hill survival function

Sl (t) = SEX (tw) —

Tn+1 Tn+l

P(Tus € (ts), tapy) | PCI),

beyond the largest event time is influenced by the choice of an upper bound for
the random quantity 7,,;. Without such an upper bound, a uniform Berliner-Hill

survival function cannot be defined on this interval.
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Example 3
Suppose that we have three event times, 2, 3, 12, and five right-censoring times, 9,
10, 10.5, 11, 11.5. We assume A(g). Table 2.2 gives the predictive probabilities for

Ty according to the uniform Berliner-Hill method as outlined above.

(t@),tern) | P(Ty € (2, tivy) | PCT) Spt (t)
0,2) 0.111 T—0.056%
(2.3) 0.111 1.111 — 0.111¢
(3,12) 0.389 0.907 — 0.043¢

(12, 00) 0.389 —

Table 2.2: The predictive probabilities and survival function, according to
the uniform Berliner-Hill method.

Consider t = 8. There are two event times less than 8, and 5 censoring times and
one event time greater than 8. This means that 6 out of 8 individuals will be at risk
at the time 8. So, intuitively, the predictive survival function for Ty should be larger
than the result derived in the example, St,(8) = 0.563. The uniform Berliner-Hill
method uses PCI, that the random quantities, corresponding to censoring times,
exceed t; = 3, instead of exceeding ¢; =9, ¢ = 10, ¢3 = 10.5, ¢4 = 11, ¢5 = 11.5,
respectively, and assumes that the probability mass in each open interval between
event times is uniformly distributed. It should be noticed that because there is not a
finite upper bound for the observations, the uniform Berliner-Hill survival function

is not defined on the interval (12, 00) based on such a uniform assumption.

2.5 Nonparametric methods for grouped data

with right-censoring

2.5.1 Introduction

In reliability and survival analysis, data are frequently recorded in groups, with the
time-axis partitioned into a finite number of intervals, and the data only consisting of
numbers of event times and numbers of censoring times per interval. A well-known
example of such data is the use of so-called ‘life tables’ [48]. In reliability contexts,
such data may typically appear on lifetimes of non-critical components in systems,

where e.g. once a month the components are inspected, showing if they have failed
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or not. In such situations, right-censoring could be due to component failures caused
by competing risks, which are not the main failure modes under consideration, or
by components being replaced due to a predetermined preventive replacement pol-
icy. Grouping data is one of the most widely used methods of portraying lifetime
data. Although grouped data have been used for a long time, the elaboration of
their statistical properties has been a much more recent development because of the

problems that censoring introduces [48].

Suppose the time-axis is divided into k + 1 intervals, I, = [a,,a,41), 2 =
0,1,...,k, with aqp = 0, and ax4; = o0o. For each member of a random sample
of n individuals from the population, suppose that one observes either an event
time or a right-censoring time. However, the data are grouped, so only the numbers
of event times and censoring times in intervals I, are known, and not the exact
event times and censoring times. Let e, be the number of event times in I,, and
¢, the number of right-censoring times in I,. Let e = 3 +_ e, and ¢ = 3.+_, c,, 50

e+ c=n.

Based on grouped data, nonparametric methods are presented. Lawless [48] de-
scribes the so-called standard life table estimator based on grouped data including
right-censored observations, which is the nonparametric maximum likelihood esti-
mator. However, in some sense, this method is arbitrary in adjustment of censoring
mechanism, by effectively assuming that censorings took place at the middle of the
interval. Other nonparametric methods, such as presented by Elveback [33] and Chi-
ang [11], are derived on more formal grounds than the standard life table estimator,
but there is still quite some arbitrariness in the adjustment to censoring. When
there are relatively few censored data, or time intervals are not wide, there is not
much difference between estimators such as Elveback’s, Chiang’s and the standard
life table estimator. Coolen [14] adapted Walley's [58] imprecise Dirichlet model for
grouped data including right-censored observations. In this method, censorings are
assumed to take place at right-hand points of the time intervals. In this section,
we mainly introduce two methods, the standard life table estimator [48], and the
method by Coolen [13]. We will compare our new method for such data with these
two methods in Chapter 4.
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2.5.2 The standard life table estimator

We review the standard life table estimator, closely following Lawless [48]. Let the

underlying survival function for grouped data be S(t). For I, = [a;, a,41), we define:
p,=P(T¢L|T>a) and g, = P(T€L, |T>a,).

Obviously, ¢, = 1 — p,, and p, = S(a,41)/S(a,), so the survival function at a,; is

S(as41) =popr-++p,, forz=0,1,...,k. (2.3)

Let n,, be the number of individuals at risk at a,. The idea of the standard life table
estimator is to employ (2.3) in obtaining an estimate of S(a,41), via the estimates

of ¢, and p,. The usual procedure is as follows.

If there are no censored observations in I,, then an estimate of ¢, is §, = e,/n,,.
However, if there are censored observations in I, e,/n,, might be expected to under-
estimate ¢,. Therefore, an adjustment is required due to the censored observations.
The standard life table estimator uses the following estimate of ¢, in the situation
that there are censored observations in I,, that is

. e, e,
9= Na, — /2 )

T
az

The denominator n;z = n,, — ¢,/2 can be thought of as an effective number of
individuals at risk over I,. Once estimates ¢, and p, = 1 — ¢, have been calculated,
we can estimate S(a,.1) by .§'(az+1) = popr-- P, with 2 =10,1,...,k.

It should be remarked that the adjustment for dealing with censored observa-
tions is quite arbitrary in the standard life table estimator. In some situations other
estimates of ¢, may be preferable. For example, if all censored observations in I,
are close to a4, the estimate §, = e,/n,, might be more appropriate, whereas if all
censored observations in I, are close to a,, §, = e,/(na, — ¢,) might be more appro-
priate. Clearly, any adjustments for dealing with censored observations effectively
adds some additional information to grouped data, which is not justified by these
data. Our method presented for grouped data in Chapter 4 does not need to add

such assumption for censored observations within 7,.

Example 4
Table 2.3 gives the standard life table estimator of the survival function for grouped

lifetime data, given by Lawless [48].

The example illustrates that standard life table estimator gives a survival func-
tion estimate at points a,, for z = 0,1,...,k, with S’(O) = 1. The estimator of the
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7 x

I, = [az, az+1) Ng, € C Ng, (jz ﬁz S(az+1)
0,1) 356 60 0 35 0.1685 0.8315 0.8315
1,2) 206 48 0 296 0.1622 0.8378 0.6966
2,3) 248 30 0 248 0.1210 0.8790 0.6123
3,4) 218 28 35 200.5 0.1397 0.8603 0.5268
4,5) 155 19 49 130.5 0.1456 0.8544 0.4501
5, 6) 87 12 41 66.5 0.1804 0.8196 0.3689
[6,00) 34 34 0 34 1 0 0

Table 2.3: The standard life table estimate.

survival function at oo is assumed to be equal to 0.

2.5.3 The imprecise Dirichlet model for grouped data

We review the imprecise Dirichlet model for grouped data, closely following Coolen
[13]. In this method, censorings are dealt with assuming that they are at times a,,
i.e. the censoring times within interval I, are assumed to take place at the right-end

point a,,; of this interval.

Walley [58] introduced an imprecise Dirichlet model related to multinomial data.
Let the multinomial model have parameter vector 8 = (g, 61, - - - , 0%), with Zfzo 0, =
1 and all 4, > 0, and

P(Tel, |6)=6, forz=0,1,...,k

In a Bayesian framework, a Dirichlet distribution is a conjugate prior for this pa-
rameter §. A Dirichlet prior distribution is specified by the density function

k
(0] s,t)oc [JO27,
z=0

witht, > 0forz=0,1,...,kand Zf:o t, = 1, and s is a parameter with s > 0. This
prior distribution is uniquely determined by (s,¢). Combining this prior distribution
with the likelihood, based on e event times and c censoring times, leads to a posterior
distribution as f(f|e,c, s,t). This posterior distribution is a generalised Dirichlet
distribution, as introduced by Connor and Mosimann [12], and analyzed in detail
by Lochner [49]. For statistical inference about 6, in the Bayesian framework, the
expected value FE (6, e, ¢, s,t) according to the posterior distribution can be obtained,
see van Noortwijk et al. [56]. Clearly, E(f,le,c,s,t) is a set of expected values for
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6,, since it is determined by (s,t). Based on such a set of expected values for 8,,
Coolen [14] derives the optimal lower and upper bounds for the expected value of
8.,

k
E(0.le,c,s) = irtlf{E(Hz|e, ¢, 8, t) | ti >0, Zti = 1}

=0

k
E(0,le,c,s) =sup{ E(,le,c,s,t) | t; > 0, t;i=1¢,
(0:le, ¢, ) = sup { E(@le,c,5,0) | St=1}

=0
as
E(fole, c,s) = ———
- et+c+s
z—1 k-1
—pl€jr1+c5)+ s
E(f.le,c,s) = — c X H{EJ;"( i1+ ¢) } =1,...,k-1
Ej:z(ej +ci)+s 15 ijh(e,- +¢j) +s
€ + Cr—1 o Z;:fl;(ejﬂ +cj)+s
E(akle,ca 3) = x H k }
e ter—1tc1ts U S (et ) +s
and
— e+ S
E(6le,c,8) = ————
( 0|€ ¢ s) e+c+s

z—1 k-1
€1+ Ci)+ S
E(6,le,c,s) = : e, +s XH{ZJ;h( J+1 J) } »
Yi=lejre)+s ot inlej ) +s

The choice of s is discussed in detail by Walley [58], who shows that, when attempt-

=1,... .k

ing to model a lack of prior information, the choices s = 1 or s = 2 are reasonably
cautious. The choice s = 0 would reduce the imprecise Dirichlet model to a precise
Dirichlet model.

Example 5

The example is from Coolen [14]. Suppose that the partition of the time-axis consists
of k = 5 intervals with ay = 2, ay = 4, a3 = 6 and a4 = 8. The number of event times
in every interval are 1,0,0,2,0, and the number of censoring times 1,3,5,3,0. Table
2.4 gives the optimal lower and upper bounds of E(6,le,c,s,t), for such grouped
data.

The bounds for the expected value of #, in the imprecise Dirichlet model are

Bayesian imprecise predictive probabilities for a future observation.
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[02) T[24) | [46) [ [68) [[800)
E(6,e,c,s = 2) | 0.1765 | 0.1255 | 0.1569 | 0.5378 | 0.6723
E(8.]e,c,s =1) | 0.1250 | 0.0670 | 0.0852 | 0.4688 | 0.6250
E(6,le,c,s =1) | 0.0625 | 0 0 |0.3125 | 0.4688
E(6le,c,s =2) | 0.0588 | 0 0 |0.2689 | 0.4034

Table 2.4: Bounds of E(8,]e,c, s,t) for Example 5.

2.6 Nonparametric methods for comparison of

two groups of lifetime data

2.6.1 Introduction

Comparison of two groups of lifetime data including right-censored observations is
often required, for example in medical applications. For such comparison, an often
used method is via parametric models for lifetime data, such as exponential dis-
tributions, and then testing the equality of parameters. Alternative nonparametric
method is also often used, such as Mantel’s test [50], Gehan-Breslow’s test [35, 36],
and Breslow’s test [9]. These nonparametric methods compare the unknown sur-
vival functions from two groups of lifetime data, by testing a null hypothesis of equal

survival functions.

Coolen [13] presented a nonparametric method for comparison of two different
groups via predictive inferences for a future observation, based on Ay, but this did
not allow censored data. In Chapter 5, we will generalize the method by Coolen
[13], allowing right-censored data. In this section we briefly discuss Mantel’s test

[50], which we will compare with our method in Chapter 5.

2.6.2 Mantel’s test

We review Mantel’s test [50] for comparison of two groups of lifetime data, closely
following Hollander and Wolfe [43].

Suppose that there are n, and n, observations in groups A and B, respectively.

Let S, denote the underlying survival function of group A, and S, the underlying
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survival function of group B. Now combine the lifetime data from the two groups
together and let ¢, < t; < -+ < t,;, be the distinct event times of these two groups.
Let 744, (7tbt,) be the number of individuals from group A (B) who were at risk
just before time t, and let 7y, = figy, + Apy,, for 1 < k < m. Let doy (dpy) be
the number of event times from group A (B) at tx, and let dy = dgx + dpy, for
1 < k < m. Under null hypothesis Hy : S, = S, the statistic

_ 2iei(dak — Eug)

M, = ,
V Zk:l Va,k

where iy

kna,tk

Ea,k - o

ntk

and _ L
_ dlc(ntk - dk)naytknbvtk
Vak =

, ﬁ’gk (ﬁtle - 1)
has approximately a N(0, 1) distribution, if n, and n, are not too small and there are
not too many censorings. The comparison of S, and S, is given by testing statistic,

which is described as below,

1. One-side test of Hy against alternatives for which survival times for
group B tend to be longer than those for group A. To test at the
approximate a-level of significance, if M, > 2, (the critical value of a

significance level), then reject Hy, otherwise do not reject;

2. One-side test of Hy against alternatives for which survival times for
group A tend to be longer than those for group B. To test at the ap-
proximate a-level of significance, if M, < —z, then reject Hy, otherwise

do not reject;

3. Two-side test of Hy against alternatives for which survival times for
group B have a different distribution than that for group A. To test at
the approximate a-level of significance, if |[M.| > zq, then reject H,

otherwise do not reject.

This is Mantel’s [50] test. We illustrate this method via an example by Hollander
and Wolfe [43, Section 11.7].

Example 6
The data in Table 2.5 are from a clinical trial on Hodgkin’s disease, a cancer of the
lymph system. We will also consider these data in Chapter 5. The following two



2 Nonparametric inference and right-censored data 33

treatments were considered, (A) radiation treatment of the affected node and, (B)
radiation treatment of the affected node plus all nodes in the trunk of the body.
The data represent the relapse-free survival times in days. If a relapse had not
occurred before the end of the data analysis, then the observation for that patient
is right-censored.

Treatment A Treatment B
86 822 173 > 1726
107 836 498 > 1763
141 > 1309 615 > 1807
296 1375 950 > 1879
312 > 1378 [ > 1190 > 1889
330 > 1446 | > 1242 > 1897
346 > 1540 1408 > 1968
364 > 1645 | > 1493 > 1972
401 > 1818 | > 1572 > 2022
419 > 1910 | > 1576 > 2070
505 > 1953 | > 1585 > 2177
570 > 2052 | > 1684
688 > 1699

Table 2.5: Relapse-free survival times for Hodgkin’s disease patients (> ¢
indicates right-censoring at t).

The test statistic in Mantel’s test is M, = 3.25, which gives an approximate
one-sided P-value of 0.0006. Thus there is strong evidence that total nodal radia-
tion is more effective than radiation of affected nodes in preventing or delaying the

recurrence of early stage Hodgkin’s disease.

In Mantel’s test, the censoring times within interval (x, tx+,) do not have any
direct effects on the calculation of E, , their effects are on the calculation of Eg x41.
We can say that Mantel’s test is similar to Kaplan-Meier estimator in dealing with

censored observations.

2.7 Remarks

Statistical inference related to informative censoring is an important topic, both
theoretically and related to application. However, as remarked by Coolen [14], it
seems that only quite complicated model assumptions or a direct subjective approach
are suitable to deal with the kind of information on lifetimes that may arise.

A successful alternative statistical approach for lifetime data has been developed
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based on theory of counting processes and martingales, an excellent overview is given
by Andersen, et al [2]. The novel methods presented in this thesis are not directly
related to counting processes and martingales, comparison with such methods is an

interesting topic for future research.

From the above discussion, either common nonparametric methods or classical
statistical methods, they are all not capable of taking censoring times precisely
into account, when dealing with the censoring information resulting from such non-
informative censoring mechanism. In the following chapters, we present a novel
nonparametric predictive method for dealing with right-censored data, based on a

non-informative censoring assumption.



Chapter 3

Right-censoring A, and

nonparametric predictive inference

3.1 Introduction

In this chapter a new nonparametric predictive method is presented based on data
including right-censored observations. Basically, the method is an attempt to learn
about a future observation from past observations, including right-censored data,
while adding only few additional structural assumptions. The method is based on
Hill’s assumption Ay {39, 40]. However, the presence of right-censored data re-
quires further attention, which is the main topic of this chapter. In Section 3.2,
some further assumptions related to A(,) are introduced and justified. Based on
these assumptions, Section 3.3 presents a new assumption, which is called ‘right-
censoring A’ (rc-Ae)). Section 3.4 presents ‘nonparametric predictive inference’
(NPI) for a new observation, based on rc-A(,). In Section 3.5 this new inferential
method is compared to the established methods by Berliner and Hill [6] and Kaplan
and Meier [46]. Throughout the first five sections of this chapter we assume that
there are no ties present in the data, to keep notation relatively straightforward.
However, in Section 3.6 the possibilities for the treatment of ties are discussed.
Section 3.7 considers an application of this new inferential method for data sets
including left-censored observations, using our method for right-censored data and

a monotone only decreasing transformation of the data.

35



3 Right-censoring A,y and nonparametric predictive inference 36

3.2 Preparing for right-censoring A,

3.2.1 Introduction

In Section 2.3 the assumption A, (39, 40, 42] was discussed, which provides a
partially specified predictive distribution for a future observation given past obser-
vations, consisting of exact event times. For lifetime data there are often right-
censored data among the observations. Although Berliner and Hill [6] present a
related nonparametric method for dealing with right-censored data based on A,
they replace ‘exact censoring information’ (ECI), i.e. the exact observed censoring
times, by ‘partial censoring information’ (PCI), in effect shifting each exact censor-
ing time back to the nearest smaller observed event time, enabling inference on the
basis of A,y alone. The question addressed in this thesis is if ECI can be used, via

a generalization of A,).

In this chapter, the assumption A, is extended via a generalization called ‘right-
censoring A(n)’ (rc-An)), which presents a partially specified predictive distribution
for a future observation, given the past observations including right-censored data,
and indeed allows the use of ECI. As the preparation for this generalization of
A(n), this section presents some assumptions related to A,). In Subsection 3.2.2
an assumption denoted by fi(n) is presented, related to Ay, which assumes that
the predictive distribution for a future observation consists of probability masses
defined on two kinds of open interval, one is formed by consecutive event times and
the other is formed by a censoring time and infinity. Dealing with the probability
masses on intervals formed by censoring times and infinity requires further attention.
Subsection 3.2.3 presents a further assumption called ‘shifted-/i(,,)’, which presents a
partially specified predictive distribution for the random quantity related to a right-
censored observation in case of a ‘non-informative censoring’ assumption, related to
exchangeability of a right-censored observation with all other random quantities in
the risk set at the censoring time. In Subsection 3.2.4 an assumption called ‘right-
censoring /1(")’ (rc-;l(,,)) is presented, based on /i(n) and shifted-/i(n), for dealing

with the probability mass on an interval formed by a censoring time and infinity.

Throughout this section (and indeed this entire chapter, except Section 3.6) we
assume that there are no ties of any kind in the data set, so also no ties among
censored observations, nor censoring times coinciding with observed event times.
Suppose that the data available, and on which to base predictive probabilities for a

future observation, are as follows.
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Data notation:

Assume that information is available on n exchangeable nonnegative real-valued
random quantities, 77, 7T5,...,7T,. For n observations, consisting of u event times
tay,t@)> - - - » tw) and v right-censoring times c(y), ¢(2), . . . , C(v), assume that 0 < ¢(;) <
t2) < ... <tw and 0 < ¢y < ¢z) < ... < ¢ are the ordered data. In addition,
the notation ¢) = 0 and #(,41) = 0o is used, unless explicitly stated otherwise. Let
I; = (t), tisy), for i = 0,1,...,u, and let ¢} < ¢ < ... < ¢, denote the ordered
censoring times within I;, where [; is the number of censoring times in I;, of course

these /; are nonnegative and sum up to v.

In Chapter 2 the assumption A, (39, 40, 42] was discussed. A(,) provides a
partially specified predictive distribution for a future observation given past obser-
vations, and describes this predictive distribution via probability masses in open
intervals between the observed event times. These probability masses are restricted
to those intervals, but there are no further specifications or restrictions on the spread
of the probability mass within such an interval. The generalization of A(,), presented
in the next section, will specify predictive probabilities in a similar way. Therefore,
a notation for probability mass is introduced, which is called M-function.

Definition 1 (M-function)

A partial specification of a probability distribution for a real-valued random quantity
T can be provided via probability masses assigned to intervals, without any further
restriction on the spread of the probability mass within each interval. A probabil-
ity mass assigned, in such a way, to an interval (a,b) is denoted by Mr(a,b), and
referred to as M-function value for T on (a, b).

The intervals in this definition can be of any nature, but in this thesis, when
assuming no ties in the data, M-function values are only used on open intervals,
which is the reason of presenting the definition with intervals denoted as (a,b).
Clearly, all M-function values for T specified on all intervals should sum up to one,
and each M-function value should be in [0,1]. This definition does not require all
probability mass for T in (a,b) to be specified in a single M-function value, but
clearly one can find a minimal representation by using only a single M-function
value for all probability mass specified in such a way to an interval. Predictive
probabilities according to A,), for the next observation Ty, can be specified by
MT,.+1(t(j),t(j+1)) = 1/(n +1)for j=0,1,...,n.
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Generally, once a partial specification of a probability distribution for a random
quantity is available in terms of M-function values, optimal bounds (i.e. minimum
upper and maximum lower bounds) for probabilities of events involving this ran-
dom quantity can be derived, where the bounds often correspond logically to limits
occurring when the probability masses within the intervals are moved towards the

boundaries of the intervals.

3.2.2 Effect of right-censored data on A,

(I) The assumption A,

The assumption A,y provides a partially specified probability distribution for a fu-
ture observation 7,4, in terms of M-function values, based on n observed event
times. But there might be right-censored observations among the data. In this
situation, what is the effect of right-censored data on such a partially specified
probability distribution for T},1,? This leads to the definition of a generalization of
A(n), which is denoted by A(n).

Definition 2 (A(,))

The assumption A(n) is that the probability distribution for a nonnegative random
quantity T, 1, on the basis of data including u event times, t) < t3) < ... < t(),
and v = n — u right-censoring times, ¢y < c) < ... < (), is partially specified by

the following M-function values:
(l) MTn+1 (t(1)7 t(’H—l)) = 1/(n + 1)’ for 1= Oa 1a <oy Uy

(i) Mr,,,(c;4),00) =1/(n+1), for j=1,...,0.

We use the notation M to emphasize that these M-function values are based
on the assumption A(n) to distinguish notation from M-function values based on

rc-A) later via this thesis.

The assumption fl(n) partially specifies the predictive probabilities for a future
observation via M-function values, in the case of right-censoring times among the
observations, without any further assumptions. These probability masses are defined
on two kinds of open intervals, one is formed by consecutive event times, and the

other is formed by a censoring time and infinity. It is straightforward to see that, if
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the data do not include any right-censored observations, so v = 0 and u = n, then
/i(n) is identical to A(n). Let us consider an example to explain the assumption fi(n).
We use this as a didactic example throughout this chapter.

Example 7
Suppose that we have data consisting of four event times, 3, 6, 8, 9, and two right-
censoring times, 4 and 7. Let 77 denote a corresponding random quantity for a

future observation.

According to fl(s), the M-function values for 77 are
Mz, (0,3) = Mr,(3,6) = My, (6,8) = My, (8,9) = Mg, (9,00) = 1/7

and
My, (4, 00) = My, (7,00) = 1/7.

(II) Justification of A,

The justification of /1(,1), in relation to A, is as follows. The intervals created
by the observed events times, (£(;),t41)), for 4 = 0,1,...,u, are each assigned a
probability mass of 1/(n+1), by A(,). Considering one such interval, the total mass
in it could actually be more than 1/(n + 1) due to the presence of one or more
right-censoring times within this interval. However, any additional probability mass
due to such right-censoring times would not necessarily be restricted to lie within
this interval, without additional assumptions, indeed leading to M-function values
on intervals from a right-censoring time to infinity. If there is a right-censoring time
in interval (¢(;), ¢(i+1)), then the unobserved event time corresponding to this right-
censoring time perhaps could also have fallen in this same interval, in which case the
M-function value 1/(n + 1) assigned to ((;), t(i+1)) would actually be assigned to a
smaller interval, namely from ¢(;) to that unobserved event time. However, without
any further assumptions on where such an observed event time would fall within the
interval (%), ¢(i+1)), this probability mass 1/(n + 1) cannot justifiably be restricted
to a sub-interval, hence MT,.+1(t(i)a ti+1)) = 1/(n +1).

A right-censoring at time c(;) only means that the corresponding event time
would exceed c(;). If this event time were actually observed, denote it by ¢, then its
effect under the assumption A, would be to split one of the intervals (¢, t(it1)),
created by the observed event times, and add probability mass 1/(n+1) to (¢, t(11)),
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while restricting the mass 1/(n + 1) already assigned to this interval (¢(;),t;+1)) to
(t(), tc), which is discussed above. Hence, this right-censoring time can be considered
as carrying with it a probability mass 1/(n + 1), which it would assign to interval
(te, tiigy) if £, were actually observed. But because it is only known that ¢, would
exceed c(j), the only statement about this probability mass 1/(n + 1) for T,,4; that
can be justified, without further assumptions, is that it will fall in (c(;), 00), hence
MTn+l (C(j), OO) = 1/(n + 1).

3.2.3 Shifted-fl(n) for right-censored random quantities

The assumption /i(n) partially specifies a predictive probability distribution for a
future observation 7;,,; via M-function values. Proceeding with these M-function
values would enable inference via bounds on probabilities concerning T,,;,. However,
the probability masses assigned to intervals (c(;), 00) would cause wide bounds on
probabilities. So it would be useful if we can split the probability masses assigned
to intervals (c(;), 00) further into masses on sub-intervals. From the justification of
fl(n), it can be found that My, 41 (¢j), 00) is a consequence of assuming no further
information for the random quantity, corresponding to c(;), on where it would actu-
ally be in (c(;), 00). This indicates that the random quantity, corresponding to c(;),
is a key quantity for Mr, +1(¢(), 00). We propose an additional assumption for the
random quantity corresponding to c(;), say Ty, for which we only observed T; > c(;).
An assumption for such right-censored random quantities is presented, which is re-
lated to /i(,.), and called ‘shifted-;l(,,)’.

(I) The assumption shifted-A,

Suppose again that there are n observations consisting of u event times, t(;) < t(3) <
... < t(u), and v right-censored observations, ¢y < c(z)... < ¢(). Let tq) = 0 and
tut1) = 00. Let T7, j = 1,...,v, denote the random quantity corresponding to the

right-censoring at c(;).

Definition 3 (shifted-A )

For given ¢(;) (1 < j < v), assume ¢y € (L), te+1y) (0 < k < u), and let N, be ~the
number of these n random quantities in the risk set at time c(;). Then shifted- A,
provides a partial specification of the probability distribution of T7, conditional on
T7 > c(j), by the following definitions:
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(i) MT;(t(h),t(h+1)) = 1/(’",%) +1), for h=k+1,...,u
(ii) Mr_rJ'c (C(j),t(k+1)) = 1/(7?,%.) + 1);

(ili) Mrs(cqy,00) =1/(ne, +1), for I=j+1,...,v.

‘The M-function values for T} on all other intervals are zero. The sum of these
M-function values is equal to one, so indeed they partially specify a probability
distribution for T} over (c(;), 00). For convenience, shifted-ﬁ(n) will be also denoted
by fl(nc(j); cjy)» O, both if it is clear which random quantity 77 it relates to, and to

indicate this assumption more generally, by ;1(,,6; o)

The assumption A(nc; ¢) provides a partially specified probability distribution for
the random quantity corresponding to the right-censoring at c(;). Clearly, /i(,,) is
the special case that could be denoted as A(n;o), although of course it is not assumed

that there is a right-censoring at time 0. Let us consider the didactic example again.

Example 7 (continued)

There are two right-censoring times, 4 and 7, among the observations. Let 7Y and
T3 denote the random quantities corresponding to the right-censorings at times 4
and 7, respectively. According to the assumption 171(4; 4), the probability distribution
for T is partially specified as

1
MT{:(4, 6) = MTIC(G,S) = MTf(S,g) = MTf (9, OO) = g

and )

The assumption ;1(2; 7y for Ty gives

1
MT§(7, 8) = MT2C(8, 9) = MT;(Q, OO) = g

(IT) Justification of shifted-Ay,

The justification of shifted-;l(n), in relation to A,y and ;1(,,), is based on the natural
interpretation of these as post-data assumptions related to finite exchangeability,
as discussed in Section 2.3, and the following properties of exchangeable random
quantities.
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Property 1 If random quantities 71,75, ..., T, are exchangeable, then the random
quantities in any subset of 71,75, ..., T, are exchangeable.

Property 2 If random quantities 71,75,...,T, are exchangeable, then they are
also exchangeable when all are conditioned on exceeding a given value c.

Property 1 is straightforward, Property 2 follows from the definition of condi-
tional probability. These two properties can be naturally combined to say that the
random quantities in a subset of exchangeable random quantities, and conditioned
on all random quantities in the subset exceeding c, are again exchangeable, as long
as the subset is determined by the criterion of exceeding c only. In other words, the
selection of the subset is not based on any further possible variables or information.
We believe that exchangeability of all the random quantities known to be in the risk
set just prior to c is a natural assumption for dealing with a random quantity that
is right-censored at time ¢, and indeed implies an assumption of ‘non-informative
censoring’. The assumption A(nc; ¢) is a post-data equivalence of the discussed com-
bination of Property 1 and Property 2, assuming such non-informative censoring.
Related to Property 1, it is worth mentioning that Hill [39] showed that A, implies
A(m) for all m < n.

Using the possible interpretation in terms of ranks, fl(nc; ¢) implies that a random
quantity that is right-censored at time ¢, has equal probability to have any of the
ranks 1,2,...,n. + 1 when restricted to the n. + 1 random quantities in the risk
set just prior to c, also when the value of the other random quantities are known
(this is the same argument as discussed in Section 2.3, that observations carry infor-

mation on location but not on ranks of the related non-observed random quantities).

3.2.4 Right-censoring fl(n) for M-functions on (c(;), 00)

The assumption ;1(,,), presented in Subsection 3.2.2, gives M-function values for
T4y defined on all the intervals (¢(;),t41)) and (c(;), 00) created by the observa-
tions. The assumption shifted-/i(,,), presented in Subsection 3.2.3, gives M-function
values for the random quantities corresponding to the censored observations. The
main task now is to link the random quantities corresponding to censored observa-
tions to the random quantity of interest in the nonparametric predictive inference,

namely T, ,. This leads to splitting of the total M-function value for T,,,, assigned
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to (c(j), 00). Therefore, an additional assumption is presented, which we call ‘right-

censoring /1(”)’, also denoted as ‘rc-/i(n)’.

(I) The assumption right-censoring fi(n)

Suppose that there are n observations consisting of u event times, t;) <t < ... <
t(u), and v (= n—u) right-censored observations, cy < €@y < ...<cE. Let t(o) =0
and t(y41) = 0o. Assume that k € {0,1,...,u} is such that c(jy € (), tk+1)). Let
Mr, ., (c(j), 00) = p(c;y) be the M-function value for Ty, due to censoring at c(;
for j =1,...,v. Let M;ffl _(a,b) denote the M-function value as a separate entity
from the total M-function value of My, (c(;), 00), where (a,b) is a sub-interval of

¢(;), 00). Then right-censoring Ay, (rc-A(n)) is described as follows:
) (n) (n)

Definition 4 (rc-A(,))
For given Mr,,, (c(j),00) = P(c;y)» 1€t ¢ ;, be the number of random quantities in
the risk set at c;). Then rc-fi(n) splits the probability mass of Mz, (c(;),00) as

(1) M P (t(h), t(h+1)) = p(C(j))/(nC(j) + 1)7 for h=k+1,...,u

n+1
(ii) MTE.J.H(C(J)’ tk+1)) = p(c(j))/("c(j) +1);

(iii) MT(]+1 (C(l), ) p(C(]))/(nC(]) + 1); for l = ] + 17 ey v

The M -function values for 7,,; on all other intervals are equal to zero. For
convenience, the assumption right-censoring /1(") (rc-/i(n)) will also be denoted by

A, Regiyi € Plegy)? O both if it is clear which random quantity it relates to, and
J -~
to indicate this assumption more generally, by A, n.; ¢; p.))- AS a special case of

z&(n; ne; & Prey)s x‘i(n; n; 0; 1) is identical to /i(n).

(II) Justification of /i(n; re; & i)

The probability mass p;) = Mr,,,(c(),00) is the mass for T;,,, assigned to
(c(jy,00) as a consequence of the censoring of random quantity TY at c(j). The as-
sumption /i(nc(j); ¢;y) for T} allows further conditioning on sub-intervals of (c(;), 00)
in which 77 would actually occur as event time, according to A(nc(j); c;)) S defined
in Subsection 3.2.3, which provides a partially specified probability distribution for

Let (a,b) be a sub-interval of (c(;),00), with a any observation greater than or
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equal to c(;), and corresponding b either the smallest observed event time greater
than a or infinity. If T} would actually take on a value, as event time, in interval
(a,b), say T; = d € (a,b), then all the mass P(cy;y) for Tny1, due to this censoring,
would be assigned to the interval (d,b), according to A(,). However, without any
additional assumptions, nothing more is known about the exact location of d, so
the mass for sub-intervals of (a, b) cannot be specified, and, by similar argument, all
other M-function values for 7}, ,, assigned to intervals ending at b cannot be assigned
to shorter intervals, ending at d, without further assumptions on the location of the
unknown d. Therefore, by what is essentially an application of the theorem of total

probability, using the assumption ;1( y for T}, we get

et €G)

MO (a,b) = Pe;) X P(ch € (a, b)|TjC > c(j) +0 X P(ch ¢ (a, b)|ch > c(j))

Tn+1
p(C(j)) X Mch(a‘, b)
1

X —
Pl Ney T 1

(III) Deriving p(

Now we consider how to derive p,,) for the M-function assigned to (c(;), 00). The
assumption A, gave M-function values for T,y for all intervals (t:),t:+1)) and
(c(jy, 00), with MTnH(c(j),oo) equal for all j = 1,...,v. However, according to the
assumption rc-/i(,,), the M-function value for T;,;; on (c(j), 00) also depends on con-
tributions from previous censorings to this interval. So the value P(c(;y) 18 the sum
of all probability masses for T, assigned to (c(;), 00), both due to the assumptions

A(n) and rc-/i(,,). The following theorem provides the value of p( ;).

Theorem 1
Given the data as described in this section, and for any right-censoring time c(;

(1 <j<w), assume fl(n) and fl(n; yforr=1,...,5—1. Then

Tre(nyi E(r)i Plegry)

1 Ty + 1
Plegy) = Mr,,,(c(j), 00) = n+1 ﬁ)—’
{rr<j} O
where j = 1,...,v, and 7, is the number of individuals in the risk set just prior
to time ¢(;). The product terms are defined as one if the product is taken over an
empty set.
Proof

Starting with the assumption A(n), a part of the probability mass for 7;,,; was
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assigned to interval (cj),00), for j = 1,...,v, after which this mass is further
divided on the basis of the assumptions rc-A,), giving the masses M;fl’l (a,b).

First consider what happens due to the first censoring at time c(;). Clearly,

1

Pleqy) = Mr,,, (), 00) = Mr,,, (1, 00) = T

as there have been no previous censorings that affect this M-function value, where

the second equality is based on the link to fl(n)

Secondly, consider the effect of the second censoring time c(,), taking into account

the previous censoring at c(;y. Clearly,

- 1
Mr, ., (c@2),0) = Mr,,, (c2),00) + Mz (cz),00) = — + Mz (c(2),00),

where, assuming Ay, Pleyy) and using that 7., = nc,, +1,

Me(qyi €(1)i

p(c 1))
MY (cqy,00) = —
T (€@:00) = SO
1 1
= X —.
n+1 Tiey)
Hence,
1 Teyy + 1
= My, (c2),0) = X —2
Ple) = Mt (), 00) = ——— Py
Now the proof can be completed via induction. Assume, for j = 2,...,v, that

1 flog) +1
Ple-1) = My (e(-1,00) = ——— I =

The M-function value for Ty, on the interval (c(;), 00) is equal to the originally
assigned mass 1/(n + 1), resulting from fl(n), and the contributions to this interval
resulting from each of the previous censorings, so

c(l)
n+1 C(J )

My,,, (c(j)’
And, similarly, the corresponding value for the interval (c(;j—1), 00) is

C
My, ., (C(J'—l)’ o0) = szllx (G-1) 00).

From the assumptions A(n; ne )i Pe(ry)? forr=1,...,7 — 2, we have

E(rys

MO (c—1),00) = M g (e o0) forall I=1,...,5-2,

Th+1 Thy



3 Right-censoring Ay and nonparametric predictive inference 46

S0
C(i—
Mr,, (¢, 00) = Mr,,,(c-1),00) + My~ (cj), 00)
1
= Pleg-n) T Pleg_y) % 7
C(i-1)
ﬁc(j—l) +1
= Pl oy X —2H
(C(J 1)) nC(j_l)
_ [ 1 H nc(,,) + 1] % nc(j_l) +1
n+l {rir<j-1} Meqry Thegj1y
_ 1 H T,y + 1
n+l {rir<j} nc(')
which completes the proof. L]

We illustrate /1(”; Regyy again via the didactic example.

C(r)s p(c(r)))

Example 7 (continued)

The assumption ;1(6) assigned a probability mass of 1/7 to intervals (4,00) and
(7,00). Clearly, pyy = Mr,(4,00) = Mr,(4,00) = 1/7. The assumption A, 4, 4 1/7)
implies that p) = Mr, (4, 00) can be split into

1 1 1
M;’7(47 6) = M;‘7(6’8) = M’;“7(8’ 9) = M%r(g, OO) = 77- X g = %
and L1 )
M%_,(?,OO) = ? X g = %
By Theorem 1,
— Mp(T,00) = 2 x (14 ——) =2
p(7)_ T\, 00 —7 4+1 —35

Clearly, the value of pi7y = M7, (7,00) is obtained by both considering the effect of
the censoring time 7 and taking into account the previous censoring at 4. Further
use of fi(s; 2; 7; 6/35) Splits piry = Mg, (7, 00) = 6/35 into

6 1 2
M M Y, _
(18] (8,9) }7(9’ o0) 35 % 3~ 35
Now, the M-function values assigned to intervals formed by a censoring time and

infinity are all split into M-function values on sub-intervals.
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3.3 Right-censoring A,

In this section a new assumption ‘right-censoring A(y)’, also denoted as ‘rc-A,)’,
is introduced, based on the combined assumptions in Section 3.2. The assumption
fi(n) presented in Subsection 3.2.2, related to A(,), considered the effect of right-
censored data, giving a partially specified probability distribution for a future ob-
servation by assigning predictive probability to intervals (), t+1)) and (c(j, 0o) for
1=0,1,...,uand j =1,2,...,v, expressed via M-function values. The assumption
shifted-/i(n) presented in Subsection 3.2.3 provides a partially specified probability
distribution for the random quantity corresponding to the right-censored observa-
tion. The assumption A, 5., ¢ p.) Presented in Subsection 3.2.4, assumed that the
M-function value for (c(;),00) is equal to p, and divides this into correspond-
ing M-function values for sub-intervals, and p,, is derived by taking into account
the contribution from all censorings that occurred before c(;). Therefore, the M-
function values for T}, are finally all assigned to intervals (¢, t+1)) or (¢, ti+1))
fori=0,1,...,uand k = 1,2,...,l;, by combining all M-function values for T,,,,
that are defined on the same interval as a consequence of the initial assumption /i(n)
and fl(m nei ¢ po)- Lhis assumption is called ‘right-censoring A(y)’, also denoted as

‘re-Ag)’.

3.3.1 The assumption right-censoring A,

Definition 5 (rc-A))

Suppose that there are n observations consisting of u event times, ¢(;) < t@z) <
... < t(u), and v (= n — u) right-censored observations, cq) < cg)... < Cv)- Let
to) = 0 and #(y41) = co. Then right-censoring A,y (rc-A(,)) partially specifies the
probability distribution for the next observation 7,,; by the following M-function

values,
1 e,y + 1
Mz, (te), tary) = H 0
n+1 e
{T:C(,.)<t(,')} (r)
. 1 T, +1
Mz, (ctey) = H ——,
(n + 1)1’7,6;‘ {r: c(,)<cjc} nc(r)
where 1 =0,1,...,uand k= 1,...,1;, and T,y 18 the number of individuals in the

risk set just prior to time c(,). The product terms are defined as one if the product

is taken over an empty set.
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Clearly, With a total of n observations, the probability distribution for 7,
according to rc- Ay is partially specified by n+ 1 M-function values, one related to
each of the n observations, namely specified on the open interval from the observation
till the next observed event time (or infinity), and one on the interval (0, ¢(;)). These
n + 1 M-function values for 7,,;; sum up to one, and if there are no right-censored
observations, so the data consists of n actually observed event times, then rc-A, is
identical to Hill’'s A,).

The calculation of the M-function values according to rc-A, is illustrated by

the didactic example.

Example 7 (continued)
The M-function values for the next observation 77, according to rc-A), can be
derived as Table 3.1.

Interval | M-function
(0, 3) 5/35

(3, 6) 5/35

(4, 6) 1/35

(6, 8) 6/35

(7, 8) 2/35

(8, 9) 8/35

(9, 00) 8/35

Table 3.1: M-function values for T; (Example 7).

3.3.2 Justification of right-censoring A,

The justification of the M-function values for T4, in the definition of rc-A,) can

now be completed, following the assumptions fi(n) and /i(n; nei € Poy)-

First, consider Mr,,, (ck, t(i+1)). According to the assumption Ay, 5., c p(oy)» and
using Theorem 1,
) 1 Ng,,, +1
Dy = MTn+1(c;c’ 00) = H (~)—’

n+ ]. . Ne
{ricey<ci} )

and p
i . (ci)
My (cho b)) = =

o}
which is the probability mass assigned to the interval (ck,t(+1)) as a result of the
censoring at ci, which has taken into account the effect of all previous censorings.
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It is important to emphasize here that p) includes all the values My, )

o (ct, 00) for
all censoring times ¢y < ¢}. Therefore, this is the only probability mass that is, in

such a way, assigned and restricted to this interval, hence

MTn+1 (CZ, t(i+1)) = ]M;'f‘“ (Ci, t(i+1))

_ 1 fleg 1
(Vg H i ’

n
% {r: cry<ci} €r)

as stated in the definition of rc-A,)

Secondly, consider M1, (¢, ti+1)). This probability mass consists of the initial
value 1/(n + 1), assigned to this interval by the assumption /1(,,), and contribu-
tions related to each of the censorings that occurred before t(;y according to the

corresponding A, n,; ¢; p,) assumptions, so

Pe)

1
Mz, ., (L), b)) = 1 > M (e taen)-
{T:C(r)<t(,’)}

Derivation of this M-function value is simplified by use of the following equalities,
justified in rc-;l(n) and Theorem 1,

1 i
MTn+1( (P 1’00):n+1+ Z MTfnll(’: l’oo)’
{r: c(r)<c::_ll }

and
(r)
M,

n+41

This leads to

(tay, L)) = MT(’L( *' 11,00), for all 7 with cqy < c

-1’

t'—l

Mz, ., (ta), taey) = Mr,,, (7}, )+MT+1( () L(i+1))

== MT"+1 (C;l__ll y OO) + MTn+l (Cl.i—l b oo) X -~

n,i-1
c;i—l
'Flc;’—l +1
_ i—1 i—1
= Mg, (c,i_l,oo) X —=
T i-1
G,y
[ : ﬁc(r) +1 nc;-ll +1
= 11 | x ==
n+1 , e 7 i1
{riepy<e )} « Uiy

_ 1 H T,y + 1
n + 1 {r:c(,)<t(,')} nc(")

as stated in the definition of rc-Ag).



3 Right-censoring Ay and nonparametric predictive inference 50

3.3.3 Discussion of rc-A,

The assumption rc-A(,) provides a partially specified predictive probability distribu-
tion for a future observation, based on data including right-censored observations,
and expressed via M-function values. The justification of rc-A(,) is based on the
relation between exchangeability and Hill's A(,), and the fact that exchangeabil-
ity still holds for real-valued random quantities when they are all conditioned on

exceeding a value t.

The assumed exchangeability of the random quantities T1,...,7T, (before the
data are available) is not strictly required, but, as in Hill’s presentation of Ay,
it is natural in relation to the post-data assumption rc-A,), as situations where
one would not be willing to assume exchangeability before the data, yet would be
willing to assume rc-A(,) once data are available, will be rare, and the assumed
exchangeability also simplifies the discussion. A hypothetical example, in which one
may not wish to assume exchangeability before the data, yet could still be happy
to use inferences based on rc-A(,) after n observations, could occur if one would
expect data to be a time-series, but when studying actual observations strongly
doubt this prior belief and hence would wish to proceed without taking such prior

beliefs further into account.

As discussed, the post-data assumption rc-Ag,) includes an assumption on the
censoring mechanism, or, more particularly, the information available about this
mechanism both from background knowledge and from the data. Théoretically, this
non-informative censoring assumption is a post-data equivalence of exchangeability
of all random quantities known to be at risk just prior to a censoring time, implying
that each of those at risk had equal chance to be the next one censored. This
means that after the data have become available, one does not have any information
suggesting that the items that have been censored were actually selected on the
grounds of some criterion dependent on their random event time.

For simplicity of presentation, rc- A,y has been discussed assuming that there are
no ties of any nature present in the data, so no two observations (event or censoring)
happen at the same time. Generalizations to include possible ties are discussed in
Section 3.6.

The partially specified probability distribution for 7},,;, via the M-function val-
ues as given by rc-A,), is not explicitly considered as a predictive posterior dis-
tribution within the Bayesian framework, a point of view taken by Hill when he

presented A [39, 40}, and indeed formally justified by the splitting process he pre-
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sented [42] as a parametric model for A, in the Bayesian context. This raises the
interesting question whether rc-A,) can be justified from similar perspective, which
has not been analyzed in detail yet. In the Bayesian framework, one would derive
a conditional distribution for v + 1 random quantities, namely the v random quan-
tities corresponding to the right-censored observations, each of course conditioned
on surviving its right-censoring time, and T, ,. Justification of rc-A,) should then
be based on consideration of the marginal posterior for T, ;. However, it seems
that this requires further assumptions and careful definition of the splitting process
[42] to deal with the right-censored observations, probably along lines similar to the
assumption shifted-/i(n) as discussed in Section 3.2.

The assumption rc-A,) partially specifies the probability distribution for the
next observation by the M-function values. These M-function values can lead to
inferences, which will be discussed in the next section, in terms of bounds of the sur-
vival function for T, ,, which are closely linked to the method presented by Berliner
and Hill [6], which in itself is no justification, yet does serve to support the use of
such nonparametric predictive inferences. However, inferences considered based on
Ay and rc-Ag,y will be most naturally interpreted in a frequentist context, with a
valuable additional Bayesian justification for A, provided by Hill [42].

3.4 Inference based on rc-A(n)

This section presents inference based on the partially specified probability distri-
bution for Ty, via the M-function values as given by rc-A(,). Obviously, such
inferences will have a predictive nature, directly in terms of T},,,, which can be in-
terpreted as ‘the next observation’, along similar lines as nonparametric predictive
inferences based on A(,) for data without censored observations (3, 4, 15, 16, 18]. For
many events of interest, in terms of 7, ,, the M-function values only allow bounds
for probabilities to be derived, where the maximum lower bound is called the ‘lower
probability’, and the minimum upper bound is called the ‘upper probability’, fol-
lowing terminology from theory of imprecise probabilities [57]. In general, these
lower and upper probabilities are derived analogously as described by Augustin and
Coolen [4] for inferences based on A(,). We use the item ‘nonparametric predictive
inference’ (NPI) for inferences based on rc-A,.

In this section, the data are again assumed to be u event times and v (= n — u)

right-censoring times, as described in Section 3.2, and throughout we assume rc-A,).
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3.4.1 Probabilities for T, ,; € (t(;), t(i+1))

Berliner and Hill [6] present a nonparametric predictive method for the next ob-
servation T, on the basis of data including right-censored observations, based on
the assumption A), as described in Section 2.4, which leads to predictive prob-
abilities for Ty,;1 on the intervals (¢(,%(i41)), With tg) = 0 and t(u41) = 00, so
P(Thy1 € (), ta4n)) for i = 0,1,...,u. The M-functions as specified by the as-
sumption rc-A,), can also lead straightforwardly to such probabilities for events
Tot1 € (t(), ta+1))- The fact that these precise probabilities can be derived is caused
by the intervals on which M-function values based on rc-A,) are specified, as each

of these is fully contained in one single interval (¢, t(i+1))-

Theorem 2
If we have data according to the description in Section 3.2.1, then the probabilities

for events Ty, 41 € (¢(i), t(i+1)), based on the assumption rc-Ay), are

1 e +1 . _
P(Tas1 € (L), tan)) = —— H “h 0 T 0,1,...,u,
{r: C(,.)<t(,-+1)} (r)

where Tie,,, 18 the number of individuals in the risk set just prior to time c(), and

the product term is defined as one if the product is taken over an empty set.

Proof

(i) For l; = 0, i.e. no censored observations in the interval (¢(;,%:41)), this is
straightforward from the definition of rc-A,), since then P(Th41 € (Y, tu+n))) =
My, ., (t), taa))-

(ii) Now consider the situation where there is at least one censored observation in
(t), ta+1))s so i > 1. This probability is the sum of all probability masses assigned
to the interval (¢(;),%;+1)) and its sub-intervals via the M-function values for T},
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SO
P(Tni1 € (L), tivn))
L
= MTn+l (t(i)) t(i+1)) + Z MTn+1 (C;é’ t(i+1))
k=1
1 I Ao,y + 1 2‘: 1 I flegy + 1
= s S g, 11 0
n+l {r:C(r)<t(.')} TLC(') k= (n + 1)” %k {r: c(,)<c } nc(,)
~ I ~
- [ 11 m‘f)—H]X[1+Z~L 11 ?_H_Jf_l}
n+1 Tic Tei N
{r e <t} Q) k=1 "%k {r:t;)<cy<ci} (r)
_ [ 1 I ﬁc(:)+1]x[ I ﬁc(:)+1]
n+1 e Ne
{r: C(,.)<t(,>)} (r) {r:t(;)<6(r)<t(,~+1)} (r)
_ I] Mo +1
ntl {rie)<tisn} My
where the fourth equality is based on the following lemma. O
Lemma 1

The following two equalities hold, for all i = 0,1,..., u,

li

) 1
(z) — — , for l,‘ > 2.
k=2 n ck 1 nc;" nctl
L 5 5
B nc(,) + 1] n’c(r) + 1
i —| = —
@ 1+ [= 11 o I1 F
k=1 % (rity<egy<e) o) {rtm<em<tirnt O
forl; > 1.

The product term is defined as one if the product is taken over an empty set, except
if stated otherwise.

Proof
The essential property used to prove both these equalities is

g =nys +1, fork=1,...,1; —1. (3.1)
k k+1

(i) For I; = 2, according (3.1),

1 g —ng 1 1

T4 T4 7.0 T T, .0
C2 Cl Cz Cl 02 cl

For I; > 3, the proof is via induction. Suppose that, for s € {2,...,{; — 1},
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then
«— 1 & 11 1 1
= g T B Et Figs T g e Ty T i g
1 1 111 1
T Nei  Tei | T B ’ﬁcgﬂ ﬁc'i’

which completes the proof.

(ii) If I; = 1, then both sides of the equality are easily seen to be equal to

1
14+ —,

n.i
51

as the product term is defined as one if the product is taken over an empty set. Now
let [; > 2, then

H nc()+1_ Y +1 0 ng+1
~ — ~ - ~ )
Ni i
{ritiy<cry<ti+n} () k=1 ck C;i
and similarly, for k = 2,...,1;,
f 1 My 1
T B i T
{T:t(i)<6(,‘)<ck} C(r) s=1 c-“? c;c—l

This leads to

1 1 e +1
= 1+ —+ [~ : ]
nci k=2 nc;c nc;c—l
l.
1 . - 1
= 14—+ (g +1) X [~'~' ]
(1 k=2 nC}cnc;c—l
N + 1 1 1
= CL -+ (’I‘Lc:1 + 1) X [,, - ~—]
nc.i ncfe Nei
B N +1
'Flcli

n
{ritg) <eey<tarn}

where part (i) of this lemma has been used for the third equality, and which com-

pletes the proof of this lemma. O
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The following corollary gives an alternative formula which might simplify calcu-
lation of the probabilities in Theorem 2.

Corollary 1
Using the same setting as in Theorem 2, the probabilities for events T,,11 € (), ti+1))
can be also derived by

Neg +1
P(Tuss € (o ter)) = P(Tar € (o, ) x [S—],
C;i
where ¢ = 1,...,u, and ¢} and cf', are the smallest and largest censoring times,

respectively, in interval I;.

Proof
Using Theorem 2 the probabilities of events T;, 11 € (¢(;), t(i+1)) are
1 g, + 1
P(Tht1 € (L), tavy)) = ] I —=

n
{repy<tasn} O

Adjusting the right-hand side of this formula gives

1 flc r + 1 k ﬁc': + 1
P(Thy1 € (t6), tavny)) = [n+ 1 H ;3) ] [ ;’z ; ]
{rcey<t@m} ™ =t

-~

l

= P(Tn+1 € t(z l)yt(z) H Jn
c'1 + 1
= P(Tay1 € (tu-1), t))) X [ . ],

1
<

31

j=1

where the last equation follows from ﬁc;; = ﬁc;+l +1,forj=1,...,; — 1. O

The following corollary gives the relationship between P(T;,;; € (t4), ti+1))) and
the M-function value on (¢(;11), t(i+2)), which can easily be derived from the expres-
sion for P(Tyh11 € (4, ta+1))) in Theorem 2, and the M-function values as specified
by rc-Ag).

Corollary 2

Using the same setting as in Theorem 2, we have
P(Tn+l € (t(1)7 t(i+l))) = MTn+1 (t(i+1)a t(’H—?)) for 1 = 0> I...,u—1 (32)
Example 7 (continued)

By using Theorem 2 or Corollary 1, the probabilities for 77 in open intervals be-

tween consecutive event times can be derived, see Table 3.2. Comparison of these
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probabilities with the corresponding M-function values in Table 3.1 illustrates that
indeed these probabilities are the sums of all M-function values per interval, and
that P(T7 € (tq), ti+y))) = M (Hitr) tasn) fori =0,1,...,3.

(ta), tasn) | P(T7 € (tay, tis)))
0, 3) 5735
(3, 6) 6/35
(6. 8) 8/35
(8, 9) 8/35
(9, 00) 8/35

Table 3.2: The probabilities for T7 € ((;), t(;+1)) (Example 7).

3.4.2 Imprecise probabilities based on rc-A,

The assumption rc- A, provides a partially specified probability distribution for the
observable random quantity T;,,;, via M-function values on the intervals (¢(;), t(i+1))
and (Ci)t(i-H)), for: = 0,1,...,u and k = 1,...,[;, with to)y = 0 and #(yy1) =
00. These M-function values can be used to derive lower and upper probabilities
for events of interest in terms of T, ,;, via the same principle used by Augustin
and Coolen (4] for A(,)-based inference, where no additional assumptions on the

distribution of the probability masses per interval are made.

For a sub-interval (a, b) of (0,00), it is clear that precise values for probabilities
of events T, 4, € (a,b) can be derived when a and b are two event times (or 0 or
00). However, for other choices of (a,b), precise values for the probability of an
event T, 41 € (a, b) cannot be derived. Instead lower and upper probabilities for such
events 1,41 € (a,b) are introduced. The lower probability is derived by summing
only the probability masses that necessarily must be in (a, b), so it is a sum of M-
function values for T,,;, on intervals which are completely within (a,b). The upper
probability for this event is derived by summing all the probability masses that can
be in (a, b), so it is a sum of the M-function values for Ty, on intervals that have
a non-empty intersection with (a,b). The justification of these lower and upper
probabilities is as the optimal lower and upper bounds, denoted by P(T},,; € (a,b))
and P(T,;; € (a,b)), which represent the maximum lower bound and the minimum
upper bound for P(T},;, € (a, b)), respectively. Using the notation presented in A,)-

based inference by Augustin and Coolen [4], these two lower and upper probabilities
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can be expressed as

P(T,.1 € (a,b)) Z My, . (z,y), (3.3)
(z,y)C(a,b)

P(Tan€(a,b)= >, Mg, (zy). (3.4)
(z.y)N(a;b)#0

3.4.3 Lower and upper survival functions

In survival analysis one is often interested in the survival function, which represents
the probability that an individuals lifetime T exceeds a certain time ¢, denoted as
St(t) = P(T > t). On the basis of data including right-censored observations, as
described in Section 3.2, the assumption rc-A,) can be used to derive bounds for
the survival function of 75, i.e. optimal lower and upper bounds for Sr,,,(t) =
P(T,41 > t), for t > 0. In this subsection, these bounds will be discussed, with the
maximum lower bound called the lower survival function, denoted by St () =
P(T,+1 > t), and the minimum upper bound called the upper survival function,
denoted by St ,,(t) = P(Tuy1 > t). These imprecise probabilities can be derived
as described in Subsection 3.4.2, as the particular case of imprecise probabilities
for events T,,,; € (t,00). According to the discussion of imprecise probabilities in
Subsection 3.4.2, it is clear that the lower and upper survival functions are equal
at observed event times t(;), and at such times their value can be derived using the
precise probabilities presented in Subsection 3.4.1,

STn+l( ) STn+1 t(i) ZP n+1 € (t(])’ t(J+1))) for 1=0,1,.
j=t
where t(g) = 0, at which value both the lower and upper survival function are equal

to one, assuming that there are no observed events at ¢t = 0.

(I) The upper survival function

The upper survival function for 7, is easiest to derive, due to the fact that the
M-function values in rc-A(y) are all defined on intervals with an observed event time
(or infinity) as right end-point. To derive St,,,(t), for ¢ > 0, as much probability
mass as possible, as described by the M-function values, must be put in the interval

(t,00). At t € (t(i),tx+1)), the upper survival function is therefore the sum of all
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the M-function values defined on intervals starting at ;) or greater values. Here
we use that the probability masses, specified by the M-function values, on intervals
starting at right-censoring times ¢} € (¢4),¢u+1)), ¥ = 1,...,1;, are all defined on
intervals (i, t(i+1)), with no further restriction on these probability masses, which
therefore can always be put in the subinterval (t,¢(i+1)) of (¢, t(i+1)). This implies
that, for all : =0, 1, .

ngH( ) = St, +1(t(z)) forall ¢ € [t(i),t(z‘ﬂ))-

Expressing this upper survival function via M-function values gives

u lj

§Tn+l(t) = Z [MTn+1(t(j)7 tyen) + Z MTn+1(Clz?t(]'+1))]' (3.5)
j=i k=1
An alternative expression, using the probabilities for 7,4, in the intervals between
two consecutive event times (or zero and infinity) as described in Subsection 3.4.1,
is "
St (8) = Y P(Tusr € (8 1)) (36)

j=t

Obviously, the upper survival function St,,, (t) is a step-function, which is con-
stant between observed event times, and decreases at event time #(;) by the value
P(Tn41 € (t(i-1), t))). This implies that, on the interval [0, ¢(), the upper survival
function is equal to one, while on the interval [t(,),c0) it is a positive constant,
which is clearly a consequence of the fact that no further assumptions are added to
the data, so also no assumptions on the tail of the distribution. The upper survival
function does not change value at observed censoring times, but censorings do affect

the amount with which this function decreases at later event times.

(II) The lower survival function

At t € (t4),t641)), the lower survival function for Tp,4; at ¢ > 0 is derived by only
summing the M-function values for intervals which are entirely within (¢, 00). This

leads to

u

S () = D P(Tasi € (tgptgen)) + D Mz, (ch tasn),

Jj=itl {k:ci >t}
fort € (t(,'), t(i+1))- (3.7)

The sum of the M-function values in formula (3.7) is only over intervals starting

at observed censoring times ¢, € [t,t;41)), the effects of later censorings are of
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course included in the values P(T,41 € (Y, t;+1))), for j = ¢+ 1,...,u. This
lower survival function can be derived by calculating the relevant probabilities and
M-function values, as presented in Subsection 3.4.1 and Section 3.3, respectively.

The lower survival function for T, is also a step-function, decreasing at right-
censoring times as well as at event times. A great advantage of this is in the graphical
presentation of these functions, as the effects of all observations on the lower and
upper survival functions can be seen clearly. The lower survival function is zero
beyond the largest observation, both if this largest observation is an event time or a
censoring time. Calculation of the lower survival function can be slightly simplified

if the upper survival function is available, via (for i = 0,1,...,u)

§T,.+1 (t) = §Tn+1 (t) - P(Tn+1 € (t(i)’t(H-l))) + Z MTn+l (c;;:vt(i+l))

{k:ciZt}
= STn+1(t(i+1))+ Z MTn+1(Ci~,’t(i+1))v
{kci >t}
for t € (t(i),t(i+1)), (3.8)

We use the didactic example to illustrate the lower and upper survival functions

for T,,41. Subsection 3.4.4 presents a larger example with data from the literature.

Example 7 (continued)
Table 3.3 gives the lower and upper survival functions for 77, specified on intervals
created by the data.

te(,.) |8k [S@)
(0,3) [30/35 1
(3,4) |25/35|30/35
(4,6) |24/35 | 30/35
(6,7) |18/35 | 24/35
(7,8) |16/35 | 24/35
(8,9) |8/35 |16/35
(9,00) |0 8/35

Table 3.3: The lower and upper survival functions (Example 7).

The values of the lower and upper survival functions at observations are easily
derived from Table 3.3, using the fact that the lower survival function is continuous
from the left at all observations, and the upper survival function is continuous from
the right at event times. An effect of right-censored data is that the difference
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between corresponding upper and lower survival functions increases at an observed
censoring time, so at times 4 and 7 in this example. The lower and upper survival
function are also shown in Figure 3.1.

1
0.8
0.6
0.4 i
- Upper :
0.2 — Lower| |77
0
0 2 4 6 8 10

Figure 3.1: Upper and lower survival functions (Example 7).

3.4.4 Example

In this subsection nonparametric predictive inference (NPI) is illustrated, using data

from the literature.

Example 8

The data for this example are given in Table 3.4, and were also used by Parmar
and Machin [54, Section 4.2] to illustrate nonparametric methods for survival data.
This is a subset of data obtained from 183 patients entered into a randomised Phase
IIT trial conducted by the Medical Research Council Working Party on Advanced
Carcinoma of the Cervix. The data are on survival of 30 patients with cervical
cancer, recruited to a randomised trial aimed at analysing the effect of addition of a
radiosensitiser to radiotherapy (New therapy - ‘treatment B’), via comparison to the
use of radiotherapy alone (Control - ‘treatment A’). Of these 30 patients, 16 received
Treatment A and 14 treatment B. The data are in days since start of the study, the
event of interest is death of the patient caused by this cancer. Further variables
recorded for patients in the original study are not taken into account. Of course,
the inference of main interest in such a study is comparison of the two treatments.
But here attention is restricted to predictive inference per treatment, and we only
use this subset of all the data to illustrate NPI, so in effect considering the two

treatments separately. Methods for comparison of two treatments on the basis of
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such data, using NPI based on rc-A,), will be presented in Chapter 5 where also
these data are discussed again.

Control - A | New therapy - B
90 272
142 362
150 373
269 > 383
291 > 519
> 468 > 563
680 > 650
837 827
> 890 > 919
1037 > 978
> 1090 > 1100
> 1113 1307
1153 > 1360
1297 > 1476
1429
> 1577

Table 3.4: Cervical cancer survival data (> t indicates right-censoring at t).

The assumptions rc-Aq) for treatment A, and rc-Agyq) for treatment B, lead
to partially specified probability distributions, via M-function values, for survival
time of a future patient undergoing such treatment A or B, which are denoted by
random quantities T4 17 and Tg15. These M-function values lead straightforwardly
to precise probabilities for T4,17 and T ;5 on intervals between two consecutive event
times (or zero, infinity), as described in Subsection 3.4.1. Tables 3.5 and 3.6 give the
M-function values for Ty,7 and Tp,15, and probabilities P(T'4,17 € (ta,a),ta,6+1))),
fori=0,1,...,11, and P(Tg,15 € (tp ) ta,+1))), for j =0,1,...,5.

Tables 3.5 and 3.6, show again that the probability of 75,1, € (¢(;),t(i+1)) is the
sum of all M-function values for T, ,, assigned to the interval ((;,t¢+1)), and its
sub-intervals based on rc-A(,). Another relationship, described in Corollary 2 in
Subsection 3.4.2, is also illustrated, namely

P(Tanr € (tagy taury)) = Mz, (tais),tausn) fori=0,1...,15,
P(Tp,5 € (ta,g)rta+1)) = Mry,i(te 1) t,ee) forj=0,1...,13,
with t4,) =0, ta,na7) = oo and tp ) =0, tB,15) = 00.

The assumption rc-A,) can also be used to derive the upper and lower survival
functions for T, as described in Subsection 3.4.3. Table 3.7 gives the upper and

lower survival functions for T4 ;7 and Tg 15, using notation S# for St, ,,(t), and so
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Treatment A; Ty 47

Interval 14, | M-function | P(Ta 47 € 14;)
(0,90) 0.059 0.059
(90, 142) 0.059 0.059
(142, 150) 0.059 0.059
(150, 269) 0.059 0.059
(269,291) 0.059 0.059
(291, 680) 0.059 0.064
(468, 680) 0.005
(680, 837) 0.064 0.064
(837,1037) 0.064 0.072
(890, 1037) 0.008
(1037, 1153) 0.072 0.101
(1090, 1153) 0.012
(1113,1153) 0.017
(1153,1297) 0.101 0.101
(1297, 1429) 0.101 0.101
(1429, o0) 0.101 0.202
(1577, 00) 0.101

Table 3.5: M-function values for T4 ;7 and P(Ta,17 € I4,) (Example 8).

Treatment B; T 15

Interval Ip ; | M-function | P(Tg,5 € Ip ;)
[0,272) 0.067 0.067
(272, 362) 0.067 0.067
362, 373) 0.067 0.067
373, 827) 0.067 0.100
(383, 827) 0.006
(519, 827) 0.007
(563, 827) 0.009
(650, 827) 0.011
(827, 1307) 0.100 0.175
(919, 1307) 0.017
(978, 1307) 0.023
(1100, 1307) 0.035
(1307, o0) 0.175 0.525
(1360, 00) 0.088
(1476, 00) 0.262

Table 3.6: M-function values for Tp,15 and P(Tp,15 € Ip;) (Example 8).
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Control; Ty 17 Treatment; Tp 15
te(,) [S%0) (S| te(,) [SP®)|5°()
(0,90) 0.941 1 (0, 272) 0.933 1

(90,142) | 0.882 | 0.941
142,150) | 0.824 | 0.882 0.800 | 0.867
150,269) | 0.765 | 0.824 0.733 | 0.800

( ) |0.867 | 0.933
% (573,38
E269,291 0.706 | 0.765 g383 5193 0.727 | 0.800
( ( )
( ( )

( )

362 373

291,468) | 0.647 | 0.706 || (519,563) | 0.720 | 0.800

) 0.711 | 0.800
680,837) | 0.578 | 0.642 0.700 | 0.800
(837,890) | 0.513 | 0.578 0.600 | 0.700
(890,1037) | 0.505 | 0.578 | (919,978) | 0.583 | 0.700
(1037,1090) | 0.433 | 0.505 | (978,1100) | 0.560 | 0.700
(1090,1113) | 0.421 | 0.505 || (1100,1307) | 0.525 | 0.700
(1113,1153) | 0.404 | 0.505 || (1307,1360) | 0.350 | 0.525
g1153,1297g 0.303 | 0.404 | (1360,1476) | 0.263 | 0.525
( )

0.642 | 0.706
650 827

1297,1429) | 0.202 | 0.303 | (1476,00) | 0 | 0.525
1429,1577) | 0.101 | 0.202
(1577,00) | 0 |0.202

Table 3.7: Lower and upper survival functions for cervical cancer example.

on, based on the assumptions rc-A(;6) and rc-A4). The lower and upper survival
functions, per treatment, are indeed equal at observed event times, and the upper
survival function is constant between observed event times, while the lower survival
function decreases at each observation. The difference between corresponding upper
and lower survival functions increases at observed censoring times. If there are more
censorings, this difference becomes larger, which is illustrated by the fact that the-
difference for group B becomes larger than for group A, for large ¢, in this example.
The upper survival functions are equal to one between zero and the first event time,
while the lower survival functions are equal to zero beyond the largest observation.
Figures 3.2 presents plots of these lower and upper survival functions for treatment
A and treatment B.

These lower and upper survival functions suggest that survival tends to be bet-
ter under the treatment B than the treatment A. We will return to this example in
Chapter 5 to investigate this suggestion further.
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Figure 3.2: Upper and lower survival functions (Example 8).

3.5 Comparison with alternative nonparametric

methods

Section 3.4 presented a nonparametric predictive method for inference based on the
assumption rc-Ag) in the case of data including right-censored observations. As
introduced in Chapter 2, there are many nonparametric methods which are used in
statistical analysis. In this section, we compare this new inferential method with
two alternative nonparametric methods, namely the Berliner-Hill method and the
Kaplan-Meier method, as described in Sections 2.2 and 2.4.

3.5.1 Comparison with the Berliner-Hill method

The Berliner-Hill method derives predictive probabilities for T}, ,;, which we denote
as PBH  to be in intervals between consecutive event times, and these probabilities
turn out to be identical to the rc-Ag,)y-based P(T 41 € (t), tusn)))-



3 Right-censoring A(n) and nonparametric predictive inference 65

Lemma 2
For n given observations consisting of u event times, ta) <t <...<tw),and v
right-censored observations, ¢y < c@) < ... < cp), let tg = 0, and t(,41) = oo,

then we have

P(Tnii € (t6), tivy)) = PPH(Tot € (t6),tisy)), for i=0,1,... .

Proof
Let i; =3}  lxand Ay =1/[n— (i — 1) — ], for i = 0,1, ..., u. First consider the
interval (0,%;). Based on the assumption A,), and using Theorem 2,

1
= PBH(Tn+1 € (0’ t(l)))-

PTn E O,t = =
(Tnt1 € (0,¢1))) nThal

For the interval (t,1,), using Corollary 1 from Section 3.4, and P(Ty41 € (0,¢(1)))

from above, we get

P(Tos1 € (t1,82) = P(Tups € (0,tw)) x |

1 n—-l~0

= X =

n—l+1 n-1

nob 1

n—lo+1 n-—ll
= (1—/\0)X/\1

= PBH(T.,H.l € (t(l)at(2)))

Now induction can be used to complete the proof. Assume, for j € {2,...,u}, that

P(Tns1 € (t-1), b)) = PP (Tos € (bi-1)s t5))-

Corollary 1 from Section 3.4 gives

n—l,-_l—j-{-l
n—[j—j+1 .

P(Tan1 € (), t+1))) = P(Tnt € (t-1)s t)) ¥
According to the Berliner-Hill method,

PP (Tny1 € (tg-1),t) = (1= Ag) X (1= A1) x -+ (1= Ajmg) X Aj_i,
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with the induction assumption, this gives

P(Tn.H € (t(j),t(j+1))) = (1 — /\0) X (1 — /\1) X oo (1 — /\j.q) X /\j—l X

n—l_;—j+1
n—@—j+1

= (I1—=Xg)x (1 =A1) X +-(1 = A_g) X
n—l}_l—j+1x 1

n—l~j_1-—j+2 n—l}—j+1
= (1——/\0)X(l—/\l)X"'(l—AJ’_l)X)\j

= PPH(T,p1 € (-1, ti)s

which completes the proof of Lemma 2. O

This similarity between these two methods is intuitively logical, as Berliner and
Hill assume that the censorings, under PCI, still happened in the same intervals
created by the consecutive lifetimes, hence the number of censorings in each such
interval remains the same. When considering our method, it is clear that the to-
tal probability assigned to such intervals (., t(i+1)) does not depend on the exact

location of the censoring times within these intervals.

The most important difference between these two methods shows in the survival
functions. Berliner and Hill [6] suggest two methods for specifying the survival func-
tion for Ty,4, in more detail. One is to distribute the probability mass uniformly
per interval (¢(;), t;+1)), which is attractive as it leads to a continuous and precisely
specified survival function. Let us denote this ‘uniform Berliner-Hill survival func-
tion’ by SE¥ (t). For t € (¢, tur1)), i =0,1,...,u, assuming t,4; is a finite upper
bound for T, (else SB# cannot be defined on the final interval), then

5 b P(To € (t) b
Sﬁﬁl(t) = STn+l(t) _/ ( "'H. (—() .(-H)))dt
4o ti+1) — L)

t— t(,-)
tit1) — )

St (t) — P(Thia € (t), tasn))- (3.9)

From (3.9), it is clear that SP¥ (t) < Sr,,,(t). Let us now compare the uniform
Berliner-Hill survival function with our lower survival function. Let us consider
t € (t),ci), from (3.8), we have

Sr.,,(t) = S1,,,(t) — Mr,,, (ta), tit))-

Using (3.9), the uniform Berliner-Hill survival function can be expressed further,
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using Corollary 1, as

t— 1t
T P(Ths1 € (ta-1), tE)) X —

tatr) — i)

Sel (t) = §Tn+1 (t) -

Ta+1

To get SEH (t) > Sy, ,, (t), for all t € (¢(;),c}), we must have,

n+1

t—tu e
® % (3.10)
tiv1) — tG) Nei +1

The right-hand side of (3.10) is less than one. If ¢} is close to ¢(;t1), it is possi-
ble that a t € (¢(;),c}) can be found such that the left-hand side of (3.10) exceeds
the right-hand side, and so S2¥ (¢) < S, ,, (t), at that value ¢, so SE¥ (t) can be
smaller than S, . (t).

Example 3 (continued)
Consider Example 3 from Chapter 2 again. Table 3.8 gives the lower and upper

survival function for Ty, assuming rc-Ag).

(ta) try) | St (2) | St(2)
(0,2) 0.880 1
(2,3) 0.778 | 0.889
(3,9) 0.667 | 0.778
(9,10) 0.648 | 0.778

(10,10.5) | 0.622 | 0.778
(10.5,11) | 0.583 | 0.778
(11,11.5) | 0.519 | 0.778
(11.5,12) | 0.389 | 0.778
(12, +o0) 0| 0.389

Table 3.8: Lower and upper survival functions for Example 3.

Comparison of the uniform Berliner-Hill survival function and the lower survival
function based on Ty, leads to SR (t) < Sr,(t), for some t values, for example for
t € (9,11.5). Figure 3.3 presents these lower and upper survival functions, together
with the uniform Berliner-Hill survival function (BH). It should be noticed that the
uniform Berliner-Hill survival function is undefined beyond the largest event time

due to no finite upper bound for the observations.

3.5.2 Comparison with the Kaplan-Meier method

Hill [41] compared the Berliner-Hill method with the Kaplan-Meier method, which,

although its explicit inferential aim is quite different, namely estimation of the un-
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Figure 3.3: Lower and upper survival function, and the uniform BH survival
function (Example 3).

derlying population survival function instead of prediction for one future individual,
turns out to be pretty similar. Hill concludes that the Berliner-Hill method al-
ways gives more mass to the upper tail of the distribution than the Kaplan-Meier
method does, and that such underestimation of the tail of the survival distribution
is the primary practical defect of the Kaplan-Meier method. Clearly, comparison of
our inferential method with the Kaplan-Meier method would lead to the identical
conclusion, as the probabilities between observed event times is the same for our
inferential method and the Berliner-Hill method.

Our lower survival function for 7, ; becomes zero after the largest observation,
which is also the case for the Kaplan-Meier estimator if this observation is an event
time. Our upper survival function always remains positive, unless one restricts
the range of possible values for T),.; by choosing a finite upper bound. Many
authors have suggested minor variations to the Kaplan-Meier estimator with regard
to what happens in the upper tail [2]. Comparison of the first interval is also of
interest. The Kaplan-Meier method gives zero mass to the interval (0,¢;)), even
if there are censored observations in this interval. This coincides with our upper
survival function, which is equal to one in this interval, yet the corresponding lower
survival function is less than one, and decreases at each censoring time. The Kaplan-
Meier survival function estimator, which is the nonparametric maximum likelihood
estimator [46], is also regularly used to graphically present data including right-
censored observations. We suggest that our lower and upper survival functions for
T+ are better suited for such graphical presentation, as they indeed give a complete
picture of the data, including censoring times, and can directly be interpreted from a
predictive perspective. Of course, when there are many observations, most of which
are event times, then all these methods are similar.
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3.5.3 Example

We illustrate the comparisons in Subsections 3.5.1 and 3.5.2 by continuing with Ex-
ample 8.

Example 8 (continued)

Figures 3.4 and 3.5 give the lower and upper survival functions based on rc-Ag,,
together with the uniform Berliner-Hill survival function and the Kaplan-Meier es-
timate, for treatments A and B, respectively. In these figures, it has been assumed

that 1700 is a known upper bound for these observations and random quantity.

1
AN
0.8} <
]
- --
—_-—= =~
0.6} =2
i ——
> -
0.4 ™ <
—— Upper bound N
—-— Lower bound N
0.2} S
---- BH
boodeoo--o
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N
Ob. _ \ K , . . L
0 250 500 750 1000 1250 1500

Figure 3.4: Survival functions for T4 7 (Example 8).

From Figures 3.4 and 3.5, we see that the Kaplan-Meier estimate puts quite a
lot of mass beyond the largest event time. Although our inferential method plotted
this estimate as constant after the largest observed event time, it could also have
left it undefined after the largest observation, which is a censoring time for both
treatments. The uniform Berliner-Hill survival function beyond the largest event
time, in both figures, is clearly influenced by the choice (just for the presentation)
to set 1700 as an upper bound for the observations, we could also have left this
uniform Berliner-Hill survival function undefined in the upper tail in both figures.
However, this conveniently chosen upper bound again illustrates that the uniform
Berliner-Hill survival function can actually become smaller than our lower survival
function, which happens in Figure 3.4 in a very small interval just prior to the
censoring time 1577.
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Figure 3.5: Survival functions for T 5 (Example 8).

At observed event times, our upper and lower survival functions are equal, and
indeed also coincide with the uniform Berliner-Hill survival function. The inferential
method based on rc-Ag,), via the lower survival function, is the only one of these

three that clearly indicates where censorings take place.

3.6 Treatment of ties

The assumption rc-A,) and related nonparametric predictive inference, as presented
in the previous sections, did not allow ties of any kind in the data set. However,
tied observations frequently occur in practice, for example due to the data-collection
methods, or the discrete nature of measurements or data representation (as Meeker
and Escobar [52] discuss in detail). As there are two kinds of observed data, event
times and censoring times, three kinds of ties may occur: (i) Tied event times; (ii)
Tied censoring times; (iit) Ties among event times and censoring times. In this
section, the discussion will focus on the possible solutions for dealing with such ties,

in order to derive related predictive inferences based on rc-Ag,).

A possible method for dealing with ties is suggested by Kaplan and Meier [46]
and Berliner and Hill [6]. They suggest to break the ties by assuming that the
censoring occurs just after the corresponding observed event times. The method

presented in this chapter can be generalized to allow all three kinds of ties. For
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each case, the resulting probabilities and lower and upper survival functions can be
regarded as limits of those appearing when all ties are broken by adding very small
values ¢ > 0 to tied observations, to get different values but keeping to the initial
order as far as the non-tied observations are concerned, and then letting the €’s
decrease to zero. For example, if data are measured in days, a tie consisting of two
events and two censorings at time 8 could be broken by assuming that the events
happened at times 8 and 8.001, and the censorings at 8.002 and 8.003. Then the
methods presented in this chapter can be directly applied, and this would lead to
inferences which are practically identical to those based on the exact observations
(else, one could make the added €’s even smaller). This procedure is the same as
was suggested by Berliner and Hill [6]. There is one interesting consequence of tied
event times, say at time ¢;, namely that our method, like A)-based inference in
general, then gives a positive predictive probability for T,,,, = ¢;. However, this
seems quite natural because the fact that already more than one event happened
at time t, supports the idea that future events can also happen at this time. We
illustrate the method for dealing with ties in an example.

Example 9

The data for this example are given in Table 3.9, and were also used by Berliner
and Hill [6] to illustrate their method in case of ties among observations. The data
were given by Freireich, et al [34]. The data are on survival of 42 patients with
acute leukemia, recruited to a randomized trial aimed at assessing the ability of
6-mercaptopurine (Treatment B) to maintain remission, via comparison to the use
of a placebo (Control A). Of these 42 patients, 21 received Treatment B and 21

Control A. The data are in weeks since the start of the study, the event of interest is

Control-A | Treatment-B
8 6 >17
8 6 >19

11 6 >20

11| >6 22

12 7 23

12| >9 >25

15 10 > 32

171 >10 > 32

221 >11 > 34

23 13 >35

00 GO OV Ut Wi wix Q2 N N = =

Table 3.9: Acute leukemia survival data (> t indicates right-censoring at t).
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Interval | M-function Interval P(Tp2 € L) | S1,,,(t) | S15., (1)
0,6) 0.0455 | (0,6) 0.0455 | 0.9545 T
6 0.0910 |} 6 0.0910
(6,7) 0.0480 || (6,7) 0.0480 | 0.8157 | 0.8636
(7,10) 0.0480 || (7,10) (7,9) 0.0510 0.7677 0.8157
(9,10) 0.0030 (9,10) 0.7647
(10,13) 0.0546 || (10,13) | (10,11) 0.0588 | 0.7101 | 0.7647
(11,13; 0.0042 (11,13) 0.7059
(13,16 0.0588 || (13,16) 0.0588 0.6470 0.7059
(16,22) 0.0588 || (16.22) | (16,17) 0.0809 | 0.5882 | 0.6470
(17,22) 0.0059 (17,19) 0.5823
(19,22) 0.0072 (19,20) 0.5751
(20,22) 0.0090 (20,22) 0.5662
(22,23) 0.0809 | (22,23) 0.0809 0.4853 0.5662
(23,oo§ 0.0809 || (23, 00) | (23,25 0.4853 | 0.4044 | 0.4853
(25, 00 0.0162 (25,32 0.3882
(32, 00) 0.0647 (32.34) 0.3235
(34, 00) 0.0809 (34,35) 0.2426
(35, 00) 0.2426 (35, 00) 0

Figure 3.6: The upper and lower survival functions with ties (Example 9).

remission time of a patient. Of course, the inference of main interest in such a study

is comparison of the two treatments, but here attention is restricted to predictive

inference per treatment.

We are interested in the remission time of a future patient undergoing Control A
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Interval P(TA,22 € Iz) ﬁTA_gg (t) STA,22 (t)
0,1) 0.0455 | 0.0545 1
1 0.0455
(1,2) 0.0455 | 0.8635 | 0.9090
2 0.0455
(2,3) 0.0455 | 0.7725 | 0.8180
(3,4) 0.0455 0.7270 0.7725
0.0455
(4,5) 0.0455 0.6360 0.6815
0.0455
(5,8) 0.0455 0.5450 0.5905
8 0.1365
(8,11) 0.0455 0.3630 0.4085
11 0.0455
(11,12) 0.0455 0.2720 0.3175
12 0.0455
(12,15) 0.0455 0.1810 0.2265
(15,17) 0.0455 0.1355 0.1810
(17,22) 0.0455 | 0.0900 | 0.1355
(22,23) 0.0455 0.0455 0.0900
(23, 00) 0.0455 0| 0.0455

Table 3.11: Predictive probabilities for T4 52 (Example 9).

or Treatment B, denoted by random quantities T4 92 and T 52, respectively. Tables
3.10 and 3.11 present NPI for Control A and Treatment B, respectively, by using
the method discussed above for dealing with ties. For example, the probabilities for
T oo and T4 9 are positive at times of ties events. Figure 3.6 gives plots of these
lower and upper survival functions, suggesting that survival tends to be better under
the treatment than the control.

3.7 Use of rc-A, for left-censored data

In this section, nonparametric predictive inference (NPI) based on rc-A,) is dis-
cussed in the case of left-censored observations. As introduced in Section 1.3, left-
censored data can also arise in survival analysis, although it is less common than
right-censored data, and it means that there are observations of the form ‘event
has happened before time ¢, but nothing else is known. Hill {41] shows how the
Berliner-Hill method for right-censored data can be used in such a case, by applying
a monotonically decreasing transformation of the time, namely w = 1/t for t > 0,
and then using the A,)-based Berliner-Hill method for the transformed data, which
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is possible as originally left-censored observations have now become right-censored,
and by transforming back one gets predictive inferences for T,,,, at the correct time-
scale. This procedure can also be used to apply our NPI for data consisting of event

time and left-censored observations. We use an example to illustrate the method.

Example 10

Suppose a set of observed data consists of four event times, 2,5,15,18, and three
left-censoring times 8,10,16. How can we derive at predictive inference for T3 based
on the assumption rc-Ay,).

For convenience, denote the original data as (1) = 2, t5) = 5, t(3 = 15, t4) =18
and ¢y = 8, cz) = 10, c3) = 16, then a new data set can be obtained by applying
the monotonically decreasing transformation as described above, leading to tl(l) =
1/18, to) = 1/15, 15 = 1/5, t4y = 1/2, and ¢y = 1/16, ¢p) = 1/10, Cgy = 1/8.
Clearly, c'(l), c'(2) and c'(3) are right-censored observations after this transformation.
In this situation, predictive inference for Tg = 1/T can be derived based on this

new data set and the assumption rc-A), as illustrated in Table 3.12.

Interval | M-function Interval P(T; € (t'(i),t'(iﬂ))) Sp(t) | Sp(2)
0% 0.1250 || (0, 1) 0.1250 | 0.8750 1
gT};?; 0.1250 (&, 5) %#; 01438 | 0.T500 | 0.8750
(%,%5) 0.1458 | (1,1 (%,%) 0.2431 | 0.5834 | 0.7292
(5.5 0.0365 (&) 0.5469

45 0.0608 5 0.4861

(.1 0.2431 | (1,4) 0.2431 | 0.2431 | 0.4861
(L, 00) 0.2431 || (1, 00) 0.2431 0 | 0.2431

Table 3.12: Predictive probabilities for Ty (Example 10).

Because of the monotonically decreasing transformation, we derive the M-function
values and probabilities for Ty by
Mz, b6y, taen) = My (1/t41), 1/t )
Mz, (te, ¢;) = My (1/c;,1/tw)

’

P(Tni1 € (ta), taen)) = P(T, . € (1/tav), 1/tw)),

where 1 = 0,1,...,4, with ¢ = 0 and #;) = oo, and c. is a left-censoring time in
(tay, ta+ny), for 7 =1,...,1;. Lower and upper survival functions for Ty are derived
by

§T,.+1(t) =1- _S-T' (tl) and §Tn+l(t) =1- ﬁ']’f"+1 (tl)s

n+1
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fort € (l/t(i_,,l), l/t(,-)).

Table 3.13 gives the related values for Ty using the results in Table 3.12. Figure
3.7 is a plot of the lower and upper survival functions for Tg.

Interval | M-function Interval P(Ts € (tu), tavy)) | Sp(@) | Sn ()
0,2) 0.2431 || (0.2) 0.2431 | 0.7560 1
(2.5) 0.2431 || (2,5) 0.2431 | 0.5138 | 0.7569
(5.8) 0.0608 | (5,15) | (5,8) 0.2431 | 0.2707 | 0.5138
(5,10) 0.0365 (8,10) 0.4530
(5,15) 0.1458 (10,15) 0.4165
(15,16) 0.0208 || (15,18) | (15,16) 0.1458 | 0.1249 | 0.2707
(15,18) 0.1250 (16,18) 0.2499
(18,00) 0.1250 || (18,00) 0.1250 0 | 0.1249

Table 3.13: Predictive probabilities for T3 (Example 10).
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Figure 3.7: The upper and lower survival functions for T (Example 10).

In this case, the lower survival function for the future observation 7T;,,, based on
the lifetime data consisting of event times and left-censoring times, is a step-function
which is constant between observed event times. The lower survival function is zero
beyond the largest observation, both if this largest observation is an event time or
a left-censoring time. The upper survival function for T, is also a step-function,
which now decreases at each observation, so at left-censoring times as well as at event
times. The upper survival function is equal to one on the interval between zero and
the smallest observation. It should be addressed that the difference between upper
and lower survival functions for the future observation T}, based on the lifetime

data consisting of event times and left-censoring times, is larger for smaller time t.
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The method presented in this section can be used for data sets including only
left-censoring times. Dealing with data including both right- and left-censored ob-
servations, or other forms of censoring, from a similar perspective, remains a topic
for future research.

3.8 Concluding remarks

The assumption rc-A,) provides a partially specified predictive probability distribu-
tion for a future observation, based on data including right-censored observations.
The rc-A(ny-based inference is an explicit attempt to keep structural assumptions
minimal, and is therefore naturally suited if one only has extremely vague knowledge
about the situation which is being modeled, other than that provided by the data
set.

The assumption rc-A(,) is a generalization of Ax,). An advantage of rc-Agp,
is that predictive probabilities for a future observation can be derived using the
exact censoring information, and it leads to explicit changes in the lower survival
function at censoring times, which is not the case in the Berliner-Hill method [6]
and the Kaplan-Meier method [46]. The inferential method based on rc-A,) can be
generalized to allow ties of any nature in the data. The assumption rc-A,) can also
be used to derive nonparametric predictive inferences for other problems formulated
in terms of T}, ;,, such as grouped data and comparison of groups of lifetime data,
which will be presented in Chapters 4 and 5.



Chapter 4

Nonparametric predictive

inference for grouped data

4.1 Introduction

This chapter applies nonparametric predictive inference (NPI), as presented in Chap-
ter 3, to grouped data including right-censored observations. As stated in Section
2.5, such data frequently occur in situations concerning reliability and survival anal-
ysis. The statistical method presented for grouped data in this chapter is based on
quite minimal modelling assumptions, and is directly in terms of a random quan-
tity representing a future observation. We will assume that either a well-specified
event happens, at a particular time, to each item for which we have an observa-
tion, or that a time is reported at which such an event has not yet occurred, where
such right-censoring is assumed to be non-informative, as discussed in Section 1.3
and, with regard to the assumption rc-A,), in Section 3.2. We restrict attention to
non-negative random quantities, so to random quantities and observations on the
time-axis [0, 00). However, the method presented is more widely applicable, as only

a finite partition of (part of) the real line is required.

Section 4.2 discusses, for grouped lifetime data, the influence of different possible
configurations of event times and censoring times, and presents the main principle
which enables derivation of optimal bounds for predictive probabilities. Sections 4.3
presents lower and upper probabilities per interval, and Section 4.4 presents lower
and upper predictive survival functions. In Section 4.5 the method is illustrated,
and briefly compared with some alternative methods, via an example. Finally, in
Section 4.6 we add some concluding remarks about the method and results presented

77
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in this chapter.

4.2 Grouped lifetime data and configurations

We consider NP1 for grouped lifetime data, where event and censoring times are
not actually observed, but only the numbers of each per interval are available, for
a finite number of intervals forming a partition of the time-axis. We assume that
indeed no further information is available on the times of events and censorings
within the intervals, that the intervals have been determined independently of the
data, and that censoring was non-informative, so it occurs due to a mechanism that
is independent of the remaining lifetimes.

We use the same notations for grouped data introduced in Section 2.5. At
the same time, we also add some new notations in this chapter. Although the
exact observation times are not given for grouped data, the orderings of event and
censoring times within the intervals (we will call this ‘configurations’) is important,
therefore, let the e, ordered event times in I, be denoted by t{ < 5 < ... < ¢Z,
and the c, ordered censoring times in I, by ¢f < cf < ... < cl. Letn, =e, +c,
be the total number of observations in I,, so n = Z:zo n, be the total number of
observations. Let I7 = [t?,t7,,) denote the sub-intervals of I,, fori =1,...,e, — 1,
with I§ = [a,,t}) and I? = [t? ,a,41). For convenience, we assume no ties in this
notation, but ties could be included without changing the main results in Sections
4.3 and 4.4 by dealing with them as described in Section 3.6.

To develop NPI based on such data, the obvious problem is that the exact ob-
servation times, as needed for the M-function values for T,,, in the definition of
rc-A(n), are not available. These M-function values depend on the order of the
event and censoring times, which is called ‘the configuration’ of the observations.
For each configuration, we would have M-function values which partially specify the
probability distribution for T, ;,, and we could derive corresponding optimal bounds
for probabilities of the form T,,; € B, for B C [0,00), as presented in Subsection
3.4.2. To derive such bounds for situations where B is equal to an interval I, (or
a union of several such intervals), it turns out that the exact location of the event
and censoring times within the intervals is not relevant, only their configuration.
As there is a finite number of possible configurations, one could calculate the M-
function values according to all possible configurations, calculate optimal bounds
for T, 41 € B for each configuration, and take the minimum (maximum) of the lower

(upper) bounds per configuration as the lower (upper) probability for this event,



4  Nonparametric predictive inference for grouped data 79

that is the maximum lower (minimum upper) bound that can be justified without
adding any further assumptions about the configurations. Although this is a natural
way to proceed, the amount of computation involved would be enormous, making
this approach not feasible for all but the smallest data sets. Luckily, however, we
can derive these optimal bounds far quicker, as we can derive the configurations that
actually lead to such bounds, therefore deleting the need to calculate M-functions
for any other configurations. Such ‘optimal configurations’ will be presented in the
next two sections, considering events T, € B with B = I, and B = [a,,00). The

corresponding optimal configurations are all based on the following principle.

Theorem 3 (Optimal Configuration Principle, OCP)

If a pair of neighbouring observations consists of an event time ¢; and a censoring
time c;, then, for any given set of further data consisting of u« — 1 event times and
v — 1 censoring times, the particular order of ¢; and ¢; influences the M-function

values for T, according to rc-A), as follows:

Let C(tc) be the configuration for which ¢; < ¢;, and let C(ct) be the configuration
for which ¢; < t;. Let Mf.  denote the M-function values corresponding to C(tc),
and Mg those corresponding to C(ct), based on rc-A). Then:

1. M-function values on intervals before t; and ¢ do not depend on the
order of t; and ¢;. So, for intervals (¢;,¢;41) and (ck, ti1), with £ <

min(t;, ¢;), we have that

MTn-H (ti) ti+l) = MTn+l (t,', t,'+1)

MTn+1(cl;:ati+1) = MT,.+1(Ck, tit1)-

2. M-function values on intervals after ¢; and ¢; are larger for C(tc) than
for C(ct). So, for intervals (t;,2:4+1), with ¢; > max(t;, ¢;), and (ck, tiyy),
with ¢, > max(t;, ¢), we have that

ME, (titin) > Mg, (4, ti),

MT,,.H(ck’ tiv1) > MTn+1(Ck’ tiy1)-

Proof

The relations between the different M-function values in OCP follow directly from
the definition of rc-Ay), as for intervals before ¢; and ¢, all the factors in the prod-
ucts in the definitions of the M-function values are not affected by the order of ¢,

and ¢, while for intervals after t; and ¢, all these factors but one remain unchanged,



4  Nonparametric predictive inference for grouped data 80

and the one changing factor is larger for C(tc) than for C(ct), since 7., is one smaller
for C(tc) than for C(ct). O

It turns out that OCP is sufficient for the inferences considered in the next two
sections, as the optimal configurations of the event and censoring times per interval,
leading to the lower and upper probabilities presented in Sections 4.3 and 4.4, will
be justified straightforwardly by OCP. If one would wish to consider inferences on
events T,,,; € B, with B not consisting of one or more of the intervals I,, then fur-
ther aspects of the configurations may need to be considered. For OCP we did not
consider the tied observation t; = ¢;, as the way that NPI would deal with such a tie
introduced, as presented in Section 3.6, would not affect the optimal configurations,

which is the reason why we do not have to focus on possible ties within grouped data.

4.3 Predictive probabilities per interval

In this section, we consider the probability that a future observation falls in one of
the predetermined intervals I,, based on grouped data consisting of n observations,
using the notation introduced in Section 4.2 and the assumption rc-A,). Clearly,
we cannot derive precise probabilities for such events, both due to the nature of the
M-functions in rc-A(,) and the way that the data are presented, without knowledge
of the exact configurations within the intervals I,, 2 = 0,1..., k. Instead, we derive
optimal bounds for these probabilities, i.e. the maximum lower bounds and minimum
upper bounds that can be justified on the basis of the grouped data and rc-Ap,.
These bounds are lower and upper probabilities [57], denoted by P(T,4, € I,) and
P(Tny1 € L), respectively. The lower probability P(Tn4, € I,) is determined by
only summing up the probability masses that necessarily must be in I,, according
to the M-function values and the particular optimal configurations for all relevant
intervals for which this probability mass is minimal. The upper probability P(T,; €
I,) is determined by summing up all probability masses that could be in I,, with
the configurations for which this total probability mass is maximal. The principle
OCP, derived in Section 4.2, is sufficient to derive the configurations corresponding
to these lower and upper probabilities.

We first consider the lower probabilities P(T,, 41 € I,), for z = 0,1,...,k. For
given configurations for each of the intervals, this lower probability is derived by

only summing up the M-function values, according to rc-A(,), on intervals that
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are fully within I, = [a,,a,41), so summing up the values Mry,,, (t?,t%,) and the
My, (ck, tig1) with (¢}, ti41) C (85,82,,), fori=1,...,e, — 1.

Let us now consider the configurations for all intervals I, t = 0,1,...,k, that
lead to minimum probability for T,,,; to be in a particular I,, so the configurations
for which the above M-function values are minimal, we denote these configurations
as C; (1), and they are specified in Theorem 4.

Theorem 4 (Configurations for P(T,,; € I,))
Consider NPI, based on rc-A,, for grouped data. For z = 1,...,k—1, the following
configurations lead to minimum probability mass for T}, in I,:

Cr. () ={c, <ti}, fort<z,

where {cf, < t!} is used to denote that all censorings in I, are assumed to take place

before the event times. The optimal configuration of the interval I, itself is:
Q],(Iz) = {ti, < Cf}’

so all events are assumed to happen prior to the censorings in this interval. Finally,
the configurations in intervals beyond I, do not influence the M-function values
within 1., so we do not need to specify C, (I;) for t > z.

For Iy, the only configuration that affects the M-function values within this
interval is that of I itself, for which the optimal configuration is

Cr,(To) = {te, < €1},

and C (I;) does not need to be specified for ¢ > 0.

For I = [ak,00), the configurations of all intervals I, with ¢t < k are relevant,
but the actual configuration within I plays no role, as this configuration would

effectively only serve to move probability mass within this interval. Hence,
Cr () ={c, <ti}, fort <k,

and C;, (1) does not need to be specified.

Proof

These optimal configurations follow by (possibly repeated) application of OCP, pre-
sented in Section 4.2. For example, when considering I, with z = 1,...,k, OCP
implies that, for all intervals I, with ¢t < z, any pair of neighbouring event time t;

and censoring time c¢; within such an interval should be configured like C(ct), in
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Theorem 3, so the censoring should be assumed to occur before the event time, in
order to minimize the M-function values that together make up the lower proba-
bility for 7,4, € I,. For any configuration, OCP can be applied repeatedly, every
time moving a censoring time ¢;, that is immediately to the right of an event time
t;, to the left of £;. This can be continued until all censoring times in each interval
I, with t < 2, are assumed to occur before the event times in the same interval,
leading to {cf, < t{} fort < z.

The optimal configuration in the interval I,, for 2 = 0,1, ...,k — 1, follows from
a simple argument, namely that the configuration C; (I,) must be the configuration
that leads to maximum M-function values within the later intervals, I; with ¢t > z,
as the sum of the M-function values in I,,1,,,,..., I; is constant once the optimal
configurations in the earlier intervals I; with ¢ < z are determined. Hence, with a
similar argument as before, (possibly repeated use of) OCP leads to

C (L) = {t;, < i}
so all event times are assumed to take place before the censorings in I,.

An optimal configuration not yet covered is C;, (1), but clearly different config-
urations in I} will affect the particular M-function values on intervals within I}, but
the sum of these M-function values remains constant as there are no intervals to the
right of I that can take over some of the probability mass that is in I;. Similarly,
changes in configurations within intervals I;, with ¢ > 2, have no relevance for the
M-function values within I,, so do not need to be considered when determining
E(Tn+1 € Iz)- D

With the optimal configurations for P(T,,, € I,), as given in Theorem 4, and
the definition of M-function values in rc-A(,), these lower probabilities can now be
determined by summing only M-function values on intervals that are completely
within I,. It is important to remark that here, as in the rest of this chapter, we
assume that no single observation coincides with one of the values a, that create the
grouped data partition. (This would slightly complicate matters, but as we assumed
that the a, were determined independently of the data, and indeed probably before
the data became available, this seems a reasonable assumption, even more since we
do not actually know the precise observation times.)

Theorem 5 (P(T,,; € I,))
For grouped data, using the notation introduced in Section 4.2, the lower proba-
bilities for the events T,,,; € I,, with z = 0,1,...,k, according to the assumption
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rc-Ag), are

e
P(T,4, € Io) = n—il’

P(T,e€l,) = 0, forz=1,...,k—1, ife, € {0,1},

e. — 1 z—1 ¢
P(Thmel) = Z—2« (1+ _ )
" n+1 g n—vazlonw—cle
forz=1,...,k—1, ife, > 2,
k-1
N Ct
Pl € l) = x (1+ )
( n+1 k) n+1 g n— fu_ionw—Ct'f'l

Proof
(i) First we consider the lower probability for Ty, € Iy. When ey = 0, which means
no event times in Iy, the lower probability for 7;,,; € I is clearly equal to zero.

Now let us consider the case of ey > 0. According to Theorem 4, C (Io) is given as

0

<. <th <d<...<.

Based on this configuration, the lower probability for T, ,; € I, is

B(Tn+1 EI()) = P(Tn+1 eIg)+P(Tn+1 € I?)++

P(Tny1 € I3 _ ) + P(Tny € I2),

where P(T,4, € Ij,) is the lower bound of the probability for Ty, € I3 . From
NPI based on rc-Agny, P(Thy1 € ISO) can actually be zero. Obviously, for this
configuration P(T,; € I?) is equal to 1/(n+ 1) for all i = 0,1,...,ey — 1, so the
lower probability for T4, € Iy is equal to ey/(n + 1).

(i) Now let us consider the lower probability for T4, € I,, 2 =1,...,k — 1. First
we consider e, € {0,1}. Based on the optimal configurations (Theorem 4), it is clear
that no probability mass for T, is necessarily within I,. So the lower probability
for T,,+1 € I, is equal to zero according to NPI based on rc-Ag).

Next we consider the case e, > 2. The lower probability for T}, ,, € I, is derived
by summing only the probability masses that necessarily must be in I,. Therefore,
from the optimal configurations (Theorem 4), the lower probability for 7, € I, is

PTon€l,) = Plap €)+P(Th€lf)+...+
P(Thn € I, _1) + P(Thy € 7)),
where P(T,;; € I§) and P(T,4; € I7,) are lower bounds of the probabilities for

Tn41 € I§ and Ty € 17 . From NPI based on rc-A(y), these two lower bounds can
both be zero. So, the lower probability for T, € I, is equal to

P(Th€1) =P €1f) ...+ P(Tay1 € IZ ).
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For the optimal configuration of P(T,,,; € I,), clearly, there are no censoring times

in If,...,IZ _;,s0
Pl €lf)=PThnw€ly)=...=P(Thp € I7_)),

and these probability values are equal to P(Tn41 € (¢8272,157")) (Corollary 1). For
the optimal configurations, we can derive P(Tn41 € (8272,¢{7")). To complete the

proof we now show that the probability for T, € (t272,¢{'), corresponding to

such configurations, is

1 z—1 c
P(T,,, € tz-z,tz_l = X 1+ : ) 41
(Tn41 € ( e=2 "1 ) n+1 g( n—ZfJio"w—Ct“) D

For the interval (0,t(), under C; (), {c), < t?}, using Theorem 2 of Section
3.4, we have

1 Tle,, +1
P(T, ) = —_
T €@ 8) = —5 I ~2
{r:c(<t$} )
1 n+1

X
n+l n-c+1
1 Co
- L ie—2 ),
n+1 (+n—00+1

as stated in (4.1). Next we use an induction step to complete the proof. Assume,
for h € {2,...,2 — 1}, that

h-1
1 Ci
P(Tpa € (802, 6071) = x 11 (1 + - )
" oz n+1 t=0 n_Z:uzlonw_ct'f'l

For C'; (I5-1) and C; (1) using Corollary 1 of Section 3.4, we get

nn + 1
h— h h— h— c
P(Tﬂ+1 e (teh_ll’tl)) = P(Tn+1 e (teh_ll-l’ teh_ll)) X ( ';'Lch )
Ch
h— h—
= P(Tn+1 e (teh_ll—l’teh_ll ) X
Ch
(1+ . ).
n— Zz;)nw —cp +
For C; (In_1), it is known that there are no censoring times in mn ..., Ié‘h—_ll_l, SO

we have
P(Toyr € (807" 1, 1071)) = P(Tnyr € (8272, 6871)).

en—1—1""ep €p—-2?



4  Nonparametric predictive inference for grouped data 85

Continuing the calculation above,

P(Tn.H € (th ! th)) = P(Tn+l (S (th 2 th 1)) X

ep—1’ €p—2?

Ch
1+ )
( n—zh_lnw—ch+1

w=0
1 Al c
- el )
n+1 tll n — fclonw—ct+1
Ch
x{1+ — )
n—ZZJ:})nw—ch+1
1 h c
= X (l—l— ’ ),
n+1 1;! n—ZfU_lonw—ct—i-l

which completes the proof for the probability of P(T,,4, € (£27 22,tz 1)), given as

(4.1), so the lower probability for T,,;; € I,, for 2 = 1,...,k — 1, if e, > 2, is as
stated in the corollary.

(iii) Finally we consider the lower probability for Ty, € I;, which is
P(Topr € It) = P(Typ1 € I§) + P(Toy € If) + ...+ P(Toy1 € IE).

As presented in Theorem 4, under C 1, (Ix), the order of event times and censoring
times is irrelevant. But for calculation of P(T,,, € I;), we need to assume an order

of these lifetimes in I;. For convenience to calculate, here we assume

th<cf <<k <th.

For such an order of lifetimes in I, we know that P(T,;, € I¥) =0, and P(T,4, €
I¥) = -+ = P(Tpyy € IF). Similar to the analysis in (i) and (ii), P(T41 € Ix) can
be derived via

P(Tpy1 € It) = ex P(Tyyy € IF).

Under the optimal configuration for P(T,.; € I;), we can use formula (4.1) to get

P(Tpy1 € (t572 51

Ct
, x” 1 )
€p—2 n+1 ( + Zt—l —ct+1

w=0 Ny

By Corollary 1 of Section 3.4, we have

_ €x + Ck
P(Tn+1 € I{c) = P(Tn+1 € (tlgk 22’ tllc 1)) x ex
k-1
€r + Ck ( Ct
BT | ((r— )
(n+ 1ey ]’:‘! n—quzlonw—ct-!-l

Hence, by using P(Ty,+1 € Ii) = ex P(Ty1 € I¥), the lower probability for T, € I
is as stated in the theorem. O
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These optimal configurations can of course not hold simultaneously, if indeed
there are censored observations in the relevant intervals, which immediately confirms
the super-additivity of such lower probabilities [57], i.e.

P(Thy € LUL) > P(Toyy € 1) + P(Tpy1 € ), for 2 # t,

where the inequality is strict if there are censored observations in intervals which
affect the relevant M-function values as described in Theorem 4.

The upper probabilities P(T},,, € I,), for z = 0,1,...,k, are derived in a sim-
ilar way as the lower probabilities above, but now all the probability masses, as
specified by the M-function values, that could actually be within I, are included.
The optimal configurations are specified in Theorem 6, using C, (I;) to denote the
configuration in I, that leads to maximum probability for T, to be in I,.

Theorem 6 (Configurations for P(T,,,, € I,))
Consider NPI, based on rc-A¢,, for grouped data. For 2 = 1,...,k—1, the following
configurations lead to maximum probability mass for T, in I,:

Cr.(l)={tl, <}, fort <z
The optimal configuration of the interval I, itself is:
Cr(l,) = {c, <ti}.

The configurations in intervals beyond I, do not influence the M-function values

within I,, so we do not need to specify Cy, (I;) for t > z.

For Iy, the optimal configuration is
610(10) = {CgO < t(l)}a
and Cp,(I;) does not need to be specified for ¢ > 0.

For I, the optimal configurations are:
Cr(L)={t, <}, fort<k,
and Cj, (I) does not need to be specified.

Proof
These optimal configurations follow again from OCP, along the same lines as the
proof of Theorem 4, but of course now using OCP to derive the maximum probabil-

ity mass in I,, leading to configurations where, when compared to those in Theorem
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6, the order of all events and all censorings per interval is turned around. O

The optimal configurations for P(T,;, € I,), as given in Theorem 6, and the
definition of M-function values in rc-A(,), lead to the upper probabilities in Theo-
rem 7, where all M-function values on intervals that have non-empty intersection

with I, are summed up to give the upper probability for 7,,,, to be in I,.

Theorem 7 (P(T,, € 1,))

For grouped data, using the notation introduced in Section 4.2, the upper proba-

bilities for the events T,,, € I,, with z = 0,1,...,k, according to the assumption
rc-An), are
— e,+1 i2 Ct
P(Tiel) = o< [TI(1+ )]
" ¢ n+1 ol n—zfu=0nw—ct+1
. (1 + C;—1+cC, )
n—qu_:lonw—cz+1 ’

where the product term is defined as one if the product is over an empty set, and

c_1 = 0.

Proof

For interval I, = [a,,a,4+1), z = 0,1,...,k, the upper probability for T,,, € I,
is derived by summing all probability masses which can be in I,. There are e,
event times in I, leading to e, + 1 sub-intervals, I§, If,...,I7, created by these
event times, that have non-empty intersection with I,. Therefore, under the optimal

configuration, the probability for T,,,; € I, is
P(Tpn€l) = Py €R)+P(Tpy €IF) +... +
P(Thw € IL_) + P(Thp € I7),
where P(T,4y € I§) and P(T,y; € IZ) are upper bounds of the probabilities for
Toy1 € I§ and T,y € I, respectively. It is clear that there are no censoring times
in If,...,IZ | under the optimal configuration for P(Tni1 € 1,), s0
P(Tn+1 € If) = P(Tn+1 € I;) =...= P(Tn+1 € I:z—l)'

Under C,(I,_;) and Cy,(I,), using Corollary 1 of Section 3.4, we get
Cz—1+C; )
n-3tn,—c,+1/

w=0

P(Tp € IF) = P(Tpyy € IF1) x (1 +

Now we prove that the probability for T4, € I77 ! is

1 Ct
Py e IF7Y) = X 1+ . 4.2
( +1 1 ) n+1 g( n—nyzonw.*.l) ( )
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When z = 1, under Cy,(ly), P(Tpy1 € I?) = 1/(n + 1), as expressed in (4.2).

Next, we use induction to complete the proof. Assume that, for r € {2,...,2 — 2},
that .
P(TnHeI;):LxTH(H o )
n+l 1o n— . olw+1
then using Corollary 1 of Section 3.4,
P(Tpp1 € YY) = P(Tpp € I7) x (1 + — E::o — 1)
= 1 X | (1 + “ )
n+l LoV =30 one+1

x(1+ o )
n—3 oMy +1

1 Ct
= X 1+ ),

which completes the proof for the probability of P(T,,; € I7™!). Under Cy,(I,),
P(Toy1 € I§) and P(Tyy, € I? ) are equal to P(T € If). Then, from (4.2), the
upper probabilities for T,,,, € I, follow as stated in the theorem. O

As for the lower probabilities above, these optimal configurations cannot occur
simultaneously if there are censored data in the relevant intervals. This confirms
sub-additivity of such upper probabilities [57], i.e.

P(Th1 € LUL) < P(Ty € L) + P(Tyy € 1) for z #

with strict inequality if there are censored observations in intervals which affect the

relevant M-function values according to Theorem 6.

Example 11

The grouped lifetime data set in this example is given by Coolen [14] as an illustrative
example. Now it is used to illustrate the lower and upper probabilities for T, in
intervals as presented in this section. Table 4.1 gives the data and the related lower

and upper probabilities.

The example illustrates that, if there are more censored data in an interval I,,
the difference between lower and upper probabilities increases.
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Interval | e, | c, | P(Tso € I,) | P(Ts9 € 1)
I 6] 0 0.1017 0.1186
I 201 1 0.3220 0.3628
I 171 2 0.2764 0.3356
I3 121 0 0.2211 0.2622

Table 4.1: The lower and upper probabilities for Ts9 € I, (Example 11).

4.4 Predictive survival functions

In this section, we derive lower and upper probabilities for the events that T, is
greater than ¢, for ¢ € I,, which define lower and upper survival functions for T,
for grouped data, denoted by Sr, . (t) = P(T41 > t) and St,,, () = P(Thy1 > t),
respectively. The super-additivity and sub-additivity of lower and upper proba-
bilities, respectively, mentioned in Section 4.3, prevent us from using the results
from Section 4.3 directly. Instead, we must again find the optimal configurations,
which luckily turn out to be rather straightforward in this case. We present these
configurations together with the upper and lower survival functions based on these
configurations, in Theorems 8 and 9. At the same time, some further, but straight-

forward, notation for the optimal configurations is introduced in these theorems.

Theorem 8 (St ., (t))
Consider NPI, based on rc-Ay), for grouped data. Using the notation introduced
in Section 4.2, the upper survival function St,,,(t) = P(Tp41 > t), at t € I, is

obtained for the configurations
6i (I,) = {t,, <}, forv<z.
For I,, the optimal configuration is:
C, (I,) = {t < min(tZ, ¢?)}.

The configurations in intervals beyond I, do not influence §Tn " (t), for t € I,, so we
do not need to specify 5i (1,) for v > 2.

The corresponding upper predictive survival function can be derived as follows.
Let S, denote the value of the upper survival function for ¢t € I, = [@z,a,41), with
z=0,1,...,k, then,



4  Nonparametric predictive inference for grouped data 90

and, for z > 1,
§z = §z—1 - ez—lpz—l,
with
P=—
n+1’
and, for z > 2,
z—1 _ 22 1— ny—::i) Ny — €2+ 1
p =P X z—2 '
n—3Y o oNw+1
Proof

The proof of the optimal configurations follows again from OCP, but the optimal
configuration of the interval I, takes a bit more consideration now, as we are actually
interested in the upper survival function at time ¢ € I,. To get maximum probability
mass to the right of ¢, all observations in I, are assumed to be greater than ¢, in
which case the actual ordering does not influence the upper survival function value
at t.

Next, we determine the value of the upper survival function for t € I, =
[az,a;41). First, consider ¢ € Ip. According to the optimal configuration, it is
known that all probability masses defined via M-function values on intervals which
are (partially) in Iy, can be assumed to be in (t,00), so all probability masses for
Th+1 can be in (¢,00), which implies that St .1(t) is equal to one for ¢t € Iy, so
So=1.

Now we consider the upper survival function for St,,,(t) fort € I,, 2 = 1,... k.
All probability masses defined via M-function values on intervals which have non-
empty intersection with I, can be assumed to be in (¢,00), so this upper survival
function is the sum of all probability masses which could be in [a,,00). For t € I,

we have

S:=S8:a— [P(Tann € G+ P € [+ + P(Tan € I )],

z—1—1

as S, is equal to S,_; minus the probability masses that necessarily must be in I,_;.
Clearly, P(T,y1 € IF™!) is equal to P(Tpy, € (tg(“ﬁz), t:7 1) for 2 = 2,...,k, and

P(Typy1 € I§) = P(T,y1 € ID). For the configuration 5i([z_1), P(T,y1 € IF7Y) and
P(T,y €I Y, fori=1,...,e,_1 — 1 are equal. So

gz = gz—l - ez—IP(Tn+1 € If_1)~

Using Corollary 1 of Section 3.4,

z—3
- szo Ny — €;-2 + 1

n
P(Tp1 € IFY = P(Tyq € I772) x
(n+1 1 ) ( +1 1 ) n—Z:U_:z()nw+1
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To simplify the notation, denote P(T,,, € I!) as p" for h=0,1,...,2 — 1, then
gz = §z—1 - ez—lpz_1
with Sg = 1, and

2—3
z—1 z—2 x n— Ew:O Ny — €9+ 1
2-2
n—y Ny +1

with p° = 1/(n + 1). O

, forz > 2,

Obviously, we use the fact that no information is provided by grouped data
except the number of event times and censoring times. Because the event and cen-
soring times in I, = [a,, a,4;) could be anywhere in this interval, without additional

assumptions, this implies that
§Tn+1(t) = §Tn+l(a2)’ forallte I, = [az, az+1)'

Therefore, the upper survival function St ,,(t) is a step-function, which only de-
creases at the a,. The upper survival function is constant on I,, so it is continuous
from the right at points a,.

Next we consider the lower survival function, Sy, o (t), which is also a step-
function, but we will show that it is continuous from the left at a,, so St +l(t) is
constant on (a,, a,1], which is denoted as I, = (a,, a,4,]. The optimal configuration

and formula to calculate Sy, ., (t) is given in Theorem 9.

Theorem 9 (Sr, , (t))

Consider NPI, based on rc-Ay), for grouped data. Using the notation introduced
in Section 4.2, the lower survival function Sy, (t) = P(Th4 > t), at t € I, =
(az, a.41), is obtained for the configuration

C3 (L) ={c <}, forv<z.

=I, Cy

The optimal configuration of the interval I, takes a bit more consideration now,
as we are actually interested in the lower survival function at time ¢t € I,. To get
minimum probability mass to the right of ¢, all observations in I, are assumed to
be less than ¢, and again ordered such that the censorings are assumed to happen
before the event times:

QIS,(IZ) ={cl, <t} and t <t}
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The configurations in intervals beyond I, do not influence S, w(t), fort e I,, so we
do not need to specify Qi([v) for v > 2.

Based on the assumption rc-A,) and such grouped data, the lower predictive
survival function can be derived as follows. Let S; denote the value of the lower
survival function at ¢t € I, = (a,, a,41], for z=0,1,...,k, then,

n—ng
S5 = ——,
=T - c+1
and, for z > 1,
S; =851 +¢ " = (e. + )¢,
with
=t
n—cy+ 1
and, for z > 1,
z z—1 n-— qu_:lo Ny +1
n—3 i n,—c, +1
For completeness, it seems reasonable to define S5 = 1, assuming that no events or

censorings actually happened at time 0.

Proof

The proof of the optimal configuration follows again straightforwardly from OCP.
Next, we determine the value of the lower survival function for t € I, = (@zyaz41).
For convenience, we denote [? = (t7,t,,] which are sub-intervals of I,, for i =
1,...,e, —1,and If = (a,#}] and IZ = (t2, a,41).

First, we consider the lower survival function Sy, , (¢) for ¢ € Iy. According to
the optimal configuration, all probability masses defined via M-function values on
intervals which have non-empty intersection with  can be assumed to be in (0,t), so
the total probability mass for T}, that necessarily must be in (¢, o), corresponding
to Q?o (Ip), is

S5 = 1=P(Thp € ) x (eo+1)
60+1

n—c+1
n—ng

n—c+1

= 1-

Now we consider Sy, (t) for t € I,, z=1,...,k. This survival function is the sum
of probability masses which necessarily must be in (¢, 00). According to the optimal
configuration,

S; = 8,21 —P(Tha € ig) — P(Th1 € if) —r T
P(Tuw € IZ,y) = P(Tun € I7), (4.3)
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as S; is equal to S,-; minus the probability masses that is possibly in I,. Equation
(3.3) implies that
B(Tn+1 € ig) = P(Tn+1 € (t:,__ll’ti)) - MTn+1(tz—1 ti)’

€;—1?

and
F(Tn.;.l S sz) = MTn+1(t:,’ti+l)'

According to the optimal configuration and Corollary 2, we have
Mr,,, (t271,88) = P(Th € FY=...=P(Tw € f:z__ll_l)
Mr, (82, 6") = P(Twn € If) = ... = P(Top € I2._).
So (4.3) can be expressed as
S; =8,21+ P(Tnyy € 7Y — (e, + 1)P(Toyy € I).
By using the notation ¢" = P(T,;; € I?), for h=1,..., u, we have
S;=8,-1+¢ ' — (e, + 1)¢".

Using Corollary 1 of Section 3.4,

Cz

qz:qz—lx(1+ -
n—3Yr tn,—c,+1

),

and for ¢°, using Theorem 2 of Section 3.4, we have

1

= P(Tpp €)= ———.
q (To+1 € 1) n—co+1

This completes the proof. O

Example 11 (continued)

The grouped lifetime data given in Example 11 are now used to illustrate the lower
and upper survival function for 7, ;. Table 4.2 gives the corresponding values of
S, (t) and S, (¢), for t € I, and t € I, respectively, for z =0,1,...,3.

These lower and upper survival functions illustrate some of the issues by using
NPI to grouped data. For example, although there are less event times in the in-
terval I, the difference of upper and lower survival function values in this I is still
larger. This is because M-functions for intervals within I, depend on censoring in I;.
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Interval | Sp, (t) || Interval | Sp,,(2)
JA 0.8814 || I 1
I 0.5355 || I 0.8984
A 0.2211 || I, 0.5593
I 0| I 0.2622

Table 4.2: Lower and upper survival function for grouped data (Example
11).

4.5 Comparison with alternative nonparametric

methods

In this section, we compare the results presented in Sections 4.3 and 4.4 with alter-

native nonparametric methods for grouped data, which were introduced in Section
2.5.

First, we compare the lower and upper survival functions with the so-called stan-
dard life table estimator, which we denote by S(t). The standard life table estimator
provides an estimate of the underlying population lifetime distribution function, so
its aim is not directly prediction as it is in our method. It deals with censorings
per interval by effectively assuming that censorings took place at the middle of the
interval, enabling a precise estimate of the survival function corresponding to the
underlying lifetime distribution at the time points a; which create the intervals. This
estimator does not consider other time points. We do not discuss further variations,
which can often be interpreted as following from slightly different assumptions for
the exact censoring times within an interval [48].

Secondly, we compare our inferences with the imprecise Dirichlet model (Coolen
[14]), which gives bounds for estimated values of parameters 6, in a Bayesian multi-
nomial model, where the categories are the same intervals as used in this chapter,
and the parameters have the standard interpretation in terms of proportion of a
large population to fall in each of these intervals, so again the inferential goal dif-
fers from our method, although the corresponding Bayesian predictive probability
would suggest the probability for a future observation to fall in a particular inter-
val to be equal to the expected value of the corresponding parameter, which allows
comparison with our method. However, censorings are dealt with differently in the
imprecise Dirichlet model, as they are only assumed to take place at times a,. In the

example below, the ¢, censorings within interval I, are, for the imprecise Dirichlet
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model, assumed to take place at the right-end point a,,; of this interval, so after
the e, event times in this interval, which explains why the corresponding bounds for
the expected parameter values, E(6,) and E(6,), are relatively close to our upper
probability P(T,4, € I,), which is based on similar configurations for the intervals

left of I,, as shown in Section 4.3.

For completeness, we should remark that the imprecise Dirichlet model [14] re-
quires specification of one parameter (denoted by s in [14, 58]), which effectively
controls the size of the set of corresponding Bayesian prior distributions. For larger
values the bounds for the expected values can fall outside our corresponding lower
and upper probabilities as based on rc-A,.

It should be remarked that these methods all give numerical values which are
quite similar. The underlying reason is that all can be explained, with some small
variations according to goal of inference and the assumptions added for dealing with
the censorings, via Efron’s [32] redistribution of probability mass process, which in
addition also underlies well-known nonparametric methods for inference based on
right-censored data, such as the product-limit estimator by Kaplan and Meier [46].
Next, the comparison is illustrated using data from the literature.

Example 12

The data set used in this example is given by Berkson and Gage [5], to describe the
survival experience of a group of patients who underwent operations in connection
with a type of malignant disease. The data were also used by Lawless [48] to
illustrate the standard life table estimator. Effectively, the time-axis (in years) is
partitioned into 11 intervals I,, with a total number of 374 observations, consisting

of e, event times and c, censoring times per interval, as given in Table 4.3.

Table 4.4 presents the lower and upper predictive survival functions, as derived
in Section 4.4, together with the corresponding survival function estimates according
to the standard life table method [48)], at points a,, denoted by S(a,). We can find
that the value of this standard life table estimator at a, is always between our lower

and upper survival functions for T, at a,.

The standard life table method does not define the survival function estimate
at other time points, the values of the lower and upper survival functions based on
rc-A(n) at other ¢ are given in Table 4.5. As discussed, Sr,..(t) =S¢, 1 (@z41) for
t € I, = (a;, 0,41, S, (t) = Sr.,,(a,) for t € I, = [a, a,41). In the final interval,
beyond a;9 = 10, the lower survival function is equal to 0, whereas the upper survival
function remains equal to 0.236 without any further assumptions added.
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I, € Cg
0,1) 90 0
,2) 76 0
2,3) 51 0
3,4) 25 12
4,5) 20 5
56) 7 9
6,7 4 9
7,8) 1 3
8,9 3 5

9,10) 2 5
(10,00) 47 0

Table 4.3: Event and censoring times per interval.

a: Sy, (a:) Styla;) S(a.)
0 I 1 1

1 0.757 0.760 0.759
2 0.555 0.557 0.556
3 0.419 0.421 0.420
4 0.346 0.355 0.350
5 0.286 0.296 0.291
6 0.262 0.275 0.268
7 0.247 0.261 0.254
8 0.243 0.257 0.250
9 0.230 0.245 0.237
10 0.220 0.236 0.228

Table 4.4: Lower and upper predictive survival functions, and standard life
table estimator.

(az, az+1) §Tq7r, (t) ST375 (t)
(0,1) 0.757 1
(1, 2) 0.555 0.760
(2, 3) 0.419 0.557
(3, 4) 0.346 0.421
(4, 5) 0.286 0.355
(5, 6) 0.262 0.296
(6, 7) 0.247 0.275
(7, 8) 0.243 0.261
(8, 9) 0.230 0.257
(9, 10) 0.220 0.245

(10, OO) 0 0.236

Table 4.5: Lower and upper predictive survival function for (a,,a,4).
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Table 4.6 gives the lower and upper probabilities for 7}, € I,, together with the
lower and upper expected values for the parameters 8, (s = 1,2) in the imprecise
Dirichlet model [14].

rc-Ae) imprecise Dirichlet model
s=1 s=2
Iz _B(T375 € Iz) P(T375 € Iz) E(Gz) E(oz) E(Oz) E(az)
0,1) [0.2400 0.2427 0.2400 0.2427 | 0.2394 0.2447
1,2) | 0.2000 0.2053 0.2027 0.2053 | 0.2021 0.2027
2,3) |0.1333 0.1387 0.1360 0.1387 | 0.1356 0.1410
3,4) | 0.0640 0.0750 0.0667 0.0693 | 0.0665 0.0718
4,5) | 0.0548 0.0642 0.0586 0.0616 | 0.0584 0.0643
5,6) |0.0181 0.0272 0.0216 0.0247 | 0.0215 0.0276
6,7) | 0.0100 0.0193 0.0137 0.0172 | 0.0137 0.0205
7,8) |0 0.0081 0.0039 0.0078 | 0.0039 0.0116
8,9) |0.0078 0.0177 0.0122 0.0163 | 0.0121 0.0202
[9,10) | 0.0043 0.0147 0.0089 0.0133 | 0.0088 0.0176
(10, 00) | 0.2200 0.2357 0.2313 0.2357 | 0.2292 0.2380

Table 4.6: Lower and upper predictive probabilities for T, € I,, and lower

and upper expected values for 8, in imprecise Dirichlet model.

Table 4.6 illustrate some of issues addressed in discussion above. For example,
the corresponding bounds for the expected parameter values, E(6,) and E(6,), are
relatively close to the upper probability P(T,,, € I,). In this example, we see that,
for s = 1, P(T,4, € I,) > E(6,) holds for all z, but this inequality does not hold
generally for s = 2. It is difficult to prove this inequality for s = 1, because the
calculation vectors of these two methods are really not the same when applied. It
should be noticed that, for s = 1, P(T,,;, € I,) and E(8,) are equal when there are
no censorings in Iy, for ¢t < z. There is only one event time in the interval [7,8),
which leads to P(T375 € [7,8)) is equal to zero. These upper and lower predictive
probabilities illustrate the issues of using NPI to grouped data, i.e., the difference
of upper and lower probabilities in I, is larger following more censorings happening
before 1,.

4.6 Concluding remarks

The inferences for 7}, based on grouped data including right-censored observations
presented in this chapter, are directly in terms of lower and upper probabilities for

Th41 € I, and the lower and upper survival functions of T;,,;. Related methods
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such as those given in Section 2.5 require the use of additional assumptions about
the event times and censoring times. In our method, the optimal configurations
for lower and upper probabilities are not the same for different events, leading, for

example, again to sub-additivity of lower probabilities.

It is important to consider how these lower and upper probabilities can be used
and interpreted. Although they could be considered from a Bayesian perspective,
the most logical interpretation has a more classical frequentist nature, in the sense
that, if the method were applied very often, the lower and upper probabilities would
be bounds on the frequencies with which the relevant events would occur. It is clear
that, if there are only few data, these bounds may become wide, hence may not
lead to strong enough inferences, which would indicate that either more data or
additional assumptions are necessary. Finally, we should remark that, if the exact
event and censoring times were actually known, then the corresponding lower and
upper survival functions (as presented in Chapter 3) would of course be within the

bounds for grouped data as presented in Section 4.4.



Chapter 5

Nonparametric predictive
comparison of two groups of

lifetime data

5.1 Introduction

This chapter applies right-censoring A, and corresponding nonparametric pre-
dictive inference (NPI), as presented in Chapter 3, to the problem of comparing
two groups of data, or, if one prefers to use such terminology, two underlying pop-
ulations, where the data include right-censored observations. The comparison is
based on the lower and upper probabilities for the event that the next observation
from one population is greater than the next observation from the other population.
This generalizes the results presented by Coolen [13], who did not allow censoring.
Throughout this chapter, we again assume that censoring is non-informative, as
discussed in Section 3.2. We also assume that the two populations compared are in-
dependent, in the sense that any information about the random quantities from one
population does not influence our inferences on random quantities from the other

population.

Section 5.2 presents the main result on predictive comparison of two groups of
lifetime data. In Section 5.3, the method is illustrated, and briefly compared with
an alternative nonparametric method, as discussed in Section 2.6, via two examples.
In Section 5.4, we briefly discuss how the method can be adapted for dealing with
tied observations, and we add some concluding remarks about the method.

99
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5.2 Predictive comparison of two groups of life-

time data

For comparison of two groups of lifetime data, we use the notation as introduced in
Chapter 3, but consistently add an index, a or b, corresponding to the groups, which
are called A and B. For example, for group A we have n, observations, consisting of
the event times 0 < ¢,; < ... < t,,, and right-censoring times 0 < ¢, 1 < ... < € 4,,
and the right-censoring times in the interval (¢,,,t4:+1) are denoted by cfl,l <...<
sz,t.,,,-- We refer to these as A-event times and A-censoring times. Let T, ,, 41 denote
a future observation from population A, etc. Throughout we assume that there are
no ties at all among the observations. Dealing with ties is straightforward, but would
make notation more awkward, brief comments on this are given in the final section.
We assume that information on one group does not have any effect on probabilities
of random quantities corresponding to the other group, so that T, ,,+1 and T4, 41
are independent and that data from group A (B) does not influence the probabilities
for Ty n,+1 (Tane+1)- This is informally summarized by stating that the groups are

independent.

Some additional notation is required, effectively counting the number of observed
B-event times to the left of observations from A:
sp(tai) = #{tojlte; <taiyi=1,...,up}, for i=1,... u,,
sb(cfz,k) = #{t;|t,; < cfl‘k, j=1,...,up}, for i=1,...,u, and
k=1,... 1,

and, similarly, the number of right-censoring times from group B in the interval
(ts,sp(ta.:)» ta,i) is denoted by,

Sg(ta,i) = #{Cb,j | Gy, € (tb,sb(ia,i)’ ta,i), i=1,..., ub}, for i=1,...,u, +1,
where, £y q,(1, ;) i the largest event time from group B smaller than t,;.

The main results of this chapter, namely lower and upper probabilities for events
Tona+1 > Thn,+1, based on the assumptions rc-A,,) and rc-Ag,,), are presented as
two theorems. The proofs of these theorems are simplified via a lemma, which is
presented first, and which justifies the use of a variation of the theorem of total prob-
ability with conditioning on nested intervals, with probability distributions partially

specified via M-function values.

Lemma 3

For s > 2, let J; = (ji,7), with j; < jo < ... < j; < T, S0 we have nested intervals
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J1 D Jp D ... D J; with the same right end-point r (which may be infinity). We
consider two independent real-valued random quantities, say X and Y. Let the
probability distribution for X be partially specified via M-function values, with
all probability mass P(X € J;) described by the s M-function values Mx(J), so
Y 1—1 Mx(Ji) = P(X € J1). Then, without additional assumptions, we have

D_P(Y <i)Mx(J) S P(Y < X, X € Ji) < P(Y <7)P(X € Jy),
=1

and these bounds are optimal, so they are the maximum lower and minimal upper

bounds that generally hold.
Proof

For any number s of nested intervals, the proof follows the same principle, so for
ease of notation we present it for s = 3. We use the theorem of total probability to
condition further on the partition {Js, J5\ J3, J1 \ Jo} of J; for the random quantity
X. The probability distribution of X on J; is partially specified via M-function
values for X defined on Jy, J5, J3. Let M4 (J) denote the (unknown) part of the
M-function value Mx(J;) that is actually in J C J;, so we have

P(X € J3) = My(Js) + My(Js) + Mx(Js),
P(X € ;\Js) = Mx(J\Js)+ Mx(J2\ J3),
P(X € I\ ) = My(J\J),
Mx() = Mx(Ji\Jy) + Mx(J2\ J3) + Mx(Js)
Mx(Jh) = Mx(J2\ Js) + M%(Js),
Mx(J3) = M;(J3)~

These M-function values are not further specified, but we can now use the theorem
of total probability, and then derive bounds by solving the constrained optimization
problems. The lower bound follows from (with J; = @ for ease of notation)

3
PY<X,XeJ) = Y PY<X,Xe\J)
=1

3

= Y P(Y <X|X €N\ Ju1)P(X € I\ Jip1)
=1

= PY <X|X €\ L)Mx(Ji\ )+

PY < X|X € Jy\ J5)[Mk(J2\ J3) + My (Jo\ J3)] +
P(Y < X| X € J3)[Mx(J3) + M3 (Js) + My (J3)).

With the constraints on these M-function values as given above, the lower bound is

achieved by effectively putting the probability masses for X at the infimum of each
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interval on which they are defined by the M-function values, so setting
Mx(J2\ J3) = My(J3) = M%(J3) = 0,

and taking the lower bounds for the conditional probabilities for Y < X, given
X € I, for the relevant I above, by replacing X € I by X = inf(I), leading to the
terms Y < 7 in the lower bound. The upper bound can be derived simultaneously,
but is rather trivial as these nested intervals have the same right end-point. The
fact that these bounds are optimal, without additional assumptions, follows easily

from this construction. O

Bounds for the probability of T, .41 > Tpn,+1, based on the assumptions rc-
A(n,) and rc-A,), are presented in the following theorems. As these bounds are
optimal, without any additional assumptions, they are lower and upper probabil-
ities, which we denote by P(Ty n,+1 > Thny+1) and P(Tan, +1 > Thn,+1), respectively.

Theorem 10 ((P(Tan,+1 > Tony+1))
Assume that data are available from two independent groups, A and B, using the no-
tation above. Based on the assumptions rc-A(,) and rc-A,,), the lower probability

for the event T, 5,41 > Ty,+1 can be derived as
B(Ta,na—i-l > Tb,nb+1)
U

a sb(ta,.-)—l
= { [ Z P(Tb’"b+1 € (tb,j’ tb,j‘f‘l))} MTa,na.q-l (ta,ia ta,i+1)

la‘.' sb(c:;,k)_l
+ (l P(Tyny+1 € (ts,5, tb,j+1)):| Mz, .. (Cor ta,i+1)) }

Proof
The assumption rc-Ag,,) leads straightforwardly to precise probabilities for events
Tong+1 € o, for i =0,1,...,u,. We have

P(Ta.,na—H > Tb,nb—Q—l) = ZP(Tb,nb+l < Ta,na+1aTa,nu+1 € (ta,i)ta,i+l)), (51)
=0
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and applying Lemma 3 for each of the terms within this sum, we get
P(Tona+1 > Tomy1)

Ua
Z Z [P(Tb,nb+1 < ta,i)MTa‘na.H (ta,i,ta,i-’rl)

la,i

3 P(Tomyit < ChdMry 1y, (s o) (5.2)
k=1

According to the definition of s,(¢,;) and sb(cfl’k), to,s,(t4) 15 the largest B-event
time smaller than A-event time #,;, and ¢, ;, (s ,) is the largest B-event time smaller

than A-censoring time ¢ ;, so (5.2) is equivalent to

P(Ta,na+1 > Tb,nb+l)

Ua (ta,i)
> Z{ Z P(Tyny41 € (togr toj+1)) + P(Tony41 € (tb,sb(ta,;),ta,i)):l X

i=0 0
MTa,na-H (ta 1y la 1+1) +

la,t Fsb(cz; k)_
Z ( P(Tony+1 € (s toj41)) + P(Tynys1 € (tb,sb(c;'k)7c:1,k)):| X
k=1 j

“
Il
=

MTa,na+l (Cfl,k’ ta,i+1)) } . (5.3)

In (5.3), P(Tyny+1 € (to,s(tas)> tai)) and P(Typ, 41 € (8 sb(ck ) Ca, ¢ ) do not have pre-
cise values, because ¢, ; and cf,,k are not B-event times, and the interval (2, s,(, .), ta,i)
is just a sub-interval of (2, s, .}, tb,sy(te.s)+1), and (tb,sb(c:; BY ci ) is a sub-interval of
(tb,s,,(cj, O Bhsiel ) +1), which are formed by two consecutive B-event times. Accord-
ing to the assumption rc-A,,), the maximum lower bounds, without additional
assumptions, for P(Tyn,41 € (to,5(ta:)» ta,i)) and for P(Typ, 41 € (2o,80(ci ,,c)>Cf1,k)) are
zero. Therefore

P(Ta,na+l > Tnb+1)

Ua sb(ta l) 1
2 { [ Z P(Tbsanf‘l E (tby]’ tbv]'*‘l))} MTa,na+1 (ta,i, ta’;+1)

i=0 j=0

sb(cu lc) 1
+ Z <[ P(Tony+1 € (o5 tb,j+1))} Mz, .. (Chps ta,z‘+1)> }-(5-4)

J=

We cannot improve the lower bound in (5.4) without further assumptions. Hence,
(5.4) provides the maximum lower bound for P(T, .1 > Tn,+1) based on the as-
sumptions rc-A,) and rc-Ag,). O
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Theorem 11 (P(T,n,41 > Thony+1))
For the same setting as in Theorem 10, the upper probability for Tg n,+1 > Thy+1

can be derived as

F(Ta,n.ﬁ—l > Tb,nb+1 )

a
i=0 {

sp(ta,iv1)—1

Z P(Tb,nb+1 € (tb,j:tb,jﬂ))

Jj=0
+P(Tbynb+1 € (tb,sb(ia,i+1)—1’tb,sb(ta,i+1)))

I3

85 (ta,it1

)
E : sg(ta,i+1)
+ Mtb,nb+l (Cb,l ’ tbysb(ta,i+l)+1)
=1

P(Ta,na+1 € (ta,i’ta,i+l))}'

Proof
Using the upper bound in Lemma 3 for each of the terms in the sum in (5.1), we get

P(Ta,na+l > Tb,nb+1)

< Y [Pt < tais1) P(Tupast € (tas taisn))]- (5.5)
=0

According to the definition of s;(ta:), tb,s,(te.:41) 15 the largest B-event time smaller

than A-event time t,;, 41, so from (5.5),

P(Ta,na+1 > Tb,nb+l)
ug [ 86{ta,i+1)—1
< z[ S P(Tymsr € sty

i=0 j=0

+P(Thony41 € (o,s4(ta i) tait1)) | P(Tome+1 € (tajistairr))  (5.6)

In (5.6), only P(Ton,+1 € (to,s5tair1) tasi+1))s for i = 0,1,..., uq, is not determined
precisely, because t,;,, is not a B-event time, and the interval (t,, (. .,.)> tait+1)
is just a subinterval of (Zys,(t, ;11)» to,ss(tasr1)+1) Which is formed by two consecu-
tive B-event times. According to rc-A,), the upper probability for P(Ty .41 €
(t6,55(ta.i41)> tasi+1)) can be derived as presented in Subsection 3.4.2. According to the

definition of s{(tsi+1), and equation (3.4), we have

P(Tb,nb+1 € (tb,sb(ta_.-+1)1ta,i+1))
s§(ta,it+1)

sp(ta,i+1)

= MTb.nb+1(tb,3b(ta,i+l)’tbasb(ta,i+1)+1)+ Z MTb,nb+l(cb,l ’tb,Sb(ta,.‘+1)+1)-
=1

Hence, the minimum upper bound for P(T, n,+1 > T n,+1) can be derived from (5.6),
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together with equation (3.2) leading to the upper probability for Tj . +1 > Thn,+1
F(Ta,na+1 > Thnp+1)

8p(ta,i+1)—1

Z P(Tyn,+1 € (tojy to+1))

Jj=0
+P(Tbﬂb+1 € (tb s6(ta, .+1)~17tb,8b(ta.i+1)))

-9 at+l)
tat
+ Z Mtb n,,+1 Sb( +) tb,sb(ta,i+1)+1) P(Ta,na+1 € (ta,iata,i+1))}~

1=1
O

Theorems 10 and 11 present lower and upper probabilities for the event T, 41 >
Ty ny+1. Although these imprecise probabilities are not available in a nice closed form,
calculation is relatively easy as the individual terms are all product forms following
from the definition of rc-A(,). If the data do not include any right-censorings,
these lower and upper probabilities are identical to those presented by Coolen [13].
Although these formula become complex, the underlying idea for these optimal
bounds is straightforward. The lower probability for T, n,+1 > Tjn,+1, based on the
rc-A(») assumptions per group, puts the probability masses, as specified by the M-
function values for T 5, 41, at the infimums of the intervals on which corresponding
M-function values are specified, and for T} ,,+1 at the supremums of the intervals,
so at this bound the probability masses are effectively least supportive for this
event given the partial specifications via M-function values. Of course, the upper
probability just relates to these probability masses being put at the other end-points
per interval.

We have presented the lower and upper probabilities for T, n, +1 > Thpn,+1. Sim-
ilar results are available for the complementary event T 5,11 > T4 n,+1, Which can
be derived by interchanging the indices for the groups above. However, it is not
necessary to calculate lower and upper probabilities for both these events, because
the well-known conjugacy property for imprecise probabilities, P(E) = 1 — P(E®),
holds here [57], where E° is the complementary event to E. Informally, this holds
because our bounds are optimal, and correspond to the same assessments based on
the rc-A(,) assumptions per group. One could opt to only compute either the lower
or upper probabilities for both these events, requiring only a single algorithm, and
using this relation to derive the other imprecise probabilities of interest. Implicit
in our results is the assumption that the probability of Tgn,41 = Tpn,+1 is zero,
which is reasonable for our method as long as there are no ties among the event

times of different groups (it would particularly become a problem if an event time
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had been observed twice or more in each group, we discuss ties briefly in the final
section), and which is a consequence of our method of comparison, where effectively
we always put probability masses at end-points of different intervals.

5.3 Examples

In this section, our nonparametric predictive method for comparison of two groups

of data is illustrated, using data from the literature.

Example 13

The data were used to illustrate NPI in Subsection 3.4.4 and concern the survival
times of patients with cervical cancer, when given either treatment A (Control) or
B (New therapy). We now focus on the comparison between these two treatments
by using the method presented in Section 5.2.

The data from treatment A consist of 11 event times and 5 censoring times, i.e.
uqg = 11, v, = 5 and n, = 16, and from treatment B we have 5 event times and 9
censoring times, i.e. up =5, v, = 9 and ny = 14. Let T, 17 and T}, 15 be two random
quantities representing the next observations for treatment A and B, respectively.
Then the method presented in Section 5.2 leads to

P(Ty17 > This) = 0473 and  P(To,7 > Tpis) = 0.226,
By the conjugacy property (2.2) for imprecise probabilities, this implies

F(Tb'm > Ta’17) =0.774 and B(Tb,ls > Ta’17) = 0.527.
These values indicate that the data provide fairly strong evidence for T}, 15 > T 17,
suggesting that treatment B has more ability than treatment A to prolong the
patient’s survival time. So, if a patient with cervical cancer was offered a choice
between treatment A or B, she might be willing to choose B.

To compare our method to an alternative nonparametric method for inference
for such data, we use Mantel’s test [50] (Section 2.6), which gives an approximate
one-sided p-value of 0.1020. Because Mantel’s test can be used for comparison of
unknown survival functions from two treatments, such a p-value may not be re-
garded as strong enough evidence against the null-hypothesis, namely there is some
evidence that the survival times for treatment B is greater than A.
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Treatment A Treatment B
86 822 1731 > 1726
107 836 498 | > 1763
141 | > 1309 615 | > 1807
296 1375 950 | > 1879
312 | > 1378 || > 1190 | > 1889
330 | > 1446 || > 1242 | > 1897
346 | > 1540 1408 | > 1968
364 | > 1645 || > 1493 | > 1972
401 | > 1818 || > 1572 | > 2022
419 | > 1910 || > 1576 | > 2070
505 | > 1953 || > 1585 | > 2177
570 | > 2052 || > 1684
688 > 1699

Table 5.1: Relapse-free Survival Times for Hodgkin’s disease patients (> ¢

indicates right-censoring at t).

Example 14
The data in Table 5.1 were used to illustrate Mantel’s test in Section 2.6. We now
use these data to illustrate our method presented in Section 5.2, leading to the lower

and upper probabilities

P(Tb,25 > Ta,26) =0.893 and I_D_(Tb,25 > Ta’26) = 0.557.

These values indicate that the data provide pretty strong evidence for event Ty25 >
Ta26- In Section 2.6, by applying Mantel’s test to these data, we derived an ap-
proximate one-sided p-value of 0.0006. So Mantel’s test also suggest strongly that
the survival functions corresponding to these two treatments are not equal, in other
words, the nodal radiation is more effective than radiation of affected nodes in pre-

venting or delaying the recurrence of early stage Hodgkin’s disease.

It should be remarked that it might happen that Mantel’s test would reject a
null hypothesis when we would still have P(T, .41 > Tyny+1) < 0.5 < P(Typ, 41 >
Tyn,+1), because Mantel’s test is based on the comparison of two unknown survival
functions from groups A and B, while our method compares two future observations
from these two groups, respectively. For example, suppose that all observations from
group A are about equal to 3 years, and half the observations from group B are about
equal to 2 years and the other half about 4 years, then with lots of observations for
each group, Mantel’s test will reject that two unknown survival functions of A and
B are equal, but our method would give P(T, .41 > Tppn,+1) < 0.5 < ﬁ(Ta,naH >

Tb,ﬂ.b+1 ) .
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5.4 Concluding remarks

This chapter presents a novel method to compare two groups of lifetime data includ-
ing right-censored observations. The method uses NPI as presented in Chapter 3,
via comparison of the future observations from both groups A and B, and leads to
upper and lower probabilities for T, .41 > Ty pn,+1. This comparison is predictive,
in which it is different with Mantel’s test [50], which tests a hypothesis of equal
survival functions. This nonparametric method generalizes the method by Coolen

[13], which does not allow right-censored data.

It should be remarked that, although our method is presented by assuming that
there are no ties in the data set, the method can also be adapted for dealing with tied
observations. As there are two groups of lifetime data, ties may occur within each
group as discussed in Section 3.6, and between the groups. For the first situation,
our method can be adapted as in Section 3.6. For the second situation, if there
are ties between an event time and a censoring time, or between censoring times,
it does not affect our nonparametric predictive method. If there are ties between
event times in both groups, one should break them into all possible orderings among
the groups, calculate lower (upper) probabilities for each such ordering, and then
take the minimum (maximum) of all these lower (upper) probabilities as the actual

lower (upper) probability to be used for the comparison.

Coolen and van der Laan [18] presented NPI comparison of more than two groups,
not allowing censored data. It will be relatively straightforward to generalize their

results along the lines of this chapter, which is left as a topic for future research.



Chapter 6
Summary and concluding remark

This thesis presents nonparametric predictive analysis for lifetime data including
right-censored observations. Although many nonparametric methods were proposed
for such data, they are all not capable of dealing with exact censoring information

(ECI).

The assumption A [39] is a sound basis for prediction in case of vague prior
knowledge of a probability distribution for observed random quantities. It provides a
partially specified predictive distribution for a future observation given past observa-
tions, consisting of exact event times. However, A(,) does not allow right-censoring
data in observations. Although Berliner and Hill [6] address the same problem in
their method, they use partial censoring information. The question we address is

how A,y can be generalized to deal with ECI.

We generalized A(»), and presented the assumption right-censoring A, (re-Agm)),
which is related to exchangeability of a right-censored observation with other ran-
dom quantities in the risk set at the censoring time. The assumption rc- Ay provides
a partially specified predictive probability distribution for a future observation. In-
ference based on rc-A,) uses ECL

Although rc-A,) is not sufficient to derive precise probabilities for many events
of interest, it does provide bounds for probabilities. The derived lower and up-
per survival functions for T,,;, are well suited for graphical presentation giving a
complete picture of the data, including right-censoring times. The lower survival
function for T4, shows explicit changes at censoring times, which is not the case in
the Berliner-Hill method [6] and Kaplan-Meier methods [46].

The assumption rc-A,) and related inference can be used for other problems for-

mulated in terms of 7;,1;. The nonparametric predictive inference for grouped data

109
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is one such application. Grouped data with right-censored observations frequently
occur in reliability and survival analysis. Our nonparametric method presented for
grouped data is based on quite minimal modelling assumptions, and is directly in
terms of T;,;,. We derived the optimal bounds for predictive probabilities by us-
ing the optimal configuration principle (OCP). An advantage of our nonparametric
method is that it does not require the use of additional assumptions about the event
times and censoring times, on which many other related methods for grouped data
depend.

The nonparametric predictive comparison of two groups of lifetime data presents
another application of rc-A(,y. The comparison of two groups of lifetime data is also
an elementary problem in statistics, which arises often in medical research. Our
method presents the comparison of a future observation from each of the two groups,
and leads to upper and lower probabilities for the event that the next observation
from one population is greater than the next observation from the other population,
which is different with other nonparametric methods proposed for such comparison.

Our method takes all censoring times precisely into account.

The nonparametric predictive inference presented in the thesis is based on data
including right-censored observations. Basically, these inferences are an attempt to
keep structural assumptions minimal, and they are therefore suited if there is only
extremely vague knowledge about the situation which is being modelled, other than
that provided by the data set. Alternatively, such inferences can also be used as
a basis for studying the influence of additional modelling assumptions on ultimate
inferences, or related decisions, when we wish to use methods with more structure
explicitly taken into account. The imprecise nature of these inferences may also lead
to situations where optimal decisions are not derived. For example, when comparing
two medical treatments predictively, on the basis of data including many censored
observations, the range of survival functions between the lower and upper survival
functions per treatment may well include pairs that would lead to preference of either
treatment. In such cases, our method makes clear that strong inferences may not
be possible based only on the data, so further modelling assumptions or more data
are required. From this perspective, our inferences are related to robust statistical
methods [4, 44].

In this thesis, we have only considered predictive inference for a single future
observation. Extension of such inference to multiple future observations is of inter-
est, particularly as random quantities representing future observations are mutually
dependent [15, 39]. It would also be interesting to compare our lower and upper sur-

vival functions with other methods for lifetime data as presented in the literature,
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for example estimators based on counting processes [2]. More generally, detailed
development and analysis, along the lines of Augustin and Coolen [4], of interval
probabilities resulting from our partially specified probability distributions via M-
function values, might provide an important contribution to the theory of interval
probability.
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