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Abstract 

One of the great outstanding problems of theoretical physics is the quantisation of grav­

ity, and an associated description of quantum spacetime. It is often argued that, at short 

distances, the manifold structure of spacetime breaks down and is replaced by some sort 

of algebraic structure. Noncommutative geometry is a possible candidate for the math­

ematics of this structure. However, physical theories on noncommutative spaces are still 

essentially classical and need to be quantised. 

We present a path integral formalism for quantising gravity in the form of the spectral 

action. Our basic principle is to sum over all Dirac operators. The approach is demon­

strated on two simple finite noncommutative geometries (the two-point space and the 

matrix geometry M2(C)) and a circle. In each case, we start with the partition function 

and calculate the graviton propagator and Greens functions. The expectation values of 

distances are also evaluated. We find on the finite noncommutative geometries, distances 

shrink with increasing graviton excitations, while on a circle, they grow. A comparison is 

made with Rovelli's canonical quantisation approach, and with his idea of spectral path 

integrals. We also briefly discuss the quantisation of a general Riemannian manifold. 

Included, is a comprehensive overview of the homological aspects of noncommutative geo­

metry. In particular, we cover the index pairing between K-theory and K-homology, 

KK-theory, cyclic homology/ cohomology, the Chern character and the index theorem. We 

also review the various field theories on noncommutative geometries. 
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Chapter 1 

Introduction 

Noncommutative geometry significantly changes how we view spaces and what constitutes 

a space. It is very much the algebraic dual of the traditional geometry of points. The 

central theme is one of operator algebras and Hilbert spaces. In physical terms, non­

commutative geometry looks at spaces through the eyes of fermions. The inverse of the 

fermion propagator, in the guise of the Dirac operator, plays a key role in the differential 

aspects of noncommutative geometry. 

The use of operator algebras makes noncommutative geometry particularly attractive as 

the mathematics of quantum geometry. For example, it has been used in conformal field 

theory to describe stringy geometry [15, 31]. But, there has been little development of 

a corresponding theory of quantum gravity. The concept of a quantum field theory on a 

noncommutative space has yet to be worked out. Currently, field theories on noncommut­

ative spaces are quantised on a case-by-case basis-there is no general formalism. We will 

take the first steps towards a general path integral formalism for quantising the spectral 

action. 

The original reference for noncommutative geometry is Cannes' book [10]. It is written 

at an advanced level and contains a wealth of information. More suitable for newcomers 

is the self-contained and up-to-date book [19] by Gracia-Bondia, Varilly and Figueroa. 

There is also Landi's book [27], which includes chapters on field theories and gravity. The 

standard model from a noncommutative geometric point of view is covered in [42, 43]. 

Cannes' latest review and progress report on the subject is [12]. 
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In chapter 2, we introduce the basics of noncommutative geometry. The axioms for a real 

spectral triple are stated and we describe the construction of noncommutative differential 

forms from the universal differential graded algebra. We then introduce the Dixmier trace 

as the noncommutative integral. 

In chapter 3, we review the various field theories that can be formulated on noncommut­

ative geometries. Using differential forms, we show how to construct the Yang-Mills and 

topological actions. Scalar field theories are also dealt with, including the Polyakov action. 

We then move onto spectral theories of gravity. In particular, we describe the spectral 

action, which we intend to quantise. 

In chapter 4, we present our path integral formalism. We apply it to the two-point space, 

the matrix geometry M2(C) and a circle. In each case, the path integrals are standard finite 

dimensional integrals, so the technical difficulties associated with functional integration are 

avoided. We also make a comparison with the canonical quantisation approach taken by 

Rovelli, and with his idea of spectral path integrals. A brief discussion on the quantisation 

of a Riemannian manifold is included. 

In chapter 5, we give an overview of the homological aspects of noncommutative geometry. 

The emphasis is on concepts rather than technical details. Amongst other things, we 

explain Poincare duality in terms of K-theory /KK-theory and describe the index formula. 

2 



Chapter 2 

Noncommutative Geometry 

2.1 The Dictionary for Noncommutative Geometry 

Noncommutative geometry, as developed by Cannes [10], is founded on two theorems: the 

Gelfand-Na'lmark theorem and the Serre-Swan theorem. The Gelfand-Na'lmark theorem 

states that a locally compact Hausdorff space X is the same thing as the commutative 

C* -algebra Co(X). All the topological information about a Hausdorff space is stored 

algebraically in the C* -algebra of functions on it. A noncommutative C* -algebra can 

therefore be regarded as an algebra of functions on a noncommutative space. This is the 

basis of noncommutative topology. 

The Serre-Swan theorem states that a vector bundle over X is the same thing as a fi­

nitely generated projective module (or finite projective module for short) over C 00 (X). 

Specifically, any vector bundle is given by its space of smooth sections, which is a finite 

projective (right) module of the form p(C00 (X))n, where p E Mn(C00 (X)) is a projection. 

This gives rise to the notion of a noncommutative vector bundle as a finite projective 

(right) module over a noncommutative pre-C* -algebra. Noncommutative vector bundles 

capture the differential structure of a noncommutative space. They are necessary for the 

construction of physical theories on noncommutative spaces. 

The noncommutative generalisations of these theorems lead to other dualities between 

algebra and geometry that also do not depend on commutativity in an essential way. All 
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Measure space 

Measure 

Hausdorff space 

Complex function 

Compactification 

Point 

Open subset 

Vector bundle 

Topological K-theory 

Metric 

Differential form 

de Rham current 

Integral 

de Rham homology 

de Rham cohomology 

von Neumann algebra 

Positive functional 

C*-algebra 

Operator 

Unitisation 

Pure state 

Ideal 

Finite projective module 

Operator K-theory 

Dirac operator 

Hochschild cycle 

Hochschild cocycle 

Dixmier trace 

Periodic cyclic cohomology 

Periodic cyclic homology 

Table 2.1: The classical-quantum dictionary for geometry. 

the key geometric notions have noncommutative counterparts, enabling the development 

of geometry for noncommutative spaces. The correspondence between the commutative 

(classical) and the noncommutative (quantum) can be summarised in a dictionary, table 

2.1. 

2.2 The Axioms for a Spectral Triple 

A noncommutative geometry is fundamentally described by a spectral triple (A, 1l, D). 

Definition 2.2.1. A spectral triple (or K-cycle) (A, 1l, D) is given by an involutive rep­

resentation 1r of a pre-C* -algebra A on a Hilbert space 1l, together with an unbounded 

operator Don 1l such that D = D*, (D-,\ll)-1 E IK(1l) for all,\ 1-IR (compact resolvent) 

and [D, 1r(a)] E lffi(1l) for all a EA. 

This is the minimum amount of information required to define a differential structure 

on A. For physical applications, it is also desirable to have some of the structure of a 
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manifold. A noncommutative manifold is given by a real spectral triple (A, 1-l, D, J, f). 

The axioms for a real spectral triple are given below [11]. 

2.2.1 Dirac operator 

The Dirac operator D is a self-adjoint operator on 1-l with compact resolvent such that 

[D, rr(a)] E Iffi(1-l) for all a E A. There exists an integer m ~ 0 such that IDI-m is an 

infinitesimal of order 1, i.e. Trw IDI-m > 0. The integer m is called the dimension of the 

spectral triple. 

2.2.2 Real structure 

The real structure J is an antiunitary operator (J>..,P = XJ,p and (J,P1, J,P2) = (,P2, ,P1)) 

on 1-l such that 

J2 Eli, (2.1) 

JD E
1DJ, (2.2) 

Jr E
11 f J, (2.3) 

[rr(a), rr0 P(b)] 0 (bimodule structure), (2.4) 

[[D, rr(a)], rr0 P(b)] 0 (first order condition), (2.5) 

where rr0 P(b) = Jrr(b*)J- 1 . The values of E, E
1 and E

11 are given in table 2.2. Condition 

(2.4) gives 1-l the structure of an A-A-bimodule, 

a'lj;b := rr(a)rr0 P(b),P, a, bE A, 'ljJ E 1-l. (2.6) 

It substitutes the commutativity of a commutative algebra, [a, b] = 0, with the com­

mutativity of the two representations 1r and rr0 P. In particular, the multiplication map 

A® A---+ A is replaced by A® A0 P. The first order condition (2.5) means D behaves like 

a first order differential operator. Note, it is symmetric in a and b due to (2.4). 

5 



mmod8 0 1 2 3 4 5 6 7 

€ 1 1 -1 -1 -1 -1 1 1 

E' 1 -1 1 1 1 -1 1 1 

E" 1 -1 1 -1 

Table 2.2: The reduction of the real Clifford algebras. 

2.2.3 Z2-grading and orientability 

The Z2-grading r is a self-adjoint unitary operator (r = r* and r 2 = ll) on 1l such that 

form even: 

r1f(a) 

rD 

form odd: 

1r (a) r ( 1r (a) is even) , 

-Dr (D is odd), 

r = 1[ (trivial grading) . 

(2.7) 

(2.8) 

(2.9) 

There exists a Hochschild m-cycle c E Zm(A, A® A0 P) such that r = 1r(c). Concretely, 

this means r is of the form 

(2.10) 

Conceptually, r is the volume form. 

2.2.4 Regularity and finiteness 

Additionally, a E A and [D, a] are smooth vectors of the derivation [IDI, -]. The space of 

smooth vectors 1{00 is a finite projective left A-module with a Hermitian structure ( -,-) 

given by 

(2.11) 

2.2.5 Poincare duality 

There is an isomorphism between the K-theory and K-homology of A, given by the K­

homology fundamental class of the spectral triple. 

6 



2.3 Abstract Spectral Triples 

Spectral triples can be formulated in more abstract terms. The basic structure is an 

associative algebra (A, ds-1 ) generated by the elements of a pre-C* -algebra A and a symbol 

ds-1 [11]. A homomorphism from (A, dx-1) to (B, dy-1) is just a *-homomorphism from 

A to B, since there is a unique map dx-1 ~ dy-1. The involution on A can be extended to 

(A, ds-1 ) by defining ( ds-1 )* = ds-1 . There is also a natural Z2-grading r on (A, ds-1) 

given by f(a) =a for all a E A and f(ds- 1 ) = -ds-1 . 

A (odd) spectral triple for A is an involutive representation 1r of (A, ds-1) on a Hilbert 

space 1-l such that D = 1r( ds-1) satisfies the axioms for a Dirac operator. A spectral 

triple is even if 1r is a graded representation on a graded Hilbert space 1-l = 7-L+ EB 1-1.-. A 

spectral triple is real if there is also an opposite representation 1r0 P of (A, ds-1) on 1-l and 

the axioms given above are satisfied. 

2.4 Points and Distances 

Distances are the basic observable of any geometry. To define a notion of distance requires 

a notion of point and a metric. 

2.4.1 Points 

There are several possible notions of point for a noncommutative geometry, all coincide 

for commutative C* -algebras. The natural dual to a point is a character. 

Definition 2.4.1. A character on a C*-algebra A is a *-homomorphism x A ~ C. 

Equivalently, a multiplicative *-linear functional on A. 

The characters of a C*-algebra Co(X) are given by 

Xx(f) := f(x), f E Co(X). (2.12) 

Each one is labelled by a point x E X, thus the space of characters is isomorphic to 

X. Any commutative C*-algebra A can be realised as any algebra of functions by the 
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Gelfand transform. The Gelfand transform of an element a E A is the continuous function 

f(x) := x(a) on the space of characters of A. 

Another possible notion of point is a maximal ideal. 

Definition 2.4.2. A maximal ideal of an algebra A is an ideal that is not contained in 

any other ideal of A, apart from A itself. 

A maximal ideal of C0 (X) is a subalgebra of functions that vanish at a single point 

x E X. Thus, the space of maximal ideals of Co(X) is isomorphic to X. Maximal 

ideals are particularly suitable as points from the standpoint of sheafjtopos theory, as the 

closed ideals of an algebra form a lattice. This is the approach of quantales [37]. For 

a commutative C* -algebra, the space of maximal ideals is also isomorphic to the space 

of primitive ideals (T = ker 1r), which in turn is isomorphic to the space of irreducible 

representations. 

The notion of point that extends most readily to noncommutative C* -algebras is a pure 

state. 

Definition 2.4.3. A state on a C* -algebra A is a positive linear functional \II : A -+ C, 

\II(a*a) 2: 0 for all a E A with unit norm. The norm of a positive linear functional is 

defined by 

ll\llll := sup{l\ll(a)l: llall ~ 1}. (2.13) 
aEA 

For a unital C*-algebra, ll\llll = \ll(li). 

Let \ll1 and \ll2 be states, then the convex combination 

(2.14) 

is also a state. Thus, the space of states is a convex set. 

Definition 2.4.4. A state is pure if it is not a convex combination of two other states. 

Pure states are the extreme points of the convex set of states. 

A pure state on a commutative C* -algebra is the same thing as a character, hence it corres­

ponds to a point. The advantage of pure states over characters is they are required only to 
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be linear and not multiplicative functionals, so are not constrained by the commutativity 

of <C. 

The pure states of a noncommutative C* -algebra do not have an interpretation as points 

of an underlying space. Indeed, the underlying space is a noncommutative space. Instead, 

they can be thought of as the "delocalised positions of a delocalised point". The classical 

points of a commutative C* -algebra are replaced by equivalence classes of the pure states 

of a noncommutative C* -algebra. Noncommutative spaces are commonly referred to as 

fuzzy spaces because of their non-local nature. 

When a C*-algebra is represented on a Hilbert space 11., every unit vector l'l,b) E 1{ de­

termines a (not necessarily pure) state in the form of an expectation value, 

w(a) = ('l,bl a l'l,b). (2.15) 

But the converse is not always true; not every state need be given by an expectation value. 

For example, delta functions (which are distributions not functions) give pure states on 

Co(X), but they do not correspond to any vector in a Hilbert space (such a vector would 

not be square-integrable). Although, it is common to formally introduce such a "vector" 

lx), 

Wx(f) = (xi f lx) := j f(y)8(x- y) dy = f(x). (2.16) 

Further details about pure states can be found in [39]. 

Example 2.4.1 (States on C EB C) 

The C* -algebra A = C EB C has two pure states, 

WL(a) aL, 

WR(a) aR, 

where a = (aL, aR) E A with aL, aR E C. It is isomorphic to the algebra of functions on 

two points. If A is represented on the Hilbert space 1{ = C EB C, then the two pure states 

are given by the unit vectors 

(2.17) 

The other unit vectors give the mixed states WA =AWL+ (1- ,\)WR. So, all the states can 

be expressed as expectation values. 
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Example 2.4.2 (States on M2(C)) 

Consider the C* -algebra A = M2(<C) and its representation on the Hilbert space 1l = <CEB<C. 

A general unit vector in 1l can be parameterised as 

(2.18) 

Therefore, the state associated to it has the form 

.r, ( ) 2 ( ¢) ( i9 i9) sin¢ . 2 ( ¢) ~¢,0 a =au cos 2 + a12 e +a21 e- -
2

- + a22 sm 2 . (2.19) 

It is easy to see that this is a pure state and that the space of pure states is isomorphic 

to § 2 . As A is noncom mutative, the pure states cannot be interpreted as corresponding 

to points. Instead, they represent the delocalised positions of a delocalised point. If the 

Hilbert space is extended to 1l = M2 (<C), then the mixed states can also be obtained as 

expectation values. 

2.4.2 Distances 

The distance between any two states (pure or mixed) is defined as 

d(w, cf)) :=sup {iw(a)- cf)(a)i: II[D, a] II~ 1}. (2.20) 
aEA 

Qualitatively, this selects a function a that varies in direct proportion to the coordinates­

the coordinate function. The difference between the values of the coordinate function 

evaluated at two points is then the distance between the two points. 

The operator norm IITII of an operator T can be computed by taking the square root of 

the largest eigenvalue of T*T, 

IITII = Jmax( {An of T*T} ). (2.21) 

For commutative C*-algebras, this is just the L00-norm, 

llflloo := sup if(x)i. (2.22) 
xEM 
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Example 2.4.3 (Distances on IR) 

The Dirac operator on lR is just D = -id~' Pure states are given by 'Ifx(f) = f(x). So, 

d(p, q) ~~~ { I 'I! p (f) - 'I! q (f) I : II [ D' !]II = II- i ~~ II = I ~~ I ~ 1 } 

sup{lf(p)- f(q)l: f(x) = ,\x + c, 1-'1 ~ 1} 
!EA 

sup {1-'IIP- ql : 1-'1 ~ 1} = IP- ql. 
IAI~O 

Example 2.4.4 (Distances on a Riemannian manifold) 

For the Dirac operator on a Riemannian manifold, II[D, !]II= IIJIILip, where IIJIILip is the 

Lipschitz norm. The Lipschitz norm is defined by 

IIJIILip :=sup lf(x)- f(y)l, 
x-:f-y dgeo(x, Y) 

where dgeo(x,y) is the geodesic distance. So, if II[D,JJII ~ 1, then 

lf(x)- f(y)l < 11!11 · < 1 
d ( ) 

_ L1p _ , 
geo X, Y 

for any x, y such that x =f. y. Thus, 

d(p,q) sup{lf(p)- f(q)l: IIJIILip ~ 1} 
!EA 

< dgeo(P, q). 

Now let /q(x) = dgeo(x,q), then II[D,Jq]ll = 11/qiiLip = 1. Therefore, 

> dgeo(P, q). 

Hence, d(p, q) = dgeo(P, q). 

11 
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2.5 Differential Forms 

For an introduction to differential forms, we recommend [42] or [18]. 

2.5.1 Universal differential forms 

We start by introducing the universal differential graded algebra nA := EB nP A for a 
p?:O 

unital associative algebra A. The space of 0-forms is defined as n° A:= A. Higher degree 

forms are generated by a differential S which satisfies 

S1 0, (2.24) 

S(ab) (Sa)b + aSb, (2.25) 

S(aoSa1 ... Sap) SaoSa1 ... Sap, (2.26) 

(Sa)* -Sa*, (2.27) 

(aoSal ... Sap)* (Sap)* ... (Sa1)*ao. (2.28) 

A p-form is given by a finite sum 2:: aoSa1 ... Sap E nP A. 

Any differential graded algebra (n, d) with an algebra homomorphism p : A -+ n° can be 

constructed as a unique homomorphism Pd from the universal differential graded algebra 

(nA, S) by 

(2.29) 

2.5.2 Noncommutative differential forms 

The differential forms for a spectral triple (A, tl, D) are given by a representation 1r of the 

universal forms in lffi(tl), 

(2.30) 

However, this is not a true homomorphism of differential graded algebras: [D, -] is only 

a derivation, not a differential. This means there exists forms w such that 1r(w) = 0 but 

1r( Sw) -1- 0. These are called junk forms and have to be quotiented out to get a differential 

graded algebra. 
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Example 2.5.1 (Differential graded algebra on~"") 

We shall construct the differential graded algebra on~= using the Dirac operator D = -if! 

= -i-yl-lal-l: 

0-forms: a E c=(~""). 

2-forms: L::ao[D,al][D,a2] =- L::aof!alfJa2 = --yP-yvL::ao&pa18va2. 

junk 2-forms: Consider the universall-form w = a8b- (8b)a. We find 

7r(w) 

8w 

1r(8w) 

i(aflb- (fJb)a) = i(aflb- aflb) = 0 

8a8b- 8((8b)a) = 8a8b + 8Ma 

--yl-l-yv(&pa&vb+&pb&va) =/:- 0. 

The most general junk 2-form is constructed by taking linear combinations of this 2-form, 

i.e. --yP-yvL::(&pa&vb+&pb&va). It is symmetric in J-L and v, so using {1'1-l,-yv} = 2rtv:f['Y 

we can write .it as f:I['Y" Quotienting out this junk leaves antisymmetric 2-forms, which are 

isomorphic to the usual de Rham differential 2-forms fpv dxl-l 1\ dxv. 

p-forms: I: ao[D, a1] ... [D, ap] = ( -i)P I: aof!a1 ... flap. 

junk p-forms: Similarly, these consist of symmetric combinations. Thus, all p-forms are 

antisymmetric, hence we get the de Rham differential graded algebra. 

Real spectral triples have a bimodule structure. So, a differential form is more generally 

given by 

(2.31) 
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2.6 Integration 

The integral of an operator T is defined in terms of the Dixmier trace as 

(2.32) 

In the cases of interest (i.e. for measurable operators), the Dixmier trace is given by 

1 N 
Trw T = lim IN L An, (2.33) 

N--too og n=1 

where the eigenvalues An of T are arranged in descending order. The Dixmier trace 

extracts the coefficient of the logarithmic divergence in the trace of an operator. For finite 

dimensional operators, it is proportional to the ordinary matrix trace. 

Example 2.6.1 (Integrating over § 1 ) 

We shall demonstrate how to calculate the length of § 1 by evaluating f ds. The Dirac 

operator on § 1 is just D = --hlo and has eigenvalues njR. Thus, IDI-1 has eigenvalues 

R/lnl with degeneracy 2, since ±n give the same eigenvalue. Arranging them in descending 

order, we have 

R, R, R/2, R/2, R/3, R/3, . . . (2.34) 

The degeneracy means that n does not uniquely label the eigenvalues. We can gwe a 

unique, but approximate labelling by averaging the eigenvalues over their degeneracy. The 

number of eigenvalues with a value less than or equal to A is 

so the averaged eigenvalues are 

Therefore, the Dixmier trace gives 

1 N - 1 N 2R 
lim --L An = lim -- """ -

N --+oo log N N --+oo log N ~ n 
n=1 n=1 

lim-- -dn 1 1N2R 
N--+oo log N 1 n 

2R = ~ { dx. 
1f }M 
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Hence, 

f ds = JM dx = 21r R. (2.37) 

Example 2.6.2 (Integrating over the flat torus 1I'fta.t ~ !Rm /(27r Rz)m) 

We shall demonstrate how to calculate the volume of 1I'fta.t by evaluating f dsm. The Dirac 

operator is D = -if! and has eigenvalues ±J(ni/R)2 + ... + (nm/R) 2 , which for fixed 

n 1 , ... , nm have a degeneracy of g'"Y = ~ tr ll'"Y. Each eigenvalue lies on the surface of an 

(m- 1)-sphere, so there is an additional degeneracy factor of gsphere(r) ~ f'[;::j;) rm-l, 

where r = Jn~ + ... + n~. Thus, the eigenvalues of IDI-m are (Rjr)m with a total 

degeneracy of 2g'"Y gsphere ( r). Counting the number of eigenvalues with a value less than 

or equal to A gives 

R/ A 11"' 2 m/2 R/ A 1/m 

N ~ 1 2g'"Y gsphere(r) dr = r(:/
2

) tr ll'"Y 1 rm-l dr 

27rm/2Rm 

~ mf(m/2)A tr l[T 

Now, we can average the eigenvalues, 

- A 27rm/2Rm 
An= njN = mf(m/2)n trll'"Y, 

and calculate the Dixmier trace, 

1 N 27rm/2Rm 
lim --2:.:: trll 

N---too log N n=l mf(m/2)n '"Y 

1 1N 27rm/2 Rm 
lim -1 N r( / 2) tr ll'"Y dn 

N---too og 1 m m n 

---:-~-:- tr ll = '"Y dmx. 
21rm/2 Rm 2 tr ll 1 
mr(m/2) '"Y m(47r)m/2 f(m/2) M 

Hence, 

f dsm = tr ll'"Y JM dmx = (27r R)m tr ll'"Y' 

Further examples can be found in {27, sec. 5}. 

(2.38) 

(2.39) 

Connes has suggested that one can think of the Dixmier trace as a way of extracting the 

classical part of an operator, i.e. the low momentum behaviour. He has further suggested 

that it could be used to obtain the classical world from the quantum one. 
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2.6.1 Scalar product of differential forms 

The scalar product of forms is defined by 

Example 2.6.3 (Scalar products on ~m) 

Consider the 1-forms A= AJ.LI'J.L and B = BJ.Lf'J.L. Then, 

(A, B) = JM AJ.LBv tr( f'/1-,.,t) dmx 

tr :U:
1 

{ All-BJ.L dmx 
jM 

tr 1[1 JM A 1\ *B. 

(Trace formulas for/' matrices can be found in appendix B.2.) 

There is also another possible definition for the scalar product [8], 

(o:, {3) := ~ f (o: + 1o:1-1 )*({3 + 1{31-1) dsm. 

(2.40) 

(2.41) 

This symmetrised scalar product arises when considering gravity (it is induced by the 

spectral action). It gives identical results to (2.40) in the commutative case. We will keep 

to using the more traditional scalar product (2.40). 
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Chapter 3 

Field Theories on 

Noncommutative Geometries 

3.1 Yang-Mills Theory 

Having defined differential forms and their scalar product for a noncommutative space, 

it is straightforward to write down a Yang-Mills action. The connection is a self-adjoint 

1-form: 

A= 7r(2:aob) = L:a[D,b], 

with 2:: a[D, b] =- l:[D, b*]a*. Differentiating A gives the field strength, 

F 3 11'( o I:aob) = 11'(2:oaob) 

L[D, a][D, b]. 

(3.1) 

Since F.J is a 2-form, it is necessary to quotient out any contributions from junk forms. 

The true field strength, then, is F = F.J/.1, where .J := 7r(O'Ker7r) is the space of junk 

forms. Taking the scalar product ofF with itself gives the Yang-Mills action, 

(3.2) 

where g is the coupling constant. 
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It is invariant under the inner automorphisms of A. The inner automorphism group, 

Inn(A), is the group of unitaries of A. Under an inner automorphism, the Dirac operator 

transforms as 

D---+ UDU* ulul-1 Dlu* 1-1u* = uluDu* 1-1u* using (2.2) 

ul(D + u[D, u*])J- 1u* 

uDu* + l(J- 1ul)u[D, u*]J-1u* using (2.2) 

uDu* + lu[D, u*](J-1ul)l-1u* using (2.4) & (2.5) 

D + u[D, u*] + lu[D, u*]J-1 , 

where u E Inn(A). The connection transforms as 

A---+ UAU* ulul-1 A(lu* 1-1 )u* 

uAu*, 

and 

1 Al-1 ---+ U 1 Al-1 U* uluAu*(l-1u* l)J-1 

ul(l-1u* l)uAu* 1-1 using [A, b0 P] = 0 & (2.4) 

(3.3) 

(3.4) 

luAu* 1-1 . (3.5) 

Thus, the transformation of the covariant Dirac operator is 

D +A+ lAl-1 ---+ D + uAu* + u[D, u*] +luAu* 1-1 + lu[D, u*]J-1 . (3.6) 

This corresponds to the gauge transformation 

A---+ uAu* + u[D, u*]. (3.7) 

Example 3.1.1 (Ordinary Yang-Mills) 

Consider a four-dimensional matrix manifold A = C00 (M) ® Mn(C) with Dirac op­

erator D = -i/1-L(x)(oJ.L + iwbcJ.L(x)rblc) ® lln. The Yang-Mills field strength is F 

FJ.Lv/1-L(x)rv(x). Thus, the Yang-Mills action functional is 
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3 .1.1 Scalar fields 

Scalar fields naturally appear from noncommutative Yang-Mills theory as gauge bosons 

associated to discrete noncommutative spaces. The classic example is the Higgs field. 

Quite separate from this, there is also a scalar field action for noncommutative spaces, 

Sq,[</>, ¢*] := ([D, ¢], [D, ¢]). (3.8) 

Applying it to an Mn(C) matrix manifold yields n2 complex scalar fields. 

3.2 Topological Actions 

In 2n dimensions, it is possible to define a noncommutative topological action, 

(3.9) 

This is an example of a Hochschild 2n-cocycle. A Hochschild n-cocycle cpf? is an (n + 1)­

linear functional on A given by 

(3.10) 

For a matrix manifold, the action reproduces the usual Chern numbers. In particular, the 

instanton number (the 2nd Chern number) in four dimensions, 

Sr[A] = -4 JM Eo:f3J-Lv tr(Fo:f3 FJ-Lv) y/g d4x, 

and the magnetic monopole charge (the 1st Chern number) in two dimensions, 

Sr[A] = -2i JM EJ-Lv tr pJ-Lv ylgd2x. 

For a finite geometry (zero dimensions), the action just gives 

Sr = trr, 

which is the fermion left-right asymmetry. 
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3.3 Fermions 

The fermion action is constructed straightforwardly using the scalar product of the Hilbert 

space, 

(3.14) 

Under a gauge transformation, the fermions transform in the adjoint representation of the 

gauge group, 

1/J --t U?jJ = ulul-11/; = u1/Ju*, u E Inn( A). (3.15) 

However, the physical fermion fields actually transform in the fundamental representation, 

while the antifermion fields transform in the conjugate representation. 

3.4 Polyakov Action 

The Polyakov action has a natural formulation in terms of a scalar product of forms, 

(3.16) 

where X : I: --t IRm, with I: a Riemann surface, and 'f/pv is an Euclidean metric on IRm. 

It can be generalised to noncommutative conformal manifolds by using the conformal 

equivalent of a spectral triple-a Fredholm module. 

A Fredholm module (1l, F) over A consists of a representation 1r of A on a Hilbert space 

1l and a self-adjoint operator F. The operator F is required to satisfy F 2 = 1[ and plays 

the role of a "conformal Dirac operator". A Fredholm module can be constructed from a 

spectral triple by defining F = DIDI-1 . 

The noncommutative Polyakov action is thus defined to be 

(3.17) 

where the 'f/pv and the XI-L are self-adjoint elements of A. It is conformally invariant by 

virtue of being a Hochschild 2-cocycle. Cannes has used it [10, sec. IV.4.f'] to derive the 
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following action for a four-dimensional conformal manifold I:, 

Sp[X] = 2 h ~""( ~ g(dX",dX")- ~g(dX1',dX") 

+ g(V dX", V dX") - ~ ~X1' ~X") Jg d4x. (3.18) 

Note: for conformal manifolds with more than two dimensions, it is necessary to use the 

Wodzicki residue instead of the Dixmier trace to evaluate the integral (3.17). 

Example 3.4.1 (The Polyakov action on the two-point space) 

The Fredholm module of the two-point space A:= C EB C is given by 

1l ·-

F ·-

We define the metric "hw by 

and the scalar fields X J.L by 

So, 

CEBC with 1r( a) := 

( ~ ~) 

( xt o ) , 
0 x~-t 

R 

( aL 0 } 
0 aR 

Xf,X~ER 

[F, XJ.L] = ( 0 X~ - Xf ) 
XJ.i-XJ.L 0 

L R 

Thus, 

Sp[X] tr(7Jpv[F, X~-t][F, Xv]) 

-(7]Lpv + 7]Rpv)(Xf ~ X~)(X£- XR) 

-(r/L + T]R)pv(XL- XR)P(XL- XRt· 
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3.5 Wodzicki Residue 

The noncommutative Einstein-Hilbert action is given by 

(3.25) 

But, this integral cannot be evaluated using the Dixmier trace, the operator D 2IDI-m lies 

outside its domain. Instead, one has to use the Wodzicki residue, 

WresT:= { { trp_m(x, k) dD(k) dmx, 
}M jllkll=l 

(3.26) 

where P-m(x, k) is the symbol of order -m ofT. For pseudo-differential operators of order 

less than -m or of non-integer order, the Wodzicki residue vanishes. (Pseudo-differential 

operators are described in appendix A.3.) 

Example 3.5.1 (The Wodzicki residue of IDI-m) 

Consider the Dirac operator D = -i/j on the fiat torus 'll'fiat. Its symbol of order 1 is 

Pl(x, k) = rf.J.kf..i' Thus, the symbol of order -m of IDI-m = (D2)-m/2 is P-m(x, k) = 

llkll-mlii" Hence, 

WresiDI-m 

(3.27) 

The relation of the Wodzicki residue to the Dixmier trace is given by Connes' trace the-

orem. 

Theorem 3.5.1 (Connes' trace theorem) 

Let M be an m-dimensional compact Riemannian manifold. LetT be a pseudo-differential 

operator of order -m (or lower) on M. Then, 

1 
'frw T = m(21r )m WresT. (3.28) 

The Wodzicki residue is the unique extension of the Dixmier trace to the algebra of classical 

pseudo-differential operators. 
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In terms of the Wodzicki residue then, the action functional (3.25) is given by 

s [D] = r(m/2) Wres IDI 2-m. 
EH 27fm/2 (3.29) 

It was shown in [24] that for a Dirac operator on an m-dimensional compact Riemannian 

manifold this yields the Einstein-Hilbert action 

m-2 1 SEH[D] = -- tr lLy R J9 dmx. 
12 M 

(3.30) 

3.6 Spectral Action 

The question was once asked whether there exists a space X such that Diff(X) is the 

(semi-direct) product of the diffeomorphism group of general relativity and the gauge 

group of the standard model, U(1) x SU(2) x SU(3). If such a space exists, then it might 

be possible to obtain the standard model from a theory of gravity on it. The existence of 

such a manifold has been ruled out by a result in [36]. But, noncommutative geometry 

extends the concept of a space, so one can try asking whether there is a noncommutative 

space with this diffeomorphism group. 

There is indeed such a noncommutative manifold, and Chamseddine and Connes have 

developed a theory of gravity for it [9]. Their theory of gravity is based on the spectral 

principle, which states physics depends only on the spectrum of the Dirac operator. This 

is a stronger requirement than diffeomorphism invariance: isometric manifolds are isospec­

tral, but isospectral manifolds are not necessarily isometric (one cannot hear the shape of 

a drum [23]). The action functional for the theory is the spectral action 

(3.31) 

where x is a cutoff function and A is a cutoff parameter. Here, the Dirac operator includes 

the internal fluctuations of the metric given by the gauge field A, 

D :=Do+ A+ c:' JAJ- 1
. (3.32) 

The spectral action is similar to the Wodzicki residue action (3.25). They are both some 

kind of regularised trace of D 2 . The Wodzicki residue is regularised by the volume element 
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IDI-m, while the spectral action uses the cutoff function x to regularise the ordinary trace 

of operators. A further connection between the two actions is the spectral action implicitly 

contains the terms Wres IDI-m and Wres IDI 2-m. 

The symmetrised gauge field A +E' J AJ-1 has the effect of removing a (commutative) U(l) 

factor from A. To show this, we rewrite A as (G +A), where G is the noncommutative 

part and A is the commutative part. So, 

D Do+ (G +A)+ E1 J(G + A)J-1 

Do+ G + E1 JGJ- 1 +A+ E1 J AJ-1 . 

The commutative part A is given by a finite sum of 1-forms, 

(3.33) 

where the ai and bi are elements in the centre of A. For such elements, a0 P = Ja* J-1 =a. 

So, 

Thus, 

JaJ- 1 [JDoJ- 1
, JbiJ- 1

] = E1 JaiJ- 1 [Do, JbJ-1] using (2.2) 

E1 JaJ- 1 [Do, b7] = E1[Do, bi]JaJ-1 using (2.5) 

E1[Do,bi]ai = -E'(ai[Do,bi])*. 

L ai[Do, bi] + E1 L Jai[Do, bi]J-1 

L ai[Do, bi]- L(ai[Do, bi])* 

A- A*= 0. 

Hence, the commutative part of the gauge field is removed. 

The consequence of this is on a Riemannian manifold there are no gauge fields, only 

gravity. Similarly, on a matrix manifold, A= C 00 (M) 0 Mn(C), there is an SU(n), not 

U(n), gauge field. To obtain a U(l) gauge field, one needs to consider a tensor product 

like A= C00 (M) 0 (C ffi Mn(C)). 

Note: for a truly noncommutative manifold (e.g. the noncommutative torus), the tensor 

product with a matrix algebra does yield a U(n) gauge field as the algebra has a trivial 

centre. 
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The spectral action can be evaluated using the heat kernel expansion. We begin by writing 

the cutoff function as a Laplace transform, 
00 

x(u) = J X(t) e-tu dt. 

0 

The action then becomes 
00 

S[D] := Trx(D2/A2
) = J X(t) Tre-tD

2
/A

2 
dt. 

0 

We can now apply the heat kernel expansion (C.9) to obtain 

00 00 00 00 

S[D] = J X(t) L (tjA2) n2rn an(D2 )dt = LAm-n J X(t)tn2rn dtan(D 2 ). 

0 n=O n=O 0 

Using the Mellin transform (C.16), we have 

Thus, 

00 J uk x(u) du 

0 

00 00 00 00 J uk J X(t)e-tudtdu = J X(t) J uke-tududt 

0 0 0 0 
00 

r(k + 1) j X(t) cCk+l) dt. 

0 

00 

n=O 
where the coefficients fn are given by 

00 

1 J rn-n-2 
fn = [' (m;-n) 

0 

u-2-x(u) du. 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

The action depends only weakly on x; it merely determines the coefficients fn· In this 

sense, the spectral action is universal. 

In four dimensions (m = 4), the coefficients reduce to 
00 

fo = J ux(u) du 

0 
00 J x(u) du 

0 

x(O) 

( -1)n X(n)(O). 
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The simplest choice for the cutoff function is the characteristic function of the unit interval, 

{ 

1 lui ::; 1, 
x(u) := 

0 lui 2: 1. 
(3.38) 

With this, the spectral action just counts the number of Dirac eigenvalues with an absolute 

value less than A. The values of the coefficients are: 

1 
fo = 2' h = 1, !4 = 1, h(n+3) = 0. 

For a four-dimensional Riemannian manifold, the action becomes 

S[D] = ~ f (6A4 + A2R) J9d4x 
487!" }M 

+ 1 ~0 JM (5R2- 8Rf-LvRf-Lv- 7 Rf-Lvpa.Rf-Lvpa + 12R;t-Lf-L) y'9 d4x. 

The Rf-LvpaRf-Lvpa term can be expressed in terms of the Weyl tensor Cf-Lvpa, 

This gives us 

S[D] = ~ f (6A4 + A2R) J9d4 x 
487!" }M 

(3.39) 

(3.40) 

(3.41) 

1 { ( C Cf-Lvpa 22R2 R Rf-Lv R f-L) 4 + 120 JM -7 f-LVpa + 3 -22 f-LV + 12 jf-L y/gd X. 

We can also use the Euler characteristic, which in four dimensions is given by 

Replacing the Rf-LvpaRf-Lvpa with the Weyl tensor and rearranging yields 

JM (
2
3
2 

R
2

- 22Rf-LvRf-Lv) y'9d4x = 3527r2
XEuler(M) 

- { llCf-LvpaCf-Lvpa y'9 d4x. 
jM 

This can be directly substituted into the action to give, 

S[D] = 48~2 JM (6A4+A2R- :oCf-LvpaCf-Lvpa + 110R;f-Lf-L) y'9d4x 

11 
+ 180 XEuler ( M) · 
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Finally, we can neglect the surface terms, 

(3.43) 

It is possible to remove the huge cosmological constant term by slightly modifying the 

cutoff function [28]: 

x(u) := x(u)- E
2x(w), f « 1. (3.44) 

The values of the coefficients then change to 

fo = 0, h = 1 - E, !4 = 1 - E
2

, hcn+3 ) = 0. (3.45) 

For the noncommutative manifold of the standard model (see appendix E.3), the spectral 

action gives the standard model action in addition to the gravitational action above. 

It is remarkable that the action of the fundamental theories of physics can be obtained 

from simply counting eigenvalues/states. In [5], it is pointed out that this count of states 

can be directly related to the Bekenstein-Hawking entropy. Indeed, ds2 = D-2 , so one is 

counting area eigenstates with eigenvalues larger than the cutoff area 1/ A2 . The spectral 

action may not be a theory of everything, but it does fit on a T-shirt1! 

1 "We hope to explain the entire universe in a single, simple formula that you could wear on your 

T-shirt.", Leon Lederman, director of Fermilab. 
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Chapter 4 

Quantisation and 

N oncommutative Geometry 

4.1 Quantum Theory 

From a physical perspective, a spectral triple describes a geometry in terms of its fermion 

geodesics. The Dirac operator is the inverse of the fermion propagator, 

(4.1) 

and the Hilbert space is the space of spinors (the one-particle subspace of the fermion 

Fock space). Moreover, the fermion geodesic equation is 

D'lj; = 0, '1/J E 1-l. (4.2) 

There is, thus, a close relationship between noncommutative geometry and quantum field 

theory. 

For some quantum field theories, it is possible to construct a spectral triple from their field 

content. The boson (gauge) fields determine the algebra, the kinematics of the fermion 

(matter) fields determine the Hilbert space, and the fermion dynamics determine the Dirac 

operator. Though, in general, it is not always possible to reconstruct the quantum field 

theory from the spectral triple. For instance, it may not be possible to recover the precise 
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form of the action functional. One important theory that can be recovered from its spectral 

triple is the standard model. Its field content can be arranged to give a real spectral triple 

(see appendix E.3), which can then be used as a starting point to derive the standard 

model action. There have been many papers [5, 35, 7] investigating the phenomenological 

consequences of constructing the standard model from a spectral triple. 

4.2 Quantum Mechanics 

Operator algebras play an important role in both noncommutative geometry and quantum 

mechanics. It is, therefore, interesting to see to what extent they are related. The obvious 

connection between the two is the phase space of quantum mechanics is a noncommutative 

geometry. But, we are more interested in how the real spectral triple of a manifold M is 

related to the quantum phase space of a particle moving in M. 

The quantum phase space is described by the algebra Fn of functions of the operators xJL 

and pJL, which satisfy [xJL,Pv] = inrJJLv· It contains the algebra of functions on M, c=(M), 

as a subalgebra. The usual method of obtaining the quantum phase space is to quantise 

the classical phase space T* M. However, real spectral triples can give us a more direct 

route if we can find a way to extend c=(M) to Fn· 

A straightforward way to do this, is to find the operators Pw The components DJL of the 

Dirac operator D = IJL DJL are obvious candidates, since [DJ.L, xv] = -irJJLv· Therefore, we 

define 

(4.3) 

and generate Fn from c=(M) and {f(DJL) : f E C 00 (1R.m)}. A similar construction is 

discussed in [14]. Further, we can define creation and annihilation operators by 

aJL ·- ~(xJL + iDJL), (4.4) 

at ·- ~(xJL- iDJL). (4.5) JL 

Spectral triples shift the emphasis away from the canonical commutation relations as the 

basis of quantum mechanics to the momentum-Dirac relation IJLPJL = nD. The canonical 

29 



commutation relations naturally appear as a consequence of the geometry of !VI. This 

makes a lot of sense, since momentum should be the generator of translations, and the 

generator of translations should be determined by the geometry. To summarise, 

Geometry 

[D{t, Xv] = -irJ{tv 

+ Physics 

p~-' := tiD~-' 

Quantum Mechanics 

[pi-', xv] = -inrJ{tll 

We would like to generalise the above construction to arbitrary real spectral triples. It is 

important that the spectral triples be real as the Dirac operator, and hence momentum, 

should be first order differential operators. The quantum phase space algebra Fn can be 

generated as before, with C00 (M) replaced by the noncommutative algebra A of a real 

spectral triple (A, 1l, D, J, r). But, there is a problem with defining creation/annihilation 

operators as there is no obvious choice for the operators xi-' E A. One can either try to 

impose [al-', at] = 'rl!-'v and derive xi-', or try appealing to the distance formula (2.20) for a 

definition of x w 

Even spectral triples (A, 1l, D, r) are particularly interesting from a quantum mechanical 

point of view, as they provide examples of N = 1 supersymmetric quantum mechanics 

(see [14]). The supercharge is given by 

Q=D, (4.6) 

and is odd with respect to the Z2-grading r. It generates the supersymmetry transform-

ation 

u( e) = e-iOQ' (4.7) 

where e = I: a[Q, b] is a 1-form. The Hamiltonian is fixed by the supersymmetry algebra, 

(4.8) 

The case of infinite dimensional even spectral triples and supersymmetric quantum field 

theory is dealt with in [10, sec. IV.9.,6]. 
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4.3 Quantisation of Noncommutative Geometries 

The question of how to quantise a field theory on a general noncommutative geometry 

remains largely unresolved. Conventional techniques work on Riemannian-like manifolds 

and have been used on noncommutative extensions, such as almost commutative geomet­

ries (the tensor product of a Riemannian manifold with a finite noncommutative geometry) 

and the noncommutative torus [25]. Beyond this, most efforts have focused on quantising 

a particular noncommutative geometry [34, 21, 22]. 

We shall develop a path integral approach, based on our work in [20], that is applicable to 

any noncommutative geometry. The focus will be on quantising the spectral action, which 

is the natural geometric action for a noncommutative geometry. The Dirac operator is the 

dynamical variable of the spectral action, and plays the role of the metric. A path integral 

should therefore be some sort of "sum over Dirac operators". We will try to define what 

this might mean by appealing to the conventional path integral formalism. Our approach 

will build on, and complement, the work done by Rovelli in [41]. 

4.3.1 Path integral quantisation 

We have chosen to develop a path integral approach, rather than a canonical approach, 

because it requires knowledge of only the fields, and not their dynamics. To be able to 

canonical quantise a noncommutative geometry, we would need a general procedure for 

finding the phase space, and constructing a symplectic structure on it. Conventionally, 

this amounts to finding the canonical momenta and using the Poisson bracket. In contrast, 

path integrals need a (gauge invariant) measure on the space of histories. Deciding how 

to parameterise this space is thus an important consideration. The advantage lies in that 

this does not depend on the details of the action, unlike finding the phase space. The only 

things that really matter are the fields, because they determine the measure. One of the 

other benefits of using path integrals is they are explicitly covariant. 

A good starting point for developing a path integral formalism for noncommutative geo­

metry is the conventional formalism. It has lead to standard model predictions that agree 

spectacularly with experiment, so it should be incorporated as a special case. Since the 
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standard model action can be expressed in the form of a spectral action, a dictionary can 

be set up between noncommutative geometry and quantum field theory. This makes it 

apparent that the (gauge) fields parameterise the Dirac operator. So, the space of his­

tories of the fields is equivalent to the space of histories of the Dirac operator. From 

the noncommutative geometry point of view then, the degrees of freedom of the Dirac 

operator correspond to the fields in the spectral action, and hence give the path integra­

tion measure. Thus, in principle, we can path integral quantise a general spectral action. 

Schematically, the general partition function can be written as 

(4.9) 

where D is the Dirac operator. The function x and parameter A are the cutoffs for the 

spectral action. 

4.3.2 The two-point space and Higgs gravity 

The two-point space is the simplest example of a noncommutative space. It consists of 

just two points which we label L and R. The spectral triple is given by 

1-l ·- C EEHC, ( 4.10) 

D .- I.(o m) 
n m 0 

where m is a complex constant which fixes the distance between the two points. It can 

almost be made into a real spectral triple; there is an obvious grading r := diag(1, -1) 

and a real structure J given by complex conjugation. However, they do not satisfy all of 

Connes' axioms. The two-point space can best be described as a "scaled" even Fredholm 

module. 

Some may be unsettled by the appearance of n in the Dirac operator before quantisation. 

It is used only to follow the convention that m has units of mass, rather than inverse length, 

and so can be omitted. Alternatively, one could view n as the noncommutative geometriy 

version of c. In the same way that c relates space and time on a Lorentzian manifold, n 
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relates space and (inverse) mass on a noncommutative geometry ("spacemass"). Non is 

required for quantisation as the spectral action is naturally dimensionless. We, however, 

will take our actions to have the usual dimensions of n. 

To move from a static (fiat) space to a dynamic (curved) space, we promote the constant 

m to a variable ¢, which will play the role of the gravitational field. This is the analogue 

of moving from 7]1w to g11v(x) on a Lorentzian manifold. In fact, ¢is really a connection, 

so it plays the role of a vierbein/spin connection rather than a metric. In the context of 

the standard model, ¢ is interpreted as the Higgs field, hence we refer to this as Higgs 

gravity. 

The spectral action is taken to be 

(4.11) 

where G is the gravitational coupling constant, and lp := 1/..Jf/iJ is the Planck length. It 

has a U(1) symmetry which comes from Inn(A), the inner automorphism group of A. For 

the two-point space, Inn(A) ~ U(1) x U(1), which acts on¢ via the U(1) transformations 

given by the homomorphism U(1) x U(1) -7 U(1) : (g, h) -7 gh-1 . The inner automorph­

isms are analogous to the diffeomorphisms of general relativity. They are often referred 

to as internal diffeomorphisms. 

Varying the action, the equations of motion are simply 

¢ = 0, ¢ = 0. (4.12) 

Using Connes' distance formula (2.20), the distance between the two points is 

(4.13) 

where mp is the Planck mass. So, classically, the metric structure D vanishes and the 

distance is infinite. 

Now, we quantise by doing path integrals over¢ and¢, the degrees of freedom of D. The 

partition function is thus 

(4.14) 
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Since the action has a U(l) symmetry, we shall employ some gauge-fixing. This involves 

nothing more than switching to polar coordinates (r, e), and dropping the irrelevant (} 

integration. Note: as the number of gauge degrees of freedom is finite, gauge-fixing is 

not strictly necessary (the (} integration does not give an infinite contribution). After 

integrating out gauge equivalent Dirac operators, the partition function reduces to 

Joo ( 2¢2) m2 
Z = d¢¢exp - m~ = -f, 

0 

(4.15) 

where ¢ is now used to denote the positive real field 1¢1. 

Expectation values are calculated in the usual fashion. For example, 

(¢) = 1 /

00 

2 ( 2¢
2

) ~ - d¢¢ exp -- = --m z m2 4 P' 
0 p 

(4.16) 

(d(L, R)) (4.17) 

Here, we see that in the vacuum state, ¢has acquired a v.e.v., and the distance has become 

finite. Though, the classical distance relation ( 4.13) no longer holds. 

In general, 

ld¢¢nexp e:.;) ~ ~r (":!) (:;;f' 
0 

(4.18) 

Thus, the Greens functions are 

(4.19) 

In particular, the propagator functions can be expressed as 

(4.20) 

for n E Z. These reproduce the usual propagator combinatorics (i.e. Wick contractions) 

for a complex scalar field. 

In an excited state, the distance d(L, R) is given by its expectation value in a background 

of propagators. So, for the Nth particle state, 

1 N N 
(d(L, R))N = ZN (¢ d(L, R)¢ ), (4.21) 
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where ZN := ((qxP)N). This evaluates to 

(4.22) 

The distance thus gets successively smaller as the number of gravitons (Higgs particles) 

is increased. Using Stirling's formula, we find that the distance shrinks to zero in the 

N --+ oo limit, and so the two points merge into one. The metric D correspondingly 

becomes infinite, since the description of the geometry as two points is no longer valid. 

This resembles the behaviour of a high curvature limit, i.e. gravitational collapse to a black 

hole. 

The spectral action can be supplemented with the fermionic term 

(4.23) 

which is invariant under the full U(l) x U(l) symmetry. Note that this is purely an 

interaction term-the fermions are fixed at the points and do not propagate. Quantising 

as before, we write down the partition function, 

(4.24) 

Remember that the Hilbert space is complex, and not Grassmann, so 

(4.25) 

This makes the v.e.v. (d(L, R)) ill-defined, while both (¢) and the propagator (¢¢) will be 

zero. For the excited states (N 2: 1), the expectation values continue to be well-behaved. 

The effect of the fermions is to shield out the gravitational field, by lowering the states 

by one. If we were to take the tensor product of the Hilbert space with a spinor Hilbert 

space L2 (spin(M)), then the fermions would enhance the gravitational field, by raising the 

states. 

Note: for a generic finite noncommutative geometry, the fermion contribution will be 

( det D)-k where k is the number of fermion generations fixed by the Hilbert space. 
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4.3.3 Matrix geometries and gauge gravity 

Next, we look at the quantisation of the simplest matrix geometry, M2(C). Its spectral 

triple is 

A M,(C) = { f = ( ~: h ) } ' 
·-

!4 
1{ ·- M2(C), (4.26) 

D ~ (A, A, ) ·-
It - -AI , A2 

where D is an SU(2) gauge field, with A1 real and A2 complex. This is a reduction of 

the even spectral triple obtained by tensoring the representation with the Clifford algebra 

A' ·- A, 

1i' ·- 1i EB 1i with !' := f ® :0:2, 

D'- D®(~ ~), ( 4.27) 

r' := :0:2 ® diag(l, -1). 

Moreover, this itself is the point-reduction of the real spectral triple with A" := c= (IR.2) ® 

A, 1{" := L2(spin(ffi.2)) ® 1{ and D" := -i1~-'(8J.L + iAJ.L). The C*-algebra M2(C) can be 

thought of as being that of the fuzzy sphere §fn=l) [33], which only has the north and 

south poles as distinguishable points. 

The spectral action evaluates to 

(4.28) 

which is invariant under SU(2) gauge transformations. Like the two-point space, the inner 

automorphisms Inn(A) 3:! U(2) act on D via a homomorphism, U(2) --t SU(2). The 

homomorphism removes the trivial U(l) factor that commutes with D. 

As before, we shall quantise by first gauge-fixing the action. This is most easily accom­

plished by changing to spherical polar coordinates. So, after dropping irrevelant factors, 
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the partition function reads 

00 2 ~ 

I 2 ( 2¢ ) v 27T 3 
Z = d¢¢ exp - m~ = 16mP, 

0 

(4.29) 

where ¢ := J A12 + IA2I 2. Effectively, we have chosen a gauge-fixing condition such that 

D=~(o ¢)· 
It ¢ 0 

(4.30) 

This gauge can be obtained from any other by performing an SU(2) gauge transformation 

(4.31) 

with 

(4.32) 

The Greens functions for ¢are 

(4.33) 

As one would expect, they reflect the combinatorics of a field that can propagate through 

either a real mode (A1 ---+AI) or a complex one (A2 ---+ A2). 

The distance between the poles of the fuzzy sphere, 

d(1,4) = sup{I!I- !41: II[D,JJII ~ 1}, (4.34) 
/EA 

is not as straightforward to calculate as the distance between the points of the two-point 

space. Evaluating the condition II[D,JJII ~ 1 gives 

1t { I(!I - !4) + (h- h) I . . . 
"'¢ 2: I(!I _ !

4
) _ (h _ h)l dependmg on wluch 1s larger. (4.35) 

This can be simplified by expressing it in terms of "distances" and phases, 

It ld ia d i~l ¢ 2: 14 e ± 23 e , (4.36) 

where d14 eia := (!I - !4) and d23 ei~ := (h -h). Squaring up both sides, it is then easy 

to determine the larger lower bound, 

ft2 
¢2 > d142 ± 2d14d23 cos( a- (3) + d232 

> d142 + 2d14d23l cos( a- /3)1 + d232. (4.37) 

37 



Hence, the upper bound on d14 is 

( 4.38) 

Taking the supremum, the distance is therefore 

n m 
d(1, 4) = ¢ = -ftp. ( 4.39) 

Similarly, we also find 
n mp 

d(2, 3) = ¢ = ---;rlp. ( 4.40) 

(We should clarify that there are no states (·1P2I f l'l/12) = h and ('l/131 f l'l/13) = h, but there 

are two (pure) states l'l/12) and l'l/13) such that I ('l/121 f l'l/12)- ('l/131 f l'l/13) I = 1!2- hi.) 

The expectation value of the distances, in the Nth particle state, is 

(d) = r(N + 1) V2z 
N f(N + ~) p· 

(4.41) 

Just like the two-point space, the distances shrink to zero in the N--+ oo limit. However, 

the nature of this collapse is rather different. The K-groups of the fuzzy sphere do not 

change as it collapses to a point, indeed K.(M2(C)) ~ K*(C). Whereas this is not the 

case for the two-point space, for which K*(C EB C) ~ K*(C) EB K*(C) ~ K*(C). So, the 

collapse of the fuzzy sphere involves a change in commutativity, rather than topology. 

From a K-theory perspective, the fuzzy sphere is more like a (noncommutative) point than 

a sphere. It is referred to as a sphere because of its SU(2) symmetry. In fact, the space of 

pure states of M2(C) is a 2-sphere. Incidentally, the K-groups of a 2-sphere are actually 

isomorphic to those of the two-point space. 

The fermion action for the fuzzy sphere is 

sF ·- trwtDw 

7Jjl A1 'l/11 + 7Jj2A1 'l/12 - 7Jj3A1 'l/13 - 7Jj4A1 'l/14 

+ 7Jjl A2'03 + 7Jj3A2'l/11 + 7Jj2A2'l/14 + 'l/14A2'l/12. ( 4.42) 

It contains twice as many fermions as ( 4.23) due to the larger Hilbert space. The contri­

bution to the partition function will thus be (detD)-2 = ¢-4 . This will have the effect of 

lowering the states by two. 
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4.3.4 Comparison with Rovelli's canonical quantisation 

We can try to compare our path integral approach with Rovelli's canonical approach (see 

[41] for details). In his example, the spectral action is modified to obtain non-trivial 

equations of motion. The action he uses is 

1 -
S ·- 2trDMD 

2~ ( m1m1 + e-iO m1m2 + eiO m2m1 + m2m2). 

But, this can be factorised as 

2~ ( ml + eiO m2) ( ml + e-iO m2) 

JmJ2 
2G' 

(4.43) 

( 4.44) 

where m := m1 + e-iO m2. Thus, we actually end up with a much simpler action and set 

of equations of motion. Canonical quantisation in this variable is a very different problem 

from the one considered by Rovelli. 

Physically, the interaction terms in ( 4.43) allow the particles m1 and m2 to spontaneously 

change into one another. This is like a mixing term, so m1 and m2 will not make good 

eigenstates. As we have seen in (4.44), the linear combination given by m will make a 

good eigenstate. 

Although the action ( 4.43) is not spectral per se, we can in fact still quantise it with our 

path integral approach. We begin by rewriting the action in terms of an effective Dirac 

operator, D', so it is spectral: 

1 - 1 1 
S = - tr D MD = - tr Dt pt P D = - tr D't D' 

2 2 2G 
(4.45) 

Solving pt P = M gives 

P=-' r: e-iO 

~} e-iO 
..f2G 

0 0 

(4.46) 

thus 

D' = vfcP D = -
1 

( ~ 0 

:) 0 J2 
0 0 

(4.47) 
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Further, a self-adjoint operator D" can be constructed by 

(4.48) 

since D' is nilpotent. The degrees of freedom of D" are m and m, just as we have proposed. 

Quantising this, we end up with path integrals equivalent to those for the two-point space. 

The problem with trying to canonically quantise spectral actions for finite noncommutative 

geometries is they have no phase space as such. This could be taken to mean that they 

simply cannot be quantised, but we have shown otherwise using path integrals. Perhaps 

some generalisation of phase space is needed (like tangent groupoids, see [44, sec. 6]), or 

maybe the path integral approach is just more fundamental. 

4.3.5 Path integral quantisation of Rovelli's geometry 

Having quantised Rovelli's modified spectral action (4.43) using path integrals, we shall 

now do the same for the un-modified spectral action 

( 4.49) 

where 

D:~~u ~ :: J. (4.50) 

Unlike the geometries we have used in our examples, the geometry used by Rovelli does 

satisfy all the axioms for a real spectral triple. The eigenvalues and eigenvectors of D + 
JDJ-1 are 

(4.51) 

±vi<P1I2 
+ I<P2I2 <P1 ) 

±vi<P1I2 + I<P2I2 <P2 , 

l¢112 + l¢212 
(4.52) 
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so 

(4.53) 

This has a U(2) symmetry under the Inn(A) ~ U(2) x U(1) gauge transformations 

(4.54) 

An overall factor of U(1) acts trivally because it commutes with D. 

Quantising the action, we get the gauge-fixed partition function 

00 

z = Jd¢> ¢>3 exp (- 8¢>2) = m~ 
m~ 128' 

0 

(4.55) 

where¢>:= Jlc/>1l 2 + lc/>2l 2. From this, we find the Greens functions to be 

( 4.56) 

For the distance used in [41, eqn. 22], 

( 4.57) 

the expectation values are 
r(N + ~) 

(d)N = r(N + 2) VSlp. ( 4.58) 

4.3.6 Spectral integrals 

A proposal for a path integral approach is also put forward in [41]. It suggests that 

the integration measure should be given by the eigenvalues of the Dirac operator. This 

complements the spectral invariance of the spectral action. We shall refer to such path 

integrals as spectral integrals. 

Spectral integrals differ from our path integrals in the way they integrate over the space of 

Dirac operators. The starting point for both is the space of self-adjoint operators, which 

can be partitioned into unitary equivalence classes. In our approach, we quotient out all 

those operators that have a non-zero trace, to leave only traceless self-adjoint operators. 

We then remove any degrees of freedom belonging to the center of the C* -algebra A. 

This has the effect of reducing the unitary equivalence classes down to Inn( A) equivalence 
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classes. The space we are left with is the space of Dirac operators that we integrate 

over. We use gauge-fixing to perform the integration, so path integrals separate into a 

contribution from the gauge orbits and an integral along a section. 

In contrast, spectral integrals just integrate over the orbit space of the unitary group 

action on the space of self-adjoint operators. The orbit space has the operator eigenvalues 

as cartesian coordinates, so there is no dependence on Inn(A). (To be precise, one should 

order the eigenvalues, AI < A2 < ... < An, or include a symmetry factor in the integrals.) 

This means that different finite geometries with representations of the same dimension 

will have the same spectral integrals. 

As a case in point, take the two-point space and the matrix geometry M2(C). Both have 

two-dimensional representations and so two Dirac operator eigenvalues. Their spectral 

integrals will therefore be identical, making it impossible to distinguish between the two 

geometries using expectation values alone. For example, both geometries have the distance 

v.e.v. 

1 J J2l~ ( A12 + A22
) (d)= z dA1 dA2 VA12 + A22 exp - l~ = yl2; lp. (4.59) 

It should be remembered that spectral integrals are, so far, just an idea, and we have 

interpreted it literally. An obvious refinement that could be made is to impose a traceless 

condition on the eigenvalues. 

4.3. 7 Spectral gravity on a circle 

So far, we have only quantised the spectral action on simple finite noncommutative geo­

metries. These provide nice toy models, but are far from being physically realistic. To 

obtain more interesting models, we shall try quantising some Riemannian manifolds. We 

will begin with a circle. 

The real spectral triple for a circle is given by 

A ·- coo(§l), 

1i ·- £2(§1), 

D 
d 

·-
- e( B) dB' 

J ·- 10-, 
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where B E [0, 21f] and e(B) is a function with period 27f. Usually, one fixes e(B) to be 1, 

but we are interested in having a dynamical metric. Note, varying the metric alters the 

Hochschild 1-cycle represented by r. Under the action of an inner automorphism, the 

Dirac operator transforms trivially, D ---+ uluJ-1 DJuJ-1u =D. 

To evaluate the spectral action, we need to calculate the eigenvalues of the Dirac operator. 

i d'lj; 
-----

e(B) dB 

The periodicity of e( B) implies 

d'lj; 

'lj; 

'lj; 

i>.e( B) dB 

A exp ( i>. lao e( B') dB') . 

r0+2n r2n 
>. Jo e(B') dB'=>. Jo e(B') dB'= 2n7f. ( 4.60) 

The quantity J0
2

n e( B) dB is just the circumference L of the circle ( e 

eigenvalues are 

y'g). So, the 

2n7f 
An[e] = L[e]. ( 4.61) 

As there are an infinite number of eigenvalues, we need to insert a cutoff function x into 

the spectral action: 

where 

Evaluating it gives 

S[e] 

1 2 S[e] := G Tr x(D ), 

{ 

L-2 
x(u) := ; 

lui ::; lp2' 

lui 2: lp2. 

.!M 
2 00 2 27rlp 

c I:x(>.~) = G L Lr;2 
n=1 n=1 

n n 12n 
-l L[e] = -l e(B) dB. 
1fp 1fp 0 

We have ignored the zero mode, which just give a constant contribution (of n). 

Alternatively, we can evaluate the spectral action using the heat kernel expansion, 

00 

S[e] = n L l;- 1 fn an(D2
), 

n=O 
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(4.63) 

(4.64) 

(4.65) 

( 4.66) 



where 
1 r)CJ - !!.±l 

fn = r (l;n) lo u 2 x(u) du. 

The Seeley-DeWitt coefficients for a circle are 

2 1 2 ao(B, D ) = ;-:L' an>o(B, D ) = 0. 
y47r 

Thus, we need only evaluate fo, 

fo 

Hence, 

S[e] = _l!!_ {21r e(B) dB= !!_ {
2

1[ e(B) dB. 
fi lp Jo V41f 1rlp Jo 

(4.67) 

(4.68) 

(4.69) 

(4.70) 

( 4. 71) 

The action consists solely of a cosmological constant term. It can be removed by replacing 

x with 

x(u) := x(u)- EX(E
2u), E « 1. (4.72) 

But, this is undesirable as we want a non-zero action. We can expand e( B) as a Fourier 

series, 

The action then becomes 

S[e] 

e(B) = L ep eipB. 

p 

( 4. 73) 

(4.74) 

Therefore, we need only consider functions of the form e( B) = R. This is not too surprising 

as the circumference L of a circle is completely determined by its radius R (L = 21r R). So, 

much like finite noncommutative geometries, the circle only has a finite number of degrees 

of freedom. The equations of motion are simply 

(4.75) 
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This differs from finite noncommutative geometries, which have dynamics corresponding 

to infinite distances. 

Applying our quantisation procedure, the partition function is 

( 4. 76) 

So, the Greens functions are given by 

( 4. 77) 

From these,· we get the propagators, 

( 4. 78) 

They have unusual combinatorics due to the action being linear in R. They are not so 

much propagators as they are sets of an even number of vertices. 

The distance between two points e1 and e2 is 

d(el, e2) = sup{lf(ei)- j(e2)1 : I ddf I ::; R} = jel - e2jR. 
JEA e ( 4. 79) 

Classically, d(e1 , e2) = 0. Their distance v.e.v. evaluates to 

(4.80) 

As distance depends linearly on R, the classical distance relation ( 4. 79) still holds for 

v.e.v.s, 

(4.81) 

In the Nth particle state, 

(4.82) 

where 
oo (l ) 2N+l 

ZN := Ia dRR2N e-2R/lp = (2N)! ; ( 4.83) 

Thus, the distance between any two points grows with the number of gravitons-gravity 

acts repulsively. This is the type of behaviour one would expect from a cosmological 

constant. To obtain actions with local degrees of freedom, it is necessary to consider 

manifolds with four or more dimensions. 
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4.3.8 Riemannian manifolds 

We now outline how our approach might work for less trivial Riemannian manifolds. The 

Dirac operator for a Riemannian manifold is 

D ,_ · a J.L( ) ( [) 1 ( ) b c) .- -1")' ea X OXJ.l + 4WbcJ.L X ")' ")' , ( 4.84) 

where e~ is the vierbein and w~b is the spin connection. (Note: Tr D = 0, as each term 

contains an odd number of gamma matrices.) As shown in section 3.6, the spectral action 

yields the Einstein-Hilbert action (ignoring higher order terms). 

Usually, the metric, gJ.Lv, is considered as the dynamical field and hence gives the measure 

for path integrals. In our approach, the vierbein and spin connection would be used 

instead, these being the degrees of freedom of the Dirac operator. This resembles the 

conventional connection-based way of quantising Yang-Mills theories. So, one might hope 

that this will make things more tractable. 

We can go further. Let us now use a Dirac operator with a self-dual spin connection 

A~b· Since we work in an Euclidean signature, A~b is real as A~b = ~Eab cdA~ (it is 

complex in a Lorentzian signature). Applying this constraint to the spectral action will 

give the Einstein-Hilbert action with a self-dual curvature. This is essentially the Ashtekar 

formulation of general relativity. 

The canonical quantisation, with respect to the spin connection, proceeds by performing a 

3 + 1 ADM decomposition. From this, the conjugate momentum, 1r~b' can be determined. 

It is self-dual and related to the vierbein. Making use of the self-duality, one can define 

the variables 

A i ·= AOi _,.J.L ·- _,.I' 
J.L · J.L' "i .- "Oi> ( 4.85) 

where i = 1, 2, 3 is a space index. Their Poisson bracket is 

( 4.86) 

This is very much like the Yang-Mills situation, with i and j as the S0(3) group indices. 

There are also constraint equations, the most notorious of which, is the Hamiltonian 

constraint. The quantisation of the constraints is dealt with by using loop representations 

[16]. This is the origin of loop quantum gravity. 
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The path integral quantisation is related to spin foams. It is possible to write the Einstein­

Hilbert action in the form of a BF theory, 

( 4.87) 

where F~i is the self-dual curvature, and B~~ = e~e'b is a constraint. Path integrals over 

the spin connection and vierbein then resemble the quantisation of BF theory. To make 

the path integrals well-defined, they can be discretised by triangulating the manifold. In 

BF theory, this gives rise to the concept of spin foams [2], the spin network equivalent of 

Feynman diagrams. 
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Chapter 5 

Homological Aspects of 

Noncommutative Geometry 

5.1 Noncommutative Topology 

The foundation of noncommutative topology is the Gelfand-Na1mark duality between 

the category LocCmpctHaus of locally compact Hausdorff spaces and the category 

CommC*-Alg of commutative C*-algebras. Every morphism in CommC*-Alg is dual 

to a morphism in LocCmpctHaus. For instance, a character Xx : Co(X) --7 <C is dual to 

a point x : pt --7 X, where pt is the one-point space. Note, <C is an initial object for the 

unital *-homomorphisms in CommC*-Alg, and pt is a terminal object for the continuous 

maps in LocCmpctHaus. 

The functor from CommC* -Alg to LocCmpctHaus is given by 

hom(-, C(pt)) =hom(-, <C). (5.1) 

It takes a C*-algebra Co(X) to its space of characters hom(Co(X), <C), which is isomorphic 

to X. Conversely, the inverse functor from LocCmpctHaus to CommC* -Alg is given 

by 

hom(-, U(<C)) =hom(-, JR2), (5.2) 

where hom( X, JR2) is the (underlying set of the) C* -algebra of functions from X --7 JR2 ~<C. 
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op K 

locally compact Gelfand- commutative abelian 
Hausdorff spaces Na1mark C* -algebras HC groups 

op 

LocCmpctHaus CommC*-Alg Ab 

Figure 5.1: Noncommutative topology. 

complex vector Serre- finite projective 
bundles Swan modules 

Vee( X) FinProjMod(C(X)) 

Figure 5.2: The Serre-Swan theorem. 

There is also an equivalence between CmpctHaus and the category CmpctRegLoc of 

compact regular locales. This can be interpreted as a Gelfand-Na1mark duality between 

CmpctRegLoc and the category of unital commutative C* -algebras. A locale is the 

lattice of open sets of a space (meets distribute over joins). The noncommutative gen­

eralisation of a locale is a quantale [37]. However, the category Qu of quantales is not 

equivalent to the category of unital C* -algebras [26]. But, there is a faithful functor Max 

from the category of unital C* -algebras to a subcategory of Qu. So at least in some sense, 

a noncommutative C* -algebra is the algebra of functions on the noncommutative space 

made up of the open sets of a quantale. 

The Serre-Swan theorem is another equivalence of categories; namely between the category 

of complex vector bundles over a compact Hausdorff space X and the category of finite 

projective modules over C(X). It is the justification for treating a finite projective module 

over a noncommutative C* -algebra as a noncommutative vector bundle. The concept of 

a noncommutative vector bundle is less ambiguous than that of a noncommutative space. 

A finite projective module is a noncommutative vector bundle, whereas a C* -algebra is 

only dual to a noncommutative space. 

Finite projective modules are an important source of topological invariants in noncommut-

ative geometry. They are the subject of K-theory-a cohomology theory for C* -algebras. 
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Equally important is cyclic homology j cohomology. Before embarking on a tour of the 

various homology and cohomology theories for C* -algebras, or their pre-C* -algebras, we 

shall first outline homology theory in general. 

5.2 Homology and Cohomology 

Homology and cohomology theories are essentially functors from some category of interest 

to Ab. Homology functors are covariant, while cohomology functors are contravariant. 

They are generally constructed in two stages. The first stage is to find a functor from 

the category of interest to an abelian category of simplicial objects. A common way of 

creating a simplicial object is to build a comonad from a pair of adjoint functors. The 

adjoint functors are usually a free construction and its forgetful functor. 

The second stage is to use the standard techniques of homological algebra [46] to obtain 

a series of functors from the abelian category of simplicial objects to Ab. Each of these 

functors gives rise to a homology or cohomology group. The homology functors map an 

abelian simplicial object X to the abelian simplicial object X 0 A, where A is a constant 

abelian simplicial object (the coefficient object), and then take the homology of the associ­

ated chain complex. Similarly, the cohomology functors map an abelian simplicial object 

X to the abelian cosimplicial object Hom( X, A), and then take the cohomology of the 

associated cochain complex. 

This is all formalised by the concept of derived functors. The homology functors are the 

derived functors Torn(X, A) (torsion products) of X 0 A, and the cohomology functors 

are the derived functors Extn(X, A) (group extensions) of Hom( X, A). In particular, 

Tor0 (X, A) = X 0 A and Ext0 (X, A) = Hom( X, A). Note, 0 and Hom are adjoint 

functors, hom( A 0 B, C)~ hom( A, Hom(B, C)). 
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Figure 5.3: Homological algebra. 

5.2.1 The simplicial category 

The simplicial category ~ is defined as the small category whose objects are the totally 

ordered finite sets 

[nJ = {0 < 1 < 2 < ... < n}, n ~ 0, (5.3) 

and whose morphisms are monotonic non-decreasing (order-preserving) maps. It is gen­

erated by two families of morphisms: 

Jf [n- lJ --+ [nJ is the injection missing i E [n], 

af [n + lJ --+ [nJ is the surjection such that af(i) = af(i + 1) = i E [nJ. 

The <5f morphisms are called face maps, and the af morphisms are called degeneracy maps. 

They satisfy the following relations, 

J~+l Jn 
J t fori< j, 

an-1 an 
J t for i ::; j, 

[ 

<5f aj~l if i < j, 

idn if i = j or i = j + 1, 

15n an- 1 if i > ). + 1. t-1 J 

All morphisms [nJ --+ [OJ factor through a8, so [OJ is terminal. 

There is a bifunctor + : ~ x ~ --+ ~ defined by 

[mJ+[nJ [m+n+l], 

{ 

f(i) 

g ( i - m - 1) + m' + 1 
(f+g)(i) 

if 0 ::; i ::; m, 

if m < i ::; ( m + n + 1), 
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where f : [mJ --+ [m'J and g : [nJ --+ [n'J. Sometimes, the simplicial category is defined to 

include the empty set [ -1J = 0, which provides an initial object for the category. We will 

denote this category by 1:1°. This makes 1:1° a strict monoidal category as 0 is a unit for 

the bifunctor: 0 + [nJ = [nJ = [nJ + 0 and id0 + f = f = f + id0. Further, 1:1° is actually 

the free monoidal category on a monoid object (the monoid object being [0], with product 

a8 : [OJ +[OJ --+ [0]). 

Example 5.2.1 (Morphisms in 1:1) 

Here are some examples of morphisms in the simplicial category: 

(0, 1, 2, 3)--+ (0, 2, 3, 4), 

(0, 1, 2, 3, 4, 5)--+ (0, 1, 2, 2, 3, 4), 

(0, 1, 2)--+ (2, 3, 4), 

(0, 1, 2, 3)--+ (0, 1, 1, 1), 

(0, 1, 2, 3, 4)--+ (0, 1, 3, 4, 4). 

(Composition is performed from right-to-left.) 

Definition 5.2.1. A simplicial object in a category C is a contravariant functor from 1:1 

to C. Such a functor X is uniquely specified by the morphisms X(of) : [nJ --+ [n- 1J and 

X(ai) : [nJ --+ [n + 1], which satisfy 

X(of-1
) X(oj) X(o1j:~l) X(oi) fori< j, (5.9) 

X(af+1
) X(aj) X(aj:l) X(ai) for i :::; j, (5.10) I x(a;~n X(Ofl if i < j, 

X(of+l) X(aj) idn if i = j or i = j + 1, (5.11) 

X(aj- 1
) X(or-_ 1) if i > j + 1. 

In particular, a simplicial set is a simplicial object in Set. Equivalently, one could say 

that a simplicial set is a presheaf on /:1. The object X ( [n]) of a simplicial set is a set of 

n-simplices, and is called the n-skeleton. 

Definition 5.2.2. An augmented simplicial object in a category C is a contravariant 

functor from 1:1° to C. 
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Any augmented simplicial object is of course also a simplicial object by composition with 

the inclusion functor ~ '---+ ~0 . A monoid object in a strict monoidal category B determ­

ines a functor ~0 ~ B. This in turn determines a functor (~0)op ~ B 0 P and hence an 

augmented simplicial object in B0 P. In other words, a comonoid object in Bop determines 

a simplicial object in B 0 P. 

The nerve of a category Cis the simplicial set hom(i(- ), C), where i : ~ ~ Cat is the 

inclusion functor that takes each ordered set [n] to the pre-order n + 1. The pre-order 

n is the category consisting of n partially-ordered objects, with one morphism a ~ b iff 

a ::; b. A functor between two categories induces a natural transformation between their 
CJ.OP nerves. So, the nerve defines a functor Cat ~ Set . 

Geometric realisation is a functor I - I : SettJ.OP ~ Top. Composed together with the 

nerve, it gives a functor B : Cat ~Top, which associates to each category C its classifying 

space BC. 

Example 5.2.2 (Classifying space of a discrete group) 

The nerve of a discrete group G is the simplicial set S with objects 

and with morphims 

S([O]) 

S([1]) 

S([2]) 

S([n]) 

S(oi)(gl,· .. ,gn) 

{1}, 

{g1} = G, 

{(gl> g2)} = G x G, 

( 

(g2, · · ·, gn) if i = 0, 

(gl, ... ,gigi+l>· .. ,gn) ifO < i < n, 

(gl, · · ·, gn_I) if i = n, 

S(a;,')(gl,···,gn) = (gl, ... ,gi,1,gi+l 1 ···,gn)· 

The classifying space BG is the Eilenberg-Mac Lane space K(G, 1), that is, a connected 

space such that 1r1 (BG) = G and 7rn(BG) = 0 for n =f. 1. In particular, BZ = K(Z, 1) = § 1 

and BU(1) = K(Z, 2) = cp=. 
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5.2.2 Chain complexes and homology groups 

A simplicial object X : ~op -+ A in an abelian category A determines a chain complex 

([n], an) where 
n 

an:= L) -1)iX(Jf) : [n]-+ [n- 1]. (5.12) 
i=O 

Definition 5.2.3. A chain complex (en, an) is a sequence of abelian groups orR-modules 

Cn and boundary morphisms an : en -+ en-1 such that an-1 an = 0. The elements of en 

are called n-chains. 

The homology groups of a chain complex (en, an) are defined by 

(5.13) 

where Zn(en,an) := Keran is the group of n-cycles and Bn(en,an) :== Iman+1 is the 

group of n-boundaries. Put simply, 

H _ n-cycles 
n- n-boundaries' 

with boundaries c cycles c chains. 

(5.14) 

Dually, a cosimplicial object X : ~ -+ A in an abelian category A determines a cochain 

complex ([n], Jn) where 

n 

Jn := 2) -1)iX(Jf) : [n]-+ [n + 1]. (5.15) 
i=O 

Definition 5.2.4. A cochain complex (en, Jn) is a sequence of abelian groups or R­

modules en and coboundary morphisms Jn : en -+ en+l such that Jn+lJn = 0. The 

elements of en are called n-cochains. 

The cohomology groups of a co chain complex (en, Jn) are defined by 

Hn(en Jn) := zn(en' Jn) 
' Bn(en, Jn)' 

(5.16) 

where zn(en,Jn) := KerJn is the group of n-cocycles and Bn(en,Jn) := ImJn-l is the 

group of n-coboundaries. 

The hom-bifunctor can be used to turn a simplicial object into a cosimplicial object, or 

vice versa, by hom( X(-), a) for a fixed object a. Two particular examples of homology 

are singular homology and group homology. We outline their constructions below. 
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5.2.3 Singular homology 

Each ordered set [n] in 6.. can be considered as a standard n-simplex. This defines an 

inclusion functor i : 6.. ---+ Top. The hom-bifunctor on Top then gives a simplicial set 

hom( i(-), X) for a topological space X. The simplicial set functor X ---+ hom( i(-), X) : 

Top ---+ Setb.OP is the right adjoint of geometric realisation. Composition with the free 

construction functor Fz : Set ---+ Ab creates a simplicial abelian group. This gives a 

functor Top ---+ Abb.OP. The homology and cohomology of X, with coefficients in an 

abelian group A, is then given by 

Hn(X, A) ·- Torn(S(X), A), 

Hn(X, A) ·- Extn(S(X), A), 

(5.17) 

(5.18) 

where S(X) is the simplicial abelian group Fz(hom(i(- ), X)). The coefficient group A is to 

be understood as the constant simplicial abelian group A([n]) =A. Singular cohomology 

can also be expressed in terms of homotopy classes, 

Hn(X, A):= [X, K(A, n)], (5.19) 

where K(A, n) is an Eilenberg-Mac Lane space. 

Theorem 5.2.1 (de Rham's theorem) 

The singular cohoriwlogy groups Hn(X, IR) are isomorphic to the de Rham cohomology 

groups HJR(X). 

5.2.4 Group homology 

Every group G gives a comonad Lc := ZG@ U(-) in ZG-Mod via the adjoint functors 

U : ZG-Mod ---+ Ab and ZG@- : Ab ---+ ZG-Mod. So, every ZG-module M determines 

a simplicial module SL0 (M) : 6..0 P---+ ZG-Mod. Consider the simplicial module given by 

M = Z, the trivial ZG-module, for a group G. Then, the homology and cohomology of 

G, with coefficients in a ZG-module A, is given by 

Hn(G, A) ·- Torn(SL0 (Z), A), 

Hn(G, A) ·- Extn(SL
0

(Z), A), 
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where SLa('Z) is the simplicial ZG-module SLa(Z)([n]) = £~+ 1 (1:), and A is the con­

stant simplicial ZG-module A([n]) = A. There is an isomorphism between group homo­

logy I cohomology and singular homology I cohomology, 

Hn(G, A) ~ Hn(BG, A), 

Hn(G,A) ~ Hn(BG,A). 

5.3 Homotopy Theory 

(5.22) 

(5.23) 

Homotopy theory is concerned with the deformation of maps between topological spaces. 

Definition 5.3.1. A homotopy between two maps J, g : X -+ Y is a continuous map 

F: X x [0, 1]-+ Y such that F0 = f and F1 = g, where Ft(x) := F(x, t) E Y. 

Homotopies are a very general type of map. The homotopy groups of a (pointed) topolo­

gical space X are defined by 

(5.24) 

where [X, Y] denotes the set of homotopy classes of maps from X toY. (The cohomotopy 

groups are defined by 1rn(X) := [X, §n].) From the perspective of category theory, there 

is a fundamental n-groupoid functor 1r n from the category of pointed topological spaces to 

the category of n-groupoids. Its right adjoint is the classifying space functor (the category 

of groupoids is a full subcategory of Cat). 

Using the Gelfand-Na1mark duality, homotopy theory can be translated to the C* -algebraic 

setting. 

Definition 5.3.2. A homotopy between two *-homomorphisms 7], ¢ : A -+ B is a *­

homomorphism 7/J: A-+ C([O, 1], B)= C([O, 1]) 0 B such that 7/Jo = 1J and 1/J1 =¢,where 

1/Jt(a) := (1/J(a))(t) E B. 

Cannes has suggested [10, sec. II.A] the following generalisation of the homotopy groups 

for a unital C* -algebra A, 

(5.25) 

where [A, B]n is the set of homotopy classes of unital *-homomorphisms from A to B. 
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S-R-bimodule0R-

R-modules S-modules 

R-S-bimodule 0s-

R-Mod S-Mod 

Figure 5.4: Morita equivalence of rings. 

5.4 Morita Equivalence 

When working with any type of noncommutative ring, it is hard to avoid the notion 

of Morita equivalence. Essentially, two rings are Morita equivalent if their categories of 

representations are equivalent. In the context of noncommutative topology, it provides the 

means of comparing noncommutative spaces "up to noncommutativity". The topology of a 

noncommutative space should clearly not depend on the commutativity of its coordinates. 

So, topological invariants should be Morita invariant. 

Definition 5.4.1. Two rings RandS are said to be Morita equivalent if there is an R-S­

bimodule P and an S-R-bimodule Q such that P®sQ ~Rand Q0RP ~ S as bimodules. 

A representation of R is an R-module (or equivalently an R-Z-bimodule). The bimodule 

P defines a functor P @s- : S-Mod -+ R-Mod from the representation category of S 

to the representation category of R. Similarly, Q 0R- : R-Mod-+ S-Mod is a functor 

from the representation category of R to the representation category of S. This gives an 

equivalence of categories since P @s Q 0R- ~ R 0R- and Q 0R P @s- ~ S @s- are 

naturally isomorphic to identity functors. 

Morita equivalence has a natural interpretation as the notion of equivalence in the weak 

2-category Bimod with rings as objects, bimodules as morphisms and bimodule homo­

morphisms as 2-morphisms [29]. An R-S-bimodule is a morphism from S toR and com­

position is given by the bimodule tensor product. A morphism P : S -+ R which is 

invertible up to 2-isomorphism is exactly a Morita equivalence. 

Note, an R-S-bimodule can also be thought of as a generalised homomorphism from R to 

S. Since, a homomorphism p: R-+ S determines an R-S-bimodule given by S as a right 

S-module with left R-action rs := p(r)s, T E R, s E S. The composition of (generalised) 
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Hilbert B-A-bimodule0A- Hilbert 
A -<C-bimod ules Hilbert B-<C-bimodules 

A-B-bimodule0s-

Rep(A) Rep(B) 

Figure 5.5: Strong Morita equivalence of C* -algebras. 

homomorphisms is the opposite tensor product of bimodules. In other words, there is a 

contravariant functor from Rng to Bimod. 

For C* -algebras, there is the more refined notion of strong Morita equivalence. It is Morita 

equivalence using Hilbert bimodules. 

Definition 5.4.2. A Hilbert module (or C* -module) over A is a right A-module£ equipped 

with an A-valued inner product (~, -) : £ x £ --+ A. The norm of an element v E £is 

defined by llvll := vll(v,v)ll. 

Example 5.4.1 (Common Hilbert modules) 

A Hilbert <C-module is just a Hilbert space. Any C* -algebra A is a Hilbert A-module with 

inner product (a, b) := a*b for all a, bE A. The direct sum An = A EB ... EB A of n copies 

of A is a Hilbert A-module with module action (a1, ... , an)b = (a1b, ... , anb) and inner 

product ((a1, ... , an), (b1, ... , bn)) = 2::~1 aibi, for all ai, b, bi EA. 

Definition 5.4.3. A Hilbert A-B-bimodule is a Hilbert module£ over B together with a 

*-homomorphism 1r from A to End(£). 

Definition 5.4.4. Two C*-algebras A and Bare said to be strongly Morita equivalent if 

there is a Hilbert A-B-bimodule £ and a Hilbert B-A-bimodule :F such that £ 0B :F ~A 

and :F 0A £ ~ B as Hilbert bimodules. A representation of A is a *-homomorphism 

7r : A --+ lffi(H) for a Hilbert space H. This is exactly the same thing as a Hilbert A-<C­

bimodule. The Hilbert bimodules £ and :F define an equivalence of categories between the 

representation categories Rep(A) and Rep(B). If X is a Hilbert A-<C-bimodule, then the 

inner product on the Hilbert B-<C-bimodule Y := :F 0A X is given by (!' 0 x', f 0 x)y := 

((f,J')Fx',x)x. 
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Completely analogous to Bimod, there is a weak 2-category HilbBimod with C* -algebras 

as objects, Hilbert bimodules as morphisms and adjointable linear maps as 2-morphisms 

[29]. An equivalence of objects in HilbBimod is a strong Morita equivalence. 

Theorem 5.4.1 (Brown-Green-Rieffel) 

Two separable C* -algebras A and B are strongly Morita equivalent iff they are stably 

equivalent (A®][{~ B ® ][{). 

5.5 K-theory 

There are two distinct flavours of K-theory: topological (or operator) K-theory and algeb­

raic K-theory. The most relevant for noncommutative geometry is topological K-theory. 

Topological K-theory [45, 4] is a generalised cohomology theory on the category C*-Alg 

of separable C* -algebras. Its functors are covariant; that is, contravariant with respect 

to topological spaces (by composition with the Gelfand-Na1mark functor). It classifies 

noncommutative spaces (C*-algebras) by their vector bundles (finite projective modules). 

The functor underlying K-theory is the Grothendieck K-functor from the category of 

abelian semigroups to the category of abelian groups. It assigns to each abelian semigroup 

G, the smallest abelian group containing G. For example, K(N) = z. The K-theory groups 

are just the Grothendieck groups of vector bundles over spaces. 

The Ko functor is defined by 

Ko(A) := K([FinProjMod(A)]), (5.26) 

where A is a C* -algebra and [CJ denotes the set of isomorphism classes of objects in 

a category C (the decategorification of C). A finite projective (right) module pAn is 

completely determined by the projection p E Mn(A), for a fixed C*-algebra A. The direct 

sum pA11 EB qAm of two finite projective modules pAn and qAm induces an addition 

[p] + [q] := [p EB q] = [diag(p, q)] (5.27) 

of the homotopy/equivalence classes of the projections p and q. So, the elements of the 

group Ko(A) are the formal differences of the homotopy classes of the projections in 

Moo(A). 

59 



The K 1 functor is defined in terms of Ko by 

K1(A) := K 0 (SA), (5.28) 

where SA := A ® C0 (1R) is the suspension of A. Suspension is, obviously, a functor 

S: C*-Alg--+ C*-Alg. Since A® Co(IR) ~ {!: § 1 --+A I f(l) = 0}, it is often helpful to 

think of SA as an algebra of certain loops in A. The elements of the group K1 (A) are the 

formal differences of the homotopy classes of the unitaries/invertibles in M00 (A). Note, 

unitaries and invertibles are homotopically equivalent as every z E GL(A) is connected to 

u = zlzl-1 E U(A) by the homotopy t--+ zizi-t. 

Similarly, higher K-groups can be defined by repeated suspensions. It turns out, however, 

that 

K2(A) := K1(SA) ~ Ko(A), (5.29) 

so there are effectively only two K-groups. This is the Bott periodicity theorem. (Real 

K-theory has a period of 8 instead of 2.) 

Example 5.5.1 (K;(C), K;(Mn(C))) 

A projection in Mk(C) is given by Pj = diag(11j, 0, ... , 0) up to unitary equivalence. So, the 

abelian semigroup of projections in M 00 (C) is isomorphic to N U {0}. Hence, Ko(C) = Z. 

The unitary group Vk(C) is connected for all k > 0, hence K1(C) = 0. 

A projection in Mk(Mn(C)) is just a projection in Mkn(C), hence Ko(Mn(C)) = Z. The 

unitary group Vk(Mn(C)) is isomorphic to Vkn(C), hence Kl(Mn(C)) = 0. 

The main properties of K; are: 

K;(A EBB) 

K;(Mn(A)) 

K;(A ® JK) 

K;+2(A) 

There is also a cup product 

K;(A) (Morita invariance), 

K;(A) (stability), 

K;(A) (Bott periodicity). 
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A Ko(A) K1(A) Notes 

c z 0 point 

Mn(C) z 0 noncommutative point 

II{ z 0 

Co(JR2n) z 0 Co(JRk) ~ skc 

Co(JR2n+l) 0 z 

C('II'n) z2n-l z2n-l 

C(§2n) z2 0 C(§k) ~ Co(JRk) + C:[ 

C(§2n+l) z z 

Ao z2 z2 noncommutative torus 

Table 5.1: K-groups of some common C*-algebras [45]. 

Theorem 5.5.1 (Axiomatic K-theory) 

Let J{ be a continuous, stable, homotopy invariant, half-exact functor from C* -Alg to 

Ab. If K(C) = Z and K(SC) = 0, then K(A) ~ Ko(A) for A in a large subcategory of 

C*-Alg. If K(C) = 0 and K(SC) = Z, then K(A) ~ K1(A). 

5.5.1 Algebraic K-theory 

Algebraic K-theory gives invariants for rings, so is also applicable to C* -algebras [40]. The 

algebraic K~lg functor is identical to the topological K~op functor, but the same is not true 

for the higher algebraic K-functors. Indeed, there is no Bott periodicity in algebraic K­

theory. However, there is a natural transformation (the comparison map) K~lg --+ K;op, 

and both K-theories are isomorphic for stable C* -algebras. (Stability is essential for Bott 

periodicity in algebraic K-theory.) 

The algebraic K-groups are defined by 

(5.35) 

where GL : Rng --+ Grp is the functor that takes a ring R to its general linear group 

GL(R) (with the discrete topology). This compares with a similar definition for the 
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topological K-groups, 

(5.36) 

where GLtop : C*-Alg --+ Grp is the functor that takes a C*-algebra A to its topo­

logical general linear group GLtop(A). Equivalently, K~0P(A) := 7rn-1 (GLtop(A)), since 

1r n ( BG) = 1r n-1 (G) for any topological group G. 

5.6 K-homology 

K-homology is the dual homology theory of K-theory. Its functors are contravariant on 

the category of separable C*-algebras. Whereas K-theory classifies vector bundles, K­

homology classifies the elliptic pseudo-differential operators acting on the vector bundles. 

Abstract elliptic pseudo-differential operators are represented by Fredholm modules. 

Definition 5.6.1. An odd Fredholm module (1l, F) over a C*-algebra A is given by an 

involutive representation 1r of A on a Hilbert space 1l, together with an operator F on 1l 

such that F = F*, F 2 = :U: and [F, 1r(a)] E lK(1l) for all a EA. 

Definition 5.6.2. An even Fredholm module (1l, F, f) is given by an odd Fredholm mod­

ule (1l, F) together with a Z2-grading ron 1l, r = f*, r 2 = :U:, such that f1r(a) = 1r(a)r 

and rF =-Fr. 

Definition 5.6.3. A Fredholm module is called degenerate if [F, 1r(a)] = 0 for all a EA. 

Degenerate Fredholm modules are homotopic to the 0-module. 

The K-homology group K 0 (A) is defined as the abelian group of homotopy classes of even 

Fredholm modules over A, 

K 0 (A) := [(1l, F, f)]. (5.37) 

Addition is given by the direct summation of Fredholm modules. The inverse of an even 

Fredholm module (1l, F, f) is the even Fredholm module (1l, - F, -f). 

Just as with K-theory, higher K-homology groups can be defined by suspension, Kn(A) := 

K 0 (Sn A). As one would expect, Batt periodicity also holds forK-homology. The elements 
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of K 1(A) are the homotopy classes of odd Fredholm modules over A. Briefly, the relation 

to Brown-Douglas-Fillmore extension theory [6] is K 1(A) = Ext( A) := Ext( A, OC), for A 

nuclear. 

A non-degenerate even Fredholm module (1lk, Fk, rk) over C is given by 

The set of (homotopy classes of) all such Fredholm modules, their inverses and the 0-

module is isomorphic to Z. Hence, K 0 (C) = Z. All odd Fredholm modules over C are (up 

to homotopy) of the form (Ck, 1£k) with 1r(a) :=a 01£k. They are clearly degenerate, hence 

K 1 (C) = 0. 

A non-degenerate even Fredholm module (1ln,k, Fn,k. r n,k) over Mn(C) is given by 

1ln,k ·- 1lnk with 1fn,k(a) := 1fk(a), 

Thus, as with even Fredholm modules over C, K 0 (Mn(C)) = Z. All odd Fredholm modules 

over Mn(C) are (up to homotopy) of the form (Cnk, llnk) with 1r(a) := a 0 1£k. Hence, 

K 1 (Mn(C)) = 0. 

The main properties of Ki are: 

Ki(A EBB) 

Ki(Mn(A)) 

Ki(A 0 OC) 

Ki+2 (A) 

Ki(A) (Morita invariance), 

Ki(A) (stability), 

Ki(A) (Bott periodicity). 
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(5.39) 

(5.40) 

(5.41) 



A K 0 (A) Kl(A) 

c z 0 

Mn(C) z 0 

IK z 0 

Co(JR2n) z 0 

Co(JR2n+l) 0 z 

C('Jrn) z2n-1 z2n-1 

C(§2n) z2 0 

C(§2n+l) z z 

Ao z2 z2 

Table 5.2: K-homology groups of some common C* -algebras. 

There is also a product map 

(5.42) 

5. 7 Pairing between K-theory and K-homology 

The pairing between K-theory and K-homology (also known as the cap product) is given 

by the indices of certain Fredholm operators constructed from the elements of the K-theory 

and K-homology groups. 

Definition 5.7.1. The index of a Fredholm operator F is defined by 

Ind F := dim KerF - dim KerF*. (5.43) 

5.7.1 Pairing between K 0 and K 0 

The pairing between an even Fredholm module (1l, F, r) over Mn(A) and a projection 

p E Mn(A) is given by 

([(1£, F, r)], [p]) := Ind(1r(p)F+1r(p)), (5.44) 
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5.7.2 Pairing between K 1 and K 1 

The pairing between an odd Fredholm module (1£, F) over Mn(A) and a unitary u E Un(A) 

is given by 

([(1£, F)], [u]) := lnd(P1r(u)P), (5.45) 

where P1r( u)P: P1l ----+ P1l is a Fredholm operator and P := n1F is a projection. 

Example 5.7.1 (The pairing between Ki(C) and Ki(C)) 

Consider an even Fredholm module (1ln,k, Fn,k, r n,k) over Mn(C) and a projection Pj = 

diag(1Ij, 0, ... , 0) E Mn(C). Then, 

X~;) ( ~ ~) ®lk, 

p+ (~, ~) 

([(1ln,k, Fn,k, r n,k)], [pj]) = jk- 0 = jk. (5.46) 

Consider an odd Fredholm module (Cnk, 1Ink) over Mn(C) and a unitary u E Un(C). Then, 

P = 1Ink and 1r(u) = u ® 1Ik. Hence, 

(5.47) 

as u is invertible. 

5. 7.3 Pairing with K-cycles 

The pairing can be extended from Fredholm modules to K-cycles (spectral triples) by 

taking F = D J D J-1
. So, for an even real K -cycle (Mn (A), 1l, D, J, r) and projections 

p, q E Mn(A), 

65 



using the homotopy t -t DIDI-t from D to DIDI-1 . Similarly, for an odd real K-cycle 

(Mn(A), 1£, D, J) and unitaries u, v E Un(A), 

([(Mn(A), 1£, D, J)], [u ® v0 PJ) = Ind(PuJv* J-1 P), (5.49) 

h P ll+DIDI- 1 • • • w ere = 2 1s a proJectiOn. 

5. 7.4 The intersection form and Poincare duality 

Given a real K-cycle, the intersection form defines a pairing on K-theory. The K 0 pairing 

is given by 

([p], [q])D := ([(Mn(A), 1£, D, J, f)], [p® q0 P]), (5.50) 

and the K1 pairing is given by 

([u], [v]) D := ([(Mn(A), 1£, D, J)], [u ® v0 P]). (5.51) 

An important property of a differential manifold M is Poincare duality, Hk(M) ~ 

Hm-k ( M). Poincare duality holds if there is a non-degenerate bilinear pairing (-, -) : 

Hk(M) x Hm-k(M) -t ffi. on the de Rham cohomology of M. Using the classical Chern 

character chi : Ki(M) ® Ql -t Hi(M, Ql), this translates to a non-degenerate intersection 

form. Therefore, a noncommutative space is considered to be a noncommutative manifold 

if it satisfies Poincare duality in the sense of having a non-degenerate intersection form, 

i.e. its K-theory is isomorphic to its K-homology. 

5.8 KK-theory 

K-theory and K-homology are both special cases of a more general bivariant theory known 

as KK-theory. KK-theory is a bifunctor from the category of separable C* -algebras to the 

category of abelian groups, 

KK: C*-Alg0
P x C*-Alg -tAb. (5.52) 
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The contravariant argument represents K-homology and the covariant argument represents 

K-theory: 

KK(A,C) 

KK(C,A) 

(5.53) 

(5.54) 

In essence, KK-theory is K-homology with Fredholm bimodules. What we suggestively 

refer to as a Fredholm bimodule is commonly know as a Kasparov bimodule. 

Definition 5.8.1. An odd Kasparov A-B-bimodule (£,F) is given by a Hilbert A-B­

bimodule £,and an operator F on£ such that (F-F*)1r(a) E IK(£), (F2 - :n)1r(a) E IK(£) 

and [F, 1r(a)] E IK(£) for all a EA. 

Definition 5.8.2. An even Kasparov A-B-bimodule (£, F, r) is given by an odd Kasparov 

A-B-bimodule (£,F) together with a Z2-grading r on £, r = f*, f 2 = :n, such that 

f1r(a) = 1r(a)f and rF =-Fr. 

Definition 5.8.3. A Kasparov bimodule is called degenerate if (F- F*)1r(a) = 0, (F2 -

:n)1r(a) = 0 and [F, 1r(a)] = 0 for all a EA. 

Definition 5.8.4. A Kasparov bimodule is called normalised if F = F* and F 2 = :n. It 

is possible to normalise any Kasparov bimodule. 

Kasparov A-B-bimodules can be thought of as generalised *-homomorphisms from A to 

B. 

Example 5.8.1 (The Kasparov bimodule for a *-homomorphism) 

A *-homomorphism <P: A~ B defines an even Kasparov A-B-bimodule (£,F,r), where 

£ ·- B EBB with 1r(a) := e~a) :} 
( 0 

~)' F ·-
:n 

r ·- (: ~~) 
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The elements of KK(A, B) are the homotopy classes of even Kasparov A-B-bimodules, 

KK(A, B) := [(£, F, f)]. (5.55) 

There are several strengths of homotopy that can be used. They all coincide for separable 

C* -algebras. We state the weakest (most general). 

Definition 5.8.5. A homotopy between two even Kasparov A-B-bimodules (£o, Fo, fo) 

and (£1, F1, f 1) is an even Kasparov A-C([O, 1], B)-bimodule (£, F, f) such that 

(£(0), F(O), f(O)) = (£o, Fo, fo) and (£(1), F(1), r(1)) = (£1, F1, f 1), where the even 

Kasparov A-B-bimodule (£(t),F(t),f(t)) is given by the evaluation homomorphism from 

C([O, 1], B) to B. 

It is possible to work just with homotopies where only the operator F varies (operator 

homotopies). 

The homotopy classes form an abelian group with addition given by the direct summation 

of Kasparov bimodules. Degenerate Kasparov bimodules are homotopic to the 0-bimodule, 

and the inverse of an even Kasparov bimodule ( £, F, f) is the even Kasparov bimodule 

(£, -F, -f). A normalised even Kasparov A-C-bimodule is just an even Fredholm module 

over A, hence KK(A, q = K 0 (A). 

Higher KK-groups can be defined by suspending one of the arguments, 

KKn(A, B) := KK(SnA, B)= KK(A, sn B). (5.56) 

The group KK 1(A, B) is the abelian group of homotopy classes of odd Kasparov A-B­

bimodules. Batt periodicity in K-theory and K-homology means that KKi+2(A, B) 

KKi(A, B). 

The properties of KK-theory are generalisations of those of K-theory and K-homology: 

KK(A1 EB A2, B) KK(A1, B) EB KK(A2, B), (5.57) 

KK(A, B1 EB B2) KK(A, B1) EB KK(A, B2), (5.58) 

KK(Mm(A), Mn(B)) KK(A,B) (Morita in variance), (5.59) 

KK(A 0 lK, B) KK(A, B) (stability), (5.60) 

KK(A, B 0 lK) KK(A,B) (stability), (5.61) 

KK(SA,B) KK(A,SB) (suspension), (5.62) 

KK(SA,SB) KK(A,B) (Batt periodicity). (5.63) 
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The most important is the Kasparov intersection product 

~B : KK(A, B) x KK(B, C) ---+ KK(A, C). 

This incorporates the index pairing between K-theory and K-homology, 

n: KK(C, A) x KK(A, C) ---+ KK(C, C) 

K 0 (A) x K 0 (A) ---+ Z 

K1 (A) x K 1(A) ---+ Z via suspension. 

The most general form of the intersection product is 

(5.64) 

(5.65) 

In the words of [3, sec. 19.8], "This product is associative and functorial in all possible 

senses. The product generalizes composition and tensor product of *-homomorphisms, cup 

and cap products, tensor product of elliptic pseudodifferential operators, and the pairing 

between K-theory and K-homology." Poincare duality is just the pairing 

n: KK(C, A) x KK(A ~ A0
P, q ---+ KK(A0

P, C)~ KK(A, q 

Ki(A) X KRi(A ~ A 0 P) ---+ Ki(A) 

(5.66) 

(5.67) 

given by the KR-homology class ft E KRi(A ~ A 0 P) of a real K-cycle (A, 1£, D, J, r). 

In many respects, the KK bifunctor is like a hom-bifunctor: it is bivariant and the inter­

section product defines an "associative composition of morphisms". In fact, it is possible 

to construct an additive category KK whose objects are separable C* -algebras and whose 

hom-sets are the KK-groups. KK is the universal enveloping category of C*-Algh, where 

C* -Algh is the category whose objects are separable C* -algebras and whose morphisms 

are homotopy classes of stable *-homomorphisms. A stable *-homomorphism between two 

C*-algebras A and B is a *-homomorphism between A and B ~ K An isomorphism in 

KK is known as a KK-equivalence. 
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5.9 E-theory 

KK-theory has a reputation for being technically difficult. A simpler, related theory is 

E--theory [3, sec. 25]. 

Definition 5.9.1. An asymptotic morphism between two C*-algebras A and B is a family 

of maps T = {TiiE(O,ho] :A---+ B}, for some no> 0, such that n---+ Tli(a) is norm-continuous 

for every a E A, and for any a, b E A and ,X E <C: 

lim IITii(a) + .\Tii(b)- Tli(a + .Xb)ll 0, 
li-tO 

lim IITii(a)*- Tli(a*)ll 0, 
li-tO 

lim IITii(ab)- Tli(a)Tii(b)ll 0. 
li-tO 

Example 5.9.1 (The asymptotic morphism for a *-homomorphism) 

A *-homomorphism ¢> : A ---+ B defines an asymptotic morphism T = {Tii := ¢>} : A ---+ B. 

An important example of an asymptotic morphism is given by the Moyal quantisation map 

Qli: Co(T*!Rn) ---+ IK(L2(1Rn)). This defines an asymptotic morphism from the C*-algebra 

of classical observables to the C* -algebra of quantum observables. 

The E--theory groups are defined by 

E(A, B) := [SA, SB 18> IK] ~ [SA 18> IK, SB 18> IK], (5.68) 

where [A, B] denotes the set of homotopy classes of asymptotic morphisms from A to 

B. For separable nuclear C* -algebras, E--theory is isomorphic to KK-theory. But unlike 

KK-theory, it is half-exact in both arguments. The main properties of E--theory are: 

E(<C,A) K 0 (A), (5.69) 

E(Mm(A), Mn(B)) E(A,B) (Morita in variance), (5.70) 

E(A 18> IK, B) E(A,B) (stability), (5.71) 

E(A, B 18> IK) E(A,B) (stability), (5.72) 

E(SA,B) E(A,SB) (suspension), (5.73) 

E(SA,SB) E(A,B) (Batt periodicity). (5.74) 
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universal 
C*-Alg-------~E j envelope I 

universal C* -Algh ------~ KK 
envelope 

Figure 5.6: Universal enveloping categories of C* -algebras. 

An additive category E can be constructed whose objects are separable C* -algebras and 

whose hom-sets are theE-groups. The composition of asymptotic morphism is well-defined 

up to homotopy using [A, B®lK] ~ [A®lK, B®lK]. E is the universal enveloping category 

of C*-Alg. 

5.10 Cyclic Homology and Cohomology 

Cyclic homology [10, 32, 4] acts as the noncommutative generalisation of de Rham co­

homology. Unlike other homology theories, it is constructed from cyclic objects rather 

than simplicial objects. There is a simplicial version, called Hochschild homology. 

5.10.1 The cyclic category 

The cyclic category A is the small category with objects An, n 2: 0, and morphisms 

generated by face maps <5f : An-1 -tAn, degeneracy maps O"f : An+1 -tAn and (anti)cyclic 

maps Tn : An -tAn, satisfying (5.4), (5.5), (5.6) and 

Tn <5() <5;;:, (5.75) 

Tn <5f <5~1 Tn-1 for 1 ~ i ~ n, (5.76) 

rn 17o 0";;: ( Tn+lf, (5.77) 

Tn O"f 17f-1 Tn+l for 1 ~ i ~ n, (5. 78) 

( Tn)n+1 idn. (5.79) 

It has the simplicial category as a subcategory and any morphism from An to Am can 

be uniquely written as the product </Jg, where <P E homc.([n], [m]) and g E Zn+1· For 
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this reason, A is sometimes denoted by b.C, where C is the disconnected groupoid whose 

automorphism sets are the cyclic groups, homc(n, n) = Zn. If An is identified with [n], 

then Tn is the map defined by Tn(O) =nand Tn(i) = i- 1 fori=/=- 0, i E [n]. 

The cyclic category is also self-dual: there is a contravariant functor * : A ---* A op which 

gives an isomorphism A op ~ A. This can be seen by constructing an extra degeneracy 

map 

n . n ( )n+1 O'n+1 .= O'o Tn+1 · (5.80) 

Then, (8i)* = O'r-1 (use the extra degeneracy map fori= n), (O'i)* = ortl and (rn)* = 

(rn)n. 

Definition 5.10.1. A cyclic object in a category C is a contravariant functor from A 

to C. Such a functor X is uniquely specified by the morphisms X(8i) : [n] ---* [n- 1], 

X(O'i): [n]---* [n + 1] and X(rn): [n]---* [n], which satisfy (5.9), (5.10), (5.11) and 

X(80) X(rn) X(o~), (5.81) 

X(oi) X(rn) X(rn-1) X(oi-1) for 1 :S i :S n, (5.82) 

X(0'0) X(rn) X(rn+1) 2 X(O'~), (5.83) 

X(O'i) X(rn) X(rn+I) X(O'i-1) for 1 :S i :S n, (5.84) 

X(rnt+l idn. (5.85) 

Any cyclic object is also a simplicial object by composition with the inclusion functor 

5.10.2 Cyclic modules 

For any unital algebra A over a field k, there is a functor AQ :A---* k-Mod defined by 

AQ(An) ·- A®(n+1) 

A®A® ... ®A (n+ 1) terms, 

AQ(f) (ao ® ... ®an) ·- bo ® ... ® bm for f E hom(An, Am), 

where bj = TI az with f- 1 (j) = {i E An: f(i) = j} and bj = 1 when f- 1 (j) = 0. A 
lEJ- 1 (j) 

cyclic k-module C(A) is then obtained by composing AQ with* : A0
P ~A. But since* is 

an isomorphism, it is possible to work directly with either C(A) or AQ. 
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5.10.3 Derived functors 

The cyclic homology and cohomology groups are defined by the derived functors 

HCn(A) ·- Torn(Aq, kq), 

HCn(A) ·- Extn(Aq, kq). 

Equivalently, in terms of cyclic modules, 

HCn(A) ·- Torn(C(A), C(k)), 

HCn(A) ·- Extn(C(A), C(k)). 

The Hochschild homology and cohomology groups are completely analogous, 

HHn(A) ·- Torn(S(A), S(k)), 

HHn(A) ·- Extn(S(A), S(k)), 

with simplicial modules instead of cyclic modules. 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91) 

Both cyclic homology I cohomology and Hochschild homology I cohomology are Morita in­

variant, 

HCn(Mk(A)) = HCn(A), HCn(Mk(A)) = HCn(A), 

HHn(Mk(A)) = HHn(A), HHn(Mk(A)) = HHn(A). 

Cyclic homology has a product, 

(5.92) 

(5.93) 

(5.94) 

and a coproduct. The coproduct corresponds to the cup product of cyclic cohomology, 

(5.95) 

5.10.4 Cycles and cyclic cocycles 

Cyclic cohomology is easier to work with than cyclic homology. The elements of the cyclic 

cohomology groups are called cyclic cocycles. Cyclic cocycles are the characters of cycles 

over an algebra A. 
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Definition 5.10.2. An n-dimensional cycle (n, d, f) over A is given by a differential 

graded algebra (n, d), where n = EB np and d2 = 0, and a closed graded trace J: nn---+ <C 
p=O 

(J dwn-l = 0 and J Wp Wq = ( -l)pq J Wq wp), together with a homomorphism p: A---+ n°. 

There are also related notions of chain and boundary. 

Definition 5.10.3. An (n +I)-dimensional chain (n, an, d, J) is given by an (n + I)­

dimensional differential graded algebra (n, d) and an n-dimensional differential graded 

algebra (an, d'), with a surjective homomorphism r : n ---+ an, and a graded trace J : 
nn+l ---+ <C such that f dw = 0 for all wE nn with r(w) = 0. 

Definition 5.10.4. The boundary of a chain (n, an, d, f) is the cycle (an, d, J') where 

J' w' := f dw, w' E (an)n, for any wE nn with r(w) = w1
• 

The character of ann-dimensional cycle over A is the (n +I)-linear functional on A given 

by 

Tn(ao, ... , an) := J p(ao)d(p(al)) ... d(p(an)). (5.96) 

This is a cyclic n-cocycle and any cyclic cocycle is the character of some cycle. In partic­

ular, a cyclic 0-cocycle is a trace on A, thus HC0 (A) := Hom(AQ, kQ) ={traces on A}. 

Example 5.10.1 (HC 0(Mk(<C))) 

All traces on Mk(<C) are of the form trz(A) = z tr A, where z E <C. Hence, HC0 (Mk(<C)) = 

<C. 

Example 5.10.2 (HC0(C00 (M))) 

All traces on C00 (M) are of the form Tr9 (f) = fMg(x)f(x) y9dmx, where g E C00 (M). 

Hence, HC0 (C00 (M)) = C00 (M). More generally, any closed de Rham current is a cyclic 

cocycle. 

The pairing Hen x HCn---+ k between a cyclic n-cocycle Tn and a cyclic n-cycle Cn is given 

by 

(5.97) 

where Cn = L ao®a10 ... ®an and p(en) = LP(ao)d(p(ai)) ... d(p(an)). This generalises 

the pairing between de Rham currents and differential forms. 
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Cyclic homology is closely related to § 1-equivariant homology as BA = BU(1). Specific­

ally, 

(5.98) 

where k[X] is the free cyclic k-module on a cyclic set X (c.f. the isomorphism between 

simplicial and singular homology, Hn(k[X]) ~ Hn(IXI, k), where X is a simplicial set). 

5.10.5 Periodic cyclic homology and cohomology 

The cyclic homology groups are connected by the periodicity map S : HCn(A) --+ 

HCn-2(A) (S : HCn(A) --+ Hcn+2(A) in the case of the cyclic cohomology groups). 

Each group is thus the start of a sequence 

s s s 
HCn(A) +--- HCn+2(A) +--- HCn+4(A) +--- ... 

(HCn(A) ~ Hcn+2(A) ~ HCn+4(A) ~ ... ). These sequences are used to define 

periodic cyclic homology HPi (periodic cyclic cohomology HPi). For smooth algebras, 

the periodic cyclic homology I cohomology groups are the inductive limits 

HPi(A) = 

HPi(A) 

lim HC2n+i(A), 
s 

t---

lim HC2n+i(A). 
~ 

(5.99) 

(5.100) 

(In general, there is an extra term.) The periodic cyclic homology I cohomology groups are 

periodic with period 2, 

hence their name. 

HPi-2(A) HPi(A), 

HPi+2(A) = HPi(A), 

5.11 The Chern Character 

(5.101) 

(5.102) 

The Chern character is a natural transformation from K-theory to cyclic homology, or by 

duality, a natural transformation from K-homology to cyclic cohomology: 

chi,n : Ki(A) --+ HC2n+i(A), 

chi,n : Ki(A) --+ HC2n+i(A). 
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-1 
0":> 

A 

c 
Mk(C) 

C 00 (M) 

Ae 
---

A 

c 
Mk(C) 

C 00 (M) 

Ae 

HCo(A) 

c 
c 

n°M = C00 (M) 

c 

HC0 (A) 

c 
c 

zgR(M) = C00 (M) 

c 

HC1(A) HCn?.2(A) HPo(A) HP1(A) 

0 C for n even, 0 for n odd c 0 

0 C for n even, 0 for n odd c 0 

d(;.nAfM EB HciR2(M) EB Hd'R4(M) EB ... EB HgR(M) for n even 
0 1 M H:J.Rn(M) H.f~d(M) d0°M 

d(;nn'fM EB Hd'R2(M) EB Hd'R4(M) EB ... EB HjR(M) for n odd 

onM 
(Note: dOn 1M = Cokerdn-d 

c2 c2 c2 te2 

Table 5.3: Cyclic homology groups of some common pre-C* -algebras. 

HC 1(A) Hcn?.2(A) HP0(A) HP1(A) 

0 C for n even, 0 for n odd c 0 

0 C for n even, 0 for n odd c 0 

ZfR(M) 
z~R(M) EB H~~2 (M) EB H~~4 (M) EB ... EB H8R(M) for n even 

Hfv~n(M) H~fd(M) 
z~R(M) EB H~~2 (M) EB H~~4 (M) EB ... EB HfR(M) for n odd 

(Note: z~R(M) = Ker8n.) 

c2 te2 c2 c2 

Table 5.4: Cyclic cohomology groups of some common pre-C* -algebras. 



5.11.1 Homological Chern character 

The Chern map cho,n : Ko(A) -t HC2n(A) takes a projection p to the cyclic 2n-cycle 

( (2n)! (( 1) ( )2n) cho,n p) := --;y- tr p- 2 dp , (5.105) 

where tr p is the trace over the matrix indices of p E Mk (A). (The -! is a matter of 

convention.) Similarly, the Chern map ch1,n : K1(A) -t HC2n+I(A) takes a unitary 

u E Mk(A) to the cyclic (2n + 1)-cycle 

(5.106) 

5.11.2 Cohomological Chern character 

The n-dimensional cycle associated to a Fredholm module is defined by 

f1P ·- { wp = L ao[F, a1] ... [F, ap]}, 

dwP ·- [F,wp]s := Fwp- (-1)PwpF, 

J Wn ·- Tr(rwn), 

where r = 1I for odd Fredholm modules. (The domain of J can be extended with the 

definition fwn := ~Tr(rF[F,wn]s).) Note, F[F,wp]s = -(-1)P[F,wp] 8 F. Unlike the 

derivation [D, -],the supercommutator [F, -] 8 is a differential as F 2 = li. 

The character of a Fredholm module is the cyclic n-cocycle 

T,!(ao, ... ,an) ·- (-1)nfaodal···dan 

( -1t Tr(rao[F, a1] ... [F, an]), 

where r = 1I for odd Fredholm modules. This defines the Chern maps 

ch0·n(1-l, F, r) ·­

ch1·n(1-l, F) ·-
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5.11.3 Chern-Connes pairing 

The homological Chern character can be used to define a pairing HC2n+i(A) x Ki(A) ---+ k 

between cyclic cohomology and K-theory, 

(5.110) 

(5.111) 

where Tn is a cyclic cocycle. Likewise, the cohomological Chern character defines a pairing 

Ki(A) x HC2n+i(A)---+ k between K-homology and cyclic homology given by 

((11.,F,r),c2n) ·- (ch0•n(11.,F,r),c2n), 

((1/., F), C2n+l) ·- (ch1•n(1/., F), C2n+l), 

where Cn is a cyclic cycle. 

5.11.4 The index formula 

(5.112) 

(5.113) 

The index formula gives a way of calculating the pairing between K-theory and K-homology 

using the Chern character. Specifically, 

(ch0•n(11., F, f), cho,n(P)) 

(ch1•n(11., F), chl,n(u)) 

([(11., F, r)J, [p]), 

([(11., F)], [u]). 

(5.114) 

(5.115) 

This generalises the Atiyah-Singer index theorem. The pairing between Chern characters 

is given by 

(ch0·n(11., F, f), cho,n(P)) 

(ch1•n(11., F), chl,n(u)) 

( 2~)! Tr (r (P- ~) [F,pfn), 

-n! Tr (u- 1[F, u] ([F, u-1][F, u](). 

For finite dimensional algebras, the Chern character pairing is just 

(ch0
•
0 (11., F, f), cho,o(p)) = Tr(fp). 
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Ki(A) X Ki(A) 
(-,-)K z 

ch'" xeh j t,n [ 
HC2n+i(A) x HC2n+i(A) 

(-,-)He 
k 

Figure 5.7: The index formula [32]. 

Example 5.11.1 (The index formula for C) 

Consider an even Fredholm module (1ln,k, Fn,k, r n,k) over Mn(C) and a projection Pj = 

diag(llj, 0, ... , 0) E Mn(C). Then, 1r(pj) = diag(lljk, 0, ... , 0) E Mnk(C), so 

jk. 

This agrees with the pairing ([(1ln,k, Fn,k, r n,k)], [pj]) calculated earlier. 

Theorem 5.11.1 (Connes' character formula) 

For every Hochschild n-cycle Cn E Zn(A, A), 

Example 5.11.2 (The character formula for § 1) 

(5.119) 

(5.120) 

The K-cycle for §1 is (C=(§1), £ 2 (§1), -i/o-). Its pairing with the unitary u = eikB is 

given by 
1 

Ind(PuP) =- Tr (u-1 [F, ul) = - 2 Trw (u-1 [D, u]IDI-1). (5.121) 

ll+DIDI- 1 · B The projection P = 2 maps a function '1/J(O) =I:: en em E £ 2(§1) to 

00 

( P'ljJ) ( 0) = L Cn einB . (5.122) 
n2':0 

So, 
00 CXl 

PuP LcneinB---+ LCnei(n+k)B
1 (5.123) 

n2':0 n2':0 
00 00 

Pu*P L Cn einB ---+ L Cn ei(n-k)B 0 (5.124) 
n2':0 n2':k 
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Thus, Ind(PuP) = 0- k = -k. Alternatively, u-1 [D, u] = k, so 

(5.125) 

5.11.5 The bivariant Chern character 

Just as KK-theory generalises K-theory and K-homology, there is a bivariant cyclic theory 

which generalises cyclic homology and cohomology, 

HCn(A,C) 

HCn(C,A) 

It also has a product like KK-theory, 

HCn(A, B) x HCm(B, C) --t HCn+m(A, C). 

(5.126) 

(5.127) 

(5.128) 

The Chern character chi,n : Ki(A) ---+ HC2n+i(A) can be extended to a bivariant Chern 

character chi,n : KKi(A, B) --t HC2n+i(A, B), which is compatible with the Kasparov 

intersection product. Not only is the bivariant Chern character a (bi)natural transform­

ation between bifunctors, it is also a functor from KK to HC. Actually, KK-theory and 

bivariant cyclic theory are not defined on compatible categories of algebras. So, it is ne­

cessary to use either a variant of KK-theory, such as topological KK-theory for locally 

convex algebras ( kk), or a variant of bivariant cyclic theory, such as bivariant local cyclic 

homology for complete bornological algebras (HE10c). More details can be found in [13]. 
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Chapter 6 

Conclusion 

We have developed a path integral approach to quantise the spectral action. In principle, 

it can be applied to any noncommutative geometry. We have successfully used it on the 

two-point space, the matrix geometry M2 (C) and a circle. 

In the case of the two finite noncommutative geometries, we found graviton excitations 

have the effect of shrinking distances. Intuitively, this is what one would expect, given 

gravity is attractive. The two geometries behave in quite different ways as they collapse 

to a point. The two-point space undergoes a topological change, which is suggestive of the 

formation of something like a black hole (an apt term would be "black point"). Whereas, 

the matrix geometry maintains its topology, but loses its noncommutativity instead. We 

expect the shrinking of distances by gravitons to be a general feature of quantised finite 

noncommutative geometries. The introduction of fermions onto the geometries had the 

effect of shielding out the gravitational field. All the graviton states are lowered by an 

amount equal to the number of fermion generations. 

Comparing our approach with Rovelli's, led us to question the validity of his results. We 

found his equations of motion could be expressed in much simpler terms, which result 

in a smaller phase space. This will alter his canonical quantisation. Despite this, both 

approaches seem to support the qualitative result that distances shrink with increasing 

graviton excitations. 
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In the case of a circle, we found graviton excitations have the effect of increasing distances. 

Again, this is what one would expect, given the spectral action is a cosmological constant. 

A circle is too trivial a geometry for there to be any interesting effects. Effectively, it 

consists of an infinite number of two-point spaces. To obtain new phenomena, it is probably 

necessary to quantise a torus or sphere. This would not be an easy task. Two-dimensional 

quantum gravity has been researched, so there would also be the opportunity to compare 

results. 

The idea of spectral integrals is very appealing as it is consistent with the philosophy 

of spectral invariance. But, we have concerns over the possible lack of any topological 

dependence. The K-groups should somehow restrict the space of eigenvalues to integrate 

over. We want to integrate over all Dirac operators, not all self-adjoint operators. Of 

course, the definition of a Dirac operator is given by the axioms for a spectral triple. 

So, to develop spectral integrals further, it is necessary to formulate the axioms in terms 

of the Dirac operator eigenvalues. This problem also arises when the eigenvalues are 

considered as the variables of the classical spectral action [28]. On Riemannian manifolds, 

our path integral approach coincides with the conventional one, by construction. It would 

be interesting to see how spectral integrals differ from this. 
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Appendix A 

C* -algebras and Operators 

A.l C* -algebras and Hilbert Spaces 

We recall some basic definitions regarding C* -algebras and Hilbert spaces. 

A.l.l Vector spaces 

Definition A.l.l. A normed vector space is a vector space V with a map 11-11 : V--+ ~ 

satisfying the following properties: 

llvll > 0 with llvll = 0 iff v = 0 (positive definite), (A.l) 

IIAvll IAIIIvll VA E C, 

llu +vii < I lull+ llvll (triangle inequality). 

Definition A.1.2. A Banach space is a complete normed vector space. 

(A.2) 

(A.3) 

Definition A.1.3. A Hilbert space 1l is a Banach space with a scalar product(-,-) such 

that llvll = yf(V,V) for all v E 1£. 

Definition A.1.4. A linear map between two vector spaces V and W is a map L : V --+ W 

that satisfies L( Au + pv) = AL( u) + pL( v) for all A, fL E C and for all u, v E V. 
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A.1.2 Algebras 

Definition A.1.5. A Banach algebra is a Banach space with a multiplication law com­

patible with the norm, i.e. llabll :S llallllbll (product inequality). 

Definition A.1.6. A Banach *-algebra is a Banach algebra with an involution * satisfying 

the following properties: 

a** 

(ab)* 

(Aa + J.Lb)* 

I Ia* II 

a, 

b*a*, 

:\a*+ Jib* VA, J.L E C, 

llall· 

(A.4) 

(A.S) 

(A.6) 

(A.7) 

Definition A.1.7. A C*-algebra A is a Banach *-algebra such that lla*all = lla11 2 for all 

a EA. 

Definition A.1.8. A pre-C* -algebra A is a dense * -subalgebra of a C* -algebra A that is 

stable under the holomorphic functional calculus. 

Definition A.1.9. A *-homomorphism between two C* -algebras A and B is a linear map 

¢ : A --+ B that satisfies 

¢(ab) 

¢(a*) 

¢(a)¢(b), 

¢(a)*. 

(A.8) 

(A.9) 

Definition A.l.lO. A unital *-homomorphism is a *-homomorphism ¢ between two 

unital C*-algebras A and B that satisfies ¢(1IA) = liB. 

A.2 Operators on Hilbert Spaces 

We now focus our attention on C* -algebras of operators acting on Hilbert spaces. 

Definition A.2.1. An operator T acting on a Hilbert space 1{ is said to be bounded if 

there exists a c E lR such that 

IITvll :S cllvll Vv E 1/.. (A.lO) 
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If T is bounded, then the smallest such c is called the operator norm of T and is denoted 

IITII· The operator norm can equivalently be defined as 

I lTv II IITII :=sup -
11
-
1
-
1 

= sup IITvll· 
#0 V llvll9 

(A.ll) 

The set of bounded operators on a Hilbert space 1l is a C*-algebra and is denoted llll(1l). 

Theorem A.2.1 (Gelfand-Nrumark representation theorem) 

Every C* -algebra is isomorphic to a C* -subalgebra (closed *-subalgebra) of some llll(1l). 

In particular, every finite dimensional C* -algebra is isomorphic to a direct sum of matrix 

algebras. 

Definition A.2.2. A bounded operator is compact if it is the norm limit of finite rank 

operators. 

The set of compact operators on a Hilbert space 1l is a C* -algebra and is denoted OC(1i). 

All operators on a finite dimensional Hilbert space are compact. In fact, compact operators 

behave similarly to finite dimensional operators. 

Example A.2.1 (Integral operators) 

LetT be an integral operator on C([O, 1]) defined by 

(Tf)(x) := 11 

K(x, y)f(y) dy, f E C([O, 1]), (A.12) 

where K(x, y) is the kernel. Then, T is a compact operator. 

Closely related to C* -algebras are von Neumann algebras. 

Definition A.2.3. A von Neumann algebra (or W* -algebra) 1s a weakly closed C*­

subalgebra of llll(1l). 

Theorem A.2.2 (Double commutant theorem) 

Let A be a C*-subalgebra of 111\(1-l) containing the identity operator :0:1-l. Then A is a von 

Neumann algebra iff A= A", where A'= {T E llll(1i) : Ta =aT Va E A} is the commutant 

of A. 
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A.3 Pseudo-differential Operators 

Let E be a vector bundle over an m-dimensional manifold M, with space of smooth sections 

r(M,E). 

Definition A.3.1. A pseudo-differential operator of order dis an operator P: r(M, E)--+ 

r(M, E) of the form 

(Pf)(x) 

(A.l3) 

where f(x) = (2;)m J eik·x F(k) dmk is expressed as a Fourier transform, and the total 

symbol p( x, k) is a matrix of smooth functions. 

We are mainly interested in classical pseudo-differential operators. 

Definition A.3.2. A pseudo-differential operator P is said to be classical if its total 

symbol has an asymptotic expansion of the form 

00 

p(x, k) rv LPd-n(x, k), (A.l4) 
n=O 

where Pn(x, k) is a symbol of order n. The principal symbol is defined as O"d(P) = Pd(x, k). 

Definition A.3.3. A pseudo-differential operator P of order -oo is called a smoothing 

operator, and has the integral representation 

(Pf)(x) = J K(x, y)f(y) dmy, (A.l5) 

where the kernel K(x, y) is a smooth function. 

Of particular importance are elliptic pseudo-differential operators. These include operators 

such as Dirac operators and Fredholm operators. 

Definition A.3.4. A pseudo-differential operator is said to be elliptic if its principal 

symbol is invertible (modulo smoothing operators). 

Example A.3.1 (The symbol of a Dirac operator) 

The Dirac operator 
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is a pseudo-differential operator of order 1. Its total symbol is given by 

where 

p(x, k) = Pl(x, k) + Po(x, k), 

Pl(x, k) 

po(x, k) 

(A.l7) 

(A.l8) 

(A.19) 

The principal symbol of Dis thus cr1(D) = Pl(x,k) = ')'ae~(x)kw The inverse of this 

matrix is f'a e~(x)kJ-L/(gaf3kakf3), hence D is an elliptic pseudo-differential operator. 
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Appendix B 

Clifford Algebras 

B.l Definitions 

Clifford algebras are heavily used in the spin geometry of Riemannian manifolds. In this 

appendix, we have gathered together some useful definitions and results. 

Definition B.l.l. A (complex) Clifford algebra is the associative algebra generated by 

the elements of a (complex) vector space with the relation 

(B.l) 

where g11v is the metric of the vector space. 

Clifford algebras with a Euclidean metric are C* -algebras. 

Definition B.1.2. The chirality element of a Clifford algebra with an m-dimensional 

Euclidean metric is defined by 

(B.2) 
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B.2 Trace Formulas 

Here are some useful trace formulas for 1 matrices: 

tr( /Jl/V) = gJlV tr ll-y (B.3) 

tr(rJ1/V 1 a1 ,e) (gllv 9a,e _ gila 9 v,e + gll,B 9va) tr ll-y (B.4) 

tr(odd no. of 1 matrices) 0 (B.5) 

tr(rm+l/Jll ... /Jlrn) ( -i) [m/2] £Jll···Jlm tr ll-y (B.6) 

B.3 The Exterior Algebra Representation 

A Clifford algebra has a natural representation in terms of differential forms. Define the 

Clifford product of 1-forms by 

a V (3 :=a A (3 + g(o:, (3). (B.7) 

(Often, a V (3 is written simply as o:(J.) Then, the elements of a Clifford algebra can be 

represented by forms using the symbol map cr : Cl(V) ---+ AV, 

cr( w111 ... Jln rJ11 ... /Jln) := w111 ... Jln dx111 V ... V dxJln. (B.8) 

The symbol map is an isomorphism of vector spaces. Its inverse is the quantisation map 

Q: AV---+ <Cl(V), 

(B.9) 

B.4 Two-Dimensional Euclidean Space 

The complex Clifford algebra for IR.2 is <Cl(IR.2) ~ M2 (<C). Its irreducible representation 

(which is faithful) is given by 

( 
0 i ) /1 = 
-i 0 

The chirality element is 

( ~ ~1) 
which gives a Z2-grading. 
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B.5 Three-Dimensional Euclidean Space 

The complex Clifford algebra for IR.3 is Cl(IR.3) ~ M2(C) EB M2(C). Its irreducible repres­

entation (which is not faithful) is given by 

( 
0 i ) 
-i 0 , 

The chirality element is 

which gives a trivial grading. 

B.6 Four-Dimensional Euclidean Space 

The complex Clifford algebra for IR.4 is Cl(IR.4 ) ~ M4 (C). Its irreducible representation 

(which is faithful) is given by 

The chirality element is 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 0 -1 

0 0 1 0 

0 1 0 0 

-1 0 0 0 

1'5 = _1'01'11'21'3 = 

which gives a Z2-grading. 

1 0 

0 1 

0 0 

0 0 

90 

0 0 0 

0 0 0 

0 -i 0 0 

-I 0 0 0 

0 0 0 

0 0 0 -i 

-i 0 0 0 

0 0 0 

0 0 

0 0 

-1 0 

0 -1 



Appendix C 

The Heat Equation and the Zeta 

Function 

C.l The Heat Kernel 

Let E be a vector bundle over an m-dimensional manifold M, with smooth sections 

r(M, E). The heat equation is 

( :t + P) f(x, t) = 0, fort 2: 0, (C.l) 

where P : r(M, E) --+ r(M, E) is an elliptic self-adjoint pseudo-differential operator, with 

eigenfunctions given by P¢n(x) = AncPn(x). It has the formal solution 

f(x, t) = e-tP f(x), (C.2) 

where f(x) = f(x, 0) is the initial condition. We proceed by expanding f(x) in terms of 

the orthonormal basis of eigenfunctions, 

f(x) = L CncPn(x), (C.3) 
n 

with the coefficients given by 

(C.4) 
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The solution can then be written as 

(C.5) 
n 

Next, we define the heat kernel, 

(C.6) 
n 

so that 

f(x, t) JM K(t, x, y)f(y) ..J9 dmy 

:L:>-t-'n ¢n(x) f ?Jn(Y)f(y) ..J9 dmy 
n }M 

(C.7) 

Thus, 

(C.8) 

It can be shown [17] that the heat kernel has the asymptotic (t --to+) expansion 

00 

Tre-tP ""I>ndm. an(P), (C.9) 
n=O 

where d is the order of P. The an(P) = JM an(x, P)V§dmx are the Seeley-DeWitt 

coefficients, which are zero for n odd. For P = D 2 , where D is the Dirac operator on a 

m-dimensional Riemannian manifold, the first three non-zero coefficients are [9]: 

tr :n"Y 
(47r)m/2' 

tr :n"Y R 
( 47f )m/2 12' 

tr :n"Y 1 ( R2 8R RJ.Lv R R'wpu R f.l) 
( 47f )m/2 1440 5 - J-ill - 7 J.lVpu + 12 ;J..i ' 

(C.10) 

(C.ll) 

(C.12) 

where :n"Y is the identity matrix for the Clifford algebra. The Ricci tensor and scalar 

curvature are defined by 

R 

92 

(C.13) 

(C.14) 



C.2 The Zeta Function 

The heat kernel can be related to the zeta function, 

n 

using the Mellin transform, 

where 

So, 

00 00 J e-1 e-tAn dt = J ).-(s-1)(t.\y-1 e-tAn d(~n) = ).~s r(s), 

0 0 

00 

r(s) := J t 8
-

1 e-t dt. 

0 

00 00 

'"(s P) = -
1
- "'J e-1 e-tAn dt = ~ J e-1 Tre-tP dt ., ' r(s) ~ r(s) . 

n 0 0 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

At s = 0, -1, -2, ... , a non-positive integer, r(s) has isolated simple poles. The zeta 

function is then regular at these values, 

((s, P) = an(P) Res r(s). 
s=mdn 

(C.19) 

It is also worth mentioning that 

d( = i_ Le-slnAn I =- LlnAn. 
ds ds s=O 

(C.20) 
s=O n n 

Thus, the determinant of P can be written as 

det p = II An = II eln An = eL:n In An = e -(' (O,P) (C.21) 
n n 

(zeta function regularisation). 
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Appendix D 

Category Theory 

D .1 Categories 

We introduce the relevant category theory language. For a definitive account of category 

theory, see [30]. A good set of expository writings (on this and other subjects) can be 

found in [1]. 

Definition D.l.l. A category C consists of a class of objects, a set hom( a, b) of morph­

isms for every ordered pair (a, b) of objects, an identity morphism ida E hom( a, a) for each 

object a, and an associative composition map hom(b, c) x hom( a, b)-+ hom( a, c) for every 

ordered triple (a, b, c) of objects. Since the identity morphisms are uniquely determined 

by the objects, a category is completely specified by its morphisms. 

Definition D.1.2. A morphism m : a -+ b is monic (or left cancellable) in a category 

C when for any two parallel morphisms !1, h : d -+ a, the equality mfi = mh implies 

h = f2. Injections are monic. 

Definition D.1.3. A morphism e : a -+ b is epi (or right cancellable) in a category C 

when for any two parallel morphisms h, h : b-+ c, the equality he = he implies h = f2. 

Surjections are epi. 

Universal properties are a central theme in category theory. Most arise in the form of limits 

or colimits. The fundamental example of a limit is a terminal object, and the fundamental 

example of a colimit is an initial object. 
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Definition D.1.4. An object s in a category Cis initial if for every object a in C there 

is exactly one morphism s---+ a (there can be any number of morphisms a---+ s). 

Definition D.1.5. An object tin a category Cis terminal if for every object a inC there 

is exactly one morphism a ---+ t (there can be any number of morphisms t ---+ a). 

Definition D.1.6. An object z that is both initial and terminal is called a zero object. 

The composite morphism a ---+ z ---+ b is called the zero morphism from a to b. 

D. 2 Functors 

A morphism of categories is a functor. 

Definition D.2.1. A functor T : C ---+ D from a category C to a category D is a map 

which assigns an object T(a) of D to each object a of C, and a morphism T(f) of D to each 

morphism f of C, preserving the identity morphisms (T(ida) = idr(a)) and composition 

(T(gf) = T(g) T(f)). 

An important bifunctor (a functor on the product of two categories) from any category C 

to Set is the hom-bifunctor 

hom: cop X c---+ Set. (D.l) 

It has the composition map hom(b, c) x hom( a, b)---+ hom( a, c). 

D.3 Natural Transformations 

A morphism of functors is a natural transformation. 

Definition D.3.1. A natural transformation T : S =? T from a functorS : C---+ D to a 

functor T : C ---+ D is a map which assigns a morphism Ta : S(a) ---+ T(a) of D to each 

object a of C in such a way that T(f) Ta = Tb S(f) for every morphism f : a ---+ b in C. 

Definition D.3.2. Let C and D be categories with functors L: C---+ D and R: D---+ C. 

Then, L is left adjoint to R and R is right adjoint to L if there is a natural isomorphism 

homv(L(c), d)~ homc(c, R(d)) (D.2) 

for every object c of C and d of D. 
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Definition D.3.3. Two categories C and Dare equivalent if there are functors F: C---+ D 

and G : D ---+ C with natural isomorphisms FG S::! idD and GF S::! ide. Note, F is left 

adjoint to G and G is right adjoint to F as 

G 
hom(F(c), d) --t hom(GF(c), G(d)) ~ hom(c, G(d)), (D.3) 

and G is left adjoint to F and F is right adjoint to G as 

F 
hom(G(d), c) --t hom(FG(d), F(c)) ~ hom(d, F(c)). (D.4) 

Definition D.3.4. Let A and B be categories. The functor category BA is the category 

whose objects are the functors from A to B, and whose morphisms are the natural trans­

formations between them (the composition of morphisms is the vertical composition of 

natural transformations). 

The hom-sets of Cat are functor categories: homcat (A, B) = BA. A specific example of 

a functor category is the category of representations of a group G, k-Modc, where G is 

considered as a category with one object and isomorphisms. 

D.4 Duality 

Any categorical construction can be dualised by reversing the direction of the morphisms. 

Definition D.4.1. The opposite category cop of a category C is the category obtained 

by reversing the direction of the morphisms of C, homcap(a, b)= homc(b, a). 

Definition D.4.2. A contravariant functor (or cofunctor for short) T: cop---+ D from a 

category C to a category Dis a (covariant) functor from cop to D (or equivalently from 

C to D 0 P). 

96 



D.5 Monoidal Categories 

We need only consider strict monoidal categories since every monoidal category is equi­

valent to a strict one. 

Definition D.5.1. A strict monoidal category (M, 0, e) is a category M together with a 

bifunctor 0: M x M -t M which is associative, and an object e which is a unit for D. 

The functor category cc is a strict monoidal category: 0 is given by the composition of 

functors and the horizontal composition of natural transformations, and e is the identity 

functor. 

Definition D.5.2. A monoid object in a monoidal category (M, 0, e) is an object m of 

M together with an associative product m 0 m -t m and a unit e -t m. 

Definition D.5.3. A monad (or triple) on a category Cis a monoid object in cc. 

D.6 Abelian Categories 

Abelian categories feature heavily in homological algebra. 

Definition D.6.1. An Ab-category is a category in which every hom-set is an additive 

abelian group and for which composition is bilinear. 

Definition D.6.2. An additive category is an Ab-category which has a zero object and a 

biproduct (the product is isomorphic to the coproduct) for each pair of its objects. 

Any additive category is a symmetric monoidal category. 

Definition D.6.3. A kernel of a morphism f : a -t b is a morphism k : d -t a such that 

fk = 0, and every morphism h such that fh = 0 factors uniquely through k. Every kernel 

is monic. In terms of sets, Im k = Kerf (Im h C Kerf). 

Definition D.6.4. A cokernel of a morphism f : a -t b is a morphism u : b -t c such 

that uf = 0, and every morphism h such that hf = 0 factors uniquely through u. Every 

cokernel is epi. In terms of sets, Im u = Coker f (Im h c Coker f). 
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Definition D.6.5. An abelian category is an additive category in which every morphism 

has a kernel and cokernel, and every monic is a kernel and every epi is a cokernel. 

Clearly, if A is an abelian category, then A0 P is an abelian category. If A is an abelian 

category and C is any category, then A c is an abelian category. The most common 

abelian categories are: the category of abelian groups (Ab), and the category of R-modules 

(R-Mod). 

D. 7 Pres heaves and To poi 

Sheaves and topos theory play a key role in algebraic geometry. 

Definition D. 7.1. A presheaf on a category C is a contravariant functor cop -+ Set. 

Loosely speaking, a tapas is a category which has similar properties to those of Set 

(cartesian closed with a subobject classifier). Any Set-valued functor category is a topos. 

An important example of a topos is the category of sheaves (or presheaves) on a category 

C. 

To define the notion of a sheaf for a noncommutative space, one must turn to quantales 

[38]. (A quantale is the noncommutative generalisation of a locale.) 
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Appendix E 

Spectral Thiple Reference 

E.l Riemannian Manifold 

The canonical real spectral triple for a Riemannian spin manifold: 

A ·- C00 (M), (E.l) 

1{ ·- L2 (spin(M)), (E.2) 

D ·- · a 11( ) ( {) 1 ( ) b c) -1/ ea X OXJl + 4 Wbcl1 X / / , (E.3) 

J ·- 1 o1 2 0 -, (E.4) 

r ·- /5· (E.5) 

Dimension: 4 (straightforward generalisation to arbitrary dimensions). 

E.2 Matrix Manifold 

The real spectral triple for a matrix manifold (the manifold underlying the Yang-Mills 

action): 

A ·- C00 (M) ® Mn(C), (E.6) 

1i ·- L2 (spin(M)) ® Mn(C), (E.7) 

D .- -ha e~(x) ( ( 0:
11 

+ ~ Wbc11 (x) 'Yb'Yc) ® :f[n + igA~(x) Ta) , (E.8) 

gg 



Dimension: 4 (straightforward generalisation to arbitrary dimensions). 

E.3 Standard Model Manifold 

The real spectral triple for the noncommutative geometry of the standard model: 

(E.9) 

(E.lO) 

A ·- c=(M) 0 (C EB !HI EB M3(C)), (E.ll) 

1l ·- L2(spin(M))0(C24 EBC21 EBC24 EBC21 ), (E.12) 

D ·- -i1ae~(x) (o~l-l +lwbcl-l(x)lblc) 0ligo+/s0Dm, (E.13) 

0 M 0 0 

Mt 0 0 0 

0 0 0 M 

0 

M:= 

0 

0 0 

0 0 0 
r ·- 1s 0 

0 0 -li24 0 

0 0 0 li21 

Dimension: 4 (straightforward generalisation to arbitrary dimensions). 
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(E.l4) 

(E.l5) 

(E.16) 

(E.17) 

(E.18) 

(E.19) 

(E.20) 



E.4 Noncommutative Torus 

The real spectral triple for the noncommutative torus 'II'~: 

A ·- Ao, (E.21) 

1-l ·- L 2 (Ao) EB L2(A.o), (E.22) 

D ·- -i ( 0 
61- i62 

o,: i52 ) ' (E.23) 

J - (~I ~ ) 0 •, (E.24) 

r ·- c ~I) (E.25) 

Dimension: 2. 

E.5 Simple Finite Noncommutative Geometry 

The real spectral triple of a simple finite noncommutative geometry (used by Rovelli in 

[41]): 

A ·- M2(C) EBC, (E.26) 

1-l ·- M3(C), (E.27) 

D ·- Do+ JDoJ- 1
, (E.28) 

0 0 ffi[) 
Do'= ( ~ 0 

:2 ' 
(E.29) 

m1 m2 

J - :n3 0 t' (E.30) 

r ·- ,;,;-1, (E.31) 

7=U 
0 0 

1 0) (E.32) 

0 -1 

Dimension: 0. 
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