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Abstract 

In this thesis, we have studied L-moments and trimmed L-moments (TL-moments) 
which are both Unear functions of order statistics. We have derived expressions for ex
act variances and covariances of sample L-moments and of sample TL-moments for any 
sample size n in terms of first and second-order moments of order statistics from small 
conceptual sample sizes, which do not depend on the actual sample size n. Moreover, 
we have established a theorem which characterises the normal distribution in terms of 
these second-order moments and the characterisation suggests a new test of normality. 

We have also derived a method of estimation based on TL-moments which gives 
zero weight to extreme observations. TL-moments have certain advantages over L-
moments and method of moments. They exist whether or not the mean exists (for 
example the Cauchy distribution) and they are more robust to the presence of outliers. 

Also, we have investigated four methods for estimating the parameters of a sym
metric lambda distribution: maximum likelihood method in the case of one parameter 
and L-moments, LQ-moments and TL-moments in the case of three parameters. The 
L-moments and TL-moments estimators are in closed form and simple to use, while 
numerical methods are required for the other two methods, maximum likelihood and 
LQ-moments. Because of the flexibility and the simplicity of the lambda distribu
tion, it is useful in fitting data when, as is often the case, the underlying distribution 
is unknown. Also, we have studied the symmetric plotting position for quantile plot 
assuming a synmietric lambda distribution and conclude that the choice of the plotting 
position parameter depends upon the shape of the distribution. 

Finally, we propose exponentially weighted moving average (EWMA) control charts 
to monitor the process mean and dispersion using the sample L-mean and sample L-
scale and charts based on trimmed versions of the same statistics. The proposed control 
charts limits are less influenced by extreme observations than classical EWMA control 
charts, and lead to tighter limits in the presence of out-of-control observations. 
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Chapter 

Introduction 

The subject of order statistics deals with properties and applications of ordered ran
dom variables and of functions of these variables. I f the random variables {Xi}, 
i = l,2,. . . ,nare arranged in ascending order of magnitude and then written as 

Xl:n < X2:n < ••• < Xnm (1-1) 

then Xi:n is said to be the ith-order statistics in a sample of size n. In the usual random 
sampling theory, the unordered Xi are assumed to be statistically independent and iden
tically distributed. Because of the inequality relations among them, the order statistics 
Xi:n are necessarily dependent. Some frequently encountered functions of order statis
tics are the extremes Xi:„ and X„:„, the range R = Xn-.n - Xi.,n, the extreme deviate 
from the sample mean, Xn-.n — X, and for a random sample from a normal distribution 
N (/Lt, cr^), the studentized range, R/Sy, where 5̂ , is a root mean square estimator of a 
based on v degrees of freedom; see, for example, David (1981). All of these statistics 
have important applications. The extremes arise in the statistical study of floods and 
droughts, as well as in breaking strength and fatigue failure studies, the range is widely 
used in the field of quality control as a quick estimator of process standard deviation a, 
the extreme deviate is a basic tool in procedures for detecting outliers and large values 
of (^Xnm — X^ jo suggest the presence of outliers, and when outliers are not confined 
to one direction, the studentized range is also useful in the detection process; see, for 
example, Bamett and Lewis (1994). 

Sarhan and Greenberg (1962) used linear functions of order statistics in conjunction 
with the Gauss-Markov theorem to systematically estimate location and scale param
eters in both complete and censored samples. They provided tables of the coefficients 
necessary for the calculations of these estimates from samples varying in size from 2 
to 20. Other applications of order statistics arise in the study of reliability systems. A 

1 



CHAPTER 1. INTRODUCTION 2 

system of n components is called a k-out-of-n system i f it remains operational only i f 
at least k components continue to function. For components with independent lifetime 
distributions, the time to failure of the system is thus the (n — A; + 1) th-order statis
tic. The special cases A; = 1 and k = n correspond respectively to parallel and series 
systems. 

A major impetus for the study of order statistics has been provided by the develop
ment of modem computers. Through their use it is feasible to make repeated examina
tions of the same data in many different ways. Tukey (1970) and Mosteller and Tukey 
(1977) have employed various informal techniques in the analysis of data. It is possible 
to determine quickly i f the data are in accord with an assumed distribution and with 
an assumed model. A plot of the ordered observations against some simple functions 
of their ranks, preferably on probability paper appropriate for the assumed distribution, 
wil l often prove helpful in making such determinations. 

The term robust statistics has many meanings, we use it in a relatively narrow sense: 
...robustness signifies insensitivity to small deviations from the assumption of normal
ity.... see Huber (1981). 

Tukey (1960) points out that for a sample from N (^, a^) the mean deviation has 
asymptotic efficiency 0.88 relative to the standard deviation in estimating cr. The sit
uation is changed drastically i f some contamination by a wider normal, for example 
N 9(7^) is present: as little as 0.008 of the wider population will render the mean 
deviation asymptotically superior. Nevertheless there are flaws: the efficiency of the 
mean is very small for a uniform parent, and for any parent a single wild observation 
may render X useless. It has long been known that the midpoint, {Xi-n + X„:„) /2, is 
optimal in the former case but much worse than X in the latter, and that the median is 
preferable in the latter case but worse in the former. Obviously, we must not expect an 
estimator to be good under too wide a set of circumstances. 

1.1 Motivation and outline of the thesis 

It is standard statistical practice to sunmiarise a probability distribution or an observed 
data set by some of its moments. It is also conrmdon, when fitting a parametric distribu
tion to a data set, to estimate the parameters by equating the sample moments to those 
of the fitted distribution. The method of moments is not always satisfactory: some
times it is difficult to assess exactly what information about the shape of a distribution 
is conveyed by its moments of third and higher order, the numerical values of sample 
moments, particularly when the sample is small, can be very different from those of the 
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probability distribution from which the sample was drawn, and the estimated parame

ters of distributions fitted by the method of moments are often markedly less accurate 

than those obtainable by other estimation procedures such as the method of maximum 

likelihood; see, for example, Vogel and Fennessey (1993) and Kirby (1974). 

Many statistical techniques are based on the use of linear combinations of order 

statistics but there has not been developed a unified theory covering the characterisa

tion of probability distributions, the summarisation of observed data samples, the fitting 

of probability distributions to data and the testing of hypotheses about fitted distribu

tions, until Hosking introduced L-moments in 1990, the L in L-moments emphasises 

the construction of L-moments from linear combinations of order statistics. 

Greenwood et al. (1979) have introduced probability weighted moments, and they 

used them as a basis for estimating the parameters of some known distributions, for ex

ample, the Gumbel distribution. Hosking (1990) has studied an alternative approach 

based on quantities, which he called L-moments, which are analogous to the con

ventional moments but can be estimated by linear combinations of order statistics (L-

statistics). L-moments have the theoretical advantages over conventional moments of 

being able to characterise a wider range of distributions and of being more robust to the 

presence of outliers of the data. 

In Chapter 2, we review L-moments and probability weighted moments. We de

rive the exact variances and covariances of sample L-moments in terms of first and 

second-moments of the order statistics from small samples. We also characterise the 

normal distribution in terms of the covariances between certain sample L-moments. 

Also, we have derived distribution-free unbiased estimators of variances and covari

ances of sample L-moments. We also discuss probability weighted moments and their 

relation to L-moments and obtain exact variances and covariances of the sample prob

ability weighted moments. 

In Chapter 3, we review LQ-moments and extend the idea of L-moments to trimmed 

L-moments (TL-moments) and show that population TL-moments are able to charac

terise a wider range of distributions, for example a location measure of the Cauchy 

distribution. Also, we show TL-mean is a robust measure of location, protects against 

outliers and gives different weights for the observations. We finally define and study 

trimmed probability weighted moments (TPWM). 

In Chapter 4, we investigate four methods of estimating the parameters of the sym

metric lambda distribution: maximum likelihood in the case of a single parameter and 

L-moments, LQ-moments and TL-moments in the case of three parameters. We have 

also shown that the estimators based on L-moments and TL-moments are in closed 



CHAPTER 1. INTRODUCTION 4 

form and simple to compute. Also, we have studied symmetric plotting position for 

quantile plot when sampling from a symmetric lambda distribution. 

In Chapter 5, we review control charts and develop exponentially weighted moving 

average control charts for a process mean and standard deviation which incorporates 

an L-scale estimate of the process standard deviation, and we also describe trimmed 

versions of these charts. We have investigated out of control points of these charts by 

simulation. 



Chapter 2 

L-moments 

2.1 Introdectioe 

Hosking (1990) introduced population L-moments Ai, A2,... as robust alternatives to 

classical measures of location, dispersion, skewness and kurtosis based on central mo

ments and has studied properties of their corresponding sample L-moments / i , . . . , 

for samples of size n from any continuous distribution. Sample L-moments which 

can be expressed as linear combinations of the sample order statistics, are unbiased 

for the corresponding population quantities A i , . . . , A„, and Hosking (1990) has given 

expressions for their asymptotic variances and covariances. An example of a sample 

L-moment is Gini's mean difference scale estimate g which is twice the sample L -

moment I2 and therefore has expectation 2A2. Nair (1936) derived the standard error 

of g for any continuous distributions and Lomoniki (1951) obtained in a different way 

a general expression for the standard error of g when sampling is from any continuous 

distribution. 

In this chapter, see also Elamir and Seheult (2001b), we derive expressions for the 

exact variances and covariances of sample L-moments in terms of first and second-

moments of order statistics from small samples. For example, the variance of Gini's 

mean difference g depends only on the mean and covariance structure of the order 

statistics for conceptual samples of sizes 1, 2 and 3. We give examples of the use of 

these formulae for various distributions. 

In section 2.2 we review classical moments. In sections 2.3 and 2.4 definitions and 

equivalent expressions for population and sample L-moments are given. In section 2.5 

we derive exact results for the mean and variance-covariance structure of sample L -

moments for any univariate continuous distribution. In section 2.6 we show how to 

derive distribution-free unbiased estimators of the variances and covariances of sample 
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L-moments and give two examples. In section 2.7 we establish a theorem which char
acterises the normal distribution in terms of sample L-moments. In section 2.8 we apply 
these results to obtain exact variances and covariances for sample probability weighted 
moments. 

2.2 Moments 

Let Xi,X2, •••,Xn be a sample from a distribution function Fx{.). The shape of a 

unimodal probability distribution has traditionally been described by the moments of 

the distribution. The moments are the mean 

/x = E ( X ) (2.1) 

and the higher central moments 

f i r = E { X - f i Y , r = 2,3,... (2.2) 

The mean is the centre of location of the distribution. The dispersion of the distri

bution about its centre is measured by the standard deviation 

a = iiT (2.3) 

or the variance o^. 

Dimensionless higher moments ^rji/J"^ are also used, in particular the skewness 

/3i = (2.4) 

and the kurtosis 

h = 4̂/Â 2 (2.5) 

Analogous quantities can be computed from a data sample Xi,X2-, The 

sample mean 

X = Y,Xi/n (2.6) 

1=1 
is the natural estimator of / i . 

The higher sample moments 

mr = n - ' j 2 { ^ i - ^ Y r = 2,3,... (2.7) 

8=1 



CHAPTER!. L-MOMENTS 7 

are reasonable estimators of the Hr, but are not unbiased. For more details about mo
ments; see, for example, Kendall and Stuart (1987) and Mood et al. (1974). 

The method of moments estimates the parameters by finding expressions for them 

in terms of the lowest possible order moments and then substituting sample moments 

into the expressions. 

For example, suppose we wish to estimate two parameters, 6i and 02. If Oi and 62 

can be expressed in terms of the first two moments as 

1̂ = / i (/^i, 1^2) and 02 = f2 {1^1,1^2) (2.8) 

then the method of moments estimates are 

01 = h {mi, 1712) and §2 = / 2 {mi, 1712) (2.9) 

2.3 Population L-moments 

Let Xi, X 2 , X n be a sample from a continuous distribution function Fx{.) with 

quantile function Qx{u) = Fx^{u) or Q{u) for simplicity, where 0 < w < 1. Denote 

by Xi-n < X2:n < • • < ^n;n the Order statistics from a random sample X i , X 2 , X „ 

of size n drawn from F{x). 

Sillito (1969) and Hosking (1990) defined the population L-moments Ar as follows 

/ r - 1 \ 
K = r - ' Y . { - ^ f , ^{Xr-k:r) T ^ 1,2, ... (2.10) 

fc=0 V / 

Hosking (1990) gives the expression 

Xr = C Pr-i{u)Q{u)du r = l , 2 , . . . (2.11) 
JO 

where 

Pr{u) = Y.^r,ku'' (2.12) 
fc=0 

and 
r \ r^k 

cr,k = { - i y - ' \ \ \ (2.13) 

It is straightforward to establish from (2.10) and (2.11) the following equivalent 
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expressions for the first four L-moment 

Ai = E ( X i : i ) = [' Q{u) du 
Jo 

A2 = Ie{X2:2-XU2)= [\2u-l)Qiu)du 
I JO 

A3 = (X3:3 - 2X2:3 + -̂ 1:3) = ^ (6^ ' - 6u + l ) Q{u) du 

A4 = ^ E {X4A - 3^3:4 + 3^2:4 " X^..^) = [20u^ - 30^^ + 12u - 1) Q{u) du 

Where Ai is a measure of location (mean) and A2 is a measure of scale. The scale-

free quantities T3 = A3 /A2 and T4 = A 4 / A 2 are measure of skewness and kurtosis 

which are less sensitive to the extreme tails of the distribution than Pi and P2, the usual 

measures of skweness and kurtosis. For more details; see, for example, Kirby (1974), 

Oja (1981), Kaigh and Driscoll (1987) and Vogel and Fennessey (1993). 

2.4 Sample L-moments 

Hosking (1990) defined the sample L-moment Ir, corresponding to the population L -

moment A^ given in section 2.3 as follows 

f n\~' I ' - i / r - l \ 
lr=[ ] E E - - - E ' E ( - 1 ) M , p . - . . r = l,...,n 

\ ^ J l<jl <i2< <ir<n k=0 \ / 
(2.14) 

Thus, from (2.14) the four sample moments corresponding to Aj, A2, A3 and A4 are 

h = ~ y2 -^i-.n 

h = 7 r - E E i-^r-n ~ ^i-n) 
2 / I l<i <j<n 

^ E E E (^fc- - 2 ^ r n + X..n) 

3 
1 

E E E E iXl:n - 3Xfc:„ + 3X,:„ -
^ I I l<j <i <h<l<n 

As Hosking (1990) has pointed out, it is not necessary to iterate over all subsam-
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pies of size r when calculating Ir, as it can be written as linear combination of order 
statistics; see also, Blom (1989). Hosking et al. (1985) show that Ir may be written 

r - l 

lr = ^Cr-l,kbk (2.15) 
*:=0 

where Cr,̂  is given in (2.13) and 

1 ^ ( i - l ) ( ^ - 2 ) • • • ( ^ - A ; ) 

^ ' " ^ n h { n - l ) { n - 2 ) . . . { n - k f - ^^'^^^ 

which can be written more compactly as 

^ f:(z - 1 ) « X , „ (2.17) 

where n̂ '"̂  = n(n - 1) • • • (n - r + 1). 

Thus, for example, we can re-express the first four sample L-moments in the readily 

computable forms 

1 " 

n 

= n ( n - l ) ( „ - 2 ) S I ' ^ < ' - ' » ' - ^ ' - ' ^ < ' ' - ^ » ' - ^ ) 

+ ( n - l ) ( n - 2 ) ) X i : „ 

= „l„ 9 » „ „ > E P 0 ( i - l ) ( » - 2 ) ( i - 3 ) - 3 0 ( n - 3 ) 

X (z - 1) (z - 2) + 12 [n - 2) (n - 3) ( i - 1) - (n - 1) (n - 2) (n - 3)] X^n 

We see that / i is the sample mean, I2 is half Gini's mean difference g, I3 is used by 

SiUito (1969) as a measure of symmetry and by Locke and Spurrier (1976) to test for 

symmetry, and I4 is used by Hosking (1990) as a measure of kurtosis. Standardised, 

unit-free versions of the symmetry and kurtosis measures are 3̂ = I3/I2 and 4̂ = I4/I2 

corresponding to the populations versions = A 3 / A 2 and r4 = A4/A2 described in 

section 2.3. 

Hosking and Wallis (1995) gave the following biased estimator of population L -

moments Ar given in section 2.3 as 
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w i = ( - i r E ( - i r ' ' t ^ «^ (2-18) 
fc=0 k \ k 

where 

&k = n''j2i^-P^••n)'X,..n aud = ^ with 6 > J >-1 (2.19) 

where pi:n is the plotting position, a distribution-free estimator of Fx{xi:n), the non-

exceedance probability of Xi:n- Ir+i gives good estimates of the tails of the quantile 

Q{u); see, for example, Landweher et al. (1979), Hosking et al. (1985) and Hosking 

and Wallis (1987). We shall discuss the choice of j and 5 for in Chapter 4. 

2.4.1 Asymptotic variances and covariances of sample L-moments 

Asymptotic theory for linear combinations of order statistics, developed by Chemoff 

et al. (1967), Moor (1968) and Stigler (1974), can be immediately applied to estimators 

of L-moments. The asymptotic theory usually provides a good approximation to the 

exact distribution for samples of size n > 50, and is often adequate even for n > 20, 

see Figures 2.1, 2.2, 2.3 and 2.4 and Table 2.3. Hosking (1986) proved that 

I. n^/^ (/r — A r ) , r = 1, 2 , m , m < n, converges in distribution to the multivari

ate normal distribution N (0, A ) , where the elements Ars (r, s = 1 , 2 , m ) of A 

are given by 

A , , = / / {Pr-i[F{x)]P,_,[F{y)] + Ps.,[F{x)]Pr^,[F{y)]} 
J Jx<y 

x F { x ) { l - F{y))dxdy (2.20) 

where Pr{F) is as in equation (2.12). 

II. Let Tr = A r / A 2 and U = K/h, r = 3 , 4 , m . Then as n ^ oo the vector 

n"^ [{h - A l ) {h - A2) (̂ 3 - ra) {U - n).... {t^ - r j f f 

converges in distribution to the multivariate normal distribution N (0, T ) where 
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the elements T^^ (r, s = 1 , 2 , m ) of T are given by 

T 

A , , if r < 2, s < 2 

(A,, - r,A2.)/A2 i f r > 3 , s < 2 (2.21) 

{Ars - TrK2s " r,A2r + rrr,A22) /\l if r > 3, s > 3 

Asymptotic theory has many practical applications. It makes possible the construc

tion of confidence limits for population L-moments and it can give approximations to 

finite sample distributions. Also, Taylor series expansion enables the asymptotic theory 

to be applied to functions of sample L-moments. 

Figures 2.1 and 2.2 show histograms and quantile plots of li,l2, h and for samples 

of sizes 15 and 50 drawn from standard normal distribution and Figures 2.3 and 2.4 

show histograms and quantile plots of / i , I2, h and for samples of sizes 15 and 50 

drawn from standard exponential distribution. Figure 2.3 shows a slight curvature for 

a sample size 15 from the exponential distribution. Gail and Gastwirth (1978) prove 

that the normal approximation to I2 is correct asymptotically, which is also illustrated 

by Figure 2.4 when the sample from exponential distribution is of size 50. 

2.5 Exact mean and covariance structure for sample L -
moments 

It would appear from equation (2.15) that to compute the variance structure of h,l2,h^ k 

we need the full covariance structure of Xi:„ < X2:n < • • < Xn-.n- The main theme 

in this section is that much less is required. 

In what follows we will assume that we are working with certain convenient stan

dardised versions 

n n = ^ ^ ^ ^ i = l,2,...,n (2.22) 
a 

of the order statistics < X2:n < • • • < Xn-.n usually from a scale-location family 

with baseline distribution function F{y); for example, F{y) may be the unit Gaus

sian distribution N(0,1). Thus, results for expectations, variances and covariances for 

y\:n < ^2:n < ••• < ^n;?! fcadily convcrt to those for Xi:„ < X2:n < • • • < Xn.n in the 

usual way. 
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Figure 2.1: The histogram and quantile plots for li in (a) and (b), for I2 in (c) and (d), 
for 3̂ in (e) and ( / ) and for 4̂ in (g) and (/i) when the parent distribution is normal 
(0,1), the sample size n = 15, and number of replications is .5000. 
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Figure 2.2: The histogram and quantile plots for h in (a) and (b), for I2 in (c) and {d), 
for is in (e) and ( / ) and for in (g) and (h) when the parent distribution is normal 
(0,1), the sample size n — 50, and number of replications is 5000. 
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Figure 2.3: The histogram and quantile plots for li in (a) and (b), for h in (c) and (d), 
for 3̂ in (e) and ( / ) and for 4̂ in {g) and {h) when the parent distribution is exponential 
(1), the sample size n = 15, and number of replications is 5000. 
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Figure 2.4: The histogram and quantile plots for li in (a) and (6), for I2 in (c) and (d), 
for 3̂ in (e) and ( / ) and for in {g) and (h) when the parent distribution is exponential 
(1), the sample size n = 50, and number of replications is 5000. 
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Standard calculations show that the density function of Yr.n is 

-F{uy-'[1- F{u)]''-'dF{u) 
( r - l ) ! ( n - r ) ! 

and the joint density function of Yr.n and Yg-.n (r < s) can be written 

F{uY-'[F{v) - F{u)Y-'''[l - F{v)Y-'dF{u) dF{v) 
( r - l ) ! ( s - r - l ) ! ( n - s ) ! 

The following expressions for first and second order moments are well known; see, 

for example, David (1981): 

(2.23) 

( r - l ) ! ( n - r ) ! 
(2.24) 

Hyr:nYs:n} = 7 TTTy pTT^ ^ / f Q{u)Q{v)u^-' 
(r - l)!(s - r - l)!(n - s)! yo Jo 
X (u - M)'-̂ -̂ (1 - vY'' dudv (2.25) 

where Q{-) is the quantile function for F{y). Yar{Yr:n} and Cov{y^:„, F^^n} can be 

computed in the usual way from these expressions. 

To calculate the mean and covariance structure of the sample L-moments / i , . . . , /„, 
we make use of the following identities given by Downton (1966) 

±(r - l ) W ( n - rfHYr:n} = k\ l\(^^ ^ ' ^ ^ ^jE{n+,,+,+i} (2.26) 

Y^{r - l ) « ( n - r)(')E{y4} = k\l\[ J" E { F , 2 ^ , , ^ , ^ J (2.27) 



CHAPTER 2. L-MOMENTS 17 

l < r < s < n \K + l + lJ 

(2.28) 

To evaluate the mean and covariance structure of / i , . . . , we first evaluate the 

mean and covariance structure of 6 i , . . . , hr-\ given in (2.17). 

Using the definition of hk in (2.17) and the identity in (2.26) with i = 0, we obtain 

Ei ' '^} = (̂ TT)̂ ^̂ '+̂ '̂'+̂ ^ ^̂ -̂ ^̂  

It then follows from (2.23) that 

E{n+i:fc+i} = {k^l) [' Q{u)u' du (2.30) 
-'0 

and from (2.15) that 

E c r - u E { 6 , } = X : , 
A:=0 fc=0 

Thus 

E{lr] = Ecr- i , fcE{6fc} = E ^ - i - f c CQ{u)u'du (2.31) 

I — n i — n •'O 

E { ^ . } = / Q{u) E ( - l ) ^ - ^ - ' / ^ ' U'^d^ = A. 

which shows that is an unbiased estimator of A .̂ Moreover, in view of (2.10), this 

expectation can be evaluated in terms of the expectations of the order statistics from a 

sample just of size r. For example, 

E { / 2 } = \ (E{y2:2} - E{yi :2}) = A2 (2.32) 

which either can be evaluated explicitly or there is a once-and-for-all numerical evalu

ation, as is the case for normal order statistics. Hosking (1990) has given expressions 

for the first few L-moments for many standard distributions. 

We now show that the variance-covariance structure for the sample L-moments can 

also be evaluated in terms of certain moments of order statistics from small samples 

with sizes which do not depend on the sample size n. Using the definition of bk it 
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follows that 

nhk} = - T ^ r h f ^ ^ i t tir - ^ f \ s - l)('){y.„n:„} ) (2.33) 

now 

E ^ 5 : ( r - i ) W ( . - i ) ( ' ) y _ n . „ 
. r = l s = l .r=\ 

\^l<r <s<n 

+ ( s - l ) ( ' ' ( r - l )« ]y , : „n . „ } (2 .34 ) 

Downton (1966) has given the following binomial type relationships 

r=0 

(a - 6)('") = E C - l ) ' (« - rY""'"^ b^'^ (2.36) 
r=0 \ ^ 

If on the right-hand-side of (2.34) we write (r - = ((r - / - 1) + lY''^ in the 

first term and then use the relation (2.35), write (r — 1)̂ *̂ ) = ((n — 1) — (n — r))'*^) 

or (r - 1)(') = ((n - 1) - (n - r))^'^ in the second and third terms and then use the 

relation (2.36), and note further that n̂ *+̂ ^ = n^^^n — tY^\ the required covariances 

can be written 

bi} = E 4 ? ( ^ - I - lY'^ (2.37) 

where 

As) _ ' " • - • ^ l " s - K - H : s - f f - H J I ^E{I;VI:.+/-M} , mi^^Y'^'-
)\{s 

x E ( - i r 

(A:-s ) ! (s + /-A;)!s!(s + / + 1) {k + 1 - s)\ 

r=0 (/ + 2 - t - r ) ! ( s - l - r ) ! 
k\l\{k+lY'^'-^^ j^^_^^Mys+l-k:s+l-k+l+rYs+l-k+l:s+l-k+l+A 

{k + l - s ) \ fr'o' ' (A; -r ) ! ( s + / - A : - M + r) ! 

, fc!nE{n+i:,+i} [E{n+,_fc^,+,_,} - E{y , . , i ,+ i } ] 
(A; + l - s ) ! ( s + ^-A;)!5! ^ ' ^ 

[Note that this derivation follows from Downton (1966), except that he mistakenly 

writes (s -t- / -f 1)! in the denominator of the first term of JY^} in his equivalent equa-
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tion (3.18), instead of the correct expression, (s + / + 1).] 

As noted by Downton (1966), 

...These coefficients depend only upon diagonal and next-diagonal terms 

of relatively small variance matrices of ordered observations and upon ex

pected values of the largest observations. 

Then, the variances and covariances of Ir can be obtained as follows 

r - l s - 1 
Cov{lr, Is} = J212 Cr-i,kCs-l,lCov{bk, 6;} 

*:=0 1=0 
r < S (2.39) 

In matrix notation, noting that equation (2.15) can be written 1 = Cb, where 1^ = 

(/i , . . . , / „ ) , = {bo,..., br-i) and C is the n x r lower triangular matrix with entries 

Crk given in (2.13). The variance matrix of 1 is 

Var[l] = C e (2.40) 

where 0 = Var{b}. In the next subsection we obtain explicit expressions for Var{b} 

for the first four L-moments for any sample of size n in terms of moments of order 

statistics from conceptual samples of size no more than seven. 

2.5.1 Exact variances and covariances for the first four sample L -
moments 

As previously noted, the first four L-moments Ai , A2, A3, A4 provide population mea

sures of location, dispersion, skewness and kurtosis, and we now focus on the covari-

ance structure of their unbiased sample estimates li,l2,h,h-

It follows from (2.40) that the variance matrix for / i , ^2, ^3, h can be computed from 

/ 1 

- 1 

1 

0 

2 

-6 

0 o \ 

0 0 

6 0 

- 1 12 -30 20 

( 000 &OI G02 0̂3 ^ 
1̂0 1̂1 O12 On 

O2O Q2I 022 023 

\ 030 031 032 033 J 

( l 
0 2 - 6 12 

0 0 6 -30 

0 0 0 20 y 

For example, expHcit expressions for V a r { / i } , Var{/2} and Cov{/i , /2} are given 
below 

V^x{h} = 0, 00 
n 

(2.41) 
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which is the variance of the sample mean, a well-established and familiar quantity. 

Var{/2} = 4^11 - 4^01 + ôo 

Var{l2} = { ^ ( n - 2) (£{^3^3} + E{Y,.,sY2.,,} + E{Y2..^Y,.,s}) - 2(n - 3)E{Y^..2Y2..2} 

- 2{n - 2)E{Yi^} + (n - l)E{Yl,} - 2(2n - 3)E^{Y2..2} 

+ E{Fia} (4(2n - 3)E{F2:2} - 5(n - l ) E { y i . i } ) } /{n {n - 1)) (2.42) 

This is equivalent to the expression given by Nair (1936) for Gini's mean difference 

9-

Cov{h,l2} = 2001-0^ 00 

Coy{l„l,} = - E{Yv.2Y2:2} - E{n,}) + E{Y..,} {3E{Y..r} - 2E{Y2..2}) 

(2.43) 

This expression is new. The variances and covariances for / i , I2, h and I4 are given 

in the Appendix. 

We now show that Cov{/i , /2} = 0 for any symmetric distribution. From David 

(1981) we find for any parent distribution that 

E t E ( K ^ „ n y = f " ) E ^ ( F , y (2.44) 
r = l s = r + l \ / 

If the parent distribution is symmetric about the origin, then E (Fi:i) = 0 and from 

David (1981) we find 

E {Yr,X:n) = E {Yn-r+V.nYn-s+i-.n) r, S = I, 2, 3, ...U (2.45) 

I f n is even then 

/ . X f E (yI„) k even 
E ( Y l ^ = { ^ (2.46) 

^ ' ^ \ 0 A; odd 

When n = 2, r = l,A; = l and s = 2, we find from (2.44) that 
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E(yi:2y2:2) = [ E ( y i : i ) f = 0 

With n = 2, r = 2 and s = 2 in (2.45), and n = 2 and A; = 2 in (2.46) we obtain 

E{Yi,)=B{Yl,) and E ( ^ ^ = E ( y , y 

Substituting in equation (2.43), gives Cov {li,^) — 0 for any symmetric distribu

tion. 

2.6 Some applications of covariances of sample L-moments 

In this section we apply the results of the previous section to illustrate how to obtain 

distribution-free unbiased estimators of the variances and covariances of sample L-

moments, to two examples and to approximate means and variances of functions of 

sample L-moments, such as L-skewness and L-kurtosis . 

2.6.1 Distribution-free estimators of variances and covariances of 
sample L-moments 

Here we illustrate how to obtain distribution-free unbiased estimators of the variances 

and covariances of sample L-moments using the following expression due to Downton 

(1966) 

r = l s = l 

(t) 
[{^ + J + l - t V . { t - ^ - l V • { t - J - m t ) 

{Z + l)(^+^+2-*) ^ E ( y , _ , _ i , _ H r > ^ t - z . - . + r ) 

+ 
^!J!E(F,+ l : . + l ) E ( y - ^ - l : t - ^ - l ) ] 

(z + j + 2 - t ) ! ( t - z - l ) ! ( ^ - j - l ) ! j 

(2.47) 
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and the identity 

E - 1)'^' Yr-.n E (̂  - 1)^ '̂ n.n = E E - 1)̂ ^̂  U - i f ^ nnYrn (2-48) 
2=1 1 = 1 1=1 j = \ 

From equations (2.26), (2.27) and (2.28) we find that 

2 - 1 \ / n - i 

A \ ^ / I ^ / 
A {k, /) = E ^ - 7 — v-^yi:n (2.49) 

i=i I n 

k + l + l 

I — 1 \ I n — I 

W {k, 0 = E ' M • X ' (2.50) 
i=i I n 

k + l + 1 
( n - j 

V F 1 2 ( f c , 0 = E E ^ / ^ \ ' yr:nYr.n (2.51) 
i = i j = i + i [ n 

A; + / + 2 

are unbiased estimators of E (yit+i:fc+;+i), E (^^+1:^+,+!) andE (yfc+i,fc+/+2^fc+2:fc+/+2), 
respectively. 

For example, distribution-free unbiased estimator Var ( / i) of Var [li) can be written 
as 

n - 1 n 

where is the usual unbiased estimator of a^. 

Similarly, the following expressions are unbiased estimators of Var (/2) and Gov [h^h], 
respectively. 
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Var(/2) = l^^{n-2)[W{2,0) + W12{0,l) + W12{l,0)]-2{n-3)W12{0,0) 

-2{n-2)W{l,0) + 

4 ( 2 n - 3 ) A ( l , 0 ) -

- n + 2 
n - 1 

- 9n + 6 
n - 1 

W{0,0) - 2 (2n - 3) (1, 0) + A (0, 0) 

A{0,0) / ( ( n - 2 ) ( n - 3 ) ) (2.53) 

and 

Gov (/i,/2) VF(1,0)-14^12(0,0) n 
n - 1 

i y ( 0 , 0 ) - 2 A ( 0 , 0 ) y l ( l , 0 ) 

+ 
( 3 n - 2)^^(0,0) 

n - 1 
/ ( n - 2 ) (2.54) 

To obtain these particular expressions, and in general, we use (2.47) to correct the 

bias in using A {k, I) x A {k', I') as an estimator of E {Yk+i.k+i+i) x E (yifc/+i.fc'+/'+i). 

2.6.2 Examples 

We now give two illustrations of exact variances and covariances of sample L-moments. 

Example 1. 

In this example we give exact variances and covariances of the first four sample L-

moments for four standard distributions: the standard normal distribution (using tables 

from Teichroew (1954)), the uniform distribution (with pdf / ( x ) = \/3/6 on -3 / \ /3 < 

X < 3/\/3), the Gumbel distribution (with pdf f{x) = e~̂ e"'̂ "̂  on —oo < x < oo) 

and the exponential distribution (with pdf f{x) = e"^ on a; > 0). The results are given 

in Tables 2.1 and 2.2 and all four distributions have variance = 1. 

In Table 2.3 we compare asymptotic and exact variances for different sample sizes 

from the Gumbel (Gum) and the Normal (Nor) distributions. As we see, the asymptotic 

variances of k and I3 are good approximations when n > 20 but underestimates for 

small n. Note that, the asymptotic variances of I2 and h are from Hosking (1986). 

Example 2 

We give a numerical example from Rice (1995). The data are given in the Table 2.4 

and Figure 2.5 shows the quantile normal plot which Rice has used to support the 

normality assumption for these data. We may estimate the parameters using 
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Normal Uniform Divisor 
Var(/i ) 1 1 

Cov(/i,/2) 0 0 n(i) 
Cov(/i,/3) 0 1 

5 
n(i) 

Cov(ii, I4 ) 0 0 n(i) 
Var(i2 ) 0.163n +0.038 n+3 

15 
C0V(/2,/3) 0 0 ^(2) 

C0V(Z2,/4 ) 0.011n +0.0002 n+3 
,35 

Var(/3) 0.059^2 -t-0.049n-f 0.010 2n2 + 10 
35 

C0V(/3,;4 ) 0 0 
Var(/4 ) 0.028n3 + 0.056n2 -t- 0.05bn + 0.014 105 n(4) 

Table 2.1: Exact variances and covariances of the first four sample L-moments from 
normal and uniform distribution, both with cr̂  = 1. 

Gumbel exponential Divisor 
Var(/i ) 1 1 

Cov(^i,/2) 0.281 
n 

1 
2 

n(i) 

C0V(ii,/3) 0.075 1 
6 

n(i) 
C0V(^i, 4̂ ) 0.028 1 

12 
n(i) 

Var(/2 ) (0.228n - 0.045) 2n-l 
6 n(2) 

C0V(/2, /3 ) (0.081n +0.021) n 
6 n(2) 

C0V(i2,/4 ) (0.039n + 0.006) n 

Var(Z3) (0.086n2 - 0.0025n - 0.035) 4n2-3n-2 

12 
C0V(/3,/4 ) (0.038n2 + 0.027n + 0.003) 

4n2-3n-2 

12 
„(3) 

Var(Z4 ) (0.043^3 -1- 0.014^2 - 0.008n - 0.033) 3n^+693n''-2n-3 
42 n(4) 

Table 2.2: Exact variances and covariances of the first four sample L-moments from 
Gumbel and exponential distribution, both with = 1. 

Var(/2) Var(Z3) 
Nor Gum Nor Gum 

n Asy. Ex. Asy. Ex. Asy. Ex. Asy. Ex. 
5 0.032 0.042 0.047 0.055 0.012 0.043 0.019 0.035 
8 0.020 0.024 0.029 0.032 0.007 0.015 0.012 0.016 
10 0.016 0.018 0.023 0.025 0.006 .0.01 0.009 0.012 
15 0.011 0.012 0.015 0.016 0.004 0.005 0.006 0.007 
20 0.008 0.008 0.012 0.012 0.003 0.004 0.005 0.005 
25 0.007 0.007 0.009 0.009 0.002 0.003 0.004 0.004 
35 0.005 0.005 0.007 0.007 0.002 0.002 0.003 0.003 
50 0.003 0.003 0.005 0.005 0.001 0.001 0.002 0.002 

Table 2.3: Comparison between asymptotic and exact variances for different sample 
sizes from the Gumbel (Gum) and the Normal (Nor) distributions, both with cr̂  = 1. 
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850 960 930 940 880 780 890 830 890 740 
940 880 880 1000 810 890 840 850 900 960 
880 810 840 760 780 740 1070 850 940 860 
820 810 720 840 930 810 880 810 720 800 
760 850 950 850 800 800 720 650 770 810 
950 850 960 860 620 840 760 880 790 980 
880 860 800 810 740 850 810 840 980 900 
970 750 810 1000 820 870 880 840 840 950 
760 850 870 790 1000 810 830 800 880 910 
870 980 880 840 790 760 910 960 920 870 

Table 2.4: Michelson's determinations of the velocity of the light made from June 5, 
1879 to July 2,1879. 

L-moments with unbiased standard error. Assuming normality, we find from Hosking 

(1990) that Ai = i^i and A2 = a / 0 r . Then, the unbiased estimators of n and a are 

ll = li= 852.4 and a = ^/nk = 78.5 

We find from Table 2.1 that 

w r - 1 w r, 1 /0.51n + 0.12\ ^ 
Var ju} = — and Maria} = 7rVar{/2[ = ; —̂ cr 

n \ ^ 1 ) / 

replacing a by its estimate a = 78.5 in these expressions, we find 

W {fl) = 61.6, \ ^ r (a) = 31.9 and Gov (/j , a) = 0 

I f we use the distribution-free unbiased estimators of Var (/i) , Var { I 2 ) and Gov { h j h ) , 

we find that 

Var{/2} = 62.4, Var{a} = 7rVar{Z2} = 36.7 and (Sv (/2, a) = C^v {h, k) = 1.26 

2.6.3 Approximate mean and variance of L-skewness and L-kurtosis 

We estimate the skewness and kurtosis measures = X3/X2 and T4 = A4/A2 by 

3̂ = h/k and = U/h- To obtain approximate variances for ia and t^, we use the 

following approximation for the variance of a ratio R = U/V of two random quantities 
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-1 0 1 

Quantiles of Standard Normal 

Figure 2.5: Normal probability plot of Michelson's data. 

U and V given, for example, by Rice (1995) 

E{V) E^{V) E\V) 
(2.55) 

Var (R) ~ { Var {V) 
E^ (U) Var (U) 2Cov {U, V) E ([/) 

+ (2.56) 

The choices R = h/h and R = I 4 / I 2 give approximate expected values and vari

ances for 3̂ and t4 and we give some examples for the distributions which have been 

defined in example 1. 

When sampling is from the normal distribution, T S = 0 and = 0.123, we obtain 

the approximations 

E{h) ~ 0 
0.1866^2 + 0.154171 + 0.03261 

n{n- l ) ( n - 2 ) 
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and 

0.1227 (n-0.2184) (n - 0.5514) 
l i (til) — n{n — 1) 

0.086 (n + 1.06) (n + 0.91) (n + 0.25) 
n ( n - l ) ( n - 2 ) ( n - 3 ) 

For Michelson's data we find that (^3, ^4) = (0.019, 0.147) with approximate stan

dard errors (0.044,0.030), respectively, suggesting that the theoretical values rs = 0 

and T4 = 0.123 for normal distribution are supported by these data at confidence level 

0.95. 

When sampling is from the uniform distribution, ra = 0 and = 0, we obtain the 

approximations 

E(t3) ^ 0 
(12n2 + 60) 

Var(t3) ~ 
70n (n - 1) (n - 2) 

and 

Var(t4) ~ 

35n (n — 1) 
2 ( n ^ - H l ) ( n - f 3 ) 

35n (n - 1) (n - 2) (n - 3) 

When sampling is from the Gumbel distribution, = 0.1699 and T4 = 0.1504, we 

obtain the approximations 

0.1699(n + 0.275)(n- 2.123) 
E (tsj — 

Var(^3) ^ 

n(n — 1) 
0.221(n + 0.817)(n- 0.344) 

n ( n - 1) (n - 2) 

and 

0.150(n + 0.228)(n- 1.338) 
E [t^) — 

n (n - 1) 
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0.126(n - 1.022)(n2 + 2.209n + 1.356) 
Var (U) 

n{n-l){n-2) (n - 3) 

When sampling is from the exponential distribution, = 1/3 and — 1/6, we 

obtain the approximations 

0.331(n-l-0.210)(n- 1.987) 
E(^3) — n{n — 1) 

_ , , 0.331n2+ 0.941n +2.205 
" n ( n - l ) ( n - 2 ) 

and 

0.167(n-H.6Q6)(n- 2.410) 
CJ ( 1 4 ) ~ / 1 \ 

n (n - 1) 
(80n^ + 7081n^ - 205n - 150)/378 

^'"^'^ ~ 378n (n - 1) (n - 2) (n - 3) 

2.7 Characterisation of the normal distribution based 
on sample L-moments 

In most cases of statistical evaluation, decisions based on a set of observations on a 

random variable Y depend on the assumption that the distribution function F{y) of Y 
is known. Knowing F{y) may mean to the applied scientist just a subjective choice 

that may be supported by the data by using some empirical method such as a quantile-

quantile plot or a goodness of fit test. 

Many contributions have been made to the problem of characterising the normal 

distribution such as the independence of the sample mean and sample variance; see, for 

example, Lin and Mudholker (1980). In this section, we use the covariance structure of 

sample L-moments to characterise the normal distribution in the class of distributions 

having finite second moments. 

We use the results from Theorem 2.1 below due to Govindarajulu (1966b), which 

characterises the normal distribution in terms of second moments of the order statistics 

Y\;ni Y2:m •••) Yjri;n-

Theorem 2.1 Let Y\,Y2,... be a sequence of independent and identically distributed 
nontrivial random variables with zero mean, unit variance and distribution function 
F{y). Then, fori = 1, 2 , n 
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J2E{Y,.,nYj.,n) = l, n = 2,3,... (2.57) 

if and only ifF{y) = $(y) = / ^ ^ (27r)"^^^ e-^'/^di, /or ?/ G (-oo, oo). 

Theorem 2.2 Let Yi , F2, ••• be a sequence of independent and identically distributed 
nontrivial random variables with zero mean, unit variance with distribution function 
F{y), and for each n = 2,3,... let / i , d e n o t e the sample L-moments based on 
Y\:n < Y2:n < ••• < Yn;n- Then, for i = 1, 2, ...,71 and n = 2,3,... 

C o v { h , l r ) = E { h l r ) = \ I ' ' ^ ] (2.58) 
[ 0 if r > 1 

if and only if F{y) = $(y) = / ^ ^ {2n)-'^\-'y'dt, fory G ( - 0 0 , 0 0 ) . 

Proof 
First note that (2.57) in Theorem 2.1 can be written 

E{hYr.n) = -, i = l,...,n (2.59) 
n 

Using the expression for Ir in (2.15) and (2.17), we may write 

k=0 i=l 

Thus, when the distribution is normal, we have from (2.59) that 

which proves the first part, after noting from Downton (1966) that 

E ( . - l f ' = | ^ , (2.6,) 

and the identity 

tr'ok + l \ 0 i f r > l 

which follows by noting that 

, „ , J r \ ( r - l + k \ ^ - r \ 
k \ A ; + l / \ A; / \ k I 
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and 

b 
n — j n 

with n = r — 1, j — k, a = —r and b = r. 
When (2.58) holds 

r - l „ n 
Cr-l,k E ( M . ) = E5gSE(^- i f^E( / ,y .„ ) = <' " 

fc=0 n (fc+i) 

which we can write it as 

Az = c 

where 

A = 

f an an 
021 022 

V Onl «n2 \^{hYn:n) J 

i f r = 1 
if r = 2,3,...,n 

(2.63) 

(2.64) 

and c 

f l / n \ 
0 

V 0 J 

Because of the non singularity of A (Sillito, 1969), we find that the unique solution 
of (2.64) is = (1/n, 1 / n , 1 / n ) which follows from (2.60). Since this is true for 
all n = 2,3,... we have by Theorem 2.1 that the distribution is normal. This completes 
the proof. 

The non-singularity of A follows from the following properties which are given by 
Sillito (1969) 

(1) A can be written as follows 

A = L U 

where L i s a lower triangular matrix in which the (r, c)th element is 

(-1) r+c r - l \ / r - f c - 2 

c - 1 r - 1 
for r > c 

(2.65) 

and U is an upper triangular matrix in which the (r, c)th element is 
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c - 1 

r - 1 
n for c> r 

(2) A is non-singular matrix with determinant 

0!2!4!...(2n- 2)! 
(n!) 

For example, when n = 3, we have 

f 1 0 
° 1 

/ 1 
3 

1 
3 

1 
3 

L = - 1 2 0 u = 0 1 
6 

1 
3 

\ 1 - 6 V 0 0 1 
3 J 

and 

A = 
1/3 

-1 /3 

1/3 1/3 \ 

0 1/3 

1/3 -2 /3 1/3 J 

Thus, we find that 

( E(Z?) \ ( 1/3 1/3 1/3 \ f 1/3^ 
E(/l/2) = = -1 /3 0 1/3 1/3 = 0 

VE(^1^3) ) V 1/3 -2 /3 1/3 J V V 3 j I 0 J 

and 

' E ( / i y i : 3 ) ' 

E(/lF2:3) 

V E ( / I F 3 : 3 ) ; 

f l 1 3 \ 
1 0 4 

1 4 3 

f 1/3 

V 

0 

0 J 

1/3 

V I / 3 J 

(2.66) 

Because the correlation coefficient is location and scale free, we can reformulate 

Theorem 2.2 as follows 

Corollary 2.1 

Corr{li, Ir) -

for all n = 2,3,... if and only if F{y) is normal. 

1 

0 

if r=l 
if r = 2,3,...,n 

(2.67) 
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01 8 

U . 4 

Figure 2.6: Correlation between li and I3 for the one-parameter symmetric lambda 
distribution. 

We see from Figure 2.6, Corr(/i, ^3) = 0 for two values of A (0.144 and 4.452) for 
the symmetric lambda distribution, which the distribution is a good approximation to 
the N (0,1) distribution; see Chapter 4, for details about the lambda distribution. 

When E (F) = 0, from (2.39), we can write E {hlr) as 

where Cr^k is given in (2.13). 

E (^fc+l:fc+l) - E {Yk:k+lYk+l:k+l) (2.68) 

Theorem 2.3 A distribution-free unbiased estimator ofE{lilr) is given by 

r-l 
Cr-l,fe 

^ ' ' k + l 

n / _ 1 \ n-1 n / — 1 

i=l \ K I j= l j=i+l \ ^ 

(2.69) 

Proof 
The proof is straightforward from equations (2.27) and (2.28). 
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2.8 Probability-weighted moments 
Probability-weighted moments (PWM) were defined by Greenwood et al. (1979) as 

follows 

Mp,r,s = E {XP [F{X)Y [1 - F{X)Y} , (2.70) 

where p, r and s are real numbers. 

The definition of Mp^r,s is valid for both continuous and discrete random variables 

and we are interested in former case. 

When the random variable X is continuous, we can write (2.70) as follows 

Mp,r,s = I x^F {xY [1-F {x)Y dF [x) (2.71) 

Probability-weighted moments are likely to be most useful when the inverse distri

bution function Q{u) can be written in closed form, which is the case for the lambda 

distribution (see Ghapter 4). We may write 

Mp,,,, = C [Q{u)Y v: [I - uY du (2.72) 

The quantities Mp,o,o {p = 1, 2,...) are non-central moments of X. The moments 

Mi^r.s may be preferable for estimating the parameters of the distribution of X , in the 

sense that the relationship between parameters and moments often takes a simpler form; 

in this case, linear combinations of order statistics. Two cases of particular interest, 

because the estimators will be in linear form, are 

ccs = Mi,o,. = ( ^ [ ^ E ( X i . , + i ) =E{X[1- F{X)Y} , s = 0,1,2,... (2.73) 

and 

I3r = Mi,,,o = ( T ^ E {Xr+v.r+x) = E {X [ F { X ) Y } , r = 0,1,2,... (2.74) 

Given a random sample of size n from a distribution F, estimation of Pr and Q;^ is 

most conveniently based on the statistics 

, " (n - i)(n - j - l)...{n - j - s-\-l) 
as^n-'Y.- ; i w \ } , . -^r.n. s = 0,1,2,... (2.75) 

% ( n - l ) ( n - 2 ) . . . ( n - s ) 
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and 

. - l y { j - l ) { j - 2 ) . . . { j - r ) 
br = n 2^- —- —-— -Xj,n r = 0,1,2,... (2.76) 

jT i l ? ^ - l ) ( ' ^ - 2 ) . . . ( n - r ) 

which are unbiased estimator of I3r and a^, respectively; see, Landweher et al. (1979). 

The quantities Mp^r.s may be used to describe and characterise probability distribu

tions. The characterisations of a distribution by the Pr and by the as are interchange

able, because the (3r and ctg are functions of each other; we have in general, see for 

example Hosking (1986), 

/ r \ / r \ 
« r = E ( - l ) ' , ^. = E ( - 1 ) ' , (2.77) 

*:=0 V ^ / fc=0 \ / 

and in particular, 

a2 = po-2Pi+/32 

« 3 = ^ o - 3 A + 3 / 3 2 - / S 3 

and 

/So = "0 

A = ao - «! 

/S2 = cvo - 2Q:I + a2 

= tto - 3Q:I - I - 3Q:2 - 0 3 

Moreover, we can express the L-moment linearly in terms of and as follows 

Xr+i = {-lYj2cr,kak = i2cr,kPk, r = 0 , l , . . . , (2.78) 
*:=0 k=0 

where Cr,fc is given in (2.13). 
In particular 

Al = tto = /3o 

A2 = tto - 2Q;I = 2/3i - ^0 
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A3 = ao - 6ai + 60:2 = 6/32 - 6̂  + Po 

A4 = ao- 12ai + 30a2 - 20^3 = SOft - 30^2 + I2pi - ^0 

Another proof of the unbiasedness of bk and as which is simpler than that is given 
in Landweher et al. (1979), follows from equation (2.29); namely 

E { ^ } = E ^ ^ ' ^ + i ^ + i ) 
(r + 1) 

/ QiuWdF = Pr Jo 10 

Similarly, is an unbiased estimator of a^. 

2.8.1 Exact variances and covariances of sample probability weighted 
moments 

The exact variances and covariances of bk are given in (2.37) 

Gov {bk, bi) = Oki = ^ E 4 / V - I - lY'^ (2.79) 

It is also possible to determine the first four moments of using the relationship 

between br and Qj, established by Hosking (1986); namely, which is given by. 

as=u-^r : b. 
k=o V ̂  

k 

It is also possible to determine the first four moments of 6s using the following 
relationships between Ir and bg 

bo = ^1 

bi = il2 + h)/2 

62 = (^3 + 3/2 + 2 / 1 ) / 6 

63 = (/4 + 5/3 + 9^2 + 5 /1) /20 

For example, 

Var(6i) = ^Var(/2) + ^Var(/i) + ^-Cov{h,k) 
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2.9 Conclusions 

In this chapter, we have defined population and sample L-moments and we have derived 
the exact variances and covariances of sample L-moment in terms of moments of the 
order statistics from small samples. Also, we characterise the normal distribution in 
terms of covariances between li and 1^. 

We have investigated the asymptotic and exact variances of the sample L-moments 
from the Normal and Gumbel distributions and conclude that asymptotic variances have 
essentially the same values as the exact variances for large samples (n > 25), but differ
ent values when the sample size is small (n < 25). Also, we have derived distribution-
free unbiased estimators of the variances and covariances of sample L-moments. We 
have also discussed probability weighted moments and their relation to L-moments and 
have obtained their exact variances and covariances. These results are also illustrated 
in two examples. 



Chapter 3 

Generalisations of L-moments 

3.1 Introduction 

Consider the problem of estimating the parameters of a distribution F. Classical esti
mation methods (e.g, the method of moments, least squares, and maximum likelihood) 
work well, for example, in cases where the distribution belongs to the exponential fam
ily. However, it is recognised that outliers, which arise from heavy-tailed distributions 
or gross errors of measurement, have undue influence on such methods; for example, 
X which is an unbiased estimator of the mean ^ of the normal distribution based on 
the method of moments, least squares and maximum likelihood, is a non-robust esti
mator; see, for example, Al i and Luceno (1997). Therefore, i f there is concern about 
extreme observations which having undue influence, one should use a robust method 
of estimation which has been developed to reduce the influence of outliers on the final 
estimates. In recent years, a great deal of attention has been focused on robust estima
tion methods; methods produce estimates that are resistant to the presence of outliers; 
see, for example, Bamett and Lewis (1994), Hampel et al. (1986), Hawkins (1980) and 
Rousseuw and Leroy (1987). 

As discussed in Chapter 2, Hosking (1990) unified analysis and estimation of dis
tributions using linear combinations of order statistics and used their ratios as new 
measures of skewness and kurtosis to relate L-moments to the method of moments. 
Royston (1992) and Vogel and Fennessey (1993) discuss the advantages of L-skewness 
and L-kurtosis over their product-moment counterparts. Hosking and Wallis (1995), 
Sillito (1951) and Sillito (1969) consider various theoretical aspects and applications of 
L-moments. Mudholkar and Hutson (1998) introduced LQ-moments using a "quick" 
measure of the location of the sampling distribution of the order statistics such as the 
median, the tri-mean and Gastwirth measure (which we call Gastwirth) in place of the 

37 
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mean. There are wide applications for L-moments in engineering, meteorology, and 
hydrology; see, for example; Gingras and Adamowski (1994), Guttman et al. (1993), 
Pearson (1993), Pilon and Adamowski (1992) and Sankarasubramanian and Srinivasan 
(1999). 

In this chapter, see also Elamir and Seheult (2001c), an alternative approach which 
we call trimmed L-moments (TL-moments) is introduced which gives zero weight to 
extreme observations. TL-moments have advantages over L-moments and the method 
of moments: they exist whether or not the mean exists (for example, the Cauchy dis
tribution) and they are more robust to the presence of outliers. Trimming refers to the 
removal of extreme values of a sample. For example, to symmetrically trim a uni
variate sample size, one removes the k smallest and k largest values for some specified 
k < n/2. For univariate samples the trimmed mean, the mean of the n~2k un-trimmed 
sample values, is by far the most widely studied trimmed statistic. 

In section 3.2 we define LQ-moments and obtain their large sample variances. In 
section 3.3 we introduce both population trimmed L-moments and their sample counter
parts for estimating parameters from any univariate continuous distribution and also ob
tain their exact variances and covariances. In section 3.4 we develop the trimmed prob
ability weighted moment method (TPWM) and elucidate its relation to TL-moments. In 
section 3.5 we study the TL-mean as a robust location estimator and apply the method 
of TL-moments to some symmetric distributions. 

3.2 LQ-moments 

Mudholkar and Hutson (1998) defined the rth population LQ-moment Cr as 

_ (3.1) 
Jfc=0 \ J 

where 

Tp , . {X,-k:r) = pQx^^,,^ («) + (1 - 2p)Qx^_^M/2)+pQx,_,.Al - a), (3.2) 

0 < Q : < 1 / 2 , 0 < P < 1 / 2 and Qx denotes the quantile function of a random 
variable X. Notice that LQ-moments reduce to L-moments when ^ (Xr-k-.r) = 

E{Xr-k:r). 

Possible candidates for Tp^a are: the median {p = 0, a = 1), the tri-mean (p = | , « = | ) 
and Gastwirth = 0.3, a= l)• 

T'p,a iXr-k:r) , r = 1, 2, 3 
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The first four LQ-moments are 

Cs = ^ [ r p , a ( X 3 : 3 ) - 2 r p , , ( X 2 : 3 ) + r p , a ( X i : 3 ) ] 

these equations have the same form as those for L-moments given in Chapter 2. 

Evaluation of LQ-moments for any continuous distribution is simplified using the 

following relationship 

rp,a{Xr-k:r)=pQx [B^^A^)] + (1 - 2p)Qx Br-k:r 
(3.3) 

where ^^ .^^ .^( l - a) denotes the corresponding a-quantile of a beta distribution with 

parameters r - k and k + 1. 

Mudholkar and Hutson (1998) estimate population LQ-moments by the following 

sample LQ-moments 

Cr = r - ^ E ( - 1 ) M rpAXr-k:r), (3.4) 

where they take the estimator Tp^a{Xr-k:r) of the location of the order statistics Xr-k-
to be 

fpAXr-k:r) = pQx [ B ^ I M ] + (1 - 2p)Qx Br-k:r + pQx [B;\M-C^) 

(3.5) 

and Qx{-) denotes the linear interpolation estimator of Qx{-) given by 

Qx{u) = (1 - e) X[(^ri+l)u]:n + e^[(n+l)u]+l:n (3.6) 

with e — {n + l)u - [{n + 1) u]. 

Sample LQ-moments depend upon the choice of Tp^.) and the quantile estimator 

used for estimating it. However, their asymptotic normality follows from the large 

sample theory of linear functions of order statistics. The asymptotic mean of cJ- is Cr 
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Median Tri-mean Gastwirth 
Ci 1^ ^^ 
C2 0.539(7 0.544(7 0.542(7 
C3 0 0 0 
C4 0.062(7 0.04a 0.063(7 
^3 0 0 0 
V4 0.116 0.118 0.117 

Table 3.1: Population LQ-moments (Ci, C2,Cs) C4,^73.^4) for the normal distribution 
using (a) median (b) tri-mean (c) Gastwirth 

and their asymptotic covariances are given by Mudholkar and Hutson (1998) as follows 

Cov ( c . , c ) 
-1 r - l s - 1 

k=Q1=0 

s - 1 
I 

XCOV ( f p , ^ {Xr-k:r) , 7>,a {Xs-l:s)) (3.7) 

where 

and 

Cov [fp,a (Xr-k-.r) , Tp,a (Xs-u)] = P {p CoV [Q {ui) , Q {U2) 

+p Gov [Q ( u i ) , Q (ue)] + p Gov [Q {U^) , Q (u^) 

+p Gov [Q ( U 4 ) , Q (U5) ] + P Cov [Q {U2), Q (U5) 

+ (1 - 2p) Gov [Q (t is) , Q (^ i4)] + (1 - 2p) Gov [Q ( ^ 3 ) , Q {ue) 

+ (1 - 2p) Gov [ g ( ^ 2 ) , Q (us)] + (1 - 2p) Gov [q {m), Q ( ^ 4 ) ] } (3.8) 

Gov [q (ui), Q {uj)] =Ui{l- Uj) Q' (u,) Q' (uj) /n for i < j (3.9) 

note that Q is short hand for Qx-

As an example. Table 3.1 gives the population values of Ci> C2. Cs and C4 and their 

LQ-skewness and LQ-kurtosis (7^3,774), based on the median, the tri-mean and Gastwirth 

functional for a normal distribution. 

3.3 Trimmed L-moments (TL-moments) 

In this section we generalise L-moments to TL-moments and show that L-moments 

are a special case of TL-moments. Sample TL-moments which can be expressed as 

linear combinations of the sample order statistics are unbiased for the corresponding 

population quantities. We derive expressions for the exact variances and covariances 
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for sample TL-moments in terms of first and second-moments of the order statistics 
from small samples. 

3.3.1 Population TL-moments 

We define TL-moments analogously to L-moments (given in Chapter 2) as follows 

Definition 3.1 Let X be a real-valued random variables with distribution function F. 
We define the rth TL-moment as 

X(Ut,) ^ ^ - 1 g f ~ M E{Xr+t,.k:r+t,+t,) , T = 1,2, ... (3.10) 
fc=0 \ ^ J 

where ti and t2 are the amounts of lower and upper trimming. 

We study the special case when ti = t2 = t, and write (3.10) as 

r - l / r - 1 \ 
= E ( - 1 ) ' , E{Xr-,t-k:r+2t), r = l,2,... (3.11) 

k=0 V / 

Clearly TL-moments reduce to L-moments when t = 0; in particular, xf^ = E{X). 
Moreover, in view of (3.11), A[*̂  is evaluated in terms of expectations of order statistics 

from a sample of size r -h 2t. For example, 

Ai*^ = E [Xi_|_t:i_|_2i 

which is the population mean of the sample median from a sample of size 1 -I - 2t, which 

will be zero if the distribution is symmetric about the origin. 

While the definition of Â *) is valid for both continuous and discrete random vari

ables, we restrict attention to continuous random variables. 

As we have seen previously, the expectation of an order statistic may be written as 

(David (1981)) 

E {X^:r) = J—r^, / ' Q{u)u^-' (1 - u)^"' du (3.12) 

[I — \.)\{r — i)\ Jo 

where Q is the quantile function Qx-



CHAPTERS. GENERALISATIONS OF L-MOMENTS 42 

Substituting this expression in (3.11), we have 

h \ k j {T + t-k-l)<{t + k)\ 

X 
/o 
f'Qiu)u'+'-''-'{1 - uY+^ du, r = l,2,... (3.13) 

We now examine in more detail the expression for A [* ' when t = 0,1,2. When 

^ = 0, equation (3.13) gives the ordinary L-moments, described in Chapter 2 . When 

t = 1 , the first four TL-moments are 

= E{X2.3) = 6 Q(u)u{l-u)du 
Jo 

X'i^ = I E ( X 3 . 4 - X2 .4) = 6 Q{u)u ( 1 - u) {2u - 1) du 
2 Jo 

= (X4:5 - 2X3:5 + ^ 2 : 5 ) = y I ' Q{u)u ( 1 - u) [bu^ - 5 u + l ) dF 

X^^ = ^E (X5:6 - 3^4:6 + 3X3:6 - ^2 :6) = ^ / ' Q{u)u ( 1 - u) 

4 Z Jo 
X (l4u^ - 2\v? + 9M - l ) du 

When t = 2 , the first four TL-moments are 

aS^^ = E ( X 3 . 5 ) = 30 \^ Q(u)v? ( 1 - uf du 
Jo 

A ^ ' ^ = ^E (^4 :6 - ^ 3 : 6 ) = 30 ^ Q{u)U^ ( 1 - uf {2u - 1) d« 
2 ./o 

A ^ ' ^ = ^ E ( X 5 : 7 - 2 X 4 : 7 + X3:r) = y ^ ' g ( « ) « ' ( ! - U ) ' ( 5 M 2 - 5 ^ X 

A S ' ) = ^E (^6 :8 - 3X5:8 + 3X4:8 - ^ 3 : 8 ) = ^ ['Q («) (1 " 

X (I4M^ - 21^2 -f- 9« - 1 ) rfu 

Note that as i -> oo, A ^ ^ converges to the population median. Thus, a distribu

tion may be specified by its trimmed L-moments even i f some of its L-moments and 

conventional moments do not exist; for example, the Cauchy distribution. 
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We can standardise the higher moments Â *)̂  r > 3, so that they are independent of 
the units of the measurement of X as follows 

rW = ^ 

(3.14) 
Ti) 

for r = 3, 4,... and r^*) is called TL- coefficient of variation. 

3.3.2 T L - skewness and TL-kurtosis 

Pearson (1895) proposed (/x — M ) /a as a measure of skewness for a univariate distri
bution with mean /x, mode M and variance cr̂ . Three other measures of skewness 
have been introduced by Bowley (1937) and Yule (1944). These are (// - m) /cr, 
where m is the median, /3i = jiz/a^, where is the third central moment, and 
{Qu + 9/ - 2m) / {Qu - qi), where g„ and qi are the upper and lower quartiles, respec
tively. Al l are based on the criteria that a skewness measure should be scale-free and 
zero for symmetric distributions. The coefficient of skewness Pi appears more promi
nently as the measure of skewness, as illustrated by Doodson (1917). The most com
mon measure of kurtosis is (32 = Hi/ju| where ^ 4 is the fourth central moment. 

Both classical measures /3i and /?2 have played an important role in classifying dis
tributions, in model fitting and in parameter estimation. Because of some deficiencies 
of /?! and (52, such as their sensitivity to the extreme tails of a distribution and their 
nonexistence for some distribution, such as the Cauchy distribution, alternative mea
sures of skewness and kurtosis have been proposed. For an overview and discussion of 
coefficients of skewness and kurtosis; see, for example, Hinkley (1975), Hogg (1974), 
Hogg et al. (1975), Groeneveld (1998) and Kendall and Stuart (1987). 

Hosking (1990) has defined the ratios TS and called L-skewness and L-kurtosis 
as 

T3 = and T-4 = (3.15) 

where - 1 < T3 < 1 and (5r | - 1 ) /4 < R4 < 1. 
Mudholkar and Hutson (1998) have defined the ratios 773 and 774 called LQ-skewness 

and LQ-kurtosis as 

r/3 = 7^ and 774 = 7^ (3.16) 

We define the TL-skewness and TL-kurtosis analogously 
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Figure 3.1: Plot of T^^^ as a function of A for the symmetric lambda distribution. 

Definition 3.2 TL-skewness and TL-kurtosis measures T^*^ and T^''' are defined as .(«) 

(t) 

A ? A? 
(3.17) 

It should be noted that TL-skewness and TL-kurtosis are location and scale invari
ant, and exist for the Cauchy distribution {t > 2). When the distribution is symmetric 
TL-skewness is zero and the magnitude of TL-kurtosis increases for the distributions 
with heavier tails, as illustrated in Figure 3.1 for Tukey's lambda distribution (see Chap
ter 4) which has quantile function 

Q{u) w {i-uY 

3.3.3 Sample TL-moments 

TL-moments can be estimated in a straightforward manner by estimating the expected 
value of order statistics given in equation (3.11) from Downton (1966). We define the 
rth sample TL-moment to be 
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Definition 3.3 For a sample of size n, the r th sample TL-moment is given by 

r - l 
/(*̂ *̂ ) = r-^ ^ (-1)^= \ ^ E{Xr+t,_k:r-,t,+tJ, r = 1, 2,.. . u - t , { 3 AS) 

k=0 \ 1^ 

where 

^{Xr+ti-k-.r+ti+ti) 
1 

E 
i=i 

i - l \ n - i 
r -{-ti ~ k - 1 / \ t2 + k 

X,,..r. 
n 

^r-\-ti+t2 
(3 .19) 

and ^1 = [nai] and t2 = [na2] are the amounts of trimming from each end of the 

sample and ai, 0L2 are specified proportions with 0 < cii < 0.5 and 0 < Q!2 < 0.5. 

When ti = t2 = t = [na], a is a pre-chosen proportion (0 < a < 0.5), we may 

write (3 .18) as 

r - l r - 1 
/ W = r - l ^ ( - l ) ' = • ]E{Xr+t-k:r+2t), v = 1, 2,.. .u - 2t (3 .20) 

fc=0 

where 

E{Xr +t-k:r+2t) 

r-^2t 

i - 1 

r-^t-k-l 
n — I 
t-\-k 

Xr.n ( 3 . 2 1 ) 

Glearly sample TL-moments reduce to sample L-moments when a = 0 and /̂ "̂  = 

X is the sample mean.When a = 0.49 , then /J ([0.49n]) X is the sample median, where 

9 means 9 repeated; for example, when n = 100 and 1000, to obtain the median we 

must choose a = 0.49 and a = 0.499, respectively. 

In particular, the first four sample TL-moments from equation (3 .18) when n = 25 

and a = 0.05 are given by 

4 " = 
n 

3 

E 
i=i 

I - 1 

1 
n — I 

1 
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,(1) 1 " i - 1 \ n - i \ i - 1 \ n - i 

2 I \ 1 \ l / \ 2 
Xi:n 

/ { ! ) E 
n \ i=i 

i - 1 \ n - i \ i - 1 \ n-t 
3 / \ l / \ 2 / \ 2 

' 4 

i - 1 
1 

1 " 

n \ i=i 

n — I 

3 
Xi-r, 

I — l \ l n — i \ I — 1 \ n — I 
- 3 

4 / I 1 / \ 3 / \ 2 

+3 
i — l \ ( n — i \ I i — 1 \ I n — i 

3 j " I 1 J I 4 
X . 

and when n = 25, a = 0.10 

I? = 

I? 

1 " 

n \ t=i 
5 

1 
E 

n \ 1=1 

i - 1 

2 

i - 1 
3 

n — I 

2 

n — I 

2 

X,: 

i - 1 
2 

n — I 

3 
X , 

,{2) E 
n \ i=i 

i - 1 
4 

n — I 

2 
- 2 

i - 1 n — 2 

3 

,(2) _ 

+ 
i - 1 

E 

n — I 

4 

i - 1 
5 

Xi:„ 

n — I 

2 

i - 1 n — I 
3 

+3 
i - 1 n — I 

4 

i - 1 \ / n - i 

2 / \ 5 
X,. 

Also, we can estimate TL-skewness and TL-kurtosis as follows 
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At) _ h 
h - Jt)' 

h 

lit) 

In the following theorem, we show that the is an unbiased estimator of A ^ . 

Theorem 3.1 is an unbiased estimator of \^^\ 

Proof: 
From Chapter 2 we find that 

.i=l 
k\l\ n 

k ^ l ^ l 
E ( X , k+i-.k+i+i) 

Using this equation and substituting in (3.20) we have 

r - l 

n 
r + 2t 
n 

E(- i ) ' 

E E 

then 

2=1 

r - l 
, - 1 

jfe=0 

i - 1 

r-\-t-k 

r - 1 

r - 1 
k 

n — I 

t-\-k 
Xi-r, 

^ ^ E ( - l ) , | E ( X . + , _ , : 2 . + . ) = AW 
fc=o V 

Moreover, asymptotic normality of follows from the large sample theory of the 
linear functions of order statistics; see, for example, Stigler (1974) and Hosking (1986). 
Simulation results are illustrated in Figures 3.2, 3.3, 3.4 and 3.5. Figure 3.3 shows a 
slight curvature for a sample size 15 from the exponential distribution while Figures 
3.2, 3.4 and 3.5 show good normal approximations. 

3.3.4 Exact covariances of sample TL-moments 

As the sample TL-moments are linear combinations of order statistics, we can calcu
late their exact sampling variances and covariances. From Downton (1966), the exact 
variances and covariances of /l*'*^) be written as follows 
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Figure 3.2: The histogram and quantile plots (a) and (b) of (c) and (d) of I2', (e) 7(1) 

and (f) of and (g) and (h) of t\'^'. The parent distribution is normal (0,1), the sample 
size is 25 and number of replications is 5000. 
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Figure 3.3: The histogram and quantile plots (a) and (b) of lj'\ (c) and (d) of 12'', (e) 
and (f) of and (g) and (h) 4̂ -̂ The parent distribution is exponential (1), the sample 
size is 25 and number of replications is 5000. 
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Figure 3.4: The histogram and quantiles plots of (a) and (b) (c) and (d) I2', (e) and 
(f) and (g) and (h) t^^\ The parent distribution is normal (0,1), the sample size is 
50 and number of replications is 3000. 

/ ( I ) 



CHAPTER 3. GENERALISATIONS OFL-MOMENTS 51 

0 
> «> 
0 c e 
ff 8 H 

T 
1.0 

1 

12 

TL-mean Tlieorelicalquartles 

0.15 020 

- T -
0i5 0.30 035 m 

Tl-scate 

OH 

0.1 02 0.3 0.4 

Tl-skeyvness Ttieoretalquanfles 

> 0 
0 

-0.1 0.1 02 

TL-kuftosis 

0.3 

S 0 

0* 0 

-0.10 -0.05 0.0O 0.05 OlO 
r 

015 O20 025 

Ttieoretcalquantles 

Figure 3.5: The histogram and quantile plots of (a) and (b) (c) and (d) (e) and 
(f) 4̂ ' and (g) and (h) t^^K The parent distribution is exponential(l), the sample size is 
50 and number of replications is 3000. 
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fc=0(=0 V / V 

X Q{r+ t i - k - l , k + t2,s + ti-1-1,1+ t2) (3.22) 

and in the special case wiien ti = t2 = t 

cov(/w,/w) = r - v ^ E E ( - i r ( - i r ( ' ' ) ( ' / 
k=01=0 V / V 

X n{r + t - k - l , k + t,s + t - l - l , l + t) (3.23) 

where O {k, l,p, q) is given by 

n{k,l,p,q) = ^ ]{p-r)\{q-s)\ |(A; + r ) ! 
--Os=o \ r J \ s J \ P - r J \ q - s 

1 j I ^ 

x{l-r)\{p-s)\ik + r)\{q + s)l[ " 
y k + q + r + s + 2 

XE (Xfc+r+l:fc-|-g+r+s+2-''^fc+r+2:fc+g+r+s+2) 

+ j 2 j 2 i - l Y ^ ' ( k \ f n - p - r - l \ f n - l - s - l 

/ 

x ( g - r ) ! ( g - 5 ) ! ( p + r ) ! ( / + s)! , ^ 

X E (Xp_|_r+l:p+/+r+s+2-^p+r+2:p+(+r+s+2)} 
\ / 

kW.p\q\ " 

- E{Xk+l:k+lJr\)^{Xp+\:p+q+\) (3-24) 

It should be noted here that the amount of computation required to obtain the variances 

and covariances of sample TL-moments is considerably less than what is required to 

obtain the variances and covariances in the cases of using a complete sample. 
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Exact covariances of the first few sample TL-moments 

We first give simple example to show how to use equation (3.22). We know that 4°' is 

the sample mean and by using equation (3.23) we find 

Var(/r) = - ^ i ^ l i ^ + E{X,.,X,..,) - E \ X , , ) 
n n 

For any continuous distribution it is known that; see, for example David (1981) 

E(J^l:2X2:2)-E2(Xia) = 0 

Hence we have the well-known estimator 

f E ( X f . i ) - E ' ( X i . i ) l 
Var(iS°)) = ^ — ^ = - (3.25) 

n n 

Var(4"') = ^ (3.26) 
n n 

note that vaf {if^^ is an unbiased estimator of var from (3.26) without any cor

rection of the bias in (3.25). 

Similarly, the exact variances and covariance of other sample TL-moments follow 

from (3.23); for example, the variance of TL-mean is given by 

Var (/i^^) = I — (n - 2) ' E \X^..^X^^ + X^.,^X^.,^\ - 6 (n - 2) (2n - 3) E (^2:4X3:4) 

- - (Sn^ - 15n + 20) E (^3:6X4:6) + 6E ( x ^ ^ + 3 (n - 3) E \xl^ + X l '^ 

+ ^ (n - 3) (n - 4)E ( X l s ) } / ( n (n - 1) (n - 2)) 

The variance of the TL-scale measure can be written 

Var (4^)) = 5 7 6 { ^ ( 2 n - 7 ) ( n 2 - 7 n + 1 5 ) E ( X 4 : 8 X 5 : 8 ) - ^ ( n - 3 ) 

X (r? - 6n - f 10) E \X^.,X^..-j -t- X^..-JX^..T\ + ^ ( n - 2) ( n - 3) (2n - 5) 

X E [^4:6X5:6 + X2:6X3^6] + ('^ - 3) (Sn" - 15n + 20) E {X^..^X,.,^) 
160 

{n - I f (n - 3) E [X^A,^ + ^ 2 : 5 X 3 : 5 ] 
80 
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+ 1 (n - 2) (n - 3) (2n - 3) E ( ^ 2 : 4 X 3 : 4 ) 

" - 4) - 5) (n - 6) E [Xl] + - 1 - (n - 4) (n - 5) (n - 6) 

X E [Xl, + Xl,] + ^ ( n - 4) ( n - 5) E [xl, + X l , 

^ E [Xl, + } / ( n (n - 1) (n - 2) (n - 3)) 
+ 96 

The covariance between 4"̂ ' and can be written 

Gov = j e E [Xl, - Xl,] + y i ^ E [Xl, - A1 

+ ^ [-^2:5-^3:5 " A3:5A4:5 

0 
1 2 ( 2 n - ^ V Y 1 

+ E [A4:6A5..6 — A2:6^3:6. 
0 

+ 7 2 ( ^ ^ - f a + 1 0 ) E [̂ 3.̂ ;̂ .̂̂  _ / ( n (n - 1) (n - 2)) 
35 J 

The variance of ^ is 

r (2)\ f 10 (5n^ - 90n3 + GSSn̂  - 2250n + 3024) 

Var (̂ 4 ) = { ^ Y (-^5:10-^6:10j + 

200 (n - 4) ' (n2 - 8n + 21) v MY Y \ 

225 (n - 3) (n - 4) (n^ - 7n + 14)„ , ^ ^ ^ ^ ^ . 
- E [A5:8A6;8 + A3;8A4:8 

7 
360 (n - 4) (2n - 7) {n^ -7n + 15) 

E (^4:8-^5:8) 
7 

, 720 ( n - 3 ) ( n - 4 ) (n^ - 6n + 10)^ r v Y MY Y ] 

+ —^ E [A4:7A5:7 + A3:7A4:7 

- 30 (n - 3) (n - 4) [Sn"^ - 15n + 20) E (^3:6X4:6) 

+ 10 (n - 5) (n - 6) {n - 7) (n - 8 ) ^ 

, 90 ( n - 5 ) ( n - 6 ) ( n - 7 ) ^ r ^ 2 1 
-(- -Ij ^ [^5:8 + ^^4:8 

, 7 2 0 ( n - 5 ) ( n - 6 ) ^ / ^ 2 ^ , 120 (n - 5) (n - 6 )^ ^ ^ 2 , ^ ^ 2 1 + E l^X^.j j H c, Î Ag.y + A 3.7 

+ 120 (n - 5) E [Xl, + Xl,] + 120E (xl,) } 

/ n ( n - l ) ( n - 2 ) ( r i - 3 ) ( n - 4 ) 
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We can find distribution-free unbiased estimators of these variances and covariances 
using equations (2.49), (2.50) and (2.51) from Chapter 2. 

For any symmetric distribution, we prove that Gov , l2^^ = 0. 

Theorem 3.2 

Cov{l\'\li'^)=0 

for any symmetric continuous distribution function. 

Proof 

From David (1981) we find for any symmetric continuous distribution function 

E {X^.,:) = E {Xl,.^.,^) 

and 
:n) 

Substituting in Gov , /^^^), we find that 

G o v ( f ' , 4 ' 0 = 0 

3.4 Trimmed probability-weighted moments (TPWM) 

In this section we describe the trimmed probability weighted moments method (TPWM) 
and its relation to the method of TL-moments. 

Definition 3.4 Let X he a real-valued random variable with distribution function F. 
We define the trimmed probability weighted moments ofX to be the quantities 

' = { r ^ ' s l l f {'^r.t.^^-r^s.t.^^^..) (3.27) 

The term weight comes from the definition of probability-weighted moment method 
which is given in Ghapter 2. In the symmetric case the definition reduces to 

K L = ^r^'s + iy^ iX^+t+v.r^s-,2t^i) (3.28) 

The definition of M^'^ ^ is valid for both continuous and discrete random variables. 
In the continuous case if we use equation (3.12), we can write 
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The quantities M^*^^ may be used to describe and characterise probability distributions. 

One possible approach is to work with M^^Q Q, p = 1,2,... ; these are just the conven

tional non-central moments of X; see for example Kendall and Stuart (1987). 

Of particular interest are the moments M^^^^, which their estimators will be in linear 

form, given by 

-^I*r,s — , ' „ , „ , iME(Xr+t+l:r+s+2t+l) (3.30) {r + s + iy. 
r\s\{r + t + l)\ 

{r + s + l)\{r + t)\{s + t)\ 

As with PWM the two special cases 

r Q{u)u'^'{l-uy+'du (3.31) 
-'0 

^l'^ = Ml% = ^ ^ E ( X , + , + i . , + 2 . + i ) (3.32) 

r\{r + t + l)\ /•! 
{r + l)\ir + t)\{t) 

Q{u)u'+\l-uYdu (3.33) 

r = 0,1, ...,n - 2t and 

" i * ^ = < l = ^^E{Xt+,..s+2t+i) (3.34) 

s\{t + l)\ 
{s+i)\ms+t) 

- Qiu)u\l - uY+^du (3.35) 
! Jo 

are of particular interest where s = 0,1, 2 , n — 2t. 

The characterisation of a distribution by the Pr and as are interchangeable because 

the /5r and are functions of each other. Thus, 

and 

/3̂ *̂  = E ( - 1 ) ' 1 4*^ (3-36) 
k=0 \ 1^ 

4*̂  = E ( - 1 ) ' ' tf^ (3-37) 
A:=0 V 1^ 
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and in particular 

a ? = rf) - 3/3W + 3/3« -

and 

Note that 

= a « - 3 4 n 3 « ? - a « 

5 a a = E ( X i . , ) and r / ^ S = E (X,. , ) (3.38) 

These relationships wil l be useful when we estimate the extreme values E(X„:„) 
and E(Xi: i ) and the parameters from a uniform distribution. 

Although TPWM are useful to characterize a distribution, they have no particular 
meaning, for example, we have to combine /3i and /3o to find definition for the scale. It is 
useful to define some functions of TPWM, which can be seen as descriptive parameters 
of location, scale and shape of a probability distribution. TL-moments and the TPWM 
are related by 

(3.39) 

(3.40) 

In particular. 

A ? ' = - 2 a « = 2A« -

a W = ai'^ - 12a? + 30a? - 20a? = 20/3? - 30/3? + UP? - P? 
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3.4.1 Estimation of TPWM moments 

The TPWM can be estimated in a straightforward manner by estimating the expected 
value of order statistics as we have done with TL-moments. We define the rth sample 
TPWM as follows 

Definition 3.5 For samples of size n, the rth sample TPWM is given by 

r!s! 
(r + s + 1)! E {Xr-i-ti+l:r+s+ti + t2 + l) 

where 

E {Xr+ti + l:r+s+U+t2-i-l) 
1 E 

r + s + ti + t2 + l 

i - 1 
r + 1̂ 

In the symmetric case this simplifies to 

where 

E(X, r+t+l:r+s+2t+l ) = 
1 

E 
n I i=i 

r + s + 2t + 1 

(3.41) 

n — ^ 
5 + 2̂ 

i - 1 \ n - i 

r + t I \ s + t 

Xr 

(3.42) 

X:. 

3.5 TL-mean as a robust statistic 

Most studies of robust estimators of location have been primarily concerned with their 
asymptotic properties; see for example, Gastwirth (1966), Gastwirth and Rubin (1969), 
Siddiqui and Raghunandanan (1967) and Collins (2000). Crow and Siddiqui (1967) 
and Gastwirth and Cohen (1970) studied the small sample behaviour of some robust 
estimators of location for normal, double exponential and Cauchy data. The results 
indicated that a suitably trimmed mean performed quite well. 

In this section we compare the TL-mean with some robust location estimators which 
are defined below and are given in Gastwirth and Cohen (1970). 
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3.5.1 TL-mean 

Suppose Xi,X2,Xn is a random sample from a distribution F {{x - ^) /a) , where 

is an unknown location parameter to be estimated, and a is a known scale parameter, 

which without loss of generality we take to be 1. 

We investigate TL-mean as a robust estimator of [i and we define it as follows 

4" = ^ i ^ E 
n \ i=i 

1 - f 2t 

^^:n (3.43) 

We shall compare the TL-mean with the mean X , median X , the a-Winsorized 

mean Wnipi), the a-trimmed mean T„ (a) and which is a combination of the 

median and the upper and lower pth sample fractiles such that each of the fractiles 

receives a weight a and the median 1 - 2a. 

n—[na] 
T„(a ) = {n-2\na\)-^ ^-n (3-44) 

i=[na] + l 

i f / X ""'""^ 1 
Wn{a) = - U H ( - ' ^ M + ^ n + l - M ) + E (3.45) " I [na] + l J 

K ( p , a ) = a + X„_[„p]) + (1 - 2a) X , (3.46) 

where a denotes the fraction trimmed from each end of the sample and [m] denotes the 

largest integer in m: for more details, including the variances of these estimators; see, 

for example, Gastwirth and Gohen (1970) and Jaeckel (1971). 

We study the behaviour of the estimators based on samples of different sizes from 

normal, logistic, double-exponential and the contaminated normal distributions CN{'y, K) 
with density 

f , , M = 4 ^ { ( 1 - 7) e-^^/^ + ^ e - V ^ ^ ^ } (3.47) 

We use the results given in Gastwirth and Gohen (1970) for estimators other than 

li^and the same value of a of the trimmed mean to compute if^ The results in Table 

3.2 and Figures 3.6, 3.7 and 3.8, the symmetric lambda distribution is introduced and 

discussed further in Ghapter 4, show that the ordinary sample mean and the 0.05, 0.10 

and 0.125 Winsorized means seem to lack robustness properties for example, at sample 

size 16 the variances of these are 0.125, 0.125 and 0.1172, while the minimum variance 

is O.o849 (l^i^). The median, on the other hand, incurs too much loss of efficiency 
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Estimators 
Normal CN(0.01,3) 

Distribution 
CN(0.05,3) CN(0.10,3) Logistic D-Exp 

n (0.125) 
Ts (0.25) 

VFg (0.125) 
Ws (0.250) 
Ys {1,0.3) 

^8 ( i 3 ) 

>^8(| ,0.3) 

n = 8 

(1) 
1 
(2) 

0.125 0.135 0 
0.168 0.171 0 
0.134 0.137 0 
0.148 0.150 0 
0.125 0.135 0 
0.133 0.140 0 
0.146 0.149 0 
0.146 0.148 0 
0.146 0.149 0 
0.137 0.140 0 
0.151 0.154 0 

0.2250 0 4112 0 2500 
0.1989 0 4533 0 1873 
0.1737 0 3906 0 1997 
0.1784 0 4086 0 1839 
0.2250 0 4112 0 2500 
0.1803 0 3996 0 2193 
0.1776 0 4071 0 1868 
0.17765 0 4075 0 1894 
0.17763 0 4072 0 1868 
0.1728 0 4113 0 1892 
0.1815 0 3998 0 1816 

T16(0.10) 
T16 (0.125) 

(0.10) 
(0.125) 

^ 6 (1 , 0 .3 ) 

{h 3 ) 

Y,e (1 , 0 .3 ) 
I? 
If' 

n = 16 
0.062 0.067 0 0874 0.1125 0 2056 0.125 
0.090 0.092 0 0972 0.1038 0 2366 0.0855 
0.064 0.066 0 0742 0.0874 0 1934 0.1048 
0.067 0.068 0 0744 0.0835 0 1919 0.0948 
0.062 0.067 0 0874 0.1125 0 2056 0.125 
0.064 0.066 0 0764 0.0942 0 2006 0.1172 
0.073 0.074 0 0795 0.0874 0 2008 0.0902 
0.077 0.078 0 0832 0.0907 0 2067 0.0853 
0.077 0.078 0 0836 0.0910 0 2072 0.0851 
0.067 0.068 0 0747 0.084 0 1994 0.0914 
0.072 0.073 0 0783 0.0860 0 1859 0.0849 

X[lf^) 

T20 (0.05) 
T20 (0.10) 
W20 (0.05) 
W20 (0.10) 
1̂20 ( i , 0.3) 

^20 ( | , I ) 

F20 (1 , 0 .3 ) 

I? 
If' 

0.050 0.054 
0.073 0.074 
0.051 0.051 
0.053 0.054 
0.050 0.054 
0.051 0.051 
0.058 0.059 
0.061 0.111 
0.061 0.062 
0.053 0.054 
0.057 0.058 

n = 20 
0.0700 
0.0789 
0.0594 
0.0589 
0.0700 
0.0616 
0.0686 
0.0657 
0.0661 
0.0595 
0.0621 

0.0900 0 1645 0 1000 
0.0851 0 1911 0 0666 
0.0706 0 1551 0 0854 
0.0666 0 1529 0 0778 
0.0900 0 1645 0 1000 
0.0769 0 1610 0 0950 
0.0697 0 1604 0 0718 
0.0715 0 1634 0 0685 
0.0718 0 1637 0 0673 
0.0669 0 1586 0 0727 
0.0682 0 1472 0 0672 

Table 3.2: Variances of various location estimators for samples of different sizes (n = 
8,16 and 20) from different distributions. 
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Figure 3.6: Variances (a) of tf', (b) of / [^^ and (c) of ^ as a function of A3 for samples 
of size 6 from a symmetric lambda distribution for various values of A3, where Ai = 0 
and A2 = 1. 

on normal and near normal data. For all the sample sizes studied, our results indicate 

that the TL-mean / f ^ is suitable for general use in small to moderate sample sizes and 

like the trimmed mean lies between the sample mean X and the median X but the 

TL-mean gives different weights, which decreases from a maximum weight for the 

median values to zero for 21 the trimmed extremes, to observations and more efficient 

for suitable choosing for a\ for example, and /^^ have the smallest variance 

among other estimators from normal, CN, logistic and double-exponential distributions 

except from CN(0.05,3) distribution, note also that the values of variances of 

W% (0.125), W20 (0.05) and Wi^ (0.10) are the same because the precentage and the 

sample size are small. 

In the contaminated normal densities we used the tables of variances and covari

ances of order statistics given in Gastwirth and Cohen (1970). From these we find the 

following variances of l^^^ and / j ^ ^ 

When 7 = 0.01 

V a r ( ^ ) ) 

Var(;S^)) 

1.0806(n- 1.1771)(n- 1.6038) 
n ( n - l ) ( n - 2 ) 

1.1328(n - 3.3672)(n - 3.6394)(n2 2.5705/2 + 1.7722) 
n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) 
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Figure 3.7: Variances (a) of 4°^, (b) of 4̂ ,̂ and (c) of /^^ as a function of A3 for samples 
of size 12 from a symmetric lambda distribution for various values of A3, where Ai = 0 
and A2 = 1. 
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Figure 3.8: Variances of (a) 4°\ (b) and (c) 4̂ ^ as a function of A3 for samples of 
size 25 from a symmetric lambda distribution for various values of A3, where Ai = 0 
and A2 = 1. 
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When 7 = 0.05 

y^dim _ 1.1755(n- 1.1202)(n- 1.6340) 
^^y^ J ~ n{n-l){n-2) 

1.2119(n - 3.3456)(n - 3.6523)(n2 - 2.5609n + 1.7300) 
Var ( /P ) = 

When 7 = 0.10 

Var(/;^)) = 

Var(/P)) = 

n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) 

1.3186(rt - 1.0443)(n - 1.6681) 
n{n- l ) ( n - 2) 

1.3296(n - 3.3104)(n - 3.6727)(n^ - 2.5593n + 1.6970) 
n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) 

3.6 Examples of TL-momeets for some symmetric dis
tributions 

In this section we estimate the parameters of some symmetric probability distributions 

using TL-moments. 

3.6.1 Uniform distribution 

The uniform distribution is a short tail distribution with 

= Fi^) = ^ and Q{F) = a+{/3-a)F 
p — a p — a 

We consider estimating the parameters a and ^ using the following expression for the 
TPWM 

(0) (0) a - f 

= irrr """- = 1 ^ 
Using (3.38) and solving these equations we obtain the estimators 

a = and p = 
n — 1 n — 1 

where S and P are unbiased estimators of a and P, respectively. 

The estimators a and /3 are the modified maximum likelihood and maximum prod

uct of spacings estimators, see for example; Gheng and Amin (1983). 
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3.6.2 Normal distribution 

For the normal distribution, when t — 1 and using Teichroew (1954) tables we find that 

X[^^ = H, Xi^^ = 0.297 a, Â ^̂  = 0 and x'i^ = 0.0185 a 

and 

ri^^ = 0 and r̂ ^̂  = 0.0625 

Thus, unbiased estimators of and a are 

p, = and a = li^^/0.297 

Where the variances of and l^^^ are 

1.0594 (n - 1.1875) (n - 1.5980) 

and 

^^y^' (n (n - 1) (n - 2)) 

/ (2)>, _ 1.1122(n - 3.3708)(n - 3.6371)(n^ - 2.5676n + 1.7702) 
^'y' )~ n ( n - l ) ( n - 2)(n - 3)(n - 4) i ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) 

which are used to compute the variances of /[^^ and in Table 3.2. 

3.6.3 Logistic distribution 

In the logistic distribution Q (u) = fi + a [u/ (1 - u)) so when t = 1 we find that 

X[^^ = ^, A^ '̂ = 0.5 a, A?^ = 0 and x'i^ = 0.0417a 

and 

= 0 and ri^^ = 0.0833 

Therefore, unbiased estimators of fi and a are 

/ i = and a = 21^2^ 
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Where the variances of and are 

/ (i)N, _ 3.1133(n - 0.9476)(n - 1.7048) 
^^'y' ^ - n ( n - l ) ( n - 2 ) 

and 

(2)N _ 2.8265(n - 0.3140)(n - 2.8918)(n - 2.8918)(n - 3.7812) 
V a r ( / f ' ) 

n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) 

which are used to compute the variances of and / f^ in Table 3.2. 

3.6.4 Double exponential distribution 

In the double exponential distribution Q{u) = /j,-\-a log {2u) for u < 0.5 and Q (u) 
/ i - cr log (2u) for u > 0.5. When t = 1 we find that 

X[^^ = X^^^ = 0.3438(7, Â ^̂  = 0, and AJ^^ = 0.0469 a 

and 

= 0, and ri^^ = 0.1365 

Therefore, unbiased estimators of and a are 

= /[^^ and a = 4^Vo.344 

Where the variances of/S^^ and are 

fim _ 1-425 (n - 0.887) (n - 1.726) 
^^'y' ) ~ f n f n - l ) f n - 2 ) ) (n (n - 1) ( n - 2)) 

and 

(2)x _ 1.2956(n - 0.5415)(n - 1.9764)(n - 3.0517)(n - 3.7620) 
Var(iP) n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) 

which are used to compute the variances of and /^^ in Table 3.2. 

3.6.5 Cauchy distribution 

In the Gauchy distribution Q {u) = f j . a (tanTr (« - 0.5)). When t = 1 we find that 
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X[^^ = IX, X^^^ = 0.698 a, Â ^̂  = 0, and A?^ = 0.239 a 

and 

ri^^ = 0, and = 0.343 

Therefore, unbiased estimators of fj, and a are 

p. = and a = 4^V0-698 

Note that, we used the tables of variances and covariances of order statistics given in 
Govindarajulu (1966a), Bamett (1966), Teichroew (1954) and Gupta (1967) to compute 
the values of AS^\ A^^^ A^^^ and A^^^and variances of l^^^ and l f \ 

3.7 Conclusions 

In this chapter we have discussed LQ-moments based on the median, the tri-mean and 
Gastwirth location measures, have extended L-moments to trimmed L-moments and 
shown that the L-moment is a special case of TL-moments. 

We have defined both population and sample TL-mean, TL-scale, TL-skewness and 
TL-kurtosis and have obtained the variances and covariances of sample TL-moments 
in closed form. We have also investigated the properties of TL-moments in some sym
metric distributions, the uniform, normal, logistic, Laplace and Cauchy. Also, we have 
shown that the TL-mean is a robust measure of location, protects against outliers and 
gives different weights to the observations. We have described the trimmed probability 
weighted method (TPWM) and its relation to the TL-moment method. 



Chapter 4 

Symmetric lambda distribution 

4.1 Introduction 

Tukey (1962) introduced and discussed subsequently the very useful family of distri
butions defined by the single parameter quantile function 

. pl^SLzPl (4.1, 

where 0 <p < 1. 
Random variables with this quantile function are said to be distributed according 

to a symmetric lambda distribution with parameter A. Filliben (1969) used this dis
tribution to approximate symmetric distributions with a wide range of tail weights to 
study location estimators of symmetric distributions. Joiner and Rosenblatt (1971) have 
given results on the sample range. Chan and Rhodin (1980) used this distribution to 
study robust estimation of the location parameter based on selected order statistics. 
Ramberg and Schmeiser (1972) have shown how this distribution can be used to ap
proximate many of the known symmetric distributions and explored its application to 
Monte Carlo simulation studies. Ramberg and Schmeiser (1974) generalised (4.1) to a 
four-parameter distribution defined by the quantile function 

Q{p) = X, + ^ \ 0 < p < l (4.2) 

where Ai is a location parameter, A2 is a scale parameter and A3 and A4 are shape 
parameters. 

Although the distribution functions corresponding to (4.1) and (4.2) do not exist in 
closed form, this should not be of concern to practitioners since the same is true of the 

67 
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normal distribution, whose quantile function is not available in closed form. In this 
chapter we work with symmetric case A3 = A4 

W ^ A . ^ " " - ' ' ^ ^ ' " (4.3, 

In section 4.2 we give the properties of the symmetric lambda distribution. In sec
tion 4.3 we discuss estimating the parameter A in (4.1) using the maximum likelihood 
method. Also, we discuss the use of L-moments and LQ-moments for estimating the 
parameters Ai, A2 and A3. In section 4.4 we obtain the asymptotic variances of Ai, 
A2 and A3 from the exact variances and covariances of sample L-moments derived in 
Chapter 2. In Section 4.5 we use the symmetric lambda distribution to study the effect 
of the tail of the distribution on the choice of the plotting position for quantile plots. 

4.2 Properties of the symmetric lambda distribution 

In this section we list some of the properties of the symmetric lambda distribution, 
most of which follow from the quantile function (4.3), which is a legitimate inverse 
distribution function whenever A2 and A3 have the same sign. 

The density function of a random variable X with quantile function (4.3) is defined 
implicitly by 

fix) = f{Q (p)) = 1/Q'{p) = A2 [A3P^-^ + A3 ( 1 - p ) ' ' - ' ] ( 4 . 4 ) 

Which can be graphed by letting p range from zero to one and plotting f{Q{p)) 
versus Q{p); see Figure 4.1 for some examples. The density function is symmetric 
about Ai . For A2, A3 > 0 the range of variation of a; = Q{p) is positive in the interval 
Ai ± I / A 2 and 0 otherwise; for A2, A3 < 0 the range of variation is positive on ( - 0 0 , 00 ) , 
and the ordinates at the extremes of the range of variation of 2; = Q{p) are given by 

/ ( O ( 0 ) ) = / ( Q ( i ) ) 

A2/A3 if A3 > 1 

A2 /2 i f A3 = l (4.5) 
0 i f A3 < 1 

As Figure 4.2 shows the density of X is U-shaped for 1 < A3 < 2 and has a single 
mode for A3 < 1 or A3 > 2; see Figure 4.1. 

Tukey (1962) found that this family of distributions gives useful approximations to 
the percentage points of the normal and Student's t distributions. An important property 
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(a) (b) 

(d) 

Figure 4.1: Probability density function of some symmetric lambda distributions for 
different parameter values: (a) Ai = 0.5, A2 = 2 and A3 = 1, (b) Ai = 0, A2 = 0.1974 
and A3 = 0.1349, (c) Ai = 0, A2 = -0.0870 and A3 = -0.0043 and (d) Ai = 0, 
A2 = -0.3203 and A3 = -0.1359. 
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Figure 4.2: Density function of lambda distribution when Ai = 0, A2 = 1 and A3 = 1.5. 

of the lambda family is that the percentage points are available directly from equation 
(4.3). That is, the lOOp percent point is given by Q{p). 

Ramberg et al. (1979) have given the kth moment as 

E {X') = A2 ^ ^ ^ 1 ( - 1 ) ' ^ (A3 {k-z) + l,Xst + 1 ) (4.6) 

where Ai = 0 and (3 (a, b) = a;""^(l - x^'^dx is the beta function. 
The kth moment of the rth order statistic of a random sample of size n can be 

computed from 

n 

A§ 

i t - i 

s=0 
J2i-^y ^ ]Hr + H j - s ) , n + sXs-r + l 

s 

x A r + E ( - i r 
s=0 

/3 (r + As (A; - s ) , n + sAg - r + 1 ) 

k 

3 

(4.7) 

Mykytka and Ramberg (1979) gave the proof only for Ai = 0. 
The following expressions for the mean and the variance of X are obtained from 
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(4.6) as 

(4.8) 

E{X) = Ai 

Var(X) = 2[1/(2A3 + 1 ) - ^ ( A 3 + 1,A3 + 1 ) ] /A2 

When A3 = 1 or A3 = 2, Q{p) is linear in p so the distribution is uniform with p.d.f. 

fix) = A 2 / 2 (4.9) 

A limiting form of (4.1) as A —̂  0 is the logistic distribution with the density 

= (4.10) 

There are several advantages of the family of symmetric lambda distributions 

I . It includes distributions with short as well as very long tails; 

I I . It includes the logistic distribution (A 0) and two uniform distributions (A = 

1,2) as particular cases; 

n i . It provides good approximations to the Cauchy, normal and t-distributions; 

IV. The percentage points are easily calculable; and 

V. Simulation is immediate from the definition of the quantile function. 

4.3 Methods of estimation 

In this section we shall consider four methods of estimating the parameters of a sym

metric lambda distribution; maximum likelihood in subsection 4.3.1, L-moments in 

subsection 4.3.2, LQ-moments in subsection 4.3.3 and TL-moments in subsection 4.3.4. 

4.3.1 Maximum likelihood 

Suppose that random variables X i , X 2 , X „ are independent and identically distributed 

with probability density function f{x \ 9), where 6 = (^1, ^2, • • •, ^fc) are parameters to 

be estimated. The likelihood of 9 is defined as 

m = f[f{X,\9) (4.11) 
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The maximum likelihood estimate of 0 is which value of 9 that maximises / (9). 
Rather than maximising the likelihood itself, it is usually easier to maximise its natural 
logarithm, i.e the log likelihood 

L{9) = j2^ogf{X,\9) (4.12) 
1=1 

The large sample distribution of the maximum likelihood estimates 9 is approx
imately normal with mean 6o and variance ^l~^{9o), where the matrix I (^) has the 
j — kth. element 

In this section we restrict attention to estimating the parameter A in the one param
eter family (4.1) using the maximum likelihood method because it is difficult to work 
with generalised case. 

Limits of lambda 

We first give the limits of A in the following lemma 

Lemma 4.1 The upper and lower limits ofX will be 

- co < A < L 

where L = l/max{—Xi.n,Xn:n) 

It is easy to show L > 0 by using Xi^n < X^-.n and considering the three cases, both 
negative, opposite sign and both positive. Writing I = Xi.n and m = Xn-.n we have 
three cases: 

• / < m < 0 : - Z > 0 then max(-/, m) = - I > 0 

• / < 0 < m : - / > 0 and m > 0 then max(-/, m) > 0 

« 0 < / < m: —/ < 0 and m > 0 then max(—/, m) — m> 0. 

In each case max(—A'i:„, X„;„) > 0, and therefore, L > 0. 
To prove Lemma 4.1 we consider the two cases (a) A > 0 and (b) A < 0. 
When A > 0, then 

Q(0) = - 1 and Q{1) = \ 
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Hence 

So that 

^ < Xi:n < X2:n < ' • • < Xn:n < ^ 

-Xi,n < J and Xn:„ < J 

therefore 

J > max(-Xi:„,X„:„) 

and because L > 0, we have 

0 < A < L (4.14) 

When A < 0, we can show that 

Q ( 0 ) = -oo and Q ( l ) = oo (4.15) 

and the Lemma follows after noting that the logistic distribution corresponds to A —> 0. 

Likelihood function 

From the density function (4.4) with A2 = A3 = A, the likelihood function is 

m = I[{p^-' + il-P^)'-'y' (4.16) 
1=1 

where pi is such that Xi = Q (pi) = (pf - ( 1 - Pi)^) /A. 
The log-likelihood function is 

L(A) = - E l o g {pt' + {l-p^)'-') (4.17) 
1=1 

Thus 

L/(X) = T f ^^''^"gP- + ~ Pi)'-'\og ( 1 - P^) (A - l)pt' - (A - 1 ) ( 1 -
k \ P f + ( 1 - PrV-' Pt' + ( 1 - P^V-' 

^^X{pfl0gP^ - ( 1 -p,)Hog{l-p,)) - {pf - {l-p^V)\ 

The maximum likelihood estimator (A) is taken to be the value of A which max
imises I'(A). Maximising L(A) requires numerical solution. We used the fsolve func-
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1.546 1.847 -0.484 0.692 0.093 -0.283 
1.612 2.244 1.233 0.260 1.062 -0.709 
-0.557 -2.066 1.421 0.458 -2.628 -2.203 
-0.699 -2.303 -1.243 0.349 1.258 -2.148 
-0.340 2.387 -0.307 2.715 3.664 1.489 

Table 4.1: Simulated sample of size n = 30 from a symmetric lambda distribution with 
parameter A = 0.14. 

—O. 1 
t . . 

1 O 

0.2 
i O 

— 1 o -

Derivative —20 -

—30 -

40 -

Figure 4.3: Derivative of log likelihood function (A) based on a simulated sample of 
size n = 30 from the lambda distribution with A = 0.14. 

fion in xmaple 6 to find the numerical solution for equation (4.18) but in many cases 
fsolve required many iterations, a lot of times, a lot of memory and in some cases failed 
to compute the solution. As an example, we simulate a sample of size n = 30 from 
lambda distribution with A = 0.14 (see Table 4.1) and we have plotted (A) and L(A) 
(see Figures 4.3 and 4.4) which give A ~ 0.11. 

The likelihood function has simple form for the values A = 0,1 and 2; for example, 
when A ^ 0 

' ( O ) ^ n ^ (4.19) 

which is the likelihood of the logistic distribution. 
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-57.5 

-58 

—58.5 
Loglikelihood 

-59 

-59.5 

lambda 

Figure 4.4: Log likelihood function L (A) based on simulated sample of size n = 30 
from the lambda distribution with A = 0.14. 

4.3.2 L-moments 

In this section we discuss the use of L-moments for estimating the parameters of the 
symmetric lambda distribution. L-moments are expectations of certain linear combina
tions of order statistics as defined in Chapter 2. 

L-moments for the symmetric lambda distribution 

Estimates of the parameters of the symmetric lambda distribution may be obtained by 
L-moments as follows. From Chapter 2 we have 

Ea.) = r - i E ( - l ) 
A:=0 

\ ^ ]E{Xr-,..r), r = l,2,.. (4.20) 

We have the expected value of order statistics in equation (4.7). From equation (4.20) 
we conclude that 

E ( / i ) = E ( X ) = Ai 
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T4 
0 0.070 0.123 0.154 0.167 0.236 0.255 0.350 

Al 0 0 0 0 0 0 0 0 
A2 small V3/3 0.396 0.203 0.064 -0.0017 -0.446 -0.608 -2.025 

large %/3/3 0.499 0.456 0.434 0.425 0.384 0.374 0.3284 

As small 1 0.368 0.140 0.037 -0.0009 -0.174 -0.214 -0.386 
large 2 3.384 4.262 4.783 5.006 6.263 6.637 8.771 

Table 4.2: Some values of Ai , A2 and A3 corresponding to the selected values of T4 from 
the standard lambda distributions. 

1 9 A 

1, 
E ( / 3 ) = -E{X,.,^-2X,.,^ + X,.,,) = 0 

T3 

E (^4) — —E ( ^ 4 : 4 — 3^3:4 -|- 3^2:4 — ^ 1 : 4 ) 

0 

4A3 - 6A2 + 2A^ 
A2(A3 + l)(A3 + 2)(A3 + 3)(A3 + 4) 

E ( / 2 ) 

E ( / 4 ) ( A 3 - l ) ( A 3 - 2 ) 
E ( / 3 ) ( A 3 + 3)(A3 + 4) 

In the special case when Ai = 0 and A2 = A3 = A we have 

E( / i ) = 0 

E ( i 2 ) = 

E ( / 3 ) = 0 

E ( / 4 ) = 

{\ + l){X + 2) 

2 ( A - l ) ( A - 2 ) 
(A + l)(A + 2)(A-F3)(A-f4) 

The minimum value of T4 for the family of lambda distributions is about —0.01 
corresponding approximately to A3 ~ 1.449, see Figure 4.5. There are two lambda 
distributions corresponding to every permissible value of t^, see equation (4.21) and 
Table 4.2. 

The probability density functions for the two values of lambda corresponding to 
T4 = 0.236 are shown in Figure 4.6. 

To estimate Ai , A2 and A3 we equate the theoretical L-moments to the computed 
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Figure 4.5: u as a function of A3 

(a) 

(b) 

Figure 4.6: Probability density functions of the two lambda distributions having rs = 0 
and T4 = 0.236 and unit standard deviation. 
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sample L-moments; thus, 

^ (A3 - 1)(A3 - 2) 
(A3 + 3 ) ( A 3 - f 4) 

which can be written 

(1 - Ti)Xl - A3(3 + 7u) + 2 (1 - 6T4) = 0 (4.21) 

Solving this with respect to A3, we obtain the two estimators 
3 + 7̂ 4 - J t j + 98*4 + 1 

W ^ ) < '̂2^> 

and 
3 -h 7*4 + Jtl - I - 98*4 + 1 

= W ^ ) — 

Substituting in E ( /2 ) we have the following two corresponding estimates of A2 

A21 = (4.24) 
/2(A3i-M)(A3i + 2) 

and 

From E (/i) we obtain 

A,, = ^ '^2^ (4.25) 
/2(A32 + l)(A32 + 2) 

Ai = / i = X (4.26) 

4.3.3 LQ-moments 

In this section, we discuss the use of the LQ-moments for estimating the parameters 

of the symmetric lambda distribution. As we have seen in Chapter 3, Mudholkar and 

Hutson (1998) introduced LQ-moments which are linear functions of location measures 

(median, tri-mean, and Gastwirth) of the distributions of order statistics. 

From Chapter 3 and using tri-mean approximation (p = .25 and a = .25), we find 

that 

6 = Ai 
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o.os 

0.05 -i 

6 = 

Then 

Figure 4.7: Values of As when 774 is 0.118 

2g-0.346A3 _ 2e-l-228A3 ^ g-0.144A3 _ g-2.010A3 

0 
1 

8 A ^ 

4A2 

g-0.3465A3 _ g-1.228A3 2e-0173A3 _ 2g-l-838A3 _|_ g-0.072A3 _ g 

(4.27) 
-2.668A3 

3g-0.784A3 _^ 3g-0.609A3 _ gg-0.487A3 _|_ gg-0.9526A3 _ 3g-0.278A3 _^ 3g-1.414A3' 

rjs = 6 / 6 = 0 and 774 = 6 / 6 = -^(As) (4.28) 

We notice that 774 is a function of A3 only , 6 is a function of A2 and A3 and ^1 is a 
function of Ai. Solving equation (4.28) with respect to A3 using fsolve in maple gives 
two values of A3, see Figure 4.7, and substituting in equation (4.27) gives two values of 
A2 and one value of Ai. For example, the standard normal distribution has 774 = 0.118 
and this gives the two solutions Ai = 0, A2 = 0.212 and A3 = 0.148 and Ai = 0, 
A2 = 0.502 and A3 = 3.334; see Figure 4.8. 

The minimum value of 774 for the family of symmetric lambda distributions is about 
774 ~ -0.010 corresponding approximately to A3 ~ 1.4. There is no upper bound on 
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A's 
-.004 0.118 0.156 0.283 0.528 

Ai 0 0 0 0 0 
A2 small 0.577556 0.212575 0.0000632 1.93423 (-1.97914) 

large 0.57748 0.502218 0.486004 0.44286 (0.16004) 

A3 small 1.00215 0.148057 0.0000281 -0.38008 -0.880419 
large 1.9973 3.3337 3.63816 4.56318 6.21457 

Table 4.3: Some values of Ai , A2 and A3 corresponding to selected values of 774 and 
using the tri-mean (p = 0.25 and a = 0.25) in LQ-moments from standard lambda 
distributions. 

possible values of 774 for this family and, as shown in Figure 4.8 and Table 4.3, there 
are two lambda distributions corresponding to every permissible value of 774. 

The probability density functions for the two values of A2 and A3 corresponding to 
774 = 0.118 are shown in Figure 4.9. The distribution for A3 = 3.333 shown there illus
trates the interesting phenomenon that distributions corresponding to larger values of 
A3 have extreme peakedness and short high tails. Thus the class of lambda distributions 
having large values of A3 illustrates that "peakedness", "kurtosis", and "tail length" are 
not always synonymous. Karian and Dudewicz (2000) have suggested that large values 
of A3 may be of interest to those investigating the properties of truncated distributions, 
since severely truncated distributions ordinarily have short high tails. 

I f we used the median (p = 0.5 and a = 0.5) we find that 

6 = 0 

4̂ = 

Ai 
g-0.346A3 _ g-1.228A3 

a ; 

g-0.173A3 _ g-1.838A3 _ 3g-0.487A3 _|_ 3g-0.953A3 

2A^ 

(4.29) 

Then 

m = 6 / 6 = 0 and 774 = 6 / 6 = 0 ( ^ 3 ) (4.30) 

We notice that 774 is a function of A3 only , ^2 is a function of A2 and A3 and 1̂ is 
a function of Ai. Solving equation (4.30) using fsolve in maple gives two values of A3 
and substituting in equation (4.29) gives two values of A2 and we have one value of 
Ai. For example, the standard normal distribution has 774 = 0.116 and this gives two 
solutions Ai = 0, A2 = 0.216 and A3 = 0.151 and Ai = 0, A2 = 0.516 and A3 = 3.088; 
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O.S H 

Figure 4.8: 774 as a function of A3 using tri-mean, i.e p = 0.25 and a = 0.25 

(a) 

(b) 

Figure 4.9: Probability density functions of the two lambda distributions having 773 = 0 
and 774 = 0.118 and unit standard deviation 
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Figure 4.10: 774 as a function of A3 using the median, (p = 0.50 and a = 0.50). 

see Figure 4.10 which shows 774 plotted as a function of A3. 
If we use Gastwirth (p = 1/3 and a = 1/3) we find that 

^4 

A i 
g-0.549A3 _ g-0.8612A3 g-0.346A3 _ g-1.228A3 _)_ g-0.203A3 _ g-1.695A3 

= 0 

= ~ {0.167 
A2 *• 

- 0.5 [e" 

3A, 

g O.275A3 _ g-1.426A3 g-0.173A3 _ g-1.84A3 _|_ g -O. lOlAa _ g 

(4.31) 
-2,339A3l 

O.666A3 _ g - 0 . 7 2 1 A 3 _|_ g-0.487A3 _ g-0.953A3 _^ g-0.345A3 _ g-1.233A3' I 

Then 

^3 = 6 / 6 = 0 and r?4 = 6 / 6 = H>'3) (4.32) 

We notice that 774 is a function of A3 only, ^2 is a function of A2 and A3 and 6 is a 
function in A i . Solving equation (4.32) using fsolve in maple gives two values of A3 and 
substituting of equation (4.32) gives two values of A2 and we have one value of A i . For 
example, the standard normal distribution has 774 = 0.117 and this gives two solutions 
A i = 0, A2 = 0.2146 and A3 = 0.1498 and A i = 0, A2 = 0.5087 and A3 = 3.216, see 
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Figure 4.11: 774 as a function of A3 using the Gaswirth (p = 1 / 3 and a — 1 / 3 ) . 

Figure 4.11 which shows r]i plotted as a function of A 3 . 

4.3.4 TL-moments 

Estimates of the symmetric lambda distribution parameters may be obtained by T L -

moments defined in Chapter 3 as 

\ K , 
(4.33) 

*:=0 

We have the expected values of order statistics in equation (4.7). From equation 

(4.33) we conclude that when t = 1 

(1 

Ai 
12 A, 

A2(A3 + 2)(A3 + 3)(A3 + 4) 

0 
1 5 A 3 ( A 3 - l ) ( A 3 - 2 ) 

A2(A3 + 2)(A3 + 3)(A3 + 4)(A3 + 5)(A3 + 6) 

= 0 
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(1) 5 ( A 3 - l ) ( A 3 - 2 ) 

= 4(A3 + 5)(A3 + 6 ) = ^ ^ ' ^ ) 

We notice that T4 is a function of A3. By solving this equation we have 

^(1) _ - 1 5 - 4 4 ^ ) - v/25 + 3 3 8 0 i f ^ 7 l 6 4 ^ 

- 1 0 + S i r 

and 

^(1) _ - 1 5 - 4 4 t f ) + V 2 5 7 3 3 8 S p T l 6 t p 

Substituting in A2^^we obtain 

4^^(A3i + 2 ) p 3 ! + 3 ) ( A 3 i + 4 ) ^ ^ - ' ' ^ 

(1) 

4'^ (A32 + 2) (A32 + 3) (A32 + 4) 

Finally, we find f rom A^^^that 

A i ' ' = (4.38) 

The minimum value of r]^^ for the family of symmetric lambda distributions is 

about -0.0064 corresponding approximately to A3 ~ 1.4495. There is no upper bound 

on possible values of r j ^ ^ for this family and, as shown in Figure 4.8, there are two 

lambda distributions corresponding to every permissible value of r j ^ ^ . 

4.4 Approximate variances of the estimators 

The estimators of the parameters of the symmetric lambda distribution depend upon 

the choice of the method of estimation; L-moments, LQ-moments or TL-moments. 

However, their mean and variances are not known exactly. A simple method of approx

imating mean and variance uses a Taylor expansion as follows. Suppose that we know 

the expectation and the variance of a random variable X and we are interested in the 

mean and variance of F = g{X) for some fixed function g. From Rice (1995) we find 

that 

E{Y)^g{E{X)) (4.39) 
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Figure 4.12: t^^^ as a function of A 3 using T-L moments and the minimum of r]^^ 
-0.00644 at A 3 ~ 1.4495. 

and 

Var (Y) ~ Var (X) { g ' (E ( X ) ) } ' (4.40) 

For example, in the case of the L-moment method, we apply equations (4.39) and 

(4.40) to the estimators which are given in equations (4.22), (4.23), (4.24), (4.25) and 

(4.26) when we consider functions g{.) of the form 

91 iU) = 3 + 7U- (tj + 98U + 1) 
1/2 

92 iU) = 2 - 2 ^ 4 

^3 (^4) = 3 + 7̂ 4 + (tl + 98U + 1) 

94{l2) = C,l^' 

96 ih) = h 

1/2 

with derivatives 

g[ [ti) = 7-{U + 49) {tl + 98^4 + 1) 
-1/2 
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where 

and 

92 iU) 

93 iU) 

9\ {h) 

9', ik) 

g', ih) 

- 2 

= 7 + (t4 + 49) (t^ + 98^4 + l ) 
- 1 / 2 

— C 1 / 2 ^ 

— C2I2 ^ 

= 1 

2A 31 

Co 

( A 3 1 + 1) ( A 3 1 + 2) 

2 A 3 2 

( A 3 2 + 1) ( A 3 2 + 2) 

The approximate variances of A i , A 2 1 , A 2 2 , A 3 1 and A 3 3 are given by 

V a r ( A i ) = Var ( / i ) 

V a r ( A 2 I ) ^ [ g ; ( A 2 ) f V a r ( / 2 ) 

V a r ( A 2 2 ) [^^^2)] 'Var ( ^ 2 ) 

"^2(7-4)^1 (r4) - g i ( 7 - 4 ) ^ 2 i n ) 

9l (^4) 

"g2(T4)g3 (7-4) - ^3(7-4)^2 ('^4) 

9I (7-4) 

V a r p a i ) 

Var(A32) ^ 

V a r ( f 3 ) 

Var ( t4) 

Note that the variances of 3̂ and t4 are approximated. Similarly, we can find the approx

imate means and variances of the estimators based on LQ-moments and TL-moment 

methods. 

4.5 Application to estimating plotting position for quan-

In this section we use the symmetric lambda distribution family as a basis for estimating 

plotting position for quantile plots and make comparison with other values of plotting 

positions; see, for example, Kimbal l (1960) and Harter (1984). 

We mean by a plotting positions (pj.„) a distribution-free estimator of F(x i :„ ) , the 

nonexceedance probability of the zth order statistic f rom a sample size n . We consider 
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formulae of the form 

{i + j)/{n + 5) f o r 5 > 7 > - l (4.41) 

and we restrict attention to the symmetric plotting positions = 1 — p„_,_i_i.„ when 

6 = l + 2j 

Given a series of observations ordered f rom smallest to largest, each observation 

may be assigned plotting positions which is its cumulative probability. The cumulative 

empirical distribution function of a sample of size n is usually defined as a step function 

which jumps f rom {i-l)/ntoi/n at the zth order statistic of the sample. I f the plotting 

position i/nis used, the largest value cannot be plotted, while i f ( i — l ) / n is used , the 

smallest value cannot be plotted, since the probabilities 1 and 0 are off the scale of 

the probability paper. Hazen (1914) proposed the compromise position {i - 1/2)/n, 

the value midway through the jump f rom {i — l ) / n to i/n. Gumbel (1941) showed 

that the most probable (modal) position is {i - l ) / ( n - 1) and the mean position is 

i / ( n + 1 ) . Chemoff and Lieberman (1954) studied the use of normal probability paper, 

with special attention to plotting positions. They showed that the estimate of a, in the 

normal distribution, based on the plotting position z/ (n + 1) is much less efficient than 

that based on the position {i - 1/2)/n; see also Chemoff and Lieberman (1956). Blom 

(1958) applied what he called " the a, /3-correction" to the plotting position i/{n + 1) 

, obtaining {i — a)/{n — a — P + 1). In the symmetric case, (a = P) this becomes 

{i - a)/{n - 2q; + 1) and he used the plotting position {i - 3 / 8 ) / ( n + 1/4). Tukey 

(1962) used the plotting position {i - 1 / 3 ) / ( n + 1/3). 

Assume we have a model of the form 

F (rr,„) = ''l"^ + e 
n + 1 + 27 

We consider estimating 7 by minimising the least squares criterion 

t 2 

(4.42) 

1=1 L 
F {Xi..n) -

I + 7 
n + 1 + 27 

Solving 

dl h i 
F ( x , „ ) 

? + 7 
n + 27 + 1 

(n + 27 + 1) - 2 ( 2 + 7) 

(n + 27 + l ) ^ 
= 0 

we obtain 
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sample size T4 

n 0 0.070 0.123 0.154 0.167 0.236 0.255 0.350 
5 0 -0.230 -0.354 -0.415 -0.438 -0.542 -0.567 -0 .671 
8 0 -0.239 -0.366 -0.426 -0.449 -0.554 -0.579 -0.685 
12 0 -0 .247 -0.375 -0.436 -0.459 -0.565 -0.589 -0.697 
15 0 -0 .251 -0.3799 -0 .441 -0.464 -0.570 -0.595 -0.703 
20 0 -0.255 -0.3852 -0.446 -0.470 -0.576 -0.602 -0.710 
25 0 -0.258 -0.3889 -0.450 -0.474 -0 .581 -0.606 -0.715 
30 0 -0.260 -0.3916 -0.453 -0.477 -0 .584 -0.609 -0.718 
35 0 -0.262 -0.3937 -0.456 -0.479 -0.586 -0.612 -0 .721 
45 0 -0.264 -0.3968 -0.459 -0.482 -0.590 -0.616 -0.725 
50 0 -0.265 -0.3980 -0.460 -0.484 -0.592 -0.617 -0.727 
75 0 -0.269 -0.402 -0.464 -0.488 -0.596 -0.622 -0.732 
100 0 -0.270 -0 .404 -0.467 -0.490 -0.599 -0.6249 -0.735 
200 0 -0.273 -0.407 -0 .471 -0.495 -0.603 -0.629 -0.739 

Table 4.4: Estimates of 7 using least squares for selected values of T4 of the symmetric 
lambda distribution for different sample sizes. 

7 = 
E r = i i{n + l-2i)-{n + l ) E ^ i in + l~2i)F (xi-.n) 

(4.43) 
2 E r = i (n + l - 2 z ) F ( x , : „ ) 

Note that 7 cannot be evaluated unless we approximate F {xi:n). We do this here 

using the estimate F [E {Xi:^)], where F is a symmetric lambda distribution; that is, we 

solve the equation 

E ( X , „ ) = Ai + 
A 2 

with respect to Pi.,n for z = 1, 2 , n and E (Xi-n) is given in (4.7). 

Thus 

7 
E r = i i{n + l - 2 i ) - { n + l ) E r = i (n + 1 - 2^) 

(4.44) 
2 E r = i {n+l-2i)Pi.,r, 

Table 4.4 shows values of 7 for selected values of T4 for a symmetric lambda distri

bution with E{X) = 0 and Var {X) = 1. 

Since E (Xj:„) depends on the form of the parent distribution, the choice of plotting 

position must be performed separately for each distribution. This is done for several 

plotting position formulae, see Table 4.5 where some values of has been used, in

cluding the uniform distribution when T4 = 0, the logistic distribution when T4 = 0.167 

and approximate normal distribution when — 0.123, and also the plots of the sym

metric lambda distribution in Figures 4.13, 4.14, 4.15, 4.16 and 4.17 for sample sizes 
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Proponent 
n + 2 7 + l 

Weibull (1939) 
Hazen (1914) 
Blom (1958) 
Tukey(1962) 

i/{n + l) 0 
{i-l/2)/n - 1 / 2 

( ? - 3 / 8 ) / ( n + l / 4 ) - 3 / 8 
( ? - l / 3 ) / ( n + l / 3 ) - 1 / 3 

Table 4.5: Some common plotting position formulae 

15 and 35. The general conclusions to be drawn f rom the plots are 

I . A l l of them perform quite well (almost lies on the line at the tails) in cases T4 = 0, 

0.123 and 0.167. 

I I . On the other hand, when T4 = 0.25 and 0.35, the least squares estimate 7 outper

forms the other methods, especially in the tails of the plot. 

I I I . The Hazen, Blom, Tukey and least squares formulae are quite good in most cases 

while the Weibull formula is not nearly as good as the others, for example when 

T4 = 0.35 we find Weibull formula does not fit the line at the tails. 

IV. In symmetric distributions, we recommend to obtain 3̂ and t4 f rom the data and 

using Table 4.4 to estimate 7. 

4.6 Conclusions 

In this chapter we have described four methods of estimating the parameters of the 

symmetric lambda distribution: maximum likelihood in the case of a single parameter 

and L-moments, LQ-moments and TL-moments in the case of three parameters. 

We have also shown that the estimators are simple and in explicit form when we are 

using the methods of L-moments and TL-moments, while we need numerical methods 

for the other two methods, maximum likelihood and LQ-moments. A wide variety of 

curve shapes are possible with the symmetric lambda distribution as indicated by the 

Figures in Section 4.2. Because of this flexibility and the simplicity of the distribution 

it is useful as a fit to data when, as is often the case, the underlying distribution is 

unknown. The definition of distributions leads to a simple algorithm for generating 

random variates as is discussed in Section 4.2. Also, we have studied the symmetric 

plotting position for quantile plots based on the symmetric lambda distribution and 

conclude that the choice of 7 depends upon the shape of the distribution, and support 

for this claim is borne out in our empiricalk results. 
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Figure 4.13: Comparison of plotting positions based on different plotting formulae 
when sampling f rom a symmetric lambda distribution with A i = 0, A2 = 0.5, and 
A3 = 1 (r3 = 0, n = 0): (a), (c), (e), (g) and (k) for n = 15 and (b), (d). ( f ) , (h) and (1) 
for n = 35. 
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Figure 4.14: Comparison of plotting positions based on different plotting formulae 
when sampling f rom a symmetric lambda distribution with Ai = 0, A2 = 0.20, and 
A 3 = 0.14 (rs = 0, r4 = 0.123): (a), (c), (e), (g) and (k) for n = 15 and (b), (d), ( f ) , (h) 
and (1) for n = 35. 
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when sampling f rom a synmietric lambda distribution with Ai = 0, A2 = -0.00174, 
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Figure 4.16: Comparison of plotting positions based on different plotting formulae 
when sampling f rom a symmetric lambda distribution with Ai = 0, A2 = -0.608, and 
A3 = -0.214 (r3 = 0, r4 = 0.25): (a), (c), (e), (g) and (k) for n = 15 and (b), (d), ( f ) , 
(h) and (1) for n = 35. 
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Figure 4.17: Comparison of plotting positions based on different plotting formulae 
when sampling f rom a symmetric lambda distribution with Ai = 0, A2 = -2.025 and 
A3 = -0.386 (r3 = 0, r4 = 0.35): (a), (c), (e), (g) and (k) for n = 15 and (b), (d), ( f ) , 
(h) and (1) for n = 35. 



Chapter 5 

Control charts based on sample 
L-moments 

5.1 Introduction 

The usual practice in using control charts to monitor a process is to take samples f rom 

the process at fixed-length sampling intervals and plot some sample statistics on the 

chart. A point outside the control limits is taken as an indication that something, called 

"assignable cause", has happened to change the process. Since Shewhart introduced 

control charts in 1924, they have found widespread application in improving the qual

ity of manufacturing processes. Another popular control procedure is the cumulative 

sum (CUSUM) control chart which was introduced by Page (1954). There has also 

been a renewed interest in the exponentially weighted moving average ( E W M A ) con

trol charts, introduced by Roberts (1959) who called i t a geometric moving average 

chart. I t is known that Shewhart-type charts are relatively inefficient in detecting small 

changes in the process parameters; see, for example. Hunter (1986) and Montgomery 

(1996). On the other hand, E W M A charts have been shown to be more efficient than 

Shewhart-type charts in detecting small shifts in the process mean; see, for example, Ng 

and Case (1989), Crowder (1989), Lucas and Saccucci (1990), Amin and Searcy (1991) 

and Wetherill and Brown (1991). In fact, the E W M A control chart has become popular 

for monitoring the process mean; see Hunter (1986) for a good discussion. More re

cently, E W M A charts have been developed for monitoring process variability; see, for 

example, Macgregor and Harris (1993), Amin and Wol l f (1995) and Gan (1995). 

Like the Shewhart control chart, an E W M A control chart is easy to implement and 

95 
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interpret. It is based on the statistics 

Z, = X X , + { 1 - X ) Z , _ , (5.1) 

where Xi is the current observation, ZQ is a starting value, such as the overall sample 

mean, and 0 < A < 1 is a constant that determines the "depth of memory" of the 

E W M A : The value A = 1 gives the classical charts, such as the X chart. While the 

choice of A can be left to the judgement of the quality control analyst. Experience with 

econometric data suggests values between 0.1 and 0.3 when it is desirable to detect 

small changes in whatever process characteristic is being monitored; see, for example. 

Hunter (1986). 

Both Lucas and Saccucci (1990) and Box and Luceno (1997) give the representation 

Zi = ^ E ( l - >^y^i-j + (1 - ^ ) ' ^o (5.2) 
j=0 

for an E W M A process. Thus, Zi can be regarded as a moving average of the current and 

past values of the control statistics, where the weights on past data fal l o f f exponentially 

as in a geometric series; and the smaller the value of A, the greater is the influence of 

the past values. When the Xi are independent and identically distributed with common 

variance cr^, the variance of the control statistics is given by 

War{Zi) = { [ l - (1 - A)2^] A/(2 - A)} (5.3) 

The effect of the starting point soon dissipates and the variance increases quickly to its 

asymptotic value [A/(2 - A)] a"^ as i increases. Control limits are usually based on this 

asymptotic variance. 

The presence of outliers tends to reduce the sensitivity of control chart procedures 

because the control limits become stretched so that the detection of outliers themselves 

becomes more difficult; see, for example, Rocke (1989), Tatum (1997) and Langenberg 

and Iglewicz (1986). 

In this chapter, see also Elamir and Seheult (2001a), we propose E W M A control 

charts to monitor the process mean and dispersion using the Gini's mean difference 

and the sample mean, and also charts based on trimmed versions of the same statistics. 

The proposed control charts limits are less influenced by extreme observations than 

classical E W M A control charts, and lead to tighter limits in the presence of out-of-

control observations. Specifically, these control charts and their acronyms are: 

• E W M A M : E W M A of the sample mean to monitor the process mean, using 
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Gini's mean difference to estimate the process standard deviation. 

• E W M A G : E W M A of the sample Gini's mean difference to monitor process stan

dard deviation. 

• E W M A T M : E W M A of the sample mean to monitor the process mean, using 

a trimmed mean of the sample means to estimate the process mean and Gini's 

mean difference to estimate the process standard deviation. 

• E W M A T G : E W M A of the sample Gini's mean difference to monitor the process 

standard deviation using a trimmed mean of the sample Gini's mean differences 

to estimate the process standard deviation. 

5.2 Gini's mean difference 

Gini's mean difference scale estimate g is defined to be 

where X i , X 2 , X „ is a random sample f rom a continuous distribution. It is interest

ing to note that g can be written alternatively as either a linear combination of the order 

statistics J'!LI:„ < X2:n < ••• < or as a linear combination of the [n/2] "sub-ranges" 

Xn-i+l:n - ^im aS fol loWS: 

« = S (2 ' - " - 1) = ^ i ^ ^ E (" - 2 ' + 1) ( X , - . . . . - X.,.} 

(5.5) 

where [x] is the greatest integer less than or equal to x; for example, when n = 5 

g = 0.40 (X5.5 - X 1 . 5 ) + 0.20 (X4:5 - ^ 2 : 5 ) 

Downton (1966) and Bamett et al. (1967) show that, when sampling is f rom N (/u, a^) 

G = ^/^/2 (5.6) 

is an unbiased estimator of a with variance 

O ^ l n ^ ^ , ,5.7) 
n(n — 1) 
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sample size Yar{G)/war{R) Var(L5) /Var(G) 
4 98.7 99,94 
5 96.9 99.83 
7 92.8 99.12 
10 86.7 98.64 

Table 5.1: Efficiency of the range and the least squares estimator of a with respect to 
G for different sample size when sampling f rom a normal distribution. 

sample size mean variance skewness kurtosis 
4 1 0.180 0.254 3.145 
5 1 0.134 0.1797 3.089 
6 1 0.106 0.138 3.061 
7 1 0.088 0.112 3.045 
8 1 0.075 0.094 3.035 
9 1 0.065 0.080 3.028 
10 1 0.058 0.071 3.024 
15 1 0.037 0.043 3.012 
20 1 0.027 0.032 3.008 

Table 5.2: Various moments of the sampling distribution of the standardised G/a for 
different sample sizes when sampling f rom a normal distribution with standard devia
tion a. 

where I2 = g/2. 

There are many advantages of G: 

(i) No table of coefficients of the Xi^n, such as d„ for the range, is required; 

(ii) Its efficiency relative to best linear unbiased estimator of a is very close to 100%, 

in small samples, decreasing to 98% asymptotically; see Table 5.1 and Downton 

(1966); 

(iii) It is not so influenced by outliers as is either the range or the sample standard 

deviation; 

(v) Like the range, i t is simple to calculate but uses more information f rom the data; 

(vi) Its sampling distribution is asymptotically normal as discussed in Chapter 2, as 

indicated in the results of simulation experiments summarised in Figures 5.1, 5.2 

and in Table 5.2. 



CHAPTER 5. CONTROL CHARTS BASED ON SAMPLE L-MOMENTS 99 

Figure 5.1: HBstogram of the standardised G jo for 5000 replications of the sample size 
n = 5fromN(0,a2). 
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Figure 5.2: Histogram of the standardised G/a for 3000 replications of the sample size 
n = 10fromN(0,a2). 
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5.3 Determination of control limits 
When constructing EWMA control charts based on process data, m regularly spaced 
samples, each of size n, must be taken to estimate the process centre and spread; for 
example, Xi and Gi for the ith sample (i = 1, ...m). In general, theoretical control 
chart limits are often of the form 

L C L = i^T ~ KOT 

Centre line = jiT (5.8) 

UCL = i^T + Kar 

Where T is a statistics that measures a quality characteristic, L C L and UCL the 
lower and upper control limits, fj,T and err are the expectation and standard deviation 
of T, and usually K = 3; see, for example, Wetherill and Brown (1991). To set control 
limits we must estimate fir and ar based on m samples of size n obtained from the 
process when it is under control. In what follows, we will base our control chart limits 
on the assumption that when the process is under control all the observed data are 
independent and come from the same normal distribution, implying, in particular, that 
the process mean and variance are constant. 

5.3.1 EWMAM limits 

Each sample mean Xi is transformed into an EWMA value Zi — XXi + (1 — A)Zi_i 
before it is plotted on the control charts: here, ZQ is the average X of the m sample 
means . 

From the expressions for Yar{Xi) and Var(Zi), the control limits of the EWMA 
mean are 

L C L = T-hG 

Centreline = T (5.9) 

UCL = T+hG 

where h = 3y^A/n(2 - A) 

5.3.2 EWMAG limits 

As with EWMAM, each sample Gini's mean Gi is transformed into a EWMA value 
Zi = AG, + (1 — A)Zi_i before it is plotted on the control chart: here, ZQ is the average 
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G of the m sample Gini means. 
From the expression for Var(G'i) and Var(Zi) , the control limits of the EWMAG 

chart are 

L C L = {1-H)G 

Centreline = G (5.10) 

UCL = {1 + H)G 

where H = 3^X{0.51n + 0.12)/ (n(n - 1)(2 - A)) 

5.3.3 EWMATM and EWMATG limits 

In this section the control limits of the EWMAM and EWMAG charts will be modi
fied by replacing certain means with trimmed means. The trimmed mean X{a) of m 
observations X i , i s defined to be 

m-r 

X{a)= J2 Xr.m/{m-2r) (5.11) 
i=r+l 

where 0 < a < 0.5 and r = [mo;]; see, for example, Hoaghn et al. (1983). Thus, 
the procedure involves trimming 100Q;% of the order observations from each tail and 
computing the mean of the remaining observations; for example, the 5% trimmed mean 
of 20 observations is calculated as the average of the 18 observations X2:2o, ••, -̂ i9:2o-

We suggest that in the control limits for the EWMAM and EWMAG, Xis replaced 
by X{a) and G by cG{a), where c (a function of m, n and a) is chosen to make cG{a) 
an unbiased estimator of o. We will refer to these modified EWMAM and EWMAG 
charts as EWMATM and EWMATG charts, respectively. Under the assumption that the 
process is in control and that the observations are independent and normally distributed 
with mean ^ and variance cr̂  we find that 

E (X) = E (Z(o;)) =^x and E (G) = cE (G(a)) = o 

Table 5.3 contains values of c corresponding to values of m and n commonly used 
in the construction of the EWMA charts. Observing that we can write 

E ( G ) 
c = ,1 \ (5.12) 

E (G (a ) ) 



CHAPTER 5. CONTROL CHARTS BASED ON SAMPLE L-MOMENTS 103 

we used simulation to obtain each value of c in Table 5.3 from 1000 replicates of mn 
standard normal random quantities by computing the average of the lOOOG values di
vided by the average of the 1000G(Q;) values for different values of m, n and a. We 
see from Table 5.3 that, for each n, the value of c depends more strongly on a than it 
does on m. 

The steps required to compute the proposed control limits for the EWMATM and 

EWMATG scale charts are summarised as follows: 

• Select a value of a 

• Compute r = [mo; 

« Compute the Xi and Gj values, rank them and eliminate the r smallest and the r 
largest values 

• Compute the overall trimmed L-mean and overall trimmed L-scale of // and a as 
follows: 

m - r m - r 
X{,a)= Xr.ml{ra-2T) and = ^ G,..J{m-2r) 

J=r+1 i r = r + l 

• Obtain c from Table 5.3, using linear interpolation if necessary 

• Compute the control limits for the process mean as 

L C L = X ( a ) - / i c G ( a ) 

Centreline = Y{(y) (5.13) 

UCL = X ( a ) + /icG(«) 

where h is as before. 

• Compute the control limits for the process standard deviation o as 

L C L = {\-E)CG{Q) 

Centre Hne = cG(a) (5.14) 

UCL = (l + / f )cG(a) 

where H is as before. 
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n m 0.05 
Q: 

0.10 0.15 0.20 
20 1.006 1 013 1.020 1.024 
25 1.006 1 012 1.020 1.024 

4 30 1.005 1 012 1.020 1.023 
35 1.005 1 012 1.020 1.022 
40 1.005 1 012 1.019 1.021 

20 1.006 1 Oil 1.019 1.021 
25 1.006 1 010 1.018 1.018 

5 30 1.005 1 010 1.015 1.017 
35 1.005 1 Oil 1.014 1.017 
40 1.005 1 009 1.013 1.016 

20 1.006 1 009 1.012 1.015 
25 1.005 1 009 1.011 1.015 

6 30 1.005 1 009 1.011 1.015 
35 1.005 1 008 1.011 1.014 
40 1.004 1 008 1.011 1.013 

20 1.003 1 009 1.012 1.014 
25 1.003 1 008 1.012 1.013 

7 30 1.003 1 008 1.011 1.013 
35 1.002 1 008 1.011 1.013 
40 1.002 1 007 1.011 1.012 

20 1.002 1 006 1.010 1.013 
25 1.002 1 006 1.011 1.013 

8 30 1.002 1 006 1.010 1.013 
35 1.002 1 006 1.010 1.012 
40 1.002 1 006 1.010 1.011 

20 1.002 1 005 1.011 1.013 
25 1.002 1 005 1.012 1.012 

9 30 1.002 1 005 1.011 1.012 
35 1.002 1 004 1.012 1.012 
40 1.002 1 004 1.011 1.012 

20 1.002 1 004 1.012 1.011 
25 1.002 1 005 1.011 1.010 

10 30 1.002 1 004 1.011 1.010 
35 1.002 1 003 1.011 1.010 
40 1.002 1 003 1.010 1.0 

Table 5.3: Values of c which satisfy E (G^ — cE (G { a f j for different values of m and 
n and for various choices of the trimming percentage a. 
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5.4 Evaluation of proposed control charts 
The control limits for the proposed method are based upon the assumption that the 
process outcomes are normally and independently distributed. Actually, the observa
tion generated by the process need not be normally distributed. Processes which are 
generated by distributions with heavier tails than the normal distribution would tend to 
have more than the expected number of points falling outside the control limits (EPO). 
Moderate departures from normality are common. We study the consequences of using 
the proposed method for non-normal observations. 

In particular, we consider random observations generated from a ^-distribution: 
a symmetric family of heavy tailed distributions which approach the normal as the 
degrees-of-freedom increase. Tables 5.4 and Table 5.5 contain results for independent 
observations generated from ^-distributions with 1, 3, 8, 30 and oo degrees- of- free
dom. The control limits for the non-trimmed and trimmed control charts in Tables 5.4 
and 5.5 were computed by averaging the results of 100 replications of m = 20 random 
samples of n = 5 observations from each of the ^-distributions. The trimmed chart 
limits were based on trimming 2 out of 20 sample values of Xi and Gi. An additional 
1000 samples of size 5 were generated from each of the distributions and the number 
of points falling outside the control limits was noted. For normal data, we would expect 
about 3 for EWMAM charts. 

Tables 5.4 and 5.4 reveal that the simulated control limits for the non-trimmed 
and trimmed control charts are identical when the process is generated by a normal 
distribution. It can further be observed that the control limits for non-trimmed and 
trimmed control charts are approximately the same for the normal distribution and 
i-distributions with 30, 8, and 3 degrees-of-freedom. On the other hand, results for 
the Cauchy distribution (one degree-of-freedom) differ greatly: the trimmed charts are 
far tighter than the corresponding limits for the non-trimmed charts. The effect of these 
tighter limits is that more points fall outside for both EWMATM and EWMATG, sig
nalling the need for appropriate corrective measures when extreme departures from 
normality are encountered. 

5.5 Applications 

In this section we give two applications to show how to use the proposed control charts. 
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Distribution % trimming UCL 
X 

L C L EPO UCL 
G 

LCL EPO 
Cauchy 0% trimmed 11.54 -9.87 43 16.30 0 65 

10% trimmed 4.72 -4.54 119 7.28 0 165 

h 0% trimmed 1.96 -1.99 18 3.09 0 31 
10% trimmed 1.82 -1.86 23 2.88 0 42 

ts 0% trimmed 1.52 -1.53 6 2.40 0 10 
10% trimmed 1.48 -1.50 7 2.34 0 13 

ho 0% trimmed 1.36 -1.36 4 2.14 0 5 
10% trimmed 1.35 -1.35 4 2.13 0 6 

Normal 0% trimmed 1.34 -1.34 3 2.08 0 4 
10% trimmed 1.33 -1.33 4 2.07 0 5 

Table 5.4: The expected number of points falling outside the control limits (out of 1000 
) and UCL and L C L for samples of size 5 from various ^-distribution and an EWMA 
weighting factor of A = 1. 

Distribution % trimming UCL 
X 

L C L EPO UCL 
G 

LCL EPO 
Cauchy 0% trimmed 5.07 -2.44 125 11.47 5.31 543 

10% trinmied 1.57 -1.62 285 4.95 2.33 666 

3̂ 0% trimmed 0.72 -0.63 30 2.07 0.96 42 
10% trimmed 0.64 -0.58 43 1.86 0.85 91 

0% trimmed 0.51 -0.51 6 1.55 0.72 7 
10% trimmed 0.50 -0.49 7 1.52 0.71 9 

ho 0% trimmed 0.45 -0.46 4 1.40 0.65 5 
10% trimmed 0.44 -0.44 4 1.38 0.64 5 

Normal 0% trimmed 0.44 -0.44 3 1.36 0.63 4 
10% trimmed 0.44 -0.43 4 1.35 0.62 5 

Table 5.5: The expected number of points falling outside the control limits (out of 1000 
) and UCL and L C L for samples of size 5 from various distribution and an EWMA 
weighting factor of A = 0.20. 
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Date Aug. 1 Aug. 2 Aug. 3 Aug. 7 
Shift 3 1 4 3 1 4 2 1 4 2 

218 228 280 210 243 225 240 244 238 228 
224 236 228 249 240 250 238 248 233 238 
220 247 228 241 230 258 240 265 252 220 
231 234 221 246 230 244 243 234 243 230 

Date Aug. 8 Aug. 9 Aug. 10 
Shift 4 3 1 4 3 1 4 3 1 4 

218 226 224 230 224 232 243 247 224 236 
232 231 221 220 228 240 250 238 228 230 
230 236 230 227 226 241 248 244 228 230 
226 242 222 226 240 232 250 230 246 232 

Table 5.6: Subgroups of melt index measurements 

5.5.1 Example 1 

The data for our first example, which comes from page 207 of Wadsworth et al. (1986), 
is the melt index of an extrusion grade polyethylene compound measured over m = 
20 consecutive shifts with n = 4 measurements per shift: see also Rocke (1989) for 
various robust charts for these data. Figure 5.3 shows two sets of three EWMAM X 
control charts for the process mean: one set, panels (a), (b) and (c) have A = 1 (no 
smoothing) and the other set, panels (d), (e) and (f) have A = 0.20 (to detect small 
shifts). The limits in (a) and (d) are determined from the mean and the range, (b) 
and (e) use the Gini mean difference, and (c) and (d) use the trimmed mean and the 
trimmed Gini mean difference. Similarly, Figure 5.4 gives two sets of three EWMA 
control charts for the process standard deviation for the same choices of A. The control 
limits for (a) and (d) are determined from the range, panels (b) and (e) are determined 
from the Gini mean difference, and panels (c) and (f) are determined from the trimmed 
Gini mean difference. Also plotted on these charts are corresponding EWMA values 
for the same data. Panel (a) in Figure 5.3 and panel (a) in Figure 5.4 are the same as 
those in Figure 7-2 in Wadsworth et al. (1986). 

For the three charts with A = 1 in Figure 5.3, no points are out of limits on charts 
(a) and (b), while two are out on (c); one of them was identified as problematical by 
Wadsworth et al. (1986) using auxiliary rules. Thus, the robust control limits have 
detected possible problems without the use of these auxiliary rules. When A = 0.20, 
out-of-control behaviour is readily apparent in all three charts (d), (e) and (f), none of 
them requiring much sensitivity. 

Out-of-control behaviour is readily apparent in all six charts in Figure 5.4. However, 
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Method A = 1 A = 0.20 
L C L C L UCL L C L C L UCL 

X 
EWMAMR 221.4 235 248.7 230.5 235 239.6 
EWMAMG 221.8 235 248.3 230.6 235 239.4 
EWMATM 222.8 235 248.8 230.8 235 238.8 

R ,G 
EWMAR 0 18.7 42.8 10.7 18.7 26.7 
EWMAG 0 8.8 20 5.1 8.8 12.5 

EWMATG 0 8.8 18.2 4.6 8.8 11.4 

Table 5.7: Control limits for melt index data 

Position 8 10 12 14 16 18 20 24 
Jan. 15 31.5 31.2 31.0 31.5 31.0 30.5 31.7 30.5 

31.4 31.5 31.5 31.0 31.0 32.5 30.0 31.8 
30.8 31.0 31.0 31.0 30.0 31.5 34.0 31.0 
33.0 32.5 32.5 31.0 32.0 32.0 31.5 32.5 

7 9 11 13 17 19 21 23 
Jan. 16 32.0 30.5 30.5 31.0 30.5 33.5 32.0 33.5 

31.5 32.0 32.0 29.0 30.0 32.0 30.0 30.8 
32.0 31.0 31.0 31.5 32.0 30.0 30.0 30.0 
31.8 31.0 31.0 31.0 32.5 34.5 30.5 30.5 

8 10 12 14 16 20 22 24 
Jan. 17 32.5 32.5 32.5 31.5 30.8 31.5 31.0 32.5 

32.8 31.0 31.0 30.7 30.5 30.4 30.5 30.4 
32.0 30.5 30.5 29.0 30.5 31.5 31.0 30.8 
32.5 34.0 34.0 31.0 29.8 30.0 31.0 31.5 

Table 5.8: Subgroups of cotton yam data 

four -points are outside the control limits in (f), twice as many as found by the standard 
methods in (c) or (d). 

The analysis of this example supports the claim that robust methods give tighter 
limits and thus, in general, provide greater sensitivity than the standard control charts. 

5.5.2 Example 2 

The second example concerns the production of cotton yam. Samples are taken from 
the spinning frames at eight positions daily. Four measurements of yam count are 
obtained for each position to form subgroups of size 4. 

Three day's results were used, see Table 5.8 and Wadsworth et al. (1986) page (229). 



CHAPTER 5. CONTROL CHARTS BASED ON SAMPLE L-MOMENTS 109 

(a) EWMAM flEWMM 

Latins 

La:!!!.* 

(b| EWMAM (e) EWMAM 

ra.=2M3 

La=ac6 

saniliiMita 

(c) EWMATM 

ua=mi 

La=!aM 

Figure 5.3: EWMA control charts for the melt index process mean fj,. (a) mean, A = 1, 
range estimate of a; {b) mean, A = 1, Gini estimate of a; (c) trimmed mean, A = 1, 
trimmed (a = 0.10) Gini estimate of a; {d) mean, A = 0.20, range estimate of a; (e) 
mean, A = 0.20, Gini estimate of a; (/) trimmed mean, A = 0.20, trimmed {a = 0.10) 
Gini estimate of a; 
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(a)EWMAR JEWMAR 

saraftemiite 

(b) EWMAG 

(c)EWMATG 

s 10 15 

(e) EWMAG 

saupfenuito 

(f)EWMATG 

Figure 5.4: EWMA control charts for the melt index process standard deviation a. 
(a) range estimate of a; (b) Gini estimate of cr, A = 1; (c) trimmed {a = 0.10) Gini 
estimate of a, A = 1; (d) range estimate of CT, A = 0.20; (e) Gini estimate of a, 
A = 0.20; (/) trimmed {a = 0.10) Gini estimate of a, A = 0.20; 
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Method A = 1 A = 0.20 
L C L C L UCL L C L C L UCL 

X 

EWMAMR 29.8 31.3 32.8 30.8 31.3 31.81 
EWMAMG 29.86 31.3 248.3 30.83 31.3 31.80 
EWMATM 29.87 31.28 32.69 30.81 31.28 31.75 

R,G 

EWMAR 0 2.04 4.65 1.17 2.04 2.91 
EWMAG 0 0.97 2.20 0.55 0.97 1.37 

EWMATG 0 0.93 2.14 0.54 0.93 1.34 

Table 5.9: Control limits for cotton yam data 

Figures 5.5 and 5.6 show the results. In both the location and spread charts, the out-of-
control behaviour is readily apparent only when the trimmed control limits are used. In 
this example the best results, with regard to detecting out-of-control observations, were 
obtained using EWMATG control limits, but in the previous example the best results 
were obtained using the EWMAG and EWMATG control limits. Thus in some cases it 
may be preferable to use both methods to produce control limits. 

5.6 Conclusions 

In this chapter we have developed exponentially weighted moving average control 
charts for a process mean and standard deviation which incorporate an L-scale esti
mate of the process standard deviation, and we also describe trimmed versions of these 
charts. 

We have investigated the expected number of points falling outside the control limits 
of these charts by simulation and conclude that the trimmed control charts are simple 
to use and give essentially the same limits as those computed from the non-trimmed 
control charts for processes generated from normal observations, and to tighter limits 
otherwise. Also, while the limits based on the two methods are quite similar when the 
process observations deviate only moderately from the normal distribution, the trimmed 
control charts are more likely to signal a problem when the distribution is far from 
normal, or when the process is out-of-control or because assignable causes have not 
yet been identified where we are assuming the process follows the normal ditribution. 
Further support for these claims are borne out in the examples. 
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Figure 5.5: EWMA control charts for the cotton yam process mean /j,. (a) mean, A = 1, 
range estimate of a; (b) mean, A = 1, Gini estimate of a; (c) trimmed mean, A = 1, 
trimmed (a = 0.10) Gini estimate of a; {d) mean, A = 0.20, range estimate of a; (e) 
mean, A = 0.20, Gini estimate of a; (/) trimmed mean, A = 0.20, trimmed {a = 0.10) 
Gini estimate of a; 
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Figure 5.6: EWMA control charts for the cotton yam process standard deviation a. 
(a) range estimate of a; (b) Gini estimate of a, A = 1; (c) trimmed [a = 0.10) Gini 
estimate of a, A = 1; (d) range estimate of a, A = 0.20; (e) Gini estimate of a, 
A = 0.20; (/) trimmed {a = 0.10) Gini estimate of a, A = 0.20; 



Chapter 6 

Conclusions and suggestions for 
further work 

Throughout this thesis we have used L-moments and their generalisations (TL-moments 
and LQ-moments) to develop methods of parameter estimation and to obtain control 
limits in quality control for process parameters. In Chapter 2, we saw how to obtain ex
act variances and covariances of concepts of sample L-moments in terms of a few first 
and second-order moments of order statistics and how we can characterise the normal 
distribution in terms of their covariances. 

Having reached the end of Chapter 2, one is faced with the question of "where 
do we go from here?". We have extended L-moments to trimmed L-moments. We 
have defined the sample TL-mean, TL-scale, TL-skewness and TL-kurtosis and have 
obtained the variances and covariances of sample TL-moments in closed form. We 
have also investigated the properties of TL-moments for some symmetric distributions. 
Also, we have shown that the TL-mean is a robust measure of location which protects 
against outliers. We have described the trimmed probability weighted method (TPWM) 
and its relation to the TL-moment method. 

In Chapters 4 and 5, we apply the methods of maximum likelihood, L-moments, 
LQ-moments and TL-moments to estimate the parameters of the symmetric lambda 
distribution. Also, we have developed exponentially weighted moving average control 
charts for a process mean and standard deviation which incorporate an L-scale esti
mate of the process standard deviation, and we also describe trimmed versions of these 
charts. 

In the light of these conclusions we see there are still many loose ends which we 
would like to tie up. Some of these are 

• The method of maximum likelihood yields estimators which are consistent and 
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asymptotically efficient, and for this reason is favoured by statisticians: The 
method of maximum likelihood should be compared with those of TL-moments 
and LQ-moments. 

• Departures from normality. Royston (1992) argues that sample L-skewness and 
L-kurtosis should be used in place of the corresponding estimators of the product 
moment measures of skewness and kurtosis. In fact, Vogel and Fennessey (1993) 
argue for the replacement of the traditional moment diagram, based on and 
P2, by the Pearson system with a corresponding diagram based upon L-moments. 
Their arguments are based principally upon ease of interpretation, robustness to 
outliers, approximate normality and ability to indicate the type of departure from 
normality and ease of use in the case of censored data. We suggest that the sample 
TL-moments may share the same advantages. 

• We can use sample TL-moments to determine control limits for a process mean 
and standard deviation, for example, we may consider trimming before we cal
culate grouped sample mean and standard deviation. 

• Develop a test of normality based on the characterisation theorem given in Chap
ter 2. 

• The method of TL-moments may also be compared with other methods which use 
linear combinations of order statistics to estimate the parameters of probability 
distributions; such as least squares, simplified linear estimates, asymptotically 
best linear estimates and Blom's estimates; see, David (1981, Chapter 6 ). 



Appendix A 

Covariances of the first four sample 
L-moments 

A . l Variances and Covariances of sample L-moments 

In this appendix we give exact variances and covariances of the first four sample L-

moments and all of them come from (2.40). 

A. 1.1 Variance of h 

E { n ' i } - E ^ m : i } 
V a r { / i } = 0̂0 = 

n 

A.1.2 Variance of/2 

Var{/2} = 4^u - 40oi + ôo 

Var{/2} = { ^ ( n - 2) (£{^3^3} + £{^1.3^2:3} + £{^2:3^3:3}) - 2(n - 3)E{Y,..2Y2..2} 

-2{n - 2 )E{F |2} + {n- l)E{Yl,} - 2(2n - 3)E'{Y2:2} 

+ E { y i a } (4(2n - 3)E{y2:2} - 5(n - l)E{Y,.,,})} /{n{n- 1)) 
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A.1.3 Covariance of li and I2 

C0Y{h,l2} = 2601-600 

Coy{l„l,} = (E{^2^2} - E{yi:2F2:2} - E { F , ^ J ) + E{Y,..,} {3E{Y,a} - 2E{Y,..,}) 
n 

A.1.4 Variance of 1^ 

Yavik} = 36622 - 72012 + 12̂ 02 + 366u - l26oi + 600 

V a r { Z 3 } = ^ ( - I S n ^ + 126n - 216) (£{^3:6^:5} + E{r2:5r3:5} - 2E{Yl,} 

+ 5E{Yl^}) + (Sn^ - 66n + 144) £{^2:4^1:4} 

+ ( - 1 8 n + 54) (E{F3:4K,:4} + £{^1.4^2:4}) 

+ {l6n^ - 108n + 176) £{^3^3} + (20n^ - 24n - 104) EiYi-.^Y^-.s} 

+ ( l2n2 - 120) £{^1:3^2:3} + ( - 6 n ' + 36n - 48) £{^2^2} 

+ (-SOn^ + 90n + 48) £{^1:2^2.2} + ( n ' - 3n + 2) E{Y^,,} 

+ (-36n2 + ISOn - 24o) £^{^3:3} + ( - lOSn^ + 486n - 540) £^{^2:2} 

+ (l08n2 - 54077 + 720) £{y2:2}£{V'3:3} + £{>l:l} 

' ( -12n2 + 108n - 24o) £{^3:3} + (eOn^ - 288n + 336) £{^2:2} 

+ (-13n2 + 39n - 26) £{F i : i } ] ] /n {n - 1) (n - 2) 

A.1.5 Covariance between li and ^3 

Cov{/ i , /3} = 6^02-6^01+^00 

C0V{/1, /3} = {(2£{y3'3} - 2£{r2:3n:3} - 3£{y2'2} + 3£{ri:2r2:2} + £{^'1}) 

+ E{Y,.,^} {12E{Y2..2} - 6E{Y,.,,} - 7 £ { F i a } ) } / n 
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A.1.6 Covariance between Z? and U 

Cov{/2, ^3} = 12^12 - 12^11 + 8^01 - 6^02 - ,̂ 00 

C 0 v { / 2 , / 3 } = { (n -3 ) (3E {y4^4}+3E {F3:4r4 :4} + 2E{F2:4>^3.4}-6E{r323} 

-10E{y2:3n:3}) ' 4E{yi.3y2:3} + (4n - 10)E{y2'2} 

+ {Sn-32)E{Yi.,2Y2..2} + {l-n)E{Y,\} 

+ (24n - 54)E2{r2:2} + (24 - 12n)E{r2:2}E{r3:3} 

+ E { y i : i } ((9n - 9 ) E { y i a } + (50 - 26n)E{F2:2} 

+ ( 6 n - 6 ) E { y 3 : 3 } ) } / ( n ( n - l ) ) 

A. 1.7 Variance of/4 

Var{/4} = 400̂ 33 - 1200^23 + 480̂ 13 - 40̂ 03 + 900̂ 22 - 720^12 + 60^o2 

+144^11 - 24^01 + ^00 

V a r { / 4 } = | ^ ( 8 0 n ^ - 1200n2 + 5 9 2 0 n - 9600) 

X (5E{Y,',} + E { y 4 : 7 n : 7 } + £ { 7 3 : 7 ^ : 7 } ) 

( -200n^ + aOOOn^ - 14800n + 24000) E{YIq} 

(l20n^ - 108071 + 2400) {{Y^-sY^-.e} + £{^2:6^^3:6}) 

( - 2 0 n ^ + A80n^ - SlOOn + 6OOO) £ { ^ 3 : 6 ^ 4 : 6 } 

(276n^ - 4104n2 + 19956n - 31824) £{^5^^ 

( -144n^ + 129671^ - 326471 + 1536) £ { ^ 4 : 5 ^ 5 : 5 } 

(-16271=* + 1188n^ - 8827Z - 5112) £ { ^ 3 : 5 ^ 4 : 5 } 

(-9071^ + 54071^ + 990ri - 6840) £ { ^ 2 : 5 ^ 3 : 5 } 

(48077 - 1920) £{11:5:^2:5} 

(-19071^ + 276077^ - 12890n + 19560) £ { ^ 4 ^ 4 } 

(330n^ - 342077^ + 8 13077 + IO8O) £{^2:45^3:4} 

(54077^ - 531077^ + 1494077 - 9210) £ { ^ 3 : 4 ^ 1 : 4 } 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
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(-450^2 + 900n + 3750) E{Yi.aY2.a} 

(eSn^ - 936n2 + 398871 - 5376) E{Yls} 

( -392n^ + 5664n2 - 20272n + 15624) E{F2:3V^3:3} 

(48n^ + 1224n2 - 6432n + 2184) E{y^3y2:3} 

( -12n^ + 144n2 - 492n + 504) E{y2^2} 

(-13271^ + 1044n^ + 9228n - 9924) £{^1:2^2:2} 

(n^ - 671̂  + l l n - 6) E{Y^^^} 

[l600n^ - 16800^2 + 63200n - 84000) E{y3:3}E{F4:4} 

( -480n^ + 5400n2 - 25080n + 43200) E{F2:2}E{F4:4} 

(2100n^ - 21960n2 + 78900ra - 95760) E{F2:2}E{F3:3} 

( -400n^ + 4200n^ - 15800n + 21000) £^{^4:4} 

(-2100n^ + 2160071^ - 75900/7 + 90000) £^{^3:3} 

( -864n^ + 7416n2 - 20664n + 18576) £^{^2:2} 

E { ^ i : i } ( ( - 2 5 n ' + 15077^ - 275n + 150) £{^1:1} 

+ (228n^ - 2232?!^ + 6828n - 6552) £{^2:2} 

+ ( - lOOn^ + 2400^2 - 14300n + 24000) £{^3:3} 

+ (40n^ - 24071^ + 28407X - 9840) £{^4:4})} 

/ 7 i ( n - l ) ( 7 i - 2 ) ( n - 3 ) 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

A.1.8 Covariance between li and I4 

Gov{h, k} = 209o3 - 30002 + 12^oi - 1̂ 00 

C0V{;1, ̂ 4} = {5 (£{^^4} - £{1-3:4^:4} " 2E{r323} + 2E{y2:3r3:3}) 

+ 6 ( £ { F 2 ' 2 } - E { r : . 2 i ^ 2 : 2 } - ^ E { n ^ i } ) 

+ E{Y,a} (13£{Fi : i} - 42E{y2:2} + 50£{y3:3} - 20E{r4 :4})} 

/ n 
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A.1.9 Covariance between I2 and I4 

Covik, h} = 40̂ 13 - 60^12 + 24̂ 11 - 14̂ 01 - 20̂ 03 + 30̂ o2 + (̂ 00 

Cov{/2,/4} = { ( 4 n - 16) {2E{Y,l} + 2E{y4:5n:5} + £{^3:5^:5}) 

+ ( - l O n + 40) (£{^2:4^3:4} + 2E{Yi,,} + 3E{r3;4r4:4}) 

+ ( I 8 n - 66)E{y323} + (8n - 36)E{ri:3F2:3} + (38n - 166)E{r2:3>3:3} 

+ {-7n + 19)E{y2^2} + ( - 1 7 n + 101)E{yi:2>2:2} 

+ (n - l ) E { y 2 j + (_84n + 276)E{r2:2}' + (lOOn - 280)E{y2:2}E{F3:3} 

+ ( - 4 0 n + 100)E{y2:2}E{y4:4} + E{Yv.i} {{-I5n + 15)E{Yi.,,} 

+(68n - 152)E{y2:2} + ( - 5 0 n + 50)E{y3:3} + (20n - 20)E{y4:4})} 

/ in{n-l)) 

A.1.10 Covariance between h and L 

Coy{k, k} = 1206*23 - 180̂ 22 + 252̂ 12 - 86^02 - 120̂ 13 - 729n + 18^oi + 20̂ 03 - Oi 00 

Cov{/3,/4} = 

+ 

+ 

-I-

+ 

+ 

+ 

-I-

+ 

(20n^ - 180n + 400) E{Yle} + ( -Sn^ + 72n - I60) E{y4:6y5:6} 

-6n2 + 54n - 120) E{y3..6y4:6} + (6871^ - 600n + 1288) E{Yl,} 

- 6 0 n ' + 540n - 1200) E j y ^ } + {42n^ - 378n + 840) E{y3:5y4:5} 

24n^ - 216n + 480) E{y4:5y5:5} + {l8n^ - 162n + 360) E{y2:5y3:5} 

-62n^ + 690n - 1762) E{y3:4y4:4} 

-48n^ + 570n - 1488) E{y2:4y3:4} 

90n - 330) E{yi:4y2:4} + {-24n^ - 180n + 1056) E{yi.3>2:3} 

- 3 6 n ' + 30Gn - 576) E{Yl^} + ( - 6 0 0 n + 2280) E{y2:3y3:3} 

9n^ - 63n + 90) E{y222} + (sOOn̂  - 1980n + 3600) E^iY^.,:^} 

63n2 + 27n - 1206) E{yi:2y2:2} + (-?^' -h 3n - 2) E { y i ' J 

'324n2 - 1692n -f 2088) E^{y2:2} 
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+ (-55277^ + 334877 - 5568) E{y2:2}£{>l5:3} 
+ (12077^ - 54077 + 600) E{y:2:2}£{>'4:4} 
+ (-12077^ + 72077 - 1200) £{ l3 :3}£{r4 :4} 

+ £ { y i : l } [£{^1:1} (1977^ - 5777 + 38) + £{^2:2} (-12677^ + 70277 - 900) 

+E{y3:3} (5677^ - 52877 + 1432) + E{y4:4} (-2077^ + 6077 - 40)] } 

/ (77 (77 - 1) (77 - 2)) 
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