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Numerical utilities of the contact block reduction (CBR) method in evaluating the retarded Green’s
function are discussed for 3D multi-band open systems that are represented by the atomic tight-binding
(TB) and continuum k ! p (KP) band model. It is shown that the methodology to approximate solutions
of open systems, which has been already reported for the single-band effective mass model, cannot be
directly used for atomic TB systems, since the use of a set of zinc blende crystal grids makes the
inter-coupling matrix non-invertible. We derive and test an alternative with which the CBR method can
be still practical in solving TB systems. This multi-band CBR method is validated by a proof of
principles on small systems and also shown to work excellent with the KP approach. Further detailed
analysis on the accuracy, speed, and scalability on high performance computing clusters is performed
with respect to the reference results obtained by the state-of-the-art recursive Green’s function and
wavefunction algorithm. This work shows that the CBR method could be particularly useful in
calculating resonant tunneling features, but shows a limited practicality in simulating field effect
transistors (FETs) when the system is described with the atomic TB model. Coupled to the KP model,
however, the utility of the CBR method can be extended to simulations of nanowire FETs. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3694740]

I. INTRODUCTION

A. Needs for multi-band approaches

Semiconductor devices have been continuously down-
scaled ever since the invention of the first transistor,1 such
that the size of the single building component of modern
electronic devices has already reached a few nanometers
(nm). In such a nanoscale regime, two conceptual changes
are required in the device modeling methodology. One as-
pect is widely accepted, where carriers must be treated as
quantum mechanical rather than classical objects. The sec-
ond change is the need to embrace the multi-band models,
which can describe atomic features of materials, reproducing
experimentally verified bulk band structures. While the
single-band effective mass approximation (EMA) predicts
band structures reasonably well near the conduction band
minimum (CBM), the subband quantization loses accuracy if
devices are in a sub-nm regime.2 The EMA also fails to pre-
dict indirect gaps, inter-band coupling, and non-parabolicity
in bulk band structures.3

The nearest-neighbor empirical tight-binding (TB) and
next nearest-neighbor k ! p (KP) approach are most widely
used band models of multiple bases.3,4 The most sophisti-
cated TB model uses a set of 10 localized orbital bases (s, s*,
3" p, and 5" d) on real atomic grids (20 with spin interac-

tions), where the parameter set is fit to reproduce experimen-
tally verified bandgaps, masses, non-parabolic dispersions,
and hydrostatic and biaxial strain behaviors of bulk materials
using a global minimization procedure based on a genetic
algorithm and analytical insights.3,5,6 This sp3d5s* TB
approach can easily incorporate atomic effects, such as sur-
face roughness and random alloy compositions, as the model
is based on a set of atomic grids. These physical effects have
been shown to be critical to the quantitative modeling of res-
onance tunneling diodes (RTDs), quantum dots, disordered
SiGe/Si quantum wells, and a single impurity device in Si
bulk.7–10

The KP approach typically uses four bases on a set of
cubic grids with no spin interactions.4 While it still fails to
predict the indirect gap of bulk dispersions, since it assumes
that all the subband minima are placed on the C point, the
credibility is better than the EMA, since the KP model can
still explain the inter-band physics of direct gap III-V devi-
ces and valence band physics of indirect gap materials, such
as silicon (Si).11,12

B. Contact block reduction method

One of the important issues in modeling of nanoscale
devices is to solve the quantum transport problem with a
consideration of real 3D device geometries. Although the
non- equilibrium Green’s function (NEGF) and wave func-
tion (WF) formalism have been widely used to simulate thea)Electronic mail: elec1020@gmail.com.
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carrier transport,2,11,13–15 the computational burden has been
always a critical problem in solving 3D open systems, as the
NEGF formalism needs to invert a system matrix of a
degree-of-freedom (DOF) equal to the Hamiltonian matrix.13

The recursive Green’s function (RGF) method saves the
computing load by selectively targeting elements needed for
the matrix inversion.16,17 However, the cost can be still huge
depending on the area of the transport-orthogonal plane
(cross-section) and the length along the transport direction of
target devices.18,19 The WF algorithm also saves the comput-
ing load if the transport is ballistic, as it does not have to
invert the system matrix, and finding a few solutions of the
linear system is enough to predict the transport behaviors.
But the load still depends on the size of the system matrix
and the number of solution vectors (modes) needed to
describe the carrier-injection from external leads.2,14 In fact,
RGF and WF calculations for atomically resolved nanowire
field effect transistors (FETs) have demonstrated the need to
consume over 200 000 parallel cores on large supercomput-
ing clusters.20

Developed by Mamaluy et al.,19,21 the contact block
reduction (CBR) method has received much attention, due to
the utility to save computing expense required to evaluate
the retarded Green’s function of 3D open systems. The CBR
method is thus expected to be a good candidate for transport
simulations compared to the computing-intensive RGF
method, since the method does not have to solve the linear
system yet reducing the computing load needed for matrix
inversion.19 The method indeed has been extensively used
such that it successfully modeled electron quantum transport
in experimentally realized Si FinFETs22 and predicted opti-
mal design points and process variations in the design of 10-
nm Si FinFETs.23,24 However, all the successful applications
for 3D systems so far have been demonstrated only for the
systems represented by the EMA.

C. Goals of this work

While the use of multi-band approaches can increase the
accuracy of simulation results, it requires more computing
load, as a DOF of the Hamiltonian matrix is directly propor-
tional to the number of bases required to represent a single
atomic (or grid) spot in the device geometry. To suggest a
solution to this trade-off issue, we examine the numerical
utilities of the CBR method in multi-band ballistic quantum
transport simulations, focusing on multi-band 3D systems
represented by either the TB or KP band model.

The objective of this work is to provide detailed
answers to the following questions through simulations of
small two-contact ballistic systems focusing on a proof of
principles: (1) Can the original CBR method be extended to
simulate ballistic quantum transport of multi-band systems?
(2) If the answer to the question (1) is “yes”, what is the
condition under which the multi-band CBR method
becomes particularly useful? (3) How is the numerical prac-
ticality of the multi-band CBR method compared to the
RGF and WF algorithms in terms of the accuracy, speed,
and scalability on high performance computing (HPC)
clusters?

II. METHODOLOGY

In real transport problems, a device needs to be coupled
with external contacts that allow the carrier in-and-out flow.
With the NEGF formalism, this can be done by creating an
open system that is described with a non-Hermitian system
matrix.13 Representing this system matrix as a function of
energy, we compute the transmission coefficient and density
of states to predict the current flow and charge profile in
non-equilibrium. This energy-dependent system matrix is
called the retarded Green’s function, GR, for an open system
(Eq. (1)).

GRðEÞ ¼ ½ðEþ igÞI ( Ho (
X

ðEÞ)(1; g ! 0þ; (1)

where Ho is the Hamiltonian representing the device and R is
the self-energy term that couples the device to external leads.
As already mentioned in the Sec. I, the evaluation of GR is
quite computationally expensive, since it involves intensive
matrix inversions. The CBR method, however, reduces ma-
trix inversions with the mathematical process based on the
Dyson equation. We start the discussion revisiting the CBR
method that has been so far utilized for EMA systems.

A. Revisit: CBR with EMA

The CBR method starts decomposing the device domain
into two regions: (1) the boundary region c that couples with
the contacts and (2) the inner region d that does not couple to
the contacts. As the self-energy term R is non-zero only in
the boundary region, Ho and R are decomposed as shown in
Eq. (2), where subscripts (c and d) denote above-mentioned
regions, respectively.

H ¼ Ho
c Ho

cd
Ho

dc Ho
d

! "
;

X
¼

P
c 0cd

0dc 0d

! "
: (2)

Then, GR can be evaluated with the Dyson equation defined
in Eq. (3) and Eq. (4), where Rx and Gx are conditioned with
a Hermitian matrix X to minimize matrix inversions by solv-
ing the eigenvalue problem (Eq. (5)).

A(1
c ¼ ðIc ( Gx

c

Xx

c

Þ(1; (3)

GRðEÞ ¼ ðI (
Px

GxÞ(1Gx

¼
A(1
c 0cd

Gx
dc

Px

c
A(1
c Id

2

4

3

5 Gx
c Gx

cd
Gx

dc Gx
d

! "
; (4)

X ¼
xc 0cd

0dc 0d

! "
;

Px
¼

P
(X;Gx ¼ ½EI ( ðHo þ XÞ)(1

¼
Gx

c Gx
cd

Gx
dc Gx

d

! "
¼

X

a

jWaihWaj
E( !a þ ig

; (5)

where !a and Wa are the ath eigenvalue and eigenvector of
the modified Hamiltonian (HoþX). Here, we note that the
matrix inversion is performed only to evaluate the boundary
block, Ac (contact-block), for one time, while the RGF needs
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to perform the block-inversion many times, depending on
the device channel length. The computing load for matrix
inversion is thus significantly reduced, and the method is
also free from solving a linear system problem. Instead, the
major numerical issue now becomes a normal eigenvalue
problem for a Hermitian matrix (HoþX). For the numerical
practicality, it is thus critical to reduce a number of required
eigenvalues, and for EMA Hamiltonian matrices, a huge
reduction in the number of required eigenvalues can be
achieved via a smart choice of the prescription matrix X.

To find the matrix X and see if it can be extended to
multi-band systems, we first need to understand how to cou-
ple external contacts to the device. Figure 1 illustrates the
common approach, which treats the contact as a semi-infinite
nanowire of a finite cross-section. Here, HB is a block matrix
that represents the unit-slab along the transport direction and
W is another block matrix, which represents the inter-slab
coupling. The eigenfunction of the plane wave at the mth
mode in the nth slab, Wðn;mÞ, should then obey the Schrö-
dinger equation and the Bloch condition (Eq. (6)).

ðEI ( HBÞWðn;mÞ ¼ WþWðn(1;mÞ þWWðnþ1;mÞ;Wðnþ1;mÞ

¼ expðikmLÞWðn;mÞð1 * m * MÞ; (6)

where km is the plane-wave vector at the mth mode, L is the
length of a slab along the transport direction, and M is the
maximum number of plane-wave modes that can exist in a
single slab and is equal to the DOF of HB. Then, the surface
Green’s function, Gsurf, and self-energy term, R, can be eval-
uated by converting Eq. (6) to the generalized eigenvalue
problem for a complex and non-Hermitian matrix.17 The so-
lution for Gsurf and R are provided in Eq. (7), where K and K
are shown in Eq. (8),

Gsurf ¼ K½K(1ðHB ( EIÞK þ K(1WþKK)(1K(1;
X

¼ WþGsurfW;
(7)

K ¼ ½Wð0;1ÞWð0;2Þ…Wð0;MÞ);K

¼ diag½expðik1LÞexpðik2LÞ…expðikMLÞ): (8)

In systems described by the nearest-neighbor EMA, each
slab becomes a layer of common cubic grids, such that each
grid on one layer is coupled to the same grid on the nearest
layer. The inter-slab coupling matrix W thus becomes a
scaled identity matrix, with which the general solution for
Gsurf and R in Eq. (7) can be simplified using a process
described in Eq. (9) and Eq. (10). We note that previous liter-

atures have shown only the simplified solution for Gsurf

and R.19,21

Gsurf ¼K½K(1ðHB(EIÞKþK(1WþKK)(1K(1

¼K½K(1ðHB(EIÞKþWþK)(1K(1

¼K½(K(1ðWþKKþWKK(1Þ
þWþK)(1K(1½£ðEI(HBÞK¼WþKKþWKK(1)
¼(K½WK(1)(1K(1¼(KKW(1K(1; (9)

X
¼ WþGsurfW ¼ Wþð(KKW(1K(1ÞW

¼ (WþKKK(1ð£Wþ ¼ WÞ ¼ (WKKK(1: (10)

The original CBR method coupled to the EMA prescribes
the Hermitian matrix X as –W or its Hermitian component (if
W is complex). The new self-energy term Rx in Eq. (5) then
becomes (Eq. (11)),

P
x
¼

P
(X ¼

P
þW ¼ (WKKK(1 þW

¼ (WKðK( IÞK(1; (11)

where the matrix ðK( IÞ becomes zero at C point, on where
EMA subband minima are always placed. The resulting new
Hamiltonian (Ho – W) becomes the Hamiltonian with the
generalized V on-Neumann boundary condition at contact
boundaries. The spectra of the matrix (Ho – W) therefore
become approximate solutions of the open boundary prob-
lem, and the retarded Green’s function, GR(E), in Eq. (4) can
be thus approximated with an incomplete set of energy spec-
tra of the Hermitian matrix near subband minima.19,25

B. CBR with multi-band models

Regardless of the band model, the GR(E) in Eq. (4) can
be accurately calculated with a complete set of spectra, since
it then becomes the Dyson equation (Eq. (3)) itself. The im-
portant question here is then whether we can make the CBR
method be still numerically practical for multi-band systems
such that the transport can be simulated with as small a num-
ber of energy spectrums as possible. To study this issue, we
focus on the inter-slab coupling matrix W of multi-band sys-
tems. A toy Si device that consists of two slabs along the
[100] direction is used as an example for our discussion.

Figure 2 shows the device geometry and corresponding
Hamiltonian matrix built with the EMA, KP, and TB model,
respectively. Here, we note that the simplifying process in
Eq. (9) and Eq. (10) is not strictly correct if the inter-slab
coupling matrix W is not an identity matrix, since, for any
square matrix K and W, K–1WK cannot be simplified to W if
W is neither an identity matrix nor a scaled identity matrix.
When a system is represented with the KP model, a single
slab is still a layer of common cubic grids, as the KP
approach also uses a set of cubic grids. But, the non-zero
coupling is extended up to next-nearest neighbors such that
the inter-slab coupling matrix W is no more an identity ma-
trix. The simplified solution for Gsurf and R, however, can be
still used to approximate the general solutions in Eq. (7),

FIG. 1. Schematic of the semi-infinite contact to illustrate the treatment of
the external contact that is normally assumed to be an infinite chain of the
slab on the device boundary (the outmost slab in the device domain).
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since the coupling matrix W is diagonally dominant and in-
vertible. But the situation becomes tricky for TB systems
that are represented on a set of real zinc blende (ZB) grids.

In the ZB crystal structure, a Si unit slab has a total of
four unique atomic layers along the [100] direction. Because
the TB approach assumes the nearest-neighbor coupling,
only the last layer in one slab is coupled to the first layer in
the nearest slab, while all the other coupling blocks among
layers in different slabs become zero-matrices. As described
in Fig. 2, this makes the inter-slab coupling matrix W singu-
lar such that matrix inversions become impossible. The sim-
plified solution for Gsurf and R in Eq. (9) and Eq. (10) are
therefore mathematically invalid, and they cannot be even
used to approximate the full solution (Eq. (7)). A new pre-
scription for X is thus needed to make the CBR method still
practical for ZB-TB systems, and we propose an alternative
in Eq. (12),

X ¼
P

ð!edgeÞ þ
Pþð!edgeÞ

2
; (12)

where !dge is the energetic position of the CBM (valence
band maximum (VBM)) of the band structure of the semi-
infinite contact.

If only a few subbands near the CBM (or VBM) of the
contact band structure are enough to describe the external
contact, the prescription suggested in Eq. (12) works quite
well, as X is the Hermitian part of the self-energy term, such
that (HoþX) approximates the open system near the edge of
the contact band structure. The approximation, however,
becomes less accurate if more subbands in higher energy (in
lower energy for valence band) are involved to the open
boundaries. Away from the band edge, subband placement
becomes denser and inter-subband coupling becomes stron-
ger. The prescription X in Eq. (12) then would not be a good
choice, as it only approximates the open boundary solution
near band edges, and the CBR method thus needs more
eigenspectrums to solve open boundary transport problems.
So, for example, the multi-band CBR method would not be

numerically practical to simulate FETs at a high source-
drain bias, since a broad energy spectrum is then needed to
get an accurate solution.

Before closing this section, we note that, if the inter-slab
coupling matrix W is either an identity matrix or a scaled
identity matrix, the prescription matrix X in Eq. (12)
becomes identical to the one utilized to simulate 3D systems
in the previous literatures,22–24 where (HoþX) approximates
the open system well near every subband minima if the sys-
tem is represented by the EMA.19,21,25 Once Gsurf and R are
determined from the prescription matrix X, evaluation of the
transmission coefficient (TR) and the density of states (DOS)
can be easily done.13,19,21,25 Further detailed mathematics
regarding derivation of TR and DOS will not be thus dis-
cussed here.

III. RESULTS AND DISCUSSIONS

The results are discussed in two subsections. First, we
validate the CBR method for multi-band systems with the
new prescription for X in Eq. (12). Focusing on a proof of
principles, we compute the TR and DOS profiles for a toy
TB and KP system, compare the result to the references
obtained with the RGF algorithm, and suggest the device cat-
egory where the multi-band CBR method could be particu-
larly practical. Second, we examine the numerical
practicality of the multi-band CBR method by computing
TR and DOS profiles of a resonant tunneling device and a
nanowire FET. The accuracy, the speed of calculations in a
serial mode, and the scalability on HPC clusters are com-
pared to those obtained with the RGF and WF algorithm. We
assume a two-contact ballistic transport for all the numerical
problems.

A. Validation of multi-band CBR method

To validate the multi-band CBR method that has been
discussed in Sec. II, we consider two multi-band toy Si sys-
tems represented by the 10-band sp3d5s* TB and 3-band KP

FIG. 2. Illustration of the geometry and the Hamil-
tonian matrix built for the (a) EMA, (b) KP, and (c)
TB toy nanowire. Arrows represent the inter-slab
coupling. The simplifying process in Eq. (9) and
Eq. (10) are not strictly accurate for multi-band
models, since the inter-slab coupling matrix is nei-
ther an identity matrix nor a scaled identity matrix.
Especially, the coupling matrix becomes singular in
TB model, which indicates that the simplified solu-
tion for Gsurf and R are even mathematically
invalid.
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approach. Here, we intentionally choose extremely small
systems to calculate a complete set of energy spectra of the
Hamiltonian, with which the CBR method should produce
results identical to the ones obtained by the RGF algorithm.
For the TB system, the electron-transport is simulated while
we calculate the hole-transport for the KP system due to a li-
mitation of the KP approach in representing the Si material.
(In principle, the 4-band KP model uses a total of four bases
to model direct bandgap materials, such as GaAs and InAs,
where one basis is used to model the conduction band and
the remaining three bases are used to model the valence
band. The valence band of indirect bandgap materials, such
as Si, however, can be still modeled with three bases if VBM
is at the C point (Ref. 11).)

1. TB system

Fig. 3 illustrates the dispersion, TR, and DOS profile that
are calculated for the TB Si toy device, which consists of
(2" 2" 2) (100) unit-cells (+1.1(nm)). The device involves
a complex Hermitian Hamiltonian matrix of 640 DOF, and
electrons are assumed to transport along the [100] direction.
The TR and DOS profiles are calculated using the CBR
method for a total of four cases—with 6, 60, 190, and full
(640) energy spectra that correspond to 1%, 10%, 30%, and
100% of the Hamiltonian DOF, respectively. The transport

happens at the energy above 2.32(eV), which is the CBM of
the contact band structure. We note that this energetic posi-
tion is higher than the Si bulk CBM (1.13(eV)), due to the
structural confinement stemming from the finite cross-section
of the nanowire device. (Both the TB and KP model consid-
ered in this work place the VBM of Si bulk at 0 (eV).)

With the new prescription matrix X suggested in Eq.
(12), the TR and DOS profile obtained by the CBR method
become closer to the reference result, as more spectrums are
used, and eventually reproduce the reference result with a
full set of spectrums, as shown in the left column of Fig.
3(b). Here, the CBR result turns out to be quite accurate near
the CBM, even with 1% of the total spectrums, indicating
that the TB-CBR method could be a practical approach if
most of the carriers are injected from the first one or two sub-
bands of the contact band structure. This condition can be
satisfied when (1) only the first one or two subbands in the
contact band structure are occupied with electrons and (2)
the energy difference between the source and drain contact
Fermi level (the source-drain Fermi window) becomes
extremely narrow. So the simulation of FETs at a high
source-drain bias would not be an appropriate target of the
TB-CBR simulations, since the source-drain Fermi window
may include many subbands and many spectra may be thus
needed for accurate solutions. (Assuming that the source
contact is grounded, the Fermi window at VDS¼V becomes

FIG. 3. Electron transport in a toy Si
TB system. (a) Band structure along the
transport direction and TR calculated
with RGF. (b) TR and DOS profiles cal-
culated by the CBR method: Results
with a prescription suggested in Eq. (12)
(new method) and an old prescription
suggested for the EMA (original
method). Note that, with the old pre-
scription, using more energy spectra
does not necessarily improve the accu-
racy of the CBR solution.
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[EFD – 3kT, EFSþ 3kT]¼ [EF – qV – 3kT, EFþ 3kT], where
q is the single electron charge and EF is the Fermi level of
the system in equilibrium. The maximum and minimum of
the window are determined at the source and drain side,
respectively.) Instead, we propose that RTDs could be one of
the device categories for which the TB-CBR method is par-
ticularly practical, since the Fermi window for transport
becomes extremely small in RTDs in some cases.26

The same calculation is performed again, but using the
old prescription X suggested for the EMA, and correspond-
ing TR and DOS profiles are shown in the right column of
Fig. 3(b). The CBR method still reproduces the reference
result with a full set of energy spectra, since the Dyson equa-
tion (Eq. (4)) should always work for any X’s. The accuracy
of the results near the CBM, however, turns out to be worse
than the one with the new prescription. The results further-
more reveal that the accuracy with 10% of the total spectra
does not necessarily become better than the one with 1%,
indicating that the old prescription for X cannot even approx-
imate the solution near the CBM of open TB systems.

2. KP system

The dispersion, TR, and DOS profile of the KP Si
2.0(nm) (100) cube are depicted in Fig. 4. The structure is
discretized with a 0.2(nm) grid and involves a complex Her-

mitian Hamiltonian of 3000 DOF. Here, the DOF of the real-
space KP Hamiltonian can be effectively reduced with the
mode-space approach.11 The effective DOF of the Hamilto-
nian therefore becomes 500, where we consider 50 modes
per each slab along the transport direction. Again, we note
that the VBM of the contact band structure is placed at
–0.4(eV) and lower in energy than the VBM of Si bulk
(0(eV)), due to the confinement created by the finite cross-
section.

We claim that the CBR method works quite well for the
KP system, since the TR and DOS profiles not only become
closer to the reference results as more of the energy spec-
trums are used, but also exhibit excellent accuracy near the
VBM of the contact band structure, as shown in Fig. 4(b).
We, however, observe a remarkable feature that is not found
in the CBR method coupled to TB systems: The KP-CBR
method shows a good accuracy with both the old and new
prescription matrix X, which supports that the simplified so-
lution for Gsurf and R (Eq. (9) and Eq. (10)) are still useful to
approximate the full solution (Eq. (7)), as discussed in Sec.
II. We also claim that the utility of the KP-CBR method
could be extended to nanowire FETs, because the mode-
space approach reduces the DOF of the Hamiltonian such
that we save more computing cost needed to calculate energy
spectra. In Subsection III B, we will come back to this issue
again.

FIG. 4. Hole transport in a toy Si KP
system. (a) Band structure along the
transport direction and TR calculated
with RGF. (b) TR and DOS profiles cal-
culated by the CBR method: Results
with a prescription suggested in Eq. (12)
(new method) and an old prescription
suggested for the EMA (original
method). Note that the accuracy of the
CBR solution is similar with both the
new and old prescription.
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B. Practicality of multi-band CBR method

In this subsection, we provide a detailed analysis of the
numerical utility of the multi-band CBR method in terms of
the accuracy and speed. Based on discussions in Subsection
III A, with a focus on a proof of principles on small systems, a
RTD is considered as a simulation example of TB systems,
while a nanowire FET is again used as an example of KP sys-
tems to discuss the numerical practicality of the method. The
TR and DOS profiles obtained by the RGF and WF algorithm
are used as reference results. We note that the WF case is
added in this subsection to provide a complete and competi-
tive analysis on the speed and scalability on HPC clusters.

1. TB system

A single phosphorous donor in host Si material (Si:P)
creates a 3D structural confinement around itself. Such Si:P
quantum dots have gained scientific interest, due to their
potential utility for qubit-based logic applications.27 Espe-
cially, the Stark effect in Si:P quantum dots is one of the im-
portant physical problems and was quantitatively explained
by previous TB studies.9,10 The electron-transport in such
Si:P systems should be, therefore, another important problem
that needs to be studied.

The geometry of the example Si:P device is illustrated
in Fig. 5. Here, we consider a [100] Si nanowire that is
14.0(nm) long and has a 1.7(nm) rectangular cross-section.
The first and last 3.0(nm) along the transport direction are
considered as a densely N-type doped source- drain region,
assuming a 0.25(eV) band-offset in equilibrium. (The band
offset between the intrinsic channel and densely doped
source-drain leads is taken from the work of Martinez et al.,
where the equilibrium potential profile has been self-
consistently obtained for a 14.0(nm)-long [100] Si nanowire
that has a 2.0(nm) rectangular cross-section and 4.0(nm)-

long source-drain regions (Ref. 28).) Then, a single phospho-
rous atom is placed at the channel center with a superposi-
tion of the impurity coulombic potential that has been
calibrated for a single donor in Si bulk by Rahman et al.9

The electronic structure has a total of 1872 atoms and
involves a complex Hamiltonian matrix of 18 720 DOF.

Figure 6 shows the TR and DOS profiles in five cases,
where the first four cases are the CBR results with 10, 20, 40,
and 80 spectra that correspond to 0.05%, 0.1%, 0.2%, and 0.4%
of the Hamiltonian DOF, and the last one is used as a reference.
Due to the donor coulombic potential, the channel forms a
double-barrier system such that the electron transport should ex-
perience a resonance tunneling. As shown in Fig. 6, the CBR
method produces a nice approximation of the reference result
such that the first resonance is observed with just 10 energy
spectra. It also turns out that 80 spectra are enough to capture all
the resonances that show up in the range of energy of interest.

The accuracy of the solutions approximated by the CBR
method is examined in a more quantitative manner by integrat-
ing the TR and DOS profile over energy. Figure 7 illustrates
this cumulative TR (CTR) and DOS (CDOS) profile, which are
conceptually equivalent to the current and charge profile,
respectively. Here, again, the overall shape of the integrated
results resembles the reference result more with an increasing
number of energy spectrums. Some cases are, however,
observed where the point-by-point absolute values are not
quite improved, although more spectrums are considered in the
simulation. For example, compared to the CTR profile with
0.1% spectrums, the CTR profile near the 2nd resonance
(+1.55 eV) does not necessarily improve with 0.2% spec-
trums. This indicates that the channel mode near the 2nd reso-
nance point is quite coupled to the other modes at the energy
range that is not covered with 0.2% spectrums, such that more
spectrums are needed for a better accuracy, as the result with
0.4% spectrums shows. In spite of a slight deviation in absolute
values, however, the CTR profiles still confirm that the CBR
method captures resonances quite precisely, such that the ener-
getic positions where the TR sharply increases are almost on
top of the reference result with just 0.4% spectrums. Compared
to the CTR profile, the CDOS profile exhibits much better ac-
curacy, such that the result with 80 spectra almost reproduces
the reference result, even in terms of absolute values. We claim
that the accuracy in the CDOS profile is particularly critical,
since it is directly connected to charge profiles that are essen-
tial for charge-potential self-consistent simulations.

2. KP system

Si nanowire FETs obtained through top-down etching or
bottom-up growth have attracted attention, due to their
enhanced electrostatic control over the channel, and thus
become an important target of various modeling works.11,29

For KP systems, the CBR method could become a practical
approach to solve transport behaviors of FET devices, since
the computing load for solving eigenvalue problems can be
reduced with the mode-space approach.

A [100] Si nanowire FET of a 15.0(nm) long channel and
a 3.0(nm) rectangular cross- section is therefore considered as a
simulation example to test the performance of the KP-CBR

FIG. 5. Illustration of the geometry and potential profile of a Si:P RTD that
is used as the example to examine the utility for the TB-CBR method. For
the potential profile, 1.13(eV) is used as a reference value representing the
Si bulk CBM. The single donor coulombic potential that has been calibrated
by Rahman et al. (Ref. 9), with respect to the Si bulk, is superposed to the
channel potential profile to consider the sharp structural confinement stem-
ming from the single donor.
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method. The hole-transport is simulated with the 3-band KP
approach, where the simulation domain is discretized with a set
of 0.2(nm) mesh cubic grids and involves a real-space Hamilto-
nian matrix of 50 625 DOF. As the device has a total of 75
slabs along the transport direction, the mode-space Hamiltonian
has 9000 DOF with a consideration of 120 modes per slab. It
has been reported that the wire band structure obtained with
120 modes per slab becomes quite close to the full solution for
a cross-section smaller than 5.0" 5.0(nm2).11 The wire is
assumed to be purely homogeneous, such that neither the dop-
ing nor band-offset are considered.

To see if the CBR method can be reasonably practical in
simulating the hole-transport at a relatively large source-drain
bias, we plan to cover the energy range at least larger than
0.4(eV) beyond the VBM of the wire band structure. For this
purpose, we compute 50, 100, and 200 energy spectra that
correspond to 0.5%, 1.1%, and 2.2% of the DOF of the mode-
space Hamiltonian, respectively. Figure 8(a) shows the corre-

sponding TR and DOS profiles. Here, the CBR solution not
only becomes closer to the reference result with more spectra
considered, but also demonstrates fairly excellent accuracy
near the VBM of the wire band structure. The CTR and
CDOS profiles provided in Fig. 8(b) further support the pre-
ciseness of the CBR solutions near the VBM. The cumulative
profiles also support that the CBR solution covers a relatively
wide range of energy, such that 50 energy spectra are already
enough to cover +0.4(eV) below the VBM quite well. We
note that the solution obtained with 200 spectra almost repli-
cates the reference result in the entire range of energy that is
considered for the simulation (+0.8(eV) below the VBM).

C. Speed and scalability on HPCs

So far, we have discussed the practicality of the multi-
band CBR method, focusing on the accuracy of the solutions
for two-contact, ballistic-transport problems. Another

FIG. 6. Electron transport in a Si:P
RTD. (a) TR and (b) DOS profiles calcu-
lated by the CBR method. Note that all
the resonances in the range of energy are
captured, even with just 80 spectra that
corresponds to just 0.4% of the DOF of
the TB Hamiltonian.
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important criterion to determine the numerical utility should
be the speed of calculations. We therefore measure the time
needed to evaluate the TR and DOS per single energy point
for the TB Si:P RTD and the KP Si nanowire FET repre-
sented that are utilized as simulation examples. To examine
the practicality of the multi-band CBR method on HPC clus-
ters, we also benchmark the scalability of the simulation
time on the Coates cluster under the support of the Rosen
Center for Advanced Computing (RCAC) at Purdue Univer-
sity. The CBR, RGF, and WF methods are parallelized with
Message Passing Interface (MPI)/Cþþ, the MUltifrontal
Massively Parallel sparse direct linear Solver (MUMPS),30

and a self-developed eigensolver based on the shift-and-
invert Arnoldi algorithm.31 All the measurements are per-
formed on a 64-bit, 8-core HP Proliant DL585 G5 system of
16-GB SDRAM and 10-gigabit ethernet local to each node.

Table I summarizes the wall times measured for various
methods in a serial mode. Generally, the simulation of the
KP Si nanowire FET needs less computing loads, such that
the wall times are reduced by a factor of two with respect to
the computing time taken for the TB Si:P RTD. This is
because the KP approach can represent the electronic struc-
ture with the mode-space approach such that the Hamiltonian
matrix has a smaller DOF (9000) compared to the one used
to describe the TB Si:P RTD (18 720).

Compared to the RGF algorithm in a serial mode, the
CBR method demonstrates a comparable (KP) or better (TB)
performance. Since a single slab of the KP Si nanowire is
represented with a block matrix HB (Fig. 1) of 120 DOF, the
matrix inversion is not a critical problem anymore in the
RGF algorithm, such that the CBR method does not neces-
sarily show better performances than the RGF algorithm.
The TB example device, however, needs a HB of 720 DOF
to represent a single slab (a total of 26 slabs), so the burden
for matrix inversions become bigger compared to the KP
example. As a result, the CBR method generally shows bet-
ter performances. The CBR method, however, does not beat
the WF method in both the TB and KP case, since, in a serial
mode, the CBR method consumes time to allocate a huge

FIG. 9. Speed and scalability of the multi-band CBR method: For the exam-
ple multi-band systems of TB Si:P RTD and KP Si nanowire FET, we mea-
sure the time required to calculate the TR and DOS per single energy point.
Scalability of the calculation time is also measured to examine the numerical
practicality of the method on HPC clusters.

FIG. 7. Electron transport in a Si:P RTD. TR and DOS profiles integrated
over energy. The cumulative profiles of TR and DOS effectively indicate the
accuracy of the current and charge profiles. The cumulative DOS is espe-
cially important, as it is directly coupled to charge profiles that are needed
for charge-potential self-consistent simulations.

FIG. 8. Hole transport in a Si nanowire. (a) TR and DOS profiles and (b)
corresponding cumulative profiles. The KP-CBR solutions exhibit excellent
accuracy, such that 200 spectra, which corresponds to just 2.2%, turn out to
be enough to almost reproduce the reference solutions in the entire range of
energy of interest (0.8(eV) beyond the VBM of the wire band structure).

TABLE I. The time required to evaluate the TR and DOS per single energy
point in a serial mode for the RTD and nanowire FET considered as simula-
tion examples.

Approaches (TB) time (s) Approaches (KP) time (s)

CBR 0.05(%) 11.5 CBR 0.5(%) 4.9

CBR 0.1(%) 11.8 CBR 1.1(%) 5.1

CBR 0.2(%) 12.0 CBR 2.2(%) 5.9

CBR 0.4(%) 12.7 RGF 5.0

RGF 19.0 WF 3.4

WF 6.5
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memory space that is needed to store “full” complex matri-
ces via vector-products (Eq. (5)).

The strength of the CBR method emerges in a parallel
mode (on multiple CPUs), where the vector products are per-
formed via MPI communication among distributed systems,
and each node thus saves only a fraction of the full matrix.
The scalability of the various methods is compared up to a
total of 16 CPUs in Fig. 9. The common RGF calculation
can be effectively parallelized only up to a factor of two, due
to its recursive nature,16 and the scalability of the WF
method becomes worse in many CPUs, because it uses a
direct-solver–based LU factorization to solve the linear sys-
tem. As a result, the CBR method starts to show the best
speed when more than 8 CPUs are used.

IV. CONCLUSION

In this work, we discuss numerical utilities of the CBR
method in simulating ballistic transport of multi-band sys-
tems described by the atomic 10-band sp3d5s* TB and 3-
band KP approach. Although the original CBR method
developed for single-band EMA systems achieves an excel-
lent numerical efficiency by approximating solutions of open
systems, we show that the same approach cannot be used to
approximate TB systems as the inter-slab coupling matrix
becomes singular. We therefore develop an alternate method
to approximate open system solutions. Focusing on a proof
of principles on small systems, we validate the idea by com-
paring the TR and DOS profile to the reference result
obtained by the RGF algorithm, where the alternative also
works well with the KP approach.

Since the major numerical issue in the CBR method is
to solve a normal eigenvalue problem, the numerical practi-
cality of the method becomes better as the transport can be
solved with a lower number of energy spectra. Generally,
the practicality would be thus limited in multi-band sys-
tems, since multi-band approaches need a larger number of
spectra to cover a certain range of energy than the single
band EMA does. We, however, claim that the RTDs could
be one category of TB devices, for which the multi-band
CBR method becomes particularly practical in simulating
transport, and the numerical utility can be even extended to
FETs when the CBR method is coupled to the KP band
model. To support this argument, we simulate the electron
resonance tunneling in a 3D TB RTD, which is basically a
Si nanowire, but has a single phosphorous donor in the
channel center, and the hole-transport of a 3D KP Si nano-
wire FET. We examine numerical practicalities of the
multi-band CBR method in terms of the accuracy and
speed with respect to the reference results obtained by the
RGF and WF algorithm and observe that the CBR method
gives fairly accurate TR and DOS profiles near band edges
of contact band structures.

In terms of the speed in a serial mode, the strength of
the CBR method over the RGF algorithm depends on the
size of the Hamiltonian such that the CBR shows a better
performance than the RGF, as a larger block matrix is
required to represent the unit-slab of devices. But the speed
of the WF method is still better than the CBR method, as the

CBR method consumes time to store a full complex matrix
during the process of calculations. In a parallel mode, how-
ever, the CBR method starts to beat both the RGF and WF
algorithm, since the full matrix can be stored into multiple
clusters in a distributive manner, while the scalabilities of
both the RGF and WF algorithm are limited, due to the na-
ture of recursive and direct-solver–based calculations,
respectively.
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