
Dark Silicon is Sub-Optimal and Avoidable

Hamza Bin Sohail

Mithuna Thottethodi

T. N. Vijaykumar

TR-ECE-11-22

November 1, 2011

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University

West Lafayette, IN 47907-1285

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/9346504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dark Silicon is Sub-Optimal and Avoidable

Abstract
Several recent papers argue that due to the slowing down of

Dennard’s scaling of the supply voltage future multicore per-
formance will be limited by dark silicon where an increasing
number of cores are kept powered down due to lack of power.
Customizing the cores to improve power efficiency may incur
increased effort for hardware design, verification and test, and
degraded programmability. In this paper, we show that dark
silicon is sub-optimal in performance and avoidable, and that a
gentler, evolutionary path for multicores exists.

We make the key observations that (1) previous papers exam-
ine voltage-frequency-scaled designs on the power-performance
Pareto frontier whereas the frontier extends to a new region
derived by frequency scaling alone where voltage-scaled de-
signs are infeasible, and (2) because memory latency improves
only slowly over generations, performance of future multicores’
workloads will be dominated by memory latency. Guided by
these observations and a simple analytical model, we exploit
(1) the sub-linear impact of clock speed on performance in the
presence of memory latency, and (2) the super-linear impact
of throughput on queuing delays. Accordingly, we propose an
evolutionary path for multicores, called successive frequency
unscaling (SFU). Compared to dark silicon. SFU keeps pow-
ered significantly more cores running at clock frequencies on
the extended Pareto frontier that are succesively lowered every
generation to stay within the power budget. The higher active
core count enables more memory-level parallelism, non-linearly
offsetting the slower clock and resulting in more performance
than that of dark silicon. For memory-intensive workloads, full
SFU, where all the cores are powered up, performs 81% better
than dark silicon at the 11 nm technology node. For enterprise
workloads where both throughput and response times are im-
portant, we employ controlled SFU (C-SFU) which moderately
slows down the clock and powers many, but not all, cores to
achieve 29% better throughput than dark silicon at the 11 nm
technology node. The higher throughput non-linearly reduces
queuing delays and thereby compensates for the slower clock,
resulting in C-SFU’s total response latency to be within +/- 10%
of that of dark silicon.

1. Introduction
Historically, CMOS scaling has reduced transistor area and per-
transistor dynamic power by about half and has improved switch-
ing speed by about 40% from one technology generation to the
next. Specifically, Dennard’s scaling of the supply voltage has
allowed doubling the number of transistors without significantly
worsening the dynamic power [8]. Recently, however, on one
hand, Dennard’s scaling has slowed down significantly due to
its undesirable side-effects of higher leakage, narrower noise
margins, and worse reliability (e.g., supply voltage reduces only

by 2% now). On the other hand, transistor count, and hence
the number of cores in a multicore, continue to double. Con-
sequently, there is an exponential divergence between the core
count and the per-core power Unfortunately, the total chip power
budget cannot be increased due to limits on cooling and power
delivery (i.e., the total chip power will remain constant). These
trends imply an increasing power shortage in future generations.

A recent paper [9] analyzes these trends and asserts that an
increasing number of cores must be kept powered down in future
generations and that future multicore performance is fundamen-
tally limited by dark silicon. Indeed, the imminence of dark
silicon has been presaged for some time now [1] 1. To alleviate
the resulting performance loss, other papers [7, 10, 15] have
suggested customizing the cores for specific functionalities to
improve power efficiency so that more cores can be powered
with the same power budget. Unfortunately, the customization
option puts multicores on a potentially arduous path of (i) re-
quiring customization to provide exponential improvements of
power efficiency (i.e., every generation better than the previous),
(ii) incurring increased effort for hardware design, verification,
and test, and (iii) potentially degraded programmability.

In this paper, we show that dark silicon is sub-optimal in per-
formance and avoidable, and that a gentler, evolutionary path
exists where customization may be optional but not essential.
Previous dark silicon papers [9, 10] examine design points along
the power-performance Pareto frontier covering a large space
of large and small core designs and voltage-frequency-scaled
operating points. The papers assert that the dark-silicon configu-
ration, in which a subset of the cores run at the Pareto-optimal
clock speed while the rest are kept powered down, achieves the
optimum performance for a given technology generation and
power budget.

We make the key observations that (i) because voltage-scaled
design points are infeasible, the Pareto frontier extends to a new
region derived by frequency scaling alone; and (ii) because mem-
ory lags far behind processor clocks in speed, performance of
most realistic workloads for future multicores will be dominated
by memory latency and not processor clock speed (most future
multicores with 16 or more cores are destined for servers with
memory-intensive workloads). Our key result combines these
two observations to show that lower frequencies on the new
extended Pareto frontier enable powering of more or, in many
cases, all cores of a multicore which achieve more overlap of
memory latency and better performance than dark-silicon con-
figurations (note that our claim is better, but not optimum, per-
formance). We show that our results hold despite techniques for
reducing, hiding, or tolerating memory latency via 3-D stacked
memory, out-of-order issue, and simultaneous multithreading,

1The term “dark silicon” appears to have been coined by ARM CTO Mike
Muller.

1

respectively.

We arrive at this result by exploiting two known non-linear
effects, the first of which is captured by a simple analytical
model for multicore performance. Our model shows that in the
degenerate case of absence of memory latency, more cores run-
ning at slower clocks perform as well as fewer running at faster
clocks under the same power budget as long as the workloads are
sufficiently parallel (a condition also necessary for multicores
in general). In the presence of memory latency, however, more
cores running at slower clocks perform better than fewer cores
running at faster clocks. This reversal occurs because of the non-
linear impact of clock speed on performance in the presence of
memory latency where more active cores achieve more overlap
of memory latency so that the dominant memory component
of execution time reduces far more than the slight increase in
the smaller non-memory component due to the slower clock. In
other words, our key insight is that slow silicon is better than
dark silicon as long as the slow silicon makes memory accesses.
While voltage scaling has historically exploited the non-linear
(cubic) relationship between power and voltage, we propose
that clock-performance non-linearity be exploited in the post-
Dennard era. Due to this fundamental non-linearity, dark-silicon
performance limit can be exceeded for many realistic multicore
workloads.

Based on our model’s predictions, we propose a gentler, evolu-
tionary path for multicores than customized architectures, called
successive frequency unscaling (SFU), where more cores than
dark silicon (and in many cases, all cores) are kept powered
and run at successively slower clocks every generation to bridge
the exponential divergence between the core count and per-core
power in the post-Dennard era. While the linear relationship
between power and frequency is well known, this paper is the
first to propose successively slower clocks; dynamic voltage and
frequency scaling (DVFS) dynamically changes the clock speed
up or down for good power-performance but does not employ
successively slower clocks.

We employ SFU in two contexts with different performance
metrics. In the first context of workloads where job execution
time is the only metric (e.g., scientific applications), we em-
ploy full SFU wherein we unscale frequency to power all the
cores. Surprisingly, despite considerably slower clocks in later
generations (e.g., sub-GHz) full SFU exceeds the dark silicon
performance limit. Not surprisingly, however, SFU does not
completely close the gap between dark silicon and a power-
unconstrained system due to the slower clock. In the other con-
text of enterprise workloads (e.g., on-line transaction processing)
where both throughput and response latency matter, the slower
clock of full SFU would degrade single-thread performance, and
hence response latency. Accordingly, we employ controlled suc-
cessive frequency unscaling (C-SFU) which moderately slows
down the clock and powers many, if not all, cores to achieve
better throughput than dark silicon. C-SFU avoids degrading re-
sponse latency despite the moderate clock slowdown by exploit-
ing the second non-linearity that the higher throughput of C-SFU
non-linearly reduces the queuing component of response latency

P
o

w
e

r
(V

2
f)

VFS

Composite Pareto Frontier

Voltage scaling feasible

Voltage scaling infeasible

P
o

w
e

r
(V

Performance (f)

VFS

FS

VFS'

Figure 1: Power-performance Pareto frontier for perfect memory

and thereby compensates for the slower clock. We emphasize
the simplicity of SFU which achieves better performance while
incurring virtually no design effort or complexity, and thereby
provides a viable evolutionary path for multicores.

The key contributions of this paper are:
• We refute the widely-believed inevitability and optimality of

dark silicon. While our results may seem obvious in hindsight,
dark silicon was published in ISCA and selected in 2012
Top Picks implying that our contrary results are not known;
further, refutation, by definition, cannot be incremental over
the assertion it refutes; and

• We propose the unusual idea of successively slower cores to
stay within the power budget in the post-Dennard era.
The key results of this paper are:

• for memory-intensive workloads, SFU performs 81% better
than dark silicon at the 11 nm technology node whereas for
compute-intensive, workloads SFU performs similarly; and

• for response-time-sensitive enterprise workloads, C-SFU
achieves 29% better throughput than dark silicon at the 11
nm technology node while maintaining the total response
latency including queuing delays to be within +/- 10%.
The rest of the paper is organized as follows. Section 2 dis-

cusses our intuition and qualitative arguments behind SFU. Sec-
tion 3 presents a simple model for multicore performance to
provide quantitative corroboration of our intuition. Sections 4
and 5 validate our model using simulations of commercial and
scientific workloads. Finally, we conclude in Section 6.

2. Intuition behind successive frequency unscal-
ing

We now offer a high-level intuition on how our design circum-
vents the dark silicon limit on performance. In [9], the au-
thors consider a large number of design points on the power-
performance Pareto frontier (each point corresponds to a core
design operating at some fixed voltage and frequency). Effec-
tively, they consider multicore systems built with cores that
achieve the best power-performance. Consequently, any attempt
to achieve higher performance must face the following logical
constraints. First, the new design point may not lie on the Pareto
frontier because those points have already been examined in [9].
Second, the new design point (say X) may not lie inside the
frontier because of the nature of the Pareto frontier. In such
cases, one can always find other design points on the frontier
(say Y) that dominate X; that is Y operates at the same power

2

P
e
rf
o
rm

a
n
ce

w/ memory

P
e
rf
o
rm

a
n
ce

Frequency

w/ memory

w/o memory

Figure 2: Frequency-Performance relationship (with and without
memory latency effects)

as X while achieving higher performance. Then, we can simply
replace cores of type Y with those of type X in the multicore and
achieve higher performance for the same power budget.

Our design adheres to the above logical constraints. However,
we show that the Pareto frontier may be extended to regions
in the power-performance space that Esmailzadeh et al. [9] ex-
plicitly remove from consideration. Figure 1 illustrates the re-
lationship between power on the Y-axis (proportional to V 2 f)
and performance with perfect one-cycle memory on the X-axis
(proportional to frequency f) under voltage-and-frequency scal-
ing (VFS) and frequency-only scaling (FS). Note, the axes are
shifted; the origin in Figure 1 does not correspond to the zero-
power-performance point. We consider memory latency effects
later in this section. The VFS curve illustrates the cubic relation-
ship between power and perfect-memory performance. However,
because of the inherent limits on voltage scaling, the VFS curve
cannot extend indefinitely (the dashed VFS curve shown in the
VFS-infeasible region). Esmailzadeh et al. rule out FS as an op-
tion by arguing that VFS dominates FS, which is indeed true in
the region where VFS is feasible. However, in the VFS-infeasible
region, we may use lower power-performance operating points
by scaling down frequency under frequency scaling (FS) alone
where power and perfect-memory performance are linearly re-
lated. Such FS design points are also on the Pareto frontier
because there are no feasible VFS design points that dominate
the FS design points. Thus, the Pareto frontier may be viewed
logically as being a composite of (1) the old VFS frontier and
(2) the new FS-only frontier.

Such scaling down of frequency – frequency unscaling – re-
duces the per-core power consumption and thus enables spread-
ing the power budget over a larger number of cores. However,
such spreading is useful only if it achieves higher overall multi-
core performance than dark silicon. Recall from Section 1 that
SFU outperforms the dark silicon limit because of the non-linear
impact of memory latency on the power-performance tradeoff.

Figure 2 qualitatively illustrates the relationship between
performance (Y-axis) and frequency (X-axis) with and with-
out memory effects. As with Figure 1, the axes of Figure 2
are also shifted; the origin in Figure 2 does not correspond to
the zero-frequency-and-performance point. Not surprisingly,
performance-frequency relationship is effectively sub-linear
when memory latency effects are included because the fixed
memory latency remains unchanged when frequency is scaled.

When frequency is scaled up (to the right of the intersection
in Figure 2), we observe a less-than-proportional increase in
performance. However, when scaling down the frequency (to
the left of the intersection), the same sub-linearity is advanta-
geous in the sense that a large reduction in frequency results
in less-than-proportional reduction in performance. Recall our
earlier observation that the power-frequency relationship under
frequency-only scaling is linear. This difference in the impact
of frequency unscaling on power (linear) and performance (sub-
linear) implies that our design loses only a little in performance
due to its scaled-down frequency while gaining much more in
power to keep many more cores active than dark silicon. These
active cores achieve more overlap of memory latency, far ex-
ceeding the performance loss due to the lower frequency and
enabling frequency unscaling to achieve higher performance
than the dark-silicon limit. We emphasize that the non-linear
impact of memory latency is crucial; if the impact were linear,
frequency unscaling would yield no benefit.

The above discussion provides the basic qualitative arguments
on the power-performance tradeoffs of frequency unscaling.
Next, in Section 3, we develop a quantitative model of the com-
bined impact of frequency unscaling and memory latency effects
on overall multicore performance.

3. A multicore power-performance model

Our goal is to show that keeping all the cores powered and run-
ning at successively slower clocks over generations to stay within
the power budget achieves higher performance than the dark sili-
con configuration where a subset of the cores are kept powered
and running at faster clocks while the rest of the cores are pow-
ered down. To arrive at this result, we build a simple analytical
model of multicore performance. Our model is derived from
Amdahls’ Law [4] and more recent revisits of Amdahl’s Law in
the context of multicores [11, 9]. However, recall from Section 1
that the key reason for our better performance is more cores
achieving higher overlap of memory latency. Accordingly, our
model specifically includes memory latency effects in addition to
the usual serialization effects. While real-world applications may
serialize arbitrary number of the threads for arbitrary amounts of
time, our model follows the previous models in making the sim-
plifying assumption that the parallel parts are fully parallel (i.e.,
no inter-thread dependence) and serial parts are fully serial (i.e.,
only one thread runs). Further, while voltage scaling has slowed
down significantly in the near past, it has not stopped. However,
continued voltage scaling even slowly is hard due to a multitude
of inexorable trends such as higher leakage, lower noise mar-
gins, lower reliability especially of latches and SRAM cells, and
higher susceptibility to soft errors. Consequently, we assume
that voltage simply does not scale over technology generations.

3.1. Model

We first describe our model for a multicore that is not constrained
by power. Then, we modify this model to include power con-
straints either via dark silicon (DS) or successive frequency
unscaling (SFU). Let

3

• s be the serial portion of sequential execution time (i.e., 1− s
is the parallel portion);

• c be the factor by which the clock frequency improves every
technology generation (e.g., if the clock speed improves by
20% then c = 1.2); and

• m be the fraction of sequential execution time due to memory
latency (i.e., 1−m is the non-memory, compute fraction).

To clarify our exposition, we relate the fraction m to the off-
chip miss rate and main memory latency as follows: Assuming
the number of off-chip misses per kilo instructions (MKPI) is r,
the per-access average exposed main memory latency is memlat
in processor clocks, and the processor clock cycles per instruc-
tion (CPI) with perfect on-chip caches (i.e., 0% off-chip miss
rate) is instrlat then

m = r×memlat/(1000× instrlat + r×memlat).
For example, assuming an off-chip miss rate of 2% which usually
corresponds to r of 5, memlat of 400, and instrlat of 0.5 gives m
= 0.80. We note that memlat denotes exposed memory latency,
and hence covers both in-order- and out-of-order-issue cores
though the latter’s mem(lat) and m values would be smaller than
the former’s.

To simplify the model, we assume that

• both the parallel and serial portions of the application incur
the same fraction m of execution time due to memory latency;

• employing more parallel cores does not change the fraction m
of execution time due to memory;

• the factor c is constant across generations while in reality
clock speed improvements may reduce in later generations
resulting in an overall average of c;

• the cores do not employ simultaneous multithreading (SMT)
(we include SMT later); and

• memory bandwidth scales with the number of cores (we revisit
this assumption in our results).

Assume that execution time is split up into serial and parallel
portions each of which include non-memory, compute fraction
and memory fraction so that the total execution time can be ex-
pressed as

s× ((1−m)+m)+(1− s)× ((1−m)+m)
Over n technology generations, the non-memory, compute frac-
tion 1−m scales as (1−m)/cn due to clock speed improvements
while the memory fraction m remains unchanged. This scaling
occurs for both the serial and parallel portions so that the serial
portion scales as

s× (
1−m

cn +m)

and the parallel portion scales as

(1− s)× (
1−m

cn +m).
In addition, the parallel portion gets further sped up by a factor
of 2 every generation due to the doubling of the core count so
that the parallel portion scales overall as

(1− s)× (
1−m

cn +m)

2n .
Thus, after n generations since the last uniprocessor, a power-

unconstrained (PU) multicore achieves a net speedup of

1

s× (
1−m

cn +m)+
(1− s)× (

1−m
cn +m)

2n

(1)

We note that while the 1−m compute terms in both the serial
and parallel portions diminish exponentially over generations
due to faster clocks, the m memory term in the parallel portion di-
minishes exponentially due to more cores’ higher memory-level
parallelism. For memory-intensive workloads, m is generally
greater than 1−m making the number of cores more important
than the clock speed for performance (from the above example,
m is 0.80). As we will see shortly, this difference is the key
contrast between DS and SFU where the former keeps only a
subset of the available cores powered whereas the latter keeps
all the cores powered albeit at a slower clock.

For the DS multicore which is constrained by power, let p be
the factor by which the per-core dynamic power scales every
technology generation (e.g., if power reduces by 20% then p
= 0.8). Leakage power, which generally increases with lower
supply voltage and higher transistor count, remains a constant
fraction of the total power budget in post-Dennard generations
(e.g., 25-30%) due to two reasons: (1) voltage does not scale
anymore and (2) the transistor speed is reduced to compensate
for the doubling of transistor count every generation (e.g., by
fine-tuning the transistor threshold voltage). Recent commercial
microprocessors follow this methodology to keep leakage under
check [6]. Because the total power budget and leakage are
constant across generations, the dynamic power budget is also
constant. Further, we assume that p, like c, is constant across
generations while in reality dynamic power improvements may
reduce in later generations resulting in an overall average of p.

The number of cores that can be powered under the dark
silicon option after n generations is (2×0.5/p)n = (1/p)n. The
DS multicore differs from the PU multicore only in the number
of active cores —- (1/p)n versus 2n; the DS configurations enjoy
identical clock speed improvements and incur similar memory
latency effects. Therefore, the DS multicore’s net speedup after
n generations is

1

s× (
1−m

cn +m)+
(1− s)× (

1−m
cn +m)

1/pn

(2)

We see that the DS multicore exploits significantly less memory-
level parallelism than the PU multicore due to fewer active cores.
This limitation considerably degrades performance for realistic
multicore workloads which are memory-intensive.

To satisfy the power constraint, SFU successively scales down
the clock over generations so that the per-core power from one
generation to the next is half allowing twice as many cores to
be powered. Let α be the factor by which the clock speed is
unscaled every generation on top of the factor c provided by tech-
nology scaling, so that α × p = 0.5. The SFU multicore differs

4

from the power unconstrained multicore only in the scaling of
the clock speeds —– cn versus (α × c)n, while maintaining the
same number of active cores (i.e., 2n). Consequently, the SFU
multicore’s net speedup after n generations is

1

s× (
1−m

(α × c)n +m)+

(1− s)× (
1−m

(α × c)n +m)

2n

(3)

Comparing DS and SFU multicores, we consider all four com-
ponents of execution time (the denominators in the above per-
formance expressions): serial-non-memory (s× (1−m) terms),
serial-memory (s×m terms), parallel-non-memory ((1− s)×
(1−m) terms), and parallel-memory ((1− s)×m terms). DS
reduces the serial-non-memory component by the factor of cn

and is better than SFU which reduces by the smaller factor of
(α × c)n. However, this component is likely to be small for par-
allel, memory-intensive workloads. DS and FSU are equal in the
serial-memory and parallel-non-memory (the second and third)
components. The equality in the second component is obvious.
To see the equality in the third component, DS reduces the com-
ponent by a factor of pn/cn whereas SFU reduces by a factor of
2n/(α ×c)n where α × p = 0.5. DS reduces the (fourth) parallel-
memory component by a factor of (1/p)n which is worse than
SFU’s factor of 2n, highlighting our insight that slow silicon is
better than dark silicon in the presence of memory latency (e.g.,
if p = 0.8, then DS’s and SFU’s factors are 1.25n and 2n, re-
spectively, giving SFU a significant advantage in memory-level
parallelism). As discussed above, in memory-intensive parallel
workloads, the parallel-memory component is likely to dominate
the other components, magnifying SFU’s advantage.

Due to these reasons, SFU performs better than DS and it is
possible and better to keep all the cores powered for memory-
intensive workloads (i.e., DS is both avoidable and sub-optimal).
The above quantitative analysis closely matches the qualitative
analysis in Section 2.
3.1.1. Controlling single-thread latency: SFU, as proposed,
improves (1) overall execution time of parallel workloads (e.g.,
scientific workloads) and (2) throughput of enterprise workloads
(e.g., on-line transaction processing). However, full SFU re-
quires scaling the clock by (α × c) every generation which may
degrade single-thread performance, and hence response latency,
of enterprise workloads. This degradation may be considerable
despite the sub-linear impact of clock on performance particu-
larly in later generations where the clock is slowed down signifi-
cantly with full unscaling. To address this issue, we exploit the
other non-linear impact of throughput on queuing delays where
higher throughput super-linearly reduces the queuing delay com-
ponent of response latency as dictated by queuing theory, and
thereby compensates for the slower clock. Based on this non-
linear relationship, we propose to reduce the unscaling factor
α compared to full SFU, still allowing more cores to be pow-
ered than DS, though not all the cores like full SFU. We choose
α so that the resultant degradation of single-thread execution
time is matched by the gain in the queuing delay due to higher

Table 1: Clock and active core scaling with technology genera-
tions (c = 1.07, p = 0.74, α = 0.68)

Parameter Arch. G0 G1 G2 G3 G4

Clock (GHz)
PU,DS 3.2 3.42 3.66 3.92 4.19
FU 3.2 2.33 1.69 1.23 0.90

Active cores
PU,FU 4 8 16 32 64
DS 4 6 8 12 16

throughput, resulting in similar total response latency and higher
throughout as compared to DS configurations. We propose to
apply such controlled SFU (C-SFU) only for response-latency-
sensitive workloads and not for others.

Because C-SFU allows only a subset of the cores to be pow-
ered, we consider the option of converting the area of the remain-
ing unpowered cores, which would otherwise be dark silicon,
into additional last-level cache. While the same design can
choose dynamically between full or controlled SFU based on
the workload, this option cannot be applied dynamically and, if
employed, would require different designs for full and controlled
SFU. We consider this conversion option for DS configurations
as well. Because memory is more dense in area than logic, this
conversion adds transistors whose leakage is accounted for by
giving up a few cores.
3.1.2. Effect of SMT: The above model does not include SMT.
It may seem that because SMT reduces each core’s exposed
memory latency via better thread overlap, SFU’s opportunity
would decrease with SMT. However, SMT increases the num-
ber of threads to improve thread ovelap but does not change
each thread’s compute-memory overlap or performance (ignor-
ing any extra cache misses due to SMT’s increased cache pres-
sure). SMT’s thread overlap is no different than that achieved
by the cores of a multicore (i.e., one core’s memory latency
is overlapped by the other cores’ computation and memory ac-
cesses) and the non-linear impact of memory latency on power-
performance tradeoff holds in a multicore irrespective of the
number of cores, as seen in Equation 1. Therefore, the non-
linearity holds for SMT as well, implying that the above model
stays valid for SMT and that SFU opportunity would remain
unchanged with SMT. In reality, SMT’s increased cache pres-
sure may actually increase cache misses and thereby increase
the opportunity. We include SMT in all our results.

As an aside, we note that unlike SMT, out-of-order issue does
increase each thread’s compute-memory overlap and therefore,
may decrease SFU’s opportunity. We evaluate this issue in our
results.

3.2. Model’s predictions

To illustrate our model’s predictions, we analyze four regions
of the workload-characteristics space: (1) mostly serial and
memory-unintensive (high s and low m), (2) mostly serial and
memory-intensive (high s and high m), (3) highly and memory-
unintensive (low s and low m), and (4) highly parallel and
memory-intensive (low s and high m). In Figures 3(a) through

5

(d), we show the four regions with s = 0.8 and m = 0.2, s = 0.8
and m = 0.8, s = 0.01 and m = 0.2, and s = 0.01 and m = 0.8,
respectively. The figure compares the PU (Equation 1), DS,
(Equation 2), and SFU (Equation 3) multicores across technol-
ogy generations. Each graph plots the speedups for the systems
over a 4-core multicore, which corresponds to our generation 0,
in the Y axis, and technology generations past our generation 0
on the X axis. We assume that the clock and power improvement
factors across generations, c and p, are 1.07 and 0.74, respec-
tively, in line with the conservative scaling trends in [7]. Based
on this p, the frequency unscaling factor, α , is 0.68. Using these
scaling values, Table 1 shows the clock frequencies and the num-
ber of active cores across generations (G0 through G4) for PU,
DS, and SFU multicores.

 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 1 2 3 4

S
pe

ed
up

Generation

PU
DS

SFU 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 1 2 3 4

S
pe

ed
up

Generation

PU
DS

SFU

(a) (b)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 1 2 3 4

S
pe

ed
up

Generation

PU
DS

SFU

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0 1 2 3 4

S
pe

ed
up

Generation

PU
DS

SFU

(c) (d)

Figure 3: Speedups across generations of PU, DS, and SFU mul-
ticores over a four-core multicore (generation 0) for
the following workloads: (a) mostly serial and memory-
unintensive, (b) mostly serial, and memory-intensive,
(c) mostly parallel and memory-unintensive, and (d)
mostly parallel and memory-intensive

Figure 3(a) shows that for serial workloads (s = 0.8), the ac-
tive core count does not matter and the DS multicore performs
as well as the PU multicore. On the other hand, the SFU mul-
ticore performs worse due to its slower clock slowing down
the serial-non-memory component. However, serial workloads
are unimportant for future multicores which are destined for
servers where multi-threaded workload is the norm. As such, the
speedups are low even for the PU multicore due to the highly-
serial workload, placing SFU within normal range. Further,
power is not a problem for such workloads which need only a
few cores.

The same analysis holds for Figure 3(b) though the speedups
are even lower compared to those of Figure 3(a) because of the
higher impact of memory latency which does not scale.

In Figure 3(c) which shows parallel, memory-unintensive

Table 2: Scaling factors relative to Gen0 (45nm)

Parameter Gen0 Gen1 Gen2 Gen3 Gen4
Tech Node (nm) 45 32 22 16 11
Clock (c) 1.00 1.10 1.19 1.25 1.30
Vdd 1.00 0.93 0.88 0.86 0.84
Capacitance 1.00 0.75 0.56 0.42 0.32
Dyn. Power (p) 1.00 0.71 0.52 0.39 0.29
SFU factor (α) 1.00 0.70 0.48 0.32 0.22

workloads, the PU multicore performs better than both the DS
and SFU multicores which perform similarly. The major non-
memory component of this workload is affected by both the DS
multicore’s fewer active cores and the SFU multicore’s slower
clock, as compared to the PU multicore (Table 1). The DS
and SFU multicores perform similarly due to their performance-
equivalence for the parallel-non-memory component as shown
above in Section 3.1. However, memory-unintensive workloads
are likely to be uncommon for servers targeted by multicores.

Finally, Figure 3(d) shows that for parallel, memory-intensive
workloads, the PU multicore performs better than the DS multi-
core for the same reason as Figure 3(c). Despite the lack of power
constraints, the PU multicore does not achieve linear speedups
with the number of cores due to the serial portions (Amdahl’s
Law effect). The SFU multicore performs better than the DS
multicore due to higher memory-level parallelism achieved by
SFU’s more, albeit slower, cores in the major parallel-memory
component of this workload. Nevertheless, SFU does not fully
close the gap between the PU and DS multicores due to SFU’s
slower clock (Table 1) which affects both the serial-non-memory
and parallel-non-memory components in the workload. Thus,
this analysis corroborates the main results of the paper that dark
silicon is sub-optimal and avoidable for many memory-intensive
workloads. We show in Section 5 that our real-world commercial
and scientific workloads closely track Figure 3(d).

4. Experimental Methodology
We run full-system simulations using Wisconsin GEMS [12]
built on top of Simics [3]. We simulate SPARC-based multicores
running Solaris 10. In the remainder of this section, we describe
the technology and architecture parameters for performance and
power, and the benchmarks used in our experiments.

Technology Scaling: Recall that our technology scaling pa-
rameters are from the conservative projections by Borkar et
al. [7]. Based on the projections, Table 2 shows the improve-
ment factors over 45nm technology node for clock frequency,
supply voltage (Vdd), capacitance, and per-core power. Recall
that the clock and power factors are denoted as c and p in Sec-
tion 3.1, The table also shows SFU factors (α in Section 3.1
where α ∗ p = 0.5).

Multicore architecture: We assume a tiled organization in
which each multicore “tile” comprises a core, private L1 I- and
D-caches, and a local bank of the shared, unified L2. The tiles
are organized as a 2D-mesh network with memory controllers

6

are at the edges of the mesh network.

Core: While our baseline generation assumes in-order-issue,
two-way SMT cores (line 1 in Table 3), we also show some
brief results for out-of-order-issue cores. Because our scaling
numbers in Table 2 are based on Intel designs citeborkar-scaling
we use two-way SMT cores which is common for Intel designs
so that the scaling numbers match the core’s architecture. Based
on the per-core power and clock factors from Table 2, we list
the number of active cores and the actual clock frequencies for
power-unconstrained (PU), dark-silicon (DS), and SFU multi-
cores in Table 4. The core counts for PU and SFU scale as per
Moore’s Law. Recall from Section 2 that (1) no further voltage
scaling is feasible and dark-silicon does not employ frequency
scaling alone and instead employs fewer active cores ((1/p)n

cores), and (2) frequency unscaling occurs on top of the clock
frequency for the power-unconstrained multicore of each genera-
tion. While c and p are assumed to be constants in Section 3.1,
Borkar’s scaling assumes that the factors vary from one gener-
ation to the next. Consequently, clock frequencies in Table 1
and Table 4 differ slightly.

Cache Capacity and Access Latency: We hold key parame-
ters of the L1 cache and the per-core L2 bank (capacity, block
size, associativity and access latency in cycles) constant across
generations (see lines 2 – 8 in Table 3). The aggregate L1 and L2
capacities double every generation as per Moore’s Law. Though
dark-silicon multicores keep many of their cores powered down,
they use all of the shared L2 cache including the banks in the
inactive cores’ tiles (i.e., all three designs, PU, DS, and SFU,
have the same amount of L2 cache in each generation).

We conservatively assume that the access latencies in ns of L1
and L2 slice scale at the same rate as overall frequency improve-
ment. Consequently the access latencies in cycles, stays constant
across generations for PU and DS (17 cycles, line 8 in Table 3).
In SFU, the successively slower clocks imply correspondingly
fewer number of cycles for L2 slice access (line 7, Table 4).

On-chip Network: We assume a simple, dimension-order
routed, 2D mesh network (line 9 in Table 3). Network latencies
(number of network hops) for remote L2 banks increase with the
network size which grows across generations (line 8 in Table 4).
Our simulator models a simple 1-cycle router delay per hop. In
addition, we assume link latency scales slower than logic, as per
the well-documented wire-delay phenomenon. Conservatively,
we assume a modest 1-cycle increase in latency at Gen3 for
power PU and DS. Because SFU sees slower clocks, its link
latency in cycles reduces by one in later generations even after
accounting for slower wires (lines 9 – 10 in Table 4).

DRAM Latency and Bandwidth (including impact of die-s-
tacking): There are two sources of DRAM latency improve-
ment: technology scaling every generation and one-time move
to 3-D die-stacking. We assume that the former yields the usual
2% per generation (optimistic estimate as trends indicate no im-
provement in DRAM latency [2]) and show the resultant memory
latency in cycles for PU, DS, and SFU in lines 11 – 12 in Table 4.
We assume that the latter achieves the expected 30% latency

Table 3: Invariant parameters across generations

Parameter Values

1 SMT contexts per core 2
2 Private L1D size (KB) 64
3 Private L1I size (KB) 64
4 Private L1 associativity 4
5 L1 access (cycles) 3
6 Shared L2 associativity 32
7 Shared L2 block size (bytes) 64
8 L2 slice (cycles) (PU/DS) 17
9 Network Topology 2D mesh
10 Channel width (bits) 64
11 Mem. Ctrl. Queue (entries) 32
12 Page mode closed

reduction [10, 5] which we evaluate in Section 5.4.
We assume that the number of DRAM banks (i.e., the internal

DRAM bandwidth) doubles every generation, in line with the
scaling of DRAM density (line 13 in Table 4). We show our
main results assuming that processor-memory bandwidth scales
across generations (i.e., the number of memory channels scale
from 1 to 16 across four generations, see line 14 in Table 4).
This assumption is in anticipation of the imminent deployment
of 3-D stacking technology. Further, a recent paper [14] shows
that compression and other techniques can allow conventional
pin bandwidth to scale beyond 100 cores, covering many future
generations. Nevertheless, we include results constraining the
number of memory channels in Section 5.3.

Leakage: As explained in Section 3.1, recent commercial mi-
croprocessors increase transistor threshold voltages and decrease
transistor speeds to hold leakage at a constant 25-30% of the
constant total power budget [6]. Consequently, the total dynamic
power budget is also a constant. Borkar’s conservative scaling,
and therefore Table 2, include the effects of such adjustments.
Accordingly, we assume a dynamic power budget of 112 W for
all generations.

Workloads: We run the commercial and scientific workloads
shown in Table 5. While the commercial workloads are natu-
rally memory-intensive, the scientific workloads include both
memory- and compute-intensive categories. To account for the
general trend of data increasing with cache sizes across genera-
tions, we scale up the workload size across generations so that
the off-chip miss rate (misses per kilo instructions) remains about
the same across generations as shown in Table 5. Even higher
miss rates would give more opportunity for frequency-unscaled
multicores to achieve even more memory latency overlap than
dark-silicon multicores. Consequently, the constant miss rate
is a conservative choice. While the scientific workloads are
amenable to easy scale-up by increasing the datasets, meaning-
fully scaling up the commercial workloads’ datasets to 128 cores
requires significant amount of domain expertise to achieve real-
istic settings (e.g., tune various benchmark parameters, choose
scalable versions, and avoid software bottlenecks). Instead, we

7

Table 4: Parameter scaling with technology generations

Parameter Values
Gen0 Gen1 Gen2 Gen3 Gen4 Scaling Comments

1 Number of cores (PU/SFU) 4 8 16 32 64 2X per gen
2 Number of cores (DS) 4 6 8 12 16 Power-limited
3 Clock (GHz) (PU/DS) 3.2 3.52 3.81 4 4.16 As per Table 2
4 Clock (GHz) (SFU) 3.2 2.48 1.83 1.28 0.89 As per Table 2
5 Shared L2 size (MB) 4 8 16 32 64 2X per gen
6 Shared L2 banks 4 8 16 32 64 2X per gen
7 L2 slice (cycles) (SFU) 17 12 9 6 4 Same as f scaling
8 Network 2x2 2x4 4x4 4x8 8x8
9 Link latency (DS/PU) 2 2 2 3 3 Slower than f scaling
10 Link latency (SFU) 2 2 2 1 1 Slower than f scaling
11 Memory (DS/PU) 320 344 368 380 400 2% reduction per gen
12 Memory (SFU) 320 240 180 124 86 2% reduction per gen
13 Number of DRAM banks 16 32 64 128 256 2X per gen
14 Number of memory channels 1 2 4 8 16 2X per gen
15 Number of instances (DS) 1 1 2 4 4 Problem size scaling
16 Number of instances (SFU/PU) 1 1 2 4 8 Problem size scaling

Table 5: Workloads: Description and Characteristics

Commercial Workloads MPKI
SPECjbb: version 2005, Java-based 3-tier client/server system workload with emphasis on the middle tier. Java server VB version
1.5 with parallel garbage collection. We simulate a system with 24 warehouses (~600 MB).

7.1

Online Transaction Processing (OLTP): models database transactions of a wholesale parts supplier. We use PostgreSQL 8.3.7
database system and DBT-2 test suite which implements TPC-C benchmark. We reduced number of items and districts per warehouse
and customers per district to allow a larger number of warehouse. We use a database of 25,000 warehouses (~5GB). We simulate 128
concurrent database connections.

2.4

Apache: version 2.2.9, a static web server workload with repository of 20,000 files (~500 MB). SURGE is used to generate web
requests by simulating 1600 clients, each with 25ms think time between requests.

17.9

Scientific Workloads (memory-intensive)
FFT: is a Splash benchmark that computes Fourier transforms. We run the transpose computation of 4 Million complex numbers
(~64 MB) for generation 0 to 2 and 16 Million complex numbers for generation 3 and 4.

10.2

canneal: is a Parsec benchmark that models cache-aware annealing to optimize routing cost of a chip design. We use the native
dataset (~100 MB). Systems for generations 0 to 2, 3 and 4 optimize 1, 2 and 4 chips respectively.

4.0

Streamcluster: is a Parsec benchmark that performs online clustering of an input stream. We use 1 million 128-dimensional points,
5000 intermediate centers (~100 MB) for generation 0 to 3 and and 2 million 128-dimensional points , 20000 intermediate centers (~
275 MB) for generation 4.

4.8

Scientific Workloads (compute-intensive)
Dedup: is a Parsec benchmark that performs next-generation compression with data deduplication. We use the simmedium dataset
for all generations.

0.3

Fluidanimate: is a Parsec benchmark that models fluid dynamics for animation purposes with Smoothed Particle Hydrodynamics
(SPH) method. We use the simmedium dataset for all generations.

0.6

Blackscholes: is a Parsec benchmark that computes option pricing with Black-Scholes Partial Differential Equation (PDE). We use
the simmedium dataset across all generations.

1.5

scale up the commercial workloads by consolidating multiple
instances of the same benchmark as shown in lines 15 – 16 of
Table 4 (i.e., homogeneous consolidation as done in [13]). This
methodology is in line with the trend in software consolidation
especially on large multicores [13].

5. Experimental Results

We begin with our main results (Section 5.1) in which we com-
pare across technology generations the performance of power-

unconstrained (PU), dark-silicon (DS), and SFU multicores run-
ning our commercial and scientific workloads. While the pre-
vious comparison uses in-order-issue processors, we evaluate
out-of-order issue processors in Section 5.2 to demonstrate that
their latency-hiding ability does not change our results. While
the main results assume that processor-memory bandwidth (i.e.,
the number of memory channels) scales across generations, we
show the effect of constraining the bandwidth in Section 5.3.
In Section 5.4, we study the effects of faster memory (e.g.,
via 3-D stacking). Finally, in Section 5.5, we compare the re-

8

sponse time (i.e., single-thread performance) and throughput
achieved by controlled unscaling (C-SFU) and DS for commer-
cial, transaction-processing workloads.

5.1. Performance

In Figure 4, we compare PU, DS, and SFU multicores across
technology generations. We evaluate full SFU here and cover
C-SFU later in Section 5.5. The figure shows performance nor-
malized to that of a generation-0, four-core, PU multicore on the
Y axis and technology generations past our generation 0 as well
as the benchmarks on the X axis. The normalized performance
for our consolidated commercial workloads (Section 4)is defined
as the improvement in transaction rate whereas that for our sci-
entific workloads is defined as improvement in execution time.
Recall that PU and DS multicores use the same clock frequencies
whereas the SFU multicore uses slower clock, and that while the
power-unconstrained and SFU (full unscaling) multicores keep
all the cores active, the DS multicore has fewer active cores.

From Figure 4, we observe that for all the benchmarks DS’s
relative performance improves slowly over generations with
dark-silicon lagging well behind PU, as also shown in [9]. This
lag is due to the difference in the number of active cores be-
tween PU and DS. By keeping all the cores active, albeit at
slower clocks, SFU performs significantly better than DS for
the memory-intensive benchmarks (i.e., specjbb, OLTP, apache,
FFT, canneal, and streamcluster in Table 5), as predicted in Fig-
ure 3(d). For the compute-intensive benchmarks (i.e., dedup,
fluidanimate, and black-scholes in Table 5), SFU performs simi-
lar to DS, as predicted in Figure 3(c). Because these benchmarks
and streamcluster do not scale to generation-4 (64, 2-way SMT
cores in PU) in our set up, we exclude those numbers. Over-
all, SFU achieves an average 81% improvement over DS for
memory-intensive workloads (generation-4 geometric means).
Recall from Section 3.2 that our model predicts this improvement
based on the reasoning that the higher memory-level parallelism
enabled by the greater number of active cores in SFU than in DS
more than offsets the slower clock in SFU.

To corroborate the above reasoning, we show the misses per
thousand instructions (MPKI) for the generation-0, PU multi-
core (see Table 5), and the average number of parallel memory
requests for PU, DS, and SFU multicores (see Table 6). Be-
cause we commensurately scale the cache and workload sizes
across generations Section 4, the MPKI for the other generations
are similar; and because all the three multicores have the same
amount of cache, the MPKI for the other multicores (DS and
FU) are similar (not shown). As expected, the memory-intensive
benchmarks’ usual but non-trivial MPKI (but well below the
excessive point of thrashing) combined with the greater number
of parallel memory requests in SFU than in DS indicate that SFU
achieves higher memory-level parallelism, and hence higher per-
formance. Because the compute-intensive benchmarks have low
MPKI (Table 5), the memory-level parallelism is low for both
systems which , therefore, perform similarly. The performance
results, which are the main claims of the paper, show that DS is
sub-optimal and avoidable, and that slow silicon is better than

dark silicon as long as the slow silicon makes memory accesses.
SFU, however, does not catch up to PU because while both

systems have the same number of active cores and hence achieve
the same amount of memory-level parallelism, the slower clock
in (full) SFU results in slower compute portion. Nevertheless,
the gap between SFU and PU is narrow in the earlier generations
and is wide only in the fourth generation, supporting our claim
in Section 1 that SFU provides a gentle, evolutionary path for
multicores which may need to be augmented with customized
cores only in later generations.

Because DS and SFU do not differ for compute-intensive
benchmarks, these benchmarks are not interesting for, and hence
are excluded from, the rest of our analysis.

5.2. Impact of out-of-order issue

Our results in Section 5.1 use in-order-issue cores whereas out-
of-order-issue cores can hide some memory latency via memory-
level parallelism. Because the key advantage of SFU over DS is
higher amount of memory-level parallelism, the memory-latency
hiding ability of out-of-order-issue cores may affect the advan-
tage. To resolve this issue, we show in Figure 5 performance
for generation-2 DS, SFU, and PU multicores normalized to that
of a generation-0, four-core, PU multicore (Y axis) running our
memory-intensive workloads (X axis), where all the systems
employ out-of-order-issue cores. We vary the number of SMT
contexts as 2 and 4 in the X axis. Because out-of-order-issue
simulations are long-running, we show results only for gener-
ation 2 (4-way SMT runs for streamcluster did not complete).
From the figure, we see that the results for out-of-order issue
closely match those for in-order issue generation-2 in Figure 4
except for FFT which saturates the memory bandwidth in all the
systems, as evidenced by excessive queuing at the memory con-
trollers. Overall, SFU retains its significant advantage over DS,
resulting in 23% improvement with 2-way SMT (for in-order
issue generation 2, the improvement is 39% in Figure 4). Further,
SFU’s advantage over DS increases from 2-way to 4-way SMT
due to increased cache pressure (Section 3.1.2). The lack of
difference between the results for in-order issue and out-of-order
issue stems from the fact that despite its memory-latency hiding
ability, out-of-order-issue cores cannot bridge the large gap in
the memory-level parallelism between SFU and DS.

5.3. Impact of processor-memory bandwidth

Our results in Section 5.1 assume that the processor-memory
bandwidth in terms of the number of memory channels scale
from 2 to 16 across the four generations. Because SFU ex-
ploits higher memory-level parallelism requiring more processor-
memory bandwidth than DS, we study the impact of processor-
memory bandwidth on SFU. Figure 6 shows performance on the
Y axis for generation-4 PU, DS, and SFU multicores normalized
to that of a generation-0, four-core, PU multicore (all in-order
issue) running our memory-intensive workloads (X axis) while
varying the number of memory channels (also on the X axis)
as 8 and 16 (default). We choose generation 4 because it has
the highest bandwidth demand. From the figure, we see that

9

specjbb oltp apache fft canneal streamcluster dedup fluid- blackscholes geomean

Benchmarks

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 G

en
0

animate

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4

Generation

SFUPU DS

Figure 4: Speedups of power-unconstrained, dark-silicon, and successively-frequency-unscaled multicores over a generation-0, four-
core, power-unconstrained multicore.

Table 6: Measured average number of parallel memory accesses

Benchmarks Gen0 Gen1 Gen2 Gen3 Gen4
PU DS FU PU DS FU PU DS FU PU DS FU

specjbb 1.4 2.5 1.8 2.3 4 1.8 2.6 6.8 1.9 3.1 19.6 2.0 5.5
oltp 1.3 1.5 1.4 1.5 2.1 1.5 1.6 2.7 1.6 1.8 6.4 1.7 2.6
apache 1.5 2.8 1.9 2.7 4.5 2.0 3.1 7.4 2.2 4.5 23.0 2.4 5.9
fft 1.4 2.6 1.9 2.6 4.9 1.9 4.0 9.3 2.1 8.9 32.5 3.4 18.7
canneal 1.5 2.9 1.9 2.8 4.9 2.0 3.6 6.5 2.1 5.1 19.7 2.2 7.1
streamcluster 1.2 1.7 1.4 1.7 2.4 1.5 2.1 4.2 1.7 3.5 17.4 2.1 6.4

specjbb oltp apache fft canneal stream- geo-
Benchmarks

0

1

2

3

4

5

6

7

8

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 G

en
0

cluster mean

2 4 2 4 2 4 2 4 2 4 2 2 4

SMT

SFUPU DS

Figure 5: Impact of out-of-order issue

SFU outperforms DS by a significant margin (74% on average)
even with 8 channels though the margin increases with 16 chan-
nels for bandwidth-hungry applications like FFT. As discussed
in Section 4, these amounts of bandwidth seem achievable by
the time of generation 4, given the imminence of 3-D stacking
and potential of compression and other techniques [14].

specjbb oltp apache fft canneal geomean
Benchmarks

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 G

en
0

 8 16 8 16 8 16 8 16 8 16 8 16channels

SFUPU DS

Figure 6: Impact of processor-memory bandwidth

5.4. Impact of faster, 3-D stacked memory

Memory latencies also improve with 3-D stacking. Because
SFU targets memory latency effects, we consider the effect of a
30% reduction in memory latency. Previously reported latency
reduction for 3-D stacking ranges from 20% to 30% [5]. Figure 7
illustrates the effect of faster, 3-D stacked memory on perfor-
mance (Y axis) for generation-4 PU, DS, and SFU multicores
normalized to that of generation-0 PU multicore (all in-order

10

specjbb oltp apache fft cannealgeomean
Benchmarks

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

P
er

fo
rm

an
ce

 N
or

m
al

iz
ed

 to
 G

en
0

f c f c f c f c f c f c

 f = fast DRAM
c =conventional

 DRAM
SFUPU DS

Figure 7: Impact of faster, 3-D stacked memory

issue) running our memory-intensive workloads (X axis). To
facilitate comparison, we show performance with both faster
memory (left three bars for each benchmark on the X axis) and
conventional memory (right three bars for each benchmark). Not
surprisingly, all configurations see a performance improvement
from the latency decrease. However, the reduction in latency is
not enough to eliminate the memory latency problem. As such,
SFU is still on average 63% better than DS.

5.5. Single Thread Latency

Recall from Section 3.1.1 that to restore single-thread perfor-
mance for response-time-sensitive workloads, controlled SFU
(C-SFU) trades-off throughput by activating fewer additional
cores than dark-silicon (but not as many as full SFU) for higher
clock frequency than full SFU (but not as high as DS). To com-
pensate for the remaining clock slowdown over DS, C-SFU
exploits the super-linear reduction in queuing delays due to the
higher throughput than DS. Also, recall the option of converting
the unactivated cores into additional last-level cache for both C-
SFU and dark silicon (DS). We empirically determine a C-SFU
configuration that corresponds to acceptable throughput-latency
trade-off as listed in Table 7 which shows the number of cores
and frequency for C-SFU and DS with the “big-cache” option as
well as full SFU and DS, all for generation 4 (where SFU has the
biggest clock disadvantage). This C-SFU configuration reduces
the clock slowdown compared to DS from full SFU’s 4.7x (i.e.,
0.89 GHz) to 40% (i.e., 2.48 GHz), affording 23 cores (i.e., 40%
more than DS’s 16) instead of full SFU’s 64. To account for
extra cache’s leakage (Section 3.1.1), C-SFU’s core count drops
from 23 to 20 and DS’s from 16 to 14. Due to the non-linear
impact of memory latency, C-SFU’s 40% slower clock amounts
to 18% single-thread slowdown over DS.

Throughput: Figure 8 shows throughput (transactions per sec-
ond) for C-SFU + big cache, DS + big cache, full SFU, and DS
normalized to that of a gen0 system (Y-axis) for our commercial
workloads which are sensitive to response times (X axis). We
see that C-SFU performs better than DS by 29% (46% without
big-cache) and almost as well as full SFU. Further, while DS
improves marginally with big-cache (DS + big cache versus DS),

Table 7: Controlled SFU Configurations

Configuration Cores Clock (GHz) L2 (MB)
DS + big cache 14 4.16 114
C-SFU + big cache 20 2.48 108
DS 16 4.16 64
full SFU 64 0.89 64

specjbb oltp apache geomean
0

1

2

3

4

5

6

7

8

T
hr

ou
gh

pu
t N

o
rm

al
iz

ed
 to

 G
en

0 C-SFU+big cache

DS+big cache

 full SFU DS

Figure 8: Normalized throughput

the improvement is not enough to match C-SFU.

Response Time: To analyze queuing delays, we use an
M/M/m multiserver queuing model to relate the response time to
throughput. We set the number of servers m to be 40 for C-SFU
(20, 2-way SMT cores) and 28 for DS (14, 2-way SMT cores),
and the service time (i.e., single-thread execution time) to be
1.18 for C-SFU and 1.0 for DS. Figure 9 plots the response time
(Y-axis) vs. throughput (X-axis) curves for C-SFU and DS. The
throughput is normalized to the saturation throughput of DS.
The typical L-shaped curves show that at low loads, the response
time is almost entirely service time (i.e., little queuing delay)
and at high loads, the response time grows with the queuing
delay, increasing rapidly near saturation. Typically, systems are
operated in the flat, pre-saturation region to achieve reasonable
response times and good throughput (a proxy for utilization).
While C-SFU’s response time is longer than DS’s at low loads,
cores can be turned off at low loads without throughput loss mak-
ing power constraints irrelevant. However, in the fairly typical
region of load, C-SFU stays within +/-10% of the response time
of DS. Thus, C-SFU exploits the non-linear impact of higher
throughput on queuing delays to compensate for its slower clock.

6. Conclusion

Researchers have responded to the slowing of Dennard’s scaling
by arguing that dark silicon inevitably imposes a performance
limit and advocating for customization to harness more perfor-
mance at the same power budget. Either approach imposes a
heavy penalty; dark silicon necessitates a significant performance
penalty, and customization places multicores on potentially ar-

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 1
.0

5

 1
.1

 1
.1

5

 1
.2

T
ot

al
 R

es
po

ns
e

T
im

e

Normalized Throughput

DS (m=28)
C-SFU (m = 40, slowdown = 1.18)

Figure 9: Total response time versus throughput

duous path of considerable design/programmability cost. We
showed that dark silicon is sub-optimal in performance and
avoidable, and that a gentler, evolutionary path for multicores
exists.

This path, called successive frequency unscaling (SFU), in-
volves successively scaling down the clock frequency with
each technology generation. SFU is based on the insights that
(1) frequency unscaling lowers per-core power where voltage-
frequency scaling is infeasible, enabling more cores to be ac-
tivated than dark silicon; and (2) typical multicore workloads
are memory-bound and benefit from the increased memory-level
parallelism achieved by the higher active core count. Guided by
these insights and a simple analytical model, SFU exploits two
non-linearities: (1) the sub-linear impact of clock speed on per-
formance for memory-bound workloads and (2) the super-linear
impact of throughput on queuing delays. The first non-linearity
implies that SFU’s increased memory-level parallelism more
than offsets the slower clock so that for memory-intensive work-
loads, full SFU, where all the cores are powered up, performs
81% better than dark silicon at the 11 nm technology node. The
second non-linearity comes into play for enterprise workloads
where both throughput and response times are important and
full SFU’s aggressive clock slowdown may penalize response
times. To address this issue, we proposed controlled SFU (C-
SFU) which moderately slows down the clock and powers many,
but not all, cores to achieve 29% better throughput than dark
silicon at the 11 nm technology node. The higher throughput
non-linearly reduces queuing delays and thereby compensates
for the slower clock, resulting in C-SFU’s total response latency
to be within +/- 10% of that of dark silicon.

Finally, while SFU narrows the gap between dark-silicon and
power-unconstrained mutlicores, the gap is not eliminated. We
leave exploring other techniques to bridge the gap between SFU
and power-unconstrained multicores for future work.

References
[1] “Arm-cto:power surge could create ’dark silicon’.” [On-

line]. Available: http://www.eetimes.com/electronics-news/4085396/
ARM-CTO-power-surge-could-create-dark-silicon-

[2] “Ddr4: Double the speed, double the latency?” [Online]. Available:
http://www.chipestimate.com/techtalk.php?d=2011-11-22

[3] “Wind river simics.” [Online]. Available: http://www.virtutech.com
[4] G. M. Amdahl, “Validity of the single processor approach to achieving

large scale computing capabilities,” Proceedings of the April 1820 1967
spring joint computer conference, vol. 23, no. 4, pp. 483–485, 1967.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1465482.
1465560

[5] B. e. a. Black, “Die stacking (3d) microarchitecture,” in Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture,
2006, pp. 469–479.

[6] S. Borkar, Personal communication, 2012.
[7] S. Borkar and A. A. Chien, “The future of microprocessors,”

Commun. ACM, vol. 54, pp. 67–77, May 2011. [Online]. Available:
http://doi.acm.org/10.1145/1941487.1941507

[8] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,”
Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, 1974.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proceeding
of the 38th annual international symposium on Computer architecture,
ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 365–376. [Online].
Available: http://doi.acm.org/10.1145/2000064.2000108

[10] N. Hardevellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, no. 4, pp. 6–15, 2011.

[11] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Com-
puter, vol. 41, pp. 33–38, 2008.

[12] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multi-
facet’s general execution-driven multiprocessor simulator (gems) toolset,”
SIGARCH Comput. Archit. News, vol. 33, pp. 92–99, November 2005.

[13] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server consol-
idation,” in Proceedings of the 34th annual international symposium on
Computer architecture. New York, NY, USA: ACM, 2007, pp. 46–56.

[14] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,
“Scaling the bandwidth wall: challenges in and avenues for cmp scaling,”
in Proceedings of the 36th annual international symposium on Computer
architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp. 371–
382. [Online]. Available: http://doi.acm.org/10.1145/1555754.1555801

[15] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K. Venkata, M. B.
Taylor, and S. Swanson, “Qscores: trading dark silicon for scalable energy
efficiency with quasi-specific cores,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
44 ’11. ACM, 2011, pp. 163–174.

12

http://www.eetimes.com/electronics-news/4085396/ARM-CTO-power-surge-could-create-dark-silicon-
http://www.eetimes.com/electronics-news/4085396/ARM-CTO-power-surge-could-create-dark-silicon-
http://www.chipestimate.com/techtalk.php?d=2011-11-22
http://www.virtutech.com
http://portal.acm.org/citation.cfm?doid=1465482.1465560
http://portal.acm.org/citation.cfm?doid=1465482.1465560
http://doi.acm.org/10.1145/1941487.1941507
http://doi.acm.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/1555754.1555801

	Introduction
	Intuition behind successive frequency unscaling
	A multicore power-performance model
	Model
	Controlling single-thread latency:
	Effect of SMT:

	Model's predictions

	Experimental Methodology
	Experimental Results
	Performance
	Impact of out-of-order issue
	Impact of processor-memory bandwidth
	Impact of faster, 3-D stacked memory
	Single Thread Latency

	Conclusion

