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Abstract

Our understanding of organic materials for solar energy conversion stands to ben-
efit greatly from accurate, computationally tractable electronic structure methods
for excited states. Here we apply two approaches based on density functional the-
ory (DFT) to predict excitation energies and electron transfer parameters in organic
chromophores and semiconductors in solution. First, we apply constrained DFT to
characterize charge recombination in a photoexcited donor-acceptor dyad and to un-
derstand the photophysical behavior of a fluorescent sensor for aqueous zinc. Second,
we discover that the delta-self-consistent-field (∆SCF) approach to excited states in
DFT offers accuracy comparable to that of the better-established but more indirect
linear-response time-dependent DFT approach, and we offer some justification for
the similarity. Finally, we investigate a spin-restricted analog of ∆SCF known as
restricted open-shell Kohn-Sham (ROKS) theory. We resolve a known ambiguity
in the formal solution of the ROKS equations for the singlet excited state by pre-
senting a self-consistent implementation of ROKS with respect to the mixing angle
between the two open shells. The excited state methods developed and applied in this
work contribute to the expanding toolkit of electronic structure theory for challenging
problems in the characterization and design of organic materials.
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Chapter 1

Introduction

The flow of energy that sustains our industrialized way of life operates on a global

scale, yet the efficiency with which we burn fuels and generate electrical current is

determined by processes at the molecular level. As our energy needs threaten to

outstrip the supply of hydrocarbon deposits, efforts to harvest nuclear, solar, wind

and geothermal energy in an optimally efficient manner will become increasingly ur-

gent. In meeting these demands, we stand to benefit substantially from a mechanistic

understanding of energy conversion processes at the nanoscale.

For harnessing electrical work from solar energy, organic semiconductors (OSCs)

— extended chromophores composed of main-group elements — offer a rich diver-

sity of structural and electronic properties,1–3 making them promising targets for

rational design and optimization. These properties, together with the lower manu-

facturing costs associated with OSC materials relative to traditional semiconductors,

have driven a significant and growing body of fundamental and applied research built

around these materials. Furthermore, strategies from organic synthesis can be ex-

ploited to construct single-molecule electronic devices, such as donor-bridge-acceptor

polyads4 and dendrimers,5, 6 from conjugated subunits. These structures exhibit com-

plex photophysical behaviors that are of fundamental interest in their own right.

In an OSC-based solar cell, the fundamental molecular processes at work are:

(1) absorption of light by a material, resulting in an electronically excited state (or

exciton); (2) separation of the exciton into an electron and a positive ion (or hole);
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and (3) transport of the ions to their respective electrodes. Each of these basic steps

influences device operation and efficiency. The charge separation (CS) process (2) is

often in kinetic competition with a variety of alternative relaxation pathways which

vary depending on the chemical composition of the material and its environment.7

Theoretical modeling and simulations are playing a key role in contemporary en-

ergy research, alongside experimental efforts. Mechanistic investigations of oxygen-

and hydrogen-evolving catalysts are guiding next-generation catalyst design.8, 9 Simu-

lations of chemical and morphological changes in battery materials promise to lead to

higher capacity, more durable batteries.10 Meanwhile, new metal oxide and OSC ma-

terials are already being screened and characterized for desirable electronic properties

before a practical synthetic route is ever outlined,11, 12 greatly narrowing the combi-

natorial space of structures that need to be characterized experimentally. Theory

and simulation also have a role to play in our evolving understanding of the elec-

tronic properties of organic chromophores in condensed phases; this context provides

a unified motivation for all of the studies presented here.

This thesis addresses quantum chemical modeling of two varieties of electronically

excited states regularly encountered in photovoltaic applications: “bright” valence ex-

cited states formed through visible-light absorption, and charge-transfer (CT) excited

states obtained from valence excited states through a CS process. These states play

important roles in many areas of chemistry beyond solar energy conversion: many of

the methods applied and refined in this work could be used to design dyes for fluo-

rescent tagging and bio-imaging protocols;13 to predict the isomerization kinetics of

photochemically-driven molecular rotors;14 or to characterize the spectral density in-

fluencing the possibility of quantum coherence in photosynthetic complexes,15 among

other uses.

In this introductory chapter, we first review the standard theoretical framework

for understanding electron transfer in solution, Marcus theory. Next we introduce

the computational models we will be using and refining throughout the investigation.

These models are rooted in the quantum mechanical approach of density functional

theory, but we also introduce some quasi-classical methods for addressing solvent

18



effects. Finally, we provide an overview of the structure and contents of the remainder

of this thesis.

1.1 Marcus theory of electron transfer

Electron transfer (ET) lies at the heart of chemical reactivity, as captured by the

“arrow-pushing” formalism in organic chemistry textbooks. Intermolecular ET reac-

tions that proceed without bond breaking or bond formation are among the simplest

chemical transformations; yet the kinetics of these reactions remain difficult to predict

from first principles. ET can also occur within a molecule, from one functional group

to another, as a consequence of thermal or photoinduced excitation. The quest for

a quantitative understanding of ET kinetics has been ongoing for well over 50 years

and continues to gain practical significance as demand for solar energy conversion

accelerates.

The standard theoretical framework for ET reactions has been established for quite

some time and is referred to as Marcus theory.16 Several existing reviews detail the

physical foundations,17–19 applications,18, 20, 21 and extensions19, 22, 23 of Marcus theory,

so we provide only a brief summary here. Marcus theory is a classical transition state

theory of ET which assumes that the reactant and product electronic states are weakly

coupled. Furthermore, Marcus theory assumes that the molecule(s) undergoing ET

are surrounded by an environment that responds linearly to the ET event (linear

response approximation). In this limit, the free energy profiles of the two ET states

can be represented by a pair of crossing parabolas with identical curvature, illustrated

in Figure 1-1.

Two parameters suffice to characterize the relative displacement and curvature of

the reactant and product free energy curves: the driving force−∆G, which constitutes

the free energy difference between reactant and product states, and the reorganization

energy λ, which quantifies the free energy penalty associated with forcing the reactant

into an equilibrium configuration of the product or vice-versa. The Marcus expression

for the ET rate is the classical transition-state theoretical rate obtained from the free
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Figure 1-1: Marcus parabolas depicting free energy as a function of an ET reaction
coordinate in different kinetic regimes. (a) The normal region,−∆G < λ. (b) The
top region, −∆G ≈ λ. (c) The inverted region, −∆G > λ.

energy profiles in Figure 1-1,

kET =
2π

h̄

|Vab|2√
4πλkBT

exp

[

−(λ+∆G)2

4λkBT

]

(1.1)

Here T is the temperature, kB is the Boltzmann constant, h̄ is the reduced Planck

constant, and the pre-exponential factor is expressed in terms of thermodynamic

quantities plus the electronic coupling term Vab. According to Eq. 1.1, the ET

activation energy ∆G‡ is given by

∆G‡ =
(λ+∆G)2

4λ
(1.2)

ET reactions are classified according to the relative magnitudes of −∆G and λ.

Reactions satisfying −∆G < λ are said to occur in the “normal” regime, while those in

the Marcus “inverted” regime satisfy −∆G > λ. Representative free energy curves for

these two cases are shown in Figures 1-1a and 1-1c. In the intermediate “top” region

of Figure 1-1b, a negligible activation free energy barrier results in the maximum ET

rate for a given driving force. In the inverted regime, the Marcus theory predicts

a decrease of the ET rate with increasing driving force; experimental evidence of

Marcus inverted effects24 has reinforced the value of the theory.

Given the demonstrated utility of the Marcus model, methods to predict Marcus

ET parameters for real systems from first principles have proliferated in recent years.
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These predictions are challenging because they call for a diabatic representation of

the ET states, whereas conventional electronic structure methods produce adiabatic

states. In the adiabatic representation, one of the ET states is often an excited state.

It is possible to estimate the driving force in the adiabatic representation from the

energy difference of the ground and excited states at their respective equilibrium

geometries, but this calculation requires optimization of the excited state geometry,

which hampers its applicability to larger systems.

The reorganization energy λ presents further challenges to computation. It is fun-

damentally a nonequilibrium property because it requires the energy of one ET state

at the equilibrium geometry of the other state.25 The reorganization energy is often

partitioned into two contributions: an inner-sphere reorganization energy associated

with distortion of the molecular geometry and an outer-sphere reorganization energy

reflecting the rearrangement of solvent to accommodate the new charge distribution.

The outer-sphere reorganization energy often comprises the dominant contribution to

the total λ,26, 27 so a proper description of solvent effects is crucial.

Still, significant progress has been made towards prediction of reorganization en-

ergies. A straightforward and popular approach is the four-point method,28 which

treats reorganization of the donor to its radical cation and of the acceptor to its

radical anion independently. This approach can be used with high-level electronic

structure methods but does not account for interactions between donor and acceptor,

which cannot be neglected for intramolecular ET. Alternatively, one can employ a

diabatization scheme29 to compute energies for the two ET states at either state’s

equilibrium geometry. Adiabatic-to-diabatic transformations such as the generalized

Mulliken-Hush approach30 can be used for this purpose, or one can directly construct

approximate diabats using tools such as empirical valence-bond methods,31frozen den-

sity functional theory,32 or constrained density functional theory.33
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1.2 Computational models for excited states and

ET in solution

As is often the case in physical chemistry, we are concerned with a system of primary

interest (the electronically excited chromophore) interacting with an environment (the

surrounding solvent) whose intrinsic properties are of little interest to us but whose

influence on the system is paramount. Hence we can adopt a Hamiltonian of the form

Ĥ = ĤS + ĤB + ĤSB (1.3)

where S and B denote the system and bath (environment) degrees of freedom, re-

spectively. In this thesis, the system degrees of freedom include the electronic and

nuclear coordinates of the chromophore. Thus, the system Hamiltonian is of the form

ĤS({ri}, {RA}), where ri (RA) denotes an electronic (nuclear) position. We will treat

system electrons quantum mechanically, but nuclei will be described classically, i.e.

all electronic structure calculations assume the Born-Oppenheimer approximation.

Despite this mixed quantum-classical description of the system, this system Hamilto-

nian is often denoted ĤQM in the literature to distinguish it from the purely classical

description of the bath.

In what follows, we treat the system Hamiltonian with an electronic structure

method, in particular, with density functional theory or its various extensions for

excited states, which are briefly reviewed in Section 1.2.1. For the environment, we

consider two strategies. Implicit (or continuum) models are parameterized by bulk

properties of the solvent and the shape of the solute. They generally capture the im-

portant electronic effects of solvation at little computational expense. Alternatively,

explicit (or atomistic) solvation models employ an empirical force field to describe the

solvent and its interactions with the solute. Both approaches are reviewed in Section

1.2.2.
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1.2.1 Density functional methods for the chromophore

Kohn–Sham density functional theory

In density functional theory (DFT), the search for the wavefunction ψ(r1, . . . , rN) de-

scribing the ground state electronic configuration for N electrons interacting with an

external potential (i.e. a set of fixed classical nuclei) is recast in terms of a one-electron

density ρ(r) =
∫

ψ∗(r, r2, . . . , rN)ψ(r, r2, . . . , rN) dr2 . . . drN . The Hohenberg–Kohn

theorems established the existence of a universal functional of the density, F [ρ(r)],

which determines the energy associated with the density in any given external poten-

tial,34

E[ρ(r)] =

∫

(vext(r)ρ(r) + F [ρ(r)]) dr (1.4)

Furthermore, Hohenberg and Kohn showed that the energy functional in Eq. 1.4 is

minimized for the ground state density in the external potential vext. However, the

universal functional F [ρ] is not known and must be approximated in practice.

While approximations to the universal functional involving only the density have

made significant advances in recent years,35 the vast majority of DFT calculations are

carried out within the Kohn–Sham (KS) formalism.36 The KS approach introduces a

fictitious “non-interacting” system of electrons which feel only the external potential

and are associated with a set of one-electron orbitals (KS orbitals), {φKS
i (r)} chosen

to reproduce the ground-state density of the real interacting system,

ρ(r) =
N
∑

i=1

∣

∣φKS
i (r)

∣

∣

2

The KS approach circumvents the difficult problem of defining a kinetic energy func-

tional T [ρ] by replacing it with the kinetic energy of the non-interacting system Ts[ρ]

— which is easily calculated from the KS orbitals — plus a small correction. This cor-

rection is grouped together with the effects of Pauli exchange and electron correlation

in the exchange-correlation (XC) functional, Exc[ρ]. In contrast with wavefunction

based techniques for electron correlation,37 KS-DFT captures a significant fraction of

dynamical correlation at modest computational cost. An important trade-off for this
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advantage is that KS-DFT lacks the systematic improvability available under, e.g.

coupled cluster and configuration interaction calculations.

An enormous amount of effort has been expended to develop accurate approx-

imations to the XC functional, leading to a hierarchy of approximations known as

“Jacob’s ladder” of density functionals.38 Without getting bogged down by the de-

tailed machinery of modern XC functionals, we note that the calculations in this

thesis regularly make use of hybrid approximations for exchange, wherein both exact

(Hartree-Fock) and approximate density-based descriptions of exchange figure into

the expression for the exchange energy.39 Several of our studies also make use of a

more general framework for exchange, the range-separation technique.40, 41 Here, the

fraction of exact exchange included in the functional depends explicitly on interelec-

tronic distance.

Time-dependent density functional theory

KS-DFT is purely a ground-state theory of electronic structure. To obtain information

about excited states strictly within the KS formalism, one can turn (perhaps some-

what unexpectedly) to its time-dependent analogue, established by the Runge–Gross

theorem.42 Time-dependent density functional theory (TDDFT) is a very general

theory amenable to a wide range of applications in chemical physics,43 but here we

focus exclusively on its use for excited state electronic structure calculations. By

and large, these calculations are based on a linear response (LR) formalism44, 45 in

which electronic excitation frequencies ωi are obtained as poles in the density response

function χ(r, r′, ω). The machinery of LR-TDDFT will be outlined in more detail in

Chapter 4, where we will also have reason to consider a direct search for excited state

densities in TDDFT.

For ET applications, it is important to note that many commonly used XC func-

tionals perform notoriously poorly in predicting the energy of CT excited states via

TDDFT.46 While range-separated functionals can often mitigate these effects, the

alternative DFT methods for excited states presented below avoid this problem.
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Constrained density functional theory

In contrast to TDDFT, constrained density functional theory (CDFT) is not designed

to provide exact excitation energies given the true ground-state XC functional. Never-

theless, it provides indirect access to the energies and properties of CT excited states

and other electronic states that are well described by weakly-interacting electronic

subsystems.

In CDFT, we seek the ground-state energy subject to one or more constraints on

the electron density. The energy of the constrained state is obtained by extremizing

a modified functional

W [ρ, Vc] = E[ρ] + Vc

(
∫

wc(r)ρ(r) dr−Nc

)

(1.5)

where wc(r) is a weight operator defining the shape of the constraining potential, Nc

is the value of the constraint, and Vc is a Lagrange multiplier enforcing the constraint.

The weight operator is typically defined in terms of atomic populations such as the

Mulliken,47 Löwdin,48 Becke49 or Hirshfeld50 populations, although simpler constrain-

ing potentials have also proven useful in some related methods for studying charge

transfer.51

CDFT can be used to construct diabatic states for any ET reaction whose electron

donor and acceptor moieties are known in advance. In ET systems with a neutral

ground state, the frontier orbitals of the ground and CT states are of the general

form illustrated in Figure 1-2. In the ground state, both the donor and acceptor have

closed shells. The transfer of one electron from the donor HOMO to the acceptor

LUMO defines the CT state. Considered as isolated species, the donor and acceptor

are both charged radicals after ET; hence the CT state is also known as a radical

ion-pair state.

To obtain diabatic ET states from CDFT, one first defines which regions of the

system are to be associated with the donor or with the acceptor. Net charges are

then assigned to the donor and acceptor in accordance with the character of the tar-

get state. For example, to define the CT diabatic state in Figure 1-2, one constrains
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a) b)

Donor Acceptor Donor Acceptor

Figure 1-2: Frontier orbitals for the ground state (a) and the CT excited state (b)
involved in a prototypical ET reaction. Adapted with permission from Ref. 33.

the donor (acceptor) to have one fewer (more) electron than it would possess as an

isolated, neutral system. Alternatively, one can define the CT state by constraining

the difference in net charge between the donor and acceptor to two electrons. A

diabatic representation of the neutral ground state is obtained analogously by con-

straining the net charges on the donor and acceptor regions to zero. In practice, the

constrained neutral state usually differs negligibly from the adiabatic ground state,

so a ground state calculation can suffice for this purpose.

In certain systems it may be reasonable on chemical grounds to exclude some

regions of space from either the donor or the acceptor; examples include bridges in

donor-bridge-acceptor architectures and explicit solvent molecules. However, existing

evidence suggests that these regions should also typically be added to the donor

and/or acceptor domains because the enhanced variational freedom tends to produce

a more accurate energy without sacrificing the state’s diabatic character.33

∆SCF density functional theory

Instead of obtaining excitation energies from density functional response theory or

by applying density constraints, an appealing alternative is to relate higher-energy

solutions of the KS equations to excited states. These higher-energy solutions can be

obtained in practice by converging the KS orbitals self-consistently with non-Aufbau
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orbital occupation patterns, amounting to a constraint on orbital occupations rather

than a constraint on the density. This is the ∆SCF approach to excited states in

DFT.

∆SCF lacks the firm theoretical underpinning associated with TDDFT: there is

no excited-state analogue of the Hohenberg–Kohn theorem,52 nor can it be taken

for granted that approximate functionals for the ground-state energy will return the

correct excited-state energy for a given excited-state density.53, 54 The analogous

strategy within Hartree-Fock theory presents convergence difficulties and returns poor

excitation energies when it does converge. Nevertheless, as we show in Chapter

4, ∆SCF-DFT is surprisingly accurate for singlet-singlet transitions that are well

described by a single-orbital excitation (e.g. HOMO→LUMO). Some reasons for the

relative success of ∆SCF will be provided in Chapter 4.

1.2.2 Classical models for the solvent

The role of the environment in modulating ET properties is an essential feature of

Marcus theory.16 Figure 1-3 provides a schematic for nonadiabatic ET in polar media.

Solvent polarization, on average, acts to stabilize an electron localized on an electron

donor. However, thermal fluctuations of the solvent can bring the two diabatic states

into a transient energetic degeneracy, at which point the electron can hop to the

acceptor with probability proportional to the square of the electronic coupling.

Implicit solvation models

At first glance, the mechanism illustrated in Figure 1-3 appears well-suited for a dielec-

tric continuum model of the solvent.55, 56 In the continuum models, the solute is placed

in a cavity carved out of a continuous dielectric medium characterized by its dielectric

constant ǫ, and the solvation free energy is obtained by solving the Poisson-Boltzmann

equation for the surface charge on the cavity induced by the dielectric response of

the solvent to the solute electron density. These continuum models typically make

the approximation that the solvent can be characterized by a frequency-independent
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Figure 1-3: Schematic of solvent reorganization associated with an ET event, high-
lighting electronic and orientational solvent polarization. Conjoined spheres represent
the ET dyad; arrows represent the orientation of individual solvent molecules. (a) A
spontaneous fluctuation of the solvent away from equilibrium facilitates an ET event.
(b) Electronic polarization (red and blue bars) of the solvent in response to ET occurs
much faster than (c) orientational polarization, eventually establishing equilibrium in
the CT state.

dielectric constant ǫ. This approximation is often quite good for ground-state solva-

tion energies, especially in solvents lacking significant nonelectrostatic interactions,

e.g. hydrogen bonding or π-stacking.

However, the approximation of a single dielectric constant breaks down immedi-

ately after electronic excitation of the solute, especially for CT states. The underlying

reason is that vertically excited states are out of equilibrium: the solvent electron

density equilibrates with the CT density of the solute, but the larger mass of the

solvent nuclei causes orientational polarization to take place on a slower timescale.

Immediately after electronic excitation, the solvent nuclear degrees of freedom re-

main in equilibrium with the ground state of the solute. Rather than introduce

a fully frequency-dependent dielectric ǫ(ω) to model this behavior, it is convenient

and practical to separate the solvent polarization response into fast and slow com-

ponents in accordance with solvent electronic and nuclear relaxation.57, 58 Electronic

response is characterized by the optical dielectric constant ǫ∞, which is the square of

the refractive index of the dielectric, while nuclear response is characterized by the

zero-frequency dielectric constant ǫ0.

Explicit solvation models

Despite the computational advantages of dielectric continuum solvation models, it is

often the case in complex chemical systems that specific solute-solvent interactions
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have a profound influence on the dynamics. Commonly encountered examples include

hydrogen bonding interactions and interfacial effects in heterogeneous environments.

In these situations, it may be advantageous to resort to an atomistic solvent model

which treats each solvent atom explicitly, typically by a less computationally de-

manding scheme such as a semiempirical method or molecular mechanics (MM).59

MM models define the energy of a solvent configuration in terms of the internal en-

ergy of each solvent molecule, Coulomb interactions among atomic sites of different

molecules, and van der Waals interactions between molecules (this defines ĤB in Eq.

1.3). The collection of parameters defining these interactions constitutes the force

field. These parameters are often obtained from experimental data but can also be

fit to quantum chemistry calculations.60

A variety of strategies exist for treating the interaction of an electronic density with

a solvent described by MM (the ĤSB term in Eq. 1.3),61 but we will exclusively use the

electronic embedding strategy here. In electronic embedding, the point charges of the

MM solvent generate an electric field which is included in the KS Hamiltonian, thus

allowing the density to relax self-consistently with respect to the charge distribution

of the solvent.

By including an explicit description of the solvent in the calculation of ET param-

eters, one no longer needs to rely on assumptions such as linear response to attain a

tractable model of solvent effects; instead, one may sample the configuration space of

the system through Monte Carlo or molecular dynamics (MD) simulations to obtain

a statistical description of the ET energetics. However, the introduction of so many

solvent degrees of freedom can obscure the notion of an ET reaction coordinate de-

scribing collective solvent motions. An elegant solution to this problem is to choose

the energy gap ∆E between the diabatic states as a reaction coordinate;62 this choice

of reaction coordinate condenses all important solvent motions onto a single quantity

in which the free energy is quadratic in the limit of linear response.63
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1.3 Structure of this thesis

This body of this thesis encompasses two broad research themes spanning four chap-

ters. The first theme, computational modeling of ET in solution, is covered in Chap-

ters 2 and 3. The second theme, assessment and refinement of time-independent

approaches to DFT excited states, forms the basis of Chapters 4 and 5.

In Chapter 2, we present a QM/MM protocol for ET simulations and use it to

characterize CR in a small donor-acceptor dyad. Our atomistic model facilitates con-

struction of free energy curves without the need to assume linear response of the

solvent, permitting a critical assessment of the Marcus picture for this system. Fur-

thermore, by using CDFT to model the electronic states of the dyad, we can obtain

statistical information about the electronic coupling between the diabatic states. We

find that these couplings show a clear dependence on whether the geometric config-

uration is more stabilizing for the ground state or for the CT state. We explore the

role of cis-trans isomerization on the CR kinetics, and we find a strong correlation

between the vertical energy gaps of the full simulations and a collective solvent polar-

ization coordinate. The method constitutes a unified approach to the characterization

of driving forces, reorganization energies, electronic couplings and nonlinear solvent

effects in light-harvesting systems. To our knowledge, these simulations represent

the first CDFT-based characterization of electronic couplings in an asymmetric ET

system in solution.

We turn to a different application of ET in Chapter 3: the selective detection

and measurement of an analyte by ET-induced fluorescence quenching. In this study,

a two-pronged approach employing both TDDFT and CDFT is used to character-

ize low-lying electronically excited states of the aqueous zinc sensor Zinpyr-1 (ZP1).

The calculations indicate that fluorescence activation in ZP1 is governed by a pho-

toinduced ET mechanism in which the energy level ordering of the excited states is

altered by binding Zn2+. Although the tertiary amine groups of ZP1 serve as the pri-

mary electron donor, we show that the pyridyl nitrogens on each Zn2+-chelating arm

of the molecule each contribute some electron density to the xanthone chromophore
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upon ET. The calculations highlight the importance of carefully tuning the recep-

tor site pKa to avoid complex protonation equilibria which could otherwise hamper

ratiometric sensing efforts.

The focus of Chapter 4 shifts from ET applications of CDFT to an assessment

of an alternative DFT approach to excited states, ∆SCF, for organic dyes. Over a

test set of vertical excitation energies of 16 chromophores, we observe surprisingly

similar accuracy for the ∆SCF and TDDFT approaches with commonly used XC

functionals. In light of this performance, we revisit the approximations inherent

to the ∆SCF prescription and demonstrate that the method formally obtains exact

stationary densities within the adiabatic approximation, partially justifying its use.

The relative merits and future prospects of ∆SCF for simulating individual excited

states are discussed in light of these findings.

In Chapter 5, we consider the restricted open-shell Kohn-Sham (ROKS) approach,

an excited state strategy related to ∆SCF. Despite the promising performance of

∆SCF documented in Chapter 4, convergence difficulties and the need for an energy

correction due to spin motivate us to evaluate the ROKS method — which in principle

does not suffer from these drawbacks — as an alternative to ∆SCF for excited state

simulations. We identify and resolve an ambiguity in the density-matrix based for-

mulation of the ROKS equations by building control over the mixing between the two

open shells into our ROKS algorithm. Pilot calculations with different prescriptions

for the mixing angle suggest that a single prescription for the mixing angle can provide

reasonable ROKS excitation energies for transitions of arbitrary symmetry. We also

provide some evidence that potential energy surfaces for formaldimine isomerization

predicted by ∆SCF, ROKS and TDDFT are quite parallel.

Finally, in Chapter 6, we collect key findings and frame them in the broader

context of computational models for fundamental chemistry in solution and for so-

lar energy conversion in particular. Directions of ongoing and future work are also

discussed.
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Chapter 2

Simulation of Solution Phase

Electron Transfer in a Compact

Donor-Acceptor Dyad

2.1 Introduction

Electron transfer (ET) reactions are crucial steps in the storage of solar energy in

chemical bonds. Whether in biological or bio-inspired light-harvesting systems65, 66 or

in advanced semiconductor materials,67–69 the same three-step mechanism underlies

the conversion of incident photon flux into photocurrent. Absorption of visible light by

a photosensitive structure, such as a dye molecule or a semiconductor, generates a lo-

calized excited state. The availability of lower-energy electronic states with enhanced

charge separation drives an ET process, resulting in an intermediate, charge-transfer

(CT) excited state. The CT state can further separate into free charges, completing

the photovoltaic process.

Synthetic light-harvesting systems have very high standards to meet: in natu-

ral photosynthesis, electrons and holes are generated from the initial CT state with

near unit efficiency due to rapid charge separation (CS) versus extremely slow (∼ 1

s) charge recombination (CR).70 The critical role of the CS-to-CR ratio in light-
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harvesting complexes71, 72 has inspired a substantial body of experimental and theo-

retical work on condensed phase CS and CR in small-molecule prototypes.18, 73, 74

Molecular polyads — consisting of a chromophore and one or several electron

donors and acceptors — are a popular architecture for artificial light-harvesting be-

cause they offer the potential for long-lived photoinduced CS in a small, chemically

tunable package.75–77 Triads,78, 79 tetrads80 and higher polyads, including dendrimeric

structures,5 exploit spatial separation of the terminal donor and acceptor to reduce

the donor-acceptor electronic coupling, obtaining long-lived CT states at the expense

of low yields of the CT state. Conversely, smaller dyads present high initial CT state

yields, but fast geminate CR limits the overall efficiency of charge carrier generation.7

How small the dyad can be while maintaining a capacity for photoinduced CS is an

open and important question.

Given the daunting task of striking a favorable balance between CS and CR in

these polyads, we anticipate further rational design and optimization to be contingent

upon a mechanistic understanding of the underlying ET processes. The Marcus theory

of ET16, 17 outlined in Chapter 1 is an excellent guide in this respect. To briefly

recapitulate, in Marcus theory the ET rate is expressed in terms of three system-

dependent parameters: the driving force ∆G, which is the free energy difference

between the reactant and product states at equilibrium; the reorganization energy

λ, which is the free energy cost to distort the configuration of the reactant to an

equilibrium configuration of the product; and the donor-acceptor electronic coupling

VDA,

kET =
2π

h̄

V 2
DA√

4πλkBT
exp

[

−(λ+∆G)2

4λkBT

]

(2.1)

The validity of the Marcus model has been thoroughly investigated and confirmed

over a wide range of conditions,81, 82 including the inverted region, −∆G > λ, where

the ET rate is predicted to decrease with increasing driving force. The model assumes

linear response of the bulk solvent polarization to the electric field. Several exten-

sions have been proposed to account for situations where the model breaks down, for

example, in systems with strong vibronic effects83 or electronic state-dependent po-
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larizabilities.84 Marcus theory and its extensions provide a framework for correlating

molecular structure with ET properties; thus, Marcus ET parameters are important

for the analysis and refinement of molecular light-harvesting architectures.

Because of the experimental challenges associated with measuring ET parame-

ters, especially the reorganization energy,85, 86 computer simulations have played an

important role in developing an understanding of ET at the molecular level. These

simulations present their own set of challenges. The role of the environment as a

facilitator of ET has long been appreciated,87, 88 but the computational cost of mod-

eling the environment from first-principles is often prohibitive. Instead, it is common

to adopt a hybrid QM/MM model89, 90 in which the solute is described by a high-

level electronic structure method while the solvent is treated with a classical force

field. Furthermore, diabatic reactant and product states form a more suitable ba-

sis for studying ET than the adiabatic states obtained from traditional electronic

structure methods.29 Empirical valence-bond methods,31 frozen-density functional

theory91 and constrained density functional theory (CDFT)92–94 have all been used

to define diabatic states for ET simulations. While the complexity of these simula-

tions has increased substantially over time, the accurate prediction of ET rates in

solution remains unfinished business.

In this article, we characterize CR in the small molecular dyad formanilide-

anthraquinone (FAAQ) in dimethylsulfoxide (DMSO) solution using a new QM/MM

scheme for ET simulations. An unusually long-lived CT state was postulated for

FAAQ in DMSO95 on the basis of spectroscopic signatures which were later reassigned

to a side reaction with the DMSO solvent.96 The CT state is much shorter-lived in

other solvents, so we naively expect fast CR in DMSO as well. Our simulations har-

nesses the power of CDFT to compute accurate diabatic states on the fly and the

computational efficiency of polarizable force fields, achieving high-quality molecular

dynamics (MD) sampling of the ET free energy surfaces. The simulations provide a

detailed picture of the CR mechanism and confirm that CR in FAAQ is fast.

The rest of this chapter is organized as follows. First we introduce the compact

donor-acceptor dyad FAAQ and review its experimental characterization in some
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detail. After highlighting the features we consider to be essential for a quantitative

computational model of condensed phase ET free energies, we lay out the details

of the simulations and present free energy profiles and ET parameters for the dyad

in solution. Our model predicts ET parameters in line with experimental data and

provides the first qualitatively correct prediction of the FAAQ reorganization energy

in DMSO. Next we identify and characterize deviations from linear response in the

simulations, and we show that torsional flexibility does not strongly modulate the CR

rate in FAAQ. We then show that the energy gaps from the full simulations can be

mapped quite well onto a simple electrostatic model of solvent polarization. Finally,

we summarize strengths and weaknesses of our approach and suggest avenues for

further applications and improvements.

2.2 Model system: the FAAQ dyad

Solution phase ET in the FAAQ dyad,95–98 shown in Figure 2-1, has been the subject

of some controversy. The report of a CT excited state in FAAQ with a lifetime of

nearly 1 millisecond95 in DMSO contrasted sharply with the empirical rule-of-thumb

that CR from singlet CT states in compact dyads generally takes place on picosecond

timescales.4 Later efforts to reproduce the long-lived CT state of FAAQ and to explore

the dependence of its lifetime on solvent96 concluded that the long-lived transient

absorption signal previously assigned to the intramolecular CT state arises instead

from intermolecular ET following photo-oxidation of DMSO. Femtosecond transient

absorption studies on FAAQ in acetonitrile yielded more conventional CR rates of

approximately 2 ps for the singlet CT state and 130 ns for the triplet CT state.96

Happily, the controversy has generated a wealth of experimental data for FAAQ.

Electrochemical studies on FAAQ and related derivatives produced an estimate for

the CR driving force,95 −∆GCR = 2.24 eV, later revised96 to −∆GCR = 2.68 eV.

Both estimates are indirect deductions with unclear error bars, so we consider them

useful qualitative guides, rather than absolute benchmarks, for comparison to our

simulations. A rough estimate for the reorganization energy λ can also be found
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Figure 2-1: Structure of the FAAQ dyad in its (a) trans and (b) cis conformations.
The dashed line indicates the location of the partition employed in this study between
the donor (+) and acceptor (−).

by comparing CT state lifetimes of FAAQ and its derivatives.99 We first make the

assumption that the difference in lifetimes τ of two polyads A and B is controlled by

the difference in their activation free energies rather than the difference in their pre-

exponential factors. This assumption is valid to the extent that the donor-acceptor

coupling is similar for A and B; this may not be the case in the long-range ET

regime where the coupling decays exponentially with donor-acceptor distance, but it

is a more reasonable assumption for the modestly separated polyads considered here.

Then the ratio of the CR lifetimes of A and B satisfies

ln

[

τCR(B)

τCR(A)

]

= −∆G‡
CR(A)−∆G‡

CR(B)

kBT
≡ −∆∆G‡

CR

kBT
(2.2)

where ∆G‡
CR = (λ+∆GCR)

2 / (4λ) is the activation free energy for CR. Further

assuming a negligible difference in the reorganization energy λ(A) = λ(B) = λ, we

find

λ =
∆(∆GCR)

2

4∆∆G‡
CR − 2∆∆GCR

(2.3)

We use experimentally determined lifetimes and driving forces for FAAQ and its

ferrocenated derivative FcFAAQ (τCR = 20 ps, −∆GCR = 1.16 eV)95 to estimate the

reorganization energy. Depending on the chosen estimate for −∆GCR in FAAQ, we

obtain estimates of λ = 1.53 eV or λ = 1.78 eV. Finally, given the CT state lifetime

of FAAQ and the estimates of ∆GCR and λ, we can solve Eq. 2.1 for the electronic
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coupling to determine an estimated VDA between 30 and 60 meV. These estimates

provide a qualitative gauge for the integrity of our simulations within the framework

of Marcus theory.

2.3 Computational model for electron transfer

Any simulation of ET reactions requires a suitable definition of the reactant and

product states. Among the many available definitions of diabatic states,29, 100 the

CDFT approach is convenient because it retains the many advantages of Kohn-Sham

DFT while also treating both diabatic states on the same footing.33 This even-handed

treatment is important because one of the diabatic states is often an excited state;

it is especially crucial for CT excited states, which are often poorly described101 by

linear response time-dependent DFT (LR-TDDFT), the de facto standard tool for

excited states in DFT.102 CDFT avoids these complications by treating both diabatic

states as ground states of modified potentials which constrain the net charge on the

donor and acceptor to appropriate fixed values for each state.92

An appropriate solvent model is also crucial for accurate ET simulations. Unlike

conventional chemical bond-breaking and bond-forming reactions, intramolecular ET

in solution often proceeds from reactant to product state with negligible internal

rearrangement; instead, the reaction is driven by solvent fluctuations,103 as depicted

in Figure 1-3. In the nonadiabatic limit (small VDA), when a fluctuation brings the

system to a configuration in which the reactant and product states have the same

energy, an electron is transferred with probability proportional to V 2
DA.

In order to adequately characterize the solvent fluctuations, we require a solvent

model which can capture both orientational and electronic polarization. These two

effects operate on different timescales: the solvent electrons respond essentially in-

stantaneously to changes in the electronic structure of the solute, while orientational

and internal nuclear rearrangements of the solvent lag behind.57, 104 Dielectric contin-

uum models offer a computationally efficient means of describing the dynamic solvent

response, but these are typically limited to the linear response regime. Beyond linear
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response, atomistic models are the method of choice;105, 106 these models can capture

nonlinear effects due to dependence of the solvent polarization on solute conformation

or on the effective charge separation distance in the CT state. Previous simulations on

model systems have indicated that these effects can modify nonequilibrium properties

like reorganization energies significantly.107, 108

Based on the preceding considerations, we adopt a polarizable molecular mechan-

ics (MMpol) model in which selected atoms in the solvent are endowed with isotropic

polarizability by means of a charged particle (Drude oscillator) affixed by a fictitious

spring.109 Charges on the polarizable atoms are rescaled to compensate for the charges

of the associated Drude oscillators. The solute, described with CDFT, is electronically

embedded in the MMpol solvent, and the solute and solvent are allowed to polarize

one another self-consistently. This CDFT/MMpol approach is designed to capture

important solute/solvent interactions while remaining scalable to systems far beyond

the computational capacity of a complete density functional approach. This scala-

bility enables the simulation of asymmetrical ET reactions of flexible donor-acceptor

systems in polar solvents, such as the FAAQ/DMSO system studied here.

2.4 Computational Details

All QM/MM calculations were carried out within the framework of the CHARMM/Q-

Chem interface.110–112 The QM subsystem, a single FAAQmolecule, was electronically

embedded in a 34Å × 34Å × 34Å box of 314 DMSO molecules comprising the MM

subsystem. The neutral (N) and charge transfer (CT) states of FAAQ were modeled

using CDFT92 with the B3LYP functional.39 Energy gaps were computed with the

3-21G and 6-31G* basis sets, while the 3-21G basis was used exclusively for MD

simulations in an effort to balance the conflicting goals of accurate energetics and

long MD trajectories. The DMSO solvent was modeled using the all-atom force field

of Strader and Feller,113 modified to include electronic polarizability using Drude

oscillators109 bound to each heavy atom (C, O, S) of DMSO. The Drude particle

polarizabilities were chosen to reproduce the dielectric constant of DMSO at optical
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frequencies (ǫ∞ = 2.19), and the electrostatic point charges were scaled to 65% of their

original values such that the zero-frequency dielectric constant was also reproduced

(ǫ0 = 46.7). The DMSO force field parameters can be found in Appendix 2.C.

For MD simulations, all CH bonds in the DMSO solvent were constrained at their

equilibrium length using the SHAKE algorithm114 to help ensure energy conservation

with a 2 fs timestep. After an initial energy minimization, the FAAQ/DMSO system

was equilibrated with NPT dynamics at 300 K and 1 atm. For the sake of efficiency,

the system was first equilibrated using an all-MM model with customized force fields60

for each of the two diabatic states of FAAQ, followed by further equilibration with

the full polarizable QM/MM model. Several NVT polarizable QM/MM trajectories

were then obtained, each multiple picoseconds in length, with FAAQ in either the

neutral or CT electronic state. A simulation temperature of 300 K was enforced by

a Nosé-Hoover thermostat. Data were collected only after 2 ps of equilibration for

each trajectory. Equilibrium dynamics in the NVT ensemble samples the Helmholtz

free energy A; however, the difference in the work term PV between the two diabatic

states is expected to be negligible. Furthermore, the zero of free energy is arbitrary;

therefore we use the notationG for all simulated free energies to emphasize comparison

with experiment.

In order to achieve mutual polarization of the solute and solvent, the QM/MM

calculations necessitate a two-layer SCF procedure in which the Kohn-Sham orbitals

of the QM subsystem and the Drude particle positions in the MM subsystem are

optimized self-consistently. There is an algorithmic choice to be made here regarding

when to alternate between optimization of the Kohn-Sham orbitals and optimization

of the Drude particle positions: this alternation can be performed after each SCF

step, or instead only after convergence of the current optimization. These approaches

have been termed “microiterative SCF” and “direct SCF”, respectively.115

We determined empirically that an intermediate approach, in which the Kohn-

Sham orbitals and Drude particle positions were separately optimized to within grad-

ually narrower tolerances, achieves faster convergence than direct SCF, whereas a

fully microiterative approach would require substantial modification of the existing
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CHARMM/Q-Chem interface. Therefore, the intermediate approach was employed

in all polarizable QM/MM calculations reported here.

Diabatic couplings were evaluated within the framework of CDFT,116 both in the

gas phase and in DMSO solvent. The solution phase couplings take into account

the different solvation environments of the neutral and CT states by self-consistently

polarizing each state’s density with its own set of Drude particles prior to the cou-

pling calculation. Solvent effects on CDFT couplings at the ET transition state were

recently studied in the mixed-valence Q-TTF-Q anion in aqueous solution;117 here we

obtain complementary information about solvent effects on couplings for equilibrium

configurations of both diabatic states. This data can be used to assess the validity of

the Condon approximation in the FAAQ/DMSO system.118

2.5 Results

2.5.1 Construction of free energy profiles

As a first step towards determination of the ET free energy profiles, we obtained 30

ps of equilibrium polarizable QM/MM dynamics in each diabatic state (neutral or

CT). A representative trajectory for each diabatic state is presented in parts (a) and

(b) of Figure 2-2. Each plot also shows the energy of the other diabatic state at the

various configurations visited along the trajectory.

We sample the vertical energy gap ∆Eα = ECT
α − EN

α of configurations α at

regular intervals of 40 fs along these trajectories to build up a statistical picture of

the distribution of energy gaps, as illustrated in the histograms in Figure 2-2, parts (c)

and (d). The probability distribution of the energy gap in diabatic state X , PX(∆E),

is related to the free energy GX by

GX(∆E) = −kBT lnPX(∆E) (2.4)

where PX(∆E) is to be inferred from the energy gap histograms.

There are several reasonable ways to parametrize PX(∆E) from the sampled en-
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ergy gaps. A Gaussian fit to the energy gap distribution will result in a parabolic free

energy profile, in keeping with Marcus theory. However, there is no formal restric-

tion on the functional form of the fit, provided it reasonably captures the statistical

distribution of energy gaps. First, we explore the Marcus picture, which facilitates

comparison to the experimental ET parameters derived under the assumption of lin-

ear response. We then consider a more flexible model for the free energy and show

that the predicted deviations from the Marcus model favor fast recombination of the

CT state.

The Marcus picture
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Figure 2-2: Construction of ET free energy curves for FAAQ. All energies are in eV.
Several MD trajectories are computed with FAAQ either in the CT state (a) or the
neutral state (b). Along each trajectory, the energy gap ∆E is sampled in order to
generate probability distributions for the energy gap P (∆E) for the (c) CT and (d)
neutral trajectories. The histograms show the relative frequency of each energy gap
window, while the curves are a Gaussian fit. (e) Free energy curves for the neutral
and CT states are computed as the logarithm of the probability distributions.

Gaussian fits to the neutral and CT energy gap distributions are shown in Figure

2-2(c) and 2-2(d). The error bars in the histograms indicate the standard error

in the bar heights obtained separately for each MD trajectory. Applying Eq. 2.4

to the Gaussian fits, we obtain the Marcus free energy curves in Figure 2-2(e). The
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nested parabolas confirm that the simulations place CR in the Marcus inverted region,

−∆GCR > λ.

Within the linear response approximation, the driving force and reorganization

energy can be obtained directly from the mean energy gaps of the neutral and CT

configurations,85

∆GCR =
1

2
(〈∆E〉N + 〈∆E〉CT) (2.5)

λ =
1

2
(〈∆E〉N − 〈∆E〉CT) (2.6)

The mean energy gaps and corresponding ET parameters are presented in Table

2.1. Our ET parameters ∆GCR = 2.38 eV and λ = 1.64 eV fall between the two esti-

mates inferred from experimental data, −∆GCR ≈ 2.24−2.68 eV and λ ≈ 1.53−1.78

eV. From the standard error of the mean energy gap for each state, we estimate un-

certainties of roughly 0.2 eV for both −∆GCR and λ due to the limited MD sampling.

Nevertheless, the calculated −∆GCR and λ demonstrate that the experimental ET

properties, interpreted within the Marcus picture, are borne out by the microscopic

details of the CDFT/MMpol simulations. The agreement of our calculated λ with

experiment is especially encouraging because it indicates that our simulations achieve

a realistic picture of both equilibrium and nonequilibrium solvation regimes. Previous

work has demonstrated that 0.2 eV of the reorganization energy arises directly from

solute reorganization,99 while an additional 0.6 eV can be attributed to bulk elec-

trostatic effects.29 The larger reorganization energy found here suggests that solvent

configurations at equilibrium with either diabatic state are further stabilized, relative

to nonequilibrium configurations, by conformation-specific solute-solvent interactions

such as hydrogen bonding that are not captured by conventional continuum solvent

approaches.119

Beyond linear response

Having validated the Marcus picture obtained through the CDFT/MMpol approach,

we can investigate the degree to which the simulations predict deviations from the
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Basis set 〈∆E〉N 〈∆E〉CT −∆GCR λCR ∆G‡
CR

3-21G 4.13 0.86 2.49 1.63 0.11
6-31G* 4.03 0.74 2.38 1.64 0.08

Table 2.1: ET parameters obtained from MD simulations, assuming Gaussian statis-
tics for the energy gap. All energies are in eV.

linear response regime in the FAAQ/DMSO ET reaction. The linear response as-

sumption is built into most implicit solvent models,56 so CDFT/MMpol is specially

poised to probe this question.

We begin by observing that our simulations do not provide a statistically even-

handed description of the entire reaction coordinate: the sampling is most complete

in the vicinity of the neutral and CT free energy minima. An umbrella sampling

approach could overcome this limitation120 and should provide an interesting avenue

for further investigation. Here, we focus on the statistics of the energy gap near the

free energy minima.

In the last section, ensemble-averaged energy gaps were used to compute ET

parameters via Eqs. 2.5 and 2.6. However, in addition to the average energy gaps,

our simulations provide an estimate of typical fluctuations σX of the energy gap.

Linear response dictates that both diabatic states experience the same energy gap

fluctuations, but the simulations do not fully bear out this assumption. We find

markedly larger energy gap fluctuations for the CT state, σCT = 0.43 eV, compared

to the neutral state fluctuations σN = 0.35 eV. We performed two statistical tests

of the hypothesis that the collection of energy gaps for the neutral and CT diabatic

states came from distributions with the same variance. The traditional F-test and

Levene’s test121 both reject the null hypothesis of equal variances (p < 0.01).

What are the mechanistic and kinetic consequences of the nonlinear solvent re-

sponse? To address this key question, we used the four statistics — energy gap

averages and fluctuations for each state — to obtain a unique quartic parametriza-

tion of the neutral free energy curve (up to an arbitrary choice of the zero of free

energy),

GN(q) = G0 +G1 q +
1

2
G2 q

2 +
1

6
G3 q

3 +
1

24
G4 q

4 (2.7)
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where q = ∆E − 〈∆E〉N. From Eq. 2.7, a quartic expression for GCT is uniquely

obtained via the linear free energy relation,122 GCT(∆E) = GN(∆E)+∆E. The same

overall fit is obtained regardless of which state is parameterized first. Expressions for

the coefficients Gi in terms of 〈∆E〉N, 〈∆E〉CT, σN and σCT can be found in Appendix

2.A.

G
N

G
CT

Figure 2-3: Quartic parameterization of the neutral and CT free energy profiles (solid
lines). Marcus free energy profiles (dashed lines) are shown for comparison.

The quartic free energy model is displayed in Figure 2-3. Qualitatively, the quartic

fit is strikingly similar to the Marcus picture. Nevertheless, the nonlinear solvent

response raises the driving force by 0.07 eV to −∆GCR = 2.45 eV and lowers the

reorganization energy by 0.06 eV to λCR = 1.58 eV. As shown in Table 2.2, the

activation barrier to CR is significantly reduced in the quartic model to ∆G‡
CR =

0.02 eV. From the ratio of ∆G‡
CR for the Marcus and quartic models, the quartic

model predicts an order-of-magnitude enhancement of kCR relative to the Marcus

picture. This finding emphasizes that slight nonlinearities in the solvent response —

which have been characterized experimentally in other examples of condensed phase
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ET123, 124 — can fundamentally alter the kinetics of CR and CS.

Approximation σN σCT −∆GCR λCR ∆G‡
CR

Linear response 0.29 0.29 2.38 1.64 0.08
Nonlinear correction 0.35 0.43 2.45 1.58 0.02

Table 2.2: CR parameters obtained under the linear response approximation and
under the quartic fits. All energies are in eV.

2.5.2 Characterization of the electronic coupling

The Marcus expression, Eq. 2.1, has a standard interpretation from the perspective

of classical transition-state theory:125 the exponential term, parameterized by the

reorganization energy and driving force for ET, embodies the likelihood of visiting

the transition state region where an ET event becomes maximally probable; then the

pre-exponential term, controlled by the electronic coupling, characterizes the inherent

probability of ET at the isoenergetic point. In the last section, we used the diagonal

elements of the diabatic two-state Hamiltonian to compute energy gap fluctuations

and parameterize the exponential term in the rate expression; here, we use CDFT to

characterize VDA as well as its fluctuations in the neutral and CT ensembles.

The magnitude of the CDFT couplings, presented in Table 2.3, is in excess of most

experimentally determined couplings for compact donor-acceptor dyads.4 The cou-

plings also exceed our previously described estimate VDA ≈ 0.03−0.06 eV by an order

of magnitude. We anticipate that much of the discrepancy between the computed and

experimentally inferred couplings can be attributed to the short-range character of

intramolecular ET in FAAQ. In most systems for which the CDFT coupling prescrip-

tion has been tested and validated, the relevant ET process is either intermolecular3

or bridge-mediated.126, 127 In FAAQ, the donor-acceptor “bridge” is effectively a sin-

gle C-C bond; this feature makes the CDFT coupling especially sensitive to the size

and shape of the constraints. Nevertheless, these errors should be largely systematic

across the sampled configurations because the same partitioning strategy was used

for all configurations. Therefore we can still gain mechanistic insights by studying

trends in the CDFT couplings.
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Configurations 〈VDA〉 σV
Gas phase

Neutral 0.90 0.15
CT 0.73 0.18

DMSO
Neutral 0.61 0.12
CT 0.25 0.06

Table 2.3: Mean electronic couplings and deviations for neutral and CT configurations
of FAAQ in the gas phase and in DMSO solution. All energies are in eV.

The distribution of electronic couplings presented in Table 2.3 reveals several inter-

esting trends. First, the neutral configurations exhibit a substantially larger coupling

than the CT configurations, indicative of a modest non-Condon effect.118, 128 In par-

ticular, the observation of increased electronic coupling for configurations exhibiting

a larger energy gap indicates that the mean electronic coupling at the transition state

∆E = 0, where its magnitude matters most, may be smaller than the values predicted

here.

Another striking feature of the couplings is the substantial difference between the

gas phase and solution phase values, both for mean couplings and for deviations.

Other recent simulations of solvent effects on electronic couplings117, 126, 129, 130 have

been at odds regarding the magnitude of these effects; here we find a significant re-

duction of the coupling matrix element upon incorporation of solvent. Fluctuations in

the coupling are also damped by the solvent, as was also observed in a computational

study where the time-dependence of VDA was monitored explicitly.131

Finally, we note that the ET parameters obtained from our simulations correspond

to CT state lifetimes on the fs to ps timescale, in qualitative agreement with the ex-

perimental refutation96 of the previously claimed long-lived CT state in FAAQ.95

Future fine-tuning of the CDFT coupling prescription should lead to improved esti-

mates of the coupling, thereby enabling quantitative ET rate calculations within the

CDFT/MMpol model.
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2.6 Discussion

The use of the diabatic energy gap as a reaction coordinate for solution phase ET

has a long history rooted in Warshel’s semiclassical trajectory approach.62, 132 This

particular choice of reaction coordinate is convenient because it collapses the full com-

plexity of the solvent dynamics onto a single degree of freedom, while still providing a

quadratic free energy profile in the limit of linear response.133 The energy gap is also

easier to control for the purposes of umbrella sampling than other more physically

appealing choices such as a solvent polarization reaction coordinate, motivated by the

original work of Marcus.16

But the physical content of ∆E as a reaction coordinate is limited. How does

the reaction proceed? First we consider the extent to which a key internal degree of

freedom in FAAQ, the dihedral angle between the donor and acceptor, influences the

ET free energy profiles. Could excited state isomerization have a measurable effect

on kCR? We then turn our attention to the role of the solvent and to the notion of

a collective solvent coordinate for ET in particular. Towards this end, we map the

diabatic energy gaps from our simulations onto a classical polarization coordinate.

The correlation between the energy gap and the polarization coordinate provides

another measure of how successfully the Marcus model captures the atomistic details

of our simulations.

2.6.1 Role of solute flexibility in ET kinetics

The FAAQ molecule is highly conjugated, with the amide bridge providing the only

practical means of breaking planarity. The torsional barrier between the FA and

AQ groups is expected to be large compared to kBT , prohibiting any substantial

population of the cis configurations illustrated in Figure 2-1b. Nevertheless, the

possibility of photoinduced isomerization prompted us to examine whether the cis and

trans configurations have different ET kinetics, and if so, to quantify the difference.

We obtained 750 snapshots of cis configurations for each diabatic state, following

the same procedure outlined for the trans configurations. To obtain a rough estimate
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of the free energy of activation for isomerization, we take the linear response approach

and fit the statistics of the dihedral angle φ to a pair of parabolas,

Gcis (φ) =
1

2σ2
cis

(φ− 〈φ〉cis)2 (2.8)

Gtrans (φ) =
1

2σ2
trans

(φ− 〈φ〉trans)2 +∆Gcis-trans (2.9)

The free energy difference ∆Gcis-trans = Gcis (〈φ〉cis) − Gtrans (〈φ〉trans) was approx-

imated from the free energy of optimized cis and trans FAAQ structures obtained

at the B3LYP/6-31G* level with DMSO modeled by the SM8 model,134 yielding

∆Gcis-trans = 3.8 meV. Then we estimate the free energy barrier to isomerization by

computing the free energy at the curve-crossing.

Activation free energies for isomerization and for CR within the linear response

approximation are shown in Figure 2-4, superimposed over the distribution of all

3000 snapshots in the (∆E, φ) plane. The isomerization barrier heights range from

0.52 − 0.71 eV (12 − 16 kcal mol−1); given the short lifetime of the CT state, these

barriers preclude any substantial degree of excited state isomerization. We therefore

expect that any influence of the cis isomer on the overall CR rate in experiments

can be safely neglected. Furthermore, the barrier heights for CR within the Marcus

picture are quite similar for the two isomers: 0.08 (0.09) eV for CR in the cis (trans)

conformation. Thus, even if isomerization were more facile, it would have only a

minor influence on kCR.

In summary, the linear response assumption leads to a model for the ET mecha-

nism in which CR is largely decoupled from cis-trans isomerization. The rigidity of

the donor and acceptor units precludes any further dependence of the CR rate on the

details of solute conformation. These insights raise the possibility of constructing an

ET reaction coordinate that captures the key solute-solvent interactions while aver-

aging out all of the internal degrees of freedom in FAAQ. We explore this possibility

next.
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Figure 2-4: Scatterplot of the energy gap ∆E and dihedral angle φ for snapshots from
all MD trajectories. Colors represent the type of snapshot: green = neutral, trans;
red = CT, trans; blue = neutral, cis; orange = CT, cis. The labeled arrows indicate
activation energies ∆G‡ (in eV) for transitions between the four wells (↑, ↓ : cis-trans
isomerization; → : charge recombination).
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2.6.2 Reaction coordinate based on a simplified electrostatic

model

How well can a classical solvent polarization coordinate capture the atomistic details

of the ET simulations? To provide a quantitative answer, we construct a plausi-

ble polarization coordinate and study its correlation with the energy gap reaction

coordinate.

We express the collective solvent polarization in terms of an electrostatic energy

gap possessing the general form ∆Eel = ∆(µX · EX), where µX is the electric dipole

moment of FAAQ in diabatic state X , and EX is the electric field generated by the

particular solvent configuration around the solute dipole. The construction of ∆Eel

is outlined below; further details are provided in Appendix 2.B.

First we replace the FAAQ dyad with a point electric dipole µX whose magnitude

and direction are fixed to reproduce the ensemble-averaged dipole moment of FAAQ in

diabatic state X , as obtained from our simulations. The DMSO solvent is treated as a

collection of point charges, taken directly from the MM model. Then the electrostatic

energy gap for a given snapshot α is the difference between the interaction energies

of the solute dipole and solvent electric field in the two diabatic states,

∆Eel = 〈µ〉CT ·ECT − 〈µ〉N · EN (2.10)

Given this prescription, we evaluate ∆Eel for snapshots α from the CDFT/MMpol

simulations and consider the correlation r between ∆Eel and the diabatic energy gap

∆E,

r ≡ Corr (∆E,∆Eel) =
1

N − 1

N
∑

α=1

(

∆Eα − 〈∆E〉
σ∆E

)(

∆Eel,α − 〈∆Eel〉
σ∆Eel

)

(2.11)

The location of the solute dipole in the definition of ∆Eel remains to be determined;

two possibilities are considered here. First, to set an upper bound on the correlation

achievable with a single-dipole representation of FAAQ, we placed a dipole at each

nucleus i of the molecule and considered the linear combination µ =
∑

i ciµi. The
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correlation coefficient r in this model can then be optimized with respect to the

coefficients c in a least-squares sense.135 This model has 38 degrees of freedom (one per

nucleus in the FAAQ model) and achieves a correlation r = 0.97 upon optimization

of c as illustrated in Figure 2-5a.

The correlation is reduced slightly when we restrict the model of the solute to

a single dipole. Varying the location of the single dipole over all FAAQ nuclei, we

obtained an optimal correlation r = 0.93 (Figure 2-5b) by placing it on the carbon

atom labeled C1 in Figure 2-1. Thus, we can account for the bulk of the energy gap

fluctuations in the FAAQ/DMSO system with a simple electrostatic model of solvent

polarization.

The correlation scatterplots in Figure 2-5 show some interesting trends. First, the

polarization models provide a better fit for the neutral configurations than for the CT

configurations, likely because of the more drastic difference in polarization between

the two diabatic states at neutral configurations. Also, the cis and trans isomers

are segregated in the single-dipole scatterplot in Figure 2-5b. The two isomers have

different effective charge separation distances in the CT state, so it is sensible that the

best-fit mappings between ∆E and ∆Eel for the cis and trans configurations could

have different constant shifts. The inclusion of additional solute degrees of freedom

can mask the distinction between the isomers, as evidenced by the lack of isomer

segregation in Figure 2-5a.

Some potentially important features that our simulations cannot intrinsically cap-

ture, such as intermolecular charge transfer between the solute and the first solva-

tion shell136 or within the solvent,137 are naturally absent from this analysis. Still,

the scatterplots show that solvent polarization coordinates can be constructed which

faithfully mirror the energy gaps obtained from the full CDFT/MMpol simulations.

2.7 Conclusion

We have explored the mechanistic and kinetic details of ET in the compact donor-

acceptor dyad FAAQ solvated in DMSO. Our simulations corroborate experimental
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Figure 2-5: Correlation between the diabatic energy gap and electrostatic energy gap,
where the latter describes the interaction between the solvent electric field and (a) a
linear combination of dipoles at each FAAQ nucleus or (b) a single dipole placed at
C1 (see Figure 2-1). Colors represent the type of snapshot: green = neutral, trans;
red = CT, trans; blue = neutral, cis; orange = CT, cis.
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evidence that CR takes place in the Marcus inverted region. Although inverted region

effects have been postulated to drastically extend the lifetimes of singlet CT excited

states in compact dyads,95 we find a small activation barrier that promotes CR on the

ps timescale, in agreement with transient absorption studies.96 A modest nonlinear

solvent response further enhances the CR rate.

From the microscopic details of the simulations, we identify several mechanistic

features bearing consequences for the ET kinetics. We find evidence of non-Condon

effects: the electronic coupling is weaker in the equilibrium solvation environment

of the CT state than in that of the ground state. Cis-trans isomerization does not

appear to qualitatively change the ET landscape in FAAQ. Finally, we find good

correlation between the diabatic energy gap and a simplified electrostatic reaction

coordinate. Despite signatures of nonlinear response detected in our simulations, the

Marcus picture of ET driven by collective solvent polarization captures the funda-

mental mechanism of CR in FAAQ.

To carry out these simulations, we have introduced a computational model dubbed

CDFT/MMpol for condensed phase ET simulations. Designed for accuracy and scal-

ability, the CDFT/MMpol approach couples diabatic states from constrained DFT

with a polarizable force field to account for mutual polarization of the donor-acceptor

system and surrounding solvent. A more accurate modeling of the solute-solvent in-

teraction — for example, at a QM/QM level — would serve to shore up our evidence

of a nonlinear response; but obtaining sufficient statistics to demonstrate the effect

at a higher level of theory would make such an effort intractably demanding from a

computational standpoint.

Looking ahead, the approach outlined here is readily adaptable to the presence of

other low-lying excited states, for example, the localized S1 state on AQ from which

CS originates in FAAQ. These states can be treated with DFT methods better suited

to localized excitations, such as LR-TDDFT45, 102 or ∆SCF.138, 139 Together with a

prescription for couplings between CT and local excited states,140 this approach would

provide a fully self-consistent model of CR and CS in the condensed phase. Such a

model would represent an important step towards predicting how the ratio of CS to
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CR might be tuned through chemical modifications.

To extend the scope of the CDFT/MMpol approach to larger polyads such as

donor-bridge-fullerene systems141, 142 or to models of natural photosynthesis,143, 144 it

would be appealing to substitute the CDFT description of the solute with an ac-

curate MMpol model for configurational sampling.3 Improvements in force-matching

techniques are cause for optimism that MMpol force fields can rise to this challenge.60

Finally, we anticipate that CDFT/MMpol will provide a useful starting point

for real-time quantum or semiclassical dynamics simulations of condensed phase

ET.145, 146 These methods require diabatic energies and couplings along real-time tra-

jectories; our approach can supply the necessary parameters on-the-fly for ET in

complex systems. We look forward to applying CDFT/MMpol simulations to exist-

ing and nascent formulations of real-time ET dynamics such as the two-hop Langevin

equation recently proposed by our group.147
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2.A Appendix: Parameterization of the quartic

free energy model

Here we present our strategy for parameterizing a quartic free energy model from

CDFT/MMpol simulations. We use Gaussian statistics from the neutral and CT

energy gap probability distributions to parameterize either of the following two curves:

GN(qN) = G0 +G1qN +
1

2
G2q

2
N +

1

6
G3q

3
N +

1

24
G4q

4
N

G̃CT(qCT) = G̃0 + G̃1qCT +
1

2
G̃2q

2
CT +

1

6
G̃3q

3
CT +

1

24
G̃4q

4
CT
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where qX = ∆E − 〈∆E〉X. The coefficients {Gi} can be expressed in terms of the

average energy gaps 〈∆E〉N, 〈∆E〉CT and their variances σ2
N, σ

2
CT:

G0 = 0

G1 = 0

G2 =
kBT

σ2
N

G3 = −2

[

kBT

〈∆E〉CT − 〈∆E〉N

(

2

σ2
N

+
1

σ2
CT

)

+
3

(〈∆E〉CT − 〈∆E〉N)2
]

G4 = 6

[

kBT

(〈∆E〉CT − 〈∆E〉N)2
(

1

σ2
N

+
1

σ2
CT

)

+
2

(〈∆E〉CT − 〈∆E〉N)3
]

The zero of energy, set by G0, is of course arbitrary. The equivalent expressions for

the {G̃i} are:

G̃0 = 0

G̃1 = 0

G̃2 =
kBT

σ2
CT

G̃3 = −2

[

kBT

〈∆E〉N − 〈∆E〉CT

(

2

σ2
CT

+
1

σ2
N

)

− 3

(〈∆E〉N − 〈∆E〉CT)
2

]

G̃4 = 6

[

kBT

(〈∆E〉N − 〈∆E〉CT)
2

(

1

σ2
N

+
1

σ2
CT

)

− 2

(〈∆E〉N − 〈∆E〉CT)
3

]

From either curve, the linear free energy relation GCT(∆E) = GN(∆E) + ∆E

allows us to deduce the other curve. To make a direct comparison between the two

parameterizations, one simply chooses G0 and G̃0 such that their difference reproduces

∆G. The quartic parameterization is unique for a given set of energy gap statistics

{〈∆E〉N.〈∆E〉CT, σ
2
N, σ

2
CT}.

Note that the parameterization is only valid near the free energy minima of the

neutral and CT states. For energy gaps far from these minima, the integrity of the

model quickly disintegrates. This is evident from the fact that the quartic fit is

actually concave down. However, the model succeeds at incorporating differences in
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energy gap fluctuations between the neutral and CT states; the parabolic fit cannot

make this distinction. Given that the equilibrium CT configurations occasionally

sampled ∆E = 0 in our simulations, we anticipate that the quartic fit is valid out to

the region of the ET transition state.

2.B Appendix: Electrostatic energy gap models

As outlined in Section 2.6, we extract an electrostatic solvent polarization coordinate

from the full CDFT/MMpol simulations according to the general scheme

∆Eel = 〈µ〉CT ·ECT − 〈µ〉N · EN

where the brackets indicate that the solute dipole moment 〈µ〉X is averaged over the

equilibrium ensemble for state X, and EX is the solvent electric field. The substi-

tution of the FAAQ dipole moment in lieu of the full molecule effectively removes

all solute internal degrees of freedom from the model. Translational and rotational

solute degrees of freedom are conserved for each snapshot by performing the ensemble

average in a molecular reference frame affixed to FAAQ and defined in Figure 2-6.

Then the averaged dipole moment was translated back into the local frame of each

snapshot for the calculation of ∆Eel.

Electronic polarization of the solvent is explicitly accounted for by employing

diabat-dependent electric fields for each snapshot. This critical contribution to the

solvent polarization is absent from conventional QM/MM simulations but is captured

by the Drude oscillator model used in our approach.

For the scatterplot shown in Figure 2-5a, the ensemble-averaged dipole was placed

at each nucleus and weighted by linear combination coefficients c such that the result-

ing electrostatic energy gap correlated maximally with the diabatic energy gap. The

c were determined through a correlation optimization script written for this purpose

in Python. The optimal values of the c obtained from this script are shown below,

along with the individual coordinate correlations.
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Figure 2-6: Illustration of the reference frames used for ensemble-averaging of the
FAAQ dipole.

degrees of freedom in analysis = 38

number of data points acquired = 3000

(sorted) coordinate correlations:

[-0.92843488 -0.88943688 -0.82386172 -0.80294217 -0.7728407 -0.7130249

-0.71292998 -0.68850464 -0.66729941 -0.66435441 -0.6612397 -0.63460937

-0.60652073 -0.53854154 -0.52889835 -0.5244267 -0.51426307 -0.5044501

-0.49759608 -0.49093923 -0.480037 -0.437951 -0.4089387 -0.40662883

-0.39450954 -0.357034 -0.34087958 -0.29842242 -0.25810203 -0.22918662

-0.21254592 -0.20360583 -0.19695817 -0.13882302 -0.08884027 -0.07571224

-0.06779173 -0.01415549]

Optimal correlation = 0.969939085543

(unsorted) linear combination coefficients:

[ -4.07682592 14.04589348 -36.37414595 17.89999013 -12.70350082

-16.79748228 4.98587104 -1.58533974 -9.56749262 5.98152003

-6.77872348 5.29388316 -3.59411754 -3.91289924 -0.39765118

-0.51060502 1.87039648 -0.30202298 -1.01448651 1.32069888

2.13285778 -5.79993433 1.05423627 -12.72663693 -3.56284780

-2.1195242 0.52961111 -4.38033486 -15.87822201 3.82525926

2.24010551 -1.80261191 3.81939504 6.08093864 -0.15763209

-0.486439 -0.74085006 -0.84316418]

Note that the coordinate with 93% correlation, whose scatterplot is shown in Fig-

ure 2-5b, is the first entry in the list of “coordinate correlations”. The linear combi-

nation coefficients are not presented in the same order as the coordinate correlations,
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the latter of which were sorted by magnitude. Without indicating precisely which

correlations correspond to which nuclei, we note the observed trend that nuclei with

larger coordinate correlations tended to be closer to the donor-acceptor boundary.

2.C Appendix: Force field parameters for polariz-

able DMSO
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Nonbonded parameters

atom charge (a.u.) polarizability (Å3) ǫ (kcal/mol) Rmin/2 (Å)
H 0.0585 0.000 -0.024 1.34
C -0.0962 1.963 -0.078 2.04
S 0.2028 3.234 -0.350 2.00
O -0.3614 0.894 -0.120 1.70

Bond parameters

bond kb (kcal/mol Å2) b0 (Å)
H—C 322 1.11
C—S 240 1.80
S—O 540 1.53

Angle parameters
angle kθ [kcal/(mol rad2)] θ0 (deg)

H—C—H 35.5 108.4
H—C—S 46.1 111.3
C—S—O 79.0 106.75
C—S—C 34.0 95.0

Dihedral parameters
dihedral angle kφ (kcal/mol) n δ (deg)
H—C—S—O 0.2 3 0
H—C—S—C 0.2 3 0

Table 2.4: Force field parameters for the polarizable DMSO model. See Ref. 113
for complete parameter definitions and functional form of the empirical force field.
The effect of the polarizable Drude particles on the empirical energy expression is
described in Ref. 109.
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Chapter 3

Fluorescence quenching by

photoinduced electron transfer in a

luminescent Zn2+ sensor

3.1 Introduction

Photoinduced electron transfer (PET)149, 150 is the widely accepted mechanism for the

behavior of a class of “turn-on” fluorescent chemosensors which fluoresce only in the

presence of targeted analytes. These sensors are electron donor-acceptor systems in

which the initial photoexcitation is localized on the acceptor (Figure 3-1a). In the

absence of analyte, the HOMO of the donor lies higher in energy than that of the

acceptor and can transfer an electron to the acceptor’s HOMO. The electron transfer

process competes favorably with radiative decay to the ground state, substantially

diminishing the fluorescence quantum yield.151 Binding of the sensor to its particu-

lar analyte lowers the donor HOMO below that of the acceptor HOMO, preventing

electron transfer and favoring fluorescence.

One may also consider PET from the perspective of electronic states (Figure 3-

1b) instead of molecular orbitals. In this picture, the bare sensor possesses a charge-

transfer (CT) excited state which lies energetically beneath the lowest optically active
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Figure 3-1: Energy level diagrams illustrating PET from (a) the frontier molecular
orbital perspective and from (b) the electronic states perspective.
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excited state and provides a nonradiative relaxation pathway for the photoexcited

sensor. When the sensor binds its analyte, the CT state is shifted above the optically

active state and can no longer quench the fluorescence.

PET and other luminescence switching mechanisms have been harnessed in the

design of a variety of chemical sensors.152, 153 Desirable properties of the sensors, such

as selectivity for the analyte and intensity of the fluorescence activation, can be tuned

by the addition of functional groups which modify the sensor’s electronic structure.

The systematic optimization of fluorescence-based chemosensors is an active area of

research.152, 154 The study described in this chapter is motivated by the conviction that

rational sensor design can benefit from computational insight into the photophysics

of these sensors, especially as a predictive tool for features (such as the energetics of

the CT state) that are difficult to probe experimentally.

In this chapter we describe a computational investigation of the photophysics

of luminescence switching in the zinc-sensing fluorophore Zinpyr-1 (ZP1, Figure 3-

2).155, 156 While PET is a likely mechanism for fluorescence quenching in ZP1, there

are several alternative possibilities152, 157 worth consideration. Among these, inter-

nal charge transfer,158 excimer formation,159 and resonance energy transfer160 are all

employed in sensor design, but these mechanisms are generally limited to molecular

architectures157 to which ZP1 does not conform. Proton-coupled electron transfer

(PCET)161 has been reported in some chemical sensors162 and is a viable alternative

to simple PET.

It has become somewhat routine for researchers in sensor design and synthesis

to use TDDFT to calculate electronic spectra and assess whether the qualitative

picture of PET holds for their sensors.163–165 Petsalakis and coworkers report a series

of studies166, 167 on pyrene-based fluorophores that led to a rule for predicting the

strength of a PET process in terms of donor and acceptor orbital energies. Wang,

Dyer and coworkers have illustrated the value of computation in sensor design by

predicting the photophysical properties of a Zn2+ PET sensor and then assessing

their predictions by synthesis and characterization of the sensor.168 However, the

reliance of previous computational studies on TDDFT alone is troublesome because
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of its well-documented tendency to underestimate the energy of CT excited states.46

To address concerns about the reliability of CT excited states obtained from

TDDFT, in this study we supplement conventional TDDFT calculations with CDFT

for the CT excited state. The CT excitation energy is given by the energy difference

between the ground and CT diabatic states, each obtained via CDFT. Together, the

TDDFT and CDFT calculations permit a valuable methodological cross-comparison,

as they approach the problem of CT excited states from distinct perspectives.

After a review of the salient chemical and photophysical properties of ZP1 obtained

from previous experiments, we describe the details of our computational approach.

We report TDDFT vertical excitation energies of ZP1 with traditional hybrid and

long-range corrected (LC) functionals and show that these computations are unable

to clearly resolve the ordering of the low-lying excited states. CT excitation energies

deduced from CDFT calculations are then compared to valence excitation energies

from TDDFT. Together, the two methods are shown to support the PET fluorescence

quenching hypothesis. Finally we assess the merits and shortcomings of our approach

and discuss some future directions for modeling sensor photophysics.

3.2 The Zn2+ chemosensor ZP1

Several examples of both one- and two-arm fluorescein-based zinc sensors have emerged

since ZP1 was first characterized,154 featuring improvements such as diminished back-

ground fluorescence of the metal-free chromophore,169–171 reversible Zn2+ binding for

monitoring zinc over time,172, 173 and ratiometric sensing for quantifying the concen-

tration of Zn2+ in solution.174 We have chosen to focus our modeling efforts on ZP1

because of the volume of experimental data available for this sensor and because of

its established role as a template for future fluorescein-based zinc sensor design.154

ZP1 and several of its derivatives are effective probes of Zn2+ in biological settings

and have made possible a number of important neurological and immunological stud-

ies on the bioactivity of zinc.175, 176 The sensor consists of a pair of di(2-picolyl)amine

(DPA) arms covalently bonded to a 2′,7′-dichlorofluorescein (DCF) body at the 4′
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Figure 3-2: Top: schematic of Zn2+ binding to ZP1 in aqueous solution, with formal
charges as indicated. Bottom: ZP1 structures employed in this study, including
explicit coordination of water to Zn.

and 5′ positions of the DCF ring (Figure 3-2). DPA is known to selectively bind Zn2+

over other dications encountered in physiological settings,177 notably Ca2+ and Mg2+.

ZP1 can bind Zn2+ in either of two pockets formed by the chelating nitrogens of DPA

and a carbonyl oxygen on the xanthone ring. We will denote ZP1 structures binding

Zn2+ by Zn-ZP1 or Zn2-ZP1, according to the number of Zn2+ ions bound.

In the absence of Zn2+ and at physiological pH, the absorption spectrum of ZP1

exhibits a maximum at λ = 515 nm, and the molecule fluoresces with a modest

quantum yield Φ = 0.17.156 In saturated Zn2+ solution, the maximum absorption

wavelength is blueshifted to 507 nm and the quantum yield increases to Φ = 0.87.

This enhancement of the fluorescence is quite selective for Zn2+; only its d10 congener

Cd2+ is known to induce a comparable fluorescence activation. This behavior is

consistent with a PET mechanism in which the lowering of the donor HOMO is more

pronounced upon binding to a filled d shell metal dication than to a dication with an
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unfilled d shell.153

A variety of protonation states are available to ZP1: four pyridyl nitrogens and

the pair of ion-binding pockets are accessible for protonation, as well as the DCF

carboxylate group. Accordingly, the fluorescence emission spectrum of ZP1 exhibits

a complicated pH dependence, which has recently been explored in detail by po-

tentiometric titration studies.156 At neutral pH, one of the two binding pockets is

protonated. Protonation of the second binding pocket corresponds to a pKa of 6.96,

indicating a mixture of occupied and free binding pockets at physiological pH. In

aqueous Zn2+ solution, experimental evidence indicates significant fluorescence en-

hancement for ZP1 structures in which both coordination sites are occupied, relative

to structures with at least one empty site.156

3.3 Computational Details

For each metal-coordination and protonation state of ZP1 under study, the ground

state geometry was optimized using Kohn-Sham DFT with the B3LYP functional39, 178

as implemented in Turbomole.179 An SV(P) basis set180 was employed for main

group atoms, and a Stuttgart-Köln ECP was used for zinc.181 The optimizations were

performed in aqueous solution using the COSMO solvation model.182 To account for

direct coordination of the solvent to the metal, three explicit water molecules were

ligated to Zn, resulting in an overall octahedral coordination.

Gas-phase TDDFT vertical excitation energies were evaluated with the B3LYP

functional and SV(P) basis set, and solvation effects were studied with COSMO.

Because conventional hybrid density functionals have a systematic tendency to un-

derestimate CT excited state energies,46 the recently developed long-range corrected

LC-PBE and LC-PBE0 functionals, as implemented by Herbert and coworkers183

were also employed for gas-phase TDDFT calculations in Q-Chem.111 Attachment-

detachment densities184 of relevant electronic transitions were computed within the

Tamm-Dancoff approximation185 and rendered inVMD.186 The correlation-consistent

cc-pVDZ and aug-cc-pVDZ basis sets187 were used to gauge the adequacy of the
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smaller SV(P) basis for our TDDFT calculations.

Further characterization of the CT states was carried out using CDFT with the

B3LYP functional and SV(P) basis set. Ground state molecular analysis techniques

such as atomic population analysis49 are available for constrained states in CDFT and

are used here to characterize changes in electron density over molecular fragments.

All reported TDDFT and CDFT excitation energies are vertical excitation energies.

Some additional care must be taken to correctly capture solvent stabilization of

the CT state. To account for nonequilibrium solvation effects, we employ a mod-

ified Onsager self-consistent reaction field (SCRF) model188 in which the slow and

fast components of the polarization response are separated according to the Pekar

partition.57, 189 We emphasize that this correction scheme only applies to vertical

excitation energies, in which the solute nuclear configuration has not yet relaxed in

response to the CT density. A solute radius a0 = 10Å was chosen to ensure full elec-

trostatic interaction between the solute density and the dielectric continuum while

still encapsulating the solute density almost entirely within the cavity. The value

ǫ = 80 was used for the static dielectric constant of water, and the fast dielectric

constant was obtained from the square of the index of refraction of water, ǫ∞ = 1.77.

3.4 Results and Discussion

3.4.1 TDDFT with a conventional hybrid functional

Based on our understanding of the chemistry of ZP1 at neutral pH,156 we expect the

anion and neutral ZP1 structures 5 and 6 in Figure 3-2, which each have at least

one deprotonated receptor site, to be important in biological applications. However,

as noted by Baik and coworkers,165 geometry optimizations on fluorescein-based sen-

sors tend to converge to the nonfluorescent lactone isomer when the carboxylate is

left deprotonated. In lieu of their constrained optimization approach, we attempted

geometry optimizations for the carboxylate structures with the COSMO solvation

model, rejecting structures which formed the lactone during this procedure.
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Optimization of structures 4 and 5 did not result in lactone formation, so we

proceeded to evaluate their vertical excitation spectra with TD-B3LYP/SV(P) in

the gas phase and with COSMO. The doubly-protonated structure 6 relaxed to the

lactone isomer even with COSMO solvation, so we included an explicit water molecule

which acts as a hydrogen bond donor to discourage ring closure. This procedure

resulted in a ring-opened optimized structure for 6.

Gas-phase TDDFT calculations on 4 through 6 at the B3LYP/SV(P) level yielded

several spurious low-lying CT excited states, as identified by their absence upon

inclusion of solvation effects. These spurious states are unsuitable for comparison

with gas-phase excited states from other approaches. We therefore protonated the

carboxylate group to obtain structure 7, which is not expected to exist in aqueous

solution, but which proved to be a useful benchmark for comparison to LC-TDDFT

and CDFT excited states, as its gas-phase excitation spectrum was not contaminated

with low-lying CT states.

Although 7 is not expected to fluoresce,190 experimental evidence191 indicates

that the lack of fluorescence in neutral fluorescein and its derivatives is due to fast

conversion to the anion rather than to significant differences in the absorption spectra

of the neutral and anionic species. Additionally, the protonation state of the benzoic

acid group in fluorescein is known to have only a small effect on the location of its

absorption maximum.191, 192 Thus we anticipate that calculations on 7 will produce

a vertical excitation spectrum similar to that of 6.

Gas-phase TD-B3LYP/SV(P) predicts for 7 an optically weak transition at 2.30

eV (oscillator strength f < 0.01). An attachment-detachment density plot indicates

substantial CT character from the proton-free DPA arm to the xanthone ring (Figure

3-3). A second CT state, in which the proton-coordinating arm acts as the electron

donor, is identified at 2.97 eV (f = 0.03). A bright excited state at 2.81 eV (f = 0.33)

lies between the two CT states and is attributed to excitation within the conjugated

π system of the xanthone ring. We judge the SV(P) basis to be sufficiently complete

for our purposes by noting that low-lying excited state energies computed with the

aug-cc-pVDZ basis set differ by less than 0.03 eV from their SV(P) counterparts.
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Figure 3-3: ZP1 attachment-detachment densities for low-lying excitations (from left
to right): lowest CT, valence, and second-lowest CT excitation.
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Structure Excitation energy (eV)
Label Zn2+ expt. valence CT1 CT2

4 0 2.86 2.89 3.20
5 0 2.41 2.92 2.44 3.13
6 0 3.02 3.24 3.27
7 0 2.85 2.21 2.90
8 1 2.92 2.84 > 4.0
9 1 2.89 2.33 > 4.0
10 1 2.92 3.14 > 4.0
11 2 2.44 2.87 > 3.0 > 4.0

Table 3.1: TDDFT vertical excitation energies of the lowest valence and two low-
est CT states of ZP1, evaluated with the B3LYP functional, SV(P) basis set, and
COSMO solvation model. The lowest excitation energy for each structure is indi-
cated in boldface.

We observe a moderate solvatochromic shift in the absorption spectrum of 7 in

aqueous solution. The COSMO model predicts a blueshift of less than 0.05 eV for

the bright state, while the low-lying CT state is stabilized by 0.1 eV due to its larger

dipole moment. COSMO solvation removes CT contamination from the spectra of

structures 4 through 6; their energies and orbital character are summarized in Table

3.1. Structure 5 with its single protonated binding pocket exhibits a CT state 0.48

eV lower in energy than the lowest bright state, while the lowest valence and CT

states of structures 4 and 6 are too close in energy for us to draw any conclusions

about their relative ordering.

For structures 5 and 7, which each have one protonated and one free binding

pocket, the relative ordering of the CT and bright excited states supports the claim

that fluorescence in metal-free ZP1 is quenched by ET to a lower-energy dark state,

and the attachment-detachment densities suggest that it is reasonable to classify the

PET process in this system qualitatively as electron donation from an amino nitrogen

lone pair to the xanthone ring. Furthermore, in both 5 and 7, the protonated arm’s

CT state is higher in energy than the bright state, which is consistent with the

moderate fluorescence activation observed experimentally for conditions under which

both binding pockets are protonated.

Next we consider changes to the vertical excitation spectrum of ZP1 upon binding
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one Zn2+ ion. We considered three protonation states for Zn-ZP1, corresponding to

structures 8 through 10 in Figure 3-2. TD-B3LYP with COSMO solvation (Table 3.1)

predicts that the CT state of structures 8 and 9, which each retain an empty binding

pocket, will lie lower in energy than the valence excited state, and thus continue to

quench fluorescence. On the other hand, structure 10, in which both binding pockets

are occupied by an ion, exhibits a CT excited state at ∆E = 3.14 eV, 0.22 eV above

the valence excited state at ∆E = 2.92 eV. This pattern corroborates the hypothesis

that occupation of both binding sites by any coordinating ion is sufficient to alter the

energy level ordering and activate the sensor’s fluorescence.

TD-B3LYP places the bright state of Zn2-ZP1 (structure 11) at 2.84 eV, essentially

unperturbed from that of metal-free ZP1. No CT states below 4.0 eV were identified

in its vertical excitation spectrum, corroborating the claim that PET is unavailable

for fluorescence quenching in Zn2-ZP1.

The valence excitation energy predicted by TD-B3LYP with COSMO for the

various ZP1 structures deviates substantially from the experimental absorption max-

imum at 2.41 eV. Our disagreement with experiment on the absorption maximum of

ZP1 is concerning but not unprecedented; B3LYP has previously been reported to

overestimate absolute valence excitation energies in some chromophores by similar

magnitudes.193, 194 Whether this error in absolute excitation energies affects the rel-

ative ordering of the excited states is uncertain. The valence excited state energy is

an overestimate while the CT excited state energies are probably underestimates. It

remains conceivable that the valence state actually lies beneath the CT state in ZP1,

so we turn to the alternative methods described below for further investigation.

3.4.2 TDDFT with long-range corrected functionals

While B3LYP results are in line with the proposed PET mechanism, they could be

considered inconclusive for at least two reasons. First, we do not know whether

overestimation of the valence excited state impacts the predicted ordering of the

excited states. Second, as mentioned earlier, hybrid functionals in TDDFT are known

to underestimate, sometimes severely, the energy of CT excited states. Methods

71



which employ exact (nonlocal) exchange, such as configuration interaction singles

(CIS),195, 196 should not suffer the latter pitfall – though it should be noted that

Subotnik has recently demonstrated the existence of systematic errors for CT states

in CIS.197 In any case, CIS greatly overestimates the excitation energy of the valence

excited state (see Appendix A) and does not predict a lower-lying CT state in any

of the ZP1 structures we studied. Therefore, we employed the long-range corrected

ωLC-PBE and ωLC-PBE0 functionals,198 which pair the success of semilocal and

hybrid functionals for local excited states with a correct description of exchange at

long range.

The performance of these functionals has been previously benchmarked for excited

states, with values for ω between 0.2 bohr−1 and 0.3 bohr−1 giving the least error in

excitation energies for ωLC-PBE and values in the vicinity of 0.1 bohr−1 performing

best for ωLC-PBE0; root-mean-square errors in these optimal parameter ranges are

reported to be on the order of 0.3 eV.183 However, ZP1 is significantly larger than

any of the systems employed in the benchmarking study, so the previously determined

values of ω may not be the most appropriate. We therefore decided to quantify the

sensitivity of the excitation energies in ZP1 to the choice of ω.

A gas-phase LC-TDDFT calculation was carried out for metal-free ZP1 (structure

7) and for Zn2-ZP1 (structure 11) at several reasonable183 values of ω (Table 3.2).

Here we find for neutral ZP1 that ωLC-PBE places the CT state above the valence

state for values of ω in the “optimal” range, but the CT state slides beneath the

valence state for smaller values of ω. In contrast, our ωLC-PBE0 calculations place

the CT state beneath the valence state for the optimal choice of ω.

For the metal-free ZP1 anion 5, ωLC-PBE removes the spurious CT states as ω

is increased. At ω = 0.1 bohr−1, there are at least six CT states beneath the lowest

bright state, while the spectrum at ω = 0.3 bohr−1 is entirely lacking in CT states

beneath the bright state. The CT excitation energies are more strongly dependent

on the choice of ω than the valence excitation energies because we are varying ω over

distances that are beyond the characteristic length scale of the valence transition but

are roughly commensurate with that of the CT transition. Still, both valence and
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ZP1 Eex, ωLC-PBE Eex, ωLC-PBE0
ω (a.u.) valence CT valence CT
0.10 2.63 1.79 2.96 2.78

0.15 2.72 2.28 2.99 3.18
0.20 2.89 2.75 3.08 3.48
0.25 2.97 3.20 3.16 3.70
0.30 3.07 3.47 3.23 3.86

Zn2-ZP1
ω (a.u.) valence CT valence CT
0.10 2.68 > 4.0 2.97 > 4.0
0.15 2.81 > 4.0 3.04 > 4.0
0.20 2.92 > 4.0 3.10 > 4.0
0.25 3.01 > 4.0 3.17 > 4.0
0.30 3.10 > 4.0 3.25 > 4.0

Table 3.2: Lowest gas-phase valence and CT excitation energies of neutral ZP1 (in
eV) predicted by long-range corrected PBE functionals, as a function of the range-
separation parameter ω. The lowest excitation energy for each structure is indicated
in boldface. Gas-phase TD-B3LYP/SV(P) predicts the lowest valence and CT states
at 2.81 eV and 2.30 eV, respectively, for metal-free ZP1 and at 2.86 eV and > 4.0 eV
for Zn2-ZP1.

CT excited states vary significantly as a function of ω.

These LC functionals place the bright state of Zn2-ZP1 below the first CT ex-

cited state, in agreement with TD-B3YLP and with the experimental observation of

enhanced fluorescence in Zn2-ZP1. Still, for metal-free ZP1 the optimal ωLC-PBE

functional places the valence state below the CT state, while the optimal ωLC-PBE0

functional places the valence state above the CT state. Hence, it appears that these

functionals are unable to clearly resolve the energy level ordering of the CT and bright

states in metal-free ZP1.

With semilocal functionals, CT state contamination of the spectrum may actu-

ally play an important role in the cancellation of errors that makes certain TDDFT

excitation energies so accurate. By lifting this contamination, long-range corrections

can throw the error cancellation out of balance. The ωLC-PBE valence excitation

energies in metal-free ZP1 illustrate this trend, drifting increasingly further from the

experimental value of 2.41 eV as ω is increased (Table 3.2). Given the LC functionals’

ambiguous excited state ordering for ZP1, we anticipate similar problems for the more
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challenging case of Zn-ZP1. Therefore, we turn to CDFT as an independent probe of

the CT excited states.

3.4.3 CT excited states via CDFT

CDFT provides a wholly alternative route to the characterization of CT excited states

in ZP1. We consider two definitions for the CDFT constraint regions. In one ap-

proach, one DPA arm is selected to be the donor region while the other arm comprises

a spectator region with no applied constraint. In the other approach, both arms are

assigned to the donor region. The DCF body of ZP1 defines the acceptor region in

both cases. While the single-arm partitioning scheme is in keeping with our simple

model of PET fluorescence quenching in this system, the two-arm scheme is desirable

for its flexibility to permit some delocalization of the positive charge over both arms

in the CT state.

Under the two-arm partitioning scheme, gas-phase CDFT with B3LYP predicts a

CT state at 2.44 eV for structure 7. Onsager solvation with the Pekar partitioning

scheme stabilizes the CT state by 0.05 eV. A Becke population analysis of the con-

strained density (Figure 3-4a) indicates that the amine lone pair on the proton-free

arm dominates the electron donation, while 31% of the donated density is attributed

to the other arm. The population analysis also indicates a small contribution per

pyridyl ring that cumulatively accounts for 32% of the transferred electron. These

results corroborate the qualitative picture of PET in ZP1 as electron donation from

the proton-free amine nitrogen to the xanthone ring; still, a quantitative understand-

ing of the excited states requires us to consider the role of the pyridyl rings as partial

electron donors.

If instead a single arm is constrained to serve as the electron donor, the predicted

gas-phase CT state energy increases substantially. For example, the CT state of 7

was raised to 2.82 eV by constraining the arm near the phenolic oxygen (left side of

the structure in Figure 3-2) to be the donor, while a CT excitation energy of 3.47 eV

was found by treating the other arm as the donor.

The donor and acceptor regions of Zn-ZP1 and Zn2-ZP1 are defined by analogy
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Figure 3-4: Net charge transfer by functional group upon excitation to the lowest CT
state of ZP1 with (a) no zinc bound and (b) 1 zinc bound, computed using CDFT
with B3LYP and Onsager solvation. The number of electrons is obtained from the
Becke population on each highlighted group.

to the metal-free case, with zinc and any coordinated water assigned to the donor

region. We found that this partitioning scheme led to unphysically large CT energy

gaps (∆E > 8 eV) when a xanthone carbonyl oxygen is covalently bonded to zinc, as

in structure 2. Therefore we choose to focus on structures in which zinc coordinates

exclusively to the chelating nitrogens and water, in spite of crystallographic evidence

that Zn binds preferentially to the carbonyl oxygen near the coordinating arm.156

To test whether this structural alteration could severely change the excitation spec-

trum, we computed low-lying TD-B3LYP/SV(P)/COSMO excitation energies of the

xanthone-chelating structure 2, with the pocket proton shown in the figure removed.

These energies were found to differ by less than 0.1 eV from their counterparts in

the analogous structure 8, suggesting that the additional separation of zinc from the

xanthone ring will not drastically alter the ordering of the excited states.

CDFT/B3LYP with Onsager solvation places the CT state of Zn-ZP1 above the

valence state regardless of whether the metal-free arm is protonated (Table 3.3). A

CT state at 3.59 eV is found if the phenolic proton is placed by the same arm as the

bound Zn2+ (structure 9), and this energy increases to 4.46 eV if the phenolic proton

is moved to the Zn-free arm (structure 10). Because the TDDFT bright state lies

below 3 eV for each of these structures, fluorescence enhancement is possible with

75



Structure Excitation energy (eV)
Label Zn2+ valence (TDDFT) CT (CDFT)
7 0 2.85 2.39

8 1 2.92 4.51
9 1 2.89 3.59
10 1 2.92 4.46
11 2 2.87 7.74

Table 3.3: Valence excitation energies from TDDFT and CT excitation energies from
CDFT, both in eV. See Figure 3-2 for structure details. All CDFT energies are at
the B3LYP/SV(P) level with Onsager solvation.

only one bound Zn2+ ion.

Population analysis of the CT state of Zn-ZP1 shows that the electron-donating

region is more localized on a single arm than in the case of metal-free ZP1: for

structure 9 (Figure 3-4b), 89% of the donated electron in Zn-ZP1 comes from one

arm, compared with 68% for metal-free ZP1. The population analysis suggests that

Zn2+ lifts the lowest CT state energy in part by reducing the coordinating arm’s

participation in electron donation.

For Zn2-ZP1, the CT state is unambiguously inaccessible as a photophysical inter-

mediate; CDFT/B3LYP with Onsager solvation places it 7.74 eV above the ground

state. The high energy of this state can be rationalized from a molecular orbital

perspective by noting that the CT excited state in Zn2-ZP1 is produced by excitation

from a Zn-N bonding orbital instead of a lone pair orbital.

TDDFT and CDFT both place the lowest CT state of metal-free ZP1 beneath the

bright state, and both predict a bright state beneath the lowest CT state for Zn2-ZP1.

For the more challenging case of Zn-ZP1, CDFT consistently predicts a bright state

lying beneath the lowest CT state. TDDFT is at odds with this ordering for two of

the three Zn-ZP1 structures we considered, but both methods show a marked increase

in the CT state energy upon protonation of at least one binding pocket. These results

suggest that PET fluorescence quenching in ZP1 can be deactivated by a single Zn2+

ion at physiological pH, where protonation of a binding pocket is common.

We caution that the limited separation of the donor and acceptor in this system

makes CDFT energies sensitive to the way the atomic populations are defined and to
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the choice of donor-acceptor partition. One could examine whether this sensitivity

is drastic enough to alter the predicted energy level ordering in ZP1 by varying the

location of the partition, but there is little flexibility in the choice of partition for the

well-defined donor-acceptor structure of ZP1.

We do not have a simple guideline for determining under what conditions CDFT

will provide a more reasonable CT excitation energy than conventional or long-range

corrected TDDFT. The two methods are more reliable in opposite limits; that is,

TDDFT is well-suited to the description of localized excited states while CDFT per-

forms best in the limit of long-range charge transfer excitations. Hence the two

methods are in some sense complementary. Intramolecular CT in small PET sensors

lies somewhere in the middle of these two extremes. While TDDFT is indispensable

for the determination of valence excited states in molecules with tens to hundreds

of atoms, we find that CDFT provides a competitive alternative for the study of

intramolecular CT excited states.

3.5 Conclusion

We have carried out a two-pronged DFT study on the viability of the photoinduced

electron transfer mechanism of fluorescence quenching in ZP1. An emphasis was

placed on an accurate description of the charge transfer excited state believed to be

responsible for quenching the fluorescence, which we characterized by TDDFT with

hybrid and LC functionals, and also by CDFT. TD-B3LYP predicts an energy level

ordering consistent with the PET mechanism for zinc-free and zinc-saturated ZP1.

TDDFT corroborates the experimentally motivated hypothesis that fluorescence is

enhanced in ZP1 whenever both ion-binding sites are occupied. CDFT also places

the CT excited states at energies consistent with PET fluorescence quenching in the

zinc-free and zinc-saturated cases. Furthermore, CDFT and TDDFT both predict

activation of the fluorescence upon binding of a single Zn2+ ion if the other binding

pocket is protonated. CDFT enables population analysis on the CT excited state,

which provides insight into the PET mechanism in ZP1 by reporting that the donated
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electron density is largely localized on one arm’s amine nitrogen.

This study illustrates the special challenge that intramolecular ET presents for

CDFT, which can largely be traced to the definition of the donor and acceptor frag-

ment densities. CDFT is naturally better suited for intermolecular CT because the

partition between donor and acceptor densities in such cases is more clearly defined.

For intramolecular CT, it is important to be aware of the increased sensitivity of the

computed energy to the location of the partition and to the partitioning scheme in

use. Furthermore, a non-integer charge constraint might be more appropriate than

an integer constraint for molecules with limited donor-acceptor separation like ZP1.

Several proposals for reducing the sensitivity of CDFT energies to these details are

currently under investigation.199

Looking forward, we would like to apply the methods described in this study

to next-generation fluorescein-based sensors. In particular, we are interested in the

evaluation and development of ratiometric sensors such as ZPP1, in which the fluo-

rescence intensity of the sensor depends strongly on whether one or two Zn2+ ions

are bound, enabling quantitation of zinc.174

It would also be useful to model the binding affinities of ZP1 and its derivatives

for other transition metal ions. While experimental binding affinities are available for

ZP1 with several transition metal ions, a computational approach would enable us

to study metal ion affinities for a wide variety of ZP1 derivatives without having to

synthesize each derivative.

Finally, it would be very desirable to have a method for predicting the degree

of fluorescence activation conferred by the binding of a particular ion to ZP1. The

fluorescence quantum yield of a molecule in dilute solution is a complicated function

of the various decay pathways available to the molecule upon light absorption, and

the rate constants of these processes are very sensitive to the molecular environment.

We are not aware of any systematic approach in the literature for the ab initio com-

putation of fluorescence quantum yields of luminescent molecules, but we believe that

it would be an interesting and fruitful avenue to explore.
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Chapter 4

Assessment of ∆SCF density

functional theory for electronic

excitations in organic dyes

4.1 Introduction

Conjugated organic dyes have found widespread use: from lasers, paints, and inks

to more exotic technologies such as dye-sensitized solar cells,71, 200, 201 organic light-

emitting devices,202–205 organic transistors,206 and organic solar cells.76, 207 The perfor-

mance of these materials relies heavily on the careful tuning of their electronic prop-

erties. Consequently, there is growing interest in the development and application of

computational methods for characterizing electronic excitations in condensed-phase

organic materials.208, 209

Among the earliest approaches to this challenge were semiempirical molecular or-

bital methods such as complete neglect of differential overlap210 and the Pariser-Parr-

Pople approach.211 As computational resources expanded, ab initio methods such

as time-dependent Hartree-Fock and configuration interaction singles became feasi-

ble for molecules of moderate size.102 None of these methods are expected to give

quantitative results, but often they are sufficient to predict trends. More recently,
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methods such as complete active space self-consistent field212 and equation-of-motion

coupled cluster213 have been developed, which promise quantitative results for excited

states. Unfortunately, at present, these are too expensive for routine use on organic

dyes that typically have 50−100 atoms. A modern method that offers a good com-

promise between accuracy and efficiency is time-dependent density functional theory

(TDDFT).42, 102, 214

TDDFT within the adiabatic approximation (AA) (Refs. 215 and 216) has been

the workhorse method for computing excitation energies in organic molecules over

the last decade. TDDFT excitation energies with commonly employed exchange-

correlation functionals are usually accurate to within 0.3 eV for localized valence

excitations in organic molecules.217 However, TDDFT is less reliable for excitations

with long-range character, such as Rydberg218, 219 and charge transfer excitations101, 220

as well as excitations in large conjugated molecules.193, 221, 222 Recently developed

long-range corrected functionals have addressed these issues with promising suc-

cess.41, 183, 223, 224 Several time-independent alternatives for computing excitation ener-

gies within a density functional theory (DFT) framework have been proposed,53, 225, 226

but many of these methods pose significant implementation challenges227 or are too

computationally expensive compared to TDDFT.

The ∆SCF-DFT (or simply ∆SCF) method, one of the earliest such time-independent

methods,138 is straightforward to implement and offers low computational cost. This

method is also known in the literature as excited state DFT228 or constrained DFT229

(not to be mistaken for the method of the same name92 in which constraints are ap-

plied to the density). The ∆SCF procedure employs non-Aufbau occupations of the

Kohn–Sham orbitals to converge the SCF equations to an excited state that might

have other states of the same symmetry beneath it. Because SCF algorithms are

geared toward energy minimization, they can sometimes cause a collapse to these

lower energy states during the SCF iterations. Techniques such as the maximum

overlap method230 have been developed to address these convergence issues, thereby

rendering the ∆SCF method an efficient potential alternative to TDDFT for excited

state geometry optimizations and molecular dynamics. Analytical excited state Hes-

80



sians, which are needed to obtain infrared or vibrationally resolved electronic spectra,

are also readily accessible from the ∆SCF approach, in contrast to the current situ-

ation for TDDFT — though progress in this area has been rapid in recent years.231

∆SCF was recently associated with the fourth-order correction to a “constricted”

variational approach to TDDFT,232 but here we focus on its use as a stand-alone

method.

Although ∆SCF has gained some traction recently as a DFT-based alternative to

TDDFT for excited states,219, 230, 233–235 the performance and range of validity of the

method remain poorly understood. This paper addresses this gap in understanding in

two ways: first, by comparing excitation energies computed by TDDFT and ∆SCF

with experimental values for a representative set of conjugated organic molecules;

and second, by providing new insight into the approximations that are made when

computing excitation energies from ∆SCF.

The rest of the chapter is arranged as follows. First, we construct a set of organic

dye molecules that we use as a benchmark test set. Next, we present TDDFT and

∆SCF excitation energies and discuss the performance of the two methods relative

to experiment. We find that the two approaches are quite comparable, which we find

surprising given the lack of formal justification for ∆SCF. We therefore spend some

time in the discussion examining the theoretical underpinnings of TDDFT and ∆SCF

in order to determine if there might not be a deeper reason for the success of ∆SCF.

Finally, we conclude our analysis and suggest some potential future directions.

4.2 Test Set

It is of course impossible to construct a single test set that characterizes the quality of

a given functional for excited states. The wide variety of behaviors of different func-

tionals for Rydberg states,218 charge transfer states,220 excited states of conjugated

organic molecules193, 220, 222, 223, 236 and core excitations230 suggests a more modest goal:

to design a test set that assesses a functionals utility for a given purpose. Because of

our interest in organic electronics, we are most keenly interested in testing TDDFT
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and ∆SCF for the low- lying singlet excited states of common dye molecules. Other

test sets consisting of small conjugated organic molecules have been constructed to

assess the performance of TDDFT, with typical errors of roughly 0.2−0.3 eV for the

best-performing functionals.224, 237, 238 Our chosen test set is tabulated in Tables 4-1

and 4-2. In each case, Eex is the energy of the lowest maximum in the experimental

absorption spectrum.

There were a number of criteria that we used to select the molecules in the test

set. First, they were required to have a significant absorption in the visible region.

This typically requires extensive π conjugation over most of the molecule, resulting

in low-lying π → π∗ transitions. Further, as can be seen in Tables 4-1 and 4-2, all of

the excitations are predominantly HOMO → LUMO. This restriction is not essential,

but leads to more robust SCF convergence than, say, HOMO → LUMO + 1 would.

The single-reference character of the excited states helps us circumvent the general

problem that some excited states require a multireference approach. We make no

restriction on the degree of charge transfer present in the excited state. However, in

order to control for solvatochromic effects, we selected molecules for which experi-

mental absorption spectra are available in gas phase, thin film, or nonpolar solvent.

Ideally, all of the experimental results would be in gas phase, but this restriction

would only leave us with five molecules in our test set, which would be insufficient.

We therefore must accept some degree of inequivalence between the experimental ob-

servable (absorption maximum in a weak environment) and the calculated quantity

(vertical excitation in the gas phase). We should note that methods exist to attempt

to correct theoretical gas phase excitation energies for dielectric239 and vibrational238

effects to obtain solvent-corrected 0 − 0 excitation energies, but such shifts will in

any case be smaller than the errors due to the approximate nature of the density

functional.

Despite the fact that all of the molecules satisfy the criteria given above, our test

set includes molecules covering a wide range of current applications. Some molecules

are found in biological systems (1, 8, 9, 13, 14), others are used for organic electronics

(2, 3, 4, 15, 16), and some as synthetic organic dyes (5, 6, 7, 10, 11, 12). Thus, we
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Eex (eV) % H → L

1

2

3

4

5

6

7

8

pentanes

dye structure environment

2.50 100.0

gas phase 1.82 95.3

gas phase 1.88 91.9

thin film 3.46 97.5

toluene 2.87 95.7

thin film 2.59 99.5

thin film 3.55 99.6

gas phase 2.01 95.2

a

b

c

b

d

e

f

g

Figure 4-1: Test set, molecules 1−8: chemical structure, absorption maximum mea-
sured in the specified environment, and TD-B3YLP HOMO → LUMO character of
the lowest singlet excited state. Experimental excitation energies: aRef. 240; bRef.
241; cRef. 242; dRef. 243; eRef. 244; fRef. 245; gRef. 246.

have made an effort to select a structurally diverse set of molecules that can answer
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Figure 4-2: Test set, molecules 9−16: chemical structure, absorption maximum mea-
sured in the specified environment, and TD-B3YLP HOMO → LUMO character of
the lowest singlet excited state. Experimental excitation energies: aRef. 246; bRef.
247; cRef. 248; dRef. 249; eRef. 250; fRef. 251; gRef. 252.

the question: how accurate are ∆SCF and TDDFT for organic dyes?
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4.3 Computational Methods

All geometries were optimized at the B3LYP/6-31G* level in the gas phase; these

geometries are provided in Appendix B. TDDFT and SCF excitation energies were

computed in the 6-311+G* basis set with an array of exchange-correlation function-

als. An SRSC pseudopotential was employed for Zn.253 The functionals were chosen

because of their widespread use, and the hybrid functionals intentionally represent a

wide variation in the fraction of exact (Hartree–Fock) exchange. The SCF calcula-

tions include two additional M06 functionals254 for which TDDFT excitation energies

were unavailable. An additional functional consists of 60% PBE exchange and 40%

Hartree–Fock exchange with PBE correlation and will be denoted PBE4.

The ∆SCF procedure was carried out as follows. Starting with the molecular

orbital coefficients of the ground state as an initial guess, the Kohn–Sham equations

were solved using a modified SCF procedure in which the lowest N − 1 orbitals and

the (N+1)th orbital were occupied at each update of the density matrix. The shifting

of orbital energies during this procedure occasionally caused the density to collapse

to the ground state. In these cases, the maximum overlap method230 provided a way

to retain the target configuration through convergence.

The non-Aufbau electronic state obtained from this procedure is not a spin eigen-

function. To obtain the energy of the singlet excited state, we use the common spin

purification formula,138

ES = 2E↑↓ −E↑↑

Both the spin-mixed (↑↓) and spin-pure energies are of interest, so we include both

in our analysis. All computations were performed with a modified version of the

Q-Chem 3.2 software package.111

4.4 Results

Deviations of computed TDDFT and ∆SCF vertical excitation energies from experi-

ment are presented in Table 4.1, with a more detailed description of the PBE0 results
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in Table 4.2. Typical mean absolute errors (MAEs) in TDDFT excitation energies

are 0.3 eV, with B3LYP and PBE0 outperforming their counterparts with greater or

lesser exact exchange. The magnitude of these deviations is in line with that observed

in previous TDDFT benchmarking studies.217, 255

For ∆SCF with spin purification, the results parallel the TDDFT results quite

closely for all functionals: B3LYP and PBE0 perform best, with MAE and RMSD

similar to those of the corresponding functionals in the TDDFT approach. This

similarity suggests an argument in favor of applying the spin purification procedure.

In keeping with Beckes assertion that the fraction of exact exchange reflects the

independent-particle character of the system,39 the appropriate fraction of exact ex-

change in Kohn–Sham DFT should be a characteristic of the system, not of the

method (TDDFT, ∆SCF, or another approach) chosen to compute excitation ener-

gies. Of course, it is also convenient from a practical standpoint that TDDFT and

spin-purified ∆SCF perform similarly for the same functionals.

The energy of the mixed state in ∆SCF systematically underestimates experi-

mental energies when the employed functional possesses a conventional fraction of

exact exchange (20%−30%). Functionals with twice as much exact exchange (BH&H

and M06-2X) give mixed states that are more accurate, performing comparably to

the best functionals for TDDFT excitation energies. The satisfactory performance of

spin-contaminated ∆SCF with a larger fraction of exact exchange can be interpreted

as a convenient cancellation of errors. The energy of the mixed state underestimates

the singlet energy by half the singlet–triplet splitting. The addition of surplus exact

exchange systematically increases the singlet–triplet gap. Therefore, the energy of the

mixed state tends to increase with increasing exact exchange. At least on average, one

can thus raise the fraction of exact exchange such that the energy of the mixed state

with surplus exact exchange matches the energy of the pure singlet with the original

functional. Functionals with roughly 50% exact exchange achieve this cancellation in

our test set.

The functional LC-ωPBE0 (ω = 0.1 bohr−1 , cHF = 0.25) was included in our study

to assess the performance of long-range corrected density functionals. Given that
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Mean error
Functional TDDFT ∆SCFmixed ∆SCFpure

PBE -0.23 -0.72 -0.56
B3LYP 0.08 -0.47 -0.16
PBE0 0.15 -0.42 -0.05
LC-ωPBE0 0.23 -0.26 0.24
PBE4 0.28 -0.26 0.26
BH&H 0.33 -0.14 0.45
M06-2X -0.08 0.41
M06-HF 0.52 1.47

MAE
Functional TDDFT ∆SCFmixed ∆SCFpure

PBE 0.39 0.72 0.58
B3LYP 0.27 0.49 0.25
PBE0 0.27 0.45 0.21
LC-ωPBE0 0.27 0.32 0.26
PBE4 0.31 0.33 0.30
BH&H 0.35 0.27 0.45
M06-2X 0.27 0.42
M06-HF 0.52 1.47

RMSD
Functional TDDFT ∆SCFmixed ∆SCFpure

PBE 0.46 0.81 0.66
B3LYP 0.32 0.57 0.32
PBE0 0.32 0.52 0.28
LC-ωPBE0 0.33 0.38 0.32
PBE4 0.38 0.38 0.37
BH&H 0.42 0.31 0.50
M06-2X 0.30 0.48
M06-HF 0.74 1.69

Table 4.1: Test set statistics for the three different excited state methods. All values
are in eV.
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Molecule Exp. TDDFT ∆SCFmixed Mixed 〈S2〉 ∆SCFpure Triplet 〈S2〉
1 2.50 2.25 1.64 1.015 2.08 2.088
2 1.82 2.08 1.55 1.029 1.91 2.021
3 1.88 2.08 1.54 1.029 1.96 2.047
4 3.46 3.40 3.16 1.017 3.37 2.017
5 2.87 2.96 2.34 1.009 2.84 2.067
6 2.59 2.51 2.01 1.009 2.47 2.027
7 3.55 3.15 2.61 1.008 3.00 2.034
8 2.01 2.42 1.41 1.062 1.72 2.023
9 2.36 2.71 1.68 1.048 2.05 2.020
10 2.26 2.89 2.08 1.056 2.28 2.014
11 2.58 2.49 2.05 1.024 2.38 2.022
12 2.11 2.75 2.06 1.055 2.16 2.009
13 1.94 2.29 1.93 1.046 2.21 2.015
14 2.01 2.30 2.26 1.019 2.63 2.050
15 3.21 3.29 2.71 1.008 3.32 2.024
16 2.06 1.96 1.49 1.009 2.02 2.037

Table 4.2: PBE0 energies and spin multiplicities for the test set. All energies are in
eV.

these functionals are optimized (in part) to give accurate TDDFT vertical excitation

energies,183 it is somewhat surprising to note that LC-ωPBE0 performs best neither

for TDDFT nor for ∆SCF. We suspect this arises from the fact that these excited

states are bright, which selects against the charge transfer excitations (which tend to

be dark) for which LC-ωPBE0 would outperform all other tested functionals.

It is important to note that while ∆SCF and TDDFT have statistically similar

accuracy for the singlet states, it does not follow that ∆SCF and TDDFT predict

similar results for a given molecule. For example, as illustrated in Table 4.2, the

∆SCF and TDDFT vertical excitation energies with PBE0 can often differ by as

much as 0.6 eV for the same molecule. These fluctuations cancel out, on average,

and the MAEs of ∆SCF and TDDFT excitation energies differ by only 0.06 eV over

the whole set. Further, the 〈S2〉 values from the table clearly justify the use of spin

purification for these states.
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4.5 Discussion and Analysis

Based on the results of Section 4.4, it would appear that ∆SCF and TDDFT predict

vertical excitation energies of organic dyes with approximately equal accuracy, with

∆SCF being perhaps slightly better when the best functionals are used. If we combine

this information with existing evidence that ∆SCF is effective for Rydberg states228

core excitations,230, 256 solvent effects257 and double excitations258 we are led to the

pragmatic conclusion that SCF is a powerful tool for excited states. Is this just

a coincidence? Or are there deeper reasons why SCF is so effective? To answer

these questions, we must unpack the approximations inherent to TDDFT and ∆SCF

calculations.

4.5.1 Linear response TDDFT

According to the Runge–Gross theorem,42 there exists a one-to-one correspondence

between the time-dependent density, ρ(x, t), and the time-dependent potential, vext(x, t).

Thus, one can formulate an equation of motion that involves ρ(x, t) alone, where x

contains spatial and spin coordinates, x ≡ (r, σ):

ρ̇(x, t) = F [ρ]

where F must be defined. In the Kohn-Sham (KS) formulation of TDDFT, the exact

density is constructed out of a set of time-dependent orbitals,

ρ(x, t) =
occ
∑

i=1

|φi(x, t)|2

The KS orbitals, in turn, obey a Schrödinger equation,

iφ̇i(x, t) =

(

−1

2
∇2 + vext(x, t) +

∫

ρ(x′, t)

|r− r′| dx
′ + vxc[ρ](x, t)

)

φi(x, t) ≡ ĤKSφi(x, t)

where the external potential, vext, is augmented by the classical Coulomb potential

and the unknown exchange-correlation potential, vxc[ρ]. According to the Runge–
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Gross theorem, vxc exists and is uniquely determined by the density. Thus, vxc(x, t)

is a functional of ρ(x, t), justifying the notation vxc[ρ]. The major challenge in

TDDFT is determining accurate approximations to the exchange-correlation poten-

tial.41, 43, 45, 259–263

Now, in principle, vxc(x, t) can depend on ρ(x, t) at any point r in space and any

time t in the past. In practice, it is very difficult to obtain approximations to vxc(x, t)

that obey causality and possess all the proper time translation invariance proper-

ties.264, 265 As a result, nearly all existing approximations to vxc(x, t) are strictly local

in time — vxc(x, t) depends only on the density of the system at time t. This ap-

proximation is known as the adiabatic approximation (AA). It greatly simplifies the

construction of approximate potentials, and from this point forward, our manipula-

tions will assume the AA.

In order to obtain excitation energies from TDDFT, the most common route is

to employ linear response (LR).216, 266 Here, one first performs a traditional DFT

calculation to obtain the ground state density. Next, one subjects the system to

a small time-dependent external potential, δv(x, t), that induces a small change in

the density, δρ(x, t), and a corresponding small change in the exchange correlation

potential, δvxc(x, t). One then uses the time-dependent KS equations to connect

the different linear variations and computes excitation energies as the poles in the

frequency-dependent response function.214 The resulting equations can be cast as a

generalized eigenvalue problem:





A B

−B −A









XM

YM



 = ωM





XM

YM





Here, XM and YM are vectors of length (occupied) × (unoccupied) that represent

the density response and the A and B matrices are given by

Aia;jb ≡ (ǫa − ǫi)δijδab +Bia;jb

Bia;jb ≡
∫

φi(x1)φj(x2)

(

1

r12
+
δvxc(x1)

δρ(x2)

)

φa(x1)φb(x2) dx1 dx2
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where i, j (a, b) index occupied (unoccupied) orbitals. In principle, the eigenvalues

ωM are the exact (within the AA) transition energies between the ground electronic

state and the various excited states: ωM = Ei−E0. Meanwhile the eigenvectors, XM

and YM contain information about the intensity of the transition.

4.5.2 ∆SCF densities

Now, because quantum mechanics is linear, linear response in Hilbert space start-

ing from any two different reference states will give equivalent transition energies.

However, since most density functionals have a nonlinear dependence on the density,

the excitation energy obtained from LR-TDDFT depends on the reference state one

chooses. Thus, for example, in certain cases it is advantageous to choose a reference

state with a different spin multiplicity.267–271

Instead of sifting for excitations in the density response, an alternative approach

is to search directly for the excited state density in TDDFT. Here, one recognizes

that every eigenstate Ψi of the Hamiltonian is a stationary state. Hence, ρi(x, t) is

constant in time and

ρ̇(x, t) = F [ρ] = 0 (4.1)

Within the KS formulation, the density is invariant if each KS orbital changes by a

phase factor

φj(x, t) = e−iǫjtφj(x)

so that

iφ̇j(x, t) = ǫjφj(x, t)

ĤKSφj(x, t) = ǫjφj(x, t)

Thus, the equations obeyed by stationary densities within TDDFT are exactly the

same as the SCF equations for traditional KS-DFT. Viewed in this light, it is clear

that ∆SCF states — which solve the traditional KS-DFT equations with non-Aufbau

occupations of the orbitals — have a rigorous meaning in TDDFT: they correspond
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to stationary densities of the interacting system. Further, these stationary densities

have a clear connection with excited states of the molecule. This connection between

TDDFT and ∆SCF comes tantalizingly close to rigorously justifying the use of ∆SCF-

DFT for excited states: ∆SCF-DFT gives stationary densities that are exact within

the AA.

Before moving on, we note how the AA is expected to influence Eq. 4.1. The above

derivation is so concise that it almost seems as if no approximation has been made at

all. However, we note that in Eq. 4.1 the density is constant at all times. Thus, the

system must have been prepared in the desired eigenstate. This assumption violates

the terms of the Runge–Gross theorem, which applies only to different densities that

originate from the same state (usually assumed to be the ground state at t = −∞).

Only within the AA can different initial densities be justified.272

The ∆SCF scheme implied by Eq. 4.1 is exact within the AA because the system

has no memory of how it was prepared. If our functional has memory, Eq. 4.1 states

that F [ρi(x, t)] = 0 when applied to a particular density, ρi(x, t), that is constant in

time. To put it another way, Eq. 4.1 depends only on the zero frequency (ω = 0)

part of F . In many ways, this is the ideal scenario within the AA. Any adiabatic

functional is time-local and thus frequency independent. However, it is trivial for a

frequency-independent kernel to be correct at one frequency (i.e. ω = 0) and so one

suspects that the AA could be well-suited to the ∆SCF approach. In contrast, within

linear response one relies on the ω-independent kernel being a good approximation

to the true kernel at every excitation energy. It is clear that, except in special cases,

the latter condition cannot hold and thus LR-TDDFT would seem more limited by

the AA.

4.5.3 ∆SCF energy expressions

∆SCF gives us a rigorous route to obtain a stationary density in TDDFT. But how

should we associate an energy with this density? Since there is no Hohenberg–Kohn

theorem for excited states,52 there can be no single density functional that gives the

correct energy for all excited states. Instead, one must tackle the problem of defining
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different functionals for different excited states53, 225 or else make the functional de-

pend on more than just the density.273, 274 The simplest procedure is to evaluate the

ground state energy expression using the ∆SCF orbitals

Eex = E [φex
i (x)] (4.2)

and this is the “mixed” ∆SCF energy used above. It should be noted that this energy

expression is not a functional of the density, but rather an explicit functional of the

orbitals. If we used the excited state density (rather than the orbitals), we would

need to derive a corresponding set of KS orbitals to compute the kinetic energy,

Ts[ρ]. By definition, these orbitals would be obtained by constrained search275 and

the resulting orbitals would give a different energy than the excited state orbitals.

The orbital dependence lends some measure of robustness to the ∆SCF predictions.

In practice, it is necessary to correct Eq. 4.2 because Eq. 4.1 is necessary but

not sufficient: not all stationary densities correspond to excited states even though

all excited states give stationary densities. To see this, suppose you have a state that

is a linear combination of two eigenstates:

|Ψ〉 ∝ |Ψ1〉+ |Ψ2〉

Then the time evolving wavefunction is

|Ψ(t)〉 ∝ e−iE1t |Ψ1〉+ e−iE2t |Ψ2〉

and the density is

ρ(r) ≡ 〈Ψ(t)|δ(r− r̂)|Ψ(t)〉

∝ 〈Ψ1|δ(r− r̂|Ψ1〉+ 〈Ψ2|δ(r− r̂|Ψ2〉

+e−i∆Et 〈Ψ1|δ(r− r̂)|Ψ2〉+ ei∆Et 〈Ψ2|δ(r− r̂)|Ψ1〉

where ∆E = E1−E2. If ∆E is not zero, we do not have an eigenstate and in general
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the density is not stationary. However, suppose the transition density between the

two excited states is zero everywhere. That is, suppose that

ρ12 ≡ 〈Ψ1|δ(r− r̂|Ψ2〉 = 0

In this situation, the oscillating piece of the density is zero and the density is sta-

tionary even though the wavefunction is not an eigenstate. Thus, it is, in principle,

possible for Eq. 4.1 to locate densities that do not correspond to eigenstates.

How does this affect ∆SCF in practice? Note that ρ12 is zero only if no one

particle potential can drive the 1 → 2 transition. The most common situation where

this occurs is if the eigenstates have different total spin (e.g. the transition density

for singlet–triplet transitions is always rigorously zero in the absence of spin-orbit

coupling). Thus, any linear combination

|Ψ〉 ∝ cS |ΨS〉+ cT |ΨT 〉

of a singlet eigenstate (ΨS) and a triplet eigenstate (ΨT ) will have a stationary density

and could lead to spurious ∆SCF solutions. In practice, this indeterminacy leads to

spin contamination of the KS eigenstates in the following way. Suppose we have a

singlet ground state and we are interested in the HOMO → LUMO transition. The

singlet and one of the triplet states require two determinants:

|ΨS〉 ∝
∣

∣

∣
. . . ψ↑

HOMOψ
↓
LUMO

〉

−
∣

∣

∣
. . . ψ↓

HOMOψ
↑
LUMO

〉

|ΨT 〉 ∝
∣

∣

∣
. . . ψ↑

HOMOψ
↓
LUMO

〉

+
∣

∣

∣
. . . ψ↓

HOMOψ
↑
LUMO

〉

but KS-DFT biases us toward states that are well-represented by a single determi-

nant.276 Thus, rather than obtaining a pure singlet or a pure triplet we obtain a

broken symmetry solution like

|↑↓〉 =
∣

∣

∣
. . . ψ↑

HOMOψ
↓
LUMO

〉

∝ |ΨS〉+ |ΨT 〉
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When employed in Eq. 4.2, this mixed spin state gives an energy somewhere between

the singlet and triplet excitation energies. Thus, we are led to the purification formula

ES = 2E↑↓ −E↑↑

This scheme has a long history in predicting exchange couplings,277, 278 and the results

above suggest that it predicts singlet HOMO→LUMO transitions in line with intu-

ition. We thus see that the projection of excited state energies arises directly from

the indeterminacy of the ∆SCF equations in the presence of spin degeneracy. We

can also explicitly solve the case of three unpaired electrons to obtain two doublet

energies:

E±
D =

1

2
(E↓↑↑ + E↑↓↑ + E↑↑↓ − E↑↑↑)

±
√

1

2
(E↓↑↑ − E↑↑↓)

2 +
1

2
(E↑↓↑ − E↑↑↓)

2 +
1

2
(E↓↑↑ − E↑↓↑)

2

The projection scheme can be further generalized to an arbitrary number of unpaired

electrons,279 although the ensuing equations are overdetermined.280

A more sophisticated scheme for dealing with spin would involve introducing a

multideterminant reference state into the KS calculation. This is the idea behind the

ROKS and REKS methods281–283 which will be addressed in the next chapter. As

we will see, techniques of this sort are certainly more elegant than post facto energy

projection, but they also fundamentally change the equations being solved.

4.6 Conclusion

We have revisited the approximations that define the ∆SCF approach to excited

states in DFT. The performance of the method was assessed by comparing ∆SCF

excitation energies for several organic dyes with TDDFT and experimental excitation

energies. We found that deviations of spin-purified ∆SCF excitation energies from

experimental values are comparable to those of TDDFT for all functionals tested.
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Spin-contaminated ∆SCF energies were found to require more exact exchange to

achieve similar accuracy. As a partial justification of these results, we demonstrated

that ∆SCF densities are precisely the stationary densities of TDDFT within the

adiabatic approximation, and the necessity of purifying the energies arises from the

indeterminacy of the stationary equations with respect to different spin states.

While this study establishes some expectations regarding the range of applicability

of the ∆SCF approach, there remain several unanswered questions to be explored in

future work. We have shown that ∆SCF performs well for HOMO → LUMO excita-

tions, but it remains to be determined how it performs for higher energy excitations.

It will also be interesting to compare and contrast the performance of a spin-adapted

approach such as ROKS with the spin purification approach presented here.

Several possible extensions and applications of ∆SCF methodology also deserve

attention. ∆SCF gradients are readily available from ground-state SCF codes. There-

fore, if the excited state potential energy surface (PES) obtained from ∆SCF is rea-

sonably parallel to the true Born–Oppenheimer PES, ∆SCF could provide an ef-

ficient alternative to TDDFT and other wavefunction based methods for geometry

optimization and molecular dynamics on excited states.284–286 Furthermore, ∆SCF

also provides an affordable route to the excited state Hessian, from which one could

construct vibrationally resolved absorption and emission spectra.287, 288 It is also a

simple matter to incorporate solvation effects in ∆SCF.3, 257 Together, these features

could provide an affordable way to calculate full absorption and emission spectra in

different environments for large molecules such as phthalocyanines. It will be intrigu-

ing to see if the robustness of ∆SCF for low-lying excited states extends across a wide

enough range of excited state properties to make these simulations worthwhile.
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Chapter 5

Self-consistent implementation of

restricted open-shell Kohn-Sham

methods for excited states

5.1 Introduction

As organic semiconductors and related materials move from the laboratory to com-

mercialization, accurate methods for modeling their electronic structure and dynamics

are becoming increasingly in demand.11, 289 Many existing techniques rooted in DFT

— including TDDFT, CDFT and ∆SCF — have been discussed and applied in the

preceding chapters. In particular, for low-lying excited states in organic dyes, we

showed that the ∆SCF approach is as reliable a predictor of excitation energies as

linear response TDDFT, while also possessing certain practical advantages such as

readily available gradients and Hessians.139

Each established electronic structure method, from semiempirical techniques to

full CI, presents a unique set of strengths and weaknesses, and ∆SCF is no exception.

Despite its often-tolerable accuracy of roughly 0.3 eV with commonly employed func-

tionals and the simplicity of its energy derivatives, ∆SCF possesses several drawbacks

for practical applications. First, accurate ∆SCF excited states require the use of the
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spin purification procedure138 described in Chapter 4, which makes it necessary to

carry out two SCF calculations for every computed excitation energy. The second

difficulty — and perhaps also the more significant one — is that the ∆SCF orbital

relaxation procedure is prone to “variational collapse”, in which the SCF convergence

procedure for an excited state leads back to the ground state determinant. Varia-

tional collapse is often instigated by changes in the relative energies of frontier KS

orbitals during the SCF procedure, and the maximum overlap method (MOM)230, 256

is designed to address this issue by occupying orbitals at each SCF step in order of

their overlap with the span of the occupied KS orbitals from the previous SCF step.

Nevertheless, neither a non-Aufbau rule nor a maximum overlap rule for orbital occu-

pation can guarantee SCF convergence to the target state. This state of affairs makes

∆SCF less appealing for the potential energy scans and molecular dynamics simu-

lations for which it is otherwise computationally well-suited, because the necessary

convergence strategy can vary unpredictably from one geometry to the next.

Both of these shortcomings of ∆SCF can be avoided, in principle, if the spin

adaptation takes place at the level of the KS orbital optimization, in lieu of a post

facto energy correction. The restricted open-shell Kohn-Sham (ROKS) approach to

excited states,281, 282, 290 summarized in Section 5.2, offers a straightforward means of

optimizing the KS orbitals to minimize any linear combination of single-determinant

energies,291 although we are primarily concerned with the case of the lowest singlet

excited state. There exist more sophisticated techniques for obtaining static excited

states in DFT while avoiding variational collapse;292 particularly noteworthy in this

regard is the hierarchy of constricted variational methods (CV-(n)-DFT) recently es-

tablished by Ziegler, Cullen and coworkers.232, 293, 294 However, the relative simplicity

of ROKS makes it appealing for computationally demanding applications.

Despite more than a decade of quantum chemical modeling with ROKS, both prac-

tical and fundamental questions about this strategy linger. The majority of ROKS

studies have involved codes that use a plane-wave basis,285, 295–297 thereby precluding

a thorough assessment of the performance of ROKS with hybrid XC functionals and

with other recent advancements in XC functional design, such as range-separation.40
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On the more fundamental side, despite the clear analogy between the ∆SCF and

ROKS ansatze, the working equations of the two methods are very distinct. Thus it

merits investigation whether the excitation energies obtained by these two methods

are in rough mutual agreement, and to what extent their results may be expected to

differ. Furthermore, there exists a well-documented complication in ROKS in which

rotations between the open-shell orbitals in ROKS can artificially lower the energy

of the S1 state.283, 297, 298 Efforts to address this concern have either accompanied a

reformulation of the entire ROKS ansatz297 or resulted in a set of possible solutions

which must be tested on a case-by-case basis.299 Thus, this investigation is also moti-

vated by the search for a simple, robust resolution to the open-shell mixing problem

in ROKS.

The remainder of this chapter is organized as follows. After a brief review of es-

tablished ROKS theory, we discuss the issue of indeterminacy of the ROKS equations

for open-shell singlets with respect to mixing between the two open-shell orbitals. In

the absence of a formal argument for adopting a particular treatment for this mixing,

we propose and implement two strategies: a “canonical” approach where the orbital

mixing is determined by the SCF procedure, and a “variational” approach in which

the mixing is chosen to extremize the ROKS energy. After outlining computational

details, we analyze ROKS energies for a set of small organic dyes as a function of the

prescription for orbital-mixing. Settling on a satisfactory strategy, we then present

ROKS vertical excitation energies of the large organic chromophores introduced in

Chapter 4 for comparison with ∆SCF and TDDFT results. We also compare po-

tential energy surfaces (PES) for isomerization of the formaldimine molecule — a

minimal model for the retinal chromophore — as obtained via ROKS, ∆SCF and

TDDFT. Finally, we conclude with our perspective on the practical utility of ROKS

for excited state simulations, as well as some targets for future work.
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5.2 Theory

Our implementation of ROKS closely follows the formulation due to Filatov and

Shaik,281 which is itself rooted in Roothaan’s vector-coupling approach to restricted

open-shell Hartree-Fock (ROHF) theory.300 We specialize immediately to the case

of singlet excited states constructed from two determinants. In this formulation, the

energy of a two-determinantal singlet excited state is given by the sum rule

EROKS
s = 2Em [{φi}]− Et [{φi}] (5.1)

where s, m and t denote the singlet excited state, mixed-spin determinant and triplet

determinant, respectively. This energy expression bears similarity to the expression

used for singlet excited states in ∆SCF,138 with the key distinction that in ROKS the

mixed- and triplet-state determinants are constructed from the same set of orbitals

{φ}, while in ∆SCF the orbitals are separately optimized for each determinant,

E∆SCF
s = 2Em [{φm

i }]− Et

[

{φt
i}
]

(5.2)

This fundamental difference in philosophy between the ∆SCF and ROKS approaches

is illustrated schematically in Figure 5-1. Following precedent, we refer to the mixed

and triplet determinants collectively as the microstates entering the ROKS energy

expression.

Variational minimization of the ROKS energy with respect to the KS orbitals leads

to the complication of different Fock operators for each shell.281, 299 Nevertheless,

through the vector-coupling technique281 it is possible to derive a unified eigenvalue

equation for closed- and open-shell orbitals in the molecular orbital (MO) basis,

FC = ǫC (5.3)

The effective Fock matrix F in Eq. 5.3 has a natural block structure defined by the

different shells (closed, open and virtual), and it takes a different form in each of these
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(
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ROKS orbital relaxation
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Figure 5-1: Relaxation of Kohn-Sham orbitals (a) in ∆SCF, and (b) in ROKS. Note
that the converged mixed and triplet determinants in ∆SCF are constructed from
different KS orbitals, whereas in ROKS both determinants are built from a common
set of orbitals. Furthermore, the α and β orbital sets are identical in ROKS.
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blocks. Expressed in terms of Fock matrices for the mixed and triplet determinants,

the ROKS Fock matrix for the S1 state is















































F
α
m + F

β
m − 1

2
F
α
t − 1

2
F
β
t 2Fα

m − F
β
t 2F

β
m − F

β
t F

α
m + F

β
m − 1

2
F
α
t − 1

2
F
β
t

2Fα
m − F

β
t 2F

β
m − F

α
t F

α
m + F

β
m −F

α
t 2F

β
m − F

α
t

2F
β
m − F

β
t F

α
m + F

β
m − F

α
t 2Fα

m −F
α
t 2Fα

m − F
α
t

F
α
m + F

β
m − 1

2
F
α
t − 1

2
F
β
t 2F

β
m − F

α
t 2Fα

m −F
α
t F

α
m + F

β
m − 1

2
F
α
t − 1

2
F
β
t















































where the four rows (and columns) indicate, in order, closed-shell, first open shell,

second open shell, and virtual orbitals. The corresponding expression for the T1 state

is
























1
2
F
α
t +

1
2
F
β
t F

β
t

1
2
F
α
t +

1
2
F
β
t

F
β
t

1
2
F
α
t +

1
2
F
β
t F

α
t

1
2
F
α
t +

1
2
F
β
t F

α
t

1
2
F
α
t +

1
2
F
β
a

























We construct the effective Fock matrix in three steps:

1. Build mixed and triplet density matrices from the unified set of KS orbitals.

2. Build Fock matrices for the mixed and triplet determinants from the mixed and

triplet densities.

3. Project linear combinations of the single-determinant Fock matrices in the MO

basis onto the appropriate blocks to create the effective Fock matrix.

Using this effective Fock matrix, we solve Eq. 5.3 self-consistently using the stan-

dard machinery of quantum chemical SCF algorithms. The single-determinant ener-

102



gies are then determined from the converged KS orbitals and substituted into Eq. 5.1

to obtain the ROKS energy of the S1 state.

5.2.1 The influence of orbital mixing between open shells

Several authors have identified, in their pilot ROKS calculations, a complication that

arises when solving the ROKS equations for the lowest singlet excited state.283, 295, 297–299

When the excited state possesses the same symmetry as the ground state, the ROKS

algorithm formulated above permits mixing between the two open shell orbitals. This

orbital mixing can artificially lower the energy of the excited state, typically by an

amount commensurate with twice the singlet-triplet splitting,297, 298 potentially de-

livering an S1 excitation energy that would actually make a better estimate for the

triplet energy. This instability is not unexpected:281 in fact, it was already established

that a proper description of excited states of the same symmetry as the ground state

requires a symmetry-dependent XC functional.53, 301, 302

To illustrate how mixing of the open-shell orbitals affects ROKS in practice, let

|a〉 and |b〉 represent the two open-shell orbitals. The matrix elements of the density

matrix P for the mixed determinant in the atomic orbital (AO) basis are:

Pµν = 2
∑

k∈ occ

CµkC
†
νk + CµaC

†
νa + CµbC

†
νb (5.4)

Now we rotate |a〉 relative to |b〉 by an angle θ, which modifies the open-shell MO

coefficients:

C̃µa = Cµa cos θ + Cµb sin θ

C̃µb = −Cµa sin θ + Cµb cos θ

Inserting the rotated MO coefficients into Eq. 5.4, one finds that P̃µν = Pµν , so the

rotation does not affect the density matrix. However, the ROKS energy expression

is properly a function of the KS orbitals rather than of the density matrix, and in

practice the ROKS energy depends on the choice of θ through the XC (including
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exact exchange) contributions.

In applications, the indeterminacy of the open-shell mixing angle leads to a pair

of solutions to the ROKS equations which have been termed “localized” and “delo-

calized” solutions.283, 298 Frank and coworkers found that a particular ROKS solution

(localized or delocalized), once identified as the physically correct solution for a given

system, could be selectively enforced through modification of the Goedecker-Umrigar

algorithm used in their calculations.299, 303 This algorithm was originally designed to

converge SCF equations for self-interaction-corrected XC functionals,304 but is ap-

plicable to any scenario involving an orbital-dependent Fock operator. Billeter and

Egli circumvented the open-shell mixing problem by introducing a more general Slater

transition state reference.297 Here we consider a strategy for controlling the open-shell

mixing without a complete reformulation of the ROKS approach.

For geometry optimizations and molecular dynamics simulations, previous im-

plementations of ROKS have employed the Hellmann-Feynman theorem to compute

forces. However, since the ROKS energy expression is not strictly variational with

respect to the open-shell mixing angle, the Hellmann-Feynman theorem may not hold

for certain ROKS states, depending on how this state was obtained. Below we outline

a simple modification to the ROKS algorithm which guarantees that this energy is

variational with respect to θ.

5.2.2 Variational treatment of open-shell mixing

As explained in Section 5.2.1, minimization of the ROKS energy as a functional of

the density matrix alone cannot guarantee that the energy is variational with respect

to the open-shell mixing angle θ. However, we can enforce this condition directly by

requiring at each SCF step that θ is chosen to extremize the energy,

∂E[P, θ]

∂θ

∣

∣

∣

∣

θ∗

= 0

Then a rotation by the θ∗ which extremizes E is applied to the open-shell MO coef-

ficients, permitting construction of the proper θ-dependent XC contributions to the

104



Guess MO

coefficients C

and angle θ

Extrapolate F

using DIIS

Diagonalize F

to get new C

Is E[P]

converged?

No

Yes

Build triplet density

matrices P  , P
α
t t

β
Build mixed density

matrices P  (θ), P  (θ)α
m m

β

Build mixed Fock

matrices F   (P   )m m
σ σ

Compute

dE          /dθ(K+XC)

Is E         [θ]

converged?
(K+XC)

No

Start

Figure 5-2: Two-layer SCF algorithm for obtaining an ROKS energy which is varia-
tional with respect to both the density matrix and the open-shell mixing angle.

Fock matrix.

Lacking an analytical expression for E[θ], we perform the one-dimensional opti-

mization of E[θ] numerically within each SCF cycle. The resulting two-layer SCF

procedure for ROKS is summarized in Figure 5-2. We use a simple Newton-Raphson

scheme for the θ-optimization. As we will see in Section 5.4, a Fourier series ap-

proximation to E[θ] may potentially be more expedient for this one-dimensional op-

timization than a quadratic approximation; but in practice we find that these θ-

microiterations converge quite rapidly (typically 3-10 microiterations during the first

SCF iteration, and only 1-3 corrective microiterations per SCF cycle afterward).

It is trivial to modify our algorithm to enforce a fixed θ throughout the calculation.
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We will refer to ROKS orbitals with fixed θ = 0, equivalent to not applying any θ-

dependent correction, as “canonical” ROKS orbitals.

5.3 Computational details

The ROKS algorithm outlined above was implemented in a development version of

the Q-Chem 4.0 software package111 for S1 and T1 excited states of molecules with

closed-shell singlet ground states. A standard DIIS procedure was used to accelerate

convergence.305 Occasionally for the larger systems, virtual orbitals crossed into the

energy domain of the open shell orbitals. To converge the orbitals in these cases,

we introduced a level shift procedure306 to force the virtual orbitals away from the

open-shell orbitals energetically. Fortunately, these level shifts did not significantly

increase the number of SCF cycles necessary to achieve convergence.

Geometries for the small-dye test set of Schreiber et al. at the MP2/6-31G* level

were obtained directly from Ref. 236. ROPBE0 vertical excitation energies were

also computed with the 6-31G* basis set. The basis set sensitivity of ROKS will be

addressed in more detail in Section 5.4.

For the large-dye test set, the same B3LYP/6-31G* optimized geometries em-

ployed in Chapter 4 and included in Appendix B were used here. Due to com-

putational constraints, the 6-31G* basis set was also used for ROKS excited state

calculations on the large-dye test set.

ROKS, ∆SCF and TDDFT calculations on formaldimine were carried out at se-

lected geometries with the PBE0 hybrid functional and the 6-31G* basis set. Bond

distances were held fixed at their ground-state values, so the resulting one-dimensional

projections of the PES do not represent minimum energy paths; nevertheless, they

provide a useful first assessment of how parallel the S1 PES obtained by these three

excited state methods should be.
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5.4 Results and Discussion

5.4.1 Canonical and variational ROKS energies of small or-

ganic dyes

Molecule Symmetry θ = 0 θ = π
4

θmin θmax Best estimate
ethene π → π∗ 7.68 4.54 4.54 7.68 7.80
butadiene π → π∗ 5.37 3.31 3.31 5.37 6.18
hexatriene π → π∗ 4.23 2.67 2.67 4.23 5.10
octatetraene π → π∗ 3.54 2.26 2.26 3.54 4.47
cyclopropene π → π∗ 6.75 4.35 4.35 6.75 7.06
cyclopentadiene π → π∗ 4.97 3.24 3.24 4.97 5.55
norbornadiene π → π∗ 4.99 3.93 3.93 4.99 5.34
benzene π → π∗ 6.51 4.69 4.69 6.51 5.08
naphthalene π → π∗ 4.40 3.27 3.27 4.40 4.24
furan π → π∗ 6.09 4.29 4.29 6.09 6.32
pyrrole π → π∗ 6.37 4.66 4.66 6.37 6.37
imidazole π → π∗ 6.43 4.86 4.86 6.43 6.19
pyridine n→ π∗ 4.80 5.34 4.80 5.34 4.59
pyrazine π → π∗ 3.98 3.92 3.92 3.98 3.95
pyrimidine n→ π∗ 4.34 4.86 4.34 4.86 4.55
pyridazine n→ π∗ 3.63 3.80 3.63 3.80 3.78
triazine n→ π∗ 4.64 5.51 4.60 5.21 4.60
tetrazine π → π∗ 2.22 2.18 2.18 2.22 2.24
formaldehyde n→ π∗ 3.67 4.71 3.67 4.71 3.88
acetone n→ π∗ 4.10 5.07 4.10 5.07 4.40
benzoquinone n→ π∗ 2.46 2.57 2.46 2.57 2.80
formamide n→ π∗ 5.48 6.90 5.48 6.90 5.63
acetamide n→ π∗ 5.46 6.77 5.46 6.77 5.80
propanamide n→ π∗ 5.51 6.74 5.51 6.74 5.72
cytosine π → π∗ 4.63 4.20 4.19 4.74 4.66
thymine π → π∗ 4.96 3.87 3.87 4.96 4.82
uracil π → π∗ 5.06 4.10 4.10 5.10 4.80
adenine π → π∗ 4.94 4.03 4.03 4.94 5.25

Table 5.1: Dependence of the ROPBE0/6-31G* excitation energy (in eV) on the
prescription for the open-shell mixing angle for a collection of small organic dyes.

First we consider how the different prescriptions for the open-shell mixing angle

affect vertical excitation energies. For this purpose we introduce the set of 28 small

organic dyes for which low-lying excited state energies were recently benchmarked
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by Schreiber et al. with high-level wavefunction methods.236 Four prescriptions for

the mixing angle are assessed: two fixed-angle prescriptions (θ = 0, no mixing; and

θ = π/4, complete mixing) and two variational prescriptions (minimization and max-

imization of the energy with respect to θ). ROKS vertical excitation energies for the

S0 → S1 transition in each dye are collected in Table 5.1. Note that the ordering of

excited states in ROKS may differ from that of the wavefunction methods used to

obtain the “best estimates” in Table 5.1; in all cases the best estimate for the state

most closely representative of the ROKS S1 state was used.

It is clear from Table 5.1 that each variational approach coincides (or nearly

coincides) with one of the fixed-angle approaches. However, the particular pairing

depends on the symmetry of the electronic transition: for π → π∗ transitions, the

canonical choice θ = 0 maximizes the ROKS energy along the mixing angle, while for

n→ π∗ transitions, θ = 0 minimizes the ROKS energy. These results corroborate the

observations of Hutter and coworkers for a related set of organic dyes;298 however,

it is interesting to note that the fixed-angle excitation energy and the corresponding

variational excitation energy can vary by up to about 0.1 eV. This disagreement seems

to be more common in the larger dyes, where minimization and maximization of E[θ]

give optimal θ slightly different from 0 and π/4. These differences are on the order

of 0.01–0.1 radians.

Rather unexpectedly, we find that the canonical ROKS orbitals always provide

the more accurate excitation energy, regardless of the symmetry of the transition and

regardless of whether these orbitals represent a minimum or a maximum along the

mixing angle. This is very encouraging from a practical perspective, as it suggests

that within the density-matrix approach to ROKS, a single convergence strategy will

work for any system (provided, of course, that the S0 → S1 transition is well-described

by a single-orbital excitation).

Regarding accuracy, ROPBE0 tends to underestimate the excitation energy of

π → π∗ transitions and to overestimate that of n → π∗ transitions. This trend is

weakly evident in Table 5.1 but is more exaggerated for π → π∗ transitions in the

more complete 6-311+G* basis set (see Appendix A): adding diffuse functions tends

108



-401.5

-401

-400.5

-400

-399.5

-399

-398.5

-398

-397.5

-397

0 60 120 180 240 300 360

E
K

+
X

C
(e

V
)

θ (deg)

-796.4

-796.2

-796

-795.8

-795.6

-795.4

-795.2

-795

0 60 120 180 240 300 360

E
K

+
X

C
(e

V
)

θ (deg)

a) b)

Figure 5-3: Dependence of the exchange and XC contributions to the ROKS energy
on θ for (a) the lowest n→ π∗ excitation in formaldehyde and (b) the lowest π → π∗

excitation in cyclopentadiene. The darkness of each curve indicates the SCF iteration
at which the scan took place, with darker curves representing later SCF iterations.

to lower the ROKS excitation energy for these transitions. Others have suggested that

the underestimation of π → π∗ excitation energies in ROKS may be largely due to the

use of LDA and GGA functionals,295 but our results suggest that hybrid functionals

do not substantially correct this behavior. We also studied these transitions with

the long-range corrected LC-ωPBE functional and found that this underestimation

persists (see Appendix A).

Given that E[θ] must be periodic with period π/2 — and given that θ = 0 and

θ = π/4 tend to represent its critical points in the [0, π/2] interval — it is worth

examining E[θ] in more detail to confirm the presence or absence of other local ex-

trema. In Figure 5-3, we plot the explicit dependence of the ROKS energy on the

mixing angle for the n → π∗ transition in formaldehyde and for the π → π∗ transi-

tion in cyclopentadiene. The energy is indeed a sinusoidal function of θ with period

π/2, in agreement with the results of Hutter and coworkers.298 To better understand

whether the angular dependence of the energy changes according to the quality of the

current set of KS orbitals, Figure 5-3 shows E[θ] at every SCF macroiteration from

the ground-state orbital guess through convergence. For both test cases, we see no

variation in the shape of E[θ], only in its energetic offset.

Having established the efficacy of using canonical orbitals to obtain ROKS ex-

citation energies, we proceed to benchmark ROKS for the test set of larger dyes
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introduced in Chapter 4.

5.4.2 ROKS vertical excitation energies of large organic dyes

We evaluated ROKS vertical excitation energies for the large dye test set of Chapter

4 using a variety of XC functionals, many of which were also used in the ∆SCF

benchmarking study.139 We also include results obtained within the local density

approximation (LDA) to facilitate comparison with previous ROKS studies which

have relied heavily on this functional. The Minnesota functionals M06-2X and M06-

HF were excluded from this study because our current implementation of ROKS does

not support kinetic energy density-dependent functionals.

Functional Mean Error MAE RMSD
LDA -0.56 0.57 0.66
BLYP -0.55 0.56 0.65
PBE -0.53 0.55 0.64
B3LYP -0.16 0.29 0.35
PBE0 -0.04 0.26 0.32
BH&HLYP 0.43 0.43 0.51
LC-ωPBE 0.08 0.23 0.28
LC-ωPBE0 0.40 0.40 0.47
ωB97 0.91 0.91 0.94
ωB97-X 0.79 0.79 0.82

Table 5.2: Deviations of ROKS excitation energies from experiment for the test set
of larger organic dyes (in eV). The canonical open-shell mixing angle (θ = 0) and
6-31G* basis set were used for each constituent calculation. Functionals are arranged
in order of increasing degree of exact exchange, to the extent possible.

Performance statistics across the large-dye test set are reported in Table 5.2. In

parallel with the ∆SCF results in Chapter 4, hybrid functionals with a modest fraction

of exact exchange are most successful at reproducing the experimental excitation

energies. In particular, ROPBE0 achieves approximately the same 0.3 eV accuracy

obtained with ∆PBE0 and with TD-PBE0. Although the LC-ωPBE0 functional does

not perform as well for ROKS as it did for ∆SCF and TDDFT, we find that the simpler

range-corrected GGA, LC-ωPBE, performs quite well for ROKS excitation energies

on this test set. However, note that the mean error (ME) and root-mean-square
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deviations (RMSD) for LC-ωPBE0 are of similar magnitude. Given the tendency,

observed in the smaller organic dyes, for additional diffuse basis functions to lower

the predicted excitation energy by 0.1 eV or more, we suspect that using a more

complete basis set would significantly reduce both the ME and RMSD of the LC-

ωPBE0 excitation energies to more favorable values, while adversely affecting the

performance of PBE0 to some extent.

Next we move away from ground-state equilibrium geometries and consider how

ROKS excitation energies compare with ∆SCF and TDDFT away from the Franck-

Condon region.

5.4.3 Comparison of potential energy surfaces from ROKS,

∆SCF and TDDFT

As one of the simplest meaningful model chromophores for isomerization of retinal,

formaldimine and its excited states have been the subject of several theoretical inves-

tigations.282, 307, 308 A cis-trans isomerization about the C=N double bond can take

place entirely in-plane via rotation of the C–N–H bond angle φ; entirely out-of-plane

via rotation of the H–C–N–H dihedral angle ϑ; or through any linear combination

of these two motions.307 Here we study the variation of ROKS, ∆SCF and TDDFT

excitation energies along two one-dimensional cuts of the (ϑ, φ) PES. It should be

stressed that these calculations are not intended to faithfully reproduce minimum-

energy paths along either the ground- or excited-state adiabatic PES, but rather to

compare how parallel the different descriptions of the S1 state remain as the geometry

is distorted from equilibrium.

The S0 and S1 torsional profiles of formaldimine presented in Figure 5-4a show

the same qualitative behavior observed in previous multireference configuration inter-

action and diffusion Monte Carlo studies,307, 308 although differences in the employed

geometries make a direct comparison difficult to quantify. All of the excited state

DFT methods predict the same general shape for the S1 PES along this coordinate

and along the bond angle in Figure 5-4b, with two notable exceptions. First, ∆SCF
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Figure 5-4: Potential energy curves for the S0 and S1 states of formaldimine along (a)
the purely out-of-plane isomerization pathway and (b) the purely in-plane isomeriza-
tion pathway. The PBE0 functional and 6-31G* basis set were used for all constituent
calculations.

predicts a small barrier to excited-state isomerization through the out-of-plane path-

way (approximately 1 kcal/mol) while the other methods suggest a barrierless process,

which was also inferred from ROKS-MD simulations on formaldimine.282 The sec-

ond noteworthy difference between the curves concerns the ROKS open-shell mixing

angle.

In general, the “canonical” (θ = 0) and variational (θmin) ROKS excited state

profiles are in very good agreement with one another. However, as the C–N–H angle

approaches 90◦, the variational approach predicts a lower excitation energy than the

canonical approach by more than 0.3 eV, deviating also from the profile predicted

by the other methods. This difference suggests that the distortion of the S0 → S1

transition symmetry, induced by the close approach of the NH proton to the double

bond, permits the same kind of artificial open-shell orbital mixing that arises in π →
π∗ states during full energy minimization. Fortunately, the canonical ROKS profile

is in agreement with the other methods. Thus, for strained or highly asymmetric

systems for which the symmetry of the transition is not clear, it seems that the

canonical ROKS approach can still provide a reliable energy profile for the S1 state.
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Although the TDDFT predictions are uniformly higher than those of ∆SCF or

ROKS, the curves obtained from the three methods are sufficiently parallel to justify

the use of hybrid protocols where one of the methods is used for configurational

sampling and another method is used to compute excitation energies. In fact, for the

formaldimine PES, we see no clear reason to prefer any one of these methods over

the others.

In generating these potential energy curves, we found further evidence that the

variational collapse problem of ∆SCF is a true hindrance in practical applications, not

just a theoretical curiosity. Using a standard non-Aufbau occupation procedure,139

more than half of the ∆SCF states in our PES scan collapsed to the ground state

prior to convergence. Many of these collapsed states could be stabilized with MOM,

but for several geometries, neither of these strategies were sufficient. Ultimately,

we converged these final states by using ∆SCF states obtained with a simpler XC

functional as an initial guess, and then applying MOM after a non-zero number of SCF

iterations with the target XC functional. These convergence difficulties would clearly

not be acceptable for MD simulations on ∆SCF states. Fortunately for equilibrium

dynamics, convergence problems tend to occur less frequently for near-equilibrium

geometries; however, they would present serious challenges for reactive dynamics.

Conversely, ROKS converged rapidly to the state of interest for every point examined

on the PES.

5.5 Conclusion

This study was motivated by the need for accurate, efficient excited state electronic

structure methods for our ongoing studies of the electronic properties of organic semi-

conductors. We turned to the ROKS approach as a means of obtaining ∆SCF-like

states without the specter of variational collapse; however, ROKS presents a different

complication, the dependence of the energy on mixing between the two open shells.

We have presented and implemented an algorithm for solving the ROKS equations

which forces the ROKS energy to be variational with respect to the open-shell mixing
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angle. Encouragingly, we find that a single convergence strategy — a density-matrix

approach using “canonical” ROKS orbitals — can deliver the proper ROKS excitation

energy, regardless of whether the canonical orbitals represent a minimum or a max-

imum along the open-shell orbital mixing angle. As illustrated by the formaldimine

excited state profiles, extremizing the energy with respect to the open-shell mixing

angle, while appealing from a theoretical standpoint, can lead to collapse to roughly

the energy of the T1 state if the symmetry of the transition changes along the reaction

coordinate of interest. If a variational treatment is necessary, one could envision a

strategy in which a composite ROKS energy expression of the form

EROKS[{φi}] = cEROKS[{φi}, θ = θmin] + (1− c)EROKS[{φi}, θ = θmax]

where the choice of the coefficient c would be tied to some measure of the symmetry

of the transition.

Of pressing interest for future work is the implementation of gradients for the

canonical and variational ROKS strategies. While the Hellmann-Feynman theo-

rem should hold for the variationally optimized ROKS energy, additional terms may

be necessary to obtain gradients for the canonical prescription. Currently, ROHF

Hellmann-Feynman gradients have been implemented and agree with forces computed

by finite difference, but ROKS gradients remain work in progress. Once gradients are

implemented and validated, we expect ROKS to be a handy tool in our electronic

structure toolkit for fast excited state MD simulations of large systems.

114



Chapter 6

Conclusion

Theoretical and computational models are a valuable asset for understanding the be-

havior of electronically excited states in the condensed phase. We have employed sev-

eral methods based on DFT to characterize electronic excitations and charge transfer

in a simple donor-acceptor dyad (FAAQ) and in a designer metal-ion sensor (ZP1).

Furthermore, we investigated the applicability of additional DFT-based strategies

for excited states — the ∆SCF and ROKS approaches — and addressed a potential

pathology of the latter method by extremizing the energy with respect to a parameter

describing mixing between the open shells.

The hybrid CDFT + explicit solvent model presented in Chapter 2 allowed us to

predict the driving force, reorganization energy, and electronic coupling associated

with charge recombination in the FAAQ dyad. The reorganization energy in par-

ticular is highly sensitive to solvent effects, yet our model’s prediction agrees with

the experimentally inferred value to within the error bars of our DFT method. We

also presented the first CDFT calculations of electronic couplings for an asymmetric

ET system in solution; although our predicted couplings are too large, their strong

solute conformation dependence suggests that the assumption of a constant coupling

along the ET reaction coordinate is not justified for this dyad. Meanwhile, our com-

putational analysis of ET in the Zinpyr-1 zinc sensor demonstrated an electronic

state-reordering governing the Zn2+-mediated fluorescence activation and predicted

the direct involvement of both amino and pyridyl nitrogen lone pair density in the
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ET process. Our computational work on ZP1309 led to a follow-up kinetic modeling

study to predict the zinc-binding affinities necessary to achieve a desired degree of flu-

orescence turn-on in future ratiometric sensors. These preliminary efforts were later

extended by the Lippard group and have been directly used in their sensor design

efforts.310

Our assessment of the ∆SCF approach in Chapter 4 demonstrated that excitation

energies of large organic chromophores can be predicted with anticipated errors of

roughly 0.3 eV with the best hybrid functionals. This level of accuracy is commen-

surate with that of linear response TDDFT, so we consider ∆SCF to be a viable

excited state DFT method for future characterization and simulations of organic

semiconductor materials. Likewise, our density-matrix based implementation of the

ROKS equations seems to provide a robust avenue to S1 excited states that are quan-

titatively similar to ∆SCF states but avoid the risk of variational collapse to the

ground state.

While providing answers to some important questions, this research raises addi-

tional questions and thus provides some direction for future work. On the applications

side, it would be very interesting to extend the CDFT/MMpol approach to more

complex ET systems like donor-bridge-acceptor systems, and to include additional

electronic states in the analysis. In order to achieve longer timescales for MD config-

urational sampling, one could employ a force-matched MM model for the dynamics

but retain a QM description for the energy gap. This approach would require a re-

weighting of the QM energy gaps to reflect the fact that the snapshots are obtained

from a different ensemble (the MM ensemble). In our experience, these re-weighting

schemes tend to reject most of the QM data because EQM −EMM frequently exceeds

the thermal energy. We are optimistic that a cumulant re-weighting scheme currently

under investigation might improve the outlook for using MM configurational sampling

in multi-state ET simulations.

Another area where our computational tools for ET should prove useful is in

condensed phase electrochemistry. We are actively modeling the catalytic cycle of

a cobalt-oxide water oxidation catalyst,9 where four proton-coupled ET reactions
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facilitate the transformation of water into hydrogen and oxygen gas. Furthermore,

we are beginning to develop strategies for calculating Tafel slopes for metal-oxide

redox chemistry from first principles.

An important next step for putting excited state DFT to good use is to parameter-

ize approximate Hamiltonians for exact quantum dynamics in the condensed phase.

In this scheme, the goal is to extract system-specific spectral densities from time-

correlation functions, which in turn are calculated from ground- and excited-state

DFT molecular dynamics simulations. These models can then be used to propagate

quantum dynamics using, for example, path integral methods, or the generalized

Langevin approach developed in our group.147

On the fundamental theoretical side, the relationship between ∆SCF and TDDFT

raises the question of precisely how making the adiabatic approximation affects ex-

citation energies from the two methods. XC kernels with memory, which could be

used to study this question, exist for TDDFT; but it is not clear how the effect of

the adiabatic approximation could be studied within ∆SCF. There are also lingering

fundamental questions concerning how to optimally define constraints in CDFT for

modestly-separated donor-acceptor systems.199 While we have been considering novel

atomic population schemes as a way to approach this problem, it could turn out that

a more general strategy such as partition density functional theory311 will provide a

better way forward.

Regarding future directions in methodology for excited states, one would ideally

like to develop methods that are simultaneously faster and more accurate than those

discussed here. In the absence of a clear path towards this goal, two more modest

but complementary strategies should be considered: (1) improve accuracy without

sacrificing too much computational efficiency, and (2) make the calculations faster

without sacrificing too much accuracy. We are pursuing a method in the first category

as an extension of the ∆SCF study. The goal is to describe ground and excited

states on the same footing by constructing a small configuration interaction problem

in a basis of ∆-Hartree-Fock states with a first-order wavefunction correction from

Møller-Plesset perturbation theory. This ∆SCF(2) method is slower than ∆SCF-DFT
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(scaling as N5) but (we hope) should prove to be more accurate. In the direction

of faster calculations with comparable accuracy to the methods described in this

thesis, a promising next step is to extend some of these excited state DFT strategies

to semiempirical frameworks such as density functional tight-binding (DFTB).312 If

excited state DFTB methods can be parameterized to achieve something close to the

accuracy of the analogous excited state DFT methods, then excited state DFTB-MD

will have a lot to teach us about the electronic properties and dynamics of organic

semiconductors and other advanced materials in the condensed phase.
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Appendix A

Energies of key structures

A.1 ZP1 vertical excitation energies

Below we tabulate relevant CIS, TDDFT and CDFT vertical excitation energies for

the various structures of ZP1 identified in Figure 3-2. All excitation energies are

reported in eV. LE denotes a locally excited state on the xanthone chromophore,

while CT denotes a charge-transfer excited state from DPA arm to DCF body.
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Structure CISa TDDFTb TDDFTc CDFTd

2

2.75 (CT1)
2.90 (LE)
3.06

4

3.78 (LE) 1.75 2.86 (LE) 5.34
5.15 1.84 2.89

2.06 3.17
3.20

5

4.07 (LE) 1.79 (CT1) 2.44 (CT1) 3.00
5.14 2.02 2.92 (LE)

2.16 3.03
3.13 (CT2)

6

4.25 (LE) 1.60 3.02 (LE) 5.74
4.80 1.94 (LE) 3.05

2.32 3.11
3.24 (CT1)
3.27 (CT2)

7

3.86 2.30 (CT1) 2.21 (CT1) 2.39
4.95 2.81 (LE) 2.85 (LE)

2.97 (CT2) 2.90 (CT2)

8
4.03 2.84 (CT) 4.51
5.05 2.92 (LE)

9
4.02 2.33 (CT) 3.59
4.54 2.89 (LE)

10

3.92 (LE) 2.92 (LE) 4.46
4.76 3.06

3.14 (CT)

11

3.84 (LE) 2.62 (0.0097) 2.87 (0.5631) 7.74
4.94 2.80 (0.0211) 3.20 (0.0036)

2.86 (0.5146) 3.41 (0.0049)

Table A.1: Lowest vertical excitation energies for ZP1 structures 2 and 4–
11, in eV. Methods: aCIS/SV(P)/gas-phase; bTD-B3LYP/SV(P)/gas-phase; cTD-
B3LYP/SV(P)/COSMO; dCB3LYP/SV(P)/SCRF.
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A.2 ROKS excitation energies: small dye test set
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Molecule PBE0 LC-ωPBE Best estimate
θ = 0 θ = π

4
θ = 0 θ = π

4

ethene 7.14 4.50 6.76 4.64 7.80
butadiene 5.15 3.29 4.89 3.32 6.18
hexatriene 4.12 2.66 4.00 2.64 5.10
octatetraene 3.47 2.26 3.48 2.24 4.47
cyclopropene 6.24 4.25 5.83 4.31 7.06
cyclopentadiene 4.83 3.23 4.51 3.27 5.55
norbornadiene 4.76 3.85 4.49 3.77 5.34
benzene 6.28 4.63 5.89 4.60 5.08
furan 5.78 4.18 5.49 4.26 6.32
pyrrole 5.27 6.28 5.71 4.59 6.37
imidazole 5.76 6.81 5.88 4.79 6.19
pyridine 4.72 5.25 4.58 4.93 4.59
pyrazine 3.92 3.87 3.58 3.53 3.95
pyrimidine 4.29 4.79 3.98 4.35 4.55
pyridazine 3.58 3.75 3.30 3.46 3.78
triazine 4.62 5.31 4.26 4.73 4.60
tetrazine 2.21 2.16 2.24 2.24
formaldehyde 3.59 4.57 3.64 4.34 3.88
acetone 4.08 5.03 4.40 4.40
benzoquinone 2.49 2.60 2.14 2.20 2.80
formamide 6.99 8.85 5.49 6.43 5.63
acetamide 6.55 8.37 5.48 6.37 5.80
propanamide 6.52 8.15 5.50 6.32 5.72
cytosine 4.58 4.13 4.30 4.01 4.66
thymine 4.81 3.79 4.48 3.72 4.82
uracil 4.96 4.05 4.63 3.96 4.80
adenine 4.82 3.98 4.53 3.84 5.25

Table A.2: Dependence of the ROKS PBE0/6-311+G* and LC-ωPBE/6-311+G*
excitation energies (in eV) on the open-shell mixing angle for the same test set of
Table 5.1. Naphthalene is omitted due to convergence difficulties.
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Appendix B

Optimized geometries of key

structures

The geometries are provided in .xyz format. All coordinates are specified in Å.

B.1 Protonation and zinc-binding states of ZP1

All geometries are optimized at the B3LYP/SV(P) level in COSMO water (ǫ = 80)

solution. Refer to Figure 3-2 for definitions of the bold-faced structure labels below.

Structure 2 (deprotonated relative to Figure 3-2):

100

ZP1 structure 2

Cl -1.3427989 -4.9336680 1.3505239

Cl 7.1623441 0.6940560 -0.7194417

O 4.1751111 -5.3558594 -2.4711543

O 5.0829655 2.7162624 -1.2557708

O 1.3140164 -0.0266640 -0.4966919

O -2.6263488 -2.4099915 0.6846059

C 3.7732486 -4.4011464 -1.7659569

C 4.1894292 -4.3972612 -0.2884465

C 4.9868151 -5.4369169 0.2130584

C 5.3901382 -5.4645161 1.5502826

C 4.9939528 -4.4337276 2.4112271

C 4.2002155 -3.3890985 1.9263418

C 3.7914458 -3.3598880 0.5800642

C 2.9356480 -2.2155374 0.1324105

C 3.5106798 -0.9843138 -0.2128917
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C 4.9251855 -0.7707030 -0.2878318

C 5.4276671 0.4466008 -0.6389458

C 4.5875284 1.6142845 -0.9585904

C 3.1488295 1.3772514 -0.8987814

C 2.6672405 0.1318813 -0.5363673

C 0.7167657 -1.1767236 -0.0861348

C -0.6833702 -1.1647687 0.0072116

C -1.3583264 -2.3318554 0.5027862

C -0.5303990 -3.4833893 0.7928113

C 0.8368687 -3.4724575 0.6749243

C 1.5137550 -2.3034751 0.2426948

H 5.2815785 -6.2244963 -0.4855554

H 6.0128496 -6.2848181 1.9223616

H 5.3021607 -4.4394180 3.4617571

H 3.8923300 -2.5845221 2.6020805

H 5.5989621 -1.5980101 -0.0589605

H 1.4116549 -4.3658332 0.9230537

O 3.0595963 -3.4355211 -2.1361452

C 2.2296790 2.5201505 -1.2619437

C 0.3986559 3.9932048 -0.5609665

C 0.8600846 5.2852378 -1.2249825

C 0.9457693 5.3973906 -2.6232233

C 1.4071866 6.5891474 -3.1884020

C 1.7728143 7.6372223 -2.3389799

C 1.6525290 7.4371661 -0.9595173

C 2.2089244 3.5019517 1.0291684

C 1.4533688 3.2936693 2.3355750

C 0.4430948 2.3261824 2.4508094

C -0.1949599 2.1443082 3.6790810

C 0.2034122 2.9318078 4.7644090

C 1.2226770 3.8675190 4.5556279

C -1.4138315 0.1230527 -0.3319881

C -3.3204421 1.2875121 -1.3160455

C -4.1826878 1.8727418 -0.2118234

C -4.3973041 3.2521339 -0.1119517

C -5.2846835 3.7330456 0.8528003

C -5.9289786 2.8236762 1.6984926

C -5.6476920 1.4676736 1.5475183

C -2.7330726 -0.9143536 -2.1695484

C -4.1105135 -1.4999057 -2.4242714

C -4.5240662 -1.8589926 -3.7114900

C -5.7731789 -2.4604207 -3.8813273

C -6.5772697 -2.6822414 -2.7593320

C -6.0961510 -2.2851086 -1.5126709

H 0.1760857 1.7414650 1.5691105

H -0.9925007 1.3999799 3.7806094

H -0.2636116 2.8307259 5.7485044

H 1.5602989 4.5047959 5.3840330

H -3.8710509 -1.6671826 -4.5671715

H -6.1160270 -2.7488022 -4.8795009

H -7.5618403 -3.1491245 -2.8427388

H -6.6911558 -2.4390543 -0.6077916

N 1.4594922 3.0759985 -0.1415785

N -2.7323195 -0.0262650 -0.9972362
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N 1.2073565 6.3002079 -0.4129051

N -4.7996073 1.0097387 0.6120845

H 2.8550850 3.2861521 -1.7616524

H 1.4865516 2.1688718 -2.0018131

H -0.1962382 4.2597435 0.3297235

H -0.2638118 3.4485453 -1.2589548

H 0.6459511 4.5601155 -3.2607304

H 1.4767334 6.6981621 -4.2756309

H 2.1373557 8.5911436 -2.7313090

H 1.9244133 8.2406305 -0.2619211

H 2.5334965 4.5612089 0.9917313

H 3.1313353 2.8965232 1.0796185

H -1.6026758 0.6944333 0.5953233

H -0.7524205 0.7459351 -0.9588714

H -3.9717873 1.1676380 -2.1993365

H -2.5387868 2.0134972 -1.6092820

H -3.8778440 3.9371978 -0.7875212

H -5.4679388 4.8075213 0.9464863

H -6.6295748 3.1555492 2.4686812

H -6.1097497 0.7172172 2.1967940

H -2.0346618 -1.7444919 -1.9746549

H -2.3644074 -0.4005376 -3.0770040

H -3.5878849 0.0446245 3.1609397

O -3.0600915 -0.3680074 2.4522952

H -2.6304452 -1.1428935 2.8608807

Zn -4.0380039 -0.9823939 0.5127237

H -6.4709327 -1.8341802 1.6383627

O -5.5026514 -1.8606517 1.7460696

H -5.3003338 -2.6673932 2.2568203

N 1.8302141 4.0522769 3.3770758

N -4.8963104 -1.7078513 -1.3511102

Structure 4:

93

ZP1 structure 4

H 4.5069419 -1.3103825 -2.7858630

H 5.5675292 -3.1008130 -4.1896911

H 6.1420497 -5.3080936 -3.0924574

H 5.6435721 -5.5889099 -0.6568607

C 4.5162475 -2.5258795 -0.9895256

C 4.7716165 -2.2771585 -2.3472486

C 5.3616325 -3.2745738 -3.1287247

C 5.6792413 -4.4941131 -2.5270715

C 5.3954144 -4.6470748 -1.1647189

N 4.8356817 -3.6956524 -0.4131622

H 3.0403943 1.1443311 2.9584106

H 4.2279790 0.8974632 5.1536294

H 4.6419829 -1.4301441 6.0525544

H 3.8353969 -3.3815715 4.7095607

C 2.8328438 -1.0049656 2.6820498

C 3.2451415 0.1500556 3.3701531

C 3.8991613 0.0131847 4.5979439

C 4.1301082 -1.2702846 5.0992329

C 3.6790427 -2.3578494 4.3430152
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N 3.0454978 -2.2357960 3.1729602

C 3.8884158 -1.4691703 -0.0997379

H 4.5089125 -1.3974048 0.8086619

H 3.9449457 -0.4810445 -0.6170859

C 2.0713909 -0.8844282 1.3727120

H 1.0152015 -1.1303210 1.5814999

H 2.0921438 0.1821468 1.0552242

N 2.5235641 -1.7766907 0.3153968

C 1.6054317 -1.8138237 -0.8359363

H 2.0225717 -2.5483949 -1.5431009

H 1.5761610 -0.8274669 -1.3490950

C -0.8684389 -1.3880294 -0.4209952

C 0.2068460 -2.2613724 -0.4941838

C 0.0158185 -3.6879194 -0.2581546

C -1.3426129 -4.0668598 0.1518561

C -2.3759606 -3.1797245 0.2606203

C -2.1861755 -1.7959886 -0.0336403

O 0.9243211 -4.5249121 -0.4110806

Cl -1.6098889 -5.7732193 0.4879642

H -3.3665860 -3.5269285 0.5587767

C -3.2265617 -0.8443711 0.0202199

C -5.6393849 -1.6682148 -0.2443450

C -6.8604700 -1.9939150 0.3669355

C -7.0400577 -1.8885929 1.7476132

C -5.9789606 -1.4478478 2.5469929

C -4.7559615 -1.1193083 1.9547559

C -4.5706639 -1.2238161 0.5633594

C -5.5095952 -1.8058972 -1.7707344

O -6.5270098 -2.2010951 -2.3903010

O -4.3955805 -1.5104170 -2.2645775

H -7.6684124 -2.3342692 -0.2855169

H -8.0022830 -2.1481326 2.2009852

H -6.1004534 -1.3581337 3.6312216

H -3.9277784 -0.7736825 2.5816982

O -0.6422212 -0.0760059 -0.7295481

C -2.9480771 0.5003325 -0.3085546

C -3.9368576 1.5287920 -0.2953966

C -3.6351585 2.7962464 -0.7085011

C -2.3146359 3.1936873 -1.2064119

C -1.3059870 2.1415079 -1.1795928

C -1.6321878 0.8672878 -0.7401481

H -4.9483780 1.2879798 0.0360807

Cl -4.8754879 4.0439375 -0.6953738

O -2.0812940 4.3409062 -1.6371430

C 0.0593607 2.5146322 -1.7083034

H 0.6400740 1.6001030 -1.9462453

H -0.0988604 3.0560959 -2.6565792

N 0.7922194 3.4307957 -0.8336114

C 1.7318286 4.3193275 -1.5097066

H 2.1274257 5.0313741 -0.7645232

H 1.1674324 4.8990077 -2.2610182

C 2.9132352 3.6314659 -2.1826613

C 2.8898584 3.3146456 -3.5516888

C 3.9758425 2.6444603 -4.1196874

126



C 5.0562436 2.3032998 -3.3012277

C 4.9943935 2.6598786 -1.9498838

N 3.9610277 3.3087271 -1.4025252

H 2.0305482 3.6005380 -4.1654722

H 3.9799176 2.3957309 -5.1856964

H 5.9319993 1.7816108 -3.6976816

H 5.8287735 2.4166365 -1.2789454

C 1.2336897 2.8944549 0.4369773

H 2.2698551 2.5016853 0.4145393

H 0.5834243 2.0370837 0.6863304

C 1.1350488 3.8833108 1.5890523

C 1.8465841 4.4681000 3.7019008

C 0.9659336 5.5518116 3.7710261

C 0.1329934 5.7915446 2.6729424

C 0.2159786 4.9451802 1.5654310

N 1.9356283 3.6563083 2.6423364

H 2.5164740 4.2485645 4.5435924

H 0.9386267 6.1877956 4.6604618

H -0.5740844 6.6276219 2.6821284

H -0.4123216 5.0802313 0.6808667

Structure 5:

94

ZP1 structure 5

H 6.7346855 -0.7683862 -1.8741958

H 7.8634844 -2.7863765 -2.8398109

H 6.7215430 -5.0342754 -2.6332475

H 4.4970205 -5.1299670 -1.4685418

C 5.0374503 -1.9030211 -1.1450255

C 6.2723865 -1.7565105 -1.7971031

C 6.8976496 -2.8803173 -2.3344135

C 6.2702817 -4.1276922 -2.2224515

C 5.0395024 -4.1837964 -1.5736182

N 4.4471681 -3.1006570 -1.0480539

H 2.3467038 1.6398160 3.1581852

H 3.4943293 1.4763988 5.3835221

H 5.1376294 -0.4085086 5.7656335

H 5.5518072 -2.0185285 3.8949606

C 3.3528023 -0.1260659 2.3717630

C 3.0663277 0.8371008 3.3589549

C 3.7021240 0.7448483 4.5962049

C 4.6130140 -0.2961847 4.8127709

C 4.8387443 -1.1933782 3.7676965

N 4.2278536 -1.1158058 2.5776432

C 4.3554145 -0.7008243 -0.5173218

H 4.9973593 -0.3642390 0.3120583

H 4.3467973 0.1309927 -1.2611670

C 2.6213987 -0.0370398 1.0395948

H 1.5521429 -0.2196976 1.2467466

H 2.6751275 1.0142174 0.6749114

N 3.0369442 -0.9792545 0.0163064

C 2.0168595 -1.1376091 -1.0266569

H 2.4769572 -1.6756837 -1.8714444

H 1.6844551 -0.1591885 -1.4254329
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C -0.4716229 -1.3834823 -0.5121234

C 0.8204125 -1.9326517 -0.5435299

C 0.9959557 -3.2714546 -0.1145160

C -0.1516562 -4.0044786 0.3154661

C -1.4122303 -3.4490786 0.3184799

C -1.6092652 -2.1133363 -0.0960819

H 3.0062629 -3.3743528 -0.3841733

O 2.1576099 -3.8964042 -0.0859850

Cl 0.0707901 -5.6603364 0.8408112

H -2.2646162 -4.0457228 0.6443889

C -2.8995904 -1.4810789 -0.1198599

C -4.9083774 -3.0283549 -0.3682955

C -6.0035278 -3.6770219 0.2206111

C -6.2918344 -3.5251626 1.5787046

C -5.4775362 -2.7061606 2.3694661

C -4.3849573 -2.0483105 1.7958156

C -4.0894553 -2.2032554 0.4295749

C -4.6201345 -3.2158726 -1.8627279

O -5.4051248 -3.9436279 -2.5122615

O -3.6074943 -2.6143518 -2.3008094

H -6.6217718 -4.3063344 -0.4244492

H -7.1506292 -4.0401440 2.0207298

H -5.6916894 -2.5744186 3.4345411

H -3.7520263 -1.4066896 2.4163475

O -0.5981399 -0.0877235 -0.8968342

C -2.9781003 -0.1342040 -0.4768814

C -4.2107598 0.5990564 -0.4880320

C -4.2398729 1.9061682 -0.8657291

C -3.0415613 2.6577394 -1.2809183

C -1.7923174 1.9036074 -1.2588070

C -1.7919010 0.5754409 -0.8842971

H -5.1297762 0.0911420 -0.1929739

Cl -5.7533480 2.7881886 -0.8835266

O -3.1014160 3.8469109 -1.6322038

C -0.5413894 2.6583369 -1.6466399

H 0.2654774 1.9514007 -1.9201450

H -0.7797547 3.2481220 -2.5474232

N -0.1219118 3.6142960 -0.6248709

C 0.5294505 4.8105763 -1.1136042

H 0.7433834 5.4616340 -0.2445331

H -0.1808578 5.3751184 -1.7454799

C 1.8271775 4.6252243 -1.9015588

C 2.1175005 5.4596737 -2.9943589

C 3.3232034 5.2950600 -3.6797637

C 4.2013858 4.2912759 -3.2612471

C 3.8224183 3.5036103 -2.1698139

N 2.6741923 3.6627188 -1.5050681

H 1.4014917 6.2275324 -3.3024988

H 3.5695110 5.9354729 -4.5325113

H 5.1553656 4.1178328 -3.7667729

H 4.4840645 2.7020194 -1.8152260

C 0.3486916 3.0849893 0.6375892

H 1.4497878 3.1203727 0.7278418

H 0.0834201 2.0146668 0.6894436
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C -0.2512835 3.7536954 1.8672315

C -0.1045432 4.0731563 4.1460017

C -1.2706943 4.8441862 4.1799134

C -1.9454030 5.0650613 2.9753156

C -1.4305995 4.5113800 1.8007029

N 0.3969730 3.5447743 3.0250344

H 0.4527040 3.8771313 5.0711393

H -1.6341372 5.2580408 5.1246443

H -2.8635130 5.6610373 2.9522884

H -1.9195952 4.6449756 0.8330330

Structure 6:

98

ZP1 structure 6

H -0.6763386 3.6241835 3.6431836

O -0.8128640 4.2380404 4.3933984

H -0.7816940 5.0777511 3.8761195

Cl 5.1111321 3.1545154 0.0168728

Cl -5.1861814 2.6494443 -1.4546053

O 4.7169277 0.3004751 0.3839992

O 0.0227184 0.2340163 -0.2219522

O -4.6449400 -0.1524819 -0.9109621

C -0.4386602 5.0649954 1.4130316

H -0.4033056 7.5668517 0.3297200

H -0.0914240 8.2026595 -2.0826834

H 0.2321206 6.4072159 -3.7936229

H 0.2448650 4.0206034 -3.1081559

H 2.4604511 4.0951019 -0.4762460

H -2.6045417 3.8445448 -1.2115272

O -0.4075955 3.8200721 1.6328103

O -0.6015007 5.9741579 2.2599586

C -0.2537657 5.4610831 -0.0420890

C -0.2597189 6.8037931 -0.4394636

C -0.0859581 7.1507301 -1.7815919

C 0.0952400 6.1463249 -2.7398970

C 0.1027142 4.8012979 -2.3550393

C -0.0716538 4.4519262 -1.0056175

C -0.0560829 3.0065151 -0.6233569

C 1.1783644 2.3374251 -0.3946938

C 2.4245754 3.0160480 -0.3249182

C 3.5809674 2.3229582 -0.0669944

C 3.5738741 0.9049336 0.1435354

C 2.3461614 0.2032273 0.0803263

C 1.1820755 0.9321123 -0.1838136

C -1.1670364 0.8208561 -0.4928572

C -2.2851561 -0.0177731 -0.5416170

C -3.5420334 0.5606113 -0.8435551

C -3.6231753 1.9714637 -1.0842189

C -2.5109217 2.7740166 -1.0291400

C -1.2374458 2.2209256 -0.7272229

H -4.4481102 -1.1033537 -0.5647538

H 4.5656515 -0.7186606 0.3588922

C 2.2882236 -1.2799317 0.3973500

C 3.5675071 -2.2118027 -1.4514048
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C 4.9360785 -2.6398513 -1.9489882

C 5.0689237 -3.6710722 -2.8906014

C 6.3440927 -3.9963051 -3.3624390

C 7.4430975 -3.2885676 -2.8700716

C 7.2091753 -2.2831757 -1.9244034

C 3.7073915 -3.2305484 0.7606373

C 4.0517733 -2.9929068 2.2196300

H 6.0290597 -1.0063301 3.9208699

H 5.1437993 -2.3439403 5.8452949

H -4.0401193 -3.1672857 4.0109572

H -6.3296066 -3.5560395 4.9658039

H -8.3389642 -2.7926962 3.6322433

H -7.9478694 -1.6831668 1.4209283

N 3.5139559 -1.9917694 0.0001811

N -3.3523045 -2.1373923 0.1998694

N 5.9926946 -1.9622894 -1.4777215

N -4.6717137 -3.0228250 -2.1763236

C 5.3043545 -1.8123565 3.7483509

C 4.8107084 -2.5569945 4.8257715

C 3.8834990 -3.5667639 4.5567270

C -2.1484172 -1.5212229 -0.3814386

C -3.4640876 -3.5623044 -0.1290613

C -3.7654148 -3.8205741 -1.5941802

C -3.1503231 -4.8777757 -2.2810605

C -3.5030618 -5.1154284 -3.6125925

C -4.4476873 -4.2821314 -4.2168991

C -4.9968973 -3.2466727 -3.4522209

C -3.4473287 -1.8869282 1.6441169

C -4.8130690 -2.2021296 2.2264814

C -4.9329401 -2.8431625 3.4685716

C -6.2084940 -3.0604871 3.9975870

C -7.3206270 -2.6416967 3.2633214

C -7.0983217 -2.0210395 2.0285559

H 2.1709640 -1.3966805 1.4894064

H 1.3935031 -1.7380731 -0.0643421

H 3.3036903 -1.2567933 -1.9408666

H 2.8046067 -2.9518510 -1.7676771

H 4.1865375 -4.2108926 -3.2458249

H 6.4757627 -4.7953785 -4.0984617

H 8.4607637 -3.5082007 -3.2048513

H 8.0489385 -1.7091075 -1.5117096

H 4.5483337 -3.7744612 0.2971356

H 2.8187408 -3.8893708 0.6846297

H -1.9937415 -1.9651016 -1.3808446

H -1.2483304 -1.7647476 0.2136298

H -4.2971595 -3.9733135 0.4664385

H -2.5512570 -4.1159360 0.1717074

H -2.4069569 -5.5035220 -1.7789305

H -4.7525722 -4.4243046 -5.2574748

H -5.7366399 -2.5669226 -3.8944994

H -3.2401429 -0.8140666 1.8091463

H -2.6655013 -2.4476542 2.1955432

N -5.8818996 -1.8017954 1.5236388

C 3.4917870 -3.7854339 3.2326999
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H 2.7595661 -4.5597270 2.9867581

N 4.9418554 -2.0250490 2.4807038

H 3.4636377 -4.1721391 5.3659597

H -3.0402467 -5.9354715 -4.1702778

Structure 7:

95

ZP1 structure 7

H 6.6912463 -0.9038951 -1.9453118

H 7.7513412 -2.9446290 -2.9410254

H 6.5595239 -5.1653393 -2.7198655

H 4.3564194 -5.2117276 -1.5106645

C 4.9822029 -1.9993979 -1.1858667

C 6.2070274 -1.8810932 -1.8620713

C 6.7938839 -3.0173918 -2.4164586

C 6.1389450 -4.2496853 -2.2965529

C 4.9202778 -4.2789649 -1.6235698

N 4.3653438 -3.1834635 -1.0821194

H 2.5066514 1.6347160 3.1431057

H 3.6953142 1.4456137 5.3464754

H 5.2564254 -0.5105203 5.7178602

H 5.5474087 -2.1651186 3.8624271

C 3.4083122 -0.1876620 2.3621435

C 3.1912322 0.8010936 3.3407572

C 3.8496863 0.6943233 4.5652899

C 4.7148589 -0.3861799 4.7757683

C 4.8722027 -1.3079330 3.7392464

N 4.2375066 -1.2172360 2.5627805

C 4.3430803 -0.7838283 -0.5393917

H 5.0065778 -0.4715199 0.2830153

H 4.3481028 0.0541086 -1.2767285

C 2.6475588 -0.0839915 1.0471783

H 1.5803334 -0.2523323 1.2776021

H 2.7097282 0.9680895 0.6860961

N 3.0256603 -1.0287544 0.0117804

C 1.9862944 -1.1615156 -1.0142490

H 2.4210003 -1.7024182 -1.8705451

H 1.6642580 -0.1750589 -1.4021791

C -0.4938849 -1.3659270 -0.4568278

C 0.7847612 -1.9379927 -0.5142113

C 0.9436864 -3.2823606 -0.0908661

C -0.2101821 -3.9961143 0.3620033

C -1.4600831 -3.4195307 0.3900078

C -1.6404262 -2.0776494 -0.0213766

H 2.9522337 -3.4241216 -0.4031086

O 2.0894361 -3.9281215 -0.0890269

Cl -0.0058063 -5.6535196 0.8814258

H -2.3136652 -4.0028108 0.7368390

C -2.9103663 -1.4137368 -0.0181393

C -4.9632251 -2.9424669 -0.3482380

C -6.0714710 -3.5885716 0.2277758

C -6.3592372 -3.4629309 1.5856102

C -5.5317051 -2.6769479 2.3931031

C -4.4271965 -2.0269421 1.8352525
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C -4.1236278 -2.1447600 0.4683807

C -4.7752799 -3.1628862 -1.8182308

O -5.5113909 -3.8540613 -2.4928365

O -3.7177647 -2.5293346 -2.3361490

H -3.6691143 -2.7301148 -3.2947418

H -6.7068064 -4.1954439 -0.4206155

H -7.2263842 -3.9748803 2.0120701

H -5.7423662 -2.5662745 3.4608525

H -3.7832723 -1.4138275 2.4719188

O -0.6079661 -0.0683135 -0.8371019

C -2.9858885 -0.0789551 -0.3967005

C -4.2136124 0.6695099 -0.4043235

C -4.2287341 1.9731143 -0.7884042

C -3.0187072 2.7052395 -1.2223110

C -1.7752608 1.9371685 -1.2022848

C -1.7885099 0.6156236 -0.8165121

H -5.1372213 0.1775970 -0.0964522

Cl -5.7241110 2.8759475 -0.8012931

O -3.0685663 3.8869121 -1.5867228

C -0.5208775 2.6713333 -1.6188654

H 0.2700318 1.9493412 -1.9008265

H -0.7683921 3.2532534 -2.5220908

N -0.0698204 3.6306412 -0.6145843

C 0.5824386 4.8164923 -1.1348658

H 0.8507707 5.4613209 -0.2768816

H -0.1447712 5.3940893 -1.7348274

C 1.8366530 4.5985101 -1.9816707

C 2.0461511 5.3434272 -3.1541167

C 3.2145217 5.1417414 -3.8935394

C 4.1361964 4.1908223 -3.4471032

C 3.8379518 3.4906825 -2.2732219

N 2.7267012 3.6865712 -1.5572310

H 1.2980885 6.0716534 -3.4813872

H 3.3979314 5.7136332 -4.8087684

H 5.0631349 3.9915098 -3.9922290

H 4.5357549 2.7319925 -1.8938838

C 0.4377252 3.1027805 0.6351853

H 1.5424629 3.0969129 0.6759427

H 0.1322503 2.0446677 0.7160307

C -0.0812579 3.8125270 1.8784458

C 0.1823548 4.1644254 4.1419569

C -0.9564346 4.9728415 4.2161686

C -1.6798244 5.1959253 3.0404324

C -1.2378954 4.6067130 1.8532795

N 0.6143696 3.6022762 3.0083998

H 0.7762368 3.9659522 5.0436694

H -1.2621025 5.4136030 5.1692998

H -2.5790328 5.8206864 3.0487465

H -1.7676103 4.7414803 0.9072559

Structure 8:

103

ZP1 structure 8

Cl -0.6285049 -5.0050612 2.7349797
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Cl 6.4960483 0.7348743 -2.2216250

O 3.3863932 -5.5063976 -2.5002936

O 4.2731023 2.6746430 -2.1270299

O 1.0646660 -0.1246877 -0.0769558

O -2.2404372 -2.6215305 2.2553631

C 3.1973410 -4.5088961 -1.7663678

C 4.0772147 -4.3808696 -0.5156721

C 5.0448315 -5.3566033 -0.2361004

C 5.8643644 -5.2646699 0.8914460

C 5.7220746 -4.1764777 1.7609674

C 4.7634495 -3.1936240 1.4944741

C 3.9356631 -3.2856673 0.3607584

C 2.9218599 -2.2070641 0.1382323

C 3.2885324 -0.9896532 -0.4490315

C 4.5906520 -0.7478113 -0.9949777

C 4.8987546 0.4538794 -1.5572011

C 3.9523541 1.5793358 -1.6348117

C 2.6230818 1.3140227 -1.0901873

C 2.3325967 0.0783076 -0.5417466

C 0.6905494 -1.2656013 0.5619240

C -0.6259065 -1.3212671 1.0496988

C -1.0611081 -2.4876211 1.7614221

C -0.1025156 -3.5613515 1.8916774

C 1.1711974 -3.4911914 1.3857195

C 1.6141230 -2.3300109 0.7033777

H 5.1336858 -6.1913112 -0.9360975

H 6.6141012 -6.0364025 1.0932500

H 6.3575472 -4.0888916 2.6477039

H 4.6545687 -2.3436095 2.1750117

H 5.3360208 -1.5433226 -0.9550237

H 1.8515959 -4.3351398 1.5049858

O 2.3581314 -3.5895346 -1.9376053

C 1.6131182 2.4323192 -1.1576663

C 0.2782251 4.0981963 0.0429645

C 0.5603850 5.3286392 -0.8094728

C 0.2090766 5.3767837 -2.1689664

C 0.5154982 6.5173639 -2.9152598

C 1.1657204 7.5791185 -2.2811019

C 1.4729426 7.4446253 -0.9230602

C 2.5242331 3.5539575 0.8667314

C 2.3127651 3.6197491 2.3713012

C 1.3883305 2.7929407 3.0294264

C 1.2822721 2.8625330 4.4198855

C 2.1068354 3.7524961 5.1153263

C 2.9998988 4.5322997 4.3739241

C -1.5394146 -0.1313778 0.8745330

C -2.8546271 1.2115001 -0.7015497

C -3.9817276 1.8197825 0.1064178

C -4.0011439 3.1705941 0.4649570

C -5.1181645 3.6783967 1.1332895

C -6.1782668 2.8187869 1.4339023

C -6.0739839 1.4807850 1.0553175

C -2.0208070 -0.9354751 -1.4622197

C -3.1305896 -1.1982396 -2.4641545
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C -2.8526145 -1.3777664 -3.8230047

C -3.8987774 -1.6848559 -4.6955765

C -5.1968177 -1.7958832 -4.1884724

C -5.3926834 -1.5912135 -2.8240780

H 0.7697966 2.1123717 2.4402411

H 0.5674921 2.2296598 4.9557244

H 2.0609984 3.8440745 6.2042520

H 3.6637025 5.2426523 4.8843058

H -1.8275587 -1.2771529 -4.1891159

H -3.7023098 -1.8308510 -5.7617124

H -6.0456252 -2.0322096 -4.8344648

H -6.3885076 -1.6681855 -2.3781581

N 1.3536660 3.1061137 0.1266410

N -2.4975118 -0.1674570 -0.2975415

N 1.1791185 6.3569615 -0.2032077

N -5.0073229 1.0028687 0.3995339

H 1.9768802 3.1404044 -1.9268553

H 0.6413139 2.0361972 -1.5046430

H 0.0444787 4.4409281 1.0648225

H -0.6165052 3.5865729 -0.3548588

H -0.3064301 4.5321838 -2.6350266

H 0.2468109 6.5768458 -3.9746269

H 1.4246194 8.4948510 -2.8201732

H 1.9766010 8.2617325 -0.3899951

H 2.9113793 4.5391716 0.5404237

H 3.3331595 2.8254241 0.6840265

H -2.1493364 0.0122624 1.7782799

H -0.9051059 0.7628685 0.7605107

H -3.1874252 1.1909396 -1.7528629

H -1.9683309 1.8693132 -0.6711311

H -3.1546371 3.8180503 0.2230229

H -5.1551497 4.7326100 1.4222080

H -7.0680515 3.1711134 1.9609413

H -6.8666316 0.7644828 1.2901376

H -1.6566405 -1.9084732 -1.0960655

H -1.1746784 -0.4375218 -1.9715842

H -5.0255294 -1.4761473 2.7634442

O -4.2906369 -1.0846652 2.2578432

H -3.4585270 -1.6341634 2.4383458

Zn -4.5198354 -1.0757608 0.1510716

H -7.3175187 -1.2858411 -0.0942400

O -6.5446887 -1.6910019 0.3401516

H -6.8022766 -2.6029190 0.5719515

N 3.1013418 4.4748964 3.0413963

N -4.3850650 -1.2983564 -1.9890296

O -3.8294422 -3.0861126 0.2525223

H -4.3755007 -3.8800498 0.1147939

H -3.2703918 -3.2065555 1.0743216

ZP1 Structure 9:

105

ZP1 structure 9

H 4.5087374 -0.0443821 -5.8374339

H 6.7293919 -0.7109462 -4.8334688
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C 4.6206890 -0.1685060 -4.7566515

H 2.5520890 0.3191916 -4.3079043

C 5.8514405 -0.5387594 -4.2067939

C 3.5290369 0.0354422 -3.9090431

H -6.7199208 -4.7794197 -1.9348844

H -1.9117912 7.4035244 -2.3136458

H -6.8984226 -6.7280402 -0.3752488

C 5.9395811 -0.6938061 -2.8253419

C -5.8565775 -5.0766012 -1.3238747

C -5.9605377 -6.1709260 -0.4562745

H -1.2183422 5.0271707 -2.1867311

C 3.6997182 -0.1293906 -2.5323240

H 6.8777309 -0.9842315 -2.3441507

Cl -5.8112417 1.7731995 -2.7889399

N -4.7445033 -4.3542974 -1.4749095

C -2.1474459 6.8182523 -1.4200510

N 4.8881552 -0.4936077 -2.0142275

H 1.6014426 0.0161737 -2.0671196

H -2.1108839 -1.9088186 -2.5816893

O -4.3068298 -0.7581676 -2.8038700

H -2.1918156 -3.9035766 -2.0597674

C -1.7576868 5.4777188 -1.3490203

C -4.8321451 -6.5266366 0.2849462

C -4.2523907 1.4962247 -2.0623237

C 2.5717673 0.1514986 -1.5568773

C -3.7132645 0.1179459 -2.1759598

C -3.6639056 -4.6811005 -0.7493794

H -4.8573417 -7.3784141 0.9720362

H -4.0122770 3.5081159 -1.4159366

H 2.6378141 1.2099552 -1.2573858

C -3.5805398 2.5072358 -1.4571712

H 2.7926644 -2.2944098 -1.6786258

H -3.1444741 8.4500563 -0.3985018

C -3.6663333 -5.7701938 0.1343208

C -2.8349191 7.4022788 -0.3522459

H 5.5941815 1.9270457 -0.4940284

C -2.4225368 -0.1162429 -1.5167251

C -2.4116665 -3.8467720 -0.9811303

C -1.8919497 -1.5285839 -1.5734039

C -2.2867530 2.2799543 -0.8644389

C -1.7643999 0.9273804 -0.9170778

C -2.0434594 4.6943722 -0.2180540

N -2.5434880 -2.4357854 -0.6239614

H -2.7659315 -6.0193064 0.7025133

C -1.5598934 3.2779129 -0.2412834

C 2.4356447 -2.1027008 -0.6526270

H -0.7858059 -1.5223539 -1.4525979

N 2.6783261 -0.6742520 -0.3357542

H -1.5522315 -4.3241434 -0.4584367

O -0.5509566 0.6742314 -0.3346473

H 1.3553050 -2.3312596 -0.6579104

O 5.2518946 1.3868398 0.2413045

H 7.5388389 -1.6614068 0.0950660

C -0.2788345 2.9590901 0.3421093

135



C -3.1266325 6.6370911 0.7757392

Zn 4.9005548 -0.6950375 0.0978449

H 7.5379105 -0.1348327 0.4652380

C 0.1804585 1.6267791 0.2899552

O 6.9657183 -0.9185086 0.3605172

C -2.7409160 5.2880769 0.8636850

H 4.8046136 1.9826614 0.8819073

H 0.2280646 4.9571031 1.0291541

C 0.5405682 3.9137596 0.9812239

H -6.2805981 -2.6268887 2.6469947

C 3.1715202 -3.0579218 0.2610601

C 1.3995233 1.2130041 0.8689125

N -4.4111716 -2.4192125 1.7782940

N 4.4146300 -2.6913681 0.6222508

H -3.6668060 7.0734179 1.6185054

C 1.7897463 -0.2473876 0.8063918

C -2.2096626 -2.1378135 0.7591562

H 0.8561685 -0.8283246 0.7534136

C 1.7371133 3.5383412 1.5574491

C -5.2270264 -2.9320309 2.7017536

H -2.2843990 -1.0457484 0.8914973

H 1.6216854 -4.5643949 0.3426090

C 2.1727609 2.1875697 1.5312013

C 2.6351737 -4.2887757 0.6450195

C -3.1154880 -2.7677265 1.8036119

H -1.1535625 -2.4219232 0.9938354

Cl 2.7377387 4.7274666 2.3468942

C 5.1670017 -3.5190617 1.3660716

O 3.3452551 1.9341093 2.1382513

C -3.1256102 4.5822691 2.1277268

H 6.1630923 -3.1623009 1.6431272

H 3.5539722 0.9775044 2.3013364

H 2.2798159 -0.5539186 1.7419773

O -2.7691874 3.2930247 2.1626503

C -4.8055367 -3.8063321 3.7114816

C 3.4162661 -5.1576459 1.4111948

O 4.7191836 -0.3329397 2.3083491

C -2.5976747 -3.6302214 2.7814634

C 4.7080438 -4.7685999 1.7776225

H -5.5196708 -4.1923039 4.4444715

H 4.4712202 -1.0814423 2.8872522

O -3.7099879 5.1194364 3.0459174

H 5.5332150 0.0413709 2.7035151

H 3.0175408 -6.1270079 1.7227541

C -3.4549161 -4.1561219 3.7524927

H -1.5349787 -3.8891734 2.7806179

H -3.0502967 2.9112826 3.0210293

H 5.3507392 -5.4156207 2.3787784

H -3.0726575 -4.8315951 4.5242852

Structure 10:

105

ZP1 structure 10

H 6.0563202 -2.8708585 -4.8392916
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H 3.8765406 -1.9769745 -5.7528497

C 5.3101429 -2.4150744 -4.1843779

C 4.1031238 -1.9177693 -4.6844940

H 6.4734955 -2.6984077 -2.3716020

C 5.5461960 -2.3238086 -2.8142142

C 3.1831989 -1.3480470 -3.8010203

H 2.2280781 -0.9557838 -4.1591351

N 4.6610767 -1.7728256 -1.9694836

H 7.3771355 -2.9787364 -0.0039023

C 3.4992089 -1.2841705 -2.4409805

H 7.6028715 -1.4284753 0.0867552

O 6.9511476 -2.1377728 0.2440291

H 2.2900307 -3.0130261 -1.1023258

H 5.7953635 0.7827360 -1.1382476

C 2.5754362 -0.6097106 -1.4433072

H 1.5393032 -0.6315031 -1.8287322

Zn 4.9216568 -1.5598534 0.1518321

O 5.6874690 0.3974320 -0.2502661

H 5.9512764 -4.0531248 1.8227562

H 2.8688859 0.4498840 -1.3703210

N 4.1765020 -3.3841787 0.9774390

C 2.1507520 -2.5843077 -0.0953414

C 4.8714661 -4.2185320 1.7639100

C 2.8423961 -3.5125299 0.8807340

N 2.6877101 -1.2039775 -0.0990264

C 4.2610687 -5.2450867 2.4829893

H 1.0611131 -2.5846102 0.0892468

H 5.3196053 1.0895675 0.3564342

H 4.8633963 -5.9089750 3.1073916

C 2.1525849 -4.5045647 1.5825301

C 2.8737978 -5.3869841 2.3910655

H 1.0661834 -4.5861643 1.4953404

H 2.3553114 -6.1723300 2.9483253

H -1.8618960 -1.5770356 -1.5981292

O 5.0324206 -0.8684786 2.1521919

H 5.9180210 -0.8889074 2.5583501

H -1.1966338 -1.3710654 0.0350896

H -2.5461857 -3.5105987 -1.3476603

H -0.0830131 4.8445138 -2.4835299

C 2.0566162 -0.3993250 1.0123118

H 4.7064857 0.0771829 2.1675095

O 4.1597033 1.5361344 1.6090246

C -2.1006070 -1.2122940 -0.5842357

H 1.0373897 -0.7846437 1.1751767

C 1.9553268 1.0947345 0.8142114

H -0.3565219 7.2458222 -3.0333432

H 2.6241697 -0.6104730 1.9297302

C 3.0501332 1.9606299 1.1737076

O -0.2368488 0.8189865 0.0211633

H -2.7794188 -4.0358203 0.3267793

C 0.7714387 1.6620680 0.3482856

H -4.4155641 -1.0782711 -1.0233572

C -3.2142224 -3.4084685 -0.4751460

C -2.4126118 0.2694315 -0.6751389
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C -0.4970906 5.5262562 -1.7357974

C -1.4506434 1.2465893 -0.4055403

C 2.8426376 3.3983301 1.0010820

O -4.6480635 -0.1612115 -1.4116390

Cl 4.1772183 4.4366580 1.4186114

C -3.6827355 0.6912301 -1.1377437

C 0.5776166 3.0745240 0.1978572

C -0.6519547 6.8806384 -2.0456176

C 1.6725400 3.9274255 0.5443376

N -3.2456685 -1.9906297 -0.0880203

C -1.6931227 2.6367384 -0.5738788

C -0.6578679 3.5574010 -0.2551624

C -4.5722060 -3.9556906 -0.8858301

H 1.5646962 5.0073169 0.4389307

C -3.9330728 2.0884633 -1.3232805

N -5.3064488 -3.1769846 -1.6910014

C -2.9708646 3.0306963 -1.0519796

C -0.8650592 5.0232053 -0.4768846

H -4.3719488 -5.8427798 0.1677712

Cl -5.5022623 2.5711210 -1.9055645

H -2.6641160 -2.3045183 1.9344757

H -3.1927338 4.0878453 -1.1992040

C -4.9940640 -5.2338892 -0.4945758

C -6.4833160 -3.6332778 -2.1272447

H -7.0573742 -2.9622800 -2.7790600

C -3.4521527 -1.7812423 1.3549381

C -1.1809841 7.7583281 -1.0948108

H -3.3385886 -0.7015036 1.5503931

H -1.3050094 8.8192992 -1.3284092

C -6.2213223 -5.7125789 -0.9620406

C -6.9880864 -4.8959551 -1.7969351

H -6.5749968 -6.7067254 -0.6717231

C -1.4019828 5.9126550 0.4863555

H -7.9566125 -5.2241334 -2.1843669

C -1.5506075 7.2713414 0.1580244

C -4.8201112 -2.1973220 1.8587049

H -4.0852605 -3.6906310 3.2513046

O -1.6620735 4.2214753 2.1368473

N -5.8704110 -1.5441774 1.3388024

C -4.9642766 -3.1810712 2.8467615

C -1.8341518 5.5200852 1.8660968

H -1.9648761 7.9410226 0.9145476

H -1.9681191 4.0409004 3.0509661

C -7.0922582 -1.8553134 1.7740521

C -6.2471735 -3.4962858 3.3061067

O -2.2982212 6.2987633 2.6726520

H -7.9277873 -1.3030328 1.3244479

H -6.3883680 -4.2585980 4.0785483

C -7.3393991 -2.8224467 2.7571125

H -8.3624605 -3.0332097 3.0811908

Structure 11:

114

ZP1 structure 11
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H -5.2104275 5.7913296 -0.1549799

H -7.3247549 4.7667322 0.7762319

C -5.2696292 4.7194112 0.0537711

H -3.2364550 4.3030851 -0.5855193

C -6.4415352 4.1579453 0.5693156

C -4.1688903 3.8941671 -0.1882352

C -6.4620078 2.7883910 0.8246923

C -4.2723309 2.5272176 0.0853332

H -7.3533989 2.2998101 1.2285546

H 2.6840308 2.6037767 4.5813356

N -5.4031681 1.9988088 0.5879717

H 4.3718084 3.2026678 2.9440458

H -2.1789764 2.1197287 -0.2223655

C -3.1374044 1.5684481 -0.2245355

H -2.9694093 -1.1884122 6.3070558

H -3.1262950 1.8943583 2.1981323

C -3.4600297 -0.9506682 5.3588615

H 2.1472176 2.1029317 1.5865591

C -2.7675901 -0.2614634 4.3596955

H -6.3856152 -1.3129921 3.6611620

C -4.7830208 -1.3358375 5.1261076

H -0.0196752 1.9379002 -5.4151447

O 4.1358186 2.5229232 -0.0192271

H -7.9561838 -0.5724379 0.5926308

H -3.2844877 1.1845609 -1.2471198

H -7.9329291 -0.0373742 2.0679456

H 4.3840311 2.4988073 1.4882365

O -7.3769034 -0.4154019 1.3622685

O 2.8731478 1.6475928 4.5947932

H 0.4224133 2.0315501 -7.8524449

Cl 5.0434814 2.8270930 -2.7667111

C -5.3595953 -1.0158431 3.8978992

C -3.4221967 0.0315589 3.1603421

O 4.5901655 2.3763386 2.4792039

H 2.8056522 1.3683055 5.5266829

H -5.3599940 -1.8809094 5.8767160

H 0.6845121 1.1956278 1.1718627

C -2.7760260 0.8565033 2.0674576

H -6.1189026 0.4019820 -1.7108200

N -4.6954254 -0.3407540 2.9489972

C 3.3299189 1.9772611 -0.8116991

Zn -5.3290371 -0.1240130 0.9187327

O -5.9401755 -0.3494930 -1.1177016

H -5.3603168 -1.0047530 -1.5948721

C 3.5906520 2.0104248 -2.2532182

C 1.7806078 1.2034493 1.0721383

H -1.7324180 0.0554246 4.5116859

H -1.6805731 0.8867906 2.2094456

N -3.1242053 0.4168653 0.6961155

C 2.1215351 1.2944106 -0.3936648

H 0.9471553 0.4045265 3.3377265

C 0.5491834 1.1351961 -5.8920880

C 2.7686165 1.4264817 -3.1702351

C 0.7982920 1.1876892 -7.2666103
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H 3.0245609 1.4575900 -4.2298539

C 1.2672082 0.7701133 -1.3588930

C 1.5640828 0.7749764 -2.7584437

O 0.1073688 0.2013883 -0.9304133

H 6.1407668 1.4249672 4.6692832

C -2.2360442 -0.7316220 0.2724881

Zn 4.0707679 0.5063828 3.1903565

H 6.4857336 -0.0854138 4.4883826

N 2.3237599 -0.0002025 1.8213644

C 0.7022806 0.1105965 -3.6456051

C -0.7913003 -0.3856453 -1.7685418

C 1.3325038 -0.4802606 2.8022937

H -1.2640324 -0.6116706 0.7761317

O 5.7460756 0.5499503 4.4947885

C 1.0178492 0.0683090 -5.1081228

C -1.9724296 -0.8785659 -1.2071567

C -0.4933450 -0.4699342 -3.1588343

H 0.4776638 -0.9767051 2.3050161

C 1.5243560 0.1648621 -7.8836553

O -5.0387493 -2.2151684 0.7547152

H 1.7247339 0.1972763 -8.9581490

H -2.6870315 -1.6533841 0.6659140

C -2.9170414 -1.5611215 -2.0511669

C -1.4406084 -1.1288481 -3.9937726

O -4.0068158 -2.0593450 -1.6190824

H -1.2477233 -1.2130040 -5.0639067

C -2.5901810 -1.6484485 -3.4647580

H -5.8451550 -2.7607521 0.7917785

C 1.9339508 -1.4226613 3.8267241

H -4.5972857 -2.3699995 -0.1350766

N 3.1942448 -1.1635674 4.2222749

N 5.0863101 -0.3936236 1.5293655

C 2.8261145 -1.1064388 0.9811003

H 2.2132966 -1.2620499 0.0797526

H 6.9990574 0.1970530 2.0755693

Cl -3.7456901 -2.4542602 -4.4955651

C 1.7527255 -0.9693357 -5.7338913

C 1.9924253 -0.9017444 -7.1181161

H 0.1872130 -2.6847052 4.0239183

C 4.2858134 -0.9512034 0.6051364

C 6.4023405 -0.2824497 1.2943543

C 1.2025164 -2.4799773 4.3734512

C 3.7625842 -1.9211008 5.1722645

H 4.7830223 -1.6573905 5.4624199

H 2.7410091 -2.0378487 1.5662504

C 4.7960987 -1.4273100 -0.6059780

C 6.9904240 -0.7450861 0.1193315

H 2.5587204 -1.7117174 -7.5824871

O 2.1081043 -2.1897645 -3.7119798

C 1.7903053 -3.2713986 5.3641187

H 4.1243899 -1.8638667 -1.3499571

H 8.0672388 -0.6409656 -0.0326023

C 2.3055481 -2.1758739 -5.0391471

C 3.0949488 -2.9868491 5.7745087
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C 6.1673059 -1.3265066 -0.8500624

H 1.2357336 -4.1044856 5.8051130

H 6.5888944 -1.6925472 -1.7906399

H 3.5949286 -3.5794886 6.5439621

H 2.4650689 -3.0301272 -3.3553036

O 2.8816635 -3.0756432 -5.6134306

B.2 Test set of large organic dyes

All geometries are optimized at the B3LYP/6-31G* level in the gas phase.

1: β-carotene

96

beta-carotene

C 12.745662 -0.445000 0.701009

C 14.041652 0.396507 0.629154

C 13.778523 1.897929 0.708324

C 12.915735 2.321017 -0.479297

C 11.742468 1.399574 -0.741787

C 11.630196 0.169005 -0.179960

C 10.439094 -0.680888 -0.364302

C 9.148869 -0.282707 -0.247826

C 7.972372 -1.119059 -0.420817

C 6.740902 -0.546373 -0.251680

C 5.449240 -1.158543 -0.372973

C 4.283616 -0.475280 -0.179269

C 2.947185 -1.007309 -0.286088

C 1.886951 -0.163011 -0.061397

C 0.490913 -0.461292 -0.120562

C 10.755529 1.987546 -1.723955

C 13.102178 -1.874152 0.226580

C 12.250384 -0.529161 2.164423

C 8.169985 -2.571767 -0.780451

C 2.780483 -2.465140 -0.645739

H 14.554973 0.182279 -0.319794

H 14.719882 0.073345 1.430309

H 13.265698 2.143773 1.647179

H 14.722762 2.456344 0.712260

H 12.534639 3.342823 -0.333063

H 13.533249 2.375759 -1.391502

H 10.626799 -1.734158 -0.559650

H 8.948649 0.755148 0.015647

H 6.726710 0.513693 0.006058

H 5.400044 -2.212738 -0.631502

H 4.355597 0.581984 0.079809

H 2.131007 0.869468 0.192862

H 0.182044 -1.474305 -0.372187

H 10.076483 1.243603 -2.144590

H 10.146153 2.776458 -1.259889

H 11.299300 2.468301 -2.549302

H 13.331463 -1.893456 -0.845586
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H 13.988645 -2.228985 0.766098

H 12.299578 -2.593707 0.418643

H 11.308674 -1.084945 2.226756

H 12.990344 -1.039787 2.793978

H 12.073395 0.465653 2.587547

H 8.756821 -3.089381 -0.010416

H 7.227016 -3.109378 -0.893469

H 8.726185 -2.668928 -1.721466

H 3.297365 -3.107554 0.078324

H 3.217168 -2.677224 -1.630067

H 1.734714 -2.774933 -0.673402

C -12.745662 0.445000 -0.701009

C -14.041652 -0.396507 -0.629154

C -13.778523 -1.897929 -0.708324

C -12.915735 -2.321017 0.479297

C -11.742468 -1.399574 0.741787

C -11.630196 -0.169005 0.179960

C -10.439094 0.680888 0.364302

C -9.148869 0.282707 0.247826

C -7.972372 1.119059 0.420817

C -6.740902 0.546373 0.251680

C -5.449240 1.158543 0.372973

C -4.283616 0.475280 0.179269

C -2.947185 1.007309 0.286088

C -1.886951 0.163011 0.061397

C -0.490913 0.461292 0.120562

C -10.755529 -1.987546 1.723955

C -13.102178 1.874152 -0.226580

C -12.250384 0.529161 -2.164423

C -8.169985 2.571767 0.780451

C -2.780483 2.465140 0.645739

H -14.554973 -0.182279 0.319794

H -14.719882 -0.073345 -1.430309

H -13.265698 -2.143773 -1.647179

H -14.722762 -2.456344 -0.712260

H -12.534639 -3.342823 0.333063

H -13.533249 -2.375759 1.391502

H -10.626799 1.734158 0.559650

H -8.948649 -0.755148 -0.015647

H -6.726710 -0.513693 -0.006058

H -5.400044 2.212738 0.631502

H -4.355597 -0.581984 -0.079809

H -2.131007 -0.869468 -0.192862

H -0.182044 1.474305 0.372187

H -10.076483 -1.243603 2.144590

H -10.146153 -2.776458 1.259889

H -11.299300 -2.468301 2.549302

H -13.331463 1.893456 0.845586

H -13.988645 2.228985 -0.766098

H -12.299578 2.593707 -0.418643

H -11.308674 1.084945 -2.226756

H -12.990344 1.039787 -2.793978

H -12.073395 -0.465653 -2.587547

H -8.756821 3.089381 0.010416
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H -7.227016 3.109378 0.893469

H -8.726185 2.668928 1.721466

H -3.297365 3.107554 -0.078324

H -3.217168 2.677224 1.630067

H -1.734714 2.774933 0.673402

2: free-base phthalocyanine

58

H2Pc

N 2.024207 0.000523 0.000726

N -0.000438 1.949624 -0.000863

N 2.381999 2.399727 0.000049

N 2.383101 -2.398535 0.000026

C 2.789998 -1.145223 -0.000053

C 4.174414 -0.705704 -0.000395

C 5.372561 -1.424876 -0.000757

C 6.562483 -0.703569 -0.001130

C 6.562170 0.706635 -0.001121

C 5.371931 1.427419 -0.000739

C 4.174100 0.707719 -0.000387

C 2.789486 1.146607 -0.000042

C 1.096134 2.762416 0.000083

C 0.701097 4.175005 0.000305

C 1.423448 5.365679 0.000596

C 0.701095 6.561599 0.000892

C -0.704271 6.561247 0.000896

C -1.426031 5.364969 0.000602

C -0.703089 4.174653 0.000300

C 1.097416 -2.761861 0.000052

H 5.363154 -2.510165 -0.000785

H 7.510925 -1.233476 -0.001453

H 7.510378 1.236963 -0.001435

H 5.362047 2.512703 -0.000751

H 2.509090 5.357985 0.000629

H 1.232569 7.509455 0.001151

H -1.236218 7.508838 0.001155

H -2.511668 5.356735 0.000635

H 1.010120 0.000333 0.001808

N 0.000438 -1.949624 -0.000863

C -1.096134 -2.762416 0.000083

N -2.381999 -2.399727 0.000049

C -2.789486 -1.146607 -0.000042

N -2.024207 -0.000523 0.000726

C -2.789998 1.145223 -0.000053

N -2.383101 2.398535 0.000026

C -1.097416 2.761861 0.000052

C -4.174414 0.705704 -0.000395

C -5.372561 1.424876 -0.000757

C -6.562483 0.703569 -0.001130

C -6.562170 -0.706635 -0.001121

C -5.371931 -1.427419 -0.000739

C -4.174100 -0.707719 -0.000387

H -5.362047 -2.512703 -0.000751

H -7.510378 -1.236963 -0.001435
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H -7.510925 1.233476 -0.001453

H -5.363154 2.510165 -0.000785

H -1.010120 -0.000333 0.001808

C -0.701097 -4.175005 0.000305

C -1.423448 -5.365679 0.000596

C -0.701095 -6.561599 0.000892

C 0.704271 -6.561247 0.000896

C 1.426031 -5.364969 0.000602

C 0.703089 -4.174653 0.000300

H 2.511668 -5.356735 0.000635

H 1.236218 -7.508838 0.001155

H -1.232569 -7.509455 0.001151

H -2.509090 -5.357985 0.000629

3: zinc phthalocyanine

57

ZnPc

Zn 0.000000 0.000000 0.000000

N 2.906374 1.727951 0.000086

N 0.490205 1.928681 0.000066

N -1.727957 2.906371 -0.000023

N -1.928695 0.490211 -0.000107

C 1.771642 2.421274 0.000077

C 1.714336 3.880351 0.000041

C 2.708259 4.859110 -0.000003

C 2.305381 6.193802 -0.000062

C 0.940874 6.541820 -0.000059

C -0.053634 5.564562 -0.000007

C 0.347809 4.228406 0.000029

C -0.400001 2.973987 0.000030

C -2.421297 1.771647 -0.000070

C -3.880385 1.714334 -0.000045

C -4.859201 2.708209 0.000001

C -6.193878 2.305268 0.000071

C -6.541847 0.940750 0.000098

C -5.564544 -0.053709 0.000032

C -4.228412 0.347798 -0.000044

C -2.973993 -0.399996 -0.000092

N -0.490205 -1.928681 -0.000066

N 1.928695 -0.490211 0.000107

C 2.973993 0.399996 0.000092

N -2.906374 -1.727951 -0.000086

C -1.771642 -2.421274 -0.000077

C 0.400001 -2.973987 -0.000030

C 2.421297 -1.771647 0.000070

C 4.228412 -0.347798 0.000044

C -1.714336 -3.880351 -0.000041

N 1.727957 -2.906371 0.000023

C -0.347809 -4.228406 -0.000029

C 3.880385 -1.714334 0.000045

C 5.564544 0.053709 -0.000032

C -2.708259 -4.859110 0.000003

C 0.053634 -5.564562 0.000007

C 4.859201 -2.708209 -0.000001
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C 6.541847 -0.940750 -0.000098

C -2.305381 -6.193802 0.000062

C -0.940874 -6.541820 0.000059

C 6.193878 -2.305268 -0.000071

H 5.827925 1.106935 -0.000054

H 7.591846 -0.659481 -0.000191

H 6.981000 -3.054942 -0.000122

H 4.581682 -3.757757 0.000014

H 3.757783 4.581505 0.000000

H 3.055091 6.980889 -0.000125

H 0.659647 7.591830 -0.000109

H -1.106842 5.828019 0.000000

H -4.581682 3.757757 -0.000014

H -6.981000 3.054942 0.000122

H -7.591846 0.659481 0.000191

H -5.827925 -1.106935 0.000054

H -3.757783 -4.581505 0.000000

H -3.055091 -6.980889 0.000125

H -0.659647 -7.591830 0.000109

H 1.106842 -5.828019 0.000000

4: N ,N ′-diphenyl-N ,N ′-bis(3-methylphenyl)-1,1′-biphenyl-4-4′-diamine (TPD)

72

TPD

N 5.099263 0.251313 0.116701

N -4.905755 0.085956 -0.211313

C 3.681498 0.224920 0.071445

C 3.004510 -0.106021 -1.113701

H 3.575168 -0.346900 -2.004877

C 1.615093 -0.142109 -1.149769

H 1.124091 -0.431559 -2.074625

C 0.837206 0.172834 -0.021457

C 1.527396 0.513680 1.155114

H 0.967674 0.784673 2.045745

C 2.916755 0.528131 1.209703

H 3.418007 0.787682 2.136750

C -0.643469 0.148095 -0.070924

C -1.344691 0.487516 -1.241412

H -0.794152 0.793998 -2.126228

C -2.733609 0.455762 -1.296926

H -3.243079 0.715593 -2.219381

C -3.487941 0.105634 -0.165087

C -2.800286 -0.224749 1.014062

H -3.362189 -0.501506 1.900322

C -1.410372 -0.214514 1.050494

H -0.910181 -0.505248 1.969989

C -5.611710 1.089977 -0.928631

C -5.214619 2.435116 -0.855490

H -4.362487 2.706134 -0.240192

C -5.906172 3.412729 -1.568201

H -5.583931 4.448604 -1.499377

C -7.013121 3.073857 -2.349110

H -7.553787 3.839628 -2.898093

C -7.416428 1.738587 -2.416121
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C -6.719699 0.751207 -1.722427

H -7.028887 -0.287086 -1.790250

C -5.627059 -0.935748 0.467288

C -6.775009 -0.618332 1.209205

H -7.097313 0.417755 1.263661

C -7.506838 -1.605974 1.875310

C -7.058668 -2.932244 1.815740

H -7.607901 -3.710955 2.339471

C -5.912005 -3.255145 1.089539

H -5.573138 -4.287059 1.043577

C -5.199983 -2.271031 0.407840

H -4.314440 -2.526674 -0.165096

C -8.762521 -1.245275 2.636120

H -8.919226 -1.912017 3.490847

H -9.650608 -1.324620 1.994717

H -8.724419 -0.216788 3.010409

C 5.773571 1.264909 0.850125

C 6.897925 0.949735 1.630534

H 7.243828 -0.078153 1.676172

C 7.564471 1.947109 2.339522

H 8.433465 1.684103 2.937322

C 7.114551 3.268481 2.301487

H 7.631978 4.041844 2.862091

C 5.991472 3.583622 1.533678

H 5.633063 4.608828 1.486906

C 5.329719 2.596760 0.805751

H 4.465470 2.850406 0.200024

C 5.853702 -0.736774 -0.576407

C 5.474372 -2.085045 -0.526401

H 4.600060 -2.365029 0.055061

C 6.196232 -3.069824 -1.210958

C 7.327868 -2.689232 -1.941096

H 7.902914 -3.442196 -2.474281

C 7.719897 -1.349456 -1.986744

H 8.597148 -1.061942 -2.560698

C 6.988445 -0.371939 -1.319285

H 7.285920 0.670670 -1.366861

C 5.759049 -4.515753 -1.142256

H 4.765564 -4.655292 -1.586819

H 5.697611 -4.866584 -0.104840

H 6.457368 -5.168809 -1.674927

H -8.271934 1.457555 -3.025073

5: 2,9-dimethyl-1,3,8,10-tetraazaperopyrene

60

RiehmGade

C 5.533782 0.018361 -0.018383

C 3.576010 1.217551 -0.012843

C 2.827083 0.016273 -0.009645

C 3.577442 -1.187494 -0.011537

C 2.861482 2.459484 -0.011193

C 1.403649 0.016404 -0.004683

C 0.712098 1.265638 -0.002766

C 1.496962 2.471175 -0.006297
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C 0.710913 -1.233305 -0.001832

C 1.496566 -2.440318 -0.003620

C 2.859832 -2.430041 -0.008319

H 3.436755 -3.349277 -0.009484

H 0.990052 -3.398640 -0.000895

H 3.439224 3.378191 -0.013975

H 0.991210 3.429927 -0.005230

N 4.919262 -1.179441 -0.015960

N 4.923461 1.210860 -0.017289

C 7.065265 -0.016892 -0.023671

C 7.542462 -0.777935 1.234777

C 7.533708 -0.778768 -1.284910

C 7.662104 1.399010 -0.026173

H 7.250961 -0.249068 2.150118

H 7.114278 -1.783770 1.269202

H 8.635700 -0.863509 1.228925

H 7.235606 -0.250646 -2.198555

H 8.626968 -0.864140 -1.286757

H 7.105579 -1.784767 -1.315514

H 8.756673 1.333740 -0.030462

H 7.346280 1.966796 -0.906583

H 7.353206 1.967059 0.856529

C -0.710922 -1.233306 0.002733

C -1.403662 0.016402 0.005056

C -1.496572 -2.440320 0.004988

C -2.827096 0.016270 0.009989

C -0.712114 1.265637 0.002583

C -2.859838 -2.430045 0.009642

H -0.990057 -3.398641 0.002656

C -3.576025 1.217548 0.012617

C -3.577452 -1.187499 0.012334

C -1.496981 2.471174 0.005536

H -3.436760 -3.349282 0.011172

C -2.861501 2.459482 0.010404

N -4.923476 1.210856 0.017056

N -4.919272 -1.179448 0.016745

H -0.991231 3.429926 0.004006

H -3.439245 3.378188 0.012722

C -5.533793 0.018355 0.018988

C -7.065280 -0.016901 0.022840

C -7.541255 -0.778820 -1.235542

C -7.534934 -0.777900 1.284156

C -7.662123 1.399002 0.023765

H -7.248965 -0.250523 -2.150958

H -7.112925 -1.784633 -1.268904

H -8.634487 -0.864520 -1.230646

H -7.237512 -0.249266 2.197729

H -8.628212 -0.863049 1.285119

H -7.107028 -1.783962 1.315760

H -8.756694 1.333733 0.027086

H -7.347116 1.967428 0.904055

H -7.352407 1.966414 -0.859063

6: 10-(4-dimethylamino-phenyl ethynyl)-anthracene-9-carbonitrile (DMAPEAC)
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45

DMAPEAC

C 3.626515 -3.668541 -0.000382

C 2.205880 -3.671714 -0.000115

C 4.317776 -2.484552 -0.000418

C 3.630350 -1.233409 -0.000187

C 2.192778 -1.234562 0.000070

C 1.513209 -2.488280 0.000098

C 4.322835 0.002930 -0.000202

C 3.628770 1.238386 0.000067

C 2.191187 1.237757 0.000346

C 1.482295 0.001142 0.000307

C 4.314623 2.490392 0.000071

C 3.621885 3.673520 0.000337

C 2.201251 3.674916 0.000623

C 1.510053 2.490616 0.000624

C 5.750850 0.003833 -0.000496

N 6.916462 0.004535 -0.000736

C 0.067080 0.000158 0.000487

C -1.153535 0.000060 0.000508

C -2.570762 -0.000855 0.000327

C -3.303220 -1.206633 -0.000832

C -3.304867 1.203904 0.001233

C -4.689552 1.208533 0.001020

C -5.425554 -0.002821 -0.000109

C -4.687893 -1.213167 -0.001097

N -6.804290 -0.003735 -0.000192

C -7.533381 -1.260560 -0.002039

C -7.534981 1.252153 -0.000578

H 4.167378 -4.610804 -0.000560

H 1.669120 -4.616241 -0.000080

H 5.403414 -2.481497 -0.000616

H 0.428474 -2.483656 0.000302

H 5.400265 2.488718 -0.000141

H 4.161566 4.616460 0.000335

H 1.663301 4.618766 0.000844

H 0.425328 2.484615 0.000841

H -2.766941 -2.151022 -0.001593

H -2.769909 2.149043 0.002114

H -5.205813 2.160718 0.001751

H -5.202829 -2.166064 -0.002110

H -7.306972 -1.864596 -0.892185

H -8.604544 -1.053708 -0.001066

H -7.306013 -1.867464 0.885863

H -7.309373 1.857799 0.888646

H -8.605877 1.043938 -0.001176

H -7.308342 1.858018 -0.889409

7: ambipolar tri(p-phenylene vinylene)

78

OPV1a

C 8.063131 -0.528291 0.043519

C 7.601632 0.786181 0.068644

C 6.225566 1.023372 0.074751
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C 5.287765 -0.021551 0.056063

C 5.793354 -1.340000 0.031885

C 7.155799 -1.593850 0.025508

H 5.110091 -2.183064 0.018546

H 7.536065 -2.610378 0.006952

O 9.404091 -0.887016 0.034831

H 8.281084 1.631637 0.083568

H 5.872681 2.051348 0.094005

C 3.861161 0.305731 0.062594

C 2.827260 -0.562535 0.035592

C 1.402326 -0.236284 0.041409

C 0.897123 1.078119 0.074065

C 0.463310 -1.288261 0.012821

C -0.902425 -1.048182 0.016413

C -1.407615 0.266215 0.048695

C -0.468589 1.318196 0.077633

C -2.832508 0.592553 0.053814

H -1.583431 -1.893661 -0.005413

H 0.822658 -2.314561 -0.012156

H -0.827953 2.344484 0.102830

H 1.578097 1.923603 0.096490

H 3.038971 -1.630550 0.005056

H 3.649286 1.373205 0.092052

C -3.866550 -0.275381 0.022146

H -3.044149 1.660484 0.087493

C -5.293071 0.052421 0.027610

H -3.654991 -1.342798 -0.011345

C -5.798196 1.370917 0.058584

C -6.231220 -0.991997 0.000631

C -7.607219 -0.754310 0.004945

C -8.068252 0.560171 0.036957

C -7.160546 1.625250 0.063373

H -5.878649 -2.019965 -0.024020

H -8.286999 -1.599348 -0.017031

H -5.114688 2.213644 0.078742

H -7.540515 2.641779 0.087244

O -9.409074 0.919436 0.044396

C -10.369322 -0.106920 0.031472

C -11.693267 0.664564 0.053400

H -10.261252 -0.759218 0.909794

H -10.272288 -0.727010 -0.871124

N -12.962576 -0.180071 0.051802

H -11.746580 1.315027 -0.822686

H -11.731264 1.289193 0.948839

C -13.030934 -1.058712 1.277230

H -12.949462 -0.430964 2.166112

H -12.217906 -1.783363 1.253923

H -13.988857 -1.580958 1.277533

C -13.043592 -1.034094 -1.190164

H -12.969855 -0.388901 -2.067137

H -14.001932 -1.555596 -1.191951

H -12.231110 -1.759770 -1.188779

C -14.145254 0.761091 0.068008

H -14.094872 1.375374 0.967825
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H -15.063448 0.171734 0.068460

H -14.106862 1.392538 -0.820484

C 10.363831 0.139809 0.046543

C 11.688214 -0.631020 0.028648

H 10.264962 0.762308 0.947292

H 10.256820 0.789690 -0.833698

N 12.957154 0.214372 0.031864

H 11.728769 -1.256921 -0.865780

H 11.739884 -1.280096 0.905852

C 13.035583 1.069213 1.273385

H 12.960913 0.424505 2.150641

H 12.222529 1.794230 1.270317

H 13.993529 1.591421 1.276373

C 14.140317 -0.726170 0.018478

H 14.092189 -1.340983 -0.881112

H 14.100411 -1.357152 0.907229

H 15.058235 -0.136374 0.019559

C 13.027110 1.092229 -1.194037

H 12.213658 1.816451 -1.172555

H 12.947532 0.463863 -2.082656

H 13.984750 1.615000 -1.193076

8: 1,1-didemethylretinal chromophore

57

retinal B

C 7.090168 -0.361093 0.172283

C 8.363423 0.445587 0.053805

C 8.163928 1.895802 -0.392077

C 7.004169 2.516471 0.385416

C 5.706066 1.752595 0.102384

C 5.854535 0.237317 0.164181

C 7.341717 -1.843118 0.277931

C 4.651393 -0.556410 0.174417

C 3.370221 -0.076572 0.071409

C 2.190082 -0.886509 0.056362

C 2.316418 -2.386047 0.171766

C 0.963008 -0.241997 -0.069861

C -0.308436 -0.841376 -0.115597

C -1.488584 -0.124324 -0.252384

C -2.782969 -0.685257 -0.315714

C -2.954817 -2.184624 -0.230880

C -3.873629 0.187747 -0.464267

C -5.208818 -0.185118 -0.564688

N -6.223211 0.662463 -0.718823

C -7.639879 0.293775 -0.807153

C -8.465766 0.825512 0.370137

C -9.948770 0.446371 0.246762

C -10.790477 0.976731 1.411416

H 9.048198 -0.083394 -0.624119

H 8.864761 0.420594 1.035846

H 7.944549 1.926494 -1.467988

H 9.089838 2.461778 -0.241797

H 6.873329 3.572560 0.124963

H 7.226273 2.480404 1.460693
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H 5.322558 2.033413 -0.890137

H 4.937106 2.065163 0.819991

H 8.186474 -2.023823 0.953884

H 7.639588 -2.248304 -0.699338

H 6.497037 -2.428973 0.643024

H 4.774749 -1.631354 0.242653

H 3.213407 0.994684 -0.017883

H 2.898822 -2.789018 -0.664885

H 1.354434 -2.898915 0.179943

H 2.841969 -2.658968 1.093712

H 0.987529 0.844406 -0.146083

H -0.373356 -1.923059 -0.043992

H -1.414568 0.959754 -0.322874

H -2.435056 -2.678413 -1.059419

H -3.996200 -2.505831 -0.262472

H -2.525052 -2.568579 0.700596

H -3.651519 1.252802 -0.514633

H -5.505480 -1.229005 -0.527814

H -7.689272 -0.798766 -0.855553

H -8.035401 0.678134 -1.755633

H -8.369382 1.919504 0.418207

H -8.052447 0.431292 1.307680

H -10.039143 -0.647338 0.194123

H -10.344963 0.834171 -0.701695

H -10.440830 0.575843 2.370027

H -11.841426 0.693701 1.295046

H -10.744019 2.070556 1.469297

H -6.011691 1.655268 -0.748403

9: 5,6-dihydroretinal chromophore

65

retinal D

C 6.174197 -1.218460 0.100274

C 7.629792 -0.878688 0.487796

C 8.081940 0.525885 0.040141

C 6.972317 1.587578 0.238180

C 5.940769 1.130298 1.277320

C 5.192682 -0.168628 0.803194

C 4.985807 2.256218 1.695400

C 6.045567 -1.229658 -1.439596

C 5.819521 -2.624891 0.616970

C 4.017520 0.161087 -0.060970

C 2.734210 -0.184599 0.206476

C 1.585594 0.155258 -0.601951

C 1.790853 0.929354 -1.878511

C 0.339858 -0.244557 -0.149340

C -0.906485 0.011591 -0.763477

C -2.114833 -0.400999 -0.233565

C -3.388709 -0.146947 -0.800395

C -3.491197 0.627826 -2.093470

C -4.514010 -0.632694 -0.122351

C -5.840641 -0.463844 -0.514403

N -6.885025 -0.945440 0.148446

C -8.296069 -0.744818 -0.202362
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C -9.039843 0.114552 0.827407

C -10.527032 0.272426 0.480368

C -11.278905 1.134151 1.499526

H 8.299495 -1.637899 0.064269

H 7.729214 -0.967287 1.577103

H 8.398547 0.505852 -1.008557

H 8.971449 0.803046 0.617503

H 6.462573 1.799720 -0.712953

H 7.410915 2.541274 0.554763

H 6.495555 0.837134 2.178687

H 4.803269 -0.650448 1.709149

H 5.550057 3.079835 2.146880

H 4.249766 1.912332 2.432071

H 4.433570 2.667213 0.841194

H 6.254474 -0.255823 -1.894844

H 5.045424 -1.544297 -1.759415

H 6.761947 -1.944715 -1.860159

H 4.770726 -2.873215 0.409836

H 5.977295 -2.704232 1.699374

H 6.442552 -3.386222 0.132960

H 4.226982 0.734162 -0.961684

H 2.529768 -0.752759 1.113141

H 2.260425 1.897896 -1.670419

H 0.863976 1.121464 -2.419336

H 2.462247 0.384748 -2.552208

H 0.310931 -0.802556 0.785627

H -0.916384 0.569286 -1.695410

H -2.093866 -0.960295 0.700404

H -3.043845 1.621291 -1.981564

H -4.516150 0.767221 -2.437527

H -2.947119 0.110982 -2.891578

H -4.337467 -1.189538 0.796676

H -6.096350 0.088960 -1.413420

H -8.766306 -1.731638 -0.290437

H -8.323579 -0.280833 -1.193207

H -8.559017 1.099767 0.887532

H -8.941375 -0.344591 1.821442

H -10.993413 -0.720460 0.420609

H -10.622186 0.717938 -0.519529

H -11.228554 0.697480 2.503805

H -12.335464 1.226158 1.228914

H -10.858519 2.145218 1.552183

H -6.703818 -1.460827 1.005266

10: rhodamine-6G

64

C 2.858536 -1.842571 0.253880

C 3.945990 -0.956615 0.118093

C 3.716252 0.391105 -0.354986

C 2.435502 0.772403 -0.660118

C 1.313892 -0.099546 -0.533819

C 1.583944 -1.415316 -0.064969

C -0.016304 0.270498 -0.819106

C -1.036091 -0.696635 -0.682377
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O 0.583511 -2.322371 0.084110

C -0.701567 -1.995036 -0.216167

C -1.657485 -2.970039 -0.031470

C -3.020751 -2.717642 -0.305245

C -3.396781 -1.418300 -0.818338

C -2.408801 -0.470791 -0.972966

N -3.884188 -3.761290 -0.116919

C -5.314327 -3.749869 0.226460

C -5.603794 -3.215459 1.632560

H -3.417921 -4.596122 0.217096

N 5.203722 -1.348566 0.423003

C 5.583726 -2.672691 0.912407

C 7.088244 -2.744020 1.152514

H 5.949712 -0.680037 0.295742

C -0.329643 1.626627 -1.367826

C -0.320198 1.785079 -2.759554

C -0.608644 3.021212 -3.339691

C -0.909988 4.117870 -2.532173

C -0.920001 3.974718 -1.146915

C -0.632703 2.738560 -0.551572

C -0.647631 2.578903 0.935468

O -0.454731 1.517598 1.502514

O -0.892580 3.731403 1.575036

C -0.928792 3.667340 3.027141

C -1.161967 5.073893 3.540177

H 2.994869 -2.858408 0.601796

C 4.872065 1.348478 -0.499263

H 2.257883 1.782956 -1.013199

H -1.344925 -3.937264 0.350149

C -4.800456 -1.066138 -1.256615

H -2.688674 0.503302 -1.359981

H -5.642675 -4.790170 0.142522

H -5.873250 -3.193591 -0.524514

H -5.088185 -3.808858 2.395370

H -6.678913 -3.260139 1.837772

H -5.278627 -2.174697 1.737485

H 5.280163 -3.431555 0.178430

H 5.039574 -2.882661 1.843014

H 7.646283 -2.560041 0.227530

H 7.361020 -3.738987 1.514811

H 7.405745 -2.014327 1.905714

H -0.085368 0.932509 -3.390414

H -0.597039 3.122862 -4.420916

H -1.136263 5.081352 -2.978632

H -1.152062 4.819624 -0.509291

H 0.019408 3.248151 3.376558

H -1.727695 2.979203 3.320227

H -0.354772 5.744863 3.230109

H -1.196969 5.063098 4.634606

H -2.110638 5.476411 3.171471

H -5.513407 -1.042642 -0.425204

H -5.179195 -1.772345 -2.004223

H -4.805317 -0.073687 -1.715003

H 5.386550 1.513894 0.457132
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H 4.525475 2.322304 -0.853937

H 5.618935 0.986835 -1.219570

11: (Z)-2-(3-((E)-4-(diphenylamino)styryl)-5,5-dimethylcyclohex-2-enylidene)-
2-cyanoacetic acid

63

TAAS1

N 4.741370 -0.117929 -0.000764

C 5.691248 0.942882 -0.093737

C 5.228225 -1.457812 0.085270

C 3.361692 0.146468 0.044229

C 6.814353 0.952944 0.745779

C 7.757554 1.973701 0.642815

C 7.587500 3.003688 -0.284611

C 6.466881 2.997834 -1.118304

C 5.527508 1.971464 -1.034198

C 6.197845 -1.910634 -0.820924

C 6.692266 -3.210289 -0.725774

C 6.218825 -4.077336 0.261208

C 5.249941 -3.629103 1.161613

C 4.761683 -2.325653 1.083555

C 2.432130 -0.787852 -0.463199

C 1.071533 -0.540007 -0.407193

C 0.559855 0.655368 0.142714

C 1.500007 1.588841 0.625045

C 2.864471 1.345635 0.590606

C -0.855500 0.966550 0.234316

C -1.902435 0.139887 -0.029083

C -3.297989 0.485170 0.098917

C -4.244130 -0.489691 -0.089520

C -3.720902 1.886616 0.477079

C -5.161674 2.231055 0.041607

C -6.109998 1.099774 0.495913

C -5.653750 -0.281972 0.084063

C -5.595038 3.544005 0.714385

C -5.235509 2.405741 -1.489454

C -6.536506 -1.339364 -0.084530

C -6.041628 -2.620440 -0.475828

C -8.015489 -1.259202 0.124914

N -5.713555 -3.692974 -0.800447

O -8.601367 -0.284016 0.546141

O -8.724125 -2.375937 -0.178068

H 6.941316 0.158116 1.473861

H 8.623080 1.968488 1.299890

H 8.321129 3.801282 -0.358910

H 6.328421 3.788139 -1.851301

H 4.665908 1.958403 -1.694553

H 6.559638 -1.239606 -1.593918

H 7.443056 -3.548861 -1.434797

H 6.602061 -5.091428 0.329307

H 4.880328 -4.291231 1.940047

H 4.020955 -1.973276 1.794865

H 2.792305 -1.706775 -0.912693

H 0.392985 -1.278819 -0.823563
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H 1.143390 2.519644 1.060380

H 3.553249 2.079261 0.994923

H -1.070676 1.977067 0.577083

H -1.704549 -0.887671 -0.329643

H -3.909264 -1.488264 -0.358674

H -3.026502 2.619079 0.049083

H -3.639746 1.992050 1.570326

H -7.125634 1.281336 0.143991

H -6.184302 1.105645 1.594738

H -5.559529 3.466045 1.807894

H -6.620520 3.808999 0.431546

H -4.941336 4.372083 0.413867

H -4.920628 1.502798 -2.022208

H -4.590654 3.230462 -1.816651

H -6.260231 2.638843 -1.801547

H -8.143325 -3.087027 -0.503878

12: 5,5′,6,6′-tetrachloro-1,1′-diethyl-3,3′-di(4-sulfobutyl)-
benzimidazolocarbocyanine (TDBC)
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TDBC

C 3.659824 -2.199905 -3.717044

C 5.031426 -2.258027 -3.982076

C 5.915292 -1.307329 -3.441027

C 5.448205 -0.270128 -2.627782

C 4.083364 -0.214077 -2.374044

C 3.201551 -1.172766 -2.901154

Cl 5.611969 -3.555601 -5.005786

Cl 7.636109 -1.382707 -3.762468

N 1.923009 -0.857738 -2.452170

C 2.003860 0.255770 -1.653885

N 3.319449 0.671796 -1.626470

C 0.695943 -1.390492 -3.096418

C 0.523387 -0.870658 -4.522478

C 3.861593 1.534591 -0.562739

C 4.130743 0.738530 0.721194

C 4.318018 1.636189 1.951068

C 4.394384 0.857983 3.268633

S 2.824701 0.026038 3.748319

O 2.646687 -1.079600 2.746263

O 3.074967 -0.450295 5.130227

O 1.782189 1.087549 3.621922

C 0.965780 0.901275 -0.955737

C -0.061608 0.250218 -0.284409

C -1.157396 0.889925 0.293988

C -2.067068 0.308660 1.185770

N -1.835076 -0.673523 2.119967

N -3.393065 0.688759 1.290274

C -3.020468 -0.938634 2.791611

C -4.007117 -0.086119 2.262451

C -0.511380 -1.145583 2.579758

C -0.165616 -2.561867 2.128602

C -4.099082 1.428872 0.232902

C -4.372657 0.541202 -0.988176
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C -4.704344 1.341653 -2.257255

C -4.560117 0.515673 -3.539931

S -2.821008 0.065375 -3.934129

O -2.067514 1.348280 -3.819054

O -2.427567 -0.943682 -2.891374

O -2.891482 -0.504514 -5.304652

C -3.310512 -1.822827 3.822967

C -4.623861 -1.853894 4.304395

C -5.613751 -1.017401 3.761392

C -5.313891 -0.118252 2.732197

Cl -4.994714 -2.976466 5.597475

H -6.089816 0.521322 2.329932

H 2.993031 -2.940673 -4.140366

H 6.143711 0.450538 -2.215229

H -0.178027 -1.102870 -2.513593

H 0.774511 -2.482413 -3.060286

H 0.361832 0.210963 -4.508889

H -0.383528 -1.308084 -4.948791

H 1.378832 -1.108716 -5.164831

H 3.131466 2.324383 -0.377908

H 4.760427 2.018604 -0.960023

H 5.011356 0.097367 0.577755

H 3.287759 0.069157 0.913833

H 3.470219 2.328842 2.026651

H 5.227234 2.247692 1.840505

H 4.624245 1.537165 4.095410

H 5.165201 0.079614 3.242925

H 1.053633 1.977853 -0.848935

H 0.004120 -0.831015 -0.191473

H -1.381839 1.901006 -0.028925

H -0.515907 -1.079265 3.671971

H 0.239746 -0.430419 2.245403

H -0.850072 -3.310859 2.544415

H 0.853193 -2.766053 2.468715

H -0.193863 -2.656542 1.037370

H -3.479408 2.284314 -0.047288

H -5.012291 1.837229 0.678479

H -5.181000 -0.165330 -0.754221

H -3.478170 -0.054439 -1.194452

H -4.017080 2.192966 -2.340897

H -5.723525 1.753146 -2.200577

H -4.912021 1.087626 -4.403916

H -5.127468 -0.420313 -3.494977

H -2.559836 -2.477299 4.248132

Cl -7.266381 -1.066524 4.346446

13: chlorin
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chlorin

C 0.930549 -4.219503 0.000273

C -0.442208 -4.263680 0.000068

C -0.932371 -2.915277 -0.000015

N 0.165868 -2.101802 0.000192

C 1.330040 -2.845137 0.000280

156



C 2.615911 -2.321331 0.000272

C 2.982035 -0.965842 0.000083

N 2.110050 0.083572 -0.000116

C 4.360086 -0.503473 -0.000086

C 4.303028 0.856014 -0.000240

C 2.891152 1.201909 -0.000194

C 2.415157 2.522675 -0.000246

C 1.091258 2.941394 -0.000134

C -2.274506 -2.508319 -0.000343

C -2.783081 -1.215743 -0.000404

C -4.285684 -0.944747 -0.001558

N -2.049587 -0.080830 0.000071

C -4.350670 0.592492 0.001543

C -2.875661 0.989099 0.000520

N -0.010442 2.108125 0.000036

C -1.169580 2.831960 0.000227

C -0.788243 4.214740 0.000189

C 0.583724 4.279910 -0.000037

C -2.474844 2.318918 0.000510

H 1.618533 -5.054854 0.000373

H -1.076371 -5.140402 -0.000031

H 0.153363 -1.088153 0.000147

H 3.423860 -3.048139 0.000351

H 5.236411 -1.140500 -0.000050

H 5.123244 1.563889 -0.000357

H 3.161989 3.312153 -0.000345

H -3.000569 -3.316761 -0.000667

H -4.766687 -1.390626 0.876800

H -4.763934 -1.386471 -0.883571

H -4.864148 0.992608 0.883486

H -4.867110 0.996497 -0.876835

H 0.053159 1.096498 0.000093

H -1.489711 5.038599 0.000327

H 1.203774 5.166884 -0.000123

H -3.263320 3.066731 0.000806

14: free-base porphyrin (porphin)

38

porphin

C 4.260039 -0.682826 0.000028

C 4.259003 0.689328 0.000043

C 2.894326 1.132289 0.000038

N 2.116259 0.001641 0.000000

C 2.896026 -1.127843 0.000036

C 2.423407 -2.439201 0.000036

C 1.086754 -2.854952 0.000016

N 0.001518 -2.029789 -0.000012

C 0.681409 -4.257724 -0.000024

C -0.674911 -4.258786 0.000020

C -1.082444 -2.856653 -0.000009

C -2.419723 -2.442935 -0.000004

C -2.894314 -1.132287 0.000001

C 2.419730 2.442931 0.000042

C 1.082441 2.856639 0.000011
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C 0.674924 4.258781 -0.000130

N -0.001516 2.029789 -0.000085

C -0.681397 4.257729 0.000075

C -1.086757 2.854965 -0.000017

N -2.116248 -0.001641 -0.000003

C -2.896014 1.127841 0.000009

C -4.260027 0.682827 0.000044

C -4.258991 -0.689328 0.000018

C -2.423400 2.439205 0.000015

H 5.116594 -1.344007 0.000029

H 5.114567 1.351790 0.000055

H 1.100839 0.000898 -0.000036

H 3.182106 -3.216806 0.000039

H 1.356413 -5.105042 -0.000039

H -1.348591 -5.107156 0.000039

H -3.177266 -3.221668 0.000007

H 3.177262 3.221674 0.000042

H 1.348612 5.107144 -0.000207

H -1.356392 5.105054 0.000160

H -1.100827 -0.000898 -0.000016

H -5.116574 1.344017 0.000073

H -5.114548 -1.351800 0.000028

H -3.182110 3.216801 0.000061

15: anthracene

24

anthracene

C 2.479534 -1.406965 -0.000055

C 3.660643 -0.713171 -0.000029

C 3.660643 0.713171 0.000029

C 2.479534 1.406965 0.000055

C 1.223879 0.722394 0.000021

C 1.223879 -0.722394 -0.000021

C 0.000000 -1.403267 0.000000

C -1.223879 -0.722394 0.000021

C -1.223879 0.722394 -0.000021

C 0.000000 1.403267 0.000000

C -2.479534 1.406965 -0.000055

C -3.660643 0.713171 -0.000029

C -3.660643 -0.713171 0.000029

C -2.479534 -1.406965 0.000055

H 2.476721 -2.494640 -0.000118

H 4.607477 -1.246598 -0.000079

H 4.607477 1.246598 0.000079

H 2.476721 2.494640 0.000118

H 0.000000 -2.491731 0.000000

H 0.000000 2.491731 0.000000

H -2.476721 2.494640 -0.000118

H -4.607477 1.246598 -0.000079

H -4.607477 -1.246598 0.000079

H -2.476721 -2.494640 0.000118

16: pentacene
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36

pentacene

C 4.941789 -1.410408 0.000240

C 6.117814 -0.716617 0.000127

C 6.117814 0.716617 -0.000127

C 4.941789 1.410408 -0.000240

C 3.678571 0.727467 -0.000115

C 3.678571 -0.727467 0.000115

C 2.467682 -1.407697 0.000171

C 1.226431 -0.728336 0.000048

C 1.226431 0.728336 -0.000048

C 2.467682 1.407697 -0.000171

C 0.000000 1.408315 0.000000

C -1.226431 0.728336 0.000048

C -1.226431 -0.728336 -0.000048

C 0.000000 -1.408315 0.000000

H 4.939421 -2.498043 0.000427

H 7.066072 -1.247456 0.000230

H 7.066072 1.247456 -0.000230

H 4.939421 2.498043 -0.000427

H 2.467469 -2.496005 0.000300

H 2.467469 2.496005 -0.000300

H 0.000000 2.496525 0.000000

C -2.467682 1.407697 0.000171

C -2.467682 -1.407697 -0.000171

H 0.000000 -2.496525 0.000000

C -3.678571 0.727467 0.000115

C -3.678571 -0.727467 -0.000115

C -4.941789 -1.410408 -0.000240

C -6.117814 -0.716617 -0.000127

C -6.117814 0.716617 0.000127

C -4.941789 1.410408 0.000240

H -2.467469 2.496005 0.000300

H -2.467469 -2.496005 -0.000300

H -4.939421 -2.498043 -0.000427

H -7.066072 -1.247456 -0.000230

H -7.066072 1.247456 0.000230

H -4.939421 2.498043 0.000427
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