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Abstract

This thesis provides a new method for statistical inference on system reliability on

the basis of limited information resulting from component testing. This method

is called Nonparametric Predictive Inference (NPI). We present NPI for system

reliability, in particular NPI for k-out-of-m systems, and for systems that consist of

multiple ki-out-of-mi subsystems in series configuration. The algorithm for optimal

redundancy allocation, with additional components added to subsystems one at a

time is presented. We also illustrate redundancy allocation for the same system in

case the costs of additional components differ per subsystem.

Then NPI is presented for system reliability in a similar setting, but with all

subsystems consisting of the same single type of component. As a further step in

the development of NPI for system reliability, where more general system structures

can be considered, nonparametric predictive inference for reliability of voting sys-

tems with multiple component types is presented. We start with a single voting

system with multiple component types, then we extend to a series configuration

of voting subsystems with multiple component types. Throughout this thesis we

assume information from tests of nt components of type t.
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Chapter 1

Introduction

In classical reliability theory most of the methods and models use precise probabili-

ties to quantify uncertainty, assuming completeness of the probabilistic information

about the system and component reliability behaviour. Walley [57] discussed many

reasons why precise probability is too restrictive for practical uncertainty quantifi-

cation. In reliability, the most important ones include limited knowledge and infor-

mation about random quantities of interest, and possibly information from several

sources which might appear to be conflicting if restricted to precise probabilities.

During the past few decades, several alternative methods for uncertainty quan-

tification have been proposed, some also for reliability. For example, fuzzy reliability

theory [11] and possibility theory [32] provided solutions to problems that could not

be solved satisfactorily with precise probabilities. The theory of imprecise probabil-

ities [57] and the theory of interval probability [59] have been used as a general and

promising tool for reliability analysis. Coolen [13] provided an insight into impre-

cise reliability, discussing a variety of issues and reviewing suggested applications

of imprecise probabilities in reliability, see [54] for a detailed overview of imprecise

reliability and many references.

In this thesis a statistical approach which uses imprecise probability is presented

for system reliability. This approach is called Nonparametric Predictive Inference

(NPI). It provides a new method for statistical inference on system reliability on the

basis of limited information resulting from component testing.

1



1.1. Imprecise probability 2

Section 1.1 provides a brief introduction to imprecise probability, which is an

umbrella term encompassing all qualitative and quantitative ways of measuring un-

certainty without single-valued probabilities. In Section 1.2 we review briefly the

main idea of NPI. The class of k-out-of-m systems and a brief overview of some

recent contributions that focus on reliability of this class of systems is presented in

Section 1.3. The outline of this thesis is given in Section 1.4.

1.1 Imprecise probability

The idea to use interval-valued probabilities dates back at least to the middle of the

nineteenth century [10]. In recent years this has particularly been a growing area of

research. Researchers with widely varying backgrounds are currently contributing

to theory, and indeed applications, of imprecise probability, including mathemati-

cians, statisticians, computer scientists, and researchers working on artificial intel-

ligence, medicine, and a variety of engineering areas. Such researchers are brought

together via the Society for Imprecise Probability Theory and Applications (SIPTA,

http://www.sipta.org), which also organizes biennial conferences.

In classical probability theory, a single probability P (A) ∈ [0, 1] is used to

quantify uncertainty about an event A. Lower and upper probabilities general-

ize the standard theory of (‘single-valued’ or ‘precise’) probability and provide a

powerful method for uncertainty quantification [54]. The main idea is that, for an

event A, lower probability P (A) ∈ [0, 1] and upper probability P (A) ∈ [0, 1] with

0 ≤ P (A) ≤ P (A) ≤ 1 are specified, such that these lower and upper probabilities

define a so-called ‘structure’ M, which is a set of precise probability distributions

corresponding to the lower and upper probabilities in the sense that for each prob-

ability distribution P (·) ∈ M, P (A) ≤ P (A) ≤ P (A) and P (A) = infP (·)∈M P (A)

and P (A) = supP (·)∈M P (A) [8]. The classical situation of precise probability occurs

if P (A) = P (A), whereas P (A) = 0 and P (A) = 1 represents complete lack of

knowledge about A. These lower and upper probabilities are naturally linked by the

conjugacy property P (A) = 1−P (Ac) [8]. This generalization allows indeterminacy

about A to be taken into account, and lower and upper probabilities can also be
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interpreted in several ways. One can consider them as bounds for a precise proba-

bility, related to relative frequency of the event A, reflecting the limited information

one has about A. Generally, P (A) reflects the information and beliefs in favour of

event A, while P (A) reflects such information and beliefs against A, so in favour of

Ac.

Coolen [12] presented lower and upper predictive probabilities for Bernoulli ran-

dom quantities. These lower and upper probabilities are part of a wider statistical

methodology called ‘Nonparametric Predictive Inference’ (NPI), which is a frequen-

tist statistical approach with strong consistency properties in the theory of imprecise

probability [8].

1.2 Nonparametric predictive inference

Nonparametric predictive inference (NPI) is a statistical method to learn from data

in the absence of prior knowledge and using only few modelling assumptions. It

provides a solution to some explicit goals for objective (Bayesian) inference, for

example the empirical and logical norms as formulated by Williamson [60]. These

goals cannot be obtained when using precise probabilities, but are achieved by NPI

after slight reformulation to allow the use of lower and upper probabilities [14]. It

is also exactly calibrated [39], which is a strong consistency property in frequentist

statistics, and it never leads to results that are in conflict with inferences based on

empirical probabilities.

NPI is based on Hill’s assumption A(n) [35], which gives direct probabilities [31]

for a future observable random quantity, based on observed values of n related

random quantities. Suppose that X1, · · · , Xn, Xn+1 are continuous and exchangeable

random quantities. So, for one such a random quantity, its rank among all these

random quantities is uniformly distributed over the values 1 to n + 1 (assuming no

ties for simplicity). Let the ordered observed values of X1, · · · , Xn be denoted by

x(1) < x(2) < · · · < x(n) < 1, and let x(0) = −∞ and x(n+1) = ∞ for ease of notation.

For a future observation Xn+1, based on n observations, A(n) is

P (Xn+1 ∈ (xj−1, xj)) =
1

n + 1
j = 1, 2, · · · , n + 1
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A(n) does not assume anything else, and can be considered to be a post-data as-

sumption related to exchangeability [30]. For a detailed discussion of A(n) we refer

to Hill [36]. Inferences based on A(n) are predictive and nonparametric, and are suit-

able if there is hardly any knowledge about the random quantity of interest, other

than the first n observations, or if one does not want to use such information, for

example to study effects of additional assumptions underlying other statistical meth-

ods. Nevertheless, A(n) has not received much attention in the statistical literature.

A logical reason is that it only assigns equal probabilities for the next observation to

belong to each of the n + 1 intervals created by the previous n observations, so very

few inferences can be based on this without requiring additional assumptions. How-

ever, it provides bounds for probabilities for all events of interest involving Xn+1.

These bounds follow from De Finetti’s fundmental theorem of probability [30] and

are the sharpest bounds for all events, corresponding to the probabilities defined by

the assumption A(n). Consequently, these are lower and upper probabilities in the

theory of imprecise probability.

NPI is a framework of statistical theory and methods that use these A(n)-based

lower and upper probabilities. It has been presented for Bernoulli data [12], real-

valued data [8], data including right-censored observations [25] and multinomial

data [21,22]. NPI has a wide range of applications in statistics, operational research

and reliability [17]. For example, applications of NPI to basic problems in reliability

include reliability demonstration for failure-free periods [23], (opportunity-based)

age replacement [26,27], comparison of success-failure data [28], probabilistic safety

assessment in case of zero failures [15], and prediction of not yet observed failure

modes [16]. In this thesis, we are interested in NPI for system reliability, in particular

NPI for k-out-of-m systems, and for systems that consist of multiple ki-out-of-mi

subsystems in series configuration [18,19,42].

1.3 k-out-of-m systems

The class of k-out-of-m systems, also called ‘voting systems’, was introduced by

Birnbaum [9]. These are systems that consist of m exchangeable components (often



1.3. k-out-of-m systems 5

the confusing term identical components is used), such that the system functions if

and only if at least k of its components function. Since the value of m is usually

larger than the value of k, redundancy is generally built into a k-out-of-m system.

Both parallel and series systems are special cases of the k-out-of-m system. A series

system is equivalent to an m-out-of-m system while a parallel system is equivalent

to an 1-out-of-m system.

Throughout this thesis, we use the term ‘exchangeable components’ to indicate

the scenario required for application of A(n) as described in Sections 1.2 and 2.2.

Effectively, exchangeable components are ‘similar’ with regard to our knowledge

about their functioning. In practice, this may typically apply to components which

are manufactured in the same process and which have similar roles in the system

which is being considered. Information about the quality of components is assumed

to come from testing of further components which are exchangeable with those in the

system. Therefore, this would typically require that tests take place under similar

circumstances as will apply to the functioning of the components in the system.

Applications of k-out-of-m systems can e.g. be found in the areas of target detec-

tion, communication, safety monitoring systems, and, particularly, voting systems.

The k-out-of-m systems are a very common type in fault-tolerant systems with re-

dundancy. They have many applications in both industrial and military systems.

Fault-tolerant systems include the multi-display system in a cockpit, the multi-

engine system in an airplane, and the multi-pump system in a hydraulic control

system [52]. For example, a car with a V 8 engine may be driven if only four cylin-

ders are firing. But, if less than four cylinders fire, then the car cannot be driven.

Thus, the functioning of the engine can be considered as a 4-out-of-8 system. The

system is tolerant of failures of up to four cylinders for minimal functioning of the en-

gine [38]. In a data processing system with five video displays, a minimum of three

displays operable may be sufficient for full data display. In this case the display

system functions as a 3-out-of-5 system. In a communications system with three

transmitters, the average message load may be such that at least two transmitters

must be operational at all times, or else critical messages may be lost. Thus, the

transmission system behaves as a 2-out-of-3 system. Systems with spares may also
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be represented by a k-out-of-m system model. A car with four tires, for example,

usually has one additional spare tire. Thus, the vehicle can be driven as long as at

least 4-out-of-5 tires are in good condition [38].

A traditional problem considered in reliability theory is assessment of system

reliability [7], where voting systems have received particular attention. Many recent

contributions to the literature focus on reliability of the class of k-out-of-m systems,

albeit from a classical perspective using precise probabilities to quantify uncertainty.

For example, Torres-Echeverria et al. [53] address modelling of probability of dan-

gerous failure on demand and spurious trip rate of safety instrumented systems that

include k-out-of-m voting redundancies in their architecture. Senz-de-Cabezn et al.

[49] presented computational algebraic algorithms for the reliability of generalized

k-out-of-m and related systems. They analysed and computed identities and bounds

for the reliability of coherent systems using the techniques of commutative algebra.

They applied the techniques to the analysis of some of the most relevant k-out-of-m

systems. They concluded that the efficiency of their approach in obtaining exact

identities, bounds and asymptotic formulas shows good performance when compared

with others results from the literature.

Moghaddass et al. [45] consider a general repairable k-out-of-m system with

non-identical components that can have different repair priorities. They address

the problem of efficient evaluation of the system’s availability in a way that steady

state solutions can be obtained systematically with reasonable computation time.

Vaurio [56] considers the unavailability of redundant standby systems with k-out-

of-m logic. Such systems are subject to latent failures that are detected by periodic

tests and repaired immediately after discovery. He considers many potential failure

and error modes in the formalism, evaluates both consecutive and staggered testing

schemes and suggests methods for including common cause failures in the analyses.

Levitin [40] proposes a model that generalizes linear consecutive k-out-of-r-from-m

systems to linear n-gap-consecutive k-out-of-r-from-m : F systems. In this model

the system consists of m linearly ordered statistically independent identical elements

and fails if the gap between any pair of groups of r consecutive elements containing

at least k failed elements is less than n elements.
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Erylmaz [33] studied circular consecutive k-out-of-m systems consisting of ex-

changeable components. He derived explicit expressions for both unconditional and

conditional survival functions for 2k + 1 ≥ m, while signature-based mixture repre-

sentations for general k are obtained. Salehi et al. [50] considered linear and circular

consecutive k-out-of-m systems. It is assumed that lifetimes of components of the

systems are independent but their probability distributions are non-identical. The

reliability properties of the residual lifetimes of such systems under the condition

that at least m−r+1, with r ≤ m, components of the system are operating was stud-

ied. The probability that a specific number of components of the above-mentioned

system operate at time t, t > 0, under the condition that the system is alive at

time t was also investigated. Gurler and Capar [34] established an algorithm for

the computation of the mean residual lifetime of an (m− k + 1)-out-of-m system in

the case of independent but not necessarily identically distributed lifetimes of the

components. They gave an application for the exponentiated Weibull distribution

to study the effect of various parameters on the mean residual lifetime of the sys-

tem. The relationship between the mean residual lifetime for the system and that

of its components was also investigated. Ruiz-Castro and Li [48] presented an algo-

rithm for a general discrete voting system subject to several types of failure with an

indefinite number of repairpersons. The model is built and the stationary distribu-

tion, for the general case, is derived using matrix-analytic methods. They computed

performance measures of interest for the transient and the stationary regime, includ-

ing availability, reliability and the conditional probability of failure for the different

types of failures and for the system.

These recent papers are evidence of the continuing importance of development

of methodology to quantify system reliability. The NPI approach presented in this

thesis provides the important opportunity to reflect, by the use of lower and upper

probabilities, the fact that information from tests is often quite limited.
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1.4 Outline of thesis

In this thesis, we present important extensions for the NPI approach to system re-

liability. Coolen-Schrijner et al. [29] considered NPI for system reliability, and in

particular for series systems with subsystem i a ki-out-of-mi system. They presented

an attractive algorithm for optimal redundancy allocation, with additional compo-

nents added to subsystems one at a time. However, they only proved this result

for test data with no failed components. We start with generalising the algorithm

for redundancy allocation presented by Coolen-Schrijner et al. [29] to general test

results, a situation in which redundancy plays an even more important role than

when testing revealed no failures at all. We also illustrate redundancy allocation for

the same system in case the costs of additional components differ per subsystem.

Then NPI is presented for system reliability in a similar setting, but with all sub-

systems consisting of the same single type of component. As a further step in the

development of NPI for system reliability, where more general system structures can

be considered, nonparametric predictive inference for reliability of voting systems

with multiple component types is presented. We start with a single voting system

with multiple component types, then we extend to a series configuration of voting

subsystems with multiple component types. Throughout this thesis we assume in-

formation from tests of nt components of type t. All computations were performed

using R. Some parts of this thesis have been presented at conferences and related

papers have been published in academic journals or are in submission [1–6,18,19,42].

Chapter 2 begins with a brief overview of NPI for Bernoulli data, using a path

counting technique to compute upper and lower probabilities. We present the main

results on NPI for k-out-of-m systems, and these results are illustrated and discussed

via examples. We provide a detailed presentation of optimal redundancy allocation

following general component test results and the proofs of the main results. We

present another extension for the NPI approach to system reliability, namely inclu-

sion of different costs per component of the different types. Part of this chapter

was presented at the 18th Advances in Risk and Reliability Technology Symposium

(Loughborough, UK, 2009) [1].
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In Chapter 3, we consider NPI for system reliability in a similar setting, but with

all subsystems consisting of the same single type of component. Such components

are exchangeable with regard to the information about them contained in test results

but they play different roles in the system if they are in different subsystems. NPI

lower and upper probabilities for a series of two ki-out-of-mi subsystems consisting

of single-type components are derived. These results are generalized to systems

with L ≥ 2 ki-out-of-mi subsystems in a series configuration. This chapter was

presented (by Frank Coolen) at a symposium in remembrance of Professor Jan M.

van Noortwijk (Delft, the Netherlands, 2009) [18].

In Chapter 4, we consider more general system structures. Whilst restricting

attention to a single voting system, this can now consist of multiple types of com-

ponents. They are assumed to all play the same role within the system, but with

regard to their reliability components of different types are assumed to be indepen-

dent. This chapter was presented at the International Conference on Accelerated

Life Testing, Reliability-based Analysis and Design: ALT2010 (Clermont-Ferrand,

France, 2010) [2].

In Chapter 5, we generalize the results introduced in Chapters 2, 3 and 4 by

considering systems in series structure where each subsystem is a voting system with

multiple types of components and with components of the same type appearing in

different subsystems. A part of Chapter 5 was presented at the 19th Advances in

Risk and Reliability Technology Symposium (Stratford-upon-Avon, UK, 2011) [3],

and a comprehensive overview of Chapter 5 and the main parts of this thesis was

presented at the European Safety & Reliability Conference - ESREL 2011 (Troyes,

France, 2011) [4].

In Chapter 6, we discuss opportunities to extend the research presented in this

thesis, which is also discussed in the final sections of each of Chapters 2 to 5.

Although the most general results in Chapter 5 contain the results of Chapters

2, 3 and 4 as special cases, the presentation in this thesis reflects the progress

of the research project over time and in every step a substantial problem is solved,

hence this order of detailed presentation provides much insight into the complexities

involved.



Chapter 2

Series of independent voting

subsystems

2.1 Introduction

Coolen-Schrijner et al. [29] considered NPI for system reliability, and in particular

for series systems with subsystem i a ki-out-of-mi system. Such systems are com-

mon in practice, and can offer the important advantage of building in redundancy

by increasing some mi to increase the system reliability. Coolen-Schrijner et al. [29]

applied NPI for Bernoulli data [12] to such systems, with inferences on each sub-

system i based on information from tests on ni components, with the components

tested assumed to be exchangeable with the corresponding components to be used

in that subsystem. Coolen-Schrijner et al. [29] presented an attractive algorithm for

optimal redundancy allocation, with additional components added to subsystems

one at a time, which in their setting was proven to be optimal. Hence, NPI for

system reliability provides a very tractable model, which greatly simplifies optimi-

sation problems involved with redundancy allocation. However, they only proved

this result for tests in which no components failed. In this chapter, this result is

generalized for redundancy allocation following tests in which any number of com-

ponents can have failed, a situation in which redundancy possibly plays an even

more important role than when testing revealed no failures at all.

10
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Section 2.2 presents a brief overview of NPI, and particularly of NPI for Bernoulli

data using a path counting technique to compute upper and lower probabilities.

Section 2.3 presents the main results on NPI for k-out-of-m systems [29], and these

results are illustrated and discussed via examples. Section 2.4 extends this approach

to systems which are series of independent subsystems, with each subsystem a ki-

out-of-mi system with exchangeable components. Section 2.5 provides a detailed

presentation of optimal redundancy allocation following general component test re-

sults and the proof of optimality. Section 2.6 presents another extension for the NPI

approach to system reliability, namely the optimization of system reliability under

cost considerations. Section 2.7 contains some concluding remarks.

2.2 NPI for Bernoulli quantities

In this section, NPI for Bernoulli random quantities [12] is summarized, together

with the key results for NPI for system reliability by Coolen-Schrijner et al. [29].

Suppose that there is a sequence of n + m exchangeable Bernoulli trials, each with

‘success’ and ‘failure’ as possible outcomes, and data consisting of s successes in

n trials. Let Y n
1 denote the random number of successes in trials 1 to n, then a

sufficient representation of the data for the inferences considered is Y n
1 = s, due

to the assumed exchangeability of all trials. Let Y n+m
n+1 denote the random number

of successes in trials n + 1 to n + m. Let Rt = {r1, . . . , rt}, with 1 ≤ t ≤ m + 1

and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of notation, define
(

s+r0

s

)
= 0.

Then the NPI upper probability for the event Y n+m
n+1 ∈ Rt, given data Y n

1 = s, for

s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =(
n + m

n

)−1

×
t∑

j=1

[(
s + rj

s

)
−
(

s + rj−1

s

)](
n − s + m − rj

n − s

)
The corresponding NPI lower probability can be derived via the conjugacy property

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1 − P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s)

where Rc
t = {0, 1, . . . , m}\Rt.
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(0,0)
n

m (n,m)

Figure 2.1: All possible paths from (0,0) to (n,m)

Coolen [12] derived these NPI lower and upper probabilities through direct count-

ing arguments. The method uses the appropriate A(n) assumptions [35] for inference

on m future random quantities given n observations, and a latent variable represen-

tation with Bernoulli quantities represented by observations on the real line, with

a threshold such that successes are to one side and failures to the other side of the

threshold. Under these assumptions, the
(

n+m
n

)
different orderings of these obser-

vations, when not distinguishing between the n observed values nor between the m

future observations, are all equally likely. For each such an ordering, the success-

failure threshold can be in any of the n + m + 1 intervals of the partition of the real

line created by the n+m values of the latent variables, leading to n+m+1 possible

combinations (s, r), with s successes in the n tests and r successes in the m future

observations.

For such an ordering, these possible (s, r) can be represented as a path on the

rectangular lattice from (0, 0) to (n,m) with steps going either one to the right

or one upwards (see Figure 2.1). The
(

n+m
n

)
different orderings, which are all

equally likely, correspond to the
(

n+m
n

)
different right-upwards paths from (0, 0) to

(n,m), and hence the above NPI lower and upper probabilities can also be derived

by counting paths. To derive the NPI lower probability P (Y n+m
n+1 ∈ Rt|Y n

1 = s),

one counts all such paths which for given s must go only through points (s, r) with
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k

(0,0) s−1 s n

m (n,m)

Figure 2.2: all paths from (0,0) to (n,m) that pass through (s− 1, k) and (s + 1, k)

s n

(n,m)

(0,0)

k

m

Figure 2.3: All paths from (0,0) to (n,m) via (s, k)

r ∈ Rt, so they do not go through (s, l) for any l ∈ Rc
t . The corresponding NPI

upper probability P (Y n+m
n+1 ∈ Rt|Y n

1 = s) is derived by counting all such paths that

go through at least one (s, r) with r ∈ Rt. For example, the NPI lower probability

for the event (Y n+m
n+1 = k | Y n

1 = s) can be derived by counting the paths from (0,0)

to (n,m) that pass through the two points (s− 1, k) and (s + 1, k) respectively (see

Figure 2.2). The number of these paths is
(

s−1+k
s−1

)(
n−s−1+m−k

m−k

)
, hence

P (Y n+m
n+1 = k | Y n

1 = s) =

(
n + m

n

)−1 [(
s − 1 + k

s − 1

)(
n − s − 1 + m − k

m − k

)]
The corresponding NPI upper probability can be derived by counting all paths

from (0,0) to (n,m) via (s, k) (see Figure 2.3). The number of these paths is(
s+k

s

)(
n−s+m−k

n−s

)
, hence

P (Y n+m
n+1 = k | Y n

1 = s) =

(
n + m

n

)−1 [(
s + k

s

)(
n − s + m − k

n − s

)]
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+ + ... +

0 0 0

(n,m) (n,m) (n,m)

k kk

k+1k+1 k+1

s s ss−1 s−1s−1

m

n

m

n n

m

Figure 2.4: All paths which are counted in the upper probability (2.1)

In the next section, these results of NPI for Bernoulli data, are used to compute

upper and lower probabilities for successful functioning of k-out-of-m systems.

2.3 NPI for a k-out-of-m system

When considering a k-out-of-m system, the event Y n+m
n+1 ≥ k is of interest as this

corresponds to successful functioning of a k-out-of-m system, following n tests of

components that are exchangeable with the m components in the system considered.

Given data consisting of s successes from n components tested, the NPI lower and

upper probabilities for the event that the k-out-of-m system functions successfully

are also denoted by P (S(m : k)| (n, s)) and P (S(m : k)| (n, s)), respectively. From

the NPI upper probability for Y n+m
n+1 ∈ Rt given above, P (S(m : k)| (n, s)) follows

easily. For k ∈ {1, 2, . . . , m} and 0 < s < n,

P (S(m : k)| (n, s)) = P (Y n+m
n+1 ≥ k|Y n

1 = s) =

(
n + m

n

)−1

×[(
s + k

s

)(
n − s + m − k

n − s

)
+

m∑
l=k+1

(
s + l − 1

s − 1

)(
n − s + m − l

n − s

)]
(2.1)

This NPI upper probability can also be derived by counting all such paths that go

through at least one point (s, r) with r ≥ k. To avoid that no path is counted more

than once, the number of these paths can be computed by counting all paths from

(0,0) to (n,m) via (s, k), in addition to paths from (0,0) to (n,m) via at least one

of (s − 1, k + 1), (s − 1, k + 2), (s − 1, k + 3), . . . , (s − 1,m) (see Figure 2.4). The
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+ + ... +

0 0 0s s ss−1 s−1 s−1

k k k

k+1k+1 k+1

(n,m) (n,m) (n,m)

n

m m

n

m

n

Figure 2.5: All paths which are counted in the lower probability (2.2)

corresponding NPI lower probability can be derived via the conjugacy property or by

counting all paths which go through (s, r) for r ≥ k but not through any point (s, r)

with r less than k. The number of these paths is equal to the number of paths from

(0,0) to (n,m) via at least one of (s−1, k), (s−1, k +1), (s−1, k +2), . . . , (s−1,m)

(see Figure 2.5).

P (S(m : k)| (n, s)) = P (Y n+m
n+1 ≥ k|Y n

1 = s) = 1 − P (Y n+m
n+1 ≤ k − 1|Y n

1 = s)

= 1 −
(

n + m

n

)−1
[

k−1∑
l=0

(
s + l − 1

s − 1

)(
n − s + m − l

n − s

)]
(2.2)

For m = 1, so considering a system consisting of just a single component, the NPI

upper and lower probabilities for the event that the system functions successfully

are

P (S(1 : 1)| (n, s)) = P (Y n+1
n+1 = 1|Y n

1 = s) =
s + 1
n + 1

P (S(1 : 1)| (n, s)) = P (Y n+1
n+1 = 1|Y n

1 = s) =
s

n + 1

If the observed data are all successes, so s = n, or all failures, so s = 0, then the

NPI upper probabilities are, for all k ∈ {1, . . . , m},

P (S(m : k)| (n, n)) = P (Y n+m
n+1 ≥ k|Y n

1 = n) = 1

P (S(m : k)| (n, 0)) = P (Y n+m
n+1 ≥ k|Y n

1 = 0) =
(

n + m − k

n

)(
n + m

n

)−1

and the NPI lower probabilities are, for all k ∈ {1, . . . , m},

P (S(m : k)| (n, n)) = P (Y n+m
n+1 ≥ k|Y n

1 = n) = 1 −
(

n + k − 1
n

)(
n + m

n

)−1

P (S(m : k)| (n, 0)) = P (Y n+m
n+1 ≥ k|Y n

1 = 0) = 0
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n(0,0)

k

s s+1

m (n,m)

Figure 2.6: All paths which are counted in (2.3)

One of the results that actually holds generally for the NPI lower and upper

probabilities for all k-out-of-m systems as considered in this thesis is

P (S(m : k)| (n, s)) = P (S(m : k)| (n, s + 1)) (2.3)

A direct proof of (2.3) can be easily achieved by using a path counting technique.

Figure 2.6 shows that the paths that go through at least one point (s, r) with r ≥ k

(which are counted in the NPI upper probability for successful system functioning

given s successes in n tests) ara exactly the same paths that go through (s+1, r) for

r ≥ k but not through any point (s + 1, r) with r less than k (which are counted in

the NPI lower probability for successful system functioning given s + 1 successes).

2.3.1 Examples of k-out-of-m systems

In this subsection two examples are presented to illustrate NPI for reliability of

k-out-of-m systems, and some related issues are discussed.

Example 2.1

Consider a k-out-of-6 system. Table 2.1 provides the NPI lower and upper proba-

bilities for all possible cases with n = 5 components tested, of which s functioned

successfully, and with k varying from 1 to 6. The values in Table 2.1 illustrate some

of the general properties for all k-out-of-m systems. The NPI upper probability for

successful system functioning given s successes in n tests is equal to the NPI lower
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

P P P P P P P P P P P P

s = 0 0 0.545 0 0.273 0 0.121 0 0.045 0 0.013 0 0.002

s = 1 0.545 0.818 0.273 0.576 0.121 0.348 0.045 0.175 0.013 0.067 0.002 0.015

s = 2 0.818 0.939 0.576 0.803 0.348 0.608 0.175 0.392 0.067 0.197 0.015 0.061

s = 3 0.939 0.985 0.803 0.933 0.608 0.825 0.392 0.652 0.179 0.424 0.061 0.182

s = 4 0.985 0.998 0.933 0.987 0.825 0.955 0.652 0.878 0.424 0.727 0.182 0.455

s = 5 0.998 1 0.987 1 0.955 1 0.878 1 0.727 1 0.455 1

Table 2.1: NPI lower and upper probabilities for all possible cases with n = 5

probability for successful system functioning given s + 1 successes. The value 0 (1)

of the NPI lower (upper) probability for the case s = 0 (s = 5) reflects that in this

case there is no strong evidence that the components can actually function (fail).

In order to get a reasonably large NPI lower probability for successful system func-

tioning, it is not necessarily required that most tested components functioned well

if k is small, which means that the system has much built-in redundancy, but for

large values of k (nearly) all tested components must have been successful. Table

2.1 shows that the lower and upper probabilities are decreasing in k when keeping

m, n and s constant, and increasing in s when keeping m, n and k constant. This

is most obvious from the large differences between the values at the top left and

bottom right of Table 2.1.

Example 2.2

Consider a 10-out-of-m system. Suppose that, to increase the system’s reliability

by increasing redundancy, extra components can be added to the system, keeping

k = 10 but increasing the value of m. Assuming zero-failure testing, the NPI lower

probabilities for the event that this system functions successfully are presented in

Table 2.2 , for n = 5, 10, 15, 20, 25, and m varying from 10 to 15. Of course, the

corresponding NPI upper probabilities are all equal to one as there are no failed

components. Table 2.2 shows that the system’s reliability as measured by NPI

lower probability is increasing in m, keeping n and k constant, and increasing in n,

keeping m and k constant.
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m = 10 11 12 13 14 15

s = n = 5 0.333 0.542 0.676 0.766 0.828 0.871

10 0.500 0.738 0.857 0.919 0.953 0.972

15 0.600 0.831 0.925 0.965 0.983 0.992

20 0.667 0.882 0.956 0.983 0.993 0.997

25 0.714 0.913 0.972 0.990 0.997 0.999

Table 2.2: NPI lower probabilities for the systems in Example 2.2

The NPI lower probabilities presented in Table 2.2 can be used in several ways.

For example, consider the case m = 10 with 5 zero-failure tests, leading to NPI

lower probability 0.333 for successful system functioning. The table shows that

increasing the redundancy to m = 11, keeping k = 10, would increase the NPI lower

probability to 0.542, while increasing the number of zero-failure tests to 10 would

increase the NPI lower probability to 0.5, so if these two actions were available at

similar costs, increase of redundancy might be preferred to more tests. However, if

15 tests were possible at a cost similar to the cost of adding one component to the

system, then this might be preferred, as the corresponding NPI lower probability

would increase to 0.6 if all 15 tests were successes. Of course, we do not know if

extra tested components would all function successfully.

Table 2.3 extends this example by presenting the minimum number of zero-failure

tests required to achieve a chosen value for the NPI lower probability for successful

system functioning, again for k = 10 and m varying from 10 to 15. The requirement

considered is P (S(m : 10)| (n, n)) ≥ p for different values of p.

The main conclusion from Table 2.3 is that the system’s reliability, as measured

by NPI lower probability, can be increased either by having more successful tests or

by building in redundancy.

2.4 Series of independent ki-out-of-mi subsystems

Coolen-Schrijner et al. [29] used the results for a k-out-of-m system straightfor-

wardly to consider the reliability of systems that consist of a series configuration
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m = 10 11 12 13 14 15

p = 0.75 30 11 7 5 4 4

0.80 40 13 8 6 5 4

0.85 57 17 10 7 6 5

0.90 90 23 13 9 7 6

0.95 190 37 19 13 10 8

0.99 990 95 40 25 18 15

Table 2.3: Values of n required to achieve chosen values of p.

of L ≥ 2 independent subsystems, with subsystem i (i = 1, . . . , L) a ki-out-of-mi

system consisting of exchangeable components. As before, it is assumed that, in

relation to subsystem i, ni components that are exchangeable with those to be used

in the subsystem have been tested, of which si functioned successfully. For the se-

ries system to function, all its subsystems must function, and due to the assumed

independence of the subsystems (which implies independence of components in dif-

ferent subsystems), the NPI lower and upper probabilities for such a series system

to function are

P (S[L](m1 : k1, . . . ,mL : kL) | (n, s)) =
L∏

i=1

P (S(mi : ki)| (ni, si)) (2.4)

and

P (S[L](m1 : k1, . . . ,mL : kL) | (n, s)) =
L∏

i=1

P (S(mi : ki)| (ni, si)) (2.5)

Coolen-Schrijner et al. [29] considered optimal redundancy allocation for such

systems, that is how best to assign additional components to subsystems (hence to

increase the number of components mi), for situations where the required number of

components that must function for the subsystems remains the same (ki). However,

they only considered such redundancy allocation after zero-failure testing (so si = ni

for all i = 1, . . . , L), for which case they derived a powerful algorithm for optimal

redundancy allocation, with the lower probability for system functioning used as the

reliability measure. The NPI lower and upper probabilities for such a series system

to function are illustrated and discussed in the following example.
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(m1,m2) = (4, 4) (4, 5) (5, 5) (4, 6) (4, 7) (5, 6) (6, 6)

(s1, s2) = (1,1) 0.0000 0.0001 0.0002 0.0001 0.0002 0.0005 0.0009

(1,2) 0.0001 0.0003 0.0010 0.0006 0.0009 0.0018 0.0037

(2,1) 0.0001 0.0004 0.0010 0.0007 0.0012 0.0020 0.0037

(2,2) 0.0006 0.0016 0.0045 0.0029 0.0043 0.0081 0.0147

(3,3) 0.0051 0.0125 0.0307 0.0203 0.0274 0.0497 0.0804

(4,3) 0.0119 0.0292 0.0611 0.0473 0.0639 0.0988 0.1418

(5,3) 0.0238 0.0584 0.1009 0.0945 0.1278 0.1633 0.2062

(3,4) 0.0119 0.0249 0.0611 0.0357 0.0440 0.0877 0.1418

(3,5) 0.0238 0.0411 0.1009 0.0519 0.0586 0.1275 0.2062

(4,4) 0.0278 0.0581 0.1214 0.0833 0.1028 0.1742 0.2500

(5,4) 0.0556 0.1162 0.2006 0.1667 0.2055 0.2879 0.3636

(6,4) 0.1000 0.2091 0.2851 0.3000 0.3699 0.4091 0.4545

(4,5) 0.0556 0.0960 0.2006 0.1212 0.1368 0.2534 0.3636

(4,6) 0.1000 0.1364 0.2851 0.1515 0.1585 0.3168 0.4545

(5,5) 0.1111 0.1919 0.3315 0.2424 0.2735 0.4187 0.5289

(6,5) 0.2000 0.3455 0.4711 0.4364 0.4923 0.5950 0.6612

(5,6) 0.2000 0.2727 0.4711 0.3030 0.3170 0.5234 0.6612

(6,6) 0.3600 0.4909 0.6694 0.5454 0.5706 0.7438 0.8264

Table 2.4: NPI lower probability for system functioning

Example 2.3

Consider a system which consists of two independent subsystems (so L = 2) in

a series configuration, where for each subsystem 4 exchangeable components must

function to ensure that the subsystem functions, hence k1 = k2 = 4, and where 6

components exchangeable with those in subsystem 1 have been tested, and also 6

components exchangeable with those in subsystem 2 have been tested, so n1 = n2 =

6. Tables 2.4 and 2.5 present the NPI lower and upper probabilities, respectively,

for functioning of this system, for varying numbers of test successes (s1 and s2) and

different numbers of components (m1 and m2) in these ki-out-of-mi subsystems.

Test results for which the NPI lower probability for system functioning is zero

(s1 = 0 or s2 = 0) are deleted from Table 2.4, the case s1 = s2 = 6 is deleted from
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(m1, m2) = (4, 4) (4, 5) (5, 5) (4, 6) (4, 7) (5, 6) (6, 6)

(s1, s2) = (0,0) 0.0000 0.0001 0.0002 0.0001 0.0002 0.0005 0.0009

(1,0) 0.0001 0.0004 0.0010 0.0007 0.0012 0.0020 0.0037

(2,0) 0.0003 0.0011 0.0027 0.0022 0.0035 0.0053 0.0086

(0,1) 0.0001 0.0003 0.0010 0.0006 0.0009 0.0018 0.0037

(0,2) 0.0003 0.0008 0.0027 0.0014 0.0018 0.0043 0.0086

(1,1) 0.0006 0.0016 0.0045 0.0029 0.0043 0.0081 0.0147

(1,2) 0.0017 0.0042 0.0118 0.0068 0.0091 0.0190 0.0344

(2,1) 0.0017 0.0048 0.0118 0.0087 0.0128 0.0213 0.0344

(2,2) 0.0051 0.0125 0.0307 0.0203 0.0274 0.0497 0.0804

(3,3) 0.0278 0.0581 0.1214 0.0833 0.1028 0.1742 0.2500

(4,3) 0.0556 0.1162 0.2006 0.1667 0.2055 0.2879 0.3636

(5,3) 0.1000 0.2091 0.2851 0.3000 0.3699 0.4091 0.4545

(3,4) 0.0556 0.0960 0.2006 0.1212 0.1368 0.2534 0.3636

(3,5) 0.1000 0.1364 0.2851 0.1515 0.1585 0.3168 0.4545

(4,4) 0.1111 0.1919 0.3315 0.2424 0.2735 0.4187 0.5289

(5,4) 0.2000 0.3455 0.4711 0.4364 0.4923 0.5950 0.6612

(6,4) 0.3333 0.5758 0.5758 0.7273 0.8205 0.7273 0.7273

(4,5) 0.2000 0.2727 0.4711 0.3030 0.3170 0.5234 0.6612

(4,6) 0.3333 0.3333 0.5758 0.3333 0.3333 0.5757 0.7273

(5,5) 0.3600 0.4909 0.6694 0.5454 0.5706 0.7438 0.8264

(6,5) 0.6000 0.8182 0.8182 0.9091 0.9510 0.9091 0.9091

(5,6) 0.6000 0.6000 0.8182 0.6000 0.6000 0.8182 0.9091

Table 2.5: NPI upper probability for system functioning

Table 2.5 as the corresponding NPI upper probability is one for all m1 and m2.

These tables illustrate the manner in which system reliability, measured by these

NPI lower and upper probabilities, increases with increasing numbers of test suc-

cesses and with increasing system redundancy. They also illustrate that, as the

property P (S(m : k)| (n, s)) = P (S(m : k)| (n, s + 1)) still holds per subsystem, for

the whole system P (S[L](m1 : k1, . . . , mL : kL) | (n, s)) = P (S[L](m1 : k1, . . . , mL :

kL) | (n, s + 1)), where the elements of s + 1 is obtained by adding one to each ele-

ment of s. For example, the NPI upper probabilities for (s1, s2) equal to (1,1), (2,2),

(3,3), (3,4), (4,3) and (4,4) are equal to the corresponding NPI lower probabilities
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for (s1, s2) equal to (2,2), (3,3), (4,4), (4,5), (5,4) and (5,5) respectively. Note that in

situations where for a particular subsystem all performed tests are successes, the NPI

upper probability for system functioning is in fact the NPI upper probability that

the other subsystem functions. For example, in Table 2.5 for (s1, s2) = (6, 5), the

NPI upper probabilities for system functioning with (m1,m2) equal to (4, 6), (5, 6)

and (6, 6) are identical and equal to the NPI upper probability that subsystem 2, a

4-out-of-6 subsystem, functions.

The next section introduces a generalization of the optimal redundancy allocation

algorithm by Coolen-Schrijner et al. [29] to general test results. It is particularly

logical to focus attention on the NPI lower probability in this generalization, as the

lower probability can be considered to be a conservative inference.

2.5 Redundancy allocation

The systems considered in this section consist of series configurations of L inde-

pendent ki-out-of-mi subsystems, and information about reliability of components

results from tests in which, for subsystem i, ni components that are exchangeable

with those in subsystem i have been tested, of which si functioned successfully. From

now on, it is assumed that si ≥ 1 for all i = 1, . . . , L, in order to avoid problems

occurring due to the fact that the NPI lower probability for successful functioning

of a ki-out-of-mi system is equal to zero if si = 0, for all ni, ki,mi. In practice, it

is unlikely that one would wish to proceed with components of which none func-

tioned successfully in testing, so this assumption seems not to limit the practical

applicability of the method proposed here in a significant manner.

2.5.1 Redundancy allocation algorithm

With reliability measured by the NPI lower probability for system functioning, op-

timal redundancy allocation of extra components can be achieved (as we prove in

the next section), for any number of extra components, by sequential one-step op-

timal allocation. According to this technique, at each step an extra component is

allocated to the subsystem for which the relative increase in reliability is maximal.
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The algorithm to determine the optimal sequence of adding the extra components

to subsystems is described below, where optimality is in the sense of maximum NPI

lower probability.

The NPI lower probability for successful functioning of the whole system, fol-

lowing ni tests of components exchangeable with those in subsystem i of which si

functioned successfully, is P (S[L](m1 : k1, . . . , mL : kL) | (n, s)) as given by (2.4).

Now consider the situation with ji additional components added to subsystem i, for

i = 1, . . . , L, with no further tests performed, then the NPI lower probability for

successful functioning of the system becomes

P (S[L](m1 + j1 : k1, . . . ,mL + jL : kL) | (n, s)) =
L∏

i=1

P (S(mi + ji : ki)| (ni, si))

Optimal allocation of (any number of) additional components, to enhance the system

reliability, can be achieved by adding the components in an optimal sequence ac-

cording to the following algorithm (given in pseudo-code), in which, for i = 1, . . . , L

and ji ≥ 0,

ρ(i, ji) =
P (S(mi + ji + 1 : ki)| (ni, si))

P (S(mi + ji : ki)| (ni, si))

So ρ(i, ji) is the factor by which the NPI lower probability for successful functioning

of subsystem i increases when ji + 1 instead of ji extra components are added

to subsystem i, hence this represents the relative increase in reliability of both

subsystem i and the whole system.

Optimal allocation algorithm

1. Set ji = 0 and calculate ρ(i, ji) = ρ(i, 0) for all i = 1, . . . , L;

2. Determine im such that

ρ(im, jim) = max
1≤i≤L

ρ(i, ji)

If this im is not a unique value, then, according to one-step-at-a-time opti-

misation, pick any one of these values (from the proof of optimality of this

algorithm, as presented in Subsection 2.5.2, it follows that in case of multiple



2.5. Redundancy allocation 24

maxima these can be taken in any order without affecting the optimal lower

probability of system functioning at any stage);

3. Add an extra component to subsystem im: set jim := jim + 1 and calculate

ρ(im, jim);

4. Return to Step 2, using the same values ρ(i, ji) as in the previous step for i 6=

im, together with the new value ρ(im, jim) for subsystem im, as just calculated

in Steps 2 and 3.

This algorithm can be stopped at any time, whatever stop-criterion is defined,

and will always give optimal allocation of extra components. After stopping the

algorithm, the vector j = (j1, . . . , jL) gives the number of extra components added

to each subsystem, and the NPI lower probability for successful functioning of the

system after adding these extra components is equal to

P (S[L](m1 + j1 : k1, . . . ,mL + jL : kL) | (n, s)) =

P (S[L](m1 : k1, . . . , mL : kL) | (n, s)) ×
L∏

i=1

ji−1∏
li=0

ρ(i, li).

This enables easy calculation of the NPI lower probability following Step 3 of the

above algorithm, as it just requires the previous value of this NPI lower probability

to be multiplied by the ρ(im, jim) calculated at that step.

2.5.2 Optimality of redundancy allocation algorithm

It is claimed that the sequential one-step redundancy allocation algorithm presented

in Section 2.5.1 provides overall optimality in the sense of maximum NPI lower prob-

ability for successful functioning of the system, no matter how many components

can be added in total, or indeed how the number of extra components is deter-

mined. The proof of this optimality is given below with some change of notation for

convenience.

Let ν(n,m) denote the number of equally likely orderings of those variables for

which the data Y n
1 = s must be followed by Y n+m

n+1 ≥ k as explained in Section 2.3.1.
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Let λ(n,m) = P (m : k | n, s), so

λ(n,m) =

(
n + m

n

)−1

ν(n,m) (2.6)

For (n,m) such that n + m ≥ s + k these λ(n,m) are

λ(n,m) =


P (Y n+m

n+1 ≥ k | Y n
1 = s), n ≥ s, m ≥ k

1, 0 < n ≤ s − 1,

0, 0 < m ≤ k − 1

.

As ν counts paths the following key equation holds

ν(n,m + 1) = ν(n,m) + ν(n − 1,m + 1), n + m ≥ s + k

and by employing standard binomial identities

(n + m + 1)λ(n,m + 1) = (m + 1)λ(n,m) + nλ(n − 1, m + 1) . (2.7)

When s = 1 and k = 1 the simple form λ(n,m) = m/(n + m) holds for n + m ≥ 1.

It was shown by Coolen-Schrijner et al. [29] that {λ(s,m)}m is increasing and

log-concave, specifically {λ(s,m) : m ≥ k} is increasing in m, {λ(s,m+1)/λ(s,m)) :

m ≥ k} is decreasing in m. To prove that the redundancy allocation algorithm in

the previous section is optimal, these results need to be generalized to the case

of general n. The first step is establishing monotonicity for each n, working with

diagonal sets of nodes, i.e. with n + m fixed.

Lemma 2.1. For any n ≥ s, t ≥ s + k,

1. {λ(t − m,m) : k − 1 ≤ m ≤ t} is increasing in m;

2. {λ(n,m) : m ≥ k − 1} is increasing in m.

Proof.

1. This is true for t = s + k as 0 < s/(s + k) < 1. Suppose it is true for t ≥ s + k

and consider the sequence for t + 1. By (2.7)

λ(t − m, m + 1) =
m + 1

t + 1
λ(t − m,m) +

t − m

t + 1
λ(t − m − 1,m + 1)

> λ(t − m,m) (induc. hyp.) (2.8)

>
m

t + 1
λ(t + 1 − m,m − 1) +

t + 1 − m

t + 1
λ(t − m,m)

= λ(t + 1 − m,m) (by (2.7) )
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and the result holds for all t ≥ s + k by induction.

2. By (2.8), for any n ≥ s, λ(n,m + 1) > λ(n,m) for m ≥ k.

Now the ratios λ(n,m+1)/λ(n,m) are considered. It is slightly more convenient

to work with the reciprocals λ(n,m)/λ(n,m+1). Once again working with diagonal

sets of nodes proves to be easiest.

Lemma 2.2. For each t = s + k + 1, s + k + 2, . . . the sequence of ratios

{λ(t − m, m − 1)/λ(t + 1 − m,m) : k ≤ m ≤ t + 1 − s} is increasing in m.

Proof. The case t = s + k + 1 is readily established by direct calculation. Suppose

that the result has been established for some t − 1 where t ≥ s + k + 2. Introduce

the notation `m = λ(t − 1 − m,m), Lm = λ(t − m,m) to simplify the expressions.

Next it is shown that {Lm−1/Lm : m ≥ k} is increasing. Using (2.7)

Lm

Lm+1

=
m`m−1 + (t − m)`m

(m + 1)`m + (t − 1 − m)`m+1

,
Lm−1

Lm

=
(m − 1)`m−2 + (t + 1 − m)`m−1

m`m−1 + (t − m)`m

so (after cross-multiplying) the aim is to show that

L2
m − Lm+1Lm−1 > 0 for m = k, k + 1, . . . , t + 1 − s . (2.9)

From the induction hypothesis it follows that ∆2
m ≡ `2

m − `m+1`m−1 > 0 for m =

k,. . . , t − s and similarly that for k + 1 ≤ m ≤ t + 1 − s,

Γ1 ≡ `m`m−1 − `m+1`m−2 = `m+1`m−1

(
`m

`m+1

− `m−2

`m−1

)
> 0

(Γ1 = 0 when m = k since `k−1 = `k−2 = 0). Further from Lemma 2.1

Γ2 ≡ `m`m−2 + `m+1`m−1 − `m+1`m−2 − `m`m+1 = (`m−2 − `m−1)(`m − `m+1) > 0

for k+1 ≤ m ≤ t−s with Γ2 = 0 when m = k or m = t+1−s. For k ≤ m ≤ t+1−s

t2(L2
m − Lm+1Lm−1) = m2∆2

m−1 + (t − m)2∆2
m +

(
m(t − m) − t

)
Γ1 + Γ2 > 0

as m(t − m) > t. Thus (2.9) holds and the result for all t ≥ s + k + 1 follows by

induction.
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Theorem 2.1. For any fixed n ≥ s,

λ(n,m)

λ(n,m + 1)
>

λ(n, m − 1)

λ(n,m)
for m ≥ k.

Proof. The inequality is trivial when m = k so suppose m ≥ k + 1. From (2.7) and

Lemma 2.1 (1)

λ(n,m + 1)

λ(n,m)
<

m

n + m
+

n

n + m

λ(n − 1,m + 1)

λ(n,m)

while from (2.7) (at (n,m) instead of (n,m + 1))

λ(n,m)

λ(n,m − 1)
=

m

n + m
+

n

n + m

λ(n − 1,m)

λ(n,m − 1)
.

It follows immediately that

λ(n − 1,m + 1)

λ(n,m)
<

λ(n − 1,m)

λ(n,m − 1)
=⇒ λ(n,m + 1)

λ(n,m)
<

λ(n,m)

λ(n,m − 1)
.

It is thus sufficient to show, in the notation of Lemma 2, that Lm+1/Lm < `m/`m−1.

Expanding Lm+1 and Lm using (2.7) and cross-multiplying leads to

[(m + 1)`m + (n − 1)`m+1]`m−1 < [m`m−1 + n`m]`m

⇔ `m`m−1 − `m+1`m−1 < n(`2
m − `m+1`m−1)

⇔ `m−1(`m − `m+1) < n∆2
m .

By Lemma 2.1 (1) the left-hand term is negative and by Lemma 2.2 the right-hand

term is positive so the result is established.

Example 2.4

The redundancy allocation algorithm presented in Section 2.5.1 is illustrated via

a basic system consisting initially of four independent ki-out-of-mi subsystems in

series configuration with the values ki and mi as given in Table 2.6. Several scenarios

of allocation of additional components, to increase redundancy optimally, will be

illustrated for this system, with different numbers of successes in the tests of different

components. Throughout this example, we assume that 5 components of each type

were tested, so ni = 5 for i = 1, . . . , 4.

Table 2.7 presents the optimal allocation sequences of 5 extra components for

zero-failure tests and for tests in which a single component of one type failed. In
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i ki mi

1 1 2

2 2 3

3 3 5

4 1 4

Table 2.6: Subsystem i: ki-out-of-mi

(s1, s2, s3, s4) sequence initial reliability final reliability

(5, 5, 5, 5) 2-3-1-2-3 0.7733 0.9259

(4, 5, 5, 5) 1-2-3-1-2 0.6960 0.8877

(5, 4, 5, 5) 2-2-3-2-1 0.6186 0.8677

(5, 5, 4, 5) 3-2-3-3-1 0.6227 0.8479

(5, 5, 5, 4) 2-3-1-2-3 0.7485 0.8963

Table 2.7: Optimal allocation sequences of 5 components

addition, for each case, the initial reliability of the system is given, so before any

extra components have been allocated, as well as the final reliability after the 5 extra

components have been allocated according to the optimal sequence.

For example, in the second case in Table 2.7, where one component exchangeable

with those in subsystem 1 (say ‘of type 1’) has failed during testing, the optimal

allocation of 5 extra components, to achieve maximal improvement of reliability of

the overall system, is to first assign an extra component to subsystem 1, then one to

subsystem 2, followed by extra components to subsystems 3, 1 and 2, in that order.

It is clear from this example, and also obvious from the optimal allocation algorithm

presented above, that if a tested component of a specific type has failed, then the

corresponding subsystem tends to be assigned one or more extra components earlier

in the optimal sequence when compared to the same system but without that test

failure. If this happens, the order of added components for the other subsystems, for

which no corresponding tested components failed during testing, remains unchanged.
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(s1, s2, s3, s4) sequence initial reliability final reliability

(5, 5, 5, 5) 2-3-1-2-3-2-3-1-3-2-1-4 0.7733 0.9742

(5, 5, 5, 4) 2-3-1-2-3-4-2-3-1-4-3-2 0.7485 0.9595

(5, 5, 5, 3) 2-3-4-1-2-4-3-4-2-4-3-1 0.6867 0.9295

(5, 5, 5, 2) 4-2-4-3-4-1-4-2-4-3-4-4 0.5630 0.8556

(5, 5, 5, 1) 4-4-4-2-4-4-3-4-1-4-4-2 0.3464 0.6460

Table 2.8: Optimal allocation sequences of 12 components

For the zero-failure case, so with si = 5 for all i = 1, . . . , 4, this example was

also presented by Coolen-Schrijner et al. [29] who showed that, due to the fact that

subsystem 4, a 1-out-of-4 (parallel) system, has the largest built-in redundancy,

the first extra component added to this subsystem is actually only the 12th in

the optimal allocation sequence. This sequence of the first 12 extra components is

presented again in Table 2.8, together with corresponding sequences for situations

with one or more components of type 4 failing in the test, while no other components

failed. This clearly illustrates that, for an increasing number of failed components

of a particular type in the test, one allocates extra components to the corresponding

subsystem earlier in the optimal sequence. For the last case, with only 1 out of 5

components of type 4 functioning successfully in the test, one clearly adds a large

number of extra components to subsystem 4, but the effect of reduced component

reliability still causes the final reliability to be substantially smaller than for the

other test results and optimal allocation sequences reported.

2.6 Redundancy allocation with component costs

This section presents the inclusion of different costs per component of the different

types. The results in the previous section determine how to optimally allocate

additional components for redundancy for any criterion in the case where the cost

of components is irrelevant, or where they are the same for all components. If

the costs of additional components differ per subsystem, and one aims to maximize

system reliability under budget constraints, then the redundancy allocation problem
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becomes more complex. This problem can be formulated as follows:

Let ci be the cost to add one extra component to subsystem i. Then the total

cost of these additional components being added to the whole system is:

C(j) = C(j1, . . . , jL) =
L∑

i=1

ciji

Obtaining optimal system reliability with a fixed budget B means that we need to

add J additional components to the whole system (J =
∑L

i=1 ji) in order to

maximize
L∏

i=1

ji−1∏
li=0

ρ(i, li)

subject to the restriction

L∑
i=1

ciji 6 B ji ≥ 0 ∀i = 1, . . . , L

This goal function can be replaced by: maximize
∑L

i=1

∑ji−1
li=0 ln(ρ(i, li)). This prob-

lem is close in nature to the well-known knapsack problems in discrete optimisa-

tion [43]. The knapsack problem is a problem of how to choose items to maximize

their total value under a constraint of maximal weight. Let us assume that we can

choose from items 1, . . . , n with weights a1, a2, . . . , an and profits p1, p2, . . . , pn. The

capacity of the knapsack K ∈ N is also given. The task is now to select a subset

of the items so that its total weight does not exceed K and its profit is maximized

among those subsets. The integer program formulation of the knapsack problem is

the following. For all i = 1, . . . , n we have a variable xi ∈ {0, 1},

maximize
∑

pixi

subject to ∑
aixi 6 K

There are different versions of the knapsack problem [43], for example the single

knapsack problem is the case where one container (or knapsack) must be filled with

an optimal subset of items. If more than one container is available, the multiple

knapsack problem will be considered. Also, according to the number of copies allo-

cated of each item one can distinguish between the unbounded knapsack problem,
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i ki mi ci

1 3 4 5

2 2 3 4

3 4 6 3

4 2 4 6

Table 2.9: Subsystem i: ki-out-of-mi

which places no bound on the number of each item, and the bounded knapsack

problem, which restricts the number of each item to a maximum value. The typical

formulation in practice is the 0-1 knapsack problem, where only one copy of each

item is available.

The system considered in this chapter consists of series configurations of L inde-

pendent ki-out-of-mi subsystems. For each i = 1, . . . , L, ρ(i, ji) is strictly decreasing

in ji, but ci is assumed to be fixed. It means that the extra components to be al-

located with cost (weight) ci and utility (value) ln ρ(i, li) are not the same. This

allocation problem is considered as a 0-1 knapsack problem, which can be solved by

basic dynamic programming.

Example 2.5

The redundancy allocation under fixed budget B using a knapsack problem for-

mulation is illustrated via a basic system consisting initially of four independent

ki-out-of-mi subsystems in series configuration, with the values ki, mi and ci as

given in Table 2.9. Several scenarios of allocation of additional components, under

different budgets, will be illustrated for this system. Throughout this example, we

assume that 5 components of each type were tested, so ni = 5 for i = 1, . . . , 4. To

concentrate on the effect of the budget B, we assume zero-failure testing, so si = 5

for i = 1, . . . , 4.
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Budget extra components to final reliability

B each subsystem i

1 2 3 4 total

17 2 1 1 0 4 0.8046

18 1 1 3 0 5 0.8082

19 1 2 2 0 5 0.8151

20 2 1 2 0 5 0.8281

21 2 1 2 0 5 0.8281

22 1 2 3 0 6 0.8284

23 2 1 3 0 6 0.8416

24 2 2 2 0 6 0.8488

Table 2.10: Optimal allocation of the components for different budgets

Table 2.10 presents the optimal allocation of the extra components for budget B

varying from 17 to 24. In addition, for each case, the optimal final reliability after

extra components have been allocated is given, the initial reliability of this system

is 0.6227.

Table 2.10 shows that increasing the budget has different effects on the allocation

of the extra components added to the system. For example, increasing the budget

from 17 to 18 results in increasing the extra components added to subsystem 3 to

3, and reducing the extra components added to subsystem 1 to 1 with one extra

component added to the whole system. However, increasing the budget from 18

to 19 does not increase the total number of extra components added to the whole

system, but it assigns a different number to some subsystems. Increasing the budget

from 20 to 21 has no effect.

2.7 Concluding remarks

Coolen-Schrijner et al. [29] presented the basic application of NPI for Bernoulli

random quantities to inference on reliability of a system which consists of several

ki-out-of-mi subsystems in series configuration. They proved that the NPI model
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is very tractable, enabling a powerful optimal redundancy allocation algorithm, but

they only derived this result for redundancy allocation following zero-failure testing.

In this chapter, this algorithm is proven to be optimal for redundancy allocation for

such systems following any test results (as long as at least one component of each

type functioned successfully in the tests), which is a powerful result for practical

application of this algorithm.

Redundancy allocation with a fixed budget using the knapsack problem is pre-

sented in this chapter as a first step to inclusion of different costs per component

of the different types. Further steps could involve the opportunity to reduce the

ki of a subsystem, which in practice could e.g. be achieved either by a change to

the demands on the subsystem or by guaranteeing that an installed component will

actually function, this may be possible if components can be analyzed in great de-

tail. Perhaps more important from practical perspective is the generalization with

different losses taken into account, corresponding to failures of different subsystems,

which can be considered as different failure modes. This is important in situations

where such systems have multiple failure modes, and in particular where the losses

incurred by failures due to different failure modes vary substantially. Further aspects

of testing can also be considered, for example time required to test different com-

ponents, with restrictions on overall time available for testing. Also, one needs to

determine how many zero-failure tests are required in order to demonstrate reliabil-

ity. Coolen and Coolen-Schrijner [23] and Rahrouh et al. [47] present related theory

of reliability demonstration from the perspectives of NPI and Bayesian statistics.



Chapter 3

Subsystems consisting of one type

of component

3.1 Introduction

In the previous chapter we have presented nonparametric predictive inference (NPI)

for system reliability, with specific attention to redundancy allocation. Series sys-

tems were considered in which each subsystem i is a ki-out-of-mi system. The

different subsystems were assumed to consist of different types of components, each

type having undergone prior success-failure testing. In this chapter, these results are

generalized by allowing different ki-out-of-mi subsystems to consist of components

of the same type. Such components are exchangeable with regard to the information

about them contained in test results but they play different roles in the system if

they are in different subsystems.

In Section 3.2 NPI lower and upper probabilities for series of ki-out-of-mi subsys-

tems consisting of single-type components are derived by counting paths on the grid,

in a similar way as described in Chapter 2. We start with series of two ki-out-of-mi

subsystems. Then the results are generalized to systems with L > 2 ki-out-of-mi

subsystems. The NPI lower and upper cumulative joint distribution functions for

the event of interest are presented. Examples in Section 3.3 illustrate these NPI

lower and upper probabilities for system functioning. Section 3.4 contains some

concluding remarks.

34
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/ m k / m k / mk1 1 2 2 L L

Figure 3.1: Series of L ki-out-of-mi subsystems consisting of single-type components

3.2 Series of subsystems consisting of single-type

components

Consider a system consisting of a series configuration of L ki-out-of-mi subsystems,

with the subsystems consisting of components of the same type (see Figure 3.1).

Such components are exchangeable with regard to the information about them con-

tained in test results, but they play different roles in the system if they are in

different subsystems. To apply the NPI approach for such a system, n components

that are exchangeable with the m (m = m1 + · · · + mL) components in the system

considered, have to be tested. The event that such a system functions successfully

is denoted by S[L](m1 : k1, · · · ,mL : kL). The aim is to derive the NPI lower and

upper probabilities for the event that the system functions given the test data,

P (S[L](m1 : k1, · · · , mL : kL) | (n, s))

and

P (S[L](m1 : k1, · · · , mL : kL) | (n, s))

respectively.

Before presenting the general results for any number L of subsystems, the case

of a system consisting of L = 2 subsystems is considered in detail.

3.2.1 Two subsystems

Consider a system which consists of a series configuration of two ki-out-of-mi sub-

systems. These subsystems consist of components of the same type (see Figure
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k / m k / m1 2 2 1

Figure 3.2: Series of 2 ki-out-of-mi subsystems consisting of single-type components

3.2). Let Y n+m1

n+1 and Y n+m1+m2

n+m1+1 denote the random number of successes in tri-

als n + 1 to n + m1 and n + m1 + 1 to n + m1 + m2, respectively. The event

(Y n+m1

n+1 ≥ k1
∩

Y n+m1+m2

n+m1+1 ≥ k2) is of interest as this corresponds to successful func-

tioning of this system, following n tests of components that are exchangeable with

the m = m1 + m2 components in the system considered. The NPI lower probability

for this event is

P (Y n+m1

n+1 ≥ k1, Y n+m1+m2

n+m1+1 ≥ k2 | Y n
1 = s) = P (S[2](m1 : k1,m2 : k2) | (n, s)) =(

n + m1 + m2

n, m1,m2

)−1 m1∑
l1=k1

m2∑
l2=k2

(
s − 1 + l1 + l2

s − 1, l1, l2

)(
n − s + m1 − l1 + m2 − l2

n − s,m1 − l1,m2 − l2

)
and the corresponding NPI upper probability is

P (Y n+m1

n+1 ≥ k1, Y n+m1+m2

n+m1+1 ≥ k2 | Y n
1 = s) = P (S[2](m1 : k1,m2 : k2) | (n, s)) =(

n + m1 + m2

n, m1,m2

)−1
[

m2∑
l2=k2

(
s + k1 − 1 + l2

s, k1 − 1, l2

)(
n − s + m1 − k1 + m2 − l2

n − s,m1 − k1, m2 − l2

)
+

m1∑
l1=k1

(
s + l1 + k2 − 1

s, l1, k2 − 1

)(
n − s + m1 − l1 + m2 − k2

n − s,m1 − l1,m2 − k2

)
+

m1∑
l1=k1

m2∑
l2=k2

(
s − 1 + l1 + l2

s − 1, l1, l2

)(
n − s + m1 − l1 + m2 − l2

n − s,m1 − l1,m2 − l2

)]

These NPI lower and upper probabilities are derived by counting paths on the

grid from (0, 0, 0) to (n,m1,m2), in a similar way as described in Chapter 2. By

the appropriate A(n) assumptions, all orderings of the n + m1 + m2 latent variables

representing the n test observations and the m1 and m2 future random quantities are

again equally likely, and each such an ordering can again be represented by a unique
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Figure 3.3: All possible paths from the point (0,0,0) to the point (n,m1,m2)

path from (0, 0, 0) to (n,m1,m2) (see Figure 3.3). The above NPI lower probability

follows by counting all paths which go through (s, r1, r2) for r1 ≥ k1 and r2 ≥ k2

but not through any point (s, r1, r2) with r1 less than k1 or with r2 less than k2.

The corresponding NPI upper probability follows by counting all such paths that go

through at least one point (s, r1, r2) with r1 ≥ k1 and r2 ≥ k2.

3.2.2 L ≥ 2 subsystems

Using similar counting arguments on an L + 1-dimensional grid, the NPI lower and

upper probabilities for successful functioning of the system consisting of a series

configuration of L ≥ 2 ki-out-of-mi subsystems with single-type components, are

P (S[L](m1 : k1, · · · ,mL : kL) | (n, s)) =

(
n + m1 + · · · + mL

n,m1, · · · ,mL

)−1

m1∑
lL=k1

· · ·
mL∑

lL=kL

(
s − 1 + l1 + · · · + lL

s − 1, l1, · · · , lL

)(
n − s + m1 − l1 + · · · + mL − lL

n − s,m1 − l1, · · · ,mL − lL

)
and

P (S[L](m1 : k1, · · · ,mL : kL) | (n, s)) =

(
n + m1 · · · + mL

n,m1, · · · ,mL

)−1
[

L∑
i=1

Ai+

m1∑
l1=k1

· · ·
mL∑

lL=kL

(
s − 1 + l1 + · · · + lL

s − 1, l1, · · · , lL

)(
n − s + m1 − l1 + · · · + mL − lL

n − s,m1 − l1, · · · ,mL − lL

)]
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where

Ai =
m1∑

l1=k1

· · ·
mi−1∑

li−1=ki−1

mi+1∑
li+1=ki+1

· · ·
mL∑

lL=kL

(
s + l1 + · · · + li−1 + ki − 1 + li+1 + · · · + lL

s, l1, · · · , li−1, ki − 1, li+1, · · · , lL

)
×
(

n − s + m1 − l1 + · · · + mi−1 − li−1 + mi − ki + mi+1 − li+1 + · · · + mL − lL

n − s,m1 − l1, · · · ,mi−1 − li−1, mi − ki,mi+1 − li+1, · · · ,mL − lL

)
For example, the NPI lower and upper probabilities for successful functioning

of the system consisting of a series configuration of L = 3 ki-out-of-mi subsystems

with single-type components are:

P (S[3](m1 : k1,m2 : k2, m3 : k3) | (n, s)) =

(
n + m1 + m2 + m3

n,m1, m2,m3

)−1

m1∑
l1=k1

m2∑
l2=k2

m3∑
l3=k3

(
s − 1 + l1 + l2 + l3

s − 1, l1, l2, l3

)(
n − s + m1 − l1 + m2 − l2 + m3 − l3

n − s,m1 − l1,m2 − l2,m3 − l3

)

P (S[3](m1 : k1,m2 : k2, m3 : k3) | (n, s)) =

(
n + m1 + m2 + m3

n,m1, m2,m3

)−1

×[
m2∑

l2=k2

m3∑
l3=k3

(
s + k1 − 1 + l2 + l3

s, k1 − 1, l2, l3

)(
n − s + m1 − k1 + m2 − l2 + m3 − l3

n − s,m1 − k1, m2 − l2, m3 − l3

)

+
m1∑

l1=k1

m3∑
l3=k3

(
s + l1 + k2 − 1 + l3

s, l1, k2 − 1, l3

)(
n − s + m1 − l1 + m2 − k2 + m3 − l3

n − s,m1 − l1,m2 − k2,m3 − l3

)

+
m1∑

l1=k1

m2∑
l2=k2

(
s + l1 + l2 + k3 − 1

s, l1, l2, k3 − 1

)(
n − s + m1 − l1 + m2 − l2 + m3 − k3

n − s,m1 − l1,m2 − l2,m3 − k3

)

+
m1∑

l1=k1

m2∑
l2=k2

m3∑
l3=k3

(
s − 1 + l1 + l2 + l3

s − 1, l1, l2, l3

)(
n − s + m1 − l1 + m2 − l2 + m3 − l3

n − s,m1 − l1,m2 − l2,m3 − l3

)]
In the same context it is convenient to present here the NPI lower and upper

probabilities for the event (Y n+m1

n+1 ≤ k1, Y n+m1+m2

n+m1+1 ≤ k2, · · · , Y n+m1+m2+···+mL

n+m1+m2+···+mL−1+1
≤

kL | Y n
1 = s) that will later be needed in Lemma 5.1 in Chapter 5. These NPI lower

and upper cumulative distribution function(CDF) can also be derived by counting

arguments similar to those presented above, and are as follows:

P (Y n+m1

n+1 ≤ k1, Y n+m1+m2

n+m1+1 ≤ k2, · · · , Y n+m1+m2+···+mL

n+m1+m2+···+mL−1+1
≤ kL | Y n

1 = s) =(
n + m1 + . . . + mL

n,m1, . . . , mL

)−1

×

k1∑
l1=0

· · ·
kL∑

lL=0

[(
s + l1 + . . . + lL

s, l1, . . . , lL

)(
n − s − 1 + m1 − l1 + . . . + mL − lL

n − s − 1,m1 − l1, . . . , mL − lL

)]
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Figure 3.4: The Dutch Oosterscheldekering (source: earth.google.com)

and

P (Y n+m1

n+1 ≤ k1, Y n+m1+m2

n+m1+1 ≤ k2, · · · , Y n+m1+m2+···+mL

n+m1+m2+···+mL−1+1
≤ kL | Y n

1 = s) =(
n + m1 + . . . + mL

n,m1, . . . , mL

)−1

×

k1∑
l1=0

· · ·
kL∑

lL=0

[(
s − 1 + l1 + . . . + lL

s − 1, l1, . . . , lL

)(
n − s + m1 − l1 + . . . + mL − lL

n − s, m1 − l1, . . . , mL − lL

)]

The above NPI lower CDF follows by counting all paths which go through any pair

(s, r1, r2) and (s+1, r1, r2) respectively for r1 ≤ k1 and r2 ≤ k2. The corresponding

NPI upper CDF probability follows by counting all such paths that go through any

point (s, r1, r2) with r1 ≤ k1 and r2 ≤ k2.

3.3 Examples

In this section the NPI lower and upper probabilities for successful functioning of

the system considered in this chapter are illustrated via three related examples. Al-

though these examples are purely illustrative for the presented theory, the numbers

chosen are inspired by the Dutch Oosterscheldekering (Eastern Scheldt storm surge

barrier), which is part of the Delta works series of dams to protect the Netherlands
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k = 58 k = 59 k = 60 k = 61 k = 62

n s P P P P P P P P P P

1 1 0.079 1 0.063 1 0.048 1 0.032 1 0.016 1

2 2 0.151 1 0.122 1 0.092 1 0.062 1 0.031 1

3 3 0.217 1 0.176 1 0.134 1 0.091 1 0.046 1

2 0.021 0.217 0.014 0.176 0.008 0.134 0.004 0.091 0.001 0.046

5 5 0.330 1 0.272 1 0.211 1 0.145 1 0.075 1

4 0.060 0.330 0.041 0.272 0.025 0.211 0.013 0.145 0.005 0.075

10 10 0.538 1 0.458 1 0.367 1 0.260 1 0.139 1

9 0.192 0.538 0.139 0.458 0.090 0.367 0.049 0.260 0.018 0.139

8 0.051 0.192 0.032 0.139 0.017 0.090 0.007 0.049 0.002 0.018

7 0.011 0.051 0.006 0.032 0.003 0.017 0.001 0.007 0.000 0.002

20 20 0.763 1 0.681 1 0.573 1 0.431 1 0.244 1

30 30 0.868 1 0.800 1 0.699 1 0.548 1 0.326 1

40 40 0.922 1 0.867 1 0.780 1 0.633 1 0.392 1

50 50 0.952 1 0.910 1 0.834 1 0.696 1 0.446 1

60 60 0.969 1 0.936 1 0.872 1 0.744 1 0.492 1

62 62 0.971 1 0.941 1 0.878 1 0.752 1 0.500 1

100 100 0.993 1 0.980 1 0.946 1 0.855 1 0.617 1

Table 3.1: NPI lower and upper probabilities for a k-out-of-62 system

from flooding [18]. The Oosterscheldekering consists of three sections, with 15 steel

doors in the northern section, 16 in the middle section, and 31 in the southern

section (see Figure 3.4). The NPI lower and upper probabilities for successful func-

tioning of the system in these examples could be interpreted as those for successful

functioning of this barrier on a single application, following test results of n doors.

Of course, this assumes exchangeability of the functioning of the individual doors,

which may not be deemed to be an appropriate assumption. In Example 3.1 we start

with a single k-out-of-62 system. In Examples 3.2 and 3.3 we regard this system as

consisting of two or three ki-out-of-mi systems.
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Example 3.1

In this example we suppose that the barrier consists of 62 steel doors next to each

other in one line. Table 3.1 presents the NPI lower and upper probabilities for a k-

out-of-62 system, with k varying from 58 to 62, on the basis of tests of n components

that are exchangeable with the 62 components in the system, and s components in

the tests functioning successfully.

If tests have revealed no failures, so s = n, then the NPI upper probability

of system functioning is equal to 1, which reflects that such tests do not contain

evidence against the possibility that such components would always function. The

corresponding lower probabilities in these cases are increasing in the number of tests,

if the tests did not reveal any failures, which reflects the increasing evidence in favour

of at least k components out of 62 functioning in the system. With relatively few

tests performed, and many of the 62 components in the system required to function,

the effect of a failure in the tests on the predicted system reliability is substantial.

This example illustrates that P (S(m : k)| (n, s)) = P (S(m : k)| (n, s + 1)), which

generally holds for these NPI lower and upper probabilities [29]. It is worth noticing

the lower probability P (S(62 : 62)| (62, 62)) = 0.5, which is actually precisely 1/2

and is the same as would be derived if the whole 62-out-of-62 system were instead

considered to be a single unit, and if one exchangeable unit (hence also such a

system) had been tested and had been successful, as P (S(1 : 1)| (1, 1)) = 0.5. Table

3.1 shows that the lower and upper probabilities are decreasing in k when keeping m

and n constant, and increasing in n when keeping m and k constant. This is most

obvious from the large differences between the values at the top left and bottom

right of Table 3.1.

Example 3.2

As we mentioned before, the Oosterscheldekering consists of three sections, with 15

steel doors in the northern section, 16 in the middle section, and 31 in the southern

section. Suppose now that the functioning of the barrier requires specific numbers

of doors in each section to function. The assumption of exchangeability of the doors

remains with regard to the uncertainty of their functioning and the way in which
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k1 = k2 = 29 k1 = 29, k2 = 30 k1 = k2 = 30 k1 = k2 = 31

n s P P P P P P P P

1 1 0.066 1 0.050 1 0.040 1 0.016 1

2 2 0.126 1 0.096 1 0.077 1 0.031 1

3 3 0.182 1 0.139 1 0.113 1 0.046 1

2 0.015 0.182 0.010 0.139 0.006 0.113 0.001 0.046

5 5 0.280 1 0.218 1 0.178 1 0.075 1

4 0.045 0.280 0.028 0.218 0.019 0.178 0.005 0.075

10 10 0.467 1 0.375 1 0.314 1 0.139 1

9 0.148 0.467 0.099 0.375 0.070 0.314 0.018 0.139

8 0.036 0.148 0.020 0.099 0.012 0.070 0.002 0.018

7 0.007 0.036 0.003 0.020 0.002 0.012 0.000 0.002

20 20 0.687 1 0.579 1 0.503 1 0.244 1

30 30 0.803 1 0.701 1 0.625 1 0.326 1

40 40 0.868 1 0.778 1 0.708 1 0.392 1

50 50 0.908 1 0.829 1 0.766 1 0.446 1

60 60 0.934 1 0.865 1 0.809 1 0.492 1

62 62 0.938 1 0.871 1 0.816 1 0.500 1

100 100 0.977 1 0.936 1 0.901 1 0.617 1

Table 3.2: NPI lower and upper probabilities with m1 = m2 = 31

we learn from test data on similar doors. For the functioning of the system it is

important to distinguish the doors according to which section they are in. In this

example, suppose that the northern and middle sections can be combined to one k1-

out-of-31 subsystem, with the southern section a separate k2-out-of-31 subsystem,

and these two subsystems form together the overall system in series configuration.

Some NPI lower and upper probabilities for functioning of the whole system are

presented in Table 3.2.

Comparing Tables 3.1 and 3.2, it is clear that the lower and upper probabilities

in the final columns, where the system only functions if all components function, are
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k = 15,m = 15 k = 16,m = 16 k = 30, m = 31 k = 31,m = 31

n s P P P P P P P P

1 1 0.063 1 0.059 1 0.063 1 0.031 1

2 2 0.118 1 0.111 1 0.119 1 0.061 1

3 3 0.167 1 0.158 1 0.171 1 0.088 1

2 0.020 0.167 0.018 0.158 0.016 0.171 0.005 0.088

5 5 0.250 1 0.238 1 0.262 1 0.139 1

4 0.053 0.250 0.048 0.238 0.045 0.262 0.016 0.139

10 10 0.400 1 0.385 1 0.433 1 0.244 1

9 0.150 0.400 0.138 0.385 0.142 0.433 0.055 0.244

8 0.052 0.15 0.046 0.138 0.039 0.142 0.011 0.055

7 0.017 0.052 0.014 0.046 0.009 0.039 0.002 0.011

20 20 0.571 1 0.556 1 0.635 1 0.392 1

30 30 0.667 1 0.651 1 0.746 1 0.492 1

40 40 0.727 1 0.714 1 0.813 1 0.563 1

50 50 0.769 1 0.758 1 0.856 1 0.617 1

60 60 0.800 1 0.789 1 0.886 1 0.659 1

62 62 0.805 1 0.795 1 0.891 1 0.667 1

100 100 0.870 1 0.862 1 0.945 1 0.763 1

Table 3.3: NPI lower and upper probabilities for k-out-of-m systems

identical. This is logical, as in both cases it just means that, after n components have

been tested, the next components must all function. The three other cases presented

in Table 3.2 do not directly relate to cases in Table 3.1, due to the different system

configurations. Clearly, a 60-out-of-62 system can function for more combinations

of failing components than two 30-out-of-31 subsystems in a series configuration,

namely the former still functions if the two failing components happen to be in the

same subsystem corresponding to it, in which case the latter would not function

anymore. This explains why the entries (except those equal to 1) in Table 3.1 are

greater than corresponding ones in Table 3.2, where we relate the cases k = 60 with

k1 = k2 = 30 and also k = 58 with k1 = k2 = 29.
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(k1, k2, k3) : (14, 15, 30) (15, 16, 30) (15, 16, 31)

n s P P P P P P

1 1 0.045 1 0.024 1 0.016 1

2 2 0.087 1 0.047 1 0.031 1

3 3 0.127 1 0.069 1 0.046 1

2 0.008 0.127 0.003 0.069 0.001 0.046

5 5 0.197 1 0.110 1 0.075 1

4 0.024 0.197 0.009 0.110 0.005 0.075

10 10 0.345 1 0.200 1 0.139 1

9 0.085 0.345 0.033 0.200 0.018 0.139

8 0.016 0.085 0.005 0.033 0.002 0.018

7 0.003 0.016 0.001 0.005 0.000 0.002

20 20 0.542 1 0.337 1 0.244 1

30 30 0.664 1 0.437 1 0.326 1

40 40 0.744 1 0.513 1 0.392 1

50 50 0.799 1 0.571 1 0.446 1

60 60 0.838 1 0.618 1 0.492 1

62 62 0.844 1 0.626 1 0.500 1

100 100 0.919 1 0.736 1 0.617 1

Table 3.4: NPI lower and upper probabilities with m1 = 15,m2 = 16,m3 = 31

Example 3.3

Let us now consider the system of 62 components split up into three subsystems,

with m1 = 15, m2 = 16 and m3 = 31 components, inspired by the three sections of

the Oosterscheldekering. First, let us consider the reliability of each of these three

subsystems independently of each other, so we consider each as a single k-out-of-m

system. The NPI lower and upper probabilities for successful functioning of each

of these systems individually, based on s successfully functioning components in n

tests, are given in Table 3.3, for the values k and m as indicated in the columns.
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These NPI lower and upper probabilities give an indication of the reliability

of the individual subsystems considered, when considering them independently of

the other systems. It is crucial, however, that in the application in this example,

these subsystems consist of the same type of component, for which only limited

test information is available. Hence, if it were known that one of these subsystems

functions satisfactorily, let us assume this would be the subsystem with m = 15

and assuming that this would function only if k = 15, then for the next subsystem

considered we are more confident in the reliability of the components, as now in

addition to the test results for the n tested components it is known that a further

15 components all function satisfactorily. This has a substantial impact on overall

reliability when we combine the subsystems into a single system.

If one were to neglect the interdependence of the components in the different

subsystems, one would make the mistake of quantifying the system’s reliability by

multiplying the NPI lower and upper probabilities of successful functioning of the

subsystems, as mentioned in Chapter 2 for independent subsystems. For example,

consider the third column of Table 3.2, involving a series system with two 30-out-of-

31 subsystems on the basis of s components functioning well out of n components

tested. If we would, instead, multiply the lower and upper probabilities for two

individual 30-out-of-31 systems, based on the same test information, so effectively

we would take the squared values of the entries in the third column in Table 3.3, then

the latter would lead to substantially smaller values for the lower probability, and

also for the upper probability for all cases where this is not equal to one. To illustrate

this important issue, assume that n = 10 components had been tested, of which s = 9

functioned successfully. The corresponding NPI lower and upper probabilities for

successful functioning of the series system with two 30-out-of-31 subsystems (Table

3.2, third column) are 0.070 and 0.314, respectively. If one would, mistakenly,

neglect the interdependence of these two subsystems, which use components of the

same type, and multiply the NPI lower and upper probabilities for the individual

30-out-of-31 subsystems (Table 3.3, third column), this would lead to the values

0.1422 = 0.020 for the lower and 0.4332 = 0.187 for the upper probability, which are

substantially smaller than the correct values.
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Let us now consider the 62-component system as consisting of three subsystems

in series structure, with m1 = 15, m2 = 16 and m3 = 31 components. Table 3.4

presents NPI lower and upper probabilities for some situations reflecting satisfactory

functioning of the whole system depending on the specific numbers ki (i = 1, 2, 3)

of components required to function per subsystem.

Again, if all 62 components need to function (ki = mi for all i), then the NPI

lower and upper probabilities are as in Tables 3.1 and 3.2 for the same situation.

Suppose that the whole system functions satisfactorily if in each subsystem not more

than one component fails, leading to the NPI lower and upper probabilities in the

first column of Table 3.4. If we had not separated the two smallest subsystems,

so instead had assumed that the whole system consisted of two subsystems with

m1 = m2 = 31, as considered in Example 3.2 with corresponding NPI lower and

upper probabilities given in Table 3.2, and if we had allowed two failing components

for the first subsystem with m1 = 31 components, then (see column 2 in Table 3.2)

the NPI lower and upper probabilities (the latter if different from 1) would have been

larger than those with the three subsystems taken into account separately. This is

due to the fact that there would be more combinations of the failing components

included in the counts for the lower and upper probabilities in Table 3.2, namely

those with two failing components in one, and zero in the other, of the individual

subsystems with 15 and 16 components. This illustrates clearly that one must

carefully define the requirements on the subsystems in order for the overall system

to function, which is of course directly linked to the appropriate system structure.

Examples 3.1, 3.2 and 3.3 clearly show the effect of increasing numbers of tests on

the system reliability. If all n components tested succeeded in their task, so s = n,

then the NPI lower probabilities increase as function of n, but the rate of increase

decreases. This is in line with intuition as it reflects that, with all tests being

successful, the positive effect of a further successful test on the lower probability

of system functioning decreases with increasing n. This can also be used to set a

minimum number of tests, assuming no failures will be discovered, in order to meet a

reliability requirement formulated as a minimum value for the NPI lower probability

of system functioning. This is relevant in high-reliability testing, where failures in
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tests typically lead to redesign of the units followed by a new stage of testing, and

hence one needs to determine how many zero-failure tests are required in order to

demonstrate reliability. Coolen and Coolen-Schrijner [23] and Rahrouh et al. [47]

present related theory of reliability demonstration from the perspectives of NPI and

Bayesian statistics.

3.4 Concluding remarks

This chapter presented an important step in the development of NPI for more com-

plex system structures, as components of one type frequently occur in different

subsystems. As a first step for this research, we have generalized NPI for Bernoulli

quantities [12] to distinguish between subgroups of the m future observations, and

we have derived lower and upper probabilities which quantify the reliability of such

systems. A further important step will be presented in the next chapter namely NPI

for reliability of voting systems with multiple component types.

In Chapter 2 an optimal algorithm was presented for redundancy allocation

related to the NPI approach to reliability of systems consisting of independent ki-

out-of-mi subsystems, each consisting of a single type of component, which are

different for different subsystems. The algorithm was proven to be optimal, and this

algorithm is straightforward to implement and requires negligible computing time.

This algorithm will be a basis for constructing an algorithm for a more general system

in Chapter 4. Numerical examples indicate that a similarly attractive algorithm will

again be optimal for the system in this chapter, but we have not managed to prove

this as a general property.



Chapter 4

Voting systems with multiple

component types

4.1 Introduction

It has been generally acknowledged that redundancy in systems leads to increased

reliability. However, during the last decade there has been increasing debate about

the value of redundancy, in particular highlighting the effect of common-cause fail-

ures or other kinds of dependent failures, where multiple components fail at the

same time or in a small period of time, see for example Paté-Cornell et al. [46]

and Hoepfer et al. [37]. It is typically argued that, whilst additional components in

parallel system structures provide redundancy and increase system reliability, their

positive effect may be restricted due to common-cause failures which possibly af-

fect all components of a particular type. Whilst such common-cause failures can

be taken into account [55], a natural solution lies in the combination of redundancy

and diversity, so the use of components of different types, leaving the system less

severely affected by possible common-cause failures. This basic idea also has ap-

plications to reliability of software-based systems, where redundancy with diversity

can for example be achieved for a safety protection system by using multiple diverse

channels performing the same function [41].

In this chapter, we restrict terminology to the basic situation of simple voting

systems, so k-out-of-m systems in which at least k components must function in

48



4.1. Introduction 49

order for the system to function, and with the system consisting of components

which all perform the same function. One can think for example about batteries

or smoke detectors as components in a system. We now consider the possibility

that the components are of different types, for example batteries or smoke detectors

from different manufacturers, and that our information about the reliability of the

components results from tests performed on such components.

We do not consider common-cause failures, but we focus on a perhaps even

more important reason for aiming at diversity of components, which appears to

have received little attention in the literature, namely the lack of perfect knowledge

about the reliability of the components. This limited information about component

reliability causes the random functioning of multiple components of one type in

a system to be mutually dependent in the sense that functioning or not of one

component in the system would change our total information on components of this

type sufficiently to affect our beliefs on reliability of another component of this type

in the system. As shown by Coolen-Schrijner et al. [29], this may well result in

higher risk than may be expected without careful consideration of the uncertainties

involved.

However, a possibly more important reason for diversity is illustrated here,

namely the lack of perfect knowledge about the reliability of the components.

The system considered in this chapter is presented in Section 4.2. Subsection

4.2.1 provides a brief description of the system. In Subsection 4.2.2 the NPI lower

and upper probabilities for functioning of a voting system with any number of com-

ponent types are presented. The derivation of these NPI lower and upper probabil-

ities is presented in Subsection 4.2.3. The optimal allocation of extra components

is discussed in subsection 4.2.4. Section 4.3 presents examples to illustrate these

lower and upper probabilities and to discuss some specific related features including

diversity. Section 4.4 contains some concluding remarks.
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k / m

Figure 4.1: Voting systems with multiple component types

4.2 Multiple component types

4.2.1 System description

Consider a single voting system consisting of different types of components. They

are assumed to perform the same function within the system, but the test infor-

mation differs per type of component. Throughout this chapter we assume that

functioning of components of different types is fully independent, in the sense that

any information on functioning of components of one type does not hold any infor-

mation about functioning of components of another type. Suppose that there are T

types of components and the voting system consists of mt components of type t for

each t = 1, . . . , T , so m = m1 + . . . + mT components in total (see Figure 4.1).

This system functions if and only if at least k of its m components function,

whatever their types. To apply the NPI approach for the reliability of this system,
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assume that nt components of type t have been tested of which st functioned. As

before, the tested components are assumed to be exchangeable with those of the

same type in the system. To denote the total test data for the t types we use

the obvious notation (n, s) and we denote the event that such a k-out-of-m voting

system functions successfully by S[T ](m : k). It is possible that mt = 0 for some

t ∈ {1, . . . , T}, inclusion of such a component type which is not actually present in

the system does not affect the results presented below and is also unlikely to lead

to confusion in notation. We wish to derive the NPI lower and upper probabilities

P (S[T ](m : k) | (n, s)) and P (S[T ](m : k) | (n, s)).

4.2.2 NPI lower and upper probabilities for functioning of

the system

For a voting system consisting of T types of components, the NPI lower and upper

probabilities for such a system to function are

P (S[τ ](m : k) | (n, s)) = P (S[τ ]\r(m : k) | (n, s))+

mr∑
j=1

P (S(mr : j) | (nr, sr))∆P (S[τ ]\r(m : k − j) | (n, s)) (4.1)

and

P (S[τ ](m : k) | (n, s)) = P (S[τ ]\r(m : k) | (n, s))+

mr∑
j=1

P (S(mr : j) | (nr, sr))∆P (S[τ ]\r(m : k − j) | (n, s)) (4.2)

respectively, where

∆P (S[τ ]\r(m : l) | (n, s)) = P (S[τ ]\r(m : l) | (n, s)) − P (S[τ ]\r(m : l + 1) | (n, s))

∆P (S[τ ]\r(m : l) | (n, s)) = P (S[τ ]\r(m : l) | (n, s)) − P (S[τ ]\r(m : l + 1) | (n, s))

with [τ ] = {1, . . . , τ} for τ ≤ T and [τ ] \ r = {1, . . . , r − 1, r + 1, . . . , τ} for r < τ .
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For example, consider a single voting system consisting of two types of compo-

nents (T = 2). The NPI lower probability for this system to function is

P (S[2](m : k) | (n, s))

= P (S[2]\1(m : k) | (n, s)) +

m1∑
j=1

P (S(m1 : j) | (n1, s1))∆P (S[2]\1(m : k − j) | (n, s))

= P (S(m2 : k) | (n2, s2)) +

m1∑
j=1

P (S(m1 : j) | (n1, s1))∆P (S(m2 : k − j) | (n2, s2))

where

∆P (S(mt : l) | (nt, st)) = P (S(mt : l) | (nt, st)) − P (S(mt : l + 1) | (nt, st))

and

P (S(mt : k) | (nt, st)) =

(
nt + mt

nt

)−1
[

mt∑
l=k

(
st + l − 1

st − 1

)(
nt − st + mt − l

nt − st

)]
Alternatively, this NPI lower probability for system functioning can also be de-

rived as

P (S[2](m : k) | (n, s))

= P (S[2]\2(m : k) | (n, s)) +

m2∑
j=1

P (S(m2 : j) | (n2, s2))∆P (S[2]\2(m : k − j) | (n, s))

= P (S(m1 : k) | (n1, s1)) +

m2∑
j=1

P (S(m2 : j) | (n2, s2))∆P (S(m1 : k − j) | (n1, s1))

These two expressions for the NPI lower probability are easily shown to be equal.

The corresponding NPI upper probability is

P (S[2](m : k) | (n, s))

= P (S[2]\1(m : k) | (n, s)) +

m1∑
j=1

P (S(m1 : j) | (n1, s1))∆P (S[2]\1(m : k − j) | (n, s))

= P (S(m2 : k) | (n2, s2)) +

m1∑
j=1

P (S(m1 : j) | (n1, s1))∆P (S(m2 : k − j) | (n2, s2))

where

∆P (S(mt : l) | (nt, st)) = P (S(mt : l) | (nt, st)) − P (S(mt : l + 1) | (nt, st))
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and

P (S(mt : k) | (nt, st)) =

(
nt + mt

nt

)−1 [(
st + k

st

)(
nt − st + mt − k

nt − st

)
+

mt∑
l=k+1

(
st + l − 1

st − 1

)(
nt − st + mt − l

nt − st

)]
and it can also be derived as

P (S[2](m : k) | (n, s))

= P (S[2]\2(m : k) | (n, s)) +

m2∑
j=1

P (S(m2 : j) | (n2, s2))∆P (S[2]\2(m : k − j) | (n, s))

= P (S(m1 : k) | (n1, s1)) +

m2∑
j=1

P (S(m2 : j) | (n2, s2))∆P (S(m1 : k − j) | (n1, s1))

In the next subsection the derivation of these NPI lower and upper probabilities will

be presented in detail.

4.2.3 Derivation of the NPI lower and upper probabilities

for functioning of the system

The NPI lower and upper probabilities (4.1) and (4.2) are derived by considering all

combinations representing successful functioning of the system, using the theorem of

total probability for classical probabilities as shown in Lemma 4.1 (below) for general

T . The key aspect is that the theorem of total probability is used for all precise

probability distributions in the NPI-based structure M (as discussed in Section 1.1),

and that sharp lower and upper bounds are derived.

Before we proceed, we introduce further notation. Let Xt denote the number of

the mt components of type t which function and write

ct (j) = P (Xt ≥ j), ut (j) = P (Xt ≥ j), `t (j) = P (Xt ≥ j).

Furthermore, for any set S ⊂ {1, . . . , T}, let

cS(j) = P
(∑

t∈S Xt ≥ j
)
, ∆ct(j) = ct(j) − ct(j + 1)

and ∆cS(j) = cS(j) − cS(j + 1)

with boundary conditions:

ct(j) = cS(j) = 1 for j ≤ 0,
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ct(j) = 0 for j > mt,

cS(j) = 0 for j >
∑

t∈S mt,

∆ct(j) = ∆cS(j) = 0 for j < 0.

The notation stated above for classical probabilities c is also used below for upper

and lower probabilities, replacing c by u or l, respectively.

Lemma 4.1. Suppose X1, . . . , XT , with Xt ∈ {0, 1, . . . , mt} for t ∈ {1, . . . , T}, are

independent random quantities. For each τ ∈ {2, . . . , T} and 1 ≤ r < τ ,

u[τ ](k) = u[τ ]\r(k) +
mr∑
j=1

ur(j)∆u[τ ]\r(k − j) (4.3)

`[τ ](k) = `[τ ]\r(k) +
mr∑
j=1

`r(j)∆`[τ ]\r(k − j) (4.4)

Proof. We provide the proof for upper probabilities, the proof for lower probabilities

is identical with u replaced by ` everywhere. We present the argument for T = 2

types of components first and then generalize to T > 2. For T = 2, X1 and X2 are

independent so

P (X1 + X2 ≥ k) =

m1∑
j=0

P (X1 = j)P (X2 ≥ k − j) (4.5)

and, using the introduced notation, this gives

c[2](k) =

m1∑
j=0

∆c1 (j) c2 (k − j) 6
m1∑
j=0

∆c1 (j) u2 (k − j)

as each ∆c1 (j) ≥ 0. Also

m1∑
j=0

∆c1 (j) u2 (k − j) = c1 (0) u2 (k) +

m1∑
j=1

c1 (j) ∆u2 (k − j)

6 u1 (0) u2 (k) +

m1∑
j=1

u1 (j) ∆u2 (k − j)

as each ∆u2 (k − j) ≥ 0, so

c[2](k) 6 u1 (0) u2 (k) +

m1∑
j=1

u1 (j) ∆u2 (k − j) . (4.6)

As equality in (4.6) is actually possible with c2 (j) = u2 (j) and c1 (j) = u1 (j) for

each j, the upper probability u[2](k), which is the minimum upper bound for c[2](k),
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is

u[2] (k) = u2 (k) +

m1∑
j=1

u1 (j) ∆u2 (k − j) .

Now we consider T > 2 and any τ ∈ {2, . . . , T}. As X1, . . . , XT are independent

we have, for r < τ ,

c[τ ](k) =
mr∑
j=0

∆cr(j)c[τ ]\r(k − j) 6
mr∑
j=0

∆cr(j)u[τ ]\r(k − j)

Using precisely the same arguments as for the case with T = 2, we get

u[τ ](k) = u[τ ]\r(k) +
mr∑
j=1

ur(j)∆u[τ ]\r(k − j).

Lemma 4.1 provides a recursive algorithm for calculation of the lower and upper

probabilities for system functioning. It does not provide attractive expressions for

analytical study of such lower and upper probabilities. It is straightforward to im-

plement the recursive calculations. We have done this using the statistical software

R and as all sums are finite there are no computational problems in computing these

NPI lower and upper probabilities. For example, we computed NPI lower and upper

probabilities for system with in total m = 20 components of three possible types

without any computational difficulties in terms of computational time. We have not

considered computational efficiency in detail, for application of our results to large

systems this may be an interesting topics for future research.

4.2.4 Redundancy allocation

Voting systems, as considered in this chapter, are particularly important in situa-

tions where high reliability is required, as they offer the opportunity of redundancy,

that is not all components have to function for the system to function, with maxi-

mum redundancy occurring for parallel systems. The results presented in this chap-

ter enable study of optimal choice of components in the system, which is particularly

interesting if the required number k of components that must function is fixed but

one has flexibility in the choice of m. Such redundancy allocation was studied in
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Chapter 2 for systems consisting of voting subsystems, where each subsystem has

a single type of components which are different from those in other subsystems. It

is also of interest to study optimal redundancy allocation for voting systems with

different types of components as presented here. While no general optimality re-

sults have been proven yet, there is a strong feeling that making sequentially the

optimal choices for adding single components leads to the overall optimal allocation

of multiple extra components. This is in line with the results in Chapter 2, and

all numerical examples studied suggest that it also holds for the systems considered

here.

For the special case of parallel systems, so with k = 1 and mt components of

type t (t = 1, . . . , T ), optimal allocation of extra components is straightforward if

one aims at maximum NPI lower probability for the event that the system functions.

This lower probability is

P (ST (m : 1) | (n, s)) = 1 −
T∏

t=1

mt∏
jt=1

nt − st + jt

nt + jt

where the product term on the right-hand side is the NPI upper probability for

the event that the parallel system does not function, which occurs if and only if all

its components fail. Adding one more component of type t0 leads to decrease of

this upper probability by a factor
nt0−st0+mt0+1

nt0+mt0+1
, so it is optimal to assign one more

component of the type for which this factor is minimal, and the simple product

form of this upper probability implies that optimal allocation of multiple extra

components can be achieved by optimal sequential allocation of single components.

Actually, if one would allow a large enough number of extra components in such

a parallel system, then eventually one would add one or more components of each

type, even if test results for one type were very poor compared to the other types

(assuming, as we do throughout this chapter, that there is at least one successfully

functioning component of each type in the test). Suppose that type t0 ∈ {1, . . . , T}

has led to the poorest test results (lowest ratio st/nt) and that there are already

mt0 components of this type in the system. Then t0 is still the best component

type to add to the system once there are already mt components of type t, for each

t ∈ {1, . . . , T}, t 6= t0, with mt > (nt0 +mt0 + 1)(st/st0)−nt − 1. This result follows
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straightforwardly from the above argument on sequential minimisation of the upper

probability for the event that the parallel system does not function, and is illustrated

in Example 4.3 in Section 4.3. We have not achieved a proof of a similar result for

other voting systems, but numerical results suggest that it holds for all such systems

with fixed value of k if m can be increased.

4.3 Examples

In this section we illustrate the NPI lower and upper probabilities presented in

Subsection 4.2.2. In Example 4.1 we focus on the optimal choice of the number of

components of each type in a k-out-of-20 system with 2 types of components, with

optimality in the sense of maximum NPI lower probability of system functioning. It

is natural to consider the lower probability for reliability inferences, as it reflects the

strength of the evidence in favour of the system’s reliability, and as such could be

interpreted as a conservative inference. In Example 4.2 we consider a system with

3 types of components. Example 4.3 includes a brief discussion of the important

topics of redundancy and diversity.

Example 4.1

Consider a voting system with in total m = 20 components of two possible types,

of which at least k must function in order for the system to function. Table 4.1

presents the optimal choices of m1 and m2, the numbers of components of each

type, for several test histories of components of types 1 and 2. All possible values

for k ranging from 1 (parallel system) to 20 (series system) are considered. The

notation (x, y)p is used to indicate that all permutations of x, y are optimal.

If only one component of each type has been tested, and both functioned well,

then it is optimal to use 10 components of each type if k ≤ 10, but for k > 10 it is

optimal to use only one type of component. This is a direct consequence of the way

in which the interdependence of the reliability of individual components of one type

is taken into account. Let us consider the two extreme cases with k = 1 and k = 20.

For k = 1 with test history (nt, st) = (1, 1) for t = 1, 2, the lower probability for the

first component of type 1 in the system to function is 1/2. If this first component
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n, s k (m1,m2)

n1 = n2 = 1 ≤ 10 (10, 10)

s1 = s2 = 1 ≥ 11 (20, 0)p

n1 = n2 = 3 ≤ 13 (10, 10)

s1 = s2 = 3 14 (14, 6)p

15 (18, 2)p

≥ 16 (20, 0)p

n1 = n2 = 5 ≤ 15 (10, 10)

s1 = s2 = 5 16 (15, 5)p

≥ 17 (20, 0)p

n1 = n2 = 3 6 10 (10, 10)

s1 = 2, s2 = 2 ≥ 11 (20, 0)p

n1 = n2 = 3 ≤ 4 (7, 13)

s1 = 2, s2 = 3 5 (7, 13), (6, 14)

6 (6, 14)

7 (6, 14), (5, 15)

8 (4, 16)

9 (2, 18)

> 10 (0, 20)

Table 4.1: Optimal m1 and m2 - Example 4.1

functions, the system functions whatever the reliability of all other components. If

it does not function then we must consider the second component in the system.

If the second component we consider is again of type 1, then the information that

the first component of type 1 in the system failed reduces the lower probability for

the second one to function to 1/3, while the corresponding lower probability for a

first component of type 2 is 1/2 (due to the assumed independence of reliability

of components of different types). Hence, it would be better to consider as second

component one of type 2.

This argument continues and leads, with the symmetrical test results, to m1 =

m2 = 10 as optimal choice for components of both types. This illustrates the benefit

of diversity of components within a system. It has been argued that diversity is
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important to prevent the possible effect of common-cause failures for components of

one type, which is of course true but is not addressed in this chapter. However, a

possibly more important reason for diversity is illustrated here, namely the lack of

perfect knowledge about the reliability of the components.

For a series system all k = 20 components must function. Hence, if the first one

considered is of type 1 and does not function, we do not need to look further as the

system would not function whatever the reliability of all other 19 components. If the

first component (of type 1) functions then it is better for the second component also

to be of type 1 as now it will have lower probability 2/3 to function, based on the test

result and the information we now have on the first component of type 1, compared

to lower probability 1/2 for a component of type 2. This argument now extends to

all 20 components, leading to the optimal series system consisting of components

of a single type. In fact, this argument holds for all series systems, not only those

with symmetric test information. As illustrated by the last case in Table 4.1, if

components of one type performed better in the test than components of the other

type then the optimal choice is to use all components of the type which performed

best in the test. The last case in Table 4.1, in which testing 3 components of type

1 led to one failure with no failures in testing of 3 components of type 2, shows

that one would still include components of type 1 in the ‘more parallel’ systems

considered (k ≤ 9). Again, this is logical from the perspective of diversity.

Table 4.1 further shows that the transition, when considered as function of k, of

the optimal (m1, m2) from them being equal to the other extreme with one being

equal to 20 and the other equal to 0, does not occur immediately in all situations.

For example, if 3 components of each type were tested and no failures had been

observed, then m1 = m2 = 10 is optimal for all k ≤ 13, and for k ≥ 16 it is optimal

to only use components of one type in the system. However, for k = 14 or 15 it is

optimal to use different positive values for m1 and m2.

Example 4.2

This example considers a voting system with in total m = 6 components of three

different types. The optimal choices of m1, m2 and m3, and the corresponding
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k (m1,m2,m3) P

1 (2, 2, 2) 0.995

2 (2, 2, 2) 0.968

A 3 (2, 2, 2) 0.870

4 (2, 2, 2) 0.667

5 (6, 0, 0)p 0.464

6 (6, 0, 0)p 0.250

1 (3, 3, 0) 0.990

2 (3, 3, 0) 0.950

B 3 (3, 3, 0) 0.850

4 (4, 2, 0),(2, 4, 0) 0.656

5 (6, 0, 0),(0, 6, 0) 0.464

6 (6, 0, 0),(0, 6, 0) 0.250

1 (3, 0, 3) 0.982

2 (3, 0, 3),(4, 0, 2) 0.914

C 3 (5, 0, 1),(6, 0, 0) 0.786

4 (6, 0, 0) 0.643

5 (6, 0, 0) 0.464

6 (6, 0, 0) 0.250

Table 4.2: Optimal (m1,m2,m3) and NPI lower probability - Example 4.2
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NPI lower probabilities, are presented in Table 4.2 .

Three different cases of test results on components of each type are considered:

A. n1 = n2 = n3 = 2, s1 = s2 = s3 = 2

B. n1 = n2 = n3 = 2, s1 = s2 = 2, s3 = 1

C. n1 = n2 = 2, n3 = 5, s1 = 2, s2 = 1, s3 = 3.

All possible values for k ranging from 1 (parallel system) to 6 (series system) are

considered. For completeness, Table 4.2 also presents the corresponding NPI lower

probabilities of system functioning (denoted by P ). These are, of course, decreasing

as function of k, and increasing as function of the quality of the components tested.

As discussed in Example 4.1, for a series system (k = 6) one again chooses

components of a single type. Furthermore, cases B and C illustrate that for a series

system, if components of one type performed better in the test than components of

the other types, one obviously chooses the type of component which performed best

in the test. For a parallel system (k = 1), case C shows that although components

of type 3 did not perform best in the test (namely 3 out of 5 tested were successful,

while both type 1 components tested functioned well), one still chooses components

of that type to achieve maximal lower probability of system functioning.

Example 4.3

Consider a parallel system consisting of components of T = 3 types. Initially,

the system is a 1-out-of-3 system, with m1 = m2 = m3 = 1. Assume that three

components of each type had been tested, so n1 = n2 = n3 = 3. Assume that

all tested components of type 1 functioned, so s1 = 3, but only two of type 2 and

one of type 3 functioned, so s2 = 2 and s3 = 1. The NPI lower probability for

the event that this system functions successfully is equal to 0.90625. Suppose that,

to increase the system’s reliability by increasing redundancy, extra components can

be added to the system, keeping k = 1 but increasing the values of some or all

of the mt for t = 1, 2, 3. It is assumed that there are no cost considerations, only

the number of extra components that can be added is restricted, and these extra

components can be of any type. Table 4.3 presents the optimal allocation of 1 to 20

extra components (‘Extra’ in the first column), in the sense of maximum resulting
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Extra (m1,m2,m3) P

0 (1,1,1) 0.90625

1 (2,1,1) 0.96250

2 (3,1,1) 0.98125

3 (4,1,1) 0.98925

4 (4,2,1) 0.99357

5 (5,2,1) 0.99598

6 (6,2,1) 0.99732

7 (6,3,1) 0.99821

8 (7,3,1) 0.99875

9 (7,4,1) 0.99912

10 (8,4,1) 0.99935

11 (9,4,1) 0.99951

12 (9,5,1) 0.99963

13 (10,5,1) 0.99972

14 (10,6,1) 0.99978

15 (10,7,1) 0.99983

16 (11,7,1) 0.99986

17 (12,7,1) 0.99989

18 (12,7,2) 0.99991

19 (13,7,2) 0.99993

20 (13,8,2) 0.99994

Table 4.3: Optimal allocation of extra components from Example 4.3. The red

entries are used to indicate the type of extra component chosen at the specific stage.
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NPI lower probability for the event that the system functions (denoted by P in the

last column).

If one extra component is allowed, it is optimal to add a component of type

1. This is fully as expected, since type A components seem to be more reliable

than type 2 and type 3 components based on the test results. If two further extra

components are allowed, all three would be chosen of type 1. However, if four extra

components are allowed, it is optimal to take the fourth one to be of type 2. For up

to 17 extra components they are all either of type 1 or 2 as presented in Table 4.3.

If an eighteenth extra component is allowed, then it would be optimal to choose a

component of type 3. This illustrates the result presented at the end of Subsection

4.2.3, in particular that it is better to add a component of type 3 than of type 1

if m1 > 11, and better to add a component of type 3 than of type 2 if m2 > 6, so

indeed once m1 ≥ 12 and m2 ≥ 7 the first extra component of type 3 is chosen.

This illustrates an important aspect of NPI for system reliability. NPI takes

explicitly into account that the reliabilities of components of one type in the system

are statistically dependent, as a result of the limited information from the test data.

Effectively, if one has the system with already 3 extra components added in the

optimal manner, it has become quite a reliable system. If, however, this system

does not function, it implies that the components of type 1 seem to be less reliable

than had been expected based on the test results. Hence, at this point a component

of type 2 would seem more reliable, based on the test results and the three assumedly

failing extra components of type 1 in the system. This effect continues similarly,

with each additional component the overall system reliability of course increases but

the consideration of which further extra component to add is based on the situation

where all current system components fail, as that is the only scenario for a parallel

system not to function.

This example illustrates that diversity in redundancy allocation can result di-

rectly from maximisation of reliability, and is due to the limited knowledge about

the reliability of the components of different types. This is an important reason

for diversity that is different to the usually mentioned possibility of common-cause

failures which would lead to all components of one type to fail. This example also
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illustrates that sequential one-step-at-a-time optimisation leads to the same opti-

mal allocation of extra components as overall optimisation. For parallel systems

as considered here, this result was easily shown to hold as discussed at the end of

Subsection 4.2.4.

4.4 Concluding remarks

This chapter presents another important step in the development of NPI for system

reliability as, due to the use of lower and upper probabilities, it is non-trivial to

deal with multiple component types in a single voting system. The natural next

step is consideration of systems in series structure where each subsystem is a voting

system with multiple types of components and with components of the same type

appearing in different subsystems. This is the main topic of Chapter 5.

In Subsection 4.2.4 we briefly formulated a conjecture on redundancy allocation,

in line with the results in Chapter 2. The basic idea of optimally allocating one more

component, if one can increase m by one without changing k, is pretty straightfor-

ward, as one would just calculate the NPI lower probabilities corresponding to the

possibility to add a component for each of the T component types, and then choose

the type leading to maximum improvement. However, if one can allocate more than

one component, it is not clear that one can proceed with such one-step-at-a-time

optimisation, which would lead to a simple algorithm. We strongly feel that such

an algorithm would be optimal, as was the case for the more basic scenarios we

considered before, but we have not yet achieved a mathematical proof of optimality

for systems with k ≥ 2, for parallel systems (k = 1) the result follows easily as

discussed in Subsection 4.2.4, along the same lines as briefly explained in Section

2.5. A further research challenge is optimal redundancy allocation under cost con-

straints. We believe that for quite a large variety of cost structures the resulting

problems can be formulated as standard optimisation problems, but this is left as a

topic for future research.

The main lesson of this chapter is that considering diversity of components in a

system is important to achieve maximum system reliability in situations with limited
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information about component reliability, but the optimal configuration depends on

the actual system structure, with diversity generally most useful for parallel systems,

while for series systems one would not opt for diversity and only use components

of the type that gave the best test results. We have only shown this for the simple

systems considered in this chapter, but we strongly feel that similar conclusions will

hold for more general system structures when NPI lower probabilities are used to

express system reliability. Of course, if one feels that there may be common-cause

failures that could simultaneously affect all components of one type in a system,

as suggested as the main reason in favour of diversity in the literature (see Section

4.1), then diversity can have a positive effect on the system reliability which has

not been considered in this chapter. In the NPI framework, common-cause failures

can be considered, although one would require explicit test data on such failures in

order to include it. One may also wish to consider different failure modes, Maturi et

al. [44] recently presented NPI for competing risks data but did not explicitly link

this to system reliability.

Finally, we wish to emphasize that the general idea to use diversity to optimize

performance of a system in situations with uncertainty of performance of the sys-

tem’s components, as presented in this chapter with regard to reliability of voting

systems, is common in many different areas of decision making under uncertainty.

For example, decision makers in finance typically create diverse portfolios of invest-

ments due to uncertainty about performance of individual options, which is close in

nature to the reason for diversity advocated in this chapter.



Chapter 5

Subsystems with multiple

component types

5.1 Introduction

This chapter presents a generalization of results introduced in the previous three

chapters by considering systems with a series structure, where each subsystem is

a voting system with multiple types of components and with components of the

same type appearing in different subsystems. As an example of systems where

such a structure can occur one can think about anti-virus software for computer

networks under possible global attack, with each computer system protected by

a number of anti-virus programmes, some used at multiple computers with some

further programmes possibly just used locally. The functioning of such programmes

may be exchangeable but not ‘identical’ due to local aspects of the computers, for

example how the software has been integrated into the system. Also, one may have

tested the software for a variety of viruses, enabling a judgement of exchangeability

on its performance against a further virus as long as one can assume that this virus

was not created explicitly to circumvent specific anti-virus software.

Section 5.2 provides a brief description of the systems considered in this chapter.

In Section 5.3 the NPI lower and upper probabilities for functioning of a system

consisting of 2 subsystems with 2 component types are presented. In Section 5.4 the

main results of this chapter are presented, namely the NPI lower and upper proba-
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bilities for functioning of systems with a series structure where each subsystem is a

voting system with multiple types of components. These results generalize the re-

sults in the previous chapters, and hence are the main results presented in this thesis.

Section 5.5 presents examples to illustrate these lower and upper probabilities, and

to discuss some specific related features including aspects of redundancy and diver-

sity. Section 5.6 concludes the chapter with some remarks on further development

of NPI for system reliability and related research challenges.

5.2 Subsystems with multiple component types

Consider a system consisting of L subsystems in a series configuration (see Figure

5.1). Each subsystem is a single voting system consisting of different types of com-

ponents, which are assumed to perform the same function within the subsystem,

but the test information differs per type of component. The important contribu-

tion of this chapter is that different subsystems can contain components of the same

types. This is non-trivial, as the random quantities representing whether these com-

ponents in the system function or not, are not independent in the NPI approach,

given the test results. It is important that this dependence is explicitly taken into

account, in particular when there is relatively little information from tests. Assume

that functioning of components of different types is fully independent, in the sense

that any information on functioning of components of one type does not hold any

information about functioning of components of another type. Suppose that there

are T types of components and the voting subsystem l (l = 1, . . . , L) consists of ml
t

components of type t for each t = 1, . . . , T , so ml = ml
1 + . . . + ml

T and the whole

system contains in total m1 + . . . + mL components. So, subsystem l functions if

and only if at least kl of its ml components function, whatever their types, and the

entire system functions if and only if all its L subsystems function.

To apply the NPI approach for the reliability of this system, assume that nt

components of type t have been tested, and st of these functioned. As before, the

tested components are assumed to be exchangeable with those of the same type in

the system. To denote the total test data for the t types the vector notation (n, s)
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k / mk / m / m1 1 k2 2 L L

Figure 5.1: Subsystems with multiple component types

is used, and we use the obvious notation S
[L]
[T ](m

1 : k1, · · · ,mL : kL) to denote the

event that such a system functions successfully. It is possible that ml
t = 0 for some

t ∈ {1, . . . , T} and l ∈ {1, . . . , L}, inclusion of such a component type which is

not actually present in the system does not affect the results presented below and is

unlikely to lead to confusion in notation. Let X l
t ∈ {0, 1, . . . ,ml

t} denote the number

out of the ml
t components of type t which function in subsystem l, for l ∈ {1, . . . , L}

and t ∈ {1, . . . , T}. The aim is to derive the NPI lower and upper probabilities for

the event that the system functions given the test data,

P (S
[L]
[T ](m

1 : k1, · · · ,mL : kL) | (n, s)) (5.1)

and

P (S
[L]
[T ](m

1 : k1, · · · ,mL : kL) | (n, s)) (5.2)

respectively.

Before presenting the general results for any number L of subsystems and T of

component types, the case of a system consisting of L = 2 subsystems with each

subsystem consisting of the same T = 2 types of components is considered in detail.
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5.3 2 subsystems with 2 component types

Consider a system consisting of 2 subsystems with 2 component types. The NPI

lower probability for the event that such a system functions is

P (S
[2]
[2](m

1 : k1,m2 : k2) | (n, s)) =

m1
2∑

i1=0

m2
2∑

i2=0

[
D(X1

2 = i1, X2
2 = i2 | n2, s2) × P (S

[2]
[1](m

1
1 : k1 − i1,m2

1 : k2 − i2 | n1, s1))
]

where

D(X1
2 = i1, X2

2 = i2 | n2, s2) =

P (X1
2 ≤ i1, X2

2 ≤ i2 | n2, s2) − P (X1
2 ≤ i1 − 1, X2

2 ≤ i2 | n2, s2)

−P (X1
2 ≤ i1, X2

2 ≤ i2 − 1 | n2, s2) + P (X1
2 ≤ i1 − 1, X2

2 ≤ i2 − 1 | n2, s2)

This NPI lower probability is derived by considering all combinations of numbers

and types of components for the two subsystems according to which the system

functions successfully, using the theorem of total probability for precise probabil-

ities as shown in Theorem 5.1 below for general values of L and T . The func-

tion D ensures that maximum possible weight (where ‘maximum’ is over all precise

probability distributions in the NPI-based structure M (see Chapter 1) is given

to lower probabilities P (S
[2]
[1](m

1
1 : k1 − i1,m2

1 : k2 − i2 | n1, s1)) with small values

of i1 and i2, and as this lower probability is increasing in i1 and i2 this construc-

tion ensures that this P (S
[2]
[2](m

1 : k1,m2 : k2) is the NPI lower probability for

the event that this system functions. This function D is such that it assigns the

maximum possible probability mass, according to the NPI structure, to the event

(X1
2 = 0, X2

2 = 0), so D(X1
2 = 0, X2

2 = 0 | n2, s2) = P (X1
2 = 0, X2

2 = 0 | n2, s2).

Then, D(X1
2 = 1, X2

2 = 0 | n2, s2) is defined by putting the maximum possible

remaining probability mass from the total probability mass available for the event

(X1
2 ≤ 1, X2

2 = 0), according to the NPI structure, to the event (X1
2 = 1, X2

2 = 0).

This is achieved by D(X1
2 = 1, X2

2 = 0 | n2, s2) = P (X1
2 ≤ 1, X2

2 = 0 | n2, s2) −

P (X1
2 = 0, X2

2 = 0 | n2, s2). Following similar reasoning, the maximum possible

remaining probability mass D(X1
2 = 0, X2

2 = 1 | n2, s2) = P (X1
2 = 0, X2

2 ≤ 1 |

n2, s2)−P (X1
2 = 0, X2

2 = 0 | n2, s2) is assigned to the event (X1
2 = 0, X2

2 = 1). This
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argument is continued, by assigning for increasing i1 and i2 the maximum possible

remaining probability mass D(X1
2 = i1, X2

2 = i2 | n2, s2). By this construction,

the resulting D is actually a precise probability distribution within the NPI-based

structure for the random quantities (X1
2 , X

2
2 ). The use of the NPI lower probabili-

ties P (S
[2]
[1](m

1
1 : k1 − i1,m2

1 : k2 − i2 | n1, s1)) to achieve the NPI lower probability

P (S
[2]
[2](m

1 : k1,m2 : k2) | (n, s)) is straightforwardly seen to result from minimisation

over the corresponding NPI-based structure for the random quantities (X1
1 , X

2
1 ).

In the following section, this assignment of maximum remaining probability

masses will be extended to the general case with L ≥ 2 subsystems and T ≥ 2

types of components in Theorem 5.1, the main ideas are the same as for this case

with L = 2 and T = 2. The NPI lower and upper probabilities needed to calculate

P (S
[2]
[2](m

1 : k1,m2 : k2) | (n, s)) each involve only a single type of component, and

hence are as presented in Chapter 3.

The corresponding NPI upper probability for such a system to function is

P (S
[2]
[2](m

1 : k1,m2 : k2) | (n, s)) =

m1
2∑

i1=0

m2
2∑

i2=0

[
D(X1

2 = i1, X2
2 = i2 | n2, s2) × P (S

[2]
[1](m

1
1 : k1 − i1,m2

1 : k2 − i2 | n1, s1))
]

where

D(X1
2 = i1, X2

2 = i2 | n2, s2) =

P (X1
2 ≤ i1, X2

2 ≤ i2 | n2, s2) − P (X1
2 ≤ i1 − 1, X2

2 ≤ i2 | n2, s2)

−P (X1
2 ≤ i1, X2

2 ≤ i2 − 1 | n2, s2) + P (X1
2 ≤ i1 − 1, X2

2 ≤ i2 − 1 | n2, s2)

Justification of this result is similar to that for the NPI lower probability given

above, with the obvious exchange of lower and upper probabilities.

5.4 L subsystems with T component types

For a system consisting of L subsystems with T component types, the NPI lower

and upper probabilities for the system to function are
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P (S
[L]
[τ ] (m

1 :k1, · · · ,mL : kL) | (n, s)) =

m1
τ∑

i1=0

· · ·
mL

τ∑
iL=0

[
Dτ (X

1
τ = i1, . . . , XL

τ = iL | nτ , sτ )×

P (S
[L]
[τ−1](m

1 : k1 − i1, · · · ,mL : kL − iL) | (n, s))
]

(5.3)

and

P (S
[L]
[τ ] (m

1 :k1, · · · ,mL : kL) | (n, s)) =

m1
τ∑

i1=0

· · ·
mL

τ∑
iL=0

[
Dτ (X

1
τ = i1, . . . , XL

τ = iL | nτ , sτ )×

P (S
[L]
[τ−1](m

1 : k1 − i1, · · · ,mL : kL − iL) | (n, s))
]

(5.4)

respectively, with [τ ] = {1, . . . , τ} for τ ≤ T .

To derive the NPI lower and upper probabilities (5.3) and (5.4) for general L

and T we introduce the following notation:

uL
t

(
i1, i2, . . . , iL

)
= P (X1

t ≥ i1, X2
t ≥ i2, . . . , XL

t ≥ iL | nt, st)

`L
t

(
i1, i2, . . . , iL

)
= P (X1

t ≥ i1, X2
t ≥ i2, . . . , XL

t ≥ iL | nt, st)

cL
t

(
i1, i2, . . . , iL

)
= P (X1

t ≥ i1, X2
t ≥ i2, . . . , XL

t ≥ iL)

eL
t

(
i1, i2, . . . , iL

)
= P (X1

t = i1, X2
t = i2, . . . , XL

t = iL)

Furthermore, for any set S ⊂ {1, . . . , T}, let

uL
S

(
i1, i2, . . . , iL

)
= P

(∑
t∈S

X1
t ≥ i1,

∑
t∈S

X2
t ≥ i2, . . . ,

∑
t∈S

XL
t ≥ iL | (n, s)

)

`L
S

(
i1, i2, . . . , iL

)
= P

(∑
t∈S

X1
t ≥ i1,

∑
t∈S

X2
t ≥ i2, . . . ,

∑
t∈S

XL
t ≥ iL | (n, s)

)

cL
S

(
i1, i2, . . . , iL

)
= P

(∑
t∈S

X1
t ≥ i1,

∑
t∈S

X2
t ≥ i2, . . . ,

∑
t∈S

XL
t ≥ iL

)

eL
S

(
i1, i2, . . . , iL

)
= P

(∑
t∈S

X1
t = i1,

∑
t∈S

X2
t = i2, . . . ,

∑
t∈S

XL
t = iL

)

and let [τ ] = {1, . . . , τ} for τ ≤ T .
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The lower and upper probabilities introduced above and used in Theorem 5.1 are

explicitly assumed to be resulting from NPI, as emphasized by inclusion of the test

data in the notation. Of course, of the data (n, s) for all T types of components, only

the (nt, st) with t ∈ S are relevant for uL
S and `L

S . The main result of this chapter

is presented in Theorem 5.1, and is a recursive relation that enables calculation

of the NPI lower and upper probabilities for the event that a system of the kind

considered in this chapter functions, given component test data. The main idea is

that, with T different types of components in the system, at each stage (which is one

application of the results of Theorem 5.1) one type of component is separated from

the others and the theorem of total probability is used for the precise probabilities

in the NPI-based structures to take all their possible values into account, leaving

one fewer type of component to be dealt with at the next stage. The complexity of

computations at each stage is based on the number of subsystems L, and the number

of stages is based on the number of component types T . This explains why for large

values of T and L, computational difficulties (in terms of computational time) are

expected to appear. Theorem 5.1 presents the mathematical argument for one such

a stage, with the notational simplification of assuming that the component types to

be considered are the set [τ ], of which the components of type τ are separated from

the others at the stage considered, hence leaving the components of types [τ − 1] to

be considered at the next stage. This can be done without loss of generality, as the

specific types of the components are just labels that can be ordered in any way. An

interesting topic for future research is the effect of specific orders on computational

efficiency. For example it could be best to label the component types 1, . . . , τ , for

any τ ∈ {1, . . . , T}, in such an order that components of one of these types which

appear in the largest number of subsystems are separated from the other component

types first, hence are defined as being of type τ .

Before Theorem 5.1 can be presented, one more concept is required, namely the

generalization of the functions D and D, presented in Section 5.3 for the case L = 2,

for application to systems with more than two subsystems. For components of type

t ∈ {1, . . . , T} and L subsystems, let the function Dt(X
1
t = i1, . . . , XL

t = iL | nt, st)

be the maximum possible remaining probability mass, corresponding to the NPI
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structure, that can be assigned to the point (i1, . . . , iL) but not to any other point

(a1, . . . , aL) with integers al ∈ {0, . . . , il}. Hence, for L = 2 the function D2(X
1
2 =

i1, X2
2 = i2 | n2, s2) is equal to the function D discussed above. Generally, this means

that Dt(X
1
t = 0, . . . , XL

t = 0 | nt, st) = P (X1
t = 0, . . . , XL

t = 0 | nt, st), with further

values derived as combinations of these upper cumulative joint distribution function

values at (i1, . . . , iL) and at such points (a1, . . . , aL) with integers al ∈ {0, . . . , il},

ensuring that no probability mass is included more than once. For ease of notation,

let

g(i1, i2, · · · , iL) = P (X1
t ≤ i1, X2

t ≤ i2, · · · , XL
t ≤ iL | nt, st)

g(i1−1, i2−1, · · · , iL−1) = P (X1
t ≤ i1−1, X2

t ≤ i2−1, · · · , XL
t ≤ iL−1 | nt, st)

gj1(i
1, · · · , ij1−1, ij1 − 1, ij1+1, · · · , iL) =

P (X1
t ≤ i1, · · · , Xj1

t ≤ ij1 − 1, Xj1+1
t ≤ ij1+1, · · · , XL

t ≤ iL | nt, st)

gj1,··· ,jh
(i1, · · · , ij1−1, ij1 − 1, · · · , ijh − 1, ijh+1, · · · , iL) =

P (X1
t ≤ i1, · · · , Xj1

t ≤ ij1−1, · · · , Xjh
t ≤ ijh−1, Xjh+1

t ≤ ijh+1, · · · , XL
t ≤ iL | nt, st)

where

1 ≤ j1 < j2 < · · · < jh ≤ L

and

P (X1
t ≤ i1, X2

t ≤ i2, · · · , XL
t ≤ iL | nt, st) =

i1∑
y1=0

· · ·
iL∑

yL=0

Dt(X
1
t = y1, X2

t = y2, · · · , XL
t = yL | nt, st)
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Using the notation introduced above and the inclusion-exclusion principle, we get

i1∑
y1=0

· · ·
iL∑

yL=0

Dt(X
1
t = y1, X2

t = y2, · · · , XL
t = yL | nt, st) =

Dt(X
1
t = i1, X2

t = i2, · · · , XL
t = iL | nt, st) +

[
L∑

j1=1

gj1(i
1, · · · , ij1 − 1, ij1+1, · · · , iL)

−
∑

j1,j2 : 1≤j1<j2≤L

gj1,j2(i
1, · · · , ij1 − 1, ij2 − 1, ij2+1, · · · , iL)

+
∑

j1,j2,j3 : 1≤j1<j2<j3≤L

gj1,j2,j3(i
1, · · · , ij1 − 1, ij2 − 1, ij3 − 1, ij3+1, · · · , iL)

− · · · + (−1)L−1 g(i1 − 1, i2 − 1, · · · , iL − 1)
]

so

Dt(X
1
t = i1, X2

t = i2, · · · , XL
t = iL | nt, st) =

g(i1, i2, · · · , iL) −

[
L∑

j1=1

gj1(i
1, · · · , ij1 − 1, ij1+1, · · · , iL)

−
∑

j1,j2 : 1≤j1<j2≤L

gj1,j2(i
1, · · · , ij1 − 1, ij2 − 1, ij2+1, · · · , iL)

+
∑

j1,j2,j3 : 1≤j1<j2<j3≤L

gj1,j2,j3(i
1, · · · , ij1 − 1, ij2 − 1, ij3 − 1, ij3+1, · · · , iL)

− · · · + (−1)L−1 g(i1 − 1, i2 − 1, · · · , iL − 1)
]

The NPI upper cumulative joint distribution functions involved follow directly from

the results in Chapter 3. Similarly, the function Dt(X
1
t = i1, . . . , XL

t = iL | nt, st)

gives the minimum possible remaining probability mass corresponding to the NPI

structure, and takes the same functional form as Dt but with all upper cumulative

joint distribution functions replaced by the corresponding lower cumulative joint

distribution functions.

Theorem 5.1. Consider the random quantities X l
t ∈ {0, 1, .., ml

t} for t ∈ {1, .., T}

and l ∈ {1, .., L} with X l
t the number of functioning components of type t in subsys-

tem l. These random quantities for different types t are assumed to be independent,

while for the same type but for different subsystems they are assumed to be exchange-
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able. Let τ ∈ {2, .., T} and κl ∈ {0, 1, .., ml
τ}, then

`L
[τ ](κ

1, . . . , κL) =

m1
τ∑

i1=0

· · ·
mL

τ∑
iL=0

Dτ (X
1
τ = i1, . . . , XL

τ = iL | nτ , sτ )`
L
[τ−1]

(
κ1 − i1, . . . , κL − iL

)
and

uL
[τ ](κ

1, . . . , κL) =

m1
τ∑

i1=0

· · ·
mL

τ∑
iL=0

Dτ (X
1
τ = i1, . . . , XL

τ = iL | nτ , sτ )u
L
[τ−1]

(
κ1 − i1, . . . , κL − iL

)
Proof. We prove the NPI lower probability, the justification for the corresponding

upper probability follows the same steps (again with upper and lower probabilities

exchanged everywhere). The proof is first given for L = 2 subsystems and T = 2

types of components. For this case, the key steps of the proof were already explained

in Section 5.3, but it is useful to have the argument presented in the notation that

allows generalization. For the case with L = 2 and T = 2, the theorem of total

probability gives, for any precise probability distribution P (·) in the NPI-based

structure,

P
(
X1

1 + X1
2 ≥ κ1, X2

1 + X2
2 ≥ κ2

)
=

m1
1∑

i1=0

m2
1∑

i2=0

P
(
X1

2 = i1, X2
2 = i2

)
P
(
X1

1 ≥ κ1 − i1, X2
1 ≥ κ2 − i2

)
Using the notation introduced earlier in this section the following lower bound for

such precise probabilities is derived

c2
[2](κ

1, κ2) =

m1
2∑

i1=0

m2
2∑

i2=0

e2
2(i

1, i2)c2
1(κ

1 − i1, κ2 − i2)

≥
m1

2∑
i1=0

m2
2∑

i2=0

e2
2(i

1, i2)`2
1(κ

1 − i1, κ2 − i2)

≥
m1

2∑
i1=0

m2
2∑

i2=0

D2(X
1
2 = i1, X2

2 = i2 | n2, s2)`
2
1(κ

1 − i1, κ2 − i2)

Justification of these inequalities has been discussed above, where it was also ex-

plained that these two inequalities are sharp, in the sense that for both equality can
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be achieved for a specific probability distribution in the relevant NPI structure. So

the right-hand side of the second inequality is the infimum over all precise probabil-

ity distributions in this NPI structure, hence it is the NPI lower probability for the

event of interest, so

`2
2(κ

1, κ2) =

m1
2∑

i1=0

m2
2∑

i2=0

D2(X
1
2 = i1, X2

2 = i2 | n2, s2)`
2
1(κ

1 − i1, κ2 − i2)

For the general case with L ≥ 2 and T ≥ 2 and any τ ∈ {2, . . . , T} the proof of

Theorem 5.1 follows the same steps as for the case with L = 2 and T = 2, the key

aspect is again that the theorem of total probability is used for all precise probability

distributions in the NPI-based structure, and that a sharp lower bound is derived.

With the notation introduced above, and for general values of L and T ,

cL
[τ ](κ

1, . . . , κL)

=

m1
τ∑

i1=0

· · ·
mL

τ∑
iL=0

eL
τ (i1, . . . , iL)cL

[τ−1](κ
1 − i1, . . . , κL − iL)

≥
m1

τ∑
i1=0

· · ·
mL

τ∑
iL=0

eL
τ (i1, . . . , iL)`L

[τ−1](κ
1 − i1, . . . , κL − iL)

≥
m1

τ∑
i1=0

· · ·
mL

τ∑
iL=0

Dτ (X
1
τ = i1, . . . , XL

τ = iL | nτ , sτ )`
L
[τ−1](κ

1 − i1, . . . , κL − iL)

The same arguments as for the case with L = 2 and T = 2, given above in this proof

and earlier in Section 5.3, ensure that this right-hand side is actually attainable

for precise probability distributions within the NPI-based structures for the random

quantities involved, and hence that it is the NPI lower probability for the event of

interest,

`L
[τ ](κ

1, . . . , κL) =

m1
τ∑

i1=0

· · ·
mL

τ∑
iL=0

Dτ (X
1
τ = i1, . . . , XL

τ = iL | nτ , sτ )`
L
[τ−1](κ

1 − i1, . . . , κL − iL)

which completes the proof of Theorem 5.1.

Theorem 5.1 provides a recursive algorithm for calculation of the NPI lower and

upper probabilities for system functioning as considered in this chapter, where the
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Sys1 Sys2 Sys1 Sys2 Sys1 Sys2

n s k = 21 k1 = 10 k = 22 k1 = 11 k = 24 k1 = 12

k2 = 11 k2 = 11 k2 = 12

P P P P P P P P P P P P

1 1 0.059 1 0.041 1 0.036 1 0.027 1 0.006 1 0.006 1

2 2 0.173 1 0.123 1 0.110 1 0.086 1 0.020 1 0.020 1

3 3 0.294 1 0.214 1 0.196 1 0.155 1 0.040 1 0.040 1

2 0.023 0.294 0.014 0.214 0.012 0.196 0.007 0.155 0.001 0.040 0.001 0.040

5 5 0.499 1 0.382 1 0.360 1 0.292 1 0.087 1 0.087 1

4 0.110 0.499 0.070 0.382 0.057 0.360 0.040 0.292 0.005 0.087 0.005 0.087

10 10 0.783 1 0.650 1 0.640 1 0.547 1 0.207 1 0.207 1

9 0.416 0.783 0.292 0.650 0.263 0.640 0.199 0.547 0.038 0.207 0.038 0.207

8 0.160 0.416 0.099 0.292 0.079 0.263 0.055 0.199 0.006 0.038 0.006 0.038

20 20 0.944 1 0.855 1 0.862 1 0.783 1 0.391 1 0.391 1

24 24 0.964 1 0.890 1 0.900 1 0.829 1 0.444 1 0.444 1

30 30 0.980 1 0.923 1 0.935 1 0.876 1 0.510 1 0.510 1

Table 5.1: NPI lower and upper probabilities for the systems in Example 5.1

first step is achieved by setting τ = T and (κ1, . . . , κL) = (k1, . . . , kL), and recursive

application of Theorem 5.1 leads to these NPI lower and upper probabilities. As all

summations involved are finite, there are no significant computational difficulties.

However, for large values of T and L, computational difficulties are expected to

appear due to the very large number of calculations involved. Unfortunately, these

expressions do not enable detailed analytical study of these NPI lower and upper

probabilities, so several examples are presented in Section 5.5 to illustrate these

results and to discuss some important properties of these inferences.

5.5 Examples

This section presents two examples to illustrate the results presented in the pre-

vious section. The NPI lower and upper probabilities for successful functioning of

a system consisting of 2 subsystems with 2 component types are discussed in the

first example, including comparisons with a single voting system with 2 component

types. The second example considers a system with 3 subsystems and 3 components,

and includes a brief discussion of the important topics of redundancy and diversity.

Example 5.1

Two different systems, each having components of T = 2 types A and B, are consid-

ered. The first is a k-out-of-24 system with ma = mb = 12. The second consists of
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L = 2 ki-out-of-12 subsystems in series configuration with m1
a = m1

b = m2
a = m2

b = 6.

The NPI lower and upper probabilities for the event that a system functions suc-

cessfully are presented in Table 5.1, for different test data and some different values

of k, k1 and k2. The values in Table 5.1, for both systems, illustrate some of the

general properties of NPI lower and upper probabilities for all k-out-of-m systems.

The NPI upper probability for successful system functioning given s successes in n

tests is equal to the NPI lower probability for successful system functioning given

s+1 successes. The value 1 of the NPI upper probability if s = n reflects that in this

case there is no strong evidence that the components can actually fail. If all com-

ponents in the system must function, the reliability tends to be very small for cases

where some components failed in the tests, which is logical as the test information

only provides weak support for this event. The imprecision, that is the difference

between corresponding NPI upper and lower probabilities, tends to decrease as a

function of n and increase as a function of m, although the imprecision tends to

become smaller for non-trivial events if both the upper and lower probabilities get

close to either zero or to one. It is clear that the system reliability, as measured

by these NPI lower and upper probabilities, increases substantially for decreasing

k or k1 and k2 (except those equal to 1), so if fewer of the 24 components have

to function, and also for increasing numbers of tested components if these were all

successful.

For both these systems, the lower and upper probabilities in the two final columns

are identical as in these cases the systems only function if all 24 components function.

The other cases give different results due to the different system configurations. For

example, a 22-out-of-24 system functions for more combinations of failing compo-

nents than two 11-out-of-12 subsystems in a series configuration, the former system

still functions for example if any two components fail while the latter system fails if

the two failing components are in the same subsystem. This explains why the entries

related to the first system (Sys1) are greater than those for the corresponding cases,

with k1 + k2 = k, related to the second system (Sys2).
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i subsystem i mi
a mi

b mi
c

1 1-out-of-6 2 2 2

2 2-out-of-6 2 2 2

3 3-out-of-6 4 0 2

Table 5.2: 3 subsystems considered in Example 5.2

Example 5.2

Consider a system consisting of L = 3 subsystems in series configuration with com-

ponents of T = 3 types, A, B and C, as specified in Table 5.2.

Testing 3 components of each type, na = nb = nc = 3, led to sa = 3, sb = 2

and sc = 1 functioning components. The NPI lower probability for the event that

this system functions is equal to 0.7256. Suppose that, to increase the system’s

reliability by increasing redundancy, extra components can be added to the system,

keeping k1 = 1, k2 = 2 and k3 = 3 but increasing the values of some of the mt
l for

t = a, b, c and l = 1, 2, 3. It is assumed that there are no cost considerations, only

the number of extra components that can be added is restricted, and these extra

components can be of any type and added to any of the two subsystems.

It is natural here to consider the lower probability for reliability inferences, as

it reflects the strength of the evidence in favour of the system’s reliability, and as

such could be interpreted as a conservative inference. Table 5.3 presents the optimal

allocation of 1 to 20 extra components (‘Extra’ in the first column), in the sense of

maximum resulting NPI lower probability for the event that the system functions

(P in the last column).

If one extra component is allowed, it is optimal to add a component of type A

to subsystem 3. This is fully as expected, since type A components seem to be

more reliable than type B and type C components based on the test results, and

subsystem 3 has less redundancy in the original system than subsystems 1 and 2.

With three extra components, it is optimal to have them all of type A with one added

to subsystem 2 and two to subsystem 3. If then a further extra component is allowed,

it is optimal to add one of type B to subsystem 3. For up to 20 extra components

they are all either of type A or B as presented in Table 5.3. However, if more extra
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Extra (m1
a,m

1
b ,m

1
c , m

2
a,m

2
b ,m

2
c ,m

3
a,m

3
b ,m

3
c) P

0 (2,2,2,2,2,2,4,0,2) 0.7256

1 (2,2,2,2,2,2,5,0,2) 0.7896

2 (2,2,2,3,2,2,5,0,2) 0.8302

3 (2,2,2,3,2,2,6,0,2) 0.8675

4 (2,2,2,3,2,2,6,1,2) 0.8907

5 (2,2,2,4,2,2,6,1,2) 0.9087

6 (2,2,2,4,2,2,6,2,2) 0.9244

7 (2,2,2,4,2,2,7,2,2) 0.9345

8 (2,2,2,5,2,2,7,2,2) 0.9437

9 (3,2,2,5,2,2,7,2,2) 0.9513

10 (3,2,2,5,2,2,7,3,2) 0.9584

11 (3,2,2,6,2,2,7,3,2) 0.9635

12 (3,2,2,6,2,2,8,3,2) 0.9684

13 (4,2,2,6,2,2,8,3,2) 0.9716

14 (4,2,2,6,2,2,8,4,2) 0.9748

15 (4,2,2,6,3,2,8,4,2) 0.9782

16 (4,2,2,6,3,2,9,4,2) 0.9806

17 (4,2,2,7,3,2,9,4,2) 0.9828

18 (5,2,2,7,3,2,9,4,2) 0.9845

19 (5,2,2,7,3,2,10,4,2) 0.9862

20 (5,2,2,8,3,2,10,4,2) 0.9876

Table 5.3: Illustration of redundancy and diversity. The red entries indicate the

subsystem and the type of extra component chosen at the specific stage.
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components are allowed, we expect that type C would also be added, as diversity

in redundancy allocation can result directly from maximisation of reliability, and

is due to the limited knowledge about the reliability of the components of different

types. As Coolen et al. [19] emphasize, this is an important reason for diversity

that is different to the usually mentioned possibility of common-cause failures which

would lead to all components of one type to fail.

In this example, the optimal allocations of up to 20 extra components are all

such that one extra component would just be added to the optimal system structure

derived when one fewer extra component is allowed. For systems with only one

type of component per subsystem and different component types for different sub-

systems, it has been proven that adding extra components sequentially does lead to

optimal redundancy allocation (see Chapter 2). As mentioned before, the basic idea

of optimally allocating one more component, if one can increase m by one without

changing k, is pretty straightforward, as one just calculates the NPI lower proba-

bilities corresponding to all possibilities to add one component to the system and

then chooses the type and subsystem leading to maximum improvement. However,

if one can allocate more than one component, it is not clear that one can proceed

with such one-step-at-a-time optimisation, which would lead to a simple algorithm.

Based on the numerical computations in this example and some further cases we

looked at, we strongly feel that such an algorithm would be optimal, as was the case

for the more basic scenarios we considered before, but we have not yet achieved a

mathematical proof of optimality for the systems in this chapter. In the example

above, all possible scenarios were calculated and the given results are indeed optimal,

so here one-step-at-a-time optimisation does lead to the overall optimal redundancy

allocation in line with our conjecture that this will always lead to optimality for

such systems.

5.6 Concluding remarks

This chapter has presented an important result in the development of NPI for sys-

tem reliability, namely the lower and upper probabilities for the event that a system
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with multiple subsystems, each a voting system, in series configuration functions

successfully, where the different subsystems can have components of the same types.

However, the mathematical complexity of these results is already quite substantial,

while these systems still have relatively basic structures. In Example 5.2 an open

problem for research was mentioned, namely to investigate whether or not sequen-

tial optimal allocation of extra components leads to optimal redundancy allocation.

To solve a multi-dimensional optimisation problem, it is not generally sufficient to

restrict to sequential one-dimensional optimisations. Of course, the main aim is to

develop NPI for reliability of more complex system structures. Possibly the theory

of signatures [51] may be of use, but the theory of signatures only applies to sys-

tems with a single type of component and it is not clear if it can be generalized to

multiple component types. Further challenges are related to implementation of the

results presented in this chapter for larger systems. In particular for large values

of T and L, computational difficulties may appear due to the very large number

of calculations involved, and it may be possible to derive suitable approximations.

For risk assessment of safety-critical systems, which would only be used if tests had

revealed zero failures [15], a reasonable lower bound for the NPI lower probability

of system functioning may be sufficient to support decisions, with possible use of a

corresponding upper bound for the NPI lower probability to indicate the accuracy

of the approximation.

While these results may be perceived as having a rather abstract nature, they

are readily available for implementation and the implications for practical reliabil-

ity assessment can be considerable. By taking the uncertainty about reliability of

components, resulting from limited test information, explicitly into account, which

results in dependence of the random quantities representing the reliabilities of the

components in the system, the overall system reliability can be very different from

values that are perhaps more in line with intuition, as explained in examples and

discussions in Coolen-Schrijner et al. [29]. This also affects the important aspects

of redundancy and diversity related to system reliability, as briefly discussed in

Example 5.2 and in more detail, but only for a single voting system, in Chapter 4.



Chapter 6

Conclusions

In this thesis, several extensions to Nonparametric Predictive Inference (NPI) for

system reliability were presented. The NPI approach to system reliability is in early

stages of development. It provides a new method for statistical inference on system

reliability on the basis of limited information resulting from component testing.

In Chapter 2, the basic application of NPI for Bernoulli random quantities to

inference on reliability of systems which are series of independent subsystems, with

each subsystem a ki-out-of-mi system with exchangeable components, was presented.

With reliability measured by the NPI lower probability for system functioning, op-

timal redundancy allocation of extra components can be achieved, for any number

of extra components, by sequential one-step optimal allocation. According to this

technique, at each step an extra component is allocated to the subsystem for which

the relative increase in reliability is maximal. The algorithm to determine the op-

timal sequence of adding the extra components to subsystems was described, and

the proof of optimality was given. This result determined how to optimally allocate

additional components for redundancy for any criterion in the case where the cost of

components is irrelevant, or where they are the same for all components. If the costs

of additional components differ per subsystem, and one aims to maximize system

reliability under budget constraints, then the redundancy allocation problem be-

comes more complex. Fortunately this problem is close in nature to the well-known

knapsack problems in discrete optimisation, and can be considered, after a simple

modification, as a 0-1 knapsack problem.

83
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In Chapter 3, an important step in the development of NPI for more complex

system structures was introduced. The NPI lower and upper probabilities for func-

tioning of a system consisting of multiple ki-out-of-mi subsystems in a series configu-

ration, with all subsystems consisting of the same type of component, was presented.

This is non-trivial, as the random quantities representing whether the components

in the system function or not, are not independent in the NPI approach, given the

test results. It is important that this dependence is explicitly taken into account,

in particular when there is relatively little information from tests. As a first step

for this research, we generalized NPI for Bernoulli quantities to distinguish between

subgroups of the m future observations, and using a path counting technique we

derived lower and upper probabilities which quantify the reliability of such systems.

In Chapter 4, NPI for reliability of voting systems with multiple component

types was presented. This is a further step in the development of NPI for system

reliability, where more general system structures can be considered. Whilst restrict-

ing attention to a single voting system, this was now allowed to consist of multiple

types of components. They are assumed to perform the same function within the

system, but the test information differs per type of component, and in terms of

their reliability components of the same type are exchangeable and assumed to be

independent of components of other types. In addition to presenting the NPI lower

and upper probabilities for system functioning, we addressed aspects of redundancy

and diversity for such systems, where the benefit of having multiple types of com-

ponents, with only limited test information per component type, was considered in

detail.

In Chapter 5, we introduced a generalization of structure of the systems intro-

duced in the previous three chapters by considering systems with a series structure

where each subsystem is a single voting system consisting of different types of com-

ponents. The important contribution of this chapter is that different subsystems can

contain components of the same types. The results presented in this chapter gener-

alize the results in Chapters 2, 3 and 4, and hence are the main results presented in

this thesis.



Chapter 6. Conclusions 85

Throughout this thesis, numerical examples illustrated some of the general prop-

erties for all systems considered. For example, the NPI upper probability for suc-

cessful system functioning given s successes in n tests is equal to the NPI lower

probability for successful system functioning given s + 1 successes in n tests. The

NPI lower (upper) probability for the case s = 0 (s = n) is equal to 0 (1), which re-

flects that in this case there is no strong evidence that the components can actually

function (fail). The imprecision, that is the difference between corresponding NPI

upper and lower probabilities, tends to decrease as a function of n and increase as

a function of m, although the imprecision tends to become smaller for non-trivial

events if both the upper and lower probabilities get close to either zero or to one. It

will be of interest to study this in more detail, in particular as imprecision seems to

relate logically to the amount of information available and to the number of future

random quantities involved in the event of interest.

The basic idea of optimally allocating one more component, if one can increase

m by one without changing k, is pretty straightforward, as one just calculates the

NPI lower probabilities corresponding to all possibilities to add one component to

the system and then chooses the type and subsystem leading to maximum improve-

ment. However, if one can allocate more than one component, it is not clear that

one can proceed with such one-step-at-a-time optimisation, which would lead to a

simple algorithm. For systems with only one type of component per subsystem and

different component types for different subsystems, it has been proven in Chapter

2 that adding extra components sequentially does lead to optimal redundancy allo-

cation. Numerical examples presented throughout this thesis, and further cases we

looked at, indicate that a similarly attractive algorithm will again be optimal for

the systems considered in Chapters 3, 4 and 5, but proving this turned out to be

rather complicated, and we have not achieved this.

The systems considered in Chapters 4 and 5 consist of multiple types of compo-

nents. One of the main conclusions of these chapters is that considering diversity

of components in a system is important to achieve maximum system reliability in

situations with limited information about component reliability, but the optimal

configuration depends on the actual system structure, with diversity generally most
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useful for parallel systems, while for series systems one would not opt for diversity

and only use components of the type that gave the best test results. We only showed

this for the simple systems considered in these chapters, but we strongly feel that

similar conclusions will hold for more general system structures when NPI lower

probabilities are used to express system reliability.

In the reliability literature, system reliability is usually expressed as function

of failure probabilities for components, which are typically assumed to be known.

Under limited information, this will clearly not be the case, and the proper inclu-

sion of uncertainty about components’ failure probabilities is rarely addressed. One

cannot replace parameters representing such failure probabilities by estimates, as

the system reliability is typically a non-linear function of the failure probabilities.

More importantly, any such a classical approach with parameters representing com-

ponents’ failure probabilities does not take into account the interdependence of the

components to be used in the system of interest.

One can use a Bayesian approach, expressing the system reliability via a posterior

predictive distribution, which will take care of this interdependence, but this requires

the use of prior distributions for the parameters, which adds further assumptions

that may be hard to justify. This is particularly clear when considering system

reliability after zero-failure tests, where Bayesian methods will typically lead to a

probability of system functioning that is less than one, while clearly the test data do

not strongly suggest that components might actually fail. The use of lower and upper

probabilities in reliability is attractive in such situations as the upper probability of

system functioning, given no test failures, can be equal to one (as the NPI upper

probabilities are), reflecting no evidence that things can go wrong. In such cases,

the corresponding lower probability may be of most use, as it reflects the amount

of evidence available in favour of system functioning, and as it enables cautious

inference which is often deemed appropriate in risk analysis. The fact that the NPI

lower and upper probabilities result from combinatorial arguments, based only on

an exchangeability assumption and an underlying latent variable representation, is

also attractive.
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NPI lower and upper probabilities for system reliability are based on combina-

torics, so the computation time will increase for more substantial systems. However,

there are no complex integrals involved (as e.g. is typically the case in Bayesian

statistics), and as all sums are finite there are no major computational difficul-

ties. For large systems it may be required to consider approximations for the sums

involved in deriving the NPI lower and upper probabilities, but NPI is not yet de-

veloped to the stage where this has become relevant. If more test data become

available, updating the NPI lower and upper probabilities occurs by calculating

them again using all combined information, there is no straightforward sequential

updating algorithm available as is the case in Bayesian statistics.

The theory of system signatures [51] provides a powerful framework for reliability

assessment for systems consisting of exchangeable components. Coolen and Al-

nefaiee [20] showed how signatures can be used within NPI to derive lower and upper

survival functions for the failure time of such systems, given failure times of tested

components, and to compare the reliability of two such systems. Signatures can

also be used for reliability quantification for systems for which only failure or non-

failure upon request for functioning is of interest, so without explicit focus on failure

time. Applying this to systems with exchangeable components will be relatively

straightforward and will generalize the results in Chapter 3, and analysis based

on signatures might facilitate the proof of optimality of the presented redundancy

allocation algorithm. This is left as a topic for future research.

Although a nonparametric approach as presented in this thesis is attractive, it

has obvious limitations. For example, if NPI were developed further in order to

take ageing of technical components into account, the huge amount of data needed

to describe the effects of ageing without the use of a parametric model will make

the approach of little practical value. One of the main research challenges for NPI

will be to combine it with partial parametric modelling to model aspects of ageing

using specific processes. This may lead to a novel semi-parametric approach that

could be of benefit to a wide range of applications. The use of lower and upper

probabilities in combination with stochastic processes is an exciting topic area for

future research, which has not attracted much attention so far.
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Throughout this thesis, several research challenges related to this NPI approach

to system reliability and redundancy allocation have been mentioned. Several of

these require some further development of NPI theory and methods, whereas others

provide further analytical challenges or require development of suitable computa-

tional algorithms.



Appendix A

Brief guide to notation

A(n) Hill’s inferential assumption.

ci cost to add one extra component to subsystem i.

C(j) total cost of these additional components being added to the whole system.

ji number of additional components added to subsystem i.

k minimum number of functioning components for a k-out-of-m system to function.

ki minimum number of functioning components for the subsystem i to function.

L total number of subsystems in the considered system.

m total number of components in the considered system.

mi total number of components in subsystem i.

mt total number of components of type t in the considered system.

mi
t total number of components of type t in subsystem i.

n total number of components that have been tested.

nt number of components of type t that have been tested.

P (A) NPI lower probability for event A.

P (A) NPI upper probability for event A.

ρ(i, ji) factor with which the NPI lower probability for successful functioning of subsys-

tem i increases when ji + 1 instead of ji extra components are added.

s number of successfully tested components.

st number of successfully tested components of type t.

T total number of component types in the considered system.

Y b
a random number of successes in trials a to b.
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