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Abstract

This thesis considers Nonparametric Predictive Inference (NPI) for ordinal data and

accuracy of diagnostic tests. We introduce NPI for ordinal data, which are categor-

ical data with an ordering of the categories. Such data occur in many application

areas, for example medical and social studies. The method uses a latent variable

representation of the observations and categories on the real line. Lower and upper

probabilities for events involving the next observation are presented, with specific

attention to comparison of multiple groups of ordinal data.

We introduce NPI for accuracy of diagnostic tests with ordinal outcomes, with

the inferences based on data for a disease group and a non-disease group. We intro-

duce empirical and NPI lower and upper Receiver Operating Characteristic (ROC)

curves and the corresponding areas under the curves. We discuss the use of the

Youden index related to the NPI lower and upper ROC curves in order to deter-

mine the optimal cut-off point for the test. Finally, we present NPI for assessment

of accuracy of diagnostic tests involving three groups of real-valued data. This is

achieved by developing NPI lower and upper ROC surfaces and the corresponding

volumes under these surfaces, and we also consider the choice of cut-off points for

classifications based on such diagnostic tests.
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Chapter 1

Introduction

In recent years, nonparametric predictive inference (NPI) has been developed as a

frequentist statistical framework which requires only few modelling assumptions and

considers one or more future observations instead of a population. It is a statistical

method based on Hill’s assumption A(n) [42]. NPI uses lower and upper probabilities

for uncertainty quantification, and has strong consistency properties within theory of

interval probability [20]. As NPI does not aim at inference for an entire population

but instead explicitly considers one or more future observations, this provides an

attractive alternative to standard methods of frequentist statistical inference.

In this thesis we introduce NPI for ordinal data and for accuracy of diagnostic

tests. In many applications with categorical data, the categories are ordered, e.g.

different levels of severity of a disease, in which case such data are also known as

ordinal data [1]. It is important that such knowledge about ordering of categories

is taken into account. The NPI method for such data uses an assumed underlying

latent variable representation, with the categories represented by intervals on the

real-line, reflecting the known ordering of the categories and enabling application

of the assumption A(n). We introduce NPI for multiple comparisons of groups of

ordinal data.

The evaluation of the accuracy of a diagnostic test is crucial in many research

fields such as medical imaging and machine learning. NPI for accuracy of diagnostic

tests with ordinal data and real-valued data is presented and discussed.

1



Chapter 1. Introduction 2

In Chapter 2, we summarize some background literature relevant to the topics

considered in this thesis. Some classical approaches for analysis of ordinal data

are briefly reviewed. This is followed by some background information about the

diagnostic accuracy of tests, which is relevant for Chapters 4 and 5. The general

ideas of NPI are introduced and NPI for ordinal data is discussed.

In Chapter 3, we present NPI for multiple comparisons and subset selection for

ordinal categorical data. For events which are of most practical interest, closed-form

formulae for the NPI lower and upper probabilities are derived. Some special cases

are discussed and illustrated with examples. The results in this chapter are also

presented in the paper ”Nonparametric predictive inference for ordinal data”, which

has been accepted for publication in Communications in Statistics - Theory and

Methods [25]. This paper introduces NPI for ordinal data as presented in Chapter

2 of this thesis together with multiple comparisons which is the topic of Chapter 3

of this thesis.

Chapter 4 begins with a summary of the main concepts for ordinal diagnostic

tests from the literature. We introduce NPI for accuracy of diagnostic tests with

ordinal outcomes, with the inferences based on data for a disease group and a non-

disease group. We introduce empirical and NPI lower and upper ROC curves and

the corresponding areas under the curves. We discuss the use of the Youden index

related to the NPI lower and upper ROC curves in order to determine the optimal

cut-off point for the test. The results of this chapter have been presented at the

4th International Conference of the European Research Consortium for Informatics

and Mathematics Working Group (ERCIM 2011) on Computing and Statistics held

in London, UK [36] and they are presented in the paper ”Nonparametric predictive

inference for accuracy of ordinal diagnostic tests”, which has been accepted for

publication in Journal of Statistical Theory and Practice [35].
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In Chapter 5, we first review classical methods for the ROC surface with three-

groups of diagnostic tests. We present the NPI approach for assessment of accuracy

of diagnostic tests involving three groups with real-valued data and we consider the

choice of cut-off points for classifications based on such diagnostic tests. This is

achieved by developing NPI lower and upper ROC surfaces, which are bounds to

the empirical ROC surface. The volumes under these surfaces are also presented.

For inferences on diagnostic tests, interest tends to be explicitly in future use of such

tests, so a predictive approach seems attractive for such assessments and choice of

cut-off points. A paper present the results in this chapter is in preparation.

We summarize our main results with some concluding remarks in Chapter 6. In

the appendix, we enclose the proofs of some theorems in Chapter 3. Throughout

this thesis, our methods are illustrated and discussed via examples with data from

the literature. All the calculations have been done using the statistical software R

version 2.15.0 (www.r-project.org).



Chapter 2

Introduction to literature

In this chapter we introduce the concepts from the literature that provide relevant

background information for the topics considered in this thesis. Section 2.1 contains

a brief overview of some classical methods for the analysis of ordinal data. An intro-

duction to the concepts of the accuracy of diagnostic tests, including the Receiver

Operating Characteristic (ROC) analysis, is given in Section 2.2. These concepts

will be used in Chapters 4 and 5. Section 2.3 provides the main theory and concepts

of Nonparametric Predictive Inference (NPI). Section 2.4 introduces NPI for ordinal

data as presented by Coolen et al [26].

2.1 Ordinal data

In practice, ordinal data scales are prevalent in medical research and public health

disciplines. For example, severity of an injury, degree of recovery from an illness

and amount of exposure to a potentially harmful substance may all be measured

on ordinal scales. Statistical methods for the analysis of ordinal data have received

considerable attention. Excellent overviews of established statistical methods for

ordinal data are presented by Agresti [1] and Liu and Agresti [45]. In what follows,

we briefly introduce some classical statistical methods for ordinal data.

Everitt [37] discussed classical methods for analysis of contingency tables when

columns and rows have ordered categories. For example, classification categories

can be assigned numerical values, which allows the variables to be quantified and

4



2.1. Ordinal data 5

regression methods to be used. Log-linear models for tables with ordered categories

are also discussed. For more details we refer to Everitt [37]. A popular approach

to analysis of classification tables is to test the null hypothesis of independence

using the Chi-squared test, but in particular it is interesting to know how strong the

association between groups is, which can be considered by the use of odds ratios.

For more details we refer to Agresti [1].

Chen et al [15] presented multiple testing for ordinal data, considering an r × c

contingency table in which the categories are ordered. They tested the null hypoth-

esis that log odds ratios are zero against the alternative that not all are zero, and

also one-sided alternatives were studied. As test statistics, Fisher’s exact statistic

and Pearson’s Chi-square statistic were used.

Another way to analyse contingency tables with ordered categories is order-

restricted inference based on inequality constraints for parameters that recognize

the ordering, as presented by Agresti [1, 2]. He used the constraint that ordinal log

odds ratios are non-negative. First, the r× 2 table is considered with ordered rows,

where the rows are independent binomial samples, with ni1 successes in ni trials

with parameters πi, for i = 1, . . . , r, where ni2 = ni − ni1 and n =
∑

i ni. The null

hypothesis H0 : π1 = π2 = · · · = πr is tested against the order-restricted alternative

Ha : π1 ≤ π2 ≤ · · · ≤ πr or Ha : π1 ≥ π2 ≥ · · · ≥ πr. Let pi = ni1/ni denote

the sample proportions, under H0 the maximum likelihood (ML) estimator of πi is

the overall sample proportion of successes p =
∑
i

ni1/n for all i. If the r sample

proportions satisfy p1 ≤ p2 ≤ · · · ≤ pr, then the order-restricted ML estimators of

the πi are π̂i = pi. The likelihood-ratio test statistic (LR) for this test, suggested

by Robertson et al [56], is

G2(I|O) = 2
r∑

i=1

ni1 log
π̂i

p
+ 2

r∑
i=1

ni2 log
1− π̂i

1− p
(2.1)

where I denotes the null hypothesis of independence and O the order-restricted

alternative hypothesis with p-value
r∑

d=1

wdP (χ2
d−1 > G2(I|O)obs). Robertson et al [56]

provided tables of wd. Order-restricted inference for 2×c tables with ordered columns

is also presented in [1]. In general, for r × c tables with ordered rows and columns,

the order-restricted inference becomes complex as there are various order-restricted
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alternatives, for more details we refer to Agresti [1]. In the NPI method presented

in this thesis, we do not test any hypotheses and it does not matter how large r and

c are. We will compare the above method with our method in Chapter 3.

2.2 Diagnostic accuracy

Diagnostic accuracy relates to the ability of a test to discriminate between different

conditions. The evaluation of the accuracy of a diagnostic test is crucial in many

research fields and applications areas such as medicine and machine learning [12,60].

Parametric and nonparametric methods have been developed for the analysis of

diagnostic tests that yield results which may have only two values (binary tests),

or a value in a finite number of ordered categories (ordinal tests), or real values

(continuous tests) [55,73]. The ROC curve is one of the established tools for assessing

the accuracy of a diagnostic test and the area under the ROC curve can be used

as a summary index for diagnostic accuracy [55, 73]. Fawcett [38] presented a clear

introduction to ROC curves and related concepts.

As an example of application, Metz [49,50] provides a variety of studies in which

ROC analyses have been employed in medical imaging. ROC analysis is used for

medical image quality in terms of the ability of human observers or computer algo-

rithms to use image data to classify patients with respect to any particular disease.

Good recent overviews of statistical methods for ROC curves were presented by Zhou

et al [73] and Pepe [55], considering both parametric and nonparametric approaches

to inference on ROC curves and diagnostic accuracy.

To introduce the ROC curve, we use the following notation. Let X i
j, with i = 0, 1

and j = 1, . . . , ni, be the observed continuous test results for the non-disease and

disease groups, respectively, with n0 and n1 the sample sizes of the two groups

and F0, F1 the corresponding cumulative distribution functions (CDFs) for the non-

disease and disease groups. We assume that the two groups are fully independent,

in the sense that any information about one or more X0
j , does not provide any

information on one or more X1
j , and the other way around. Using a cut-off point

(threshold value) c, a test result is called positive if it is above the value c and
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negative if below or equal c. The ROC is the plot of the true positive fraction (TPF )

and false positive fraction (FPF ) in the unit square, where TPF = P (X1 > c) is

the probability that the test result is positive, given that the condition (disease)

is present and FPF = P (X0 > c) is probability of a positive test result for an

individual without the disease. The ROC curve is constructed by plotting the points

(FPF (c), TPF (c)) for c ∈ (−∞,∞).

Using the empirical CDFs as estimates of the CDFs of X0 and X1, respectively,

the empirical ROC curve is the plot depicting (1− F̂0(c), 1− F̂1(c)) for c ∈ (−∞,∞)

[44,55,73] where

F̂0(c) =
n0∑

j=1

I(X0
j ≤ c)

n0
, (2.2)

F̂1(c) =
n1∑

j=1

I(X1
j ≤ c)

n1
(2.3)

The area under the ROC curve (AUC) is a global measure of the test accuracy

between the two groups. Generally, the AUC is equal to the probability that a

randomly chosen individual from the non-disease group has a test result that is lower

than that of a randomly selected individual from the disease group, i.e. AUC =

P (X0 < X1). Higher AUC values indicate more accurate tests, with AUC = 1 for

ideal tests and AUC = 0.5 for uninformative tests [44,55,73].

There are many medical diagnostic situations in which the disease status has

more than two groups. Therefore, the ROC methodology was extended to three-

group diagnostic problems by constructing a three-dimensional surface. Mossman

[51] proposed the concept of ROC surfaces for three groups of disease, so with

three possible diagnostic outcomes. The volume under the ROC surface (VUS) is a

direct extension of the AUC and it is a global accuracy measure of a test to classify

subjects in three groups. The interpretation of the VUS is similar to the AUC,

namely it is equal to the probability that three random measurements, one from each

group, appear in the correct order [52, 71]. Nakas and Yiannoutsos [53] considered

nonparametric estimation of the VUS using several methods including bootstrapping

for the estimation of the variance of the VUS. A nonparametric Bayesian approach

for estimating the ROC surface has been presented by Inácio et al [47]. Parametric
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estimators for the ROC surface and the corresponding VUS were presented by Beck

[9].

2.3 Nonparametric Predictive Inference

The statistical method used in this thesis uses lower and upper probabilities to quan-

tify uncertainty [20, 31]. In classical probability theory a single precise probability

P (A) is used for each event A, satisfying Kolmogorov’s axioms. However, when

information is vague or conflicting, a unique probability distribution may be hard

to identify. In this case, imprecise probability is an alternative approach which re-

places the single probability P (A) with an interval specified by its bounds, called the

lower and upper probabilities and denoted by P (A) and P (A), respectively, where

0 ≤ P (A) ≤ P (A) ≤ 1. The idea to use interval probabilities dates back at least to

the middle of the nineteenth century [11,31].

Nonparametric predictive inference (NPI) [4,20] is based on the assumption A(n)

proposed by Hill [42], which gives direct probabilities for future observations based

on observed values of related random quantities. Let X1, . . . , Xn, Xn+1 be real-

valued absolutely continuous and exchangeable random quantities. Let the ordered

observed values of X1, X2, . . . , Xn be denoted by x1 < x2 < . . . < xn and let

x0 = −∞ and xn+1 = ∞ for ease of notation. We assume that no ties occur; ties

can be dealt with in NPI by assuming that tied observations differ by small amounts

which tend to zero [43] but it is not relevant in Chapters 3 and 4 as in the assumed

latent variable representation we assume that no ties occur (as discussed later in

next section). In Chapter 5, we avoid complications, particularly with regard to

notation, by assuming that the data do not contain any ties (we discuss this further

in Chapter 5).

For Xn+1, representing a future observation, based on n observations, A(n) [42]

partially specifies a probability distribution by P (Xn+1 ∈ Ii = (xi−1, xi)) = 1
n+1

for i = 1, . . . , n + 1. A(n) does not assume anything else, and can be considered

to be a post-data assumption related to exchangeability [33]. Inferences based on

A(n) are predictive and nonparametric, and can be considered suitable if there is
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hardly any knowledge about the random quantity of interest, other than the n

observations, or if one does not want to use such information. A(n) is not sufficient

to derive precise probabilities for many events of interest, but it provides bounds for

probabilities via the ‘fundamental theorem of probability’ [33], which are lower and

upper probabilities in interval probability theory [20,65,67,68].

In NPI, uncertainty about the future observation Xn+1 is quantified by lower and

upper probabilities for events of interest. As we mentioned before, lower and upper

probabilities generalize classical (‘precise’) probabilities, and a lower probability

P (A) for event A in NPI can be interpreted as the maximum lower bound for the

probability of A that follows from the assumptions made [20]. Similarly, an upper

probability P (A) for event A can be interpreted as the minimum upper bound for

the probability of A. In NPI, we wish to explore application of A(n) for inference

without making further assumptions. So, NPI lower and upper probabilities are the

sharpest bounds on a probability for an event of interest when only A(n) is assumed.

Informally, P (A) can be considered to reflect the evidence in favour of event A and

the corresponding upper probability P (A) can be interpreted by considering that

P (A) reflects the evidence against event A, so in support of the complementary event

Ac. Augustin and Coolen [4] proved that NPI has strong consistency properties

in the theory of interval probability [65, 67, 68], it is also exactly calibrated [46],

and it never leads to results that are in conflict with inferences based on empirical

probabilities.

Direct application of A(n) for inferential problems is only possible for real-valued

random quantities [16,32]. However, by assuming latent variable representations and

variations to A(n), NPI has been developed for other situations, including Bernoulli

data [18] and multinomial data [22]. A latent variable representation can also be

used for ordinal data, as shown in the following section. Ordinal data and multino-

mial data differ in the important fact that the data categories are not ordered for

multinomial data but they are logically ordered for ordinal data (the difference will

be discussed further in Section 2.4).

While it is natural to consider inference for a single future observation in many

situations, one may also be interested in multiple future observations. This is pos-
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sible in NPI in a sequential way, taking the inter-dependence of the multiple future

observations into account [3]. For example in NPI for Bernoulli quantities this was

included throughout [18] and dependence of specific inferences on the choice of the

number of future Bernoulli observations was explicitly studied in the context of

comparison of proportions by Coolen and Coolen-Schrijner [24]. In this thesis, new

developments for NPI for ordinal data and accuracy of diagnostic tests are presented

with attention restricted to a single future observation, leaving generalization to mul-

tiple future observations as an interesting challenge for future research. Throughout

this thesis, we present empirical probabilities and, where appropriate, inferences

based on these, in order to compare them with the NPI results. These empirical

probabilities coincide with the nonparametric maximum likelihood estimates in the

scenarios considered, and are generally bounded by the corresponding NPI lower

and upper probabilities.

2.4 NPI for ordinal data

NPI for categorical data with a known number of possible categories, yet with no

ordering or other known relationship between the categories, has been presented

by Coolen and Augustin [22]. The inferences about the next observation are based

on a latent variable representation using a probability wheel, with the assumption

that each category is only allowed to be represented by a single segment of the

wheel, where a segment is defined as a single part of the wheel. The NPI lower

and upper probabilities with regard to the next observation are further based on a

circular version of A(n) [19] and optimisation over all configurations of the probability

wheel that are possible corresponding to the data and this so-called circular-A(n)

assumption. Baker [5] presents several further developments and applications of

NPI for non-ordered categorical data, including consideration of sub-categories and

application to classification problems. For further details of NPI for non-ordered

categorical data we refer to Coolen and Augustin [22].

In many applications the categories are ordered, e.g. levels of severity of a disease,

in which case such data are also known as ordinal data. It is important that such
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knowledge about ordering of categories is taken into account, this section presents

NPI for such data. The method uses an assumed underlying latent variable repre-

sentation, with the categories represented by intervals on the real-line, reflecting the

known ordering of the categories and enabling application of the assumption A(n).

This section summarizes results from [25, 26] who introduced NPI for ordinal

categorical data in terms of lower and upper probabilities. In case of ordinal data,

suppose there are K ≥ 2 categories which have a natural fixed ordering C1 < C2 <

. . . < CK and there is a known number of observations in each category, say nk

in category Ck for k = 1, ..., K. Let n be the total number of the observations, so

n =
K∑

k=1

nk. A latent variable representation of the observations on the real-line is

used (i.e. observations per category are represented by corresponding values on the

real-line). Using this method the category Ck is represented by the interval ICk for

k = 1, ..., K, so in this case there are K ordered intervals IC1, . . . , ICK forming a

partition of the real-line. We assume that the n observations are represented by

y1 < . . . < yn, and those in Ck are also denoted by yk
j for j = 1, . . . , nk. Let

Xn+1 denote the random quantity representing a future observation and Yn+1 be

the latent variable on the real-line corresponding to the future observation Xn+1,

so the event Xn+1 ∈ Ck corresponds to the event Yn+1 ∈ ICk. This allows A(n) to

be directly applied to Yn+1, and then transformed to inference on the categorical

random quantity Xn+1 [26]. The ordinal data structure is presented in Figure 2.1.

−∞−∞ ∞

nk

Ck

r
yk

1
. . .

r
yk

nk

nK

CK

r
yK

1
. . .

r
yK

nK
. . .

n1

C1

n1r
y1

1
. . .

r
y1

n1

. . . . . .

. . . . . .

. . . . . .

Data

Latent variable

IC1 ICk ICK

Figure 2.1: Structure for ordinal data and latent variables

The NPI lower and upper probabilities for general events of the form Xn+1 ∈ CT
have been derived with CT =

⋃
k∈T Ck and T ⊂ {1, . . . , K}. It is assumed that T
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is a strict subset of {1, . . . , K}, as the event that a future observation falls into any

of the K categories is necessarily true and has NPI lower and upper probabilities

both equal to one. The lower probability is super-additive and upper probability is

sub-additive [65], so the derivations of these do not follow straightforwardly from

the NPI lower and upper probabilities for the events involving single categories.

Using the assumption A(n) for Yn+1 in the latent variable representation, each

interval Ii has been assigned probability mass 1/(n+ 1). Although the values yi are

not exactly known since they only exist in the latent variable representation, the

number of these yi values in each interval ICk is known. It should be emphasized

that the intervals Ii are, as before, intervals between consecutive latent points yi−1

and yi, and with the number of such points in each interval ICk known, it is therefore

also known how many intervals Ii are fully within each ICk.

To derive the NPI lower probability for the event Xn+1 ∈ CT , the NPI lower

probability for the corresponding latent variable event Yn+1 ∈ ICT is derived, where

ICT =
⋃

k∈T ICk and T ⊂ {1, . . . , K}. To derive this lower probability, one calcu-

lates the sum of all probability masses assigned to intervals Ii that are fully within

ICT , so in effect one minimises the total probability mass assigned to ICT . So, the

NPI lower probability is

P (Xn+1 ∈ CT ) = P (Yn+1 ∈ ICT ) =
1

n+ 1

n+1∑
i=1

1{Ii ⊂ ICT} (2.4)

where 1{A} is equal to 1 if A is true and equal to 0 else. As the exact locations of

the intervals ICk are unknown, this may appear to be vague, yet the fact that the

number of yi values within each interval ICk is known suffices to get unique values

for these NPI lower probabilities.

The corresponding NPI upper probabilities are derived by maximising the total

probability mass that can be assigned to ICT , so by summing all probability masses

corresponding to intervals Ii that have a non-empty intersection with ICT . Hence,

the NPI upper probability is

P (Xn+1 ∈ CT ) = P (Yn+1 ∈ ICT ) =
1

n+ 1

n+1∑
i=1

1{Ii ∩ ICT 6= ∅} (2.5)

From the perspective of frequentist statistics, the NPI lower and upper prob-

abilities (2.4) and (2.5) can be considered as ‘confidence statements’, in the sense
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that repeated application of this procedure will lead to correct predictions of the

event Xn+1 ∈ CT in a proportion that, in the limit, will be in the interval [P (Xn+1 ∈

CT ), P (Xn+1 ∈ CT )]. Of course, to achieve this result the method should only be

applied in cases where the assumption A(n) is reasonable. This would, for example,

not be the case if the data show a clear patterns, e.g. for time series when the order

of the data is important and informative.

2.4.1 Special cases

The first special case of these inferences concerns the event Xn+1 ∈ CT , with CT
consisting of adjoining categories, so the corresponding union of intervals ICT forms

a single interval on the real-line in the latent variable representation. For this case

simple closed forms for the NPI lower and upper probabilities are available. Let

T = {s, . . . , t}, with s, t ∈ {1, . . . , K}, s ≤ t, excluding the case with s = 1 and

t = K for which both the NPI lower and upper probabilities are equal to one.

Let Cs, t =
⋃t

k=sCk, ICs, t =
⋃t

k=s ICk and let ns, t =
t∑

k=s

nk. Using the notation

(x)+ = max(x, 0), the NPI lower and upper probabilities (2.4) and (2.5) for such

events are

P (Xn+1 ∈ Cs,t) = P (Yn+1 ∈ ICs,t) =


(ns,t − 1)+

n+ 1
if 1 < s ≤ t < K

ns,t

n+ 1
if s = 1 or t = K

(2.6)

P (Xn+1 ∈ Cs,t) = P (Yn+1 ∈ ICs,t) =
ns,t + 1

n+ 1
for 1 ≤ s ≤ t ≤ K (2.7)

Of course, the case with s = t gives the event that the next observation belongs to

one specific category.

The second special case for which closed-form expressions are available for the

NPI lower and upper probabilities occurs if nk > 0 for all k ∈ {1, . . . , K}, so there

are observations in all K categories. One needs to consider if C1 and CK are in CT

(so IC1 and ICK in ICT ) and to take account of all pairs of neighbouring categories

which are both included in CT . Let pT =
∑K−1

r=1 1{r, r + 1 ∈ T} be the number of

neighbouring pairs of categories included in CT , and eT = 1{1 ∈ T}+1{K ∈ T}+pT
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the number of extra intervals. Furthermore, sT is the number of categories in CT .

Then the NPI lower probability (2.4), with T a strict subset of {1, . . . , K}, is

P (Xn+1 ∈ CT ) = P (Yn+1 ∈ ICT ) =

∑
k∈T

(nk − 1) + eT

n+ 1
=
nT − sT + eT

n+ 1
(2.8)

and the corresponding NPI upper probability (2.5) is

P (Xn+1 ∈ CT ) = P (Yn+1 ∈ ICT ) =

∑
k∈T

(nk + 1)− pT

n+ 1
=
nT + sT − pT

n+ 1
(2.9)

The NPI lower and upper probabilities presented in this section satisfy the fol-

lowing properties:

1. The conjugacy property

P (Xn+1 ∈ CT ) = 1− P (Xn+1 ∈ CT c)

for all T ⊂ {1, . . . , K} and T c = {1, . . . , K}\T , which follows from 1{Ii ⊂

ICT}+ 1{Ii ∩ ICc
T 6= ∅} = 1 for all i = 1, . . . , n+ 1.

2. The NPI lower and upper probabilities (2.4) and (2.5) bound the corresponding

empirical probability for the event of interest. This means that

P (Xn+1 ∈ CT ) ≤ nT

n
≤ P (Xn+1 ∈ CT ) (2.10)

Property (2.10) can be considered attractive when aiming at ’objective inference’,

and the possibility to satisfy this property is an important advantage of statistical

methods using lower and upper probabilities [19].

Example 2.1. Suppose there are K = 7 ordered categories, C1 < . . . < C7, and

n = 17 observations as presented in Table 2.1.

Category C1 C2 C3 C4 C5 C6 C7

Observations 2 3 0 5 2 1 4

Table 2.1: Data
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T P P nT /n

{1} 2/18 3/18 2/17

{3} 0/18 1/18 0/17

{4} 4/18 6/18 5/17

{5} 1/18 3/18 2/17

{6} 0/18 2/18 1/17

{7} 4/18 5/18 4/17

{6, 7} 5/18 6/18 5/17

{1, 2, 3} 5/18 6/18 5/17

{3, 4, 5} 6/18 8/18 7/17

{2, 4, 6} 6/18 11/18 9/17

{1, 4, 7} 10/18 14/18 11/17

{3, 4, 6, 7} 9/18 12/18 10/17

{4, 5, 6, 7} 12/18 13/18 12/17

{2, 3, 5, 6} 4/18 8/18 6/17

{1, 2, 5, 6, 7} 12/18 14/18 12/17

Table 2.2: NPI lower and upper probabilities

Table 2.2 gives the NPI lower and upper probabilities for several events Y18 ∈ CT ,

together with the corresponding empirical probability nT/n. It is clear that these

lower and upper probabilities are bounds for the empirical probability and they

also show that the difference between corresponding upper and lower probabilities

is not constant. This difference is called imprecision, denoted by ∆, and it provides

insight into the link between these lower and upper probabilities and the amount

of information available [24,65], namely large numbers of observations lead to small

imprecision. The lower and upper probabilities for the events with T consisting of

a single category or a group of adjoining categories are also illustrated. The first

special case is used when T is {6, 7}, {1, 2, 3},{3, 4, 5} and {4, 5, 6, 7}, the rest of

Table 2.2 is calculated directly from the main formula (2.4) and (2.5). In addition, it

is clear that these NPI lower and upper probabilities satisfy the conjugacy property,

for example P ({1, 4, 7}) = 1− P ({2, 3, 5, 6}).

To illustrate the second special case, we change the data in Table 2.1 by adding
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one observation to category 3 taken from category 4. Table 2.3 shows the new data

Category C1 C2 C3 C4 C5 C6 C7

Observations 2 3 1 4 2 1 4

Table 2.3: Data

and Table 2.4 gives the NPI lower and upper probabilities for these data. It is

T P P nT /n

{1} 2/18 3/18 2/17

{3} 0/18 2/18 1/17

{4} 3/18 5/18 4/17

{5} 1/18 3/18 2/17

{6} 0/18 2/18 1/17

{7} 4/18 5/18 4/17

{6, 7} 5/18 6/18 5/17

{1, 2, 3} 6/18 7/18 6/17

{3, 4, 5} 6/18 8/18 7/17

{2, 4, 6} 5/18 10/18 8/17

{1, 4, 7} 9/18 13/18 10/17

{3, 4, 6, 7} 9/18 12/18 10/17

{4, 5, 6, 7} 11/18 12/18 11/17

{2, 3, 5, 6} 5/18 9/18 6/17

{1, 2, 5, 6, 7} 12/18 14/18 12/17

Table 2.4: NPI lower and upper probabilities

clear that the second special case can be applied for {2, 4, 6}, {1, 4, 7}, {3, 4, 6, 7},

{2, 3, 5, 6} and {1, 2, 5, 6, 7} in Table 2.4. For example, {3, 4, 6, 7} has nT = 10, sT =

4, pT = 2, eT = 3.

4



Chapter 3

Multiple comparisons for ordinal

data

3.1 Introduction

In this chapter we introduce NPI multiple comparisons for ordinal data, including

two different problems of subset selection for groups of ordinal data. Methods for

multiple comparisons, including subset selection, have been studied extensively in

the statistics literature [8, 41, 64]. Similar NPI methods for multiple comparisons,

with some important variations, have been presented for real-valued data [16,32], for

proportions data [23,24] and for lifetime data including right-censored observations

[29,30].

As before, we assume that there are K ordered categories. Suppose that there

are J ≥ 2 independent groups and nj observations for group j (j = 1, . . . , J) of

which nj
k are in category Ck, k = 1, . . . , K. So n =

J∑
j=1

nj =
∑J

j=1

∑K
k=1 n

j
k, and let

nj
s,t =

∑t
k=s n

j
k where s ≤ t. The assumption of ‘independence of the groups’ means

that any information about a random quantity in one group does not provide any

information about a random quantity in any other group. We apply the A(n)-based

inferences per group to consider one future observation from each group. Let Xj
nj+1

denote the next observation from group j and let the corresponding latent variable

be denoted by Y j
nj+1

.

In Section 3.2 we derive the NPI lower and upper probabilities for the event

17
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that the next observation from group j, Xj
nj+1

is less than (or equal to) the next

observation from each of the other groups, X l
nl+1

, l = 1, . . . , J, l 6= j.

Thereafter, we divide the multiple groups into two non-empty subsets of groups,

S and Sc. Again we apply the A(n)-based inferences per group to consider one

future observation for each group. In Section 3.3 we derive the NPI lower and upper

probabilities for the event that all these future observations for groups in S are less

(so in terms of categories ‘further to the left’) than all the future observations for

groups in Sc. In Section 3.4 we consider the variation that at least one of the future

observations for groups in S is less than all the future observations for groups in

Sc. The group which provides the smallest next observation is also called the best

group in this chapter. In Section 3.5 we discuss how to use these NPI lower and

upper probabilities for selecting the best subset. Our method is presented in terms

of minimum next observation(s), in practice we may be interested in the maximum

next observation(s), this is briefly discussed in Section 3.6. This chapter ends with

concluding remarks in Section 3.7.

3.2 Selecting one group

In this section we present NPI for selecting a single group from J groups by deriving

the NPI lower and upper probabilities for the event that the next observation of

group j, Xj
nj+1

, is less than the next observation from each of the other groups,

X l
nl+1

, l = 1, . . . , J, l 6= j. We use the notation Xj
nj+1

< X l
nl+1

for the event

Xj
nj+1

∈ Ckj
and X l

nl+1
∈ Ckl

for kj, kl ∈ {1, . . . , K} with kj < kl, so Xl will

be in a category to the right of Xj, and similar for Xj
nj+1

≤ X l
nl+1

. Two specific

configurations of the probability masses in the intervals that are important for what

follows, are defined by putting all the probability masses at the left endpoints (L)

or at the right endpoints (R), so

PL(Xj
nj+1
∈ Cs,t) = PL(Y j

nj+1
∈ ICs,t) =


nj

s,t + 1

nj + 1
if s = 1

nj
s,t

nj + 1
if 1 < s ≤ t ≤ K

(3.1)
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and

PR(Xj
nj+1
∈ Cs,t) = PR(Y j

nj+1
∈ ICs,t) =


nj

s,t

nj + 1
if 1 ≤ s ≤ t < K

nj
s,t + 1

nj + 1
if t = K

(3.2)

where if t = s we have Cs,s = Cs and nj
s,s = nj

s. Probability (3.1) corresponds to the

situation where, in the latent variable representation of the categories and the data,

all probability masses for the next observation following from the A(n) assumption

are put at the left endpoint per interval (left configurations) . Similarly, probability

(3.2) corresponds to the situation with all these probability masses put at the right

endpoint per interval (right configurations).

Theorem 3.1 gives the NPI lower and upper probabilities for the event that the

next observation of group j, Xj
nj+1

, is less than the next observation from each of

the other groups, X l
nl+1

for l = 1, . . . , J, l 6= j, denoted by

P<
j = P

(
Xj

nj+1
< min

l=1,...,J, l 6=j
X l

nl+1

)
and

P
<

j = P

(
Xj

nj+1
< min

l=1,...,J, l 6=j
X l

nl+1

)
We use the notation Ca,b = {Ca, . . . , Cb}.

Theorem 3.1. The NPI lower and upper probabilities for the event that the next

observation of group j is less than the next observation from each of the other groups

are

P<
j = A

[
K−1∑
k=1

(
nj

k

J∏
l=1 l 6=j

nl
k+1,K

)]
(3.3)

P
<

j = A

[
K−1∑
k=1

(
nj

k

J∏
l=1 l 6=j

(
nl

k+1,K + 1
))

+
J∏

l=1 l 6=j

(
nl

2,K + 1
)]

(3.4)

where A =
[∏J

j=1 (nj + 1)
]−1

.
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Proof. The NPI lower probability is derived as follows. Firstly observe that

P

(
Xj

nj+1
< min

l=1,...,J, l 6=j
X l

nl+1

)
= P

(
J⋂

l=1 l 6=j

{
Xj

nj+1
< X l

nl+1

})
(3.5)

By the law of total probability, Equation (3.5) is equivalent to

K∑
k=1

P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ Ck

)
× P

(
Xj

nj+1
∈ Ck

)
(3.6)

In this derivation, we use the assumptions A(nj) for all groups with assumed inde-

pendence of the J groups. To get the lower bound we put the probability mass per

interval at the endpoints; for the group j of interest at the right endpoint and for

all other groups at the left endpoints, by using (3.1) and (3.2), as we are interested

in the lower bound for the probability of Xj
nj+1

< X l
nl+1

. This probability must be

as small as possible, which happens if Xj is as large as possible and X l is as small

as possible, so we used the right configuration for Xj
nj+1

. So, for k = 1, . . . , K − 1,

P
(
Xj

nj+1
∈ Ck

)
≥ PR

(
Xj

nj+1
∈ Ck

)
. (3.7)

For k = K, since we are interested in all the cases where Xj
nj+1

< X l
nl+1

(i.e. if

Xj
nj+1
∈ CK then it is impossible for X l

nl+1
to be greater than Xj

nj+1
)

P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ CK

)
= 0. (3.8)

Using (3.6), (3.7) and (3.8), we get

P

(
Xj

nj+1
< min

l=1,...,J, l 6=j
X l

nl+1

)
≥

K−1∑
k=1

P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ Ck

)

× PR
(
Xj

nj+1
∈ Ck

)
=

K−1∑
k=1

nj
k

nj + 1
P

(
J⋂

l=1 l 6=j

(
X l

nl+1 ∈ Ck+1,K

))
(3.9)

Using the independence of the groups Equation (3.9) is equivalent to

K−1∑
k=1

nj
k

nj + 1

J∏
l=1 l 6=j

P
(
X l

nl+1 ∈ Ck+1,K

)
(3.10)
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Using the the left configuration for the groups l, l 6= j for k = 1, . . . , K − 1 leads to

P
(
X l

nl+1 ∈ Ck+1,K

)
≥ PL

(
X l

nl+1 ∈ Ck+1,K

)
(3.11)

Using (3.10) and (3.11), we get

P

(
Xj

nj+1
< min

l=1,...,J, l 6=j
X l

nl+1

)
≥

K−1∑
k=1

nj
k

nj + 1

J∏
l=1 l 6=j

PL
(
X l

nl+1 ∈ Ck+1,K

)
=

K−1∑
k=1

nj
k

nj + 1

J∏
l=1 l 6=j

(
K∑

f=k+1

nl
f

nl + 1

)

= A

[
K−1∑
k=1

(
nj

k

J∏
l=1 l 6=j

nl
k+1,K

)]
(3.12)

Formula (3.12) is the maximum lower bound for P

(
Xj

nj+1
< min

l=1,...,J, l 6=j
X l

nl+1

)
which can be achieved and therefore it is a lower probability [65], so the NPI lower

probability is

P<
j = A

[
K−1∑
k=1

(
nj

k

J∏
l=1 l 6=j

nl
k+1,K

)]
(3.13)

The corresponding NPI upper probability is obtained by putting the probability

masses per interval at the other endpoints; for group j at the left endpoints, and

for all other groups at the right endpoints. The upper bound for the probability for

the event Xj
nj+1

< min
l=1,...,J,l 6=j

X l
nl+1

can be derived as follows:

P

(
Xj

nj+1
< min

l=1,...,J,l 6=j
X l

nl+1

)
= P

(
J⋂

l=1 l 6=j

{
Xj

nj+1
< X l

nl+1

})

=
K∑

k=1

P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ Ck

)
× P

(
Xj

nj+1
∈ Ck

)
≤

K−1∑
k=1

P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ Ck

)
× PL

(
Xj

nj+1
∈ Ck

)
+ P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ CK

)
× PL

(
Xj

nj+1
∈ CK

)
(3.14)

=
K−1∑
k=1

P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ Ck

)
× PL

(
Xj

nj+1
∈ Ck

)
(3.15)
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=
K−1∑
k=2

nj
k

nj + 1
P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ Ck

)

+
nj

1 + 1

nj + 1
P

(
J⋂

l=1 l 6=j

{
X l

nl+1 > Xj
nj+1

}
|Xj

nj+1
∈ C1

)
(3.16)

=
K−1∑
k=2

nj
k

nj + 1

J∏
l=1 l 6=j

P
(
X l

nl+1 ∈ Ck+1,K

)
+
nj

1 + 1

nj + 1

J∏
l=1 l 6=j

P
(
X l

nl+1 ∈ C2,K

)
≤

K−1∑
k=2

nj
k

nj + 1

J∏
l=1 l 6=j

PR
(
X l

nl+1 ∈ Ck+1,K

)
+
nj

1 + 1

nj + 1

J∏
l=1 l 6=j

PR
(
X l

nl+1 ∈ C2,K

)
=

K−1∑
k=2

nj
k

nj + 1

J∏
l=1 l 6=j

(
K−1∑

f=k+1

nl
f

nl + 1
+
nl

K + 1

nl + 1

)
+
nj

1 + 1

nj + 1

J∏
l=1 l 6=j

(
K−1∑
f=2

nl
f

nl + 1
+
nl

K + 1

nl + 1

)
(3.17)

= A

[
K−1∑
k=2

nj
k

J∏
l=1 l 6=j

(
K∑

f=k+1

nl
f + 1

)
+
(
nj

1 + 1
) J∏

l=1 l 6=j

(
K∑

f=2

nl
f + 1

)]

= A

[
K−1∑
k=1

(
nj

k

J∏
l=1 l 6=j

(
nl

k+1,K + 1
))

+
J∏

l=1 l 6=j

(
nl

2,K + 1
)]

(3.18)

This is the minimal upper bound which can be justified and it can actually be

attained, so this upper bound (3.18) is the upper probability [65]

P
<

j = A

[
K−1∑
k=1

(
nj

k

J∏
l=1 l 6=j

(
nl

k+1,K + 1
))

+
J∏

l=1 l 6=j

(
nl

2,K + 1
)]

(3.19)

Similarly to the derivation of the lower probability, to go from (3.14) to (3.15) we

use that, when Xj
nj+1
∈ CK , the probability of the event Xj

nj+1
< X l

nl+1
is zero. We

get Equation (3.16) by using the left configuration for Xj
nj+1

and Equation (3.17)

by using the right configuration for the other groups.

It is also of interest to consider the event that the next observation from group

j, Xj
nj+1

, is less than or equal to the next observation from each of the other groups,

X l
nl+1

for l = 1, . . . , J, l 6= j. The NPI lower and upper probabilities for these

events, are denoted by

P≤j = P

(
Xj

nj+1
= min

l=1,...,J
X l

nl+1

)
and

P
≤
j = P

(
Xj

nj+1
= min

l=1,...,J
X l

nl+1

)
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These are given in Theorem 3.2.

Theorem 3.2. The NPI lower and upper probabilities for the event that the next

observation from group j is less than or equal to next observation from each of the

other groups are

P≤j = A

[
nj

1

J∏
l=1 l 6=j

(
nl + 1

)
+

K∑
k=2

(
nj

k

J∏
l=1 l 6=j

nl
k,K

)
+

J∏
l=1 l 6=j

nl
K

]
(3.20)

P
≤
j = A

[
K∑

k=1

(
nj

k

J∏
l=1 l 6=j

(
nl

k,K + 1
))

+
J∏

l=1 l 6=j

(
nl + 1

)]
(3.21)

where A =
[∏J

j=1 (nj + 1)
]−1

.

The derivation of the NPI lower and upper probabilities in this theorem is similar

to the proof of Theorem 3.1. The detailed proof is given in Appendix A.1.

3.2.1 Empirical probabilities

Let us consider the same cases as in Theorems 3.1 and 3.2, but now in terms of

empirical probability, with EP the notation for empirical probability. So, let EP<
j

be the empirical probability for the event that Xj < min
l=1,...,J ; l 6=j

X l, this is given by

EP<
j = P

(
Xj < min

l=1,...,J ; l 6=j
X l

)
= P

(
J⋂

l=1 l 6=j

{
Xj < X l

})

=
K−1∑
k=1

P

(
J⋂

l=1 l 6=j

{
X l > Xj

}
|Xj ∈ Ck

)
× P

(
Xj ∈ Ck

)
=

K−1∑
k=1

nj
k

nj
P

(
J⋂

l=1 l 6=j

{
X l > Xj

}
|Xj ∈ Ck

)
=

K−1∑
k=1

nj
k

nj
P

(
J⋂

l=1 l 6=j

(
X l ∈ Ck+1,K

))

=
K−1∑
k=1

nj
k

nj

J∏
l=1 l 6=j

P
(
X l ∈ Ck+1,K

)
=

K−1∑
k=1

nj
k

nj

J∏
l=1 l 6=j

(
K∑

f=k+1

nl
f

nl

)

=
1

J∏
j=1

nj

[
K−1∑
k=1

{
nj

k

J∏
l=1 l 6=j

nl
k+1,K

}]
(3.22)

Similarly, the empirical probability for the event Xj ≤ X l for all l 6= j, EP≤j , is
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EP≤j = P

(
Xj = min

l=1,...,J
X l

)
= P

(
J⋂

l=1 l 6=j

{
Xj ≤ X l

})

=
K∑

k=1

P

(
J⋂

l=1 l 6=j

{
X l ≥ Xj

}
|Xj ∈ Ck

)
× P

(
Xj ∈ Ck

)
=

K∑
k=1

nj
k

nj
P

(
J⋂

l=1 l 6=j

{
X l ≥ Xj

}
|Xj ∈ Ck

)
=

K∑
k=1

nj
k

nj
P

(
J⋂

l=1 l 6=j

(
X l ∈ Ck,K

))

=
K∑

k=1

nj
k

nj

J∏
l=1 l 6=j

P
(
X l ∈ Ck,K

)
=

K∑
k=1

nj
k

nj

J∏
l=1 l 6=j

(
K∑

f=k

nl
f

nl

)

=
1

J∏
j=1

nj

[
K∑

k=1

{
nj

k

J∏
l=1 l 6=j

nl
k,K

}]
(3.23)

3.2.2 Examples

We illustrate the lower and upper probabilities presented in this section via examples,

considering data sets presented in the literature.

Example 3.1. The data of this example are taken from Simonoff [59]. The inde-

pendence was rejected for this data set and the outlire identification and Robust

estimation show that small cars are more likely to be predictive to have good relia-

bility, whereas the medium ones are more likely to be average [59]. We use this data

set to illustrate the NPI lower and upper probabilities and the empirical probabilities

presented in this section. There are 7 groups of cars with 3 categories representing

levels of predicted reliability: Below average, Average and Above average, which we

label as categories C1, C2 and C3, respectively. The data are given in Table 3.1. We

are interested in the event that the next observation of group j, for j ∈ {1, . . . , 7},

is less than (or equal to) the next observation from each other group, so this event

indicates lower predicted reliability for the next car from group j. Using the results

in this section, and with the appropriate assumption A(nj) per group, the lower,

empirical and upper probabilities are given in Table 3.2.

Table 3.2 shows that group 5 (Coupe) has the largest lower probability and upper

probability to give the smallest next observation, ( so the next car from group coupe
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Predicted reliability

Group j Cars type Below Average Above Total

1 Small 4 3 10 17

2 Medium 4 19 9 32

3 Large 1 8 4 13

4 Sporty 5 3 6 14

5 Coupe 4 3 2 9

6 Minivan 6 5 3 14

7 SUV 3 10 5 18

Table 3.1: Data: Predicted reliability for 7 type of cars

Group j P<
j EP<

j P
<

j ∆<
j P≤j EP≤j P

≤
j ∆≤j

1 0.0205 0.0324 0.0460 0.0255 0.2377 0.2598 0.3060 0.0683

2 0.0097 0.0156 0.0236 0.0139 0.1664 0.1966 0.2363 0.0699

3 0.0059 0.0093 0.0209 0.0150 0.1159 0.1472 0.2224 0.1065

4 0.0369 0.0585 0.0773 0.0404 0.3557 0.3924 0.4392 0.0835

5 0.0534 0.0845 0.1077 0.0543 0.4401 0.5078 0.5647 0.1246

6 0.0501 0.0793 0.1007 0.0506 0.4417 0.4945 0.5385 0.0968

7 0.0136 0.0216 0.0334 0.0198 0.2023 0.2370 0.2913 0.0890

Table 3.2: Selecting one group: NPI lower and upper probabilities (Example 3.1)

is more likely to has lower predicted reliability), and also has the largest imprecision

∆<
5 = P

<

5 − P<
5 , namely ∆<

5 = 0.0543 and ∆≤5 = 0.1246. This large imprecision

reflects the fact that this group has the smallest number of observations, whereas

the smallest imprecision is for the second group in the case (<). In the case (≤) the

first group has the smallest imprecision ∆≤1 = P
≤
1 − P

≤
1 = 0.0683.

4

Example 3.2. The data of this example are given in Table 3.3 and were used by

Simonoff [59] to study statistical methods for tables with ordered categories. The

data describe the relationship between the condition of books and the strength of the

paper in the books. The rows are ordered in increasing strength of the paper, whereas

the columns are ordered in increasing level of deterioration. Simonoff fitted several
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models to these data. For example, the column effects model which indicated that

books in worse condition have weaker paper. This example illustrates our methods

when there are large numbers of observations. Most of the data are in one category,

which leads to big differences in the NPI lower and upper probabilities for (<) and

(≤) cases.

Degree of book deterioration

Intact Slight Moderate Extreme

Group j Strength C1 C2 C3 C4 Total

1 1 fold 181 14 18 43 256

2 2-4 folds 140 6 1 15 162

3 5-15 folds 44 2 0 0 46

4 > 15 folds 369 7 0 0 376

Table 3.3: Data: degree of book deterioration and strength of the paper

Group j P<
j EP<

j P
<

j ∆<
j P≤j EP≤j P

≤
j ∆≤j

1 0.000075 0.000078 0.000136 0.000061 0.7043 0.7070 0.7082 0.0039

2 0.00019 0.00020 0.00035 0.00016 0.8589 0.8642 0.8651 0.0062

3 0.00068 0.00071 0.00085 0.00017 0.9362 0.9566 0.9575 0.0213

4 0.00164 0.00169 0.00262 0.00098 0.9788 0.9814 0.9815 0.0027

Table 3.4: Selection one group: NPI lower and upper probabilities (Example 3.2)

Table 3.4 gives the NPI lower and upper probabilities for the events that the next

observation of the selected group j is less than (or equal to) the next observation

from each of the other groups. It shows that the P<
j are all close to zero, because

most observations in all groups are in the first category, whereas most P≤j and P
≤
j

are close to one, also because most observations in all groups are in the first category.

For example, if we consider the first group, P≤1 < EP≤1 < P
≤
1 are all close to 0.7,

as there are 181 observations from 256 in the first category. These lower, empirical

and upper probabilities increase as the number of observations in the first category

increases, for example P≤4 < EP≤4 < P
≤
4 are all close to 0.98. Of course, if all the

observations for one group j are in the first category, then P
≤
j = EP≤j = 1 while P≤j
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would be closed to one. Group 1 is most unlikely to give the next observation smaller

than that for all other group (the next book with good condition), while group 4 (>

15 folds) has the largest lower and upper probabilities to give such a smallest next

observation (so the next book with more than 15 folds is more likely to be in good

condition). The smallest imprecision appears for the event X1
n1+1 < min

l=1,...,4, l 6=1
X l

nl+1

as both lower and upper probabilities for the first group are close to zero, and the

largest imprecision is for the event X3
n3+1 = min

l=1,...,4
X l

nl+1
which reflects the small

number of observations in the third group.

4

Example 3.3. Table 3.5 comes from the same study of book deterioration in Exam-

ple 3.2 but now the rows represent preservation strength. This example illustrates

our methods when there are some groups with small numbers of observations and

others with large numbers of observations.

Degree of book deterioration

Intact Slight Moderate Extreme

Group j Strength C1 C2 C3 C4 Total

1 Repair 27 1 2 0 30

2 Microfilm 50 6 3 34 93

3 Restore 7 0 1 30 38

4 No preservation 676 22 13 0 711

Table 3.5: Data: degree of book deterioration and preservation strength

Table 3.6 gives the lower, empirical and upper probabilities for the event that

the next observation of the selected group j is less than (or equal to) the next

observation from each of the other groups, in order to compare the four groups.

From Table 3.6 it can be seen that the smallest lower probability is P<
3 = 0.0004,

due to the fact that most of the observations for group 3 are in the last category,

so this group is unlikely to be the best group (so the next book from restore group

is unlikely to be in good condition). The largest lower probability is P≤4 = 0.9509,

as group 4 has most observations in the first category and no observations in the
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last category, P
≤
4 is near to one for the same reason, so group 4 is the best group

when aiming at the smallest next observation (so the next book from this group is

more likely to be in good condition). Moreover, the largest imprecision is ∆≤1 =

0.0324, which reflects that the first group has the smallest number of observations,

while the smallest imprecision occurs for group 4 which has the largest number of

observations.

Group j P<
j EP<

j P
<

j ∆<
j P≤j EP≤j P

≤
j ∆≤j

1 0.0158 0.0169 0.0178 0.0020 0.8719 0.9010 0.9043 0.0324

2 0.0021 0.0022 0.0030 0.0009 0.5322 0.5379 0.5429 0.0107

3 0.0004 0.00042 0.0006 0.0002 0.1795 0.1842 0.2052 0.0257

4 0.0340 0.0365 0.0483 0.0143 0.9509 0.9523 0.9530 0.0021

Table 3.6: Selection one group: NPI lower and upper probabilities (Example 3.3)

4

3.2.3 Special cases

1. If there are only two groups to be compared, so J = 2, then Equations (3.3),

(3.4), (3.20), and (3.21) lead to, with A = [(n1 + 1)(n2 + 1)]
−1

,

P (X1
n1+1 < X2

n2+1) = A

[
K−1∑
k=1

n1
k

K∑
f=k+1

n2
f

]

P (X1
n1+1 < X2

n2+1) = A

[
K−1∑
k=1

n1
k

K∑
f=k+1

n2
f + n1 − n1

K + n2 − n2
1 + 1

]

P (X1
n1+1 ≤ X2

n2+1) = A

[
K∑

k=1

n1
k

K∑
f=k

n2
f + n1

1 + n2
K

]

P (X1
n1+1 ≤ X2

n2+1) = A

[
K∑

k=1

n1
k

K∑
f=k

n2
f + n1 + n2 + 1

]

These results for J = 2 were presented by Coolen et al [26].
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2. If there are only two categories, K = 2, the NPI lower and upper probabilities

presented in Theorems 3.1 and 3.2 become, with A =
[∏J

j=1 (nj + 1)
]−1

,

P<
j = A

[
nj

1

J∏
l=1 l 6=j

nl
2

]

P
<

j = A

[
nj

1

J∏
l=1 l 6=j

(
nl

2 + 1
)

+
J∏

l=1 l 6=j

(
nl

2 + 1
)]

= A

[
(nj

1 + 1)
J∏

l=1 l 6=j

(nl
2 + 1)

]

P≤j = A

[
nj

1

J∏
l=1 l 6=j

(nl + 1) + (nj
2 + 1)

J∏
l=1 l 6=j

nl
2

]

P
≤
j = A

[
(nj

1 + 1)
J∏

l=1 l 6=j

(nl + 1) + nj
2

J∏
l=1 l 6=j

(nl
2 + 1)

]

These are identical to the NPI lower and upper probabilities for comparison

of proportions presented by Coolen and Coolen-Schrijner [24]. They presented

the NPI lower and upper probabilities for the event that the number of suc-

cesses in m future trials from one group exceeds the number of successes in m

future trials from the other group, using the same latent variable representa-

tion as we do for ordinal data but with only two categories.

3. The lower probability P<
j as given in (3.3) is zero if either nj

k = 0 for all

k = 1, . . . , K − 1 (so all the observations for group j are in the last category

CK) or if
J∏

l=1 l 6=j

nl
k+1,K = 0, which occurs if for one or more l, l 6= j, nl

k+1,K = 0,

for every k = 1, . . . , K−1. The corresponding NPI upper probability P
<

j does

not simplify greatly from Equation (3.4) for the first case, only terms with

nj
k = 0 disappear from the formula. If nl

k+1,K = 0, k = 1, . . . , K − 1, for all

groups l 6= j, then

P
<

j = A

[
K−1∑
k=1

nj
k + 1

]
(3.24)

4. The lower probability (3.20) P≤j is zero in two cases. First, if nj
k = 0 for group

j for k = 1, . . . , K − 1 and nl
K = 0 for at least one group other than group

j; this is easily seen from the proof of Theorem 3.2 in Appendix A.1. The

corresponding NPI upper probability (3.21) is

P
≤
j = A

[
nj

K

J∏
l=1 l 6=j

(nl
K + 1) +

J∏
l=1 l 6=j

(nl + 1)

]
(3.25)
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Secondly, if nj
1 = 0 and

J∏
l=1 l 6=j

nl
k,K = 0, for all k = 2, . . . , K (i.e. nl

k,K = 0

for at least one group l 6= j), then the corresponding NPI upper probability

(3.21) is

A

[
K∑

k=2

(
nj

k

J∏
l=1 l 6=j

(nl
k,K + 1)

)
+

J∏
l=1 l 6=j

(nl + 1)

]
(3.26)

5. The upper probability P
<

j as given in (3.4) is one in the following case. Suppose

the set of categories {1, . . . , K} is split up into {1, . . . , ki} and {ki + 1, . . . , K},

with nj
k = 0 if k ∈ {ki + 1, . . . , K} and nl

k = 0, if k ∈ {1, . . . , ki} for all

l = 1, . . . , j, l 6= j, so in this case nj =
ki∑

k=1

nj
k and nl =

K∑
f=ki+1

nl
f . Then

P
<

j = A

[
ki∑

k=1

nj
k

J∏
l=1 l 6=j

(
K∑

f=k+1

nl
f + 1

)
+

J∏
l=1 l 6=j

(
K∑

f=2

nl
f + 1

)]

As nl
k = 0, if k ∈ {1, . . . , ki}, for all l = 1, . . . , j, l 6= j,

P
<

j = A

[
ki∑

k=1

nj
k

J∏
l=1 l 6=j

(
K∑

f=k

nl
f + 1

)
+

J∏
l=1 l 6=j

(
K∑

f=2

nl
f + 1

)]

= A

[
nj

J∏
l=1 l 6=j

(nl + 1) +
J∏

l=1 l 6=j

(nl + 1)

]

= A

[
J∏

l=1 l 6=j

(
nl + 1

) (
nj + 1

)]
= A

[
J∏

j=1

(nj + 1)

]
= 1 (3.27)

In this case, the corresponding NPI lower probability (3.3) is

P<
j = A

[
ki∑

k=1

{
nj

k

J∏
l=1 l 6=j

K∑
f=ki+1

nl
f

}]
= A

[
nj

J∏
l=1 l 6=j

nl

]
= A

[
J∏

j=1

nj

]
(3.28)

6. The upper probability P
≤
j as given in (3.21) is one in the following case.

Using the same notation as above, suppose we have ki ∈ {1, . . . , K} and

the set is split up into {1, . . . , ki} and {ki + 1, . . . , K}, with nj
k = 0 if k ∈

{ki + 1, . . . , K} and nl
k = 0 if k ∈ {1, . . . , ki − 1}, for all l = 1, . . . , j, l 6= j. In

this case nj =
ki∑

k=1

nj
k and nl =

K∑
f=ki

nl
f , and

P
≤
j = A

[
ki∑

k=1

nj
k

J∏
l=1 l 6=j

(
K∑

f=k

nl
f + 1

)
+

J∏
l=1 l 6=j

nl + 1

]
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As nl
k = 0, if k ∈ {1, . . . , ki − 1}, for all l = 1, . . . , j, l 6= j

P
≤
j = A

[
ki∑

k=1

nj
k

J∏
l=1 l 6=j

(
K∑

f=ki

nl
f + 1

)
+

J∏
l=1 l 6=j

nl + 1

]

= A

[
nj

J∏
l=1 l 6=j

(
nl + 1

)
+

J∏
l=1 l 6=j

(
nl + 1

)]

= A

[
J∏

l=1 l 6=j

(
nl + 1

) (
nj + 1

)]
= A

[
J∏

j=1

(nj + 1)

]
= 1

In this case, the corresponding NPI lower probability (3.20) is

P≤j = A

[
nj

1

J∏
l=1 l 6=j

(
nl + 1

)
+

ki∑
k=2

nj
k

J∏
l=1 l 6=j

(
K∑

f=k

nl
f

)
+

J∏
l=1 l 6=j

(
nl

K

)]

= A

[
nj

1

J∏
l=1 l 6=j

(
nl + 1

)
+

ki∑
k=2

nj
k

J∏
l=1 l 6=j

nl +
J∏

l=1 l 6=j

(
nl

K

)]
(3.29)

3.2.4 Examples for special cases

We illustrate the lower and upper probabilities for the special cases presented in

Subsection 3.2.3 by some examples. We start by considering the first special case,

comparison of two groups, this is followed by several examples for the other special

cases.

Example 3.4. We use the data set of Example 3.1 to illustrate the first special

case. We consider pairwise comparison of all pairs of groups of these data, the NPI

lower and upper probabilities are presented in Table 3.7.

For example, the NPI lower and upper probabilities for the event that the next

observation of the first group (Small) is less than (or equal to) the next observation

of the fifth group (Coupe) are P (X1
18 < X5

10) = 0.144 and P (X1
18 < X5

10) = 0.217. In

other words, the NPI lower and upper probabilities for the event that the next car

from small cars group has lower predicted reliability than the next car from coupe

group are 0.144 and 0.217, respectively. The NPI lower and upper probabilities for

the event X1
18 ≤ X5

10 are not in this table, but these can be calculated using the

conjugacy relation P (A) = 1 − P (Ac), so P (X1
18 ≤ X5

10) = 1 − P (X5
10 < X1

18) =



3.2. Selecting one group 32

1

j Small (l = 1) Medium (l = 2) Large (l = 3) Sporty (l = 4)

Small 1 0.234, 0.256, 0.295 0.238, 0.272, 0.318 0.200, 0.227, 0.263

Medium 2 0.407, 0.445, 0.469 0.268, 0.298, 0.346 0.303, 0.360, 0.369

Large 3 0.369, 0.421, 0.460 0.217, 0.240, 0.299 0.271, 0.313, 0.362

Sporty 4 0.351, 0.399 , 0.433 0.337, 0.373, 0.412 0.343, 0.396, 0.443

Coupe 5 0.456, 0.536, 0.572 0.421, 0.483, 0.530 0.429, 0.339, 0.571 0.360, 0.429, 0.473

Minivan 6 0.474, 0.538, 0.567 0.430, 0.475, 0.511 0.438, 0.505, 0.552 0.373, 0.429, 0.467

SUV 7 0.406, 0.454, 0.485 0.278, 0.302, 0.345 0.286, 0.325, 0.384 0.305, 0.345, 0.386

j Coupe (l = 5) Minivan (l = 6) SUV (l = 7)

Small 1 0.144, 0.169, 0.217 0.152, 0.172, 0.211 0.219, 0.225, 0.287

Medium 2 0.176, 0.201, 0.264 0.178, 0.199, 0.244 0.247, 0.269, 0.309

Large 3 0.150, 0.179, 0.257 0.152, 0.176, 0.238 0.207, 0.235, 0.301

Sporty 4 0.207, 0.246, 0.300 0.218, 0.250, 0.293 0.316, 0.357, 0.400

Coupe 5 0.273, 0.325, 0.380 0.395, 0.463, 0.516

Minivan 6 0.2667,0.318, 0.380 0.404, 0.456, 0.498

SUV 7 0.184, 0.216, 0.284 0.189, 0.214, 0.267

Table 3.7: Lower, empirical and upper probabilities for the event Xj
nj+1

< X l
nl+1

1− 0.572 = 0.428 and P (X1
18 ≤ X5

10) = 1−P (X5
10 < X1

18) = 1− 0.456 = 0.544. It is

clear from this example that the small number of observations in each group leads

to large imprecision.

4

Example 3.5. This example illustrates the second special case when K = 2. Table

3.8 shows the number of heart operations on children under one year old at 12

medical centres, which are a part of data presented by Spiegelhalter et al [61]. This

data set was also used to illustrate the NPI comparison method for proportions

data presented by Coolen and Coolen-Schrijner [24] with, C1 and C2 representing

the number of mortalities and number of surviving patients.

Table 3.9 shows the results of comparing multiple groups when there are two

categories, so K = 2. It is clear that the largest lower probability occurs for the

first group, for both events X1
n1+1 < min

l=1,...,J, l 6=1
X l

nl+1
and X1

n1+1 = min
l=1,...,J

X l
nl+1

, so

this group is more likely to give the smallest next observation than any other group.
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Group j C1 C2 Total Group j C1 C2 Total

1 43 138 181 7 27 226 253

2 27 173 200 8 57 312 369

3 26 131 157 9 28 186 214

4 15 127 142 10 31 153 184

5 36 181 217 11 67 673 740

6 49 368 417 12 32 236 268

Table 3.8: Heart operations mortality data for 12 medical centres

Group j P<
j P

<

j ∆<
j P≤j P

≤
j ∆≤j

1 0.0468 0.0506 0.0038 0.3876 0.4004 0.0128

2 0.0234 0.0257 0.0023 0.2854 0.2982 0.0128

3 0.0298 0.0327 0.0029 0.3160 0.3295 0.0135

4 0.0177 0.0200 0.0023 0.2563 0.2705 0.0142

5 0.0299 0.0324 0.0026 0.3162 0.3287 0.0125

6 0.0200 0.0217 0.0017 0.2678 0.2790 0.0112

7 0.0180 0.0197 0.0017 0.2572 0.2694 0.0122

8 0.0274 0.0296 0.0022 0.3048 0.3161 0.0113

9 0.0226 0.0248 0.0474 0.2813 0.2939 0.0126

10 0.0304 0.0332 0.0028 0.3188 0.3318 0.0130

11 0.0150 0.0161 0.0011 0.2409 0.2514 0.0105

12 0.0204 0.0223 0.0019 0.2698 0.2818 0.0120

Table 3.9: NPI lower and upper probabilities (special case 2)

These results are equal to the results from nonparametric predictive comparison of

proportions which were presented by Coolen and Coolen-Schrijner [24], as we use

the same latent variable representation if K = 2.

4

Example 3.6. In this example we illustrate the special cases 3, 4, 5 and 6 from

Subsection 3.2.3 by using the data set in Table 3.3, but with some changes applied

to the data to show the special cases. Throughout this example the event of interest

is that the next observation of the first group is less than (or equal to) the next
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observation from each of the other groups. Table 3.10 illustrates the special case

3 when nk
1 = 0 for k = 1, . . . , K − 1, so these data lead to the lower probability

(3.3) P<
1 = 0. The corresponding NPI upper probability (3.4) P

<

1 = 7.44 ∗ 10−7.

Furthermore, this table is also related to special case 4 for the event X1
n1+1 =

min
l=1,...,J

X l
nl+1

, as n1
k = 0 for k = 1, . . . , K − 1 and nl

K = 0 for at least one group l,

l 6= 1. Therefore, the lower probability (3.20) P≤1 = 0, with corresponding upper

probability (3.25) P
≤
1 = 0.003896.

Degree of book deterioration

Intact Slight Moderate Extreme

Group j C1 C2 C3 C4 Total

1 0 0 0 256 256

2 140 6 1 15 162

3 44 2 0 0 46

4 369 7 0 0 376

Table 3.10: Data: degree of book deterioration (special cases 3 and 4).

Table 3.11 shows also special case 3 as nl
k+1,K = 0, k = 1, . . . , K− 1 for the third

group, so the lower probability (3.3) P<
1 = 0 with corresponding upper probability

(3.4) P
<

1 = 4.58 ∗ 10−5. Also Table 3.12 shows this special case as nl
k+1,K = 0, k =

1, . . . , K − 1 for all l groups, so the data in this table lead to lower probability (3.3)

P<
1 = 0 with corresponding upper probability (3.24) P

<

1 = 2.88 ∗ 10−7.

Degree of book deterioration

Intact Slight Moderate Extreme

Group j C1 C2 C3 C4 Total

1 181 14 18 43 256

2 140 6 1 15 162

3 46 0 0 0 46

4 369 7 0 0 376

Table 3.11: Data: degree of book deterioration (special case 3).

Table 3.13 shows the special case 4 as n1
1 = 0 and nl

k,K = 0, k = 2, . . . , K for

l = 3. So these data lead to lower probability (3.20) P≤1 = 0 with corresponding
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Degree of book deterioration

Intact Slight Moderate Extreme

Group j C1 C2 C3 C4 Total

1 181 14 18 43 256

2 162 0 0 0 162

3 46 0 0 0 46

4 376 0 0 0 376

Table 3.12: Data: degree of book deterioration (special case 3).

upper probability (3.26) P
≤
1 = 0.00394.

Degree of book deterioration

Intact Slight Moderate Extreme

Group j C1 C2 C3 C4 Total

1 0 195 18 43 256

2 140 6 1 15 162

3 46 0 0 0 46

4 369 7 0 0 376

Table 3.13: Data: degree of book deterioration (special case 4).

Finally, the data in Tables 3.14 and 3.15 relate to the special cases 5 and 6,

respectively. For Table 3.14, the upper probability (3.4) P
<

1 = 1 with corresponding

lower probability (3.28) P<
1 = 0.9664, which illustrates special case 5. For Table 3.15,

the upper probability (3.21) P
≤
1 = 1 with corresponding lower probability (3.29) P≤1 =

0.9874, which illustrates special case 6.

Degree of book deterioration

Intact Slight Moderate Extreme

Group j C1 C2 C3 C4 Total

1 181 75 0 0 256

2 0 0 141 21 162

3 0 0 44 2 46

4 0 0 7 369 376

Table 3.14: Data: degree of book deterioration (special case 5).
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Degree of book deterioration

Intact Slight Moderate Extreme

Group j C1 C2 C3 C4 Total

1 181 75 0 0 256

2 0 146 1 15 162

3 0 46 0 0 46

4 0 376 0 0 376

Table 3.15: Data: degree of book deterioration (special case 6).

4

3.3 Subset containing all best groups

In this section we consider J independent groups denoted by G1, . . . , GJ , so no

information about any aspect related to one or more group(s) contains information

about any aspect of the other groups. We divide these multiple groups into two

non-empty subsets of groups, S and Sc, and we apply the A(n)-based inferences per

group to consider one future observation for each group. We derive the NPI lower

and upper probabilities for the event that all these future observations for groups in

S are less (so in categories ‘further to the left’) than all the future observations for

groups in Sc. Let S = {j1, . . . , jw} ⊂ {1, . . . , J} be the selected subset containing

w groups, for 1 ≤ w ≤ J − 1, and let Sc = {1, . . . , J} \ S be the subset of the not

selected groups (i.e. the complementary subset to S) which contains J − w groups.

The NPI lower and upper probabilities for the event that the next observation

of each group in S is less than the next observation from each group in Sc, denoted

by

P<
S = P

(
max
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

)
and

P
<

S = P

(
max
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

)
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These are given in Theorem 3.3, we use the following notation for the left and

right configurations

Lj
k =

 nj
k + 1 if k = 1

nj
k if k = 2, . . . , K

(3.30)

Rj
k =

 nj
k if k = 1, . . . , K − 1

nj
k + 1 if k = K

(3.31)

Theorem 3.3. The NPI lower and upper probabilities for the event that the next

observation of each group in S is less than the next observation from each group in

the complementary set Sc are

P<
S =

K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

PL
(
X l

nl+1 ∈ CMW +1,K

)
(3.32)

P
<

S =
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

PR
(
X l

nl+1 ∈ CMW +1,K

)
(3.33)

where MW = max {kj1 , . . . , kjw} and with the sums over kj = 1, . . . , K − 1 for all

j ∈ S = {j1, . . . , jw}.

Before we prove these results in general, we present the proof for a case of four

groups, as this is easier with regard to notation and explaining all steps well. Let

there be four groups and suppose we are interested in the subset which contains

groups 1 and 3, so S = {1, 3} and Sc = {2, 4}. We derive the NPI lower and upper

probabilities (3.32) and (3.33) for the event that the next observations of groups 1

and 3 are both less than the next observations from both groups 2 and 4. The lower

probability can be derived as follows, where we use the notation MW = max {k1, k3},

P

(
max
j=1,3

Xj
nj+1

< min
l=2,4

X l
nl+1

)
= P

(⋂
l∈Sc

{
max
j=1,3

Xj
nj+1

< X l
nl+1

})

= P

({
X2

n2+1 > max
j=1,3

Xj
nj+1

}⋂{
X4

n4+1 > max
j=1,3

Xj
nj+1

})
=

K∑
k1=1

K∑
k3=1

P

({
X2

n2+1 > max
j=1,3

Xj
nj+1

}⋂{
X4

n4+1 > max
j=1,3

Xj
nj+1

}
|
⋂

j=1,3

{Xj
nj+1
∈ Ckj

}

)

× P
(
X1

n1+1 ∈ Ck1 , X
3
n3+1 ∈ Ck3

)
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≥
K−1∑
k1=1

K−1∑
k3=1

P

({
X2

n2+1 > max
j=1,3

Xj
nj+1

}⋂{
X4

n4+1 > max
j=1,3

Xj
nj+1

}
|
⋂

j=1,3

{Xj
nj+1
∈ Ckj

}

)

× PR
(
X1

n1+1 ∈ Ck1 , X
3
n3+1 ∈ Ck3

)
=

K−1∑
k1=1

K−1∑
k3=1

(
n1

k1

n1 + 1

)(
n3

k3

n3 + 1

)
P
(
X2

n2+1 ∈ CMW +1,K

)
P
(
X4

n4+1 ∈ CMW +1,K

)
≥

K−1∑
k1=1

k1∑
k3=1

(
n1

k1

n1 + 1

)(
n3

k3

n3 + 1

)
PL
(
X2

n2+1 ∈ Ck1+1,K

)
PL
(
X4

n4+1 ∈ Ck1+1,K

)
+

K−1∑
k1=1

K−1∑
k3=k1+1

(
n1

k1

n1 + 1

)(
n3

k3

n3 + 1

)
PL
(
X2

n2+1 ∈ Ck3+1,K

)
PL
(
X4

n4+1 ∈ Ck3+1,K

)
=

K−1∑
k1=1

k1∑
k3=1

(
n1

k1

n1 + 1

)(
n3

k3

n3 + 1

) K∑
f=k1+1

n2
f

n2 + 1

K∑
f=k1+1

n4
f

n4 + 1

+
K−1∑
k1=1

K−1∑
k3=k1+1

(
n1

k1

n1 + 1

)(
n3

k3

n3 + 1

) K∑
f=k3+1

n2
f

n2 + 1

K∑
f=k3+1

n4
f

n4 + 1
(3.34)

Equation (3.34) is the maximum lower bound for P

(
max
j=1,3

Xj
nj+1

< min
l=2,4

X l
nl+1

)
which

can be achieved, so the NPI lower probability is

P<
{1,3} =

A

[
K−1∑
k1=1

k1∑
k3=1

(n1
k1

)(n3
k3

)
∏
l=2,4

(
K∑

f=k1+1

nl
f

)
+

K−1∑
k1=1

K−1∑
k3=k1+1

(n1
k1

)(n3
k3

)
∏
l=2,4

K∑
f=k3+1

nl
f

]
(3.35)

with A =
[∏4

j=1 (nj + 1)
]−1

. In the derivation of this lower bound, we use the

assumption A(nj) for group j, with assumed independence of the groups. The first

inequality follows by putting the probability mass per interval for groups 1 and 3

at the right endpoints. The term for category K disappears from the summation

because if Xj
nj+1

∈ CK , j = 1, 3, then the probability of the next observations of

group 2 and 4 being greater than the next observations from both groups 1 and 3

is zero. The second inequality contains two terms; one when k1 ≥ k3 and the other

when k1 < k3. Moreover, we get Equation (3.34) by using the left configuration of

the latent variable representations for groups 2 and 4.

The corresponding upper probability for this event is again derived similarly but
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by putting the probability masses at the opposite endpoints,

P

(
max
j=1,3

Xj
nj+1

< min
l=2,4

X l
nl+1

)
= P

(⋂
l∈Sc

{
max
j∈S

Xj
nj+1

< X l
nl+1

})

= P

({
X2

n2+1 > max
j=1,3

Xj
nj+1

}⋂{
X4

n4+1 > max
j=1,3

Xj
nj+1

})
=

K∑
k1=1

K∑
k3=1

P

({
X2

n2+1 > max
j=1,3

Xj
nj+1

}⋂{
X4

n4+1 > max
j=1,3

Xj
nj+1

}
|
⋂

j=1,3

{Xj
nj+1
∈ Ckj

}

)

× P
(
X1

n1+1 ∈ Ck1 , X
3
n3+1 ∈ Ck3

)
≤

K−1∑
k1=1

K−1∑
k3=1

P

({
X2

n2+1 > max
j=1,3

Xj
nj+1

}⋂{
X4

n4+1 > max
j=1,3

Xj
nj+1

}
|
⋂

j=1,3

{Xj
nj+1
∈ Ckj

}

)

× PL
(
X1

n1+1 ∈ Ck1 , X
3
n3+1 ∈ Ck3

)
=

[
n1

1 + 1

n1 + 1

(
n3

1 + 1

n3 + 1
+

K−1∑
k3=2

(
n3

k3

n3 + 1

))
+

K−1∑
k1=2

(
n1

k1

n1 + 1

)(
n3

1 + 1

n3 + 1
+

K−1∑
k3=2

(
n3

k3

n3 + 1

))]

× P
(
X2

n2+1 ∈ CMW +1,K

)
P
(
X4

n4+1 ∈ CMW +1,K

)
=

[(
n1

1 + 1

n1 + 1

)(
n3

1 + 1

n3 + 1

)
+

(
n1

1 + 1

n1 + 1

) K−1∑
k3=2

(
n3

k3

n3 + 1

)
+

(
n3

1 + 1

n3 + 1

) K−1∑
k1=2

(
n1

k1

n1 + 1

)

+
K−1∑
k1=2

K−1∑
k3=2

(
n1

k1

n1 + 1

)(
n3

k3

n3 + 1

)]
P
(
X2

n2+1 ∈ CMW +1,K

)
P
(
X4

n4+1 ∈ CMW +1,K

)
(∗)

(3.36)

In the next step Equation (3.36) becomes more complicated as we will take the right

configuration for groups 2 and 4, so it is useful to use the notations Lj
kj

and Rj
kj

in

the rest of the proof as follows:

(∗) ≤

[∏
j=1,3

(
Lj

1

nj + 1

)
+

(
L3

1

n3 + 1

) K−1∑
k1=2

(
L1

k1

n1 + 1

)
+

K−1∑
k1=2

k1∑
k3=2

∏
j=1,3

(
Lj

kj

nj + 1

)]

× PR
(
X2

n2+1 ∈ Ck1+1,K

)
PR
(
X4

n4+1 ∈ Ck1+1,K

)
+

[(
Lj

1

n1 + 1

)
K−1∑
k3=2

(
L3

k3

n3 + 1

)
+

K−1∑
k1=2

K−1∑
k3=k1+1

∏
j=1,3

(
Lj

kj

nj + 1

)]

× PR
(
X2

n2+1 ∈ Ck3+1,K

)
PR
(
X4

n4+1 ∈ Ck3+1,K

)



3.3. Subset containing all best groups 40

=
∏

j=1,3

(
Lj

1

nj + 1

) ∏
l=2,4

(
K∑

f=k1+1

Rl
f

nl + 1

)

+

(
L3

1

n3 + 1

) K−1∑
k1=2

(
L1

k1

n1 + 1

)( ∏
l=2,4

(
K∑

f=k1+1

Rl
f

nl + 1

))

+
K−1∑
k1=2

k1∑
k3=2

∏
j=1,3

(
Lj

kj

nj + 1

)( ∏
l=2,4

(
K∑

f=k1+1

Rl
f

nl + 1

))

+

(
Lj

1

n1 + 1

)
K−1∑
k3=2

(
L3

k3

n3 + 1

)( ∏
l=2,4

(
K∑

f=k3+1

Rl
f

nl + 1

))

+
K−1∑
k1=2

K−1∑
k3=k1+1

∏
j=1,3

(
Lj

kj

nj + 1

)( ∏
l=2,4

(
K∑

f=k3+1

Rl
f

nl + 1

))
(3.37)

Formula (3.37) is the minimal upper bound which can be achieved for

P

(
max
j=1,3

Xj
nj+1

< min
l=2,4

X l
nl+1

)
, so the upper probability is

P
<

{1,3} = A

[(∏
j=1,3

Lj
1

) ∏
l=2,4

(
K∑

f=k1+1

Rl
f

)
+ L3

1

K−1∑
k1=2

L1
k1

∏
l=2,4

(
K∑

f=k1+1

Rl
f

)

+
K−1∑
k1=2

k1∑
k3=2

∏
j=1,3

(
Lj

kj

)( ∏
l=2,4

(
K∑

f=k1+1

Rl
f

))
+ L1

1

K−1∑
k3=2

L3
k3

∏
l=2,4

(
K∑

f=k3+1

Rl
f

)

+
K−1∑
k1=2

K−1∑
k3=k1+1

∏
j=1,3

(
Lj

kj

) ∏
l=2,4

(
K∑

f=k1+1

Rl
f

)]
(3.38)

again with A =
[∏4

j=1 (nj + 1)
]−1

.

We now prove Theorem 3.3 for the general case, along the same lines as above.

Proof. We derive the NPI lower probability (3.32), with MW = max {kj1 , . . . , kjw}.

P

(
max
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

)
= P

(⋂
l∈Sc

{
X l

nl+1 > max
j∈S

Xj
nj+1

})

=
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 > max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

×
∏
j∈S

P
(
Xj

nj+1
∈ Ckj

)]
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≥
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 > max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

×
∏
j∈S

PR
(
Xj

nj+1
∈ Ckj

)]

=
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

P

({
X l

nl+1 > max
j∈S

Xj
nj+1

} ∣∣Xj
nj+1
∈ Ckj

, j ∈ S
)

(3.39)

=
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

P
(
X l

nl+1 ∈ CMW +1,K

)
≥

K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

PL
(
X l

nl+1 ∈ CMW +1,K

)
(3.40)

We stop at this step, as many terms have to be written to get the final formula.

However, this can be easily computed with the statistical software R. In this deriva-

tion, we use the assumptions A(nj) for all groups with assumed independence of the

J groups. The term for categories CK disappears from the summations because for

any combination, if one or more Xj
nj+1

, j ∈ S, are in the last category CK , then the

probability for the event
⋂

l∈Sc

{
X l

nl+1
> max

j∈S
Xj

nj+1

}
is zero. Inequality (3.39) fol-

lows by using the right configuration for groups j ∈ S, so by putting the probability

masses per interval for all groups in S at the right endpoints and for all groups in

Sc at the left endpoints in the latent variable representation, using Equations (3.30)

and (3.31). The corresponding NPI upper probability (3.33) is

P

(
max
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

)
= P

(⋂
l∈Sc

{
X l

nl+1 > max
j∈S

Xj
nj+1

})

=
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 > max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

×
∏
j∈S

P
(
Xj

nj+1
∈ Ckj

)]

≤
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 > max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

×
∏
j∈S

PL
(
Xj

nj+1
∈ Ckj

)]
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=
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

P
(
X l

nl+1 ∈ CMW +1,K

)
(3.41)

≤
K−1∑
kj1

=1

· · ·
K−1∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

PR
(
X l

nl+1 ∈ CMW +1,K

)
(3.42)

This upper probability is also derived by using Equations (3.30) and (3.31) with the

assumed independence between different groups. Inequality (3.41) follows by putting

the probability mass per interval at left endpoints for groups j ∈ S in the latent

variable representation. Equation (3.42) is quite complicated as we have to consider

all combinations where one or more Xj
nj+1

, j ∈ S, are in the first category, but

it can easily be computed using the statistical software R. Because the expressions

in (3.40) and (3.42) are sharp, in the sense that they are attained for the specified

configurations, they are the optimal lower and upper bounds for the probability of

interest under the assumptions made, and hence they are the NPI lower and upper

probabilities for the event considered.

It can also be of interest to consider the event that the next observation of each

group in S is less than or equal to the next observation from each group in the com-

plementary set Sc. We denote the NPI lower and upper probabilities for this event by

P≤S = P

(
max
j∈S

Xj
nj+1
≤ min

l∈Sc
X l

nl+1

)
and

P
≤
S = P

(
max
j∈S

Xj
nj+1
≤ min

l∈Sc
X l

nl+1

)
These are presented in Theorem 3.4.

Theorem 3.4. The NPI lower and upper probabilities for the event that the next

observation of each group in S is less than or equal to the next observation from

each group in the complementary set Sc are

P≤S =
K∑

kj1
=1

· · ·
K∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

PL
(
X l

nl+1 ∈ CMW ,K

)
(3.43)

P
≤
S =

K∑
kj1

=1

· · ·
K∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

PR
(
X l

nl+1 ∈ CMW ,K

)
(3.44)
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where MW = max {kj1 , . . . , kjw} and with the sums over kj = 1, . . . , K for all j ∈

{j1, . . . , jw}.

Proof. The lower probability (3.43) is derived as follows:

P

(
max
j∈S

Xj
nj+1
≤ min

l∈Sc
X l

nl+1

)
= P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1

})

=
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

×
∏
j∈S

P
(
Xj

nj+1
∈ Ckj

)]

≥
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

×
∏
j∈S

PR
(
Xj

nj+1
∈ Ckj

)]

=
K∑

kj1
=1

· · ·
K∑

kjw=1

∏
j∈S

Rj
kj

nj + 1
P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S

)

=
K∑

kj1
=1

· · ·
K∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

P
(
X l

nl+1 ∈ CMW ,K

)
≥

K∑
kj1

=1

· · ·
K∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

PL
(
X l

nl+1 ∈ CMW ,K

)
(3.45)

The upper probability (3.44) is derived as follows:

P

(
max
j∈S

Xj
nj+1
≤ min

l∈Sc
X l

nl+1

)
= P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1

})

=
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1
|Xj

nj+1
∈ Ckj

, j ∈ S
})

×
∏
j∈S

P
(
Xj

nj+1
∈ Ckj

)]

≤
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1
|Xj

nj+1
∈ Ckj

, j ∈ S
})

×
∏
j∈S

PL
(
Xj

nj+1
∈ Ckj

)]
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=
K∑

kj1
=1

· · ·
K∑

kjw=1

[∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

P

(⋂
l∈Sc

{
X l

nl+1 ≥ max
j∈S

Xj
nj+1
|Xj

nj+1
∈ Ckj

, j ∈ S
})]

=
K∑

kj1
=1

· · ·
K∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

P
(
X l

nl+1 ∈ CMW ,K

)
≤

K∑
kj1

=1

· · ·
K∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

PR
(
X l

nl+1 ∈ CMW ,K

)
(3.46)

These lower and upper probabilities are derived similarly to the lower and upper

probabilities (3.32) and (3.33) but with < everywhere replaced by ≤, and the K

terms in the summation that were equal to zero in (3.32) and (3.33) are now not

equal to zero, giving some additional terms in the summation. Equations (3.45) and

(3.46) can be easily computed using R.

To explain the notation and steps in this proof in more detail, we present the

case with four groups in Appendix A.2.

3.4 Subset containing the best group

An alternative event that may be of interest in multiple comparisons is that the next

observation of at least one group in S = {j1, . . . , jw} ⊂ {1, . . . , J} is less than the

next observation of each group in Sc, so that S contains the group with the minimal

next observation. The NPI lower and upper probabilities for this event are denoted

by

P<
S1 = P

(
min
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

)
and

P
<

S1 = P

(
min
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

)
These lower and upper probabilities are given in Theorm 3.5, using notation Lj

kj

and Rj
kj

as defined in (3.30) and (3.31).

Theorem 3.5. The NPI lower and upper probabilities for the event that the next

observation for at least one of the selected groups is less than the next observation
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from each group in the complementary set Sc are

P<
S1 =

K∑
kj1

=1

· · ·
K∑

kjw=1

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

PL
(
X l

nl+1 ∈ CMw+1,K

)
(3.47)

P
<

S1 =
K∑

kj1
=1

· · ·
K∑

kjw=1

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

PR
(
X l

nl+1 ∈ CMw+1,K

)
(3.48)

where Mw = min {kj1 , . . . , kjw} and the sums are over kj = 1, . . . , K for all j ∈

{j1, . . . , jw}.

Proof. The proof of this theorem is similar to the proof of Theorem 3.3, with ‘max’

replaced by ‘min’ everywhere and ‘MW ’ replaced by ‘Mw’. Moreover, here all K

terms remain in the summation, as there is only one term which is equal to zero,

namely when the next observation from all groups in S are in the last category

CK .

The corresponding NPI lower and upper probabilities for the event that the next

observation of at least one group in S is less than or equal to the next observation

of each group in Sc, denoted by P≤S1 and P
≤
S1 , respectively, are similar to (3.47) and

(3.48) but with Mw + 1 replaced by Mw in the events involving the groups in Sc in

the probabilities on the right-hand side.

For more detailed explanation, we give the proof of Theorem 3.5 for the case

with four groups, S = {1, 3} and Sc = {2, 4}, in Appendix A.3.

Example 3.7. The data in Table 3.16, taken from [1, 2], refer to a clinical trial

involving 802 patients who experienced trauma due to sub-arachnoid haemorrhage

(SAH). There are four treatment groups (J = 4), representing a control group and

three groups corresponding to different dose levels. The Glasgow outcome scale is

presented by five ordered categories (K = 5).

The inequality-constrained test discussed in Section 2.1 is applied to test the

null hypothesis H0 : π1 = π2 = π3 = π4 against Ha : π1 ≥ π2 ≥ π3 ≥ π4, with

categories C2 − C5 are combined to illustrate the inequality-constrained test for

binomial parameters. The test statistic, as given in Equation (2.1) is G2(I|O) = 3.27

and has p-value 0.095, so the null hypothesis is not rejected if significance level 0.05
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Glasgow outcome scale

Treatment Death Vegetative Major Minor Good Total

Group (j) State Disability Disability Recovery

C1 C2 C3 C4 C5

Placebo (1) 59 25 46 48 32 210

Low dose (2) 48 21 44 47 30 190

Medium dose (3) 44 14 54 64 31 207

High dose (4) 43 4 49 58 41 195

Table 3.16: Sub-Arachnoid Haemorrhage (SAH) data

is used. For the full 4×5 table the inequality-constrained test shows evidence of

association with p-value = 0.002 [1].

We apply our NPI method by considering explicitly the next patient for each

group. We use this data set to illustrate the NPI lower and upper probabilities for

the events discussed in this section and Sections 3.3.

Table 3.17 presents the NPI lower and upper probabilities (3.32), (3.33), (3.43)

and (3.44) for the event that the next observation of each group in S is less than (or

equal to) the next observation of all groups in Sc, so S contains the groups which

provide the smallest next observations, which in this example actually implies the

worst outcomes in real-world terms. We present the results for all subsets S to

illustrate the new approach presented in this chapter. Of course, some such subsets

may not be of much practical interest, for example it may be more logical to consider

subsets consisting of neighbouring groups than other subsets, restricting attention

to such subsets, if deemed appropriate, is straightforward. For S containing only a

single group, group 4 (High dose) has the smallest lower and upper probabilities of

providing the minimal next observation (so worst outcome) while group 1 (Placebo)

has the largest lower and upper probabilities for this event. The NPI lower and upper

probabilities for these events are not monotone if S increases, which is logical as the

events corresponding to increasing subset S are not such that one implies the other.

As the event max
j∈S

Xj
nj+1

< min
l∈Sc

X l
nl+1

implies the event max
j∈S

Xj
nj+1
≤ min

l∈Sc
X l

nl+1
and

because there are multiple observations of each group in each category, the NPI lower

and upper probabilities P≤S and P
≤
S are greater than P<

S and P
<

S . The imprecision
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is less than 0.01 for all events considered, reflecting the substantial numbers of data

for all four groups.

Subset (S) P<
S P

<

S ∆<
S P≤S P

≤
S ∆≤S

{1} 0.1883 0.1947 0.0064 0.4298 0.4378 0.0082

{2} 0.1661 0.1721 0.0060 0.3958 0.4044 0.0086

{3} 0.1281 0.1332 0.0051 0.3380 0.3460 0.0080

{4} 0.1155 0.1204 0.0049 0.3171 0.3247 0.0076

{1, 2} 0.1441 0.1497 0.0056 0.3224 0.3317 0.0093

{1, 3} 0.1164 0.1214 0.0050 0.2818 0.2905 0.0087

{1, 4} 0.0977 0.1021 0.0044 0.2531 0.2572 0.0041

{2, 3} 0.1051 0.1097 0.0046 0.2618 0.2700 0.0082

{2, 4} 0.0879 0.0920 0.0041 0.2312 0.2389 0.0077

{3, 4} 0.0721 0.0757 0.0036 0.2011 0.2081 0.0070

{1, 2, 3} 0.1935 0.2008 0.0073 0.4394 0.4490 0.0096

{1, 2, 4} 0.1477 0.1539 0.0062 0.3719 0.3814 0.0095

{1, 3, 4} 0.1356 0.1417 0.0061 0.3388 0.3478 0.0090

{2, 3, 4} 0.1266 0.1322 0.0056 0.3185 0.3269 0.0084

Table 3.17: SAH data: max
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

Before we consider other events, we introduce a variation to this data set to

illustrate our approach further. The changed SAH data set in Table 3.18 has the

same numbers per group as the original data in Table 3.16, but the numbers per

category are changed such that for groups 1 and 2 the numbers in C1 and C2 are

substantially increased while those in C4 and C5 are decreased, and for groups 3 and

4 this change is the other way around. This leads to the outcomes being far worse

Glasgow outcome scale

Group (j) C1 C2 C3 C4 C5 Total

Placebo (1) 89 55 46 8 12 210

Low dose (2) 78 41 44 17 10 190

Medium dose (3) 5 4 54 74 70 207

High dose (4) 3 4 49 78 61 195

Table 3.18: Changed SAH data



3.4. Subset containing the best group 48

for groups 1 and 2 than for groups 3 and 4, which is clearly reflected by the NPI

lower and upper probabilities presented in Table 3.19.

Subset (S) P<
S P

<

S ∆<
S P≤S P

≤
S ∆≤S

{1} 0.3391 0.3493 0.0102 0.6442 0.6537 0.0095

{2} 0.2953 0.3047 0.0094 0.5958 0.6051 0.0093

{3} 0.0129 0.0151 0.0022 0.0630 0.0694 0.0064

{4} 0.0100 0.0122 0.0022 0.0537 0.0603 0.0066

{1, 2} 0.5755 0.5897 0.0142 0.7953 0.8100 0.0147

{1, 3} 0.0427 0.0467 0.0040 0.1488 0.1568 0.0080

{1, 4} 0.0396 0.0436 0.0040 0.1430 0.1511 0.0081

{2, 3} 0.0326 0.0361 0.0035 0.1200 0.1271 0.0071

{2, 4} 0.0305 0.0340 0.0035 0.1142 0.1215 0.0073

{3, 4} 0.0025 0.0029 0.0040 0.0172 0.0188 0.0016

{1, 2, 3} 0.2786 0.2880 0.0094 0.6017 0.6126 0.0109

{1, 2, 4} 0.2856 0.2952 0.0096 0.6090 0.6195 0.0105

{1, 3, 4} 0.0293 0.0324 0.0031 0.1082 0.1150 0.0068

{2, 3, 4} 0.0272 0.0299 0.0027 0.0894 0.0952 0.0058

Table 3.19: Changed SAH data: max
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

The imprecision varies now more for the different events than was the case for

the original data, even though the numbers of observations are the same. This is

due mostly to the fact that some of the lower and upper probabilities are now very

small while others are closer to 0.5. Typically, if corresponding lower and upper

probabilities are both close to either 0 or 1, the imprecision tends to be smaller

than for lower and upper probabilities which are close to 0.5, when based on similar

numbers of data. One might compare this typical behaviour of imprecision with the

variance p(1− p) for a single Bernoulli- distributed random quantity in the classical

setting, if the success probability p is known. This variance is maximal for p = 0.5

and decreases to zero when p goes to 0 or 1. However, imprecision reflects lack of

information which is different to the stochastic variability reflected by the variance.

One detail of Table 3.19 that is of interest is seen by comparing the lower and

upper probabilities for subsets including either group 3 or group 4. When considering

S of size 1 or 2, the lower and upper probabilities for S with group 3 included are
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slightly larger than those with group 4 included. However, for S = {1, 2, 3} and

S = {1, 2, 4} the effect is the other way around, so adding group 3 to groups 1 and

2 increases these lower and upper probabilities less than adding group 4. This is

just a consequence of the detailed data, such an effect did not occur for the original

data above. It shows again that there are no straightforward monotonicities in this

approach, of course this is a reflection of the data.

Subset (S) P<
S1 P

<

S1 ∆<
S1 P≤S1 P

≤
S1 ∆≤S1

{1} 0.1883 0.1947 0.0064 0.4298 0.4378 0.0082

{2} 0.1661 0.1721 0.0060 0.3958 0.4044 0.0086

{3} 0.1281 0.1332 0.0051 0.3380 0.3460 0.0080

{4} 0.1155 0.1204 0.0049 0.3171 0.3247 0.0076

{1, 2} 0.4204 0.4296 0.0092 0.7090 0.7173 0.0083

{1, 3} 0.3705 0.3796 0.0091 0.6641 0.6727 0.0086

{1, 4} 0.3545 0.3635 0.0090 0.6481 0.6568 0.0087

{2, 3} 0.3432 0.3519 0.0087 0.6365 0.6455 0.0090

{2, 4} 0.3273 0.3359 0.0086 0.6204 0.6295 0.0091

{3, 4} 0.2827 0.2910 0.0083 0.5704 0.5796 0.0092

{1, 2, 3} 0.6753 0.6829 0.0076 0.8796 0.8845 0.0049

{1, 2, 4} 0.6540 0.6620 0.0080 0.8668 0.8719 0.0051

{1, 3, 4} 0.5956 0.6042 0.0086 0.8279 0.8339 0.0060

{2, 3, 4} 0.5620 0.5702 0.0082 0.8053 0.8117 0.0064

Table 3.20: SAH data: min
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

Table 3.20 presents the NPI lower and upper probabilities for the event that the

next observation for at least one of the groups in S is less than (or equal to) the

next observation of each group in Sc, so this means that S contains the group with

the worst next outcome and this illustrates the results presented in this section.

Table 3.20 corresponds to the original SAH data in Table 3.16. Table 3.21 presents

the NPI lower and upper probabilities for the same events but with the changed

SAH data from Table 3.18. The lower and upper probabilities in these tables are of

course monotonously increasing if S is expanded, as for example the event that the

subset {1, 2} contains the smallest next observation implies that this also holds for

the subset {1, 2, 3}. For these events the conjugacy property is nicely illustrated,
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for example in Table 3.20 the NPI lower probability for the event that S = {1, 2}

contains a group leading to the smallest next observation (with equal observations

for the groups in Sc allowed) is equal to 0.7090, and the NPI upper probability for

the event that S = {3, 4} contains the strictly smallest next observation is equal to

0.2910 = 1− 0.7090. For S containing only a single group, the values in Tables 3.20

and 3.21 are equal to the corresponding values in Tables 3.17 and 3.19 as the events

are identical. The change in the data is clearly reflected in the different values in

these two tables.

Subset (S) P<
S1 P

<

S1 ∆<
S1 P≤S1 P

≤
S1 ∆≤S1

{1} 0.3391 0.3493 0.0102 0.6442 0.6537 0.0095

{2} 0.2953 0.3047 0.0094 0.5958 0.6051 0.0093

{3} 0.0129 0.0150 0.0021 0.0630 0.0694 0.0064

{4} 0.0100 0.0122 0.0022 0.0537 0.0603 0.0066

{1, 2} 0.8817 0.8932 0.0115 0.9712 0.9756 0.0044

{1, 3} 0.3674 0.3775 0.0101 0.6741 0.6837 0.0096

{1, 4} 0.3623 0.3722 0.0099 0.6691 0.6787 0.0096

{2, 3} 0.3213 0.3309 0.0096 0.6278 0.6377 0.0099

{2, 4} 0.3163 0.3259 0.0096 0.6225 0.6326 0.0101

{3, 4} 0.0244 0.0288 0.0044 0.1068 0.1183 0.0115

{1, 2, 3} 0.9397 0.9463 0.0066 0.9878 0.9900 0.0022

{1, 2, 4} 0.9306 0.9370 0.0064 0.9850 0.9871 0.0021

{1, 3, 4} 0.3949 0.4042 0.0093 0.6953 0.7047 0.0094

{2, 3, 4} 0.3463 0.3558 0.0095 0.6507 0.6609 0.0102

Table 3.21: Changed SAH data: min
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

We briefly consider what happens if, with the same data, some of the groups

or some of the categories are combined. In Table 3.22 the original SAH data are

presented following combination of groups 3 and 4 (now just called group 3) and

also combination of categories 2 to 5 into a single category ‘not death’ (now just

called category 2). The corresponding NPI lower and upper probabilities for the

event that the next observation for each group in S is less than (or equal to) the

next observation for all groups in Sc are presented in Table 3.23.

The main difference with the original results in Table 3.17 is that the differences
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Group j C1 C2 Total

1 59 151 210

2 48 142 190

3 87 315 402

Table 3.22: Combined SAH data

Subset (S) P<
S P

<

S ∆<
S P≤S P

≤
S ∆≤S

{1} 0.1625 0.1669 0.0044 0.6982 0.7045 0.0063

{2} 0.1406 0.1449 0.0043 0.6701 0.6765 0.0064

{3} 0.1149 0.1178 0.0029 0.6331 0.6399 0.0068

{1, 2} 0.0549 0.0572 0.0023 0.7970 0.7998 0.0028

{1, 3} 0.0449 0.0465 0.0016 0.7589 0.7643 0.0054

{2, 3} 0.0388 0.0404 0.0016 0.7311 0.7360 0.0049

Table 3.23: Combined SAH data: max
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

between the P<
S and P

<

S and the corresponding P≤S and P
≤
S have become substan-

tially larger. This is due to the grouping of categories 2 to 5, which of course leads

to far fewer opportunities for future observations of different groups to be different,

as now all observations in the new category 2 cannot be distinguished. Of course,

group 1 is still worst in the sense of giving the largest lower and upper probabili-

ties of the next observation being ‘death’, and the combined group 3 is best in this

respect, reflecting that the original groups 3 and 4 were both better than groups

1 and 2. Most important, however, is to be aware that the NPI lower and upper

probabilities for specific events depend on the representation of all the groups and

categories.

Finally, Table 3.24 presents the NPI lower and upper probabilities for the com-

parison of groups 1 to 3 after group 4 is removed, using the data from Table 3.16.

So now no information of group 4 is taken into account and it does not appear in

either S or Sc. It is clear by comparing Table 3.24 to Table 3.17 that deleting group

4 leads to increased NPI lower and upper probabilities for the events represented,

which is logical as group 4 not longer ‘competes’. The imprecision also seems to

have increased a bit, but this is most likely due to the lower and upper probabilities
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moving a bit closer to 0.5. This may actually mask an effect in the other direction,

as removing a group will probably have the effect of reducing imprecision a bit [32].

Subset (S) P<
S P

<

S ∆<
S P≤S P

≤
S ∆≤S

{1} 0.2621 0.2692 0.0071 0.4931 0.5014 0.0083

{2} 0.2334 0.2402 0.0068 0.4578 0.4664 0.0086

{3} 0.1850 0.1911 0.0061 0.3963 0.4045 0.0082

{1, 2} 0.2595 0.2673 0.0078 0.4860 0.4954 0.0094

{1, 3} 0.2258 0.2333 0.0075 0.4365 0.4457 0.0092

{2, 3} 0.2082 0.2152 0.0068 0.4094 0.4181 0.0087

Table 3.24: SAH data without group 4: max
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

4

Example 3.8. In this example we illustrate our methods when we have a small

number of observations in each group. The data are presented in Table 3.25.

Categories

C1 C2 C3 C4 C5 Total

G1 9 6 4 1 1 21

G2 8 4 4 2 1 19

G3 1 1 5 6 7 20

G4 1 1 5 8 6 21

Table 3.25: Data: Small number of observation

The NPI lower and upper probabilities for the event that the next observation

of each group in S is less than (or equal to) the next observation of all groups

in the complementary set, as presented Section 3.3, are given in Table 3.26. The

conclusions from Table 3.26 are in line with those discussed for Example 3.7 and as

given in Table 3.17, but Table 3.26 shows more imprecision than Table 3.17, due to

the substantially smaller numbers of observations in Example 3.8 than in Example

3.7.



3.5. Subset selection 53

Subset (S) P<
S P

<

S ∆<
S P≤S P

≤
S ∆≤S

{1} 0.2683 0.3561 0.0878 0.5837 0.6685 0.0848

{2} 0.2287 0.3086 0.0799 0.5349 0.6171 0.0822

{3} 0.0183 0.0412 0.0229 0.0796 0.1394 0.0598

{4} 0.0184 0.0415 0.0231 0.0800 0.1403 0.0603

{1, 2} 0.4434 0.5630 0.1196 0.6440 0.7700 0.1260

{1, 3} 0.0469 0.0864 0.0395 0.1394 0.2134 0.0740

{1, 4} 0.0482 0.0895 0.0413 0.1436 0.2193 0.0757

{2, 3} 0.0331 0.0672 0.0341 0.1070 0.1733 0.0663

{2, 4} 0.0343 0.0700 0.0357 0.1097 0.1773 0.0676

{3, 4} 0.0032 0.0107 0.0075 0.0186 0.0409 0.0223

{1, 2, 3} 0.2307 0.3144 0.0837 0.5144 0.6106 0.0962

{1, 2, 4} 0.2562 0.3447 0.0885 0.5480 0.6411 0.0931

{1, 3, 4} 0.0298 0.0628 0.0330 0.1084 0.1756 0.0672

{2, 3, 4} 0.0226 0.0511 0.0285 0.0797 0.1376 0.0579

Table 3.26: Small data: max
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

(Example 3.8)

3.5 Subset selection

In this section we discuss selecting a subset according to any criterion in terms of

the NPI lower or upper probabilities presented in previous sections. For example,

we may be interested in selecting a subset of minimal size for which P (S) > 0.5. In

addition, if multiple subsets with the same size satisfy this criterion, we may chose

the subset with the largest lower probability. Selection problems are common in

statistics and several methods have been presented [8,41,64]. For example, they are

used in screening experiments where, to end up with a small number of preferred

treatments, one starts with all those available, then after a number of observations

one wishes to continue with only a subset of all treatments, which should be likely

to contain (all) the best treatment(s). Such subset selection will be discussed in

detail in two examples.

Example 3.9. In this example we use Table 3.19 to select a subset which has NPI

lower probability for the event that the next observation of each group in S is less

than (or equal to) the next observation of all groups in the complementary set greater
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than 0.5. From Table 3.19 we can see that groups 1 and 2 have the largest lower

probabilities and also only the subset {1, 2} has lower probability greater than 0.5

for the event max
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

. In addition, any subset containing groups

1 and 2 also has the largest lower probability for the event max
j∈S

Xj
nj+1
≤ min

l∈Sc
X l

nl+1
,

P≤{1,2,3} = 0.6017 and P≤{1,2,4} = 0.6090. Using Table 3.19, if we want to choose the

subset of size 2 which contains all the worst groups, then we will choose S = {1, 2}.

Furthermore, table 3.21 shows that again the subset {1, 2} has the largest lower

probability for the event min
j∈S

Xj
nj+1

< (≤) min
l∈Sc

X l
nl+1

, P<
{1,2} = 0.8817 and P≤{1,2} =

0.9712, so it is the best choice for the subset of size two, which contains the worst

group, considering the event that the next observation for at least one of the selected

groups is less than the next observation from each group in the complementary set

Sc. For subsets of size 3, again the subsets {1, 2, 3} and {1, 2, 4} have the largest

lower probabilities and we choose the subset {1, 2, 3} as the best subset containing

the worst group, where P<
{1,2,3} = 0.9397 and P≤{1,2,3} = 0.9878 .

4

Example 3.10. The data in Table 3.27 were presented by Agresti [1], and describe

the relationship between children’s mental health status and parents’ socio-economic

status (SES) for 1660 residents of Manhattan. Various models were fitted for these

data, for example a row and column effects model which indicated positive associa-

tion [1]. The children’s mental health status is presented in 4 categories; well, mild

symptoms, moderate symptoms and impaired.

We consider all possible subsets for this example to illustrate our method, in

practice one may wish to restrict attention to some of these subsets. Tables 3.28

and 3.29 give the NPI lower and upper probabilities for the event that the next

observation for at least one of the selected groups is less than (or equal to ) the

next observation from each of the non-selected groups, as presented in Section 3.4,

for all possible subsets of sizes 2, 3, 4 and 5. The results from these tables can be

used to select the best subset. For example, if we want to select the subset with

size 2 that has NPI lower probability greater than 0.6 for the event that the next

observation for at least one of the selected groups is less than or equal to the next
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Mental Health

SES Well Mild Moderate Impaired Total

C1 C2 C3 C4

A 64 94 58 46 262

B 57 94 54 40 245

C 57 105 65 60 287

D 72 141 77 94 384

E 36 97 54 78 265

F 21 71 54 71 217

Table 3.27: Mental health and parents’ socio-economic status

observation from each of the non-selected groups, then subset {1, 2} will be the best

choice. Clearly, the lower and upper probabilities increase with extending subsets.

Finally, the particularly large number of observations in this example is reflected by

small imprecision.

4
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Subset (S) P<
S1 P

<

S1 ∆<
S1 P≤S1 P

≤
S1 ∆≤S1

{1} 0.10081 0.1047 0.0039 0.3849 0.3920 0.0071

{2} 0.0959 0.0997 0.0038 0.3807 0.3882 0.0075

{3} 0.0785 0.0818 0.0033 0.3339 0.3407 0.0068

{4} 0.0735 0.0763 0.0028 0.3211 0.3271 0.0060

{5} 0.0515 0.0541 0.0026 0.2610 0.2677 0.0067

{6} 0.0357 0.0381 0.0024 0.2045 0.2116 0.0071

{1, 2} 0.2338 0.2410 0.0072 0.6396 0.6479 0.0083

{1, 3} 0.2098 0.2166 0.0068 0.6070 0.6153 0.0083

{1, 4} 0.2029 0.2094 0.0065 0.5977 0.6057 0.0080

{1, 5} 0.1733 0.1794 0.0061 0.5542 0.5629 0.0087

{1, 6} 0.1516 0.1574 0.0058 0.5155 0.5247 0.0092

{2, 3} 0.2041 0.2108 0.0067 0.6018 0.6103 0.0085

{2, 4} 0.1972 0.2037 0.0065 0.5923 0.6006 0.0083

{2, 5} 0.1681 0.1741 0.0060 0.5485 0.5574 0.0089

{2, 6} 0.1465 0.1522 0.0057 0.5098 0.5192 0.0094

{3, 4} 0.1750 0.1809 0.0059 0.5576 0.5657 0.0081

{3, 5} 0.1471 0.1526 0.0055 0.5116 0.5204 0.0088

{3, 6} 0.1265 0.1318 0.0053 0.4709 0.4801 0.0092

{4, 5} 0.1410 0.1463 0.0053 0.5009 0.5094 0.0085

{4, 6} 0.1208 0.1257 0.0049 0.4597 0.4685 0.0088

{5, 6} 0.0960 0.1007 0.0047 0.4077 0.4174 0.0097

{1, 2, 3} 0.3866 0.3956 0.0090 0.7918 0.7986 0.0068

{1, 2, 4} 0.3771 0.3862 0.0091 0.7847 0.7916 0.0069

{1, 2, 5} 0.3376 0.3460 0.0084 0.7527 0.7600 0.0073

{1, 2, 6} 0.3074 0.3155 0.0081 0.7254 0.7332 0.0078

{1, 3, 4} 0.3459 0.3548 0.0089 0.7599 0.7672 0.0073

{1, 3, 5} 0.3082 0.3164 0.0082 0.7264 .7341 0.0077

{1, 3, 6} 0.2795 0.2873 0.0078 0.6977 0.7058 0.0081

{1, 4, 5} 0.2998 0.3080 0.0082 0.7184 0.7262 0.0078

{1, 4, 6} 0.2715 0.2793 0.0024 0.6895 0.6976 0.0081

{1, 5, 6} 0.2380 0.2454 0.0074 0.6515 0.6602 0.0087

{2, 3, 4} 0.3398 0.3485 0.0087 0.7546 0.7620 0.0074

{2, 3, 5} 0.3024 0.3105 0.0081 0.7207 0.7285 0.0078

Table 3.28: Subset containing the best group: NPI lower and upper probabilities
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Subset (S) P<
S1 P

<

S1 ∆<
S1 P≤S1 P

≤
S1 ∆≤S1

{2, 3, 6} 0.2738 0.2816 0.0078 0.6920 0.7002 0.0082

{2, 4, 5} 0.2942 0.3023 0.0082 0.7127 0.7205 0.0078

{2, 4, 6} 0.2659 0.2736 0.0077 0.6836 0.6918 0.0082

{2, 5, 6} 0.2328 0.2401 0.0073 0.6452 0.654 0.0089

{3, 4, 5} 0.2668 0.2746 0.0078 0.6845 0.6926 0.0081

{3, 4, 6} 0.2424 0.2473 0.0049 0.6540 0.6624 0.0084

{3, 5, 6} 0.2084 0.2153 0.0069 0.6138 0.6229 0.0091

{4, 5, 6} 0.2014 0.2082 0.0068 0.6043 0.6134 0.0091

{1, 2, 3, 4} 0.5826 0.5923 0.0097 0.8993 0.9040 0.0047

{1, 2, 3, 5} 0.5315 0.5403 0.0088 0.8743 0.8792 0.0049

{1, 2, 3, 6} 0.4906 0.4991 0.0085 0.8537 0.8590 0.0053

{1, 2, 4, 5} 0.5199 0.5291 0.0092 0.8682 0.8735 0.0053

{1, 2, 4, 6} 0.4796 0.4884 0.0088 0.8474 0.8529 0.0055

{1, 2, 5, 6} 0.4343 0.4424 0.0081 0.8191 0.8250 0.0059

{1, 3, 4, 5} 0.4808 0.4902 0.0094 0.8478 0.8535 0.0057

{1, 3, 4, 6} 0.4426 0.4515 0.0089 0.8259 0.8319 0.0060

{1, 3, 5, 6} 0.3994 0.4077 0.0083 0.7963 0.8028 0.0065

{1, 4, 5, 6} 0.3897 0.3982 0.0085 0.7892 0.7959 0.0067

{2, 3, 4, 5} 0.4753 0.4844 0.0091 0.8426 0.8484 0.0058

{2, 3, 4, 6} 0.4371 0.4458 0.0087 0.8206 0.8267 0.0061

{2, 3, 5, 6} 0.3943 0.4023 0.0080 0.7905 0.7971 0.0066

{2, 4, 5, 6} 0.3847 0.3930 0.0083 0.7834 0.7902 0.0068

{3, 4, 5, 6} 0.3521 0.3604 0.0083 0.7590 0.7662 0.0072

{1, 2, 3, 4, 5} 0.7884 0.7955 0.0071 0.9619 0.9643 0.0024

{1, 2, 3, 4, 6} 0.7323 0.7390 0.0067 0.9459 0.9485 0.0026

{1, 2, 3, 5, 6} 0.6729 0.6789 0.0060 0.9237 0.9265 0.0028

{1, 2, 4, 5, 6} 0.6593 0.6661 0.0068 0.9182 0.9215 0.0033

{1, 3, 4, 5, 6} 0.6118 0.6193 0.0075 0.9003 0.9041 0.0038

{2, 3, 4, 5, 6} 0.6080 0.6151 0.0071 0.8953 0.8992 0.0039

Table 3.29: Subset containing the best group: NPI lower and upper probabilities
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3.6 Maximum next observation

The multiple comparisons have so far been presented in terms of minimum value(s) to

be in the set S, but the same approach can be used if interest is in maximum value(s).

One can turn around the order of the K categories and return to a formulation in

terms of minimum value(s), or for some events one can of course just exchange the

roles of S and Sc to return to an event of interest in terms of minimum value(s).

One can also derive the NPI lower and upper probabilities directly, along the same

lines as done for the minimum values above. The NPI lower and upper probabilities

for the event that the next observation from each group in S is greater than the

next observation from each group in Sc are denoted by

P>
S∗ = P

(
min
j∈S

Xj
nj+1

> max
l∈Sc

X l
nl+1

)
and

P
>

S∗ = P

(
min
j∈S

Xj
nj+1

> max
l∈Sc

X l
nl+1

)
These are given in Equations (3.49) and (3.50), respectively and derived in detail in

Appendix A.4.

P>
S∗ =

K∑
kj1

=2

· · ·
K∑

kjw=2

∏
j∈S

Lj
kj

nj + 1

∏
l∈Sc

PR
(
X l

nl+1 ∈ C1,Mw−1

)
(3.49)

P
>

S∗ =
K∑

kj1
=2

· · ·
K∑

kjw=2

∏
j∈S

Rj
kj

nj + 1

∏
l∈Sc

PL
(
X l

nl+1 ∈ C1,Mw−1

)
(3.50)

where Mw = min {kj1 , . . . , kjw}.

The NPI lower and upper probabilities for the corresponding event with ‘greater

than or equal to’ are derived by replacing Mw − 1 by Mw in Equations (3.49) and

(3.50). The NPI lower and upper probabilities for the event that the next observation

of at least one group in S is greater than (or equal to) the next observation of all

groups in Sc, max
j∈S

Xj
nj+1

> (≥) max
l∈Sc

X l
nl+1

, follow from Equations (3.49) and (3.50)

by replacing Mi by Mx in those equations.
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Example 3.11. Consider again the data set described in Example 3.7 (Changed

SAH data) and given in Table 3.18. The NPI lower and upper probabilities for the

event that the next observation from each group in S is greater than (or equal to)

the next observation from each group in Sc are given in Table 3.30.

Subset (S) P>
S∗ P

>

S∗ ∆>
S∗ P≥S∗ P

≥
S∗ ∆≥S∗

{1} 0.0272 0.0299 0.0027 0.0894 0.0952 0.0058

{2} 0.0293 0.0324 0.0031 0.1082 0.1150 0.0068

{3} 0.2856 0.2952 0.0096 0.6090 0.6195 0.0105

{4} 0.2786 0.2880 0.0094 0.6017 0.6126 0.0109

{1, 2} 0.0025 0.0029 0.0040 0.0172 0.0188 0.0016

{1, 3} 0.0305 0.0340 0.0035 0.1142 0.1215 0.0073

{1, 4} 0.0326 0.0361 0.0035 0.1200 0.1271 0.0071

{2, 3} 0.0396 0.0436 0.0040 0.1430 0.1511 0.0081

{2, 4} 0.0427 0.0467 0.0040 0.1488 0.1568 0.0080

{3, 4} 0.5755 0.5897 0.0142 0.7953 0.8100 0.0147

{1, 2, 3} 0.0100 0.01217 0.0022 0.0537 0.0603 0.0066

{1, 2, 4} 0.0129 0.01504 0.0021 0.0630 0.0694 0.0064

{1, 3, 4} 0.2953 0.3047 0.0094 0.5958 0.6051 0.0093

{2, 3, 4} 0.3391 0.3493 0.0102 0.6442 0.6537 0.0095

Table 3.30: NPI lower and upper probabilities: min
j∈S

Xj
nj+1

> (≥) max
l∈Sc

X l
nl+1

It can be seen from Table 3.30 that groups 3 and 4 give the largest lower and

upper probabilities for the event that the next observation of each group in subset

S is greater than the next observation from each group in the complementary set

Sc (min
j∈S

Xj
nj+1

> max
l∈Sc

X l
nl+1

), so any subset containing these groups will be likely to

give the maximum next observation. Clearly, subset {3, 4} gives the largest lower

and upper probabilities as it has more combinations for the event that the next

observation of each group in subset S is greater than the next observation from each

group in the complementary set Sc.

4
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3.7 Concluding remarks

In this chapter NPI has been presented for multiple comparisons for ordinal cate-

gorical groups. Although the data look like contingency tables, we do not test for

the independence but we consider inferences for future observations based on the

available data, which is an attractive alternative approach to the classical methods

which typically test hypotheses. Our results hold for a single future observation

for each category. If interest is in more future observations, the NPI approach is

possible too but it has not yet been developed; this is an interesting topic for future

research. It is also possible to combine NPI lower and upper probabilities with util-

ities in a decision theoretic framework, which will often be relevant in applications

with ordered categorical data. A further topic of interest is the possibility to use

other latent variable representations to model specific relations between different

categories. For example, there may be applications where a 2-dimensional latent

variable representation is suitable for the categories. This would require the devel-

opment of NPI for 2-dimensional random quantities, which is also an interesting

research challenge.



Chapter 4

Accuracy of ordinal diagnostic

tests

4.1 Introduction

In this chapter we introduce nonparametric predictive inference (NPI) for accuracy

of diagnostic tests with ordinal outcomes, with the inferences based on data for a

disease group and a non-disease group. The evaluation of the accuracy of a diag-

nostic test is crucial in many application areas, in particular for medical diagnoses.

Traditional statistical methods tend to use concepts like ‘sensitivity’ and ‘speci-

ficity’ to express such accuracy, and these are combined into the Receiver Operating

Characteristic (ROC) curve, which has become a popular methodological tool which

provides insight into the quality of the test. Sensitivity, specificity and the ROC

curve are properties of assumed underlying populations and their probability distri-

butions, and are estimated from available data, in line with the traditional frequen-

tist approach to statistics. The data consist of observations of test outcomes for two

groups, one consisting of individuals known to have the disease or other condition

of interest, the other consisting of non-diseased individuals. The predictive nature

of NPI can be attractive for diagnostic tests as one may wish to consider explicitly

the quality of the test for one or more future individuals. Recently, Coolen-Maturi

et al [27] introduced NPI for accuracy of diagnostic tests which have real-valued

outcomes, and also for tests with binary outcomes [28].
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In many medical applications, as well as in other areas, diagnostic tests with

ordinal outcomes appear, so the test gives a result in one of several ordered categories

[1, 7]. In this chapter, NPI for such ordinal diagnostic tests is presented, using the

NPI approach for ordinal data which was presented in Section 2.4 [25]. Section 4.2

provides a brief introduction to ordinal diagnostic tests. In Section 4.3 we explain

how the usual empirical estimator for the ROC curve for ordinal diagnostic tests

can be generalized to empirical lower and upper ROC curves. NPI lower and upper

ROC curves for ordinal diagnostic tests are introduced in Section 4.4, where also the

use of the Youden index for determining an optimal cut-off point for the diagnostic

test is discussed. In Section 4.5 the areas under the NPI lower and upper ROC

curves are presented, and it is shown that these are equal to the NPI lower and

upper probabilities for correctly ordered future observations from the non-disease

and disease groups. Section 4.6 presents two examples to illustrate and discuss the

new approach presented in this chapter, and Section 4.7 presents some concluding

remarks.

4.2 Ordinal diagnostic tests

We consider a diagnostic test with ordinal test results, meaning that the test outcome

for each individual indicates one of K ≥ 3 ordered categories, denoted by C1 to CK

and representing an increasing level of severity with regard to their indication of

the presence of the disease (or other condition) of interest. We assume throughout

this chapter that error-free data are available on individuals in two groups according

to known disease status, with presence of the disease (‘disease group’) indicated by

D = 1 and absence of the disease (‘non-disease group’) by D = 0. The notation for

the numbers of individuals for each combination of disease status and test result is

introduced in Table 4.1. Throughout this chapter the disease (non-disease) group is

indicated by a superscript 1 (0).

We will assume that there is a k ∈ {1, . . . , K} such that a test result in categories

{Ck, ..., CK} is interpreted as indicating presence of the disease (‘positive test result’)

and a test result in categories {C1, . . . , Ck−1} as indicating absence of the disease
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Diagnostic test result

Condition status C1 . . . Ck−1 Ck . . . CK Total

D = 0 n0
1 . . . n0

k−1 n0
k . . . n0

K n0

D = 1 n1
1 . . . n1

k−1 n1
k . . . n1

K n1

Total n1 . . . nk−1 nk . . . nK n

Table 4.1: Ordinal test data

(‘negative test result’) [69,73]. Study of an appropriate choice of the value k, called

the ‘cut-off (point)’ or the ‘threshold’, is a main goal for statistical inference in

this scenario. The sensitivity (sens) of a diagnostic test is the probability that

the test result is positive given that the disease is present, it is also called the

true positive fraction (TPF ) (it is also known in the literature as the true positive

rate). The specificity (spec) of a diagnostic test is the probability that the test

result is negative given absence of the disease. The false positive fraction (FPF )

is the probability of a positive test result for an individual without the disease, so

spec = 1− FPF . Let random quantity X1 denote the test result for an individual

of the disease group and X0 the test result for an individual of the non-disease

group, then with given cut-off point k we have TPF (k) = P (X1 ∈ {Ck, ..., CK})

and FPF (k) = P (X0 ∈ {Ck, ..., CK}).

The unbiased empirical estimators of TPF (k) and FPF (k) for k ∈ {1, . . . , K}

are [73]

TPFe(k) =
1

n1

K∑
i=k

n1
i (4.1)

FPFe(k) =
1

n0

K∑
i=k

n0
i (4.2)

4.2.1 ROC curve

The receiver operating characteristic (ROC) curve is a popular tool for describing

and comparing the accuracy of diagnostic tests. The ROC curve in case of ordinal

diagnostic tests applied to a disease group and a non-disease group, is defined as

follows.



4.2. Ordinal diagnostic tests 64

Definition 4.1. The ROC curve in case of ordinal diagnostic tests is defined by the

points (FPF (k), TPF (k)) for k ∈ {1, . . . , K+1}, where (FPF (1), TPF (1)) = (1, 1)

and (FPF (K + 1), TPF (K + 1)) is defined as (0, 0).

It should be emphasized that both FPF (k) and TPF (k) are decreasing functions

of k. In between these K + 1 points the ROC curve can be defined by straight line

segments linking all pairs of neighbouring points, which is attractive with regard to

properties of the area under the ROC curve as explained below.

The empirical ROC curve [55], based on estimators (4.1) and (4.2), is defined at

the points corresponding to k = 1, . . . , K + 1, with the end-points as above, as

ROCe(k) = (FPFe(k), TPFe(k)) (4.3)

and the full empirical ROC curve is again usually defined by linking these points

ROCe(k) for neighbouring values of k by straight line segments.

4.2.2 Area under the ROC curve (AUC)

The area under the ROC curve, the AUC, reflects the intrinsic diagnostic capability

of a test and it can be estimated nonparamatrically or parametrically [73]. An ideal

test and an uninformative test have AUC equal to 1 and 0.5, respectively. The AUC

is equal to the probability that a randomly chosen individual from the non-disease

group has a test result that is lower than that of a randomly selected individual

from the disease group [52, 73]. For discrete-valued test results, as is the case with

ordinal data, the AUC is equal to [55]

AUC = P (X0 < X1) +
1

2
P (X0 = X1) (4.4)

where X0 < (=)X1 denotes that X0 belongs to a category which is smaller than

(equal to) the category to which X1 belongs, in the ordering of the categories C1 <

. . . < CK . The second term on the right-hand side of Equation (4.4) corresponds

to the definition of the ROC curve as a straight line segment in between the points

corresponding to neighbouring values of k as explained in the following proof.
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Figure 4.1: Area under the ROC curve

The proof of Equation (4.4) is as follows, this proof is an extended version of the

proof provided in [55], which we present because of its connection to the area under

the NPI lower and upper ROC curve which will be discussed in Section 4.5. The

AUC can be calculated by summing the area of trapezoids which form the ROC

curve as shown in Figure 4.1. The area of trapezoid Tk is equal to w
[

1
2

(a+ b)
]

where w is the width of Tk and is equal to

w = P (X0 ∈ {Ck, ..., CK})− P (X0 ∈ {Ck+1, ..., CK}) = P (X0 ∈ Ck) =
n0

k

n0

where P (X0 ∈ {Ck, ..., CK}) = FPF (k) and P (X0 ∈ {Ck+1, ..., CK}) = FPF (k+1).

The values a and b are the lengths of the parallel sides P (X1 ∈ {Ck, ..., CK}) and

P (X1 ∈ {Ck+1, ..., CK}), respectively, where P (X1 ∈ {Ck, ..., CK}) = TPF (k) and

P (X1 ∈ {Ck+1, ..., CK}) = TPF (k + 1). The area of Tk is equal to

P (X0 ∈ Ck)
[
1/2 P (X1 ∈ {Ck, ..., CK}) + 1/2 P (X1 ∈ {Ck+1, ..., CK})

]
= P (X0 ∈ Ck)

[
1/2 P (X1 ∈ Ck) + P (X1 ∈ {Ck+1, ..., CK})

]
By summing the areas of all K trapezoids we get the area under the ROC curve,

AUC =
K∑

k=1

P (X0 ∈ Ck)P (X1 ∈ {Ck+1, ..., CK}) + 1/2
K∑

k=1

P (X0 ∈ Ck)P (X1 ∈ Ck)
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AUC = P (X0 < X1) + 1/2P (X0 = X1)

which is Equation (4.4).

In terms of the FPF (k) and TPF (k), the AUC can be expressed as

AUC =
K∑

k=1

1

2
(TPF (k) + TPF (k + 1))× (FPF (k)− FPF (k + 1)) (4.5)

An unbiased empirical estimator of the AUC for the ordinal setting discussed in

this chapter, which is related to the Mann-Whitney statistic for comparison of two

distributions, is [73]

AUCe =
1

n0n1

K∑
i=1

n0
i

(
n1

i

2
+

K∑
j=i+1

n1
j

)
(4.6)

4.2.3 Youden’s index

To fully define the diagnostic method, a value of the cut-off point k must be de-

termined such that the test provides good discrimination between the disease and

non-disease groups. One popular approach is to maximise Youden’s index [39, 72],

which is defined by

J(k) = sens(k) + spec(k)− 1 = TPF (k)− FPF (k) (4.7)

which is the maximum vertical distance from the curve to the diagonal line from

(0, 0) to (1, 1) [58].

The optimal cut-off point, based on Youden’s index, is the value of k which

maximises J(k), so which maximises the sum of sensitivity and specificity [40, 57].

An empirical estimator of J(k) is

Je(k) = TPFe(k)− FPFe(k) (4.8)

Je(k) is equal to one if the two groups are completely separated and zero if there is

complete overlap between the groups.

Of course, there are other optimality criteria, for example to take into account

the severity of consequences of wrong diagnoses, we refer to [73] for more details and

leave further investigation of the use of other criteria within the NPI framework as

a topic for future research.
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4.3 Empirical lower and upper ROC curves

As explained in the previous section, the empirical ROC curve for ordinal diag-

nostic tests is logically defined at K + 1 points, namely by the points ROCe(k) =

(FPFe(k), TPFe(k)) for k = 1, . . . , K + 1. In between these points, however, al-

though the tradition is to define the full ROC curve by connecting the neighbouring

points by straight line segments, one could consider another approach that is more

in line with the general ideas of lower and upper probabilities, namely by considering

the set of all possible ROC curves that go through these K + 1 points and defining

the maximum lower bound and minimum upper bound of this set as the empirical

lower and upper ROC curves, respectively. This is of interest in its own right, but

particularly also for comparison with the NPI lower and upper ROC curves which

we will introduce in Section 4.4. This is all illustrated in examples in Section 4.6.

When plotting the points ROCe(k) = (FPFe(k), TPFe(k)) for k = 1, . . . , K + 1

in the unit square, any ROC curve that goes through these K + 1 points must

be a non-decreasing function, and all such non-decreasing functions can be ROC

curves. Therefore, the maximum lower bound, which we call the empirical lower

ROC curve for ordinal diagnostic tests and denote by ROCe, is the step-function

with TPF value equal to TPF (k+1) for all FPF ∈ [FPF (k+1), FPF (k)), and the

corresponding empirical upper ROC curve, denoted by ROCe is the step-function

with TPF value equal to TPF (k) for all FPF ∈ (FPF (k + 1), FPF (k)]. These

empirical lower and upper ROC curves are equal to the empirical ROC curve at the

points (FPFe(k), TPFe(k)).

It is also of interest to consider lower and upper empirical estimators for the

AUC, denoted by AUCe and AUCe, which are defined to be the areas under the

ROCe and ROCe, respectively. These are easily proven to be equal to

AUCe =
1

n0n1

K∑
i=1

n0
i

(
K∑

j=i+1

n1
j

)
(4.9)

AUCe =
1

n0n1

K∑
i=1

n0
i

(
K∑

j=i

n1
j

)
(4.10)
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These are unbiased estimators for P (X0 < X1) and P (X0 ≤ X1), respectively, and

AUCe = (AUCe + AUCe)/2.

4.4 NPI lower and upper ROC curves

To introduce NPI for the ROC curve for ordinal tests, the same latent variable setting

and data notation as in Figure 2.1 in Section 2.4 and Table 4.1 are used. We now

consider the outcome of the ordinal diagnostic test applied to one further (‘future’)

individual from the disease group, represented by the random quantity X1
n1+1, and

to one further individual from the non-disease group, with random outcome X0
n0+1.

For these random quantities we make the assumptions A(n1) and A(n0), respectively,

for the assumed underlying latent variable representation as discussed in Section

2.4, given the data for each group. We should emphasize here that we assume these

two groups to be fully independent, which can be interpreted in the sense that no

information with regard to one group contains information about the other group.

To define NPI lower and upper ROC curves, we first define NPI lower and upper

true and false positive fractions.

Definition 4.2. For k ∈ {2, ..., K}, the NPI lower true positive fraction TPF (k)

and the corresponding NPI upper true positive fraction TPF (k) are defined by

TPF (k) = P (X1
n1+1 ∈ {Ck, . . . , CK}) =

1

n1 + 1

K∑
j=k

n1
j (4.11)

TPF (k) = P (X1
n1+1 ∈ {Ck, . . . , CK}) =

1

n1 + 1

[(
K∑

j=k

n1
j

)
+ 1

]
(4.12)

For k = 1, we define TPF (1) = 1 and TPF (1) = 1.

In addition, for use in the definition of an end-point of the ROC curves, we define

TPF (K + 1) = 0 and TPF (K + 1) = 0.
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Definition 4.3. The NPI lower false positive fraction FPF (k) and the correspond-

ing NPI upper false positive fraction FPF (k) are defined, for k ∈ {2, . . . , K}, by

FPF (k) = P (X0
n0+1 ∈ {Ck, . . . , CK}) =

1

n0 + 1

K∑
i=k

n0
i (4.13)

FPF (k) = P (X0
n0+1 ∈ {Ck, . . . , CK}) =

1

n0 + 1

[(
K∑

i=k

n0
i

)
+ 1

]
(4.14)

And further we define FPF (1) = 1, FPF (1) = 1 and FPF (K + 1) = 0,

FPF (K + 1) = 0. The Equations (4.11) - (4.14) are derived by the first special

case (2.6) and (2.7) presented in Section 2.4. It is straightforward to show that, for

all k ∈ {1, . . . , K + 1},

FPF (k) ≤ FPFe(k) ≤ FPF (k) (4.15)

and

TPF (k) ≤ TPFe(k) ≤ TPF (k) (4.16)

ROC curves in the ordinal setting represent the pairs (FPF (k), TPF (k)) for

k = 1, . . . , K + 1, all non-decreasing functions that link these points can be ROC

curves for such a diagnostic test with ordinal outcomes applied to a disease group and

a non-disease group. Using the NPI lower and upper false and true positive fractions,

we can consider the set of all ROC curves with FPF (k) ≤ FPF (k) ≤ FPF (k) and

TPF (k) ≤ TPF (k) ≤ TPF (k) for k = 1, . . . , K + 1, and links between these

points as discussed. The NPI lower and upper ROC curves are defined as the

maximum lower bound and the minimum upper bound, respectively, of this set of

ROC curves. It is easy to verify that the NPI lower ROC curve ROC goes through

the points (FPF (k), TPF (k)) and has TPF = TPF (k + 1) corresponding to all

FPF ∈ [FPF (k + 1), FPF (k)). Similarly, the NPI upper ROC curve ROC goes

through the points (FPF (k), TPF (k)) and has TPF = TPF (k) corresponding to

all FPF ∈ (FPF (k + 1), FPF (k)]. These NPI lower and upper ROC curves are

illustrated in Figures 4.2 and 4.3, which support the proofs of the main results in

Section 4.5, and also in the examples in Section 4.6. It is also easy to verify that

the NPI lower and upper ROC curves bound the empirical lower and upper ROC
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curves, which in turn bound the empirical ROC curve. This can be denoted by

ROC ≤ ROCe ≤ ROCe ≤ ROCe ≤ ROC (4.17)

where, for example, ROC ≤ ROCe denotes that the NPI lower ROC curve ROC

lies entirely below or on the empirical lower ROC curve ROCe in the (FPF, TPF )-

square. This will also be illustrated in the examples in Section 4.6.

Let us introduce Youden’s index corresponding to the NPI lower ROC curve, for

k = 1, . . . , K, as

J(k) = TPF (k)− FPF (k) (4.18)

and Youden’s index corresponding to the NPI upper ROC curve, for k = 1, . . . , K,

as

J(k) = TPF (k)− FPF (k) (4.19)

For k = 1, we have J(1) = J(1) = 0. It follows that, for k = 2, . . . , K,

J(k) = J(k) +
1

n0 + 1
+

1

n1 + 1
(4.20)

Relations (4.15) and (4.16) imply, for all k = 1, . . . , K,

J(k) ≤ Je(k) ≤ J(k) (4.21)

Relation (4.20) implies that J(k) and J(k) are maximal for the same value of k.

However, the inequalities (4.21) do not imply that Je(k) is also maximal for the

same value of k, although in many applications this is the case.

4.5 Area under the NPI lower or upper ROC curve

As discussed before, the area under an ROC curve has a nice interpretation due to

its relation to the probability of correct ordering of one random observation from

each of the non-disease group and the disease group. For the areas under the NPI

lower and upper ROC curves, similar results are derived in this section, which allows

a particularly attractive interpretation of these areas due to the predictive nature

of NPI, with inferences directly comparing one further individual from each group.
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Because NPI is exactly calibrated from frequentist statistics perspective [46], these

areas under the NPI lower and upper ROC curves provide meaningful insight into

the accuracy of the ordinal diagnostic test if it were applied to one individual from

each of the non-disease group and the disease group.

We denote the area under the NPI lower ROC curve ROC by AUC and the area

under the NPI upper ROC curve ROC by AUC. Of course, (4.17) implies that

AUC ≤ AUCe ≤ AUCe ≤ AUCe ≤ AUC (4.22)

Theorems 4.1 and 4.2 provide the important relations between AUC and the NPI

lower probability P (X0
n0+1 < X1

n1+1) and between AUC and the NPI upper proba-

bility P (X0
n0+1 ≤ X1

n1+1). These show that the NPI approach to accuracy of ordinal

diagnostic tests via the ROC curves is fully consistent with the established ROC

theory. These NPI lower and upper probabilities were presented by [25], it is impor-

tant to emphasize that these NPI lower and upper probabilities are for two different

events, which correspond to the probabilities for which the empirical AUCe and

AUCe, given by (4.9) and (4.10), are unbiased estimators, as discussed in Section

4.3.

Theorem 4.1. The area under the NPI lower ROC curve ROC, denoted by AUC,

is equal to the NPI lower probability for the event that the test result X0
n0+1 for

a further individual from the non-disease group falls into a lower ranked category

than the test result X1
n1+1 for a further individual from the disease group,

AUC =
1

(n0 + 1)(n1 + 1)

K−1∑
k=1

K∑
j=k+1

n0
kn

1
j = P (X0

n0+1 < X1
n1+1) (4.23)

Proof. Figure 4.2 shows a typical empirical ROC curve ROCe and the corresponding

NPI lower ROC curve ROC. The area under the ROC consists of K rectangular

blocks R1 to RK , from right to left as illustrated, of which RK actually has area

zero. The area Rk corresponding to category k, k = 1, . . . , K, adds a rectangular

area of size
n0

k

n0+1
∗ TPF (k + 1) to the total area under ROC, where

n0
k

n0+1
is equal to

FPF (k)− FPF (k + 1) = P (X0
n0+1 ∈ {Ck, ..., CK})− P (X0

n0+1 ∈ {Ck+1, ..., CK})
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and TPF (k + 1) = P (X1
n1+1 ∈ {Ck+1, ..., CK}). Summing these areas for blocks

R1, . . . , RK−1 gives AUC as in Equation (4.23), by

AUC =
K−1∑
k=1

n0
k

n0 + 1
∗ TPF (k + 1) =

K−1∑
k=1

n0
k

n0 + 1

K∑
j=k+1

n1
j

n1 + 1

(4.24)

The second equality in Equation (4.23) is the first special case in Subsection 3.2.3.

R

R

R

1

K

FPF(k+1) FPF(k)
(0,0)

FPF(1)=1

ROC

TPF(1)1 (1,1)

TPF(TPF(k+1)

k

ROC e

Figure 4.2: The area under the NPI lower ROC curve

Theorem 4.2. The area under the NPI upper ROC curve ROC, denoted by AUC,

is equal to the NPI upper probability for the event that the test result X0
n0+1 for

a further individual from the non-disease group falls into a lower or equally ranked

category than the test result X1
n1+1 for a further individual from the disease group,

AUC =
1

(n0 + 1)(n1 + 1)

[
K∑

k=1

K∑
j=k

n0
kn

1
j + n0 + n1 + 1

]
= P (X0

n0+1 ≤ X1
n1+1)

(4.25)
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Figure 4.3: The area under the NPI upper ROC curve

Proof. Figure 4.3 shows a typical empirical ROC curve ROCe and the corresponding

NPI upper ROC curve ROC. The area under the ROC consists of K rectangular

blocks R1 to RK , from right to left as illustrated. The area of block Rk, k ∈

{2, . . . , K} is equal to

[FPF (k)− FPF (k + 1)]× TPF (k) =
n0

k

n0 + 1
×

[
1

n1 + 1

(
K∑

j=k

n1
j + 1

)]

The area of block R1 is

[FPF (1)− FPF (2)]× TPF (1) =
n0

1 + 1

n0 + 1

Summing these areas for blocks R1, . . . , RK gives AUC as in Equation (4.25), by

AUC =
n0

1 + 1

n0 + 1
+

K∑
k=2

(
n0

k

n0 + 1
∗ TPR(k)

)

=
n0

1 + 1

n0 + 1
+

K∑
k=2

 n0
k

n0 + 1
∗

[(
K∑

j=k

n1
j

)
+ 1

]
n1 + 1
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=
1

(n0 + 1)(n1 + 1)

[
(n0

1 + 1)(n1 + 1) +
K∑

k=1

n0
k

[
(

K∑
j=k

n1
j) + 1

]
− n0

1

[
(

K∑
j=1

n1
j) + 1

]]

=
1

(n0 + 1)(n1 + 1)

[
n0

1n
1 + n0

1 + n1 + 1 +
K∑

k=1

K∑
j=k

n0
kn

1
j +

K∑
k=1

n0
k − n0

1

(
n1 + 1

)]

=
1

(n0 + 1)(n1 + 1)

[
K∑

k=1

K∑
j=k

n0
kn

1
j + n0 + n1 + 1

]
(4.26)

The second equality in Equation (4.25) is the first special case in Subsection 3.2.3.

It is important to emphasize that the areas under the NPI lower and upper ROC

curves, as given in Theorems 4.1 and 4.2, are indeed equal to the NPI lower and

upper probabilities given in these theorems. This is in contrast to the areas under

the empirical lower and upper ROC curves, as given by (4.9) and (4.10), which

are unbiased estimators of the corresponding probabilities. In the latter case, those

probabilities are considered to be properties of assumed underlying populations,

while in NPI the inferences are directly predictive, so in terms of the future obser-

vations, hence this conceptually important difference in the interpretation of these

areas under the respective ROC curves.

A further interesting fact is that the conjugacy property of NPI lower and upper

probabilities, that is P (A) = 1−P (Ac) for any event A and its complementary event

Ac [4], leads to

P (X1
n1+1 < X0

n0+1) = 1− P (X0
n0+1 ≤ X1

n1+1)

so the lower probability on the left-hand side is actually the area above the NPI

upper ROC curve ROC in the unit-square, and similarly

P (X1
n1+1 ≤ X0

n0+1) = 1− P (X0
n0+1 < X1

n1+1)

so the upper probability on the left-hand side is the area above the NPI lower ROC

curve ROC in the unit-square.
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4.6 Examples

In this section, two examples are given to illustrate the NPI lower and upper ROC

curves presented in this chapter, together with the empirical lower and upper ROC

curves and the areas under these curves. The first example has small numbers of

observations per group, the second has relatively large numbers of observations.

Example 4.1. Table 4.2 presents data on a diagnostic test with outcomes on an

ordinal scale with five categories and involving the use of gallium citrate imaging to

identify the focal source of sepsis [48, 73]. The empirical estimates of FPF (k) and

Imaging results (Y )

Disease status 1 2 3 4 5 Total

No disease (D = 0) 11 2 3 1 3 20

Disease (D = 1) 12 6 3 1 18 40

Table 4.2: Results of gallium citrate imaging

TPF (k) for k = 1, ..., 5, given by Equations (4.1) and (4.2), are presented in Table

4.3.

k 1 2 3 4 5

FPF (k) 1 0.4286 0.3333 0.1905 0.1429

FPFe(k) 1 0.4500 0.3500 0.2000 0.1500

FPF (k) 1 0.4762 0.3810 0.2381 0.1905

TPF (k) 1 0.6829 0.5366 0.4634 0.4390

TPFe(k) 1 0.7000 0.5500 0.4750 0.4500

TPF (k) 1 0.7073 0.5610 0.4878 0.4634

Table 4.3: NPI lower, upper and empirical FPF and TPF

The area under the empirical ROC curve, as given in Equation (4.6), is AUCe =

0.6638. Using Equations (4.9) and (4.10), the areas under the empirical lower and

upper ROC curves are AUCe = 0.5338 and AUCe = 0.7938, respectively.
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The NPI lower and upper FPF and TPF , as given in Equations (4.11) - (4.14),

are also presented in Table 4.3. These clearly bound the corresponding empirical

FPF and TPF . The NPI lower and upper ROC curves, ROC and ROC as intro-

duced in Section 4.4, are presented in Figure 4.4, together with the empirical ROC

curve and the empirical lower and upper ROC curves as introduced in Section 4.3.

It is clear that these are nested as indicated by Relation (4.17).
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Figure 4.4: Five (lower and upper) ROC curves

The area under the NPI lower ROC curve is AUC = 0.4959, which is equal to

the NPI lower probability P (X0
21 < X1

41) = 0.4959. The area under the NPI upper

ROC curve is AUC = 0.8084, which is equal to the NPI upper probability P (X0
21 ≤

X1
41) = 0.8084. By the conjugacy property of NPI lower and upper probabilities,

these values imply P (X1
41 < X0

21) = 0.1916 and P (X1
41 ≤ X0

21) = 0.5041. The areas

under the five ROC curves in this example illustrate Relation (4.22).

The fact that the NPI lower AUC is just under 0.5 could be interpreted as there

not being clear evidence that this diagnostic test is effective, but as clearly almost

the entire range of values [AUC,AUC] = [0.4959, 0.8084] is larger than 0.5 one

would expect the test to be at least of some use. The fact that this range is quite

large is due to the relatively few observations in this example, together with the
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inclusion of outcomes in the same categories in the NPI upper probability but not

in the NPI lower probability, and the fact that there is quite substantial overlap

between the data for the non-disease and disease groups.

Let us finally consider Youden’s index for the choice of optimal cut-off point

k to define the diagnostic test which best discriminates between the non-disease

and disease groups on the basis of these data. Table 4.4 presents the values of

Youden’s index Je(k) for the empirical ROC curve together with Youden’s indices

corresponding to the NPI lower and upper ROC curves, J(k) and J(k), respectively.

These indices are all maximal for k = 5, leading to the optimal diagnostic test being

such that an outcome in category C5 indicates disease while categories C1 − C4

indicate non-disease.

k 1 2 3 4 5

J(k) 0 0.2067 0.1556 0.2253 0.2485

Je(k) 0 0.2500 0.2000 0.2750 0.3000

J(k) 0 0.2787 0.2277 0.2973 0.3205

Table 4.4: Youden’s indices Je(k), J(k) and J(k)

4

Example 4.2. This example has been created to briefly illustrate, in comparison

to Example 4.1, the effect of more data on the inferences presented in this chapter.

The data used for this illustration are presented in Table 4.5.

Test results (X)

Disease status 1 2 3 4 5 6 7 8 Total

No disease (D = 0) 20 25 30 15 11 10 8 5 124

Disease (D = 1) 11 7 10 14 13 30 35 40 160

Table 4.5: Created data

The NPI lower and upper FPF (k) and TPF (k) are presented in Table 4.6,

together with empirical values FPFe(k) and TPFe(k). The NPI lower and upper
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k 1 2 3 4 5 6 7 8

FPF (k) 1 0.8320 0.6320 0.3920 0.2720 0.1840 0.1040 0.0400

FPFe(k) 1 0.8387 0.6371 0.3951 0.2742 0.1855 0.1048 0.0403

FPF (k) 1 0.8400 0.6400 0.4000 0.2800 0.1920 0.1120 0.0480

TPF (k) 1 0.9255 0.8820 0.8199 0.7329 0.6522 0.4658 0.2484

TPFe(k) 1 0.9312 0.8875 0.8250 0.7375 0.6562 0.4687 0.2500

TPF (k) 1 0.9317 0.8882 0.8261 0.7391 0.6584 0.4721 0.2547

Table 4.6: NPI lower, upper and empirical FPF and TPF (created data)

ROC curves, ROC and ROC, are given in Figure 4.5, together with the empirical

ROC curve. The area under the NPI lower ROC curve is AUC = 0.7198, which is

equal to the NPI lower probability P (X0
125 < X1

161) = 0.7198. The area under the

NPI upper ROC curve is AUC = 0.8247, which is equal to the NPI upper probability

P (X0
125 ≤ X1

161) = 0.8247. It is clear that there is substantially less imprecision (i.e.

distance between corresponding upper and lower curves and probabilities) in this

example than in Example 4.1. This is due to the substantially larger numbers

of observations in both the disease and non-disease groups. As the area under

the NPI lower ROC curve is greater than 0.5, these two groups can be quite well

distinguished. Table 4.7 presents the values of Youden’s index Je(k) for the empirical

ROC curve together with Youden’s indices corresponding to the NPI lower and upper

ROC curves, J(k) and J(k), respectively. These indices are all maximal for k = 6,

leading to the optimal diagnostic test being such that an outcome in category C6−C8

indicates disease while categories C1 − C5 indicate non-disease.

k 1 2 3 4 5 6 7 8

J(k) 0 0.0855 0.2420 0.4199 0.4529 0.4602 0.3538 0.2004

Je(k) 0 0.0925 0.2504 0.4298 0.4633 0.4708 0.3639 0.2097

J(k) 0 0.0997 0.2562 0.4341 0.4671 0.4744 0.3681 0.2147

Table 4.7: Youden’s indices (created data)

4
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Figure 4.5: Lower, upper and empirical ROC curves (created data)

4.7 Concluding remarks

This chapter has introduced NPI for accuracy of diagnostic tests with ordinal out-

comes, with focus on analysis based on the ROC curve. NPI lower and upper ROC

curves for this scenario have been introduced, and it was proven that the areas

under these curves correspond to NPI lower and upper probabilities in a manner

that is consistent with the traditional theory of ROC curves. A general attractive

feature of NPI is that it is a frequentist statistics framework which is exactly cali-

brated [46], for any number of observations, so it can be applied in all scenarios and

is particularly useful if there is little information about underlying population dis-

tributions, or if one explicitly does not wish to take such information into account.

In this chapter only a single further individual from each group has been considered,

NPI enables inference on multiple future individuals per group, taking into account

the inter-dependence of these individuals [3]. This provides an interesting topic for

future research. First NPI for ordinal data must be developed for multiple future

observations, this can be followed by application to the scenario considered in this

chapter, where the explicit focus on multiple further individuals requires careful
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consideration of the events considered to express diagnostic accuracy.

It should be emphasized that the results presented in this chapter are explicitly

aimed at a single further patient from each group, so they are not aimed at decisions

for multiple future individuals. If one gets new information, for example on further

patients to which the test is applied, this can be included in the data set and

the analysis can be repeated, clearly providing a statistical method that is fully

adaptive to the data. One could argue against the use of inferential methods which

are explicitly valid for single future observations only, so here to support the choice

of treatment method for a single future patient. But for many practical situations

such a method is of direct relevance as one may explicitly have to make a decision for

a single future patient. It may also be useful to consider such inferences jointly with

the more traditional population-based statistical inferences, which typically require

either stronger modelling assumptions or the use of hypotheses tests, the outcomes

of which are often quite difficult to interpret.

This introduction of NPI for accuracy of ordinal diagnostic tests has only consid-

ered the basic aspects of the theory. In applied clinical experiments there are many

factors that must be taken into account in the statistical approach used to analyse

the test results [55, 62, 73]. This leads to many research challenges for NPI and its

application, with for example the development of NPI for regression models being

required to enable co-variates to be taken into account.



Chapter 5

Three-group ROC analysis for

continuous data

5.1 Introduction

In this chapter, the NPI approach is presented for three way Receiver Operating

Characteristic (ROC) surfaces. ROC curves have been used to measure the accuracy

of diagnostic tests in discriminating between two groups, for example non-disease

and disease in medical applications. Recently, ROC methodology was extended to

three-group diagnostic problems by constructing a three-dimensional surface [34,51,

53]. The volume under the ROC surface, VUS, is a direct extension of the area

under the ROC curve (AUC). It is a global accuracy measure of a test to classify

subjects in three groups. The interpretation of the VUS is similar to the AUC, it

is equal to the probability that three random measurements, one from each group,

appear in the correct order [52,71].

Section 5.2 gives an introduction to the concepts of ROC surface for three-group

diagnostic tests. The NPI lower and upper ROC surfaces and the volumes under

such surfaces are considered and discussed in Section 5.3. In Section 5.4 we present

three examples to illustrate and discuss the NPI lower and upper surfaces presented

in this chapter. This chapter is finished with some concluding remarks in Section

5.5.
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5.2 ROC surface for three-group diagnostic tests

In this section, we consider diagnostic accuracy when the diseases have three ordered

groups (classes). Such classifications are quite common, for example Wians et al [70]

use three groups for iron deficiency related anemia. Non-pregnant women with

anemia and a ferritin concentration less than 20 µg/l were considered to have iron

deficiency anemia (IDA), the ones with anemia and a ferritin concentration greater

than 240 µg/l were considered to have anemia of chronic disease (ACD), while the

ones with a ferritin concentration between 20 and 240 µg/l were considered to belong

to the intermediate group [63]. Therefore, it is important to have a good diagnostic

test which can discriminate between the disease groups, as patients at different

disease groups needs different treatments. In the three-group case, the ROC surface

is generated in three dimensions by considering all possible diagnostic test values.

In what follows, we illustrate the definition and construction of a nonparametric

ROC surface as introduced by Nakas and Yiannoutsos [52, 53].

Let there be three independent ordered groups of disease, represented X, Y and

Z. Let x1, x2, ..., xnx denote the observed test results on nx subjects from group X ;

y1, y2, ..., yny the observed test results on ny subjects from group Y and z1, z2, ..., znz

the observed test results on nz subjects from group Z. The test results for different

groups are assumed to be independent. Suppose that a continuous diagnostic test

is used for the discrimination of the patients from these groups, we assume that

measurements from groupX tend to be lower than those from group Y , which in turn

tend to be lower than those from group Z. Let Fx, Fy and Fz be the corresponding

cumulative distribution functions (CDFs) for the test outcomes of the three groups

of disease.

In the case of continuous data, two ordered decision threshold points c1 < c2 are

needed in order to classify three groups of disease. A diagnostic decision for each

patient is based on the following rule:

Denote the whole set of observations for the test result as T = T1, . . . , Tnx+ny+nz .

1. If Tj ≤ c1 then subject j is classified into group X.

2. If c1 < Tj ≤ c2 then subject j is classified into group Y .
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3. If Tj > c2 then then subject j is classified into group Z.

This procedure is applied for all subjects, so for all j = 1, ..., nx + ny + nz. The

correct classification probabilities for the three groups can be computed for a pair

of thresholds (c1, c2),

1. p1 = P (X ≤ c1) = Fx(c1) is the probability of correct classification of a subject

belonging to group X,

2. p2 = P (c1 < Y ≤ c2) = Fy(c2)− Fy(c1) is the probability of correct classifica-

tion of a subject belonging to group Y ,

3. p3 = P (Z > c2) = 1 − Fz(c2) is the probability of correct classification of a

subject belonging to group Z.

Using these probabilities for correct classification of subjects in the different groups,

we can define the Receiver Operating Characteristic (ROC) surfaces as follows.

Definition 5.1. The ROC surface is constructed by plotting the points

P = {(p1, p2, p3)| 0 ≤ p1, p2, p3 ≤ 1} (5.1)

for all possible real valued c1 and c2 with c1 < c2

The functional form of the ROC surface can be obtained by writing p2 as a

function of p1 and p3 [47, 53,63], as follows.

Definition 5.2. For 0 ≤ p1, p3 ≤ 1,

ROCs(p1, p3) =

 Fy(F−1
z (1− p3))− Fy(F−1

x (p1)) if F−1
x (p1) ≤ F−1

z (1− p3)

0 otherwise

(5.2)

where F−1(p) is the inverse function of F for p ∈ [0, 1].

For continuous CDFs, Fx, Fy and Fz, these two definitions lead to the same

ROC surface [53]. But they do not always lead to the same ROC surface for non-

continuous CDFs. Throughout this chapter, we will use Definition 5.2 to develop the
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NPI analysis for the ROC surface. Development of NPI corresponding to Definition

5.1, and comparisons of the results with those presented in this thesis, is left as a

topic for future research.

A nonparametric estimator of the ROC surface can be obtained by replacing all

the distribution functions in (5.2) with their empirical counterparts [9, 47], so that

the empirical ROC surface can be constructed as the plot consisting of the points

(p1,max(0, R̂OCs(p1, p3)), p3) (5.3)

where R̂OCs(p1, p3) = F̂y(F̂−1
z (1− p3))− F̂y(F̂−1

x (p1)) for 0 ≤ p1, p3 ≤ 1, with

F̂−1
x (p) =

 −∞ if p = 0

xi if p ∈ ( i−1
nx
, i

nx
], i = 1, . . . nx

(5.4)

and

F̂−1
z (p) =

 −∞ if p = 0

zl if p ∈ ( l−1
nz
, l

nz
], l = 1, . . . nz

(5.5)

where x1 < x2 < · · · < xnx and z1 < z2 < · · · < znz . The empirical cumulative

distribution functions Fx, Fy and Fz are defined by [52,54]

F̂x(c) =
nx∑
i=1

I(xi ≤ c)

nx

(5.6)

F̂y(c) =

ny∑
j=1

I(yj ≤ c)

ny

(5.7)

F̂z(c) =
nz∑
l=1

I(zl ≤ c)

nz

(5.8)

where I(A) is the indicator function, which is equal to one if A is true and zero

otherwise.

5.2.1 Volume under the ROC Surface (V US)

The volumes under the ROC Surface (VUS) has been proposed as a summary mea-

sure for the ROC surface and can be used as a global measure of the three-group

discriminatory ability of the test under consideration. The VUS equals to the prob-

ability that three randomly selected measurements, one from each disease group,



5.2. ROC surface for three-group diagnostic tests 85

have the correct ordering X < Y < Z, which is a straightforward generalization of

the two-dimensional ROC curve and the AUC [51,52] as reviewed in Chapter 2. An

unbiased nonparametric estimator of the VUS is given by [52,53]

V̂ US =
1

nxnynz

nx∑
i=1

ny∑
j=1

nz∑
l=1

I(xi < yj < zl) (5.9)

Equation (5.9) gives the proportion of all possible three-patient combinations

from the data that are ordered correctly. The V̂ US can vary from zero to one. It is

about 1/6 if the diagnostic test outcomes for the three groups completely overlap,

in which case the test is of little use. If there is perfect separation of the test

results for the three groups, so xi < yj < zl for all measurements, then V̂ US=1.

In practice, ties between measurements may occur, in that case I(x, y, z) can be

defined as follows [52,53]

I(x, y, z) =



1 if x < y < z

1/2 if x < y = z or x = y < z

1/6 if x = y = z

0 otherwise

(5.10)

In this chapter, we assume that no ties occur in the data. Ties can be dealt with

in NPI by assuming that tied observations differ by small amounts which tend to

zero [43].

5.2.2 Cut-off point selection in three-group classification

The selection of optimal cut-off points c1 and c2, also called the threshold values,

is of course an important of aspect of analysis of the quality of a diagnostic test.

Several approaches for the selection of the optimal cut-off points for ROC analysis

have been considered [40, 57], one of these approaches is Youden’s index [72] which

we will use in order to select the optimal cut-off point. As mentioned in Chapter

4, in case of two groups this index is defined as J(c) = sens(c) + spec(c)− 1, for a

given cut-off point c, and the optimal cut-off point is the value of c which maximises

J(c) [39, 40,54,72].
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Nakas et al [54] extended the optimal cut-off point selection method based on

Youden’s index to the ROC analysis with three groups. The three-group Youden’s

index given by Nakas et al [54] is

J3(c1, c2) = p1 + p2 + p3 = P (X ≤ c1) + P (c1 < Y ≤ c2)− P (Z ≤ c2) + 1

= Fx(c1) + Fy(c2)− Fy(c1)− Fz(c2) + 1 (5.11)

The optimal cut-off points are the values of c1, c2 which maximise J3(c1, c2), and

these can be used for the diagnoses. J3(c1, c2) is equal to 1 if the three distributions

Fx, Fy and Fz are identical and J3(c1, c2) = 3 if the distributions Fx, Fy and Fz are

perfectly discriminated, so if P (X < Y < Z) = 1. The empirical estimator for

J3(c1, c2), using the empirical CDFS for Fx, Fy and Fz, is equal to

Ĵ3(c1, c2) = F̂x(c1) + F̂y(c2)− F̂y(c1)− F̂z(c2) + 1 (5.12)

5.3 NPI analysis for the ROC surface

Recall that X, Y and Z are continuous random quantities representing the test

results for the three disease groups, which can e.g. be disease, intermediate and

healthy. To develop the nonparametric predictive inference (NPI) approach for

this analysis, let Xnx+1, Yny+1 and Znz+1 be the next future observations from these

groups, respectively. We apply A(n) per group, so we need to introduce the following

notation. The ordered observed values of X1, X2, . . . , Xnx , are denoted by x1 <

x2 < . . . < xnx , and let x0 = −∞ and xnx+1 = ∞ for ease of notation. For

Xnx+1, representing a future observation from group X, the assumption A(nx) is

P (Xnx+1 ∈ (xi−1, xi)) = 1
nx+1

for i = 1, . . . , nx + 1. Similarly, let the ordered

observed values of Y1, Y2, . . . , Yny be denoted by y1 < y2 < . . . < yny , and y0 = −∞

and yny+1 = ∞. For Yny+1, representing a future observation from group Y , A(ny)

gives P (Yny+1 ∈ (yj−1, yj)) = 1
ny+1

for j = 1, . . . , ny + 1. And finally, let the ordered

observed values of Z1, Z2, . . . , Znz be denoted by z1 < z2 < . . . < znz , and z0 = −∞

and znz+1 = ∞. For Znz+1, representing a future observation from group Z, A(nz)

gives P (Znz+1 ∈ (zl−1, zl)) = 1
nz+1

for l = 1, . . . , nz + 1.
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Notice that, the NPI lower and upper cumulative distribution functions for

Xnx+1, at c 6= xi, for all i = 1, . . . , nx, are

F x(c) = P (Xnx+1 ≤ c) =

nx∑
i=1

I(xi ≤ c)

nx + 1
(5.13)

F x(c) = P (Xnx+1 ≤ c) =

nx∑
i=1

I(xi ≤ c) + 1

nx + 1
(5.14)

at c = xi, F x(xi) = F x(xi) = i
nx+1

, so at the data observations the NPI lower and

upper CDFs are identical. The NPI lower and upper CDFs for Yny+1 and Znz+1 are

similar and denoted by F y, F y, F z and F z.

5.3.1 NPI lower and upper ROC surface

To define NPI lower and upper ROC surfaces according to Equation (5.2) in Defi-

nition 5.2, we follow the process illustrated in Figure 5.1.

rr r rr r

r r r r r r

r rr r r

p1

1− p3

F x

F x

F y

F y

F z

F z

x(p1) x(p1)

z(1−p3) z(1−p3)

-�
� -

Figure 5.1: Construction of NPI lower and upper ROC surfaces
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In NPI we have lower and upper CDFs, so the inverse CDFs in Equation (5.2)

are not uniquely defined any more. For a value p1 ∈ [0, 1], we can define the interval

(x(p1), x(p1)) such that, for every precise CDF which is entirely between F x, F x, the

inverse function value at p1 falls within this interval. These values x(p1) and x(p1)

are the points at which the NPI lower and upper CDFs F x and F x change value,

hence they are equal to the observed values, or possibly −∞ or +∞.

From the first graph in Figure 5.1 it is clear that

F x(x(p1)) < p1 < F x(x(p1)) (5.15)

So x(p1) and x(p1) take on consecutive the observed values x1, . . . , xnx and −∞

and +∞. While at these points F x(xi) = F x(xi) = i
nx+1

, i = 1, . . . , nx + 1, so there

is precision, for the open intervals (xi−1, xi) there is imprecision, so F x(x) = i−1
nx+1

and F x(x) = i
nx+1

for x ∈ (xi−1, xi).

All different p1 ∈ [0, 1], lead to nx + 1 pairs (x(p1), x(p1)), which are equal to

(xi−1, xi) for p1 ∈ ( i−1
nx+1

, i
nx+1

) i = 1, . . . , nx + 1. If p1 = i
nx+1

for i = 1, . . . , nx,

then (x(p1), x(p1)) = (xi−1, xi+1), we neglect this further as it does not influence the

volume under the ROC surface.

Similarly, from the third graph in Figure 5.1, it is clear that

F z(z(1−p3)) < 1− p3 < F z(z(1−p3)) (5.16)

Here z(1−p3) and z(1−p3) take on consecutive the observed values z1, . . . , znz and −∞

and +∞, at these points F z(zl) = F z(zl) = l
nz+1

, l = 1, . . . , nz + 1 there is precision

but for the open intervals (zl−1, zl) there is imprecision, with F z(z) = l−1
nz+1

and

F z(z) = l
nz+1

for z ∈ (zl−1, zl).

All different 1− p3 ∈ [0, 1], lead to nz + 1 pairs (z(1−p3), z(1−p3)), which are equal

to (zl−1, zl) for 1 − p3 ∈ ( l−1
nz+1

, l
nz+1

) l = 1, . . . , nz + 1. If 1 − p3 = l
nz+1

for

l = 1, . . . , nz, then (z(1−p3), z(1−p3)) = (zl−1, zl+1), we neglect this further as it does

not influence the volume under the ROC surface.

Now we know the intervals for the inverse values of the NPI lower and upper

CDFs for group X and Z, we complete the generalization of Equation (5.2) by deriv-

ing the corresponding bounds for ROCs(p1, p3), where we also take the imprecision
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in the lower and upper CDFs F y and F y into account. To derive the lower bound

ROCs(p1, p3), we take the minimal range resulting from the imprecise inverse CDFs

as discussed above, so (x(p1), z(1−p3)), as long as z(1−p3) ≥ x(p1), and we take the

minimal probability mass for Yny+1 which has to be in this interval, this leads to

Definition 5.3.

Definition 5.3. The NPI lower ROC surface is defined by

ROCs(p1, p3) =

 F y(z(1−p3))− F y(x(p1)) if F y(z(1−p3)) ≥ F y(x(p1))

0 otherwise
(5.17)

To derive the upper bound ROCs(p1, p3), we take the maximal range resulting

from the imprecise inverse CDFs, so (x(p1), z(1−p3)), as long as z(1−p3) ≥ x(p1), and

we take the maximal probability mass for Yny+1 which has to be in this interval, this

leads to Definition 5.4.

Definition 5.4. The NPI upper ROC surface is defined by

ROCs(p1, p3) =

 F y(z(1−p3))− F y(x(p1)) if x(p1) ≤ z(1−p3)

0 otherwise
(5.18)

These functions ROCs(p1, p3) and ROCs(p1, p3) are the tightest bounds can be

derived and justified for the ROC surface for the three-group diagnostic tests in the

NPI framework.

5.3.2 Volumes under the NPI lower and upper ROC sur-

faces

The volumes under the NPI lower and upper ROC surfaces are denoted by V US

and V US, respectively, and these are given in Theorem 5.1.
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Theorem 5.1. The volumes under the NPI lower and upper ROC surfaces are

V US = A

[
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi < yj−1 ∧ yj < zl−1)

]
(5.19)

V US = A

[
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi−1 < yj ∧ xi−1 < zl ∧ yj−1 < zl)

]
(5.20)

where A = 1
(nx+1)(ny+1)(nz+1)

.

Proof. The volume under the NPI lower ROC surface is derived as follows, where

{A}+ = max{A, 0} and
∑
p1

∑
p3

indicate the sums over pairs of values for p1 and p3

such that one value for p1 is taken from each interval ( i−1
nx+1

, i
nx+1

) for i = 1, . . . , nx+1

and one value for p3 from each interval ( l−1
nz+1

, l
nz+1

) l = 1, . . . , nz +1. As the function

ROCs(p1, p3) is constant for all values p1 ∈ ( i−1
nx+1

, i
nx+1

) and p3 ∈ ( l−1
nz+1

, l
nz+1

), it

does not matter which values for p1 and p3 within these intervals are actually used

in the calculations.

V US =
1

(nx + 1)(nz + 1)

∑
p1

∑
p3

ROCs(p1, p3) = (5.21)

1

(nx + 1)(nz + 1)

∑
p1

∑
p3

{
F y(z(1−p3))− F y(x(p1))

}+
=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

{
F y(zl−1)− F y(xi)

}+
=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

{∑ny

j=1 I(yj ≤ zl−1)

ny + 1
−
∑ny

j=1 I(yj ≤ xi) + 1

ny + 1

}+

=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

{∑ny+1
j=1 I(yj ≤ zl−1)

ny + 1
−
∑ny+1

j=1 I(yj−1 ≤ xi)

ny + 1

}+

=

1

(nx + 1)(ny + 1)(nz + 1)

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

{I(yj ≤ zl−1)− I(yj−1 ≤ xi)}+ =

A

[
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I (yj ≤ zl−1 ∧ yj−1 > xi)

]
(5.22)

So, in calculating the volume under the NPI lower ROC surface, we only take into

accont the intervals (xi−1, xi), (yj−1, yj) and (zl−1, zl), which are totally separated,

with xi < yj−1 < yj < zl−1. Equation (5.21) follows from the definition of the
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volume under the surface. Equation (5.22) follows from the fact that for two events

E1 and E2, the equality E1 − E2 = E1 ∧ Ec
2 holes. Similarly, the volume under the

NPI upper ROC surface is

V US =
1

(nx + 1)(nz + 1)

∑
p1

∑
p3

ROCs(p1, p3) =

1

(nx + 1)(nz + 1)

∑
p1

∑
p3

I(x(p1) ≤ z(1−p3))
{
F y(z(1−p3))− F y(x(p1))

}
=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

I(xi−1 ≤ zl)
{
F y(zl)− F y(xi−1)

}
=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

I(xi−1 ≤ zl)

{∑ny

j=1 I(yj ≤ zl) + 1

ny + 1
−
∑ny

j=1 I(yj ≤ xi−1)

ny + 1

}
=

1

(nx + 1)(nz + 1)

nx+1∑
i=1

nz+1∑
l=1

I(xi−1 ≤ zl)

{∑ny+1
j=1 I(yj−1 ≤ zl)

ny + 1
−
∑ny+1

j=1 I(yj ≤ xi−1)

ny + 1

}
=

1

(nx + 1)(ny + 1)(nz + 1)

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi−1 ≤ zl) {I(yj−1 ≤ zl)− I(yj ≤ xi−1)} =

1

(nx + 1)(ny + 1)(nz + 1)

nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I(xi−1 ≤ zl) {I(yj−1 ≤ zl ∧ yj > xi−1)} =

A

[
nx+1∑
i=1

ny+1∑
j=1

nz+1∑
l=1

I (xi−1 < yj ∧ xi−1 ≤ zl ∧ yj−1 ≤ zl)

]

So, to get the volume under the NPI upper ROC surface, we count all combinations

of the intervals (xi−1, xi), (yj−1, yj) and (zl−1, zl), for which there are x ∈ (xi−1, xi),

y ∈ (yj−1, yj) and z ∈ (zl−1, zl), such that x < y < z.

5.3.3 NPI cut-off points selection

Corresponding to Youden’s index, as presentd in Equation (5.11) in Subsection 5.2.2,

we introduce the NPI cut-off points selection. In order to do this, we use the NPI

lower and upper probabilities for correct classification into the three groups. The

NPI lower probability for correct classification into the first group is

P (Xnx+1 ≤ c1) = F x(c1) =

nx∑
i=1

I(xi ≤ c1)

nx + 1
(5.23)
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and the NPI upper probability for correct classification into the first group is

P (Xnx+1 ≤ c1) = F x(c1) =

nx∑
i=1

I(xi ≤ c1) + 1

nx + 1
(5.24)

Let ny(c1, c2) =
ny∑
j=1

I(c1 < yj ≤ c2). The NPI lower probability for correct

classification into the second group is

P (c1 < Yny+1 ≤ c2) =
{ny(c1, c2)− 1}+

ny + 1
=
{
F y(c2)− F y(c1)

}+
(5.25)

The corresponding NPI upper probability is

P (c1 < Yny+1 ≤ c2) =
ny(c1, c2) + 1

ny + 1
= F y(c2)− F y(c1) (5.26)

Finally, the NPI lower probability for correct classification into the third group is

P (Znz+1 > c2) = 1− P (Znz+1 ≤ c2) = 1− F z(c2) = 1−

nz∑
l=1

I(zl ≤ c2) + 1

nz + 1
(5.27)

and the corresponding NPI upper probability is

P (Znz+1 > c2) = 1− P (Znz+1 ≤ c2) = 1− F z(c2) = 1−

nz∑
j=1

I(zl ≤ c2)

nz + 1
(5.28)

We introduce the NPI lower value for Youden’s index as

J3(c1, c2) = P (Xnx+1 ≤ c1) + P (c1 < Yny+1 ≤ c2) + P (Znz+1 > c2)

= F x(c1) +
{
F y(c2)− F y(c1)

}+
+ 1− F z(c2) (5.29)

and the corresponding NPI upper value for Youden’s index as

J3(c1, c2) = P (Xnx+1 ≤ c1) + P (c1 < Yny+1 ≤ c2) + P (Znz+1 > c2)

= F x(c1) + F y(c2)− F y(c1) + 1− F z(c2) (5.30)

From Equations (5.23)-(5.28) it straightforwardly follows that, for c1 and c2 not

equal to any of the observations x1, . . . , xnx , y1, . . . , yny , z1, . . . , znz , and assuming

that there is at least one observation yj in (c1, c2),

J3(c1, c2) = J3(c1, c2) +
1

nx + 1
+

2

ny + 1
+

1

nz + 1
(5.31)
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Therefore, maximising, J3(c1, c2) and J3(c1, c2) over such values of c1, c2 gives the

same solution. Because the NPI lower and upper probabilities within the equations

(5.29) and (5.30) are step functions, with steps only occuring at the observed data

values, considering J3(c1, c2) and J3(c1, c2) at values c1, c2 with at least one of these

being equal to one of the data observations is easy to do. It is easy to show for all

c1, c2,

J3(c1, c2) ≤ Ĵ3(c1, c2) ≤ J3(c1, c2) (5.32)

with empirical Youden’s index Ĵ3(c1, c2) as given in Equation (5.12).

5.4 Examples

In this section, three examples are given to illustrate the NPI lower and upper ROC

surfaces and the volume under these surfaces, as presented in this chapter. The data

for the first example are simulated from normal distributions. The second example

uses data from the literature. Throughout this section, we use the notation Sf for

ROCs(p1, p3), Sf for R̂OCs(p1, p3) and Sf for ROCs(p1, p3) in the Figures.

Example 5.1. In this example we simulated data from normal distribuations as fol-

lows: 20 measurements from X ∼ N(0, 1), 24 measurements from Y ∼ N(1, 1.1) and

22 measurements from Z ∼ N(1.3, 1.4). The boxplots of these data are presented

in Figure 5.2 and the probability density functions of these three distributions are

plotted in Figure 5.3.

The NPI lower ROC surface, as defined in Section 5.3 is plotted in Figure 5.4(c).

The volume under this NPI lower ROC surface is equal to 0.3091. The corresponding

NPI upper ROC surface is plotted in Figure 5.4(a). The volume under this NPI

upper ROC surface is equal to 0.4267. Figure 5.4(b) present the empirical ROC

surface, the volume under it is 0.3854. These values of the volumes under these

ROC surfaces indicate that the test is of some use, as they are greater than 1/6, but

the test does not manage to achieve correct classification for a quite large proportion

of the subjects. It is clear from Figures 5.2 and 5.3 that particularly the data for

Y and Z groups have substantial overlap, which will lead to substantial risk of
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Figure 5.2: Boxplots for the data in Example 5.1

Figure 5.3: Probability density functions for simulated data (Example 5.1)

misclassification for both groups, reflected in the empirical and NPI lower and upper

ROC surfaces.

Although it is not easy to see in Figure 5.4, the empirical ROC surface is every-
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where between the NPI lower and upper ROC surfaces.

The plots of ROC surfaces in this section are given with p1 and p3 both equal to

0 at the right-back corner, while at the left-front corner, both p1 and p3 are equal

to 1. This is indicated by arrows in the figures.

The maximum value of Youden’s index for the empirical ROC surface in this

example is equal to 1.6258, which occurs for (c1, c2) = (0.1293,1.7715) and also

for (c1, c2) = (0.7014,1.7715). The corresponding NPI lower and upper Youden’s

indices J3(c1, c2) and J3(c1, c2), are equal to 0.1293 and 1.6862, respectively, which

both occur for (c1, c2) = (0.1293,1.7715). Using these values for c1 and c2, a test

result of less than or equal to 0.1293 (or 0.7014) leads to the decision to classify the

patient to group X. If the test result is greater than 0.1293 (or 0.7014) and less than

or equal to 1.7715 then the decision is group Y . Finally, if the test result exceeds

1.7715 then the decision is group Z.

4
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Figure 5.4: Upper, empirical and lower ROC surfaces for Example 5.1
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Example 5.2. The n-acetyl aspartate over creatinine (NAA/Cr) is a diagnostic

test used to discriminate between different levels of human immunodeficiency virus

(HIV ) in patients [14, 54, 71]. Nakas et al [47, 54] used the NAA/Cr test to dis-

tinguish between HIV patients. The NAA/Cr levels were available in a study

of 135 patients, of whom 59 were HIV -positive with AIDS dementia complex

(ADC), 39 were HIV -positive non-symptomatic subjects (NAS), and the other

37 were HIV -negative individuals (NEG) . The NAA/Cr levels are expected to

be lowest among the ADC group and highest among the NEG group, with the

NAS group being intermediate to the other two, so the anticipated ordering is

ADC < NAS < NEG [14]. Figure 5.5 shows the boxplots of these data. These

●

●

●
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Figure 5.5: Boxplots of NAA/Cr levels of ADC, NAS and NEG groups

boxplots show strong overlap between the different groups, particularly between

the NAS and NEG groups (groups Y and Z, respectively). We consider these data

particularly because they were also used by Nakas et al [47, 54] to illustrate ROC

surfaces, but the main overlap is likely to lead to quite poor diagnostic accuracy.

Example 5.3 will illustrate the application of our new approach to a situation with

groups that are less overlapping. The NPI lower ROC surface is plotted in Fig-

ure 5.6(c). The volume under this surface is V US = 0.2524. The corresponding
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NPI upper ROC surface is plotted in Figure 5.6(a), the volume under this surface

is V US = 0.3131. Figure 5.6(b) presents the empirical ROC surface, the volume

under it is 0.2879. These values of the volumes under these ROC surfaces indicate

also that the test is of some use, as they are greater than 1/6, but the test does not

manage to achieve correct classification for a quite large proportion of the subjects.

It is clear from Figure 5.5 that particularly the data for the Y and Z groups have

substantial overlap, which will lead to substantial risk of misclassification for both

groups, reflected in the empirical and NPI lower and upper ROC surfaces.

The maximum value of Youden’s index for the empirical ROC surface in this ex-

ample is equal to 1.4362, which occurs for (c1, c2) = (1.76, 2.05). The corresponding

NPI lower and upper Youden’s indices values are J3(c1, c2) = 1.3803 and J3(c1, c2)=

1.4732, which both occur for the same values of c1 and c2 as for the empirical ROC

surface. So, using these values for c1 and c2, a patient with test result less than or

equal to 1.76 is classified into the ADC group, while a test result over 2.05 leads

to classification into NEG group. Test results in between these two values leads to

classification into NAS group. In this example there is small imprecision due to the

large data sets.

4

As Examples 5.1 and 5.2 both involved data that overlapped quite a bit, we now

give a small example with data that are more separated.

Example 5.3. This example consider data in the same range as for Example 5.2,

with nx = ny = nz = 10, where the data are more separated. The data are given in

Table 5.1.

NAA/Cr levels

X 1.28 1.43 1.52 1.53 1.55 1.57 1.6 1.63 1.66 1.64

Y 1.65 1.68 1.71 1.76 1.78 1.79 1.80 1.85 1.86 1.87

Z 1.83 1.84 1.88 1.89 1.90 1.93 1.96 1.99 2.06 2.08

Table 5.1: Separated data
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Figure 5.6: Upper, empirical and lower ROC surface for Example 5.2
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The NPI lower ROC surface is plotted in Figure 5.7(c). The volume under this

surface is V US = 0.6235. The corresponding NPI upper ROC surface is plotted

in Figure 5.7(a), the volume under this surface is V US = 0.9421. Figure 5.7(b)

presents the empirical ROC surface, the volume under it is 0.93. These values of the

volumes under these ROC surfaces indicate that the test is good for discriminating

between the three groups.

The maximum value of Youden’s index for the empirical ROC surface in this

example is equal to 2.7, which occurs for (c1, c2) = (1.64,1.78) and also for (c1, c2)

= (1.66,1.78). The corresponding NPI lower and upper Youden’s indices J3(c1, c2)

and J3(c1, c2), are equal to 2.3636 and 2.7273, respectively, both occur for the same

values of c1 and c2 as for the empirical ROC surface. Therefore, a test result of less

than or equal to 1.64 (or 1.66) leads to the decision to classify the patient to group

X. If the test result is greater than 1.64 (or 1.66) and less than or equal to 1.78 then

the decision is group Y . Finally, if the test result exceeds 1.78 then the decision is

group Z. The small data sets in this example, leads to large imprecision than in

Examples 5.1 and 5.2.

4

5.5 Concluding remarks

NPI lower and upper ROC surfaces are presented in this chapter for the evaluation

of the diagnostic accuracy in three-class classification problems. The corresponding

volumes under the NPI lower and upper ROC surfaces have been derived. The

choice of cut-off points for such classifications by maximisation of Youden’s index

is presented. Attention has been restricted to Definition 5.2 for the ROC surface,

however, for non-continuous cumulative distribution functions, as is the case for

the empirical and NPI ROC analysis, this definition does not always lead to the

same results as Definition 5.1. We aim to develop the NPI approach also related to

Definition 5.1, and to compare this with the results presented in this chapter. Only

real-valued data were considered in this chapter, we also aim to develop such ROC

surfaces for ordinal data, this is an interesting topic for future research.
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Figure 5.7: Upper, empirical and lower ROC surface for Example 5.3



Chapter 6

Concluding remarks

This chapter provides a brief summary of the main results presented in this thesis

and some important challenges for future research. In this thesis we have presented

Nonparametric Predictive Inference (NPI) for ordinal data and for accuracy of di-

agnostic tests.

In Chapter 3, multiple comparisons and subset selection for ordinal categorical

data were presented. The method uses a latent variable representation of the ob-

servations and categories on the real line. NPI lower and upper probabilities are

presented for several events involving the next observation, including selecting one

group, the subset of best groups, and the subset including the best group.

In Chapter 4, we introduced NPI for accuracy of diagnostic tests with ordinal

outcomes, with the inferences based on data for a disease group and a non-disease

group. The empirical and NPI lower and upper Receiver Operating Characteristic

(ROC) curves and the corresponding areas under the curves were presented and

it was proven that these are nested, with the latter equal to the NPI lower and

upper probabilities for correctly ordered future observations from the non-disease

and disease groups. The use of the Youden index related to the NPI lower and upper

ROC curves was discussed in order to determine the optimal cut-off point for the

test.

When diagnostic tests have categorical outcomes, these are not always ranked as

assumed in Chapter 4. For unordered categorical data, NPI has been developed [22]

102
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and it has already been applied to category selection [6]. There is an interesting

opportunity to apply that method to problems involving diagnostic tests, particu-

larly if a loss function can be identified that quantifies the consequences of wrong

diagnoses. Such a loss function can also be useful for deciding the optimal cut-off

value for the ordinal tests in Chapter 4, based on other criteria than the Youden’s

index. It seems particularly attractive that such a loss function would explicitly

be for the possible consequences to a further individual from either the disease or

non-disease group, which may be easier to elicit from medical experts than in terms

of proportions of assumed underlying populations.

In Chapter 5, NPI lower and upper ROC surfaces have been proposed for the

evaluation of the diagnostic accuracy in ordered three-class classification problems

as a direct generalization of the NPI lower and upper ROC curve for two groups.

The volumes under the NPI lower and upper ROC surfaces have been considered.

Only real-valued data were considered, we aim to develop such ROC surfaces for

ordinal data in the future.

A more established approach for nonparametric inference is bootstrapping, which

can of course be applied for the inferential problems considered in this thesis. How-

ever, if the data contain categories with zero observations, which may well occur for

smaller data sets, such categories will also never appear in the bootstrap samples,

while in the NPI approach presented here the positive upper probabilities for such

outcomes reflect that they are not deemed impossible on the basis of the data. At

the same time, the NPI lower probabilities for such categories are zero, reflecting

that the data do not provide strong evidence in favour of such observations to oc-

cur. Not surprisingly, in case of large data sets the NPI and bootstrap methods

will give very similar conclusions when looking a single observation ahead for each

group. However, if one is interested in multiple future observations, which is as

mentioned above left as a topic for future research, then the NPI method treats

these as mutually dependent while bootstrap methods typically assume these to be

mutually independent, both given the data. An NPI alternative to bootstrapping is

currently being studied with focus on real-valued data. It will be interesting to also
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develop such NPI-bootstrapping methods for ordinal data, and apply it to problems

of multiple comparisons and diagnostic accuracy.

The NPI approach has the obvious limitation that a substantial number of ob-

servations are required in order to get small imprecision, yet the fact that larger

imprecision reflects limited availability of data is a natural reflection of the fact that

the approach makes only few modelling assumptions. If there are only few obser-

vations and the NPI approach does not indicate a clear answer to an inferential

problem due to large imprecision, this is a strong indication that other methods,

which use stronger modelling assumptions, may be needed, or one should attempt

to collect more data.

The inferences presented in this thesis used only a single future observation from

each group. NPI enables inference on multiple future observations per group, de-

veloping this for ordinal data with similar application to multiple comparisons, is

an interesting topic for future research. Once NPI for ordinal data has been devel-

oped for multiple future observations then further study of methods for diagnostic

accuracy for multiple future individuals per group is an interesting topic for future

research. Also for accuracy of diagnostic tests with real-valued data, with either 2

or 3 groups, consideration of multiple future observations provides a nice research

challenge.
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Appendix A

Multiple comparisons

A.1 Proof of Theorem 3.2

Proof. The NPI lower probability is derived as follows:
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Equation (A.1.3) can be written as
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where (A.1.4) will be the result if we put probability PL
(
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)
equal to one

in (A.1.1). The corresponding NPI upper probability is derived as follows:
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Equation (A.1.6) can be written as
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(A.1.7) will be the result if we put probability PR
(
X l

nl+1
∈ C1,K

)
= 1 in (A.1.5).

A.2 Proof of Theorem 3.4 in case of four groups

Suppose we have four groups and we are interested in selecting the subset which

contains two groups 1 and 3, so S = {1, 3} and Sc = {2, 4}. We derive the NPI

lower and upper probabilities for the event that the next observations of group 1

and of group 3 are both less than or equal to the next observation from group 2 and

from group 4. The NPI lower and upper probabilities for the event max
j=1,3

Xj
nj+1

≤

min
l=2,4

X l
nl+1

are derived similarly to the lower and upper probabilities in Equations

(3.35) and (3.38) but with < everywhere replaced by ≤. The lower probability is
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derived as follows:
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where MW = max {k1, k3} and A =
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probability is derived as follows:
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where MW = max {k1, k3} and A =
[∏4

j=1 (nj + 1)
]−1
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A.3 Proof of Theorem 3.5 in case of four groups
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(A.3.10)

where Mw = min {k1, k3} and A =
[∏4

j=1 (nj + 1)
]−1

. The corresponding NPI

lower probability for the event that S contains a group for which the next obser-
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vation is less than or equal to the next observations from all not selected groups

min
j=1,3

Xj
nj+1
≤ min

l=2,4
X l

nl+1
is

P≤{1,3} = A

[
K∑

k1=1

K∑
k3=k1

∏
j=1,3

(
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kj
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+
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∏
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) ∏
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(
K∑

f=k3

Ll
f

)]
(A.3.11)

This lower probability is similarly derived and justified as in the lower probability

(A.3.10). Secondly, the upper probability is again similarly derived by replacing

every L by R in the proof of the lower probability (A.3.10), so it is equal to

P
<

{1,3} = A

[
K∑

k1=1

K∑
k3=k1

∏
j=1,3

(
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kj

)[ ∏
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f
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+
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∏
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(
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f

)]
(A.3.12)

The corresponding NPI-based upper probability for the event min
j=1,3

Xj
nj+1
≤ min

l=2,4
X l

nl+1

is again similarly derived and it is equal to

P
≤
{1,3} = A

[
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K∑
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∏
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(A.3.13)
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A.4 Maximum next observation

The lower probability (3.49) can be derive as follows:

P

(
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j∈S

Xj
nj+1
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= P
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j∈S

Xj
nj+1

})

=
K∑

kj1
=1

· · ·
K∑

kjw=1

[
P

(⋂
l∈Sc

{
X l

nl+1 < min
j∈S

Xj
nj+1

}
|Xj

nj+1
∈ Ckj

, j ∈ S
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(A.4.14)

≥
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(A.4.16)

where Mw = min {kj1 , . . . , kjw}. The corresponding NPI upper probability is de-

rived similarly by putting the probability masses per interval at the endpoints, for

the groups j ∈ S at the right endpoints and for all other groups l ∈ Sc at the left

endpoints in the latent variable representation. These lower and upper probabilities

are similarly derived and justified as Equations (3.32) and (3.33). In these formu-

las the summations start from the second category as the probability of the event

min
j∈S

Xj
nj+1

> max
l∈Sc

X l
nl+1

is zero when one or more of Xj
nj+1

, j ∈ S are in the first

category.


