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Abstract

This thesis is concerned with Kontsevich's Homological Mirror Symmetry conjecture. In

Chapter 1, which is based on [1], we consider the n-dimensional pair of pants, which

is defined to be the complement of n + 2 generic hyperplanes in CP'. The pair of

pants is conjectured to be mirror to the Landau-Ginzburg model (Cn+2 , W), where W =

Z ... zn+2 We construct an immersed Lagrangian sphere in the pair of pants, and show

that its endomorphism A.. algebra in the Fukaya category is quasi-isomorphic to the

endomorphism dg algebra of the structure sheaf of the origin in the mirror,.giving some

evidence for the Homological Mirror Symmetry conjecture in this case. In Chapter 2,
which is based on [2], we build on these results to prove Homological Mirror Symmetry

for a smooth d-dimensional Calabi-Yau hypersurface in projective space, for any d > 3.

Thesis Supervisor: Paul Seidel
Title: Professor
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Chapter 1

On homological mirror symmetry

for pairs of pants

1.1 Introduction

1.1.1 Homological Mirror Symmetry context

In its original version, Kontsevich's Homological Mirror Symmetry conjecture [3] pro-

posed that, if X and Xv are 'mirror' Calabi-Yau varieties, then the Fukaya category

of X (A-model) should be equivalent, on the derived level, to the category of coherent

sheaves on Xv (B-model), and vice-versa. Complete or partial results in this case are

known for elliptic curves [4, 5], abelian varieties [6] (see [7] for the case of the four-torus),

Strominger-Yau-Zaslow dual torus fibrations [8], and K3 surfaces [91.

Kontsevich later proposed an extension of the conjecture to cover some Fano varieties

[10]. The mirror of a Fano variety X is a Landau-Ginzburg model (Xv, W), i.e., a variety

Xv equipped with a holomorphic function W (called the superpotential). The definitions

13



of the A- and B-models on X are (roughly) the same as in the Calabi-Yau case, but

the definitions on (Xv, W) must be altered. In particular, the A-model of (Xv, W) is

the Fukaya-Seidel category, see [11]. The B-model of (Xv, W) is Orlov's triangulated

category of singularities of W, see [12]. Complete or partial results in the Fano case are

known for toric varieties [13, 14, 15], del Pezzo surfaces [16], and weighted projective

planes [17].

More recently, Katzarkov and others have proposed another extension of the conjec-

ture to cover some varieties of general type, see [18, 19]. The mirror of a variety X of

general type is again a Landau-Ginzburg model (Xv, W). The definition of the B-model

on (Xv, W) is as above (the definition of the A-model in this case is problematic, but

does not concern us). One direction of this conjecture has been verified for X a curve

of genus g > 2, see [20, 21]. Namely, the A-model of the genus g curve is shown to be

equivalent to the B-model of a Landau-Ginzburg mirror. Our main result (Theorem 2)

gives evidence for the same direction of the conjecture in the case that X is a 'pair of

pants' of arbitrary dimension.

1.1.2 The A-model on the pair of pants

Consider the smooth complex affine algebraic variety

(n+2 n+2

cC Jpn+1\ Uf=0o.
j=1 j=1

This is called the (n-dimensional) pair of pants pn (see [22]). We equip it with an

exact Kshler form by pulling back the Fubini-Study form on CIPn+, and with a complex

volume form ij. Observe that P1 is just CIPl \ {3 points}, i.e., the standard pair of pants.

We will consider the A-model on pn", i.e., Fukaya's A.. category Fuk(pn) (see [23,

24]). Recall that the objects of Fuk(P") are compact oriented Lagrangian submanifolds

14



of pf, and the morphism space between transversely intersecting Lagrangians L1, L2 is

defined as

CF*(Li, L2 ) := K(x),
xELfnL 2

where K is an appropriate coefficient ring. The A,, structure maps are

yd : CF*(Ld_1, Ld) (g... CF*(LO, L) -+ CF*(LO, Ld)[2 - d],

for d > 1, and their coefficients are defined by counts of rigid boundary-punctured holo-

morphic disks with boundary conditions on the Lagrangians Lo, ... , Ld. Observe that,

because the symplectic form on P is exact, the Fukaya category of exact Lagrangians

is unobstructed (i.e., there is no pO).

In general, K must be a Novikov field of characteristic 2, and the morphism spaces

of the Fukaya category are Z2-graded. If we require that the objects of our category

be exact embedded Lagrangians, we remove the need for a Novikov parameter. If we

furthermore require that our Lagrangians come equipped with a 'brane' structure (a

grading relative to the volume form r1, and a spin structure), we can assign signs to

the rigid disks whose count defines a structure coefficient of the Fukaya category, and

therefore remove the need for our coefficient ring to have characteristic 2. The grading of

Lagrangians also allows us to define a Z-grading on the morphism spaces of the Fukaya

category. Thus, by restricting the objects of the Fukaya category to be exact Lagrangian

branes, we can define the category with coefficients in C, and with a Z-grading. For

more details, see [24] or [11].

We construct an exact immersed Lagrangian sphere L' : S" -+ P' with transverse

self-intersections, and a brane structure. In the case n = 1, we obtain an immersed circle

with three self-intersections in P 1, illustrated in Figure 1.1.2.1 (ignore the additional

labels for now). This immersed circle also appeared in [20].

We point out that Ln is not an object of the Fukaya category as just defined, because

15



Figure 1.1.2.1: The immersed Lagrangian L' : S' -+ P'. The image has been distorted
for clarity - for Ll to be exact, the front and back triangles should have the same area.

it is not embedded. However, we will show (in Section 1.3.1) that one can nevertheless

include L' as an 'extra' object of the Fukaya category in a sensible way.

We compute the Floer cohomology algebra of Ln:

Theorem 1.

HF*(Ln, Ln) e ACn+2

as Z2-graded associative C-algebras.

Remark 1.1.2.1. Although both HF*(L n, L"n) and A*Cn+ 2 carry Z-gradings, these grad-

ings only agree modulo 2.

1.1.3 The B-model on the mirror

The mirror of p? is conjectured to be the Landau-Ginzburg model (Cn+2 , W), where

W ziz 2 ... Zn+2.

This paper is concerned with relating the B-model on (Cn+2 , W) to the A-model on p".

16



Recall that the B-model of (Cn+2 , W) is described by Orlov's triangulated category

of singularities Dsing(W-1 (0)) (see [12]). Note that 0 is the only non-regular value of

W. The triangulated category of singularities is defined as the quotient of the bounded

derived category of coherent sheaves, D 6Coh(W- 1 (0)), by the full triangulated subcat-

egory of perfect complexes Perf(W- 1 (0)). It is a differential Z2-graded category over

C.

Because Cn+2 - Spec(R) is affine (where R := C[z 1 ,... , z+2]), the triangulated cate-

gory of singularities of W- 1 (0) admits an alternative description, which is more amenable

to explicit computations. Namely, it is quasi-equivalent to the category MF(R, W) of

'matrix factorizations' of W, by [12, Theorem 3.9].

An object of MF(R, W) is a finite-rank free Z2 -graded R-module P = P e P',

together with an R-linear endomorphism de : P -+ P of odd degree, satisfying d2

W - ide. The space of morphisms from P to Q is the differential Z2-graded R-module of

R-linear homomorphisms f : P -+ Q, with the differential defined by

d(f) :=dQ of +(-1) Iff od,

and composition defined in the obvious way. This makes MF(R, W) into a differential

Z 2-graded category over C.

Under Homological Mirror Symmetry, our immersed Lagrangian sphere L' should

correspond to Oo, the structure sheaf of the origin in the triangulated category of singu-

larities of W 1 (0). This corresponds, under the above-described equivalence, to a matrix

factorization of W, which by abuse of notation we will also denote 00.

It follows from the computations of [25, Section 2] that, on the level of cohomology,

H* (Hom*MF(R,W)(00, 00)) A*Cn+ 2

17



as Z2-graded associative C-algebras. Combining this with Theorem 1 establishes an

isomorphism between the endomorphism algebras of the alleged mirror objects on the

level of cohomology.

The Homological Mirror Symmetry conjecture predicts more: this isomorphism of

cohomology algebras should extend to a quasi-isomorphism of A, algebras. Namely,

Hom*MF(R,W)(Oo, 00)

inherits the structure of a differential Z 2-graded C-algebra from MF(R, W), and a dif-

ferential graded algebra is a special case of an A, algebra.

Our main result (proved by studying the A, deformations of the cohomology algebra)

is that such a quasi-isomorphism does exist:

Theorem 2. There is a quasi-isomorphism

CF* (L", L) Hom*MF(RW)(00, 00)

as Z2-graded A.-algebras over C.

Remark 1.1.3.1. Of course the B-model D'g(Cn+2 , W) cannot be equivalent, in any

sense, to the A-model Fuk(P") as we define it, because the morphism spaces in the B-

model can be infinite-dimensional (even on the cohomology level) whereas the morphism

space between two compact Lagrangians is always finite-dimensional. To get an A-model

which has a hope of being equivalent to the B-model in some sense, we must consider

the 'wrapped' Fukaya category (see [26]), which also includes non-compact Lagrangians.

18



1.1.4 Motivation: the A-model on the one-dimensional pair of

pants

In this section, we consider the 1-dimensional case. We hope that this will aid the

reader's intuition for the subsequent arguments, and provide a link with computations

that have previously appeared in the literature (in [20, Section 10]), but this section

could be skipped without serious harm.

Consider the immersed Lagrangian L' : S' -+ P1 shown in Figure 1.1.2.1. We outline

a description of the A, algebra A = CF*(Ll, L') up to quasi-isomorphism.

A has generators u, q corresponding respectively to the identity and top class in the

Morse cohomology CM*(Sl), and two generators for each self-intersection point, which

we label x 1, T1 , x 2 ,:22 , x 3 , T3 as in Figure 1.1.2.1.

Because the homology class of Ll is trivial in H1 (P), the generators of A come

labeled by weights which are elements of the lattice

H1 (PI) - Z(ei, e2 , e3 )/(ei + e2 + e3 ),

so that the Ao structure maps are homogeneous with respect to these weights. This is

just because the disk contributing to such a product lifts to the universal cover, so its

boundary must lift to a closed loop. See Definition 1.3.2.1 and Proposition 1.3.2.4 for

the precise definition and argument. Explicitly, the weight of u, q is 0, of x is ei and of

.t is -ei. It follows that pl = 0.

The A, structure maps count rigid holomorphic disks, which in this case is purely

combinatorial. Our first step is to determine the cohomology algebra of A, which has

19



the (associative) product defined by

a -b := (-1)|"l I2(a, b)

(using the sign conventions of [11]).

We have the following result:

Lemma 1.1.4.1. The cohomology algebra of A is isomorphic (as Z 2-graded associative

C-algebra) to the exterior algebra

A*C(ei, e2 , e3)

via the identification

xi (-1)iei

st - (-1)i+1 * ej (Hodge star with respect to volume form e1 A e2 A e3)

q -ei A e2 A e 3.

Proof. (sketch - see [20] for a more detailed proof) The contributions of constant disks

give all products involving u and q. The other products come from the two triangles on

the front and back of Figure 1.1.2.1. For example, the triangle with vertices in cyclic

order x 1 , x 2 , x 3 gives the product

P2(x 1, X2) = T3

corresponding to

el - e2 *e 3 - el A e2 -

We will not explain how to determine the signs here - see Section 1.3.4 (or [20]) for more

20



detail.

Furthermore, we have

p3(X1, X2, X3) = -U

but the corresponding product is 0 for any other permutation of the inputs. This comes

from the degenerate 4-gon with vertices at u, x 1 , X2, X3. Observe that, if we put the

marked point u somewhere else on L 1, this product would again be equal to u, but

possibly for a different permutation of the inputs (and would be 0 on all other permuta-

tions).

By choosing a complex volume form r/ on P1 and computing grading of the gener-

ators, one can lift the Z2-grading of A (defined by the sign of the intersection point

corresponding to the generator) to a Z-grading. See [20] for a formula for the grading

that holds in the 1-dimensional case. The choice of volume form is not canonical, and

hence the choice of Z-grading is not canonical.

We have now shown that A lies in the set % of A, algebras satisfying the following

conditions:

0 P1 = 0;

e The cohomology algebra is isomorphic to A*C(ei, e2 , e3 ) as Z 2-graded associative

C-algebra;

" The A, structure maps are homogeneous with respect to the weights as defined

above;

" The Z 2-grading lifts to a Z-grading as defined above.

One can show that % has a one-dimensional deformation space, in the sense of [9, Lemma

21



3.2]. Furthermore, the deformation class of A in this deformation space is given by

3

E P 3 (Xi, Xj, Xk) = P 3(X 1, X2 , X3) = -U
i,j,k=1

by our previous computations. In particular, it is non-zero, so A is versal. This deter-

mines A up to quasi-isomorphism, in the sense that any A, algebra lying in 2%, with

non-zero deformation class, is quasi-isomorphic to A.

1.1.5 Outline of the chapter

In Section 1.2 we introduce some standing notation, and discuss the topology of the pair

of pants p". In particular, we introduce the coamoeba, which encodes topological infor-

mation about p" and is the starting point for understanding the Lagrangian immersion

Ln. We give the details of the construction of the Lagrangian immersion L' : S" n _ ",

and some of its properties.

In Section 1.3, we explain how to include the Lagrangian immersion Ln as an 'extra'

object of the Fukaya category of embedded Lagrangians in ?". We define the A, algebra

A:= CF*(Ln, Ln), and establish some of its properties - namely, that it is homogeneous

with respect to a certain weighting of its generators, that its Z2-grading lifts to a Z-

grading, and that it has a certain 'super-commutativity' property.

In Section 1.4, we give an alternative, Morse-Bott definition of the Fukaya category

of embedded Lagrangians. We define the A, structure coefficients by counts of objects

called 'holomorphic pearly trees', which are Morse-Bott versions of the holomorphic disks

usually used (and closely related to the 'clusters' of [27]). The technical parts of this

section could be skipped at a first reading, but the concept of a pearly tree is important

because it is the basis of our main computational technique, which is introduced in

Section 1.5. This section could be read independently of the rest of the paper.
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In Section 1.5, we introduce a Morse-Bott model A' for the A, algebra A, in which

the A, structure coefficients are defined by counts of objects called 'flipping holomorphic

pearly trees'. We show that A' is quasi-isomorphic to A. We can compute the A.

structure maps of A' by explicitly identifying the relevant moduli spaces of flipping

holomorphic pearly trees. In particular, we compute that the cohomology algebra of A'

(hence of A) is an exterior algebra, as well as some of the higher structure maps. We

use our computation of higher structure maps to show that A' is versal in the class of

A, algebras with cohomology algebra the exterior algebra, and the homogeneity and

grading properties described in Section 1.3 (compare Section 1.1.4). Thus, applying

deformation theory of A, algebras, A' (and hence A) is completely determined up to

quasi-isomorphism by the coefficients and properties that we have established.

In Section 1.6, we describe the B-model of the mirror. We use the techniques of [25,

Section 41 to construct a minimal A, model B' for the differential Z2 -graded algebra

B := HomMF(R,W)(OO, 00). We find that its cohomology algebra is an exterior algebra,

and that it has the same grading and equivariance properties as A. We compute higher

products to show that B' is versal in the same class of A, algebras as A', and hence

that it is quasi-isomorphic to A'. This completes the proof of Theorem 2.

1.2 The Lagrangian immersion L": S' -+ P"

The aim of this section is to describe the immersed Lagrangian sphere L' : S' - ?".

In Section 1.2.1 we introduce some standing notation, and describe the topology of the

pair of pants P'. We introduce the notion of the coamoeba of the pair of pants, which

is the starting point for visualising the Lagrangian immersion L'.

In Section 1.2.2 we construct the Lagrangian immersion L' : S' -+ P" and establish

some of its properties.
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1.2.1 Topology of ' and coamoebae

Let [k] denote the set {1, 2,.. . , k}. For a subset K C [k], let IKI be its number of

elements and K c [k] its complement. Let M be the (n + 2)-dimensional lattice

M~ := Z(ei,.., en+2).

For K c [n + 2], let eK denote the element

eK ej E M.
jEK

Let M be the (n + 1)-dimensional lattice

M:= M/(e[n+2]).

We will use the notation

MP := M Oz P

for any Z-module P. We will not distinguish notationally between a lattice element

eK E M and its image in M. We define maps

Log : Mc -+ MA,

Log(zi,. .. +2)

Arg: Mc.

Arg(zi,. . . ,Zn+2)

:= (log |zil, . ., log zn+2j)

-+ MR/27rM,

(arg(zi), . . ,arg(zn+2)).

24



These descend to maps

Log: Mr.

Arg : Mc* -+

-+ MR,

MR/27rM.

We can identify

MC =Cn+2 \ UZj=01

and the quotient by the diagonal C* action,

Mc = Cn+1 \ D

where we denote the divisors Dj := {z. = 0}1 for j' = 1,..I n + 2, and D is the union of

all Dj. Thus we have
n+2

n" = zy
j=1

= 0 c Mc*.

Definition 1.2.1.1. The closure of the image Arg(P") is called the coamoeba (also,

sometimes, the alga) of P', and we will denote it C" (see, e.g., [28, 29]).

Now we will give a description of the coamoeba Cn for all n. It will be described in

terms of a certain polytope, which we first describe.

Definition 1.2.1.2. Let Z, be the zonotope generated by the vectors ej in MR, i.e.,

Z n+2

j=1

: y E[0, 1] c MR

(this is the projection of the cube [0, 1]n+2 in MR).

Definition 1.2.1.3. The cells of &Zn are indexed by triples of subsets J, K, L C [n + 2]

such that
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* JLJKLiLz=[n+ 2];

" J 0 # and K 4 $.

Namely, we define the cell

Oiei :j = 0 for j E J, Ok = 1 for k E K, 01 E [0,1] for I E L

We note that

dim (UJKL) = ILl,

and UJKL' is part of the boundary of UJKL if and only if

J c J', K C K', and L ; L'.

In particular, the vertices of Z, are the 0-cells UR,K,p f {eK}, and are indexed by proper,

non-empty subsets K C [n + 2].

Proposition 1.2.1.4. C' C MR/2,rM is the complement of the image of the interior of

rZ".

Proof. Cn is the closure of the set of those

0 = E Ojej

such that there exist rj satisfying

n+2

S exp(r + iOj) = 0.
j=1

In other words, the convex cone spanned by the vectors exp(iOj) contains 0.
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Therefore the complement of C" consists of exactly those 0 such that the coordinates

01,... , n+2 are contained in an interval of length < 7r. By adding a common constant

we may assume all Oj lie in [0, 7r). Thus the complement of C' is exactly the image of

the interior of rZ,. E

Remark 1.2.1.5. As we saw in Definition 1.2.1.3, the vertices of 8(7rZ,) are the points

7reK where K C [n + 2] is proper and non-empty. Observe that the vertices 7reK, 7reK

get identified because

7reK - 7rek E 27rM.

We can draw pictures in the lower-dimensional cases (see Figure 1.2.1.1).

Proposition 1.2.1.6. The map Arg : p" _4 C" is a homotopy equivalence. In particular,

p" has the homotopy type of an (n + 1)-torus with a point removed.

Proof. We choose to work in affine coordinates

zy := z3 for j =,...,n +1
Zn+2

on CPn+l \ D. So

P" ~ 1+ 1+ . + zn+1 = 0} C (C*)n+1.

It is shown in [30] that there exists a subset W C p", such that the inclusion W p-+ n"

is a homotopy equivalence, and the projection

Arg: W -- MR/27rM

is a homotopy equivalence onto its image, which is

Arg(W) = {(5 ... ,52+1) : at least one 5= r C MR/27rM.
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It is easy to see that the inclusion

Arg(W) -+ C"

is a homotopy equivalence (both are strong deformation retracts of (MR/27M)\(O, 0, ... , 0)).

Hence, we have a commutative diagram

W p"

t Arg

Arg(W) > C"

in which all arrows but the one labeled 'Arg' are known to be homotopy equivalences.

It follows that Arg : ?P -+ C" is also a homotopy equivalence.

Corollary 1.2.1.7. For n > 1, there are natural isomorphisms

,rI (p") , H1I(p") , M.

When n = 1, we still have a natural isomorphism H1 (Pl) e M, but the fundamental

group is no longer abelian. Instead, there is a natural isomorphism

7r1 (Pl) -- (a, b, clabc).

1.2.2 Construction of the Lagrangian immersion L": S, -+'P"

We observe that the Lagrangian L' : S' -+ T1 can be seen rather simply in the coamoeba.

It corresponds to traversing the hexagon which forms the boundary of the coamoeba

(see Figure 1.2.2.1). The two triangles that make up the coamoeba correspond to the

holomorphic triangles that give the product structure on Floer cohomology.

We will show that a similar picture exists for higher dimensions. Namely, by Propo-
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(a) The coamoeba of P'. (b) The coamoeba of P 2 . This picture lives in
(S') 3 , drawn as a cube with opposite faces iden-
tified, and we are removing the zonotope illus-
trated, which looks somewhat like a crystal.

Figure 1.2.1.1: C' and C2 .

X2 -x2 X

e2

X

.3

Figure 1.2.2.1: The projection of L' to C1 .
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sition 1.2.1.4, we know that the boundary of C' is a polyhedral n-sphere that intersects

itself at its vertices. In this section, we will explain how to lift this immersed polyhedral

n-sphere to an immersed Lagrangian n-sphere in p".

Remark 1.2.2.1. This is not the first time that the coamoeba has been used to study

Floer cohomology. It appeared in [28] (with the name 'alga'), where it was used as

motivation to construct Landau-Ginzburg mirrors to some toric surfaces. It was conjec-

tured in [31] that this picture generalizes to higher dimensions. There is a connection

between the 'tropical coamoeba' of the Landau-Ginzburg mirror (X, w) of projective

space, introduced in [31], and our construction, but we will not go into it.

Consider the real projective space

RIPn { z 3 = 0, z3 E R c zy = c Pn+.

Clearly it is Lagrangian and invariant with respect to the Sn+2 x Z2 action, so by an

equivariant version of the Weinstein Lagrangian neighbourhood theorem, there is an

Sn+2 X Z 2-equivariant symplectic embedding of the radius-77 disk cotangent bundle

D*RP" + z = 0 C CPn+1

for some sufficiently small T1 > 0. We may choose this embedding to be J-holomorphic

along the zero section with respect to the almost-complex structure induced by the

standard symplectic form and metric on D*RP". The Z2-invariance says that complex

conjugation acts on D*RP" by -1 on the covector.

Our immersed sphere L" will land inside this neighbourhood. Now consider the

double cover of RlP" by S". Think of S" as

S { X 2 } - f {1x~ n c +2
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and denote the real hypersurfaces

D' := {xj = 0} C S".

Then the double cover just sends (XI, .. . , xn+2) '-4 [xi .: Xn+21. This extends to a

double cover D*S" -+ D*RP". Composing this with the inclusion D*RP" -+ CP" gives

a map i : D*S' -+ CP'.

Lemma 1.2.2.2. Suppose that f : Sn -+ R is a smooth function whose gradient vector

field (with respect to the round metric on Sn) is transverse to the real hypersurfaces D .

Then for sufficiently small e > 0, the image of the graph P(edf) C T*S" lies inside D*S",

and its image under the map i into C" avoids the divisors Dj.

Proof. Note that the graph of edf in D*S' is the tine-c flow of the zero-section by the

Hamiltonian vector field corresponding to f, which is exactly J(Vf), where J is the

standard complex structure on CP" (we observe that the round metric on Sn is exactly

the metric induced by the Fubini-Study form and standard complex structure). Given

a point q E DR, we can holomorphically identify a neighbourhood of its image in CP"

with a neighbourhood of 0 in C', in such a way that a neighbourhood of q in S' gets

identified with a neighbourhood of 0 in R" C Cn. We can furthermore arrange that the

divisor Di corresponds to the first coordinate being 0.

When we flow Rn by J(Vf), the imaginary part of the first coordinate will be strictly

positive (respectively negative) because Vf is transverse to Df, in the positive (respec-

tively negative) direction. Therefore the first component can not be zero, so the image

avoids DJ.

Definition 1.2.2.3. Let g : R -+ IR be a smooth function so that

1. g'(x) > 0;

2. g(-x) = -g(x);
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-6 6 x

Figure 1.2.2.2: The function g.

3. g(x) = x for |xI <6;

4. g'(x) is a strictly decreasing function of |xI for Ix| > 6;

5. g'(x) < 6 for lxi > 26,

where 0 < 6 < 1 (see Figure 1.2.2.2). We define f : S" -+ R by restricting the function

f : R+ 2  R
n+2

f(Xi,...,Xn+2) = g(zy),
j=1

recalling that Sn sits inside Rn+2 as above.

Lemma 1.2.2.4. Vf is transverse to all of the hypersurfaces DJ in a positive sense.

Proof. One can compute that Vf is the projection of the vector

to f wher e T0 n+1

to TS", where Rn+1 = {f Tj x = 0} C Rn+2 and

n+2

fi .- g'(xj)
- =1 g'(xk)

n + 2
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By the construction of g, one can check that fj > 0 whenever zy I < 6. The result

follows.

Definition 1.2.2.5. Let L' : S' -+ CIP be the graph of edf in CP', for e > 0 sufficiently

small. Note that it lies in 'P" by Lemmas 1.2.2.2 and 1.2.2.4, and is Lagrangian because

it is the graph of an exact one-form. We will frequently fix an e and write L'.

Remark 1.2.2.6. L" is Sn+ 2 -invariant (because f and our Weinstein neighbourhood

are). Furthermore, because f(-x) = -f(x), df is invariant under the Z2 -action

(X, a) -- (a(x), -a*a)

where a : S_ -+ Sn is the antipodal map. Recall that complex conjugation r : P" -+ Pn

induces the Z2-action (x, a) - (x, -a) in D*Sn, so T o Ln = Ln o a. In other words, the

image of Ln is preserved by complex conjugation, but it acts via the antipodal map on

the domain Sf.

Proposition 1.2.2.7. Define the maps

te : S -+ MR/27rM,

te := Arg o L,

and

q : BZn -+ MR/27rM

(the standard inclusion). Then there exist homotopy equivalences p, : Sn -+ &Zn, defined

for e > 0 sufficiently small, such that

lim|1te - q o pe||co = 0.
C-+0

In other words, t. converges absolutely, modulo reparametrisation, to (Z,.

Proof. We consider a cellular decomposition of Sn which is dual to the cellular decompo-
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sition induced by the hypersurfaces D', and is isomorphic to the cellular decomposition

of OZn defined in Definition 1.2.1.3. We will show that the image of each cell in the

decomposition, under tE, converges to the corresponding cell in 0Z".

Definition 1.2.2.8. We define a cellular decomposition of S' whose cells are indexed

by triples of subsets J, K, L C [n + 2] such that

" JLJKWLJ= [n+2];

" J f # and K #.

Namely, we define the cell

VJKL := {(X1, ... , Xn+2 ) E S' : xj = max{xi} for all j E J,Xk = min{x} for all k E K

(this is dual to the cellular decomposition with cells

WJKL = j > 0 for j E J,Xk < 0 for k E K, and x, =0 for I E L},

induced by the hypersurfaces D').

We now have

dim(VJKL) ILI

and VJ'K'L' is part of the boundary of VJKL if and only if

JCJ', KCK', and L;L'.

Thus, this cellular decomposition is isomorphic to that of c9Z, by cells UJKL, described

in Definition 1.2.1.3. See Figure 1.2.2.3 for the picture in the case n = 2.

Our Lagrangian is obtained from the immersion Sn -+ CPn by pushing off with the

vector field J(Vf). Thus, by Lemma 1.2.2.4, it is approximately equal (to order e2) to
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the composition of the map

Sn -4 {Z% =0,zy 0} c Cn+2

(X1,...,Xn+2) 1- (X1,...,xn+2)+iC(fi,...,fn+2)

with the projection to CP' \ D = P". Thus we have

= (arg(xi + iefi), . . . ,arg(xn+2 + iefn+2 )) + 0(62).

Now, when Ixil is sufficiently large, we have

arg(xi + ief1 + 0(62)) ~ arg(xi) = 0 or 7r.

When |xil is sufficiently small, we have

arg(xi + iEf1 + 0(f2)) E (0, 7r)

because f, > 0 (by Lemma 1.2.2.4). More precisely, we have the following:

Lemma 1.2.2.9. If we choose e > 0 sufficiently small, then we have:

" If |xi| I f6, then arg(xi + iefi + 0(62)) = arg(xi) + O( /i), where arg(xi) = 0 or

?ri

" If |xi1 fi, then arg(xi +iefi + 0(62)) E (0,,w), because fi is strictly positive for

\xii sufficiently small (by Lemma 1.2.2.4).

Observe that, on the cell VJKL, we have

xj > \/f for j C J, and Xk < -f/e for k E K,
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because E, x' = 1 and E, Zx = 0. Therefore, by Lemma 1.2.2.9,

arg(xj + ijf 3 ) + O(2)

arg(xk + iEfk) + Q(E2)

arg(xl + iefi) + 0(62)

O(F) for j E J,

=7r + O(F) for k E K, and

E (0, r) + O(i) for 1 E L.

It follows that te(VJKL) lies in an O(fi)-neighbourhood of UJKL-

We are now able to define the map

p, : S" -+ 0Z9

to be a cellular map which identifies the cellular decompositions VJKL and UJKL (hence

is a homotopy equivalence), and such that

Ie - q o pE||co = -

We assume inductively that a map with these properties has been defined on all cells of

dimension < d, then extend it to the cells of dimension d relative to their boundaries. El

Now observe that, because f(-x) = -f(x), df(-x) = -df(x) (identifying tangent

spaces by the antipodal map), so the only points where L' has a self-intersection are

where df = 0, i.e., critical points of f. A self-intersection point looks locally like the

intersection of the graph of df with the graph of -df, which is transverse because f -

(-f) = 2f is Morse. We will now describe the critical points and Morse flow of f.

Lemma 1.2.2.10. If Xj > Xk > 0, then

(Vf)Q) > 0.
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Similarly, if xj < Xk < 0, then

(Vf) 2 < 0.
xy )

Proof. We prove the first statement. If xj > xk > 0 then, by the construction of g,

g'(xj) < g'(xk). It follows that f3 < fk, and hence that fjxk < fkxj, using the notation

from the proof of Lemma 1.2.2.4. Thus,

(Vf) ()2 f ( ) (since Xk/xj is constant in the radial direction)

1
2 (fkxj - fjxk)

xi

> 0.

The proof of the second statement is similar.

Corollary 1.2.2.11. There is one critical point pK of f for each proper, non-empty

subset K c [n + 2], defined by

VR,K,# = {PK}-

Explicitly, PK has coordinates (recalling j3 xj =0)

-1 j E K,

+-L j E i

up to a positive rescaling so that >j x? = 1. Observe that Arg maps PK to the vertex

lreK of aZn.

Proof. Critical points of f cannot lie on the hypersurfaces D', since Vf is transverse to

the hypersurfaces. Suppose that xj > xk > 0. Then by Lemma 1.2.2.10,

(Vf) f all > 0,

so Vf = 0. Hence, at a critical point of f, all positive coordinates xj are equal. By a
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similar argument, all negative coordinates are equal. It follows that the points PK are

the only possiblities for critical points of f.

To prove that each PK is indeed a critical point, observe that by S+2 symmetry, the

Morse flow of f must preserve the equalities

Xk = X1 for all k, l E K, and

XkX = XI for all k,l E K.

The set of points satisfying these equalities is exactly {PK, pK}, hence the Morse flow

preserves these points. Thus each pK is a critical point of f. E

Lemma 1.2.2.12. Let # : R x S" -+ S" denote the flow of Vf with respect to the round

metric on S", so that p(0,-) - id. Given a proper, non-empty subset K C [n + 2], we

define

S(PK) {q E S" : lim 0(t, q) = PK} C S",

the stable manifold of PK, and

U(pK ) = q E S': lim (t, q) = PK C Sn,
in-oo0

the unstable manifold of PK. Then

S(PK) {(X 1 , -- ,Xn+ 2 ) E S' {k E [n + 2] : Xk -- min{xl}} - K}

and

U(pK) = {(1,-, Xn+2) E S : {k E [n + 2] : Xk = max{xl}} = k}

Proof. We prove the first statement. Suppose we are given q = (x 1 ,. .. , xn+2 ) E S". Let

lim #(t, q) := pK,
t+*oo
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and

K' := {k E [n + 2] : Xk = min{Xi}}.

We will show that K = K'.

First observe that, by Sn 2 symmetry, any equality of the form x = Xk is preserved

under the forward and backward flow of Vf. Consequently any inequality of the form

zj > zk is also preserved under the (finite-time) flow. It follows that K' C K.

We prove that K c K' by contradiction: suppose that j K' but j E K. After

flowing for some time, xz would have to be negative (in order to converge to PK). Then

for any k E K' we would have Xk < Xj < 0, so by Lemma 1.2.2.10 we have

(Vf i) < 0.
Xk/

Thus, the ratio x/Xk is bounded above away from 1, so even in the limit t -+ oo, x3 can

not approach the minimum value k = min, {xi}. This is a contradiction, hence K C K'.

Therefore K = K'. This completes the proof

second statement is analogous.

of the first statement. The proof of the

El

Corollary 1.2.2.13. The critical point PK of f has Morse index

PMorse(PK) = n + 1 - |K|.

Proof. The Morse index of PK is the dimension

Lemma 1.2.2.12 is n + 1 - IKJ.

of the stable manifold of PK, which by

El

Remark 1.2.2.14. Observe that, as a consequence of Lemma 1.2.2.12,

VJKL = l(j) n S(K)

(see Figure 1.2.2.3).
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Figure 1.2.2.3: The dual cell decompositions for n = 2. The dashed circles represent the
hypersurfaces DJ as labeled. Each region is labeled with the list of coordinates that are
negative in that region (e.g., the label '124' means that x1 < 0, x 2 < 0, x 3 > 0, x 4 < 0
in that region). The arrows represent the index-i Morse flow lines of Vf. The dots
represent critical points of f. The picture really lives on a sphere, and the three points
labeled '4' should be identified (at infinity). Observe that the flowlines correspond to
the edges of the polyhedron BZ 2, illustrated in Figure 1-1(b).
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1.3 The Ao algebra A:= CF*(L , Ln)

This section is concerned with the definition and properties of the Ac algebra A :

CF*(Ln, L'). We will simply write 'A' rather than 'An' unless we wish to draw attention

to the dimension.

In Section 1.3.1, we will explain why Ln, despite being an immersion rather than an

embedding, can be regarded as an 'extra' object of the Fukaya category of Pn, as defined

in [11, Chapters 8 - 12]. This section can not be read independently of that reference.

In Sections 1.3.2 - 1.3.4, we establish certain properties of A.

1.3.1 Including L" as an 'extra' object of Fuk('P")

In [11, Chapters 8 - 12], it is shown how to define the Fukaya category of a symplectic

manifold (X, w) with the following properties and structures:

" W = dO is exact;

" X is equipped with an almost-complex structure Jo in a neighbourhood of infinity,

compatible with w;

e X is convex at infinity, in the sense that there is a bounded below, proper function

h : X -+ IR such that

0 = -dh o Jo.

These assumptions are actually not quite the same as those in [11], but the arguments

and definitions work in the same way.

In particular, X = p" has these properties: we equip it with the standard (integrable)

complex structure JO, then the restriction of the Fubini-Study form to p" is given by
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w = dO, where 0 = -dh o Jo, and

h:P4 -+ R,

h([zi: . : Zn+2]) 10 log 1J~ J

is proper and bounded below.

With this data, the Fukaya category of compact, exact, embedded, oriented La-

grangians L can be defined over a field of characteristic 2, and with Z2 gradings (the

'preliminary' Fukaya category of [11, Chapters 8, 9]). If X is furthermore equipped with

a complex volume form r/ (note: we will not take a quadratic complex volume form as

in [11], because we assume our Lagrangians to be oriented), then the Fukaya category of

compact, exact, embedded, oriented Lagrangian branes L# can be defined over C, and

the Z2 grading can be lifted to a Z grading.

We define the Fukaya category of p" to include an 'extra' object corresponding to

the Lagrangian immersion L' : S, -+ P".

Remark 1.3.1.1. A theory of Lagrangian Floer cohomology for immersed Lagrangians

has been worked out in [32] using Kuranishi structures, but we will give a definition that

is compatible with the definition of [11] using explicit perturbations, with the aim of

using it to make computations in Section 1.5.

First, we note that H 1 (Sn) = 0 for n > 1, so L' is automatically exact (this is an

additional restriction in the case n = 1 - see the caption to Figure 1.1.2.1).

Now we explain the modifications necessary to the definition of the (preliminary)

Fukaya category given in [11, Chapters 8, 9], to include the object L'.

Remark 1.3.1.2. We will not mention brane structures, orientations and gradings for

the purposes of this Section 1.3.1, because they work exactly the same as in [11, Chapters
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11, 12]. We observe that H 1 (Sn) = 0 for n > 1, so L' admits a grading (the case n = 1

is easily checked). S" is also spin, so L' admits a brane structure. These observations,

together with the modifications described in this section that show we can include Ln as

an extra object of the preliminary Fukaya category, allow us to include Ln as an extra

object in the 'full' (Z-graded, with C coefficients) Fukaya category of Pn.

Definition 1.3.1.3. We define an object L of the (preliminary) Fukaya category to be

an exact Lagrangian immersion

L: N -+,"

of some closed, oriented n-manifold N into ?, which is either an embedding or the

Lagrangian immersion Ln : Sn -+ p.

Definition 1.3.1.4. We define

7 := Ce(P", R),

the space of smooth, compactly supported functions on ?" (the space of Hamiltonians),

and J, the space of smooth almost-complex structures on p? compatible with w, and

equal to the standard complex structure Jo outside of some compact set.

Definition 1.3.1.5. For each pair of objects (Lo, L 1 ), we define a Floer datum (Hoi, J01)

consisting of

Hoi E C ([0, 1], 7() and Joi E C ([0, 1], J)

satisfying the following property: if #' denotes the flow of the Hamiltonian vector field

of the (time-dependent) Hamiltonian Hoi, then the image of the time-i flow #1 o Lo is

transverse to L 1 . One then defines a generator of CF*(Lo, L 1 ) to be a path y: [0, 1] -+

pn which is a flowline of the Hamiltonian vector field of Hoi, together with a pair of

points (Qo,) E No x Ni such that Lo(Q) = y(O) and L 1 (Q1 ) = y(l). One defines

CF*(Lo, L 1 ) to be the C-vector space generated by its generators.
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The definition of a perturbation datum on a boundary-punctured disk with La-

grangian labels is the same as in [11, Section 9h].

Definition 1.3.1.6. Given a perturbation datum on a boundary-punctured disk S with

Lagrangian boundary labels (Lo, ... , Lk), some of which may be immersed, we define an

inhomogeneous pseudo-holomorphic disk to be a smooth map u : S -+ pn such

that

* u(C) E im(Lc) for each boundary component C with label Lc, and

" u satisfies the perturbed holomorphic curve equation [11, Equation (8.9)] with

respect to the perturbation datum,

together with a continuous lift iic of the map uic : C -+ im(Lc) to Nc:

Nc

1Lc

C > im(Lc)UIC

for each boundary component C with label Lo : N0 - P".

Remark 1.3.1.7. Note that the lift fic exists automatically if LC is an embedding.

When LC is an immersion, the existence of iic tells us that the boundary map ulc does

not 'switch sheets' of the immersion along C.

Definition 1.3.1.8. Given generators

yj E CF*(Lj_1 , Lj) for j 1,.. ., k,

and

yo z CF*(Lo, Lk),

we say that an inhomogeneous pseudo-holomorphic disk has asymptotic conditions

given by (YO, -. -. , Yk) if, on the strip-like end ej corresponding to the jth puncture, we
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have

lim u( (s,t)) =y (t),

lim ii(ej(s, 0)) = (9j)o, and
s-++oo

lim ft(ey(s,1)) = (gy)1.
5- *+OO

(and the analogous condition with s -+ -oo when J = 0). We define the moduli

space Ms(yo,... , Yk) to be the set of inhomogeneous pseudo-holomorphic disks with

asymptotic conditions given by the generators (Yo, .. . , yk).

To show that Ms(yo, .. . , Yk) is a smooth manifold, we must modify the functional

analytic framework of [11, Section 8i] slightly. Namely, we fix p > 2, and define a Banach

manifold Bs(yo, .. . , Yk) as follows.

A point in Bs consists of:

" a map u E W0(S, P'), satisfying u(C) E im(Lc);

" continuous lifts iic of the continuous maps ulc : C -+ im(Lc) to N 0 , for each

boundary component C of S,

such that u and iic are asymptotic to the generators yj along the strip-like ends, in the

sense of Definition 1.3.1.8. Observe that W 1'P functions are continuous at the boundary,

so the lifting condition makes sense.

Let u = (u, (iic)) E Bs be represented by a smooth map. We define charts for the

Banach manifold structure in a neighbourhood of u. For each boundary component C

of S, we have a continuous Lagrangian embedding of vector bundles,

TNc' )* (Lc)*TP".
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Thus, we have a continuous Lagrangian embedding

(jc)*TNc - (iic)*(Lc)*TP" ' (u*TP")|c.

We define the tangent space to Bs(Yo,..., Yk) at u to be the Banach space

TuI3s(yo, .. , Yk) W1'P(S, u*TP, CTNc)

(with the WlP-norm). We choose an exponential map exp : TPn -+ Pn that makes the

Lagrangian labels totally geodesic, and denote by expN : TN -+ N the corresponding

exponential map on each Lagrangian label. We then define a map

# TuBs -+ Bs

so that #u () consists of the map exp(u, (u)), together with boundary lifts Ji 5 NC (ic, ( ic))

This defines a chart of the Banach manifold structure in a neighbourhood of u.

Remark 1.3.1.9. Note that we can not define a Banach manifold of locally W 1'P maps

from S to P", sending boundary component C to im(Lc), then impose the lifting condi-

tion separately - this would not define a Banach manifold because the image of Lc may

be singular (if Lc = Ln).

We now define a Banach bundle Es over Bs, and a smooth section given by the

perturbed 0-operator, as in [11, Section 8i]. The section is Fredholm, because its lin-

earization is a Cauchy-Riemann operator with totally real boundary conditions given

by XcTNc. Thus, assuming regularity, the moduli space Ms(yo,..., Yk) is a smooth

manifold with dimension equal to the Fredholm index. We can extend these arguments

to show that the moduli space MSk. (Yo, .... , Yk) of inhomogeneous pseudo-holomorphic

disks with arbitrary modulus is also a smooth manifold.
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Finally, we must check that Gromov compactness holds. The author is not aware

of a proof of Gromov compactness with immersed Lagrangian boundary conditions in

the literature, but we can give an ad hoc proof in our special case by passing to a cover

of p". Namely, by Corollary 1.3.2.3, there is a cover P" of Pn in which every lift Ln

of Ln is embedded, so all of our lifted boundary conditions are embedded Lagrangians.

Any family of inhomogeneous pseudo-holomorphic disks in p" lifts to a family in ?".

Standard Gromov compactness for the family of lifted disks in P", with boundary on

the embedded lifts of Lagrangians, implies compactness for the family in P'.

Everything else works as in [11], so this allows us to define the Fukaya category of

P with the extra object Ln, and show that the A, associativity relations hold.

We now consider the A, algebra A = CF*(Ln, L"). We would like to choose the

Floer datum for the pair (Ln, L") so that the underlying vector space of A is as small as

possible.

Lemma 1.3.1.10. There exists a Hamiltonian H E 'W such that (Lf)*H is a Morse

function on Sn with exactly two critical points, and XH im(Ln) vanishes only at those

critical points.

Proof. First define H in a neighbourhood of the self-intersections of im(L"), in such a

way that XH is transverse to both branches of the image. This defines (Ln)*H on a

neighbourhood of the critical points pK of f (see Corollary 1.2.2.11). This function can

easily be extended to a Morse function on S" with the desired properties, then extended

to a neighbourhood of im(Ln), then to all of n" using a cutoff function. E

Corollary 1.3.1.11. For an appropriate choice of Floer datum, CF*(Ln, L') has gen-

erators PK indexed by all subsets K C [n + 2].

Proof. We scale the H of Lemma 1.3.1.10 so that it is < c (the parameter in the definition

of Ln = Ln), and use it as the Hamiltonian part of our Floer datum for (Ln, Ln). Let
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XH denote the corresponding Hamiltonian vector field. Now if #1 is the time-1 flow of

XH, we can arrange that #1 (Ln(p)) = Ln(q) if and only if either

p - q and XH(L*(p)) = 0,

or

(p, q) corresponds to a pair (p', q') such that p' -f q' and Ln(p') = Ln(q')

(note that the assumption that H < e ensures that the transverse self-intersections

Ln(p') - Ln(q') persist under the flow of one branch of Ln by XH).

In the first case, we get generators corresponding to the critical points of the Morse

function (Ln)*H. We denote the generator corresponding to the minimum, respectively

maximum, by po, respectively P[n±21. In the second case, we get generators corresponding

to pairs (p', q') = (PK, PR) where K C [n + 2] is proper and non-empty, by Corollary

1.2.2.11. We denote the generator corresponding to (pK, PR) by pK, by slight abuse of

notation.

1.3.2 Weights in M

Definition 1.3.2.1. (Compare [9, Section 8b]) Whenever we have an immersed La-

grangian L : N --+ X (such that the image of H1 (N) in H1 (X) is trivial), we can assign

a weight w(y) E H 1 (X) to each generator y of CF*(L, L). Namely, choose a path from

#1 to go in N, and define w(y) be the homology class obtained by composing the image

of this path in X with the path y (see Definition 1.3.1.5).

Proposition 1.3.2.2. In our case, we have

w(pK) = eK E M a H1 (Pn).
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Proof. By Proposition 1.2.1.6 and Proposition 1.2.2.7, Arg induces a homotopy equiv-

alence between (pn, Ln) and (Cn, 8(wZn)). Thus, when K is proper and non-empty,

w(pK) is the class of a path from reK to reK in H1 (C") 2 M, which is exactly eK.

When K = # or [n + 2] it is clear that w(pK) = 0-

Corollary 1.3.2.3. There exists a finite cover'P" -+ P" in which every lift Ln of Ln is

embedded.

Proof. Recall that .1(p") e M by Corollary 1.2.1.7. Consider the group homomorphism

p: M Zn+2

p(u) e[n+2] U

(this is well defined because p(e[n+2]) = 0 (mod (n + 2))). There is a corresponding

(n + 2)-fold cover of ?", and we have

p(w(pK)) = p(eK) = JKJ $ 0 (mod (n + 2))

for all proper non-empty K C [n + 2], so the two lifts of Ln coming together at an

intersection point are distinct. E

Proposition 1.3.2.4. The A,, structure maps pk are homogeneous with respect to the

weight w. In other words, the coefficient of PKo in [k(pK1, -- ,PKJ) is non-zero only if

k

Z eK, = eKo-
j=1

Proof. If the coefficient of PKo in pk (PKi, ... , PKk is non-zero, then there is a topological

disk in Pn with boundary on the image of L ,

u : (D,&D) -+ (P", im(L")),
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whose boundary changes 'sheets' of L' exactly at the self-intersection points PKo, PK1 , . - - , PKk

in that order (ignoring any appearance po or P[n+2] on the list). This disk must lift to

the universal cover, hence its boundary lifts to a loop in the universal cover.

The boundary always lies on lifts of L', which are indexed by the fundamental group

M (think of the homotopy-equivalent picture of MR \ {7rZn + 27rM}, with the lifts of

L' being (7rZn) + 27rM). When the boundary changes sheets at a point PK, the index

of the sheet in M changes by w(pK) (observe that the points po and P[n+2], at which no

sheet-changing occurs, have weight 0).

Therefore, if the boundary of our disc changes sheets at PKo, PK1 , -- , PK , and comes

back to the sheet it started on, we must have

k

-w(pKo) + Zw(pPKy) = 0-
j=1

Corollary 1.3.2.5. The character group of M,

T := Hom(M, C*),

acts on A via

a -p := a(w(p))p.

The A,, structure on A is equivariant with respect to this action.

1.3.3 Grading

Recall that, to lift the Z2-grading on the Fukaya category to a Z-grading, we must equip

'" with a complex volume form r/. We assume that:
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" r/ is compatible with complex conjugation T :? --+ P', in the sense that T*r/ = 7

" r1 extends to a meromorphic (n, 0)-form on CP", with a pole of orfder nj along the

divisor Dj (with the usual convention that a zero of order k is a pole of order -k).

We set
n+2

n:= EnjeZ E M.
j=1

Observe that

n+2

n - e[n+2 = nj
j=1

= deg(KCpn)

= n+1.

Observe that there is no canonical choice for r1, so our Z-grading will not be canonical.

Proposition 1.3.3.1. The Z-grading on A defined by 77 is

i(pK) = (2n - e[n+2]) - eK.

In other words, the coefficient of PK) in p k(PK1,. ,PKk) is non-zero only if

k

i(pK) 2 - k + i(pK).

j=1

Proof. Recall that the volume form 77 defines a function

qP: Gr(TP") + S1,

where Gr(TPn) is the Lagrangian Grassmannian of p' (i.e., the fibre bundle over ?"

whose fibre over a point p is the set of Lagrangian subspaces of TP"). If V c TP" is a

Lagrangian subspace, then 0(V) is defined by choosing a real basis v1 ,. . . , v, for V and
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defining

(V) := arg(q(vi,... ,n))

A grading on Ln is a function a# : Sn -+ R such that

7ra#(x) = p(L L"TS"))

(see [33]). Recall from the construction of L" that, away from the hypersurfaces D', the

immersion Ln : S" -+ CP" is close to the double cover of the real locus, t : Sn -+ Cpl.

So away from the hypersurfaces Dj,

L*(T S")) -.. (t,(TxS")) = 0 or 7r,

because we assumed q was invariant under complex conjugation, so $(TRP") is real.

Therefore, away from the hypersurfaces D', a# is approximately an integer.

The hypersurfaces D split S' into regions SZ indexed by proper non-empty subsets

K C [n + 2]. Namely, SZ is the region where xj < 0 for j E K and xj > 0 for j ( K,

and contains the unique critical point PK of f. Suppose that a# agE Z in the region

S7.

How does a# change as we cross a hypersurface D? Let p be a point on D,

away from the other hypersurfaces D'. Let us choose a holomorphic function q in a

neighbourhood of t(p) in CP", compatible with complex conjugation (i.e., q(r(z)) =

q(z)), and such that Dj = {q = 0}. Because 77 has a pole of order n along Dj, we have

where i' is a holomorphic volume form compatible with complex conjugation.
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In the same way that T1 defines the function V), q' defines a function

4": Gr(TCIP") -+ S'

in a neighbourhood of t(p). Whereas 4 is not defined on Dj, because 7 has a pole there,

the function 0' is defined and continuous on Dj, because 77' is holomorphic.

We have

= 4 + arg(q~"j)

away from Dj. We can define real functions 3# on a neighbourhood of p in S', for e > 0

sufficiently small, so that

7rof(x) = @'((L"),(TxS")).

Because L' = t, and 7' is compatible with complex conjugation, # is a constant integer.

Furthermore, away from D', L' ~ t, so # ~#. It follows that # approximately

does not change as we cross D?. So the change in a# as we cross the hypersurface D'

comes only from the term arg(q-n).

We saw in Proposition 1.2.2.7 that Arg o L' approximates the boundary of the zono-

tope Zn. Thus, as we cross D', moving from Skg to S~ugj1, Arg o Ln changes from 7reK

to 7reKU{j}, changing by ire 3 . It follows that arg(q~n) decreases by 7rnj. Therefore, a#

approximately decreases by nj. So we may assume that

a#= -n eK-

To calculate the index of the generator PK, we observe that the two sheets of L'

that meet at PK are locally the graphs of the exact 1-forms df and -df. It follows by

[33, 2d(v)] that the obvious path connecting the tangent spaces of the two sheets in the
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Lagrangian Grassmannian has Maslov index equal to the Morse index

pMorse(PK) = n + 1 - IKI (see Corollary 1.2.2.13).

We also need to take into account the grading shift of a# - a# between the two sheets.

Using [33, 2d(ii)], we have

i(PK) = pMorse(PK) ~~
- K + K

= n+1-IKI+n-neK-n-ek

=n + I - e[n+2] eK + n ' (eK - e[n+2] + eK)

= (2n - e[n+2]) eK (since n - e[n+2] = n + 1).

We also note that this equation works for p, and P[n+2], which have their usual gradings

of 0 and n respectively.

The dimension formula for moduli spaces of holomorphic polygons now says that the

dimension of the moduli space of (k + 1)-gons with boundary on L", a positive puncture

at PKo, and negative punctures at PK1, , PKk is

k

dim(MS(pK, -- ,pKk)) k - 2 + i(pKo) Ei(pK')'
j=1

Since we are counting the 0-dimensional component of the moduli space to determine our

A.. structure coefficients, this dimension should be 0. This proves the stated formula,

i.e., that i defines a valid Z-grading on A.

We also observe that i lifts the Z2-grading: the two sheets of Ln that meet at PK are

locally the graphs of the exact 1-forms df and -df, hence the sign of the intersection is

n + 1 + pMorse(PK) IKI (2n - e[n+ 2]) eK (mod 2).
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Corollary 1.3.3.2. The A,, structure on A admits the fractional grading

IPK := K E Q,

in the sense that the coefficient of PKo, in 1 k (PK1 ,- ,PKJ) is non-zero only if

k

2 - k + |Kj| = I Ko|.
j=1++

Proof. For any such non-zero product, we have

k

-eKO + > eKj = qe[n+2]

j=1

for some q E Z (Proposition 1.3.2.4 says that the image of this sum in M is 0, hence it

is a multiple of e[n+2] in M). It then follows from Proposition 1.3.3.1 that

i(pKo)

k

2 - k + i(pKj).
j=1

Hence, we ought to have

k-2 = (2n-e[n+2]) -

k

+ eK)
j= 1

= (2n - e[n+2]) qe[n+2]

= nq (since n e[,+2] = + 1)
n

=n + 2e[n+2] qe[n+2]

n+2

n- ± 2 e[n+2]. KKO

k

+ 1

j=1

eK 3)

from which the result follows. l

55



Corollary 1.3.3.3. The A,, products yk are non-zero only when k = 2 + nq (where

q E Z>0).

Proof. This follows from the final set of equations in the proof of Corollary 1.3.3.2.

Remark 1.3.3.4. We observe that, when k = 2 + nq, we must also have

2+nq

EZeK j
j=1

0

eKo + qe[n+2]

(note: this is an equation in M~, not M).

Corollary 1.3.3.5. pil is trivial, and

P 2 (PK1,P K2)

a (Ki, K2)PK1 UK 2

0

if K1 n K 2

otherwise,

where a(Ki, K 2) are some integers.

Proof. The fact that p' = 0 follows immediately from Corollary 1.3.3.3.

For the socond part of the Proposition, suppose that the coefficient of pKo in A2 (PK1 , PK2)

is non-zero. It follows from Proposition 1.3.2.4 that

eK1 + eK2 = eKo

in M, and from Corollary 1.3.3.2 that

K1| + K2 | =|Kol.

Therefore Ko = K 1 L K 2 , and the result is proven. 0
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1.3.4 Signs

The main aim of this section is to prove that the cohomology algebra of A is graded

commutative. The basic reason for this is that complex conjugation T : P' -+P n maps

L n to itself. Given a holomorphic disk u : S -+ ' contributing to the product a - b, the

corresponding disk t : r o u : 9 -> P' (where 9 denotes the disk S with the conjugate

complex structure) contributes to the product b -a with the appropriate relative Koszul

sign.

Throughout this section, we use the sign conventions of [11].

Definition 1.3.4.1. Given an A, category C, we define its opposite category C0 P to

be the category with the same objects, the 'opposite' morphisms

homcor (A, B) homc(B, A),

and compositions defined by

po'p(Xi, . . ,z ) := (--lf[t p k , . .0, )

where

k(k -1)
* I + (k+ 1) Ei(zj) + iAzj)i0z0)

(j=1 j<1

It is an exercise to check that C"P is an A,-category.

The following proposition is due to [34]:

Proposition 1.3.4.2. Let X = (X,w, rj) be an exact symplectic manifold with boundary

with symplectic form w, and complex volume form r. Define XP := (X, -w, i). Then

there is a quasi-isomorphism of A,-categories

9 : Fuk(X)OP -+ Fuk(XP?).
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Proof. See Appendix A.

Lemma 1.3.4.3. We denote by AOP the endomorphism algebra of Ln in Fuk('P")op.

Suppose that k 2 + nq and KO,... , Kk are subsets of [n + 2] such that

k

Z eK = eKo + qe[n+2]
j=1

in M (see Remark 1.3.3.4). Then, in A P, we have

OP(PK1, - ,PIk) (K ~~)*pk(pKk,
- , PK )

where

+nq(nq - 1) +
2

+nq)|Ko|+ ( Kf|Ki|.
1<j<l

Proof. Recall from Proposition 1.3.3.1 that the Z2-grading of A is

i(pK) = I|K I (mod 2).

As noted in Remark 1.3.3.4, the only contributions to p,(pK1 ,--. , PKk or k PKk , -PK 1 )

are proportional to pK0 .

By Definition 1.3.4.1, the result holds with the sign

k(k - 1)
2 + E PKy i(PKj).

j<l

The result follows by substituting k = 2 + nq, i(PK) = IKI (mod 2),

aKd |+...+|n ( Ko|u+ (n+ 2)q,

and simplifying (modulo 2). E
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Corollary 1.3.4.4. There is a quasi-isomorphism of A,, algebras, A -+ A0 P, which is

the identity on the level of cohomology.

Proof. Observe that complex conjugation induces a symplectomorphism T (p", w) -+

(-Pn, -w) and hence a quasi-isomorphism

Fuk(P",w ) -+ Fuk(P', -w) -+ Fuk(Pw )"p,

where the second quasi-isomorphism is given by Proposition 1.3.4.2. We observe that

this quasi-isomorphism sends our Lagrangian L' to r o L', which is the same as Ln o a,

where a :S" -+ Sn is the antipodal map, by Remark 1.2.2.6. We note that w2 (S") = 0

and H 1(Sn) 0 for n > 2, so there is a unique spin structure P# on Ln and we must

have a*(P#) e P#. Furthermore, an examination of the proof of Proposition 1.3.3.1

quickly shows that

a*(c#) = -(n + 1) - a#

from which it follows that our Lagrangian brane L# = (Ln, a#, P#) gets sent, under the

above quasi-isomorphism, to the Lagrangian brane (Ln, n + 1 + a#, P#) = L#n + 1]. In

particular, the endomorphism algebra gets sent to

A := CF*(L#, L#) -+ CF*(L#[n + 1], L#[n + 1])OP CF*(L#, L#)OP - A 0P.

The isomorphism we have defined sends each orientation line o, to itself without any

sign change, so the result follows from Proposition 1.3.4.2.

Corollary 1.3.4.5. The cohomology algebra of A, with product

pK1 *PK2 (_)K1JP 2(PK1, PK2,),

is supercommutative:

PK1 PK2 |1)|K|IIK2|PK2 * PK1 -
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1.4 A Morse-Bott definition of the Fukaya category

The Fukaya A, category was introduced in [231. There are a number of approaches to

transversality issues in its definition - virtual perturbations are used in [24], and explicit

perturbations of the holomorphic curve equation are used in [11].

In this section, we describe a 'Morse-Bott' approach which is a modification of the

approach in [11], combining it with the approach of [35]. The outline of this approach

has appeared in [20, Section 7], and is related to the 'clusters' of [27]. However, the

geometric situation we consider is simpler than that of [27], namely we work only in

exact symplectic manifolds with convex boundary, which for example rules out disk and

sphere bubbling.

Our treatment follows [11, Sections 8 - 12] closely, explaining at each stage how

our construction differs. We make use of concepts and terminology from [11] (includ-

ing abstract Lagrangian branes, strip-like ends and perturbation data) with minimal

explanation. We explain, in Section 1.4.8, why our definition of the Fukaya category is

quasi-equivalent to that given in [11].

This section deals only with the Fukaya category of embedded Lagrangians. In partic-

ular, the Lagrangian immersion L' : S" -+ P" does not fit into this framework. However,

the concepts introduced in this section are the basis for the Morse-Bott computation of

A = CF* (L, L) that will be explained in Section 1.5.1.

1.4.1 The domain: pearly trees

In this section, we recall the Deligne-Mumford-Stasheff compactification of the moduli

space of disks with boundary punctures, and define the analogous moduli space of pearly

trees and its compactification.
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Suppose that k > 2, and L := (La, . .. , Lk) is a tuple of Lagrangians in X. We denote

by R(L) the moduli space of disks with k+1 boundary marked points, modulo biholomor-

phism, with the components of the boundary between marked points labeled Lo,. . . , Lk

in order. The marked point between Lk and LO is 'positive', and all other marked points

are 'negative'. We call L a set of Lagrangian labels for our boundary-marked disk (for

the purposes of this section, it is not important that the labels correspond to Lagrangians

in X - we need only assign certain labels to the boundary components and keep track

of which of the labels are identical).

Definition 1.4.1.1. We denote by S(L) -+ R(L) the universal family of boundary-

punctured disks with Lagrangian labels L, so that the fibre Sr over a point r E R(L) is

the corresponding disk, with its boundary marked points removed.

We define

Zi := R+ x [0, 1]

with the standard complex structure (where R+, R- are the positive and negative half-

lines respectively). We will use s to denote the R+ coordinate and t to denote the

[0,1] coordinate. We make a universal choice of strip-like ends for the family

S(L) -+ R(L), which consists of fibrewise holomorphic embeddings

ej : R(L) x Z+ ---+ S(L)

to a neighbourhood of the jth puncture, for each j = 0, 1, . . . , k, where the sign ± is

opposite to the sign of the puncture.

Definition 1.4.1.2. A directed k-leafed planar tree T is a directed tree with k semi-

infinite 'incoming' edges and one semi-infinite 'outgoing' edge, together with a proper

embedding into R2. Isotopic embeddings are regarded as equivalent. We denote by V(T)

the set of vertices of T, by E(T) the set of edges, and by Ei(T) c E(T) the set of internal

(compact) edges. We say that T has Lagrangian labels L if the connected components
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< L

/

(a) A k-leafed stable tree TS is said to have
Lagrangian labels L if the connected com-
ponents of R2 \ T are labeled by the La-
grangians of L, in order. In this figure,
L = (Lo, Lo, Lo, L 1 , L2 , L2 , L 1 , Lo, L 3 ). A La-
grangian labeling L of Ts induces a labeling
L, of the regions surrounding each vertex v.
In this figure, the induced labeling of the re-
gions surrounding the topmost vertex is L, =

(Lo, Lo, L 1, L 1, Lo, L3).

A?

(b) A pearly tree S, with underlying tree Ts and

Lagrangian labels as in Figure 1-1(a). Observe

that all edges have the same label on either side,
while external strips have different labels on ei-

ther side.

Figure 1.4.1.1: Pearly trees with Lagrangian labels.

of R2 \ T are labeled by the Lagrangians of L, in order. A Lagrangian labeling L of

T induces a labeling L, of the regions surrounding each vertex v E V(T) (see Figure

1-1(a)). We call a vertex stable if it has valence > 3, and semi-stable if it has valence

> 2. We call the tree T stable (respectively semi-stable) if all of its vertices are stable

(respectively semi-stable).

We define

In other words, ZT(L) consists of the data of the planar tree T, a boundary-marked disk

r, E R(Lv) for each vertex v, and a gluing parameter pe E (-1, 0] for each internal

edge e.
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Given an internal edge e of T with gluing parameter pe E (-1,0), we can glue the

disks r, at either end of e together along their strip-like ends with gluing parameter pg

(corresponding to the 'length' of the gluing region being le := - log(-pe)), to obtain

an element of 7ZT/e(L) (where T/e denotes the tree obtained from T by contracting the

edge e). This defines a gluing map

(T,e :{ E 'ZT(L) pe E (-1, 0)} -* NT/e (L).

Definition 1.4.1.3. We denote by N(L) the Deligne-Mumford-Stasheff compactification

of R(L) by stable disks:

R(L):= ( T(L / ~,

where

r O T,e(r)

whenever defined. Given a boundary-punctured disk S with modulus r E R(L), we call

the union of all strip-like ends and gluing regions (under all possible gluing maps) the

thin part of S, and its complement the thick part.

Remark 1.4.1.4. R is the compactification of R by allowing the gluing parameters Pe

to take the value 0. This corresponds to allowing the lengths of the gluing regions ie

to be infinite. fZ(L) has the structure of a smooth (k - 2)-dimensional manifold with

corners (where k := |LI - 1). The codimension-d boundary strata are indexed by trees

T with d internal edges. Namely, T corresponds to the subset of lzT where all d gluing

parameters p, are equal to 0.

Definition 1.4.1.5. We denote by 5(L) --+ N(L) the partial compactification of the uni-

versal family S(L) -* R(L) of boundary-punctured disks by stable boundary-punctured

disks.
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In [11], the coefficients of the A, structure maps

Pk : CF*(Lk_1, Lk) 0 ... .®CF*(Lo, L1) -+ CF*(Lo, Lk)

are defined by counts of (appropriately perturbed) holomorphic curves u : S,(L) -+ X

for some r E R(L). The structure of the codimension-1 boundary of 7z(L) leads to the

A, associativity equations.

When no two of the Lagrangians in L coincide, we define the A, structure maps in

exactly the same way. However, when some of the Lagrangians in L coincide, we alter

this definition.

Definition 1.4.1.6. A pearly tree S with Lagrangian labels L is specified by the

following data:

" A stable directed k-leafed planar tree Ts (the underlying tree of S) with La-

grangian labels L, such that the labels on either side of an internal edge are iden-

tical;

" For each vertex v, a point r, E R(Lv);

" For each internal edge e, a length parameter 1e E (0, 00).

We denote by V(S) the set of vertices of the tree Ts, and by EL(S) the set of edges of

Ts with both sides labeled L (internal or external). For each vertex v E V(S), we define

S, to be the boundary-marked disk with modulus rv, with all marked points between

distinct Lagrangians punctured (but all marked points between identical Lagrangians

remain). These are the 'pearls'. We define

SP := U SV.
vEV(S)
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For each internal edge e, we define Se := [0, le]. For each external edge e with opposite

sides labeled by the same Lagrangian, we define Se := R+, depending on the orientation

of the edge. For each Lagrangian L E L, we define

S'(L) := U Se,
eEEL(S)

and Se to be the disjoint union of Se(L) over all L. For each L E L, we define FL(S)

to be the set of flags of Ts with both sides labeled by the same Lagrangian L. We

define F(S) to be the union of all FL(S). For each f E FL(S), there is a corresponding

marked point on a boundary component of SP with Lagrangian label L, which we denote

by m(f) E SP. Also corresponding to f, there is a point b(f) E Se(L), which is the

boundary point of the edge corresponding to the flag f. We finally define

S:= (SP u S)/~

where

m(f) ~ b(f) for all f E F(S)

(see Figure 1-1(b)).

We now define a topology on the moduli space of pearly trees.

Suppose we are given a stable directed k-leafed planar tree T with Lagrangian labels

L. If the labels on opposite sides of an edge are distinct, we call the edge a strip edge,

and if they are identical, we call it a Morse edge. We denote by Ei,e(T) C E(T) the

internal strip edges, and Ei,M(T) C E(T) the internal Morse edges. We define

R('(L) :R(L) x (-1,0)Ei,(T) X (-e tEir'(T)
(vEV(T)

('pt' stands for 'pearly tree').
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As before, for any internal edge e E Ei(T), we have a 'gluing map'

PT,e {r E 7Z(L) : Pe E (-1,0)} -+ 7Pi e(L).

The only difference from the previous construction is that the gluing parameter pe now

takes values in (-1,1), rather than (-1, 0), for e an internal Morse edge.

Definition 1.4.1.7. We define RIt(L), the moduli space of pearly trees with La-

grangian labels L:

7RP'(L) Rp (L)

where

r ~,e(r)

whenever defined. A point r E Rt(L) corresponds to a pearly tree S, as follows: we

glue along any edge with gluing parameter < 0, so that we get a tree Ts whose only

internal edges are Morse edges with gluing parameter pe E [0, 1). We regard these as

edges having length parameter

le :-log(1 - pe)

(see Figure 1.4.1.2). This defines a topology on the moduli space RPt(L). Again, we

define the thin part of SP to be the union of all strip-like ends and gluing regions

(including a strip neighbourhood of each boundary marked point), and the thick part

of SP to be its complement.

Remark 1.4.1.8. We could have defined RPt(L) without any reference to strip edges

at all, since we can glue along all strip edges. However this would not allow us to define

the thick and thin regions, and we will need to consider strip edges soon anyway when

we define the compactification of RPt(L).
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Figure 1.4.1.2: In this figure, we show what happens as the gluing parameter pe for a
Morse edge in a pearly tree passes from negative to positive. On the left, pe < 0, and
we have a 'thin' region in our disk, corresponding to the edge e. As pe -+ 0-, the thin
region's length becomes infinite, until at p, = 0 we have a stable disk (middle picture).
On the right, pe > 0, and we have two distinct disks connected by an edge of length
1e = - log(1 - pe). As pe -* 0+, the edge's length goes to 0, until at pe = 0 we have the
same stable disk.

Definition 1.4.1.9. We denote by

SP(L) - RPt (L),

S(L) RPt(L) (for L E L), and

SP ( L) -+RPt (L)

the universal families with fibre SP, S,(L) and S, respectively, over a point r E RPt(L).

Definition 1.4.1.10. We define a universal choice of strip-like ends for the family

SPt(L) -+ RZP t (L) to consist of the embeddings

6 t : Rp (L) x Z- - SPt(L)

for each external strip edge, coming from our universal choice of strip-like ends for

families of boundary-punctured disks, and

e t : Rp (L) x R-+ SPt(L)

which are parametrisations of the corresponding external Morse edges (where the sign

± is determined by the orientation of the edge).

Definition 1.4.1.11. Given a tree Ts as above, and a subset B C E(Ts), we define
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RPt(Ts, B) C RPt(L) to be the images of pearly trees S with underlying tree Ts, with

gluing parameter pe = 0 for e E B and pc > 0 for e ( B (of course this depends on the

Lagrangian labels, but we omit L from the notation for readability). Each pearly tree

r E RPt(L) lies in a unique subset ?t(Ts, B).

Definition 1.4.1.12. Given (Ts, B) as in Definition 1.4.1.11, we define the universal

family

SPt (TsI B) - Wt (TsI B).

We now define the compactification of RPt(L). Let

Rlgt(L) := Q (L,) X (-1, 0] Ei,,s(T) X (-1, E,(T).

(vEV(T)

Note that Thp(L) contains Rt(L) as a dense open subset.

Definition 1.4.1.13. We define the the compactification of Rt(L), the moduli space

of stable pearly trees,

NZP'(L) f (L)

where

r' ~ T,e r)

whenever defined. We also define the universal family 5Pt(L) -+ NzPt(L) of stable pearly

trees.

Remark 1.4.1.14. In the spaces ZP', the gluing parameters of strip (respectively Morse)

edges can take the value 0 (respectively 1). This corresponds to the length of the gluing

region 1e becoming infinite (respectively, the length of the edge le becoming infinite).

Thus, we are essentially compactifying by allowing the pearls to be stable disks, and

the Morse edges to have infinite length. JZPt(L) has the structure of a smooth (k - 2)-

manifold with corners. The codimension-d boundary strata are indexed by trees T with
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Lagrangian labels L and d internal edges. Namely, the boundary stratum corresponding

to T is the image of the subset of RP (L) where all gluing parameters pc are 0 for strip

edges and 1 for Morse edges.

Remark 1.4.1.15. NPt(L) is obtained from the usual Deligne-Mumford-Stasheff com-

pactification 7Z(L) by adding a 'collar' along each boundary stratum corresponding to a

tree with a Morse edge in it.

NaYvely, the structure coefficients of the usual Fukaya category count rigid holomor-

phic disks u : S, -+ X for some r E R(L). In reality, we must perturb the J-holomorphic

curve equation to achieve transversality, in particular when two of the Lagrangian bound-

ary conditions coincide. In [11), the equation is perturbed by allowing modulus- and

domain-dependent almost-complex structures and Hamiltonian perturbations.

We would like to alter the definition of the Fukaya category so that the structure

coefficients are counts of rigid 'holomorphic pearly trees' u : S, - X for some r E Rpt (L).

NaYvely, a holomorphic pearly tree is a map which is holomorphic on the pearls and given

by the Morse flow of some Morse function on the corresponding Lagrangian on each edge.

Again, in reality, we have to perturb the holomorphic curve and Morse flow equations

by modulus- and domain-dependent perturbations in order to achieve transversality. We

describe how to do this in Sections 1.4.2-1.4.4.

1.4.2 Floer data and morphism spaces

Recall, from Section 1.3.1, that we define the Fukaya category of a symplectic manifold

(X, w) with the following properties and structures:

" W = dO is exact;

" X is equipped with an almost-complex structure Jo, compatible with w;
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* X is convex at infinity, in the sense that there is a bounded below, proper function

h : X -+ R such that

0 = -dh o JO;

e X is equipped with a complex volume form r/ (note: we will not take a quadratic

complex volume form as in [11], because we will assume our Lagrangians to be

oriented).

An object of the Fukaya category of X is a compact, exact, embedded Lagrangian

brane L# (we will neglect the superscript #, denoting the brane structure, for notational

convenience).

Definition 1.4.2.1. We define

W :=C (X, R),

the space of smooth, compactly supported functions on X (think of this as the space of

Hamiltonians), and J, the space of smooth almost-complex structures on X compatible

with w, and equal to the standard complex structure Jo outside of some compact set.

For future use, for each Lagrangian L, we define

VL := C (L, TL),

the space of smooth vector fields on L.

Definition 1.4.2.2. For each distinct pair of objects (Lo, L 1 ), we choose a Floer

datum (Hoi, J0 1 ) consisting of

Ho1 E C'([O, 1], N) and Jo1 E C ([, 1], J)

satisfying the following property: if #' denotes the flow of the Hamiltonian vector field

of the (time-dependent) Hamiltonian Hoi, then the time-i flow #1 (LO) is transverse to
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L 1 . One then defines a generator of CF*(Lo, L 1 ) to be a path y : [0, 1] -+ X which is a

flowline of the Hamiltonian vector field of Hoi, such that y(O) E Lo and y(l) E Li (these

correspond to the transverse intersections of 1 (Lo) with L1 ). One defines CF*(Lo, L 1 )

to be the C-vector space generated by its generators. It is Z-graded, as explained in [11,

Chapter 11, 121.

In [11], the case Lo = Li is treated identically, but we will do something different.

Definition 1.4.2.3. A Floer datum for a pair of identical Lagrangians (L, L) is a

Morse-Smale pair (hL, 9L) consisting of a Morse function hL : L -+ R and a Riemannian

metric gL on L. One then defines CF*(L, L) := C (L), the C-vector space generated

by critical points of hL. It is Z-graded by the Morse index.

Remark 1.4.2.4. Intuitively, one should think of this as a limiting case of Definition

1.4.2.2. Namely, we could choose the almost-complex structure part of the perturbation

datum to be a time-independent J E j which, when combined with w, induces a Rie-

mannian metric whose restriction to L is gL. We could then choose the Hamiltonian

part of the perturbation datum to be a time-independent function CH, where HIL = hL,

and consider the limit c -+ 0.

Definition 1.4.2.5. Given a set of Lagrangian labels L = (Lo,..., Lk), an associated

set of generators is a tuple

y = (yo,., yk),

where yj is a generator of CF*(Lj-1, Lj) for each 1 < j k, and yo is a generator of

CF*(Lo, Lk). We denote the grading of a generator y by i(y), and define

k

i(y) := i(yo) - Zi(y).
j=1
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1.4.3 Perturbation data for fixed moduli

For the purposes of this section, let S be a pearly tree with Lagrangian labels L and

fixed modulus r E RP'(L).

Definition 1.4.3.1. A perturbation datum for S consists of the data (K, J, V), where:

" K E Q1 (SP, 7);

" J E C (SP, J);

" V is a tuple of maps VL E C (S'(L), VL) for each L E L,

such that

K( )|Lc = 0 for all E TOC cT(SP)

for each boundary component C of a pearl in S with Lagrangian label LC.

We also impose a requirement that the perturbation datum be compatible with the

Floer data on the strip-like ends, in the following senses:

ejK = Hj- 1,(t)dt, J(c(s, t)) = Jj_1, (t)

on each external strip edge;

VL3 (c,(s)) =V/iLj

on each external Morse edge.

Definition 1.4.3.2. Given a pearly tree S with Lagrangian labels L and a perturbation

datum (K, J, V), a holomorphic pearly tree (or more properly, an inhomogeneous

pseudo-holomorphic pearly tree) in X with domain S is a collection u of smooth maps

UP : SP X and

UL : S'(L) - L for all L in L,
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satisfying

up(C) E Lc for each boundary component C of SP with label LC;

up ((f)) UL(b(f)) for all f E FL(S), for all L;

(Du, - Y) 0" = 0 on SP;

DUL - V = 0 on Se(L), for all L,

where, for ( E TS, Y( ) is the Hamiltonian vector field of the function K( ). Note that

the second condition says exactly that u defines a continuous map S -* X.

Definition 1.4.3.3. Given y = (y-, y+), where y± are generators of CF*(Lo, L 1 ), we

define the moduli space Mz(y) of solutions of the holomorphic pearly tree equation with

domain Z = R x [0, 1] (if Lo f L 1 ) or R (if Lo = L 1 ), translation-invariant perturbation

datum given by the corresponding Floer datum, and asymptotic conditions

lim u(s, t) = y±(t)

if LO 4 L 1 , and the same without the t variable if LO = L 1. We define M*(y)

Mz(y)/R, where R acts by translation in the s variable.

It is standard (see [36, 37]) that the moduli spaces M*(y) are smooth manifolds for

generic choice of Floer data, and their dimension is i(y) - 1.

Definition 1.4.3.4. Suppose that k > 2. Given a pearly tree S with Lagrangian labels

L = (Lo,... , Lk), associated generators y = (Yo, ... , Yk), and a perturbation datum, we

consider the moduli space Ms(y) of holomorphic pearly trees with domain S, such that

lim u(Ej(St)) = Yj(t)

and

lim u(EO(s, t)) = yo(t)
S-+-00
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on external strip edges, and the same (without the t variable) on external Morse edges.

We wish to show that the moduli spaces Ms(y) form smooth, finite-dimensional

manifolds for a generic choice of perturbation datum.

Definition 1.4.3.5. Fix 2 < p < oc and define the Banach manifold Bs(y) to consist

of collections of maps

U = (up, UL) E WI'C(SP, X) x W'W(Se(L), L)
LEL

such that

up(C) E Lc

for each boundary component C of SP with label Lc, and u converges in W 1'P-sense

to yj on the jth strip-like end. These boundary and asymptotic conditions make sense

because W1', injects into the space of continuous functions. Henceforth we omit the y

from the notation for readability. Note that the tangent space to Bs is

TuBs = W 1'P(SP, u*TX,u*TLc) G@ WP(S(L),u* TL),
LEL

where for the first component we have used the notation W1'i(SP, E, F) for the space of

W'iP sections of a vector bundle E over S, whose restriction to the boundary lies in the

distribution F C Elasp.

Definition 1.4.3.6. The maps u E BS are not necessarily continuous at the points

where edges join onto pearls. We define

LF(S) ._- LFL(S).
LEL
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Then there are evaluation maps

and

evm : S - LF(S)

evm(u) (up(m(f)))fEF(S)

evb :BS -B L F(S)

eVb(U) (UL(b(f)))fEFL(S)-

We define

ev (evm,evb).

We also define

AS c LF(S) x LF(S)

to be the diagonal. An element u E SS is continuous at the points where edges join onto

pearls if and only if u E ev- 1 (AS). We define the linearization of ev,

D(ev) : TuBS - Tev(u) (LF(S) x LF(S)).

Given a point u E ev-'(AS), we define the projection of the linearization to the normal

bundle of the diagonal,

D ') : TuBS -+ Tev,(u)LF(S)

Dy'U := D(evm) - D(evb).

Definition 1.4.3.7. Define the Banach vector bundle S(y) -+ B S(y) whose fibre over
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u (again omitting the y from the notation) is the space

(s)n := LP(SP, Qs' 0 u*TX) @ Q LP(S"(L), u*TL).
LEL

There is a smooth section

ds : Bs

ds(u)

-+ Es

((Du, - Y) 0 '1 , (DUL - V))-

We denote the linearization of ds at u by

D : TuBs -+ (ES)u

(the 'h' stands for 'holomorphic').

Note that Ms(y) = (ev, ds)'(As, 0) (where 0 denotes the zero section of the

Banach vector bundle Es(y)).

Definition 1.4.3.8. Given u E Ms(y), we denote by

Ds,u : TuBs -+ Tem(u) LF(S) @ (ES)u

the projection of the linearization

Du(ev, ds)

to the normal bundle of (As, 0). It is given by

Ds,, = De' e D,

We say that u E Ms(y) is regular if Ds,u is surjective, and that Ms(y) is regular if

every u E Ms(y) is regular.
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It is standard that the operator D" is Fredholm (compare [11, Section 8i] for the

pearls, and [38, Section 2.2 for the edges). Therefore, Ds(ev, ds) is Fredholm also,

because the codomain of ev is finite-dimensional. So the map (ev, ds) is Fredholm.

Thus, if Ms(y) is regular, then it is a smooth manifold with dimension given by the

Fredholm index of Ds,u at each point.

It will follow from our arguments in Section 1.4.6 that, for a generic choice of per-

turbation datum, Ms(y) is regular.

1.4.4 Perturbation data for families

To define the Fukaya category, we must count moduli spaces of holomorphic pearly trees

with varying domain, rather than a fixed domain as in Section 1.4.3. The first step is to

define perturbation data for the whole family SPt(L) -+ RPt(L). The following definition

is the appropriate notion of a smoothly varying family of perturbation data for each fibre

Sr.

Definition 1.4.4.1. A perturbation datum for the family SPt(L) -* RPt(L) consists

of the data (K, J, V), where:

" K E s,7/,t(SP,14)

e J E c (SP,);

" V is a tuple of maps VL E C (SL, VL) for each L E L,

such that the restriction of (K, J, V) to each fibre S, is a perturbation datum. We

furthermore require some additional, somewhat artificial, conditions to deal with the

structure of the moduli space near a point with an edge of length 0 (the situation

illustrated in Figure 1.4.1.2). Namely, for any edge e, we require:
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* VIs, = 0 whenever le E [0, 1];

" the perturbation data do not change as le varies between 0 and 1 (keeping all other

parameters fixed);

" VIS, V VhL whenever 1 > 2;

" K - 0, and J is constant, on a neighbourhood of each Morse edge of length 0. To

see what this means, look at Figure 1.4.1.2: we require that K = 0 and J has one

fixed value on the long strip on the left, and in a neighbourhood of the boundary

marked points at opposite ends of the edge on the right.

We impose the condition V~s, = 0 on edges of length e < 1 because it makes the

following Lemma true (a similar trick is used in [35]):

Lemma 1.4.4.2. Suppose that we have chosen a perturbation datum in accordance with

Definition 1.4.4.1, and that S = S, is a pearly tree with an edge e of length 1e < 1. Let

S' = S< denote the pearly tree that is identical to S, except we shrink the edge e to have

length le= 0. Then there is a canonical isomorphism

Ms(y) = Ms'(y)

(where both are defined using the restriction of the perturbation datum on SPt to the fibres

S, S').

Proof. The result is clear from the holomorphic pearly tree equation (see Definition

1.4.3.2): because VIS, = 0 for le E [0,1], the corresponding map Uls, : [0,le] -+ L is

necessarily constant. Thus the part of the holomorphic pearly tree equation on the edge

e reduces to a point constraint, regardless of 1,. Because the perturbation datum does

not change as we vary le E [0,1], the equation on the rest of S does not change, so

Ms(y) and Ms,(y) can be canonically identified. D
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Definition 1.4.4.3. Given a set of Lagrangian labels L = (Lo,...,Lk), associated

generators y, and a perturbation datum, we consider the moduli space

Mspi(y) := {(r,u) : r E RPt(L) and u E Ms,(y)}.

We now aim to show that Ms3 t (y) is a manifold (whether it is possible to construct

a smooth manifold structure is unclear, but this is irrelevant for the purposes of defining

the Fukaya category). The complicated part of this is to understand what happens in

a neighbourhood of the Morse edges of zero length, because the nature of the domain

changes at those points. We start by explaining what happens away from the Morse

edges of zero length (i.e., when the modulus r E RPt(Ts, B) where B = #).

Definition 1.4.4.4. Let U c RPt(L) be a small connected open subset which makes

the strip-like ends constant and avoids a neighbourhood of the pearly trees with some

Morse edge of length 0. We define the trivial Banach fibre bundle BsPti(y) - U whose

fibre over r E U is the Banach manifold Bs,(y) defined in Definition 1.4.3.5. There is a

Banach vector bundle Es tIu(y) -+ Bsptiu (y) whose restriction (omitting the y from the

notation) to Bs, is the Banach vector bundle Es, defined in Definition 1.4.3.7. It has a

smooth section dspti given, over Bs, by the section ds, of Definition 1.4.3.7. We have

MsPtiu (y) = (evIu, dspti0)l(As, 0)

(note that the codomain of ev depends on the underlying tree Ts of S,; our requirement

that U be connected and avoid Morse edges of length 0 ensures that Ts is constant on

U). Given (r, u) E MSut(y) with r E U, we denote the linearization of dspti at (r, u)

by

D he T,u) {B3svtlt ) - (EsS,)n,

where we note that

Tr,u) (1BsPtIu) = TrRpt e TuBs,.
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Remark 1.4.4.5. The component

TuBs, -+ (.Es,)u

is just the linearized operator Dsh,, from Definition 1.4.3.7. The component

T7zp (Es,)U

corresponds to derivatives of the holomorphic curve equation (Definition 1.4.3.2) with

respect to changes of the modulus r.

Definition 1.4.4.6. We denote by

Dsptiuru : T(r,u) (!BsPtiu) -+ Tev,(u)LF(S) D (,ESr)u

the projection of the linearization

Dr,u(evlu, dspt lu)

to the normal bundle of (As, 0). It is given by

Dsvtiu,r,u = Dj",u e DS,,

If Sr has no edges of length 0, we say that (r, u) is a regular point of Ms8 t (y) if Dsptiu,r,u

is surjective (for some open neighbourhood U of r as above). We say that the moduli

space Mstiu(y) is regular if every u E Msptlu(y) is regular.

Proposition 1.4.4.7. The operator Dsptu,,,u is Fredholm of index

ind(Dspt1 ,,,u) = k - 2 + i(y)

when U avoids a neighbourhood of all pearly trees with edges of length 0.

80



Proof. See [11, Section 12d] for the pearl component - the inclusion of the Morse flowlines

is a trivial addition. El

It follows that, if Msptl 1(y) is regular, then it is a smooth manifold with dimension

equal to the Fredholm index of Dspti, given above. The transition maps between the

spaces Bsptui are not necessarily smooth, so in general it is not possible to define a Banach

manifold 'Bsptiu' over an arbitrarily large open set U avoiding a neighbourhood of the

Morse edges of length 0. However, elliptic regularity ensures that the transition maps

between spaces Mstiu (y) are smooth in the regular case, hence they can be patched

together to obtain a smooth manifold MASPti(y) over an arbitrarily large open set U

avoiding a neighbourhood of the Morse edges of length 0 (compare [11, Remark 9.4]).

Now we must deal with the Morse edges of length 0, i.e., the case that the modulus

r E RP'(Ts, B), where B f # (in the notation of Definition 1.4.1.11).

Definition 1.4.4.8. We define the moduli space

MsPt(Ts,B)(y) := (r, u) E M8st (y) : r E RPt(Ts, B)}

In order to construct a manifold structure on the moduli space Mst(y), we are

going to arrange that all of the moduli spaces MSPt(Ts,B)(y) are regular, then use them

to construct charts for the manifold structure on Mspt (y).

Definition 1.4.4.9. Let U C RPt(Ts, B) be a small connected open subset which makes

the strip-like ends constant and avoids a neighbourhood of the pearly trees with some

Morse edge not in B having length 0. We define BSPt(Ts,B)Iu, 46SPt(Ts,B)I, dspt(Ts,B)|u by

restricting BsPtlu, esptlu, dsptiuto RP t(Ts, B). We have

M SPt(TS,B)U (y) = (ev u, dSpt(Ts,B)IU) 1 (AS, 0).
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The projection of the linearization

Dru(eVIv, dsPt(TS,B)|U)

to the normal bundle of (AS, 0) is the restriction of Dstir,,,u to the codimension-IBI

subspace

TrZP'(Ts, B) e TU3S, C TRJPt G T1s3s.

We denote it by DSPt(TsB)Ur,u. By Proposition 1.4.4.7, it is Fredholn of index

ind(DsPt(Ts,B)IU,r,u) = k - 2 + i(y) - |BI.

Definition 1.4.4.10. We say that (r, u) is a regular point of Mspt (y) if r E RPt(Ts, B)

and the operator DSPt(TS,B)U,r,u is surjective (for some open neighbourhood U c ZPt(Ts, B)

of r as above). We say that the moduli space Mst (y) is regular if every (r, u) E Mspt (y)

is regular.

It follows that, if Mspt (y) is regular, then each moduli space MSPt(Ts,Bu is a smooth

manifold with dimension equal to the Fredholm index of DsPt(Ts,B) given above.

Assuming regularity, we now construct charts for a manifold structure on Mspt (y).

Definition 1.4.4.11. Let U C RPt(Ts, B) be a small connected open subset which

makes the strip-like ends constant and avoids a neighbourhood of the pearly trees with

some Morse edge not in B having length 0. Given E > 0, denote by U, C RPt the image

of the map

U x (-eB I

obtained by interpreting the parameter in (-c, E) corresponding to the edge e E B as a

gluing parameter p, for e. Note that U, is open in Wt.

Proposition 1.4.4.12. Suppose that Mspt is regular. Then for some e > 0 sufficiently
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small, there is a homeomorphism

MSPt(Ts,B)|u X (-E E)B -4 Msptl

which makes the following diagram commute:

M4SPI(Ts,B)|y X (-CIE) ) Msptlu,

I t
-i Ui

U X (-E, E), Ue.

Proof. If two pearls are joined by a Morse edge e of length zero, then they form a nodal

disk. In a neighbourhood of the node, the Hamiltonian perturbation is identically 0 and

the almost-complex structure is constant, by the conditions we placed on our pertur-

bation datum. A standard gluing argument shows that there is a family of pearls with

gluing parameter pe E (-e, 0], converging to this nodal disk. A standard compactness

argument shows that any sequence of pearls with gluing parameter pe -+ 0- converges

to such a nodal disk. More generally, allowing for multiple Morse edges of length 0, one

can show that there is a homeomorphism

MSPI(Ts,B)Jy X (-E, 0 B + AS 'im(Ux(-,o]B)

for some e > 0 sufficiently small.

It then follows from Lemma 1.4.4.2 that this map extends to a homeomorphism

MASP,(TsB)|y X (--E, E B - st

with the desired properties. El

We have an open cover of RPt by the sets of the form U, for some U C RPt(Ts, B)

and some Ts, B. Therefore, we have an open cover of MSPt (y) by sets Mspt1, (y) which
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are homeomorphic to smooth manifolds of dimension k -2 + i(y). So they are the charts

of a topological manifold structure on Mspt. We have proven:

Proposition 1.4.4.13. If Mspt(y) is regular, then it has the structure of a topological

manifold of dimension

dim(Mspt (y)) = k - 2 + i(y).

Remark 1.4.4.14. One can show that the embeddings of Proposition 1.4.4.12 respect

orientations, and hence that the manifold Msrt (y) is oriented.

1.4.5 Consistency and compactness

Definition 1.4.5.1. A universal choice of perturbation data is a choice of perturbation

datum for each family SPt(L) (for all choices of Lagrangian labels L).

Definition 1.4.5.2. (Compare [11, Section 9i]) Given a tree T with Lagrangian labels

L, the gluing construction defines a map to a collar neighbourhood of the boundary

stratum corresponding to T:

{r E N : pe E (-6, 0] for e a strip edge, and pe E (1 - E,1] for e a Morse edge} -+ NP'.

Because the perturbation data are standard along the strip-like ends (given by the Floer

data), we can glue the perturbation data on the families SPt(L,), for each vertex v of

T, together to obtain a perturbation datum (KT, JT, VT) on this collar neighbourhood.

Furthermore, this perturbation datum extends smoothly to the boundary stratum corre-

sponding to T. We say that a universal choice of perturbation data is consistent if the

perturbation datum (K, J, V) on SPt(L) also extends smoothly to the compactification

SP'(L), and agrees with the perturbation datum (KT, JT, VT) on the boundary stratum

corresponding to T, for all such L and T.

Proposition 1.4.5.3. Consistent universal choices of perturbation data exist.
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Proof. The proof is essentially the same as [11, Lemma 9.5].

Definition 1.4.5.4. Suppose we have made a consistent universal choice of perturbation

data, and all moduli spaces are regular. Let L be a set of Lagrangian labels and y

an associated set of generators. A stable holomorphic pearly tree consists of the

following data:

" A semi-stable directed planar tree T with Lagrangian labels L;

" For each edge e of T, a generator ye E CF*(Lr(e), Li(e)), where Lr(e), Ll(e) are the

Lagrangian labels to the right and left of e respectively, such that the generators

are given by y for the external edges;

" For each stable vertex v (i.e., v has valence > 3), an element

(ruv) E M4s~t (L (yv),

where yv denotes the set of chosen generators for the edges adjacent to v;

" for each vertex v of valence 2, an element

uv E M*z(yo).

We define M,t(y) to be the set of all equivalence classes of stable holomorphic pearly

trees modeled on the tree T.

Definition 1.4.5.5. We define the moduli space

Mspt (y) := MS,(y
T

of stable holomorphic pearly trees, as a set.

Proposition 1.4.5.6. Mspt (y) has the structure of a compact topological manifold with

corners. Its codimension-d strata are the sets M, where T has d internal edges. In
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particular, the open stratum (corresponding to the one-vertex tree) is the moduli space

Proof. Observe that each stratum

Mj~t(y)

has the structure of a smooth manifold, since it is a product of smooth manifolds. By

standard gluing arguments, there are maps

Mj, (Y) X (--,,0]E(T) _ St()

We define the topology on M9p (y) so that all of these maps are continuous. This defines

a manifold-with-corners structure on the moduli space of stable holomorphic pearly trees.

We prove compactness by considering each underlying tree type Ts for a pearly tree

separately. Given Ts, consider the moduli space of stable holomorphic pearly trees such

that, if we contract all edges of length 0, we get a tree of type Ts. The space of possible

stable pearls corresponding to vertices of Ts is compact, by standard Gromov compact-

ness as in [39]. Similarly, the space of possible broken Morse flowlines corresponding

to edges of Ts is compact, by standard compactness results in Morse theory as in [38,

Section 2.4]. Thus, the full moduli space is a closed subset (defined by the incidence

conditions of marked boundary points on pearls and ends of edges) of the compact set

of all possible pearl and edge maps. By considering all possible tree types Ts, we obtain

a covering of Mspt(y) by a finite number of compact sets, hence the moduli space is

compact. D
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1.4.6 Transversality

Proposition 1.4.6.1. The moduli spaces Mspt(y) are regular for generic consistent

universal choices of perturbation data.

Proof. Make a consistent universal choice of perturbation data. For each set of La-

grangian labels L, we show that it is possible to modify the perturbation data (K, J, V)

slightly to make our moduli spaces regular. In fact it is sufficient only to perturb (K, J),

assuming we have already chosen the Floer data (hL, gL) to be Morse-Smale for each L.

Our situation is very similar to that considered in [11, Section 9k].

A deformation of (K, J) is given by a choice of:

e K E Qhp/zt(SP, W);

e JJ E C (SP,TiJ),

such that (6K, 6J) vanish on the strip-like ends and K(()|LC 0 for each ( E TC,

where C is a boundary component of a pearl and Lc its Lagrangian label.

We choose an open set Q C SP such that, for each r E 7pt, Q n S? lies within

the 'thick' region of Definition 1.4.1.7, and intersects each connected component of the

thick region in a non-empty, connected set that intersects each boundary component

(see Figure 1.4.6.1). To retain consistency of our perturbation datum, we require that

(6K, 6J) are zero outside Q, and extend smoothly to a pair (6K, 6J) defined on SP which

vanish to infinite order along the boundary.

Let T denote the space of all such (6K, 6J). Given t E T, we can exponentiate it to

an actual perturbation datum, and we define

Mst (y)
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to be the moduli space of holomorphic pearly trees with respect to this perturbation

datum. We define the universal moduli space

Mg1(y) :{(t, r, U) : t E T, (r, U) E MSyt (y)}

We have the associated universal linearized operators

DSt,, ' T e T RP E TuBs, + Tev (u)L~ Sr)u

given by

D nt .,V = D , , d e DS t uS =tr D -~ Stru ~D~ru

where Dst,,u is as defined in Definition 1.4.4.4 and

Ddef _:T__+('S'r)u

SPt,r,u

takes the derivative of the holomorphic pearly tree equation with respect to changes

in the perturbation datum. We should really work in a local trivialization of SPt over

a small set U, as we did in Section 1.4.4, but we gloss over this point to make things

readable.

We claim that the universal operator Dunv,, is surjective. Let S denote the pearly

tree with modulus r. The codomain of D uni, is a direct sum

TeVn(U)LF(S) G LP(SP Q' 0 u* TX) e LP(S*(L), u*TL).
LEL

The operator Dspt,r,u always maps

W1'P(Se(L), u*TL) -+ LP(S*(L), u*TL)

surjectively, for each L E L (the moduli spaces of Morse flowlines are always regular -
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we are not imposing any boundary conditions here).

The space of deformations T maps surjectively to

LP(SP, QO'0 9 u*TX)

(see [11, Section 9k]). To complete the proof of surjectivity, we show that the tangent

space to the zero set of the universal section

unfiv j~TxW~S ',Q'0uX
dI"|sp : T x Wj'P(SP, X) -+ LP(SP,Os 0 u*TX)

maps surjectively to

Tevminu)L F(S)

using a modification of an argument given in [40, Section 3.4]. The essential observation

is that the group of Hamiltonian diffeomorphisms fixing the Lagrangians in L acts on

the space of perturbation data and associated holomorphic pearly trees with labels L.

Let h : SP -+ 'h be a smooth function which is locally (in the z coordinates on SP)

equal to a constant H E W outside of QOnSP, and such that hIC vanishes on the Lagrangian

Lc, for any boundary component C of SP with label Lc. Denote by #z : X -+ X the

time-1 flow of the Hamiltonian h(z), for z E SP. Then we can define a map from

T x W7'f(SP, X)

to itself by

up(z) #-+ 2(UPz),

K(z) - $*K(z) - dh(z),

J(z) F-- J(z) o #2

89



Figure 1.4.6.1: The region Q n S? (shaded dark grey) inside SP (shaded light grey), for

some r E RPt. Note that Q avoids all thin regions. The solid circles denote marked

points. For each marked point m(f), there is a curve inside Q (drawn as a dotted line)

which separates m(f) from all other marked points and punctures.

where dh(z) denotes the differential of h(z) with respect to the coordinates z on SP. In

particular, dh(z) is supported in Q, so the new perturbation datum still lies in T. One

can show that this action preserves the section dni's and in particular preserves its

zero set.

By our definition of Q, for each flag f E F(S) we can choose a curve in Q that

cuts the pearl containing m(f) into two regions, one of which contains the marked point

m(f) and no other punctures or marked points. We can make these curves disjoint for

different f (see Figure 1.4.6.1). Then we can define hf : SP -+ 7f which is supported in

the region containing m(f), and constant equal to some Hamiltonian H1 in the portion

of that region that lies outside of Q. By making different choices of the functions H1 , we

can independently move the points #,m(f)(up(m(f))) in any direction we please, so the

linearization of the evaluation map is surjective from the tangent space to the zero set

of d"i"Isv onto Teom (u) LF(S). This completes the proof of surjectivity of the universal

linearized operator.

Therefore, the universal moduli spaces Mgt" are Banach manifolds. Similarly, one
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can show that the universal moduli spaces

MSPt(TS,B)(Y) := {(t, r, u) : t E T, (r, u) E Mst(T,,)( y)

are Banach manifolds for each (Ts, B) (see Definitions 1.4.1.11, 1.4.4.8). The regular

values of the projections of each of these universal moduli spaces to T are of the second

category, by the Sard-Smale theorem (see Remark 1.4.6.2). Taking the intersection of

regular values of the projection, over all (Ts, B), shows that for a generic choice of

deformed perturbation datum in T, the moduli spaces

are all simultaneously regular. This was our definition of regularity of the moduli space

Mspt (y) (see Definition 1.4.4.10). 0

Remark 1.4.6.2. We have glossed over one technical issue: the space of admissible

deformed perturbation data is not a Banach space as we have defined it, but rather a

Frdchet space, and hence the Sard-Smale theorem does not apply. To fix this, we should

work with the Banach spaces of CI perturbation data, then take the intersection over all

I (see [40, Section 3.1] for details).

1.4.7 A,, structure maps

In this section we give our definition of the Fukaya category. We do not discuss signs,

but they work in essentially the same way as in [11] (using Remark 1.4.4.14).

We make a choice of Floer data and a consistent universal choice of perturbation

data, and assume that all moduli spaces Ms8 t (y) (as well as those used in the definition

of the Floer differential) are regular.
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We define the differential

p-t : CF* (LO, L1) -+ CF* (LO, L1)

to be the standard Floer differential if Lo, Li are distinct, and to be the Morse differential

(for Morse cohomology) for (hL, 9L) if Lo = Li = L.

Given Lagrangian labels L = (LO,..., Lk), we define the higher products

pk : CF*(Lk-1, Lk) 0 ... 0 CF*(Lo, L1) -+ CF*(Lo, Lk)[2 - k|

as follows: given an associated set of generators y = (yo,. . . , yk), such that

i(yo) = i(y) + ... + i(yk) + 2 - k,

we define the coefficient of yo in

yk(yk, y 1 )

to be the count of points in the moduli space

Mspt (y)

(which is 0-dimensional by Proposition 1.4.4.13), with appropriate signs. Note that the

condition on degrees of the yj mean that the maps y k respect the Z-grading in the

appropriate sense for an A, category.

Proposition 1.4.7.1. The operations pk satisfy the A, associativity equations, with

signs and Z-gradings.

Proof. The proof follows familiar lines: given a set of generators y associated to La-

grangian labels L, we consider the 1-dimensional component of the moduli space Mst (y).

The signed count of its boundary components is 0. By the results outlined in Section
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1.4.5, the codimension-1 boundary strata of AMSet (y) consist of those stable holomorphic

pearly trees modeled on trees T with one internal edge. The fact that their signed count

is 0 means that the coefficient of yo in

E(-1)p-+(Yk, .. ,Ya+b+ 1, p"(ya+b, .-,yb+1), Yb, - YO., 1
a,b

is 0, where

*=i(y1) + .. + i(yb) - b.

This means exactly that the A. associativity equations hold. E

Proposition 1.4.7.2. The Fukaya category is independent, up to quasi-isomorphism, of

the choices of strip-like ends, Floer data and perturbation data made in its definition.

Proof. Compare [11, Chapter 10]. D

Proposition 1.4.7.3. The A, algebra CF*(L, L) is quasi-isomorphic to the differential

graded cohomology algebra C*(L).

Proof. We can choose the Hamiltonian perturbations of the moduli spaces used to define

CF*(L, L) to be zero, so that all pearls are constant by exactness of L. It is not difficult

to show that transversality can be achieved with this class of perturbation data, by

perturbing V. The definition of CF*(L, L) then coincides with the definition of the A,

algebra CM*(L) given in [35, Section 2.2] (by counting Morse flow trees on L). The

result now follows from [35, Section 3].

1.4.8 Compatibility with other definitions

In this section, we explain why our definition of the Fukaya category (which we denote,

for the purposes of this section, by Fuk'(X)) is quasi-equivalent to that in [11] (which we
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denote by Fuk2 (X)). We define an auxiliary A. category, Fuk12 (X), which contains

two objects, L1 and L2 , for each object L of the usual Fukaya category. We define

Floer data for each pair (L 1 , L1 ) to consist of a Morse-Smale pair on L, but for all

other pairs of objects (L', Li), including the case Lo = L 1 , we define the Floer data

as if the objects were distinct in Definition 1.4.2.2 (i.e., the Floer datum consists of a

Hamiltonian component whose time-i flow makes Lo and L1 transverse, and an almost-

complex structure component). We define the A. structure coefficients by counting

holomorphic pearly trees as before, but we only allow Morse flowlines if an edge has

labels L' on opposite sides for some L.

There are A, embeddings

Fuk(X) <-+ Fuk12 (X) - Fuk2 (X)

defined by L + L 1, L H- L 2 respectively.

Proposition 1.4.8.1. The objects L1 , L 2 are quasi-isomorphic, for any L.

Proof. The Piunikhin-Salamon-Schwarz isomorphism (41] gives isomorphisms on the

level of cohomology,

HF* (L', L2 ) L H F*(L 2, L ) - HF*(L2, L 2 ) c H*( L),

and says that the product

HF*(L', L2 ) 0 HF*(L2, L) -+ HF*(L2 , L2 )

agrees with the cup product on cohomology (note that the moduli spaces defining this

product involve no holomorphic pearly trees, only disks).
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In particular, if we choose morphisms

f12 E CF*(L', L 2 ) , f21 E CF*(L 2 , L)

corresponding to the identity in cohomology, then the PSS isomorphism tells us that the

product

P2(f21, fi2) E CF*(L 2 , L 2 )

corresponds to the identity in cohomology. Thus, because HF* (L 1 , L') and HF*(L2 , L 2 )

have the same rank (both are isomorphic to H*(L)), the morphisms f12 and f21 induce

isomorphisms on cohomology.

Thus, L' and L 2 are quasi-isomorphic, as required.

Corollary 1.4.8.2. The embeddings

Fuk1 (X) -+ Fuk1 2 (X) - Fuk2(X)

are quasi-equivalences, and in particular, the Ao categories Fuk1 (X) and Fuk2 (X) are

quasi-equivalent.

Proof. See [11, Section 10a).

1.5 Computation of A

The aim of this section is to prove Theorem 3, which identifies the cohomology algebra

of A as an exterior algebra, and Proposition 1.5.4.3, which gives a description of A up

to quasi-isomorphism.

The outline of the section is as follows: Section 1.5.1 gives a Morse-Bott description
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of CF*(L", Ln). We define an A, category C with two objects: one is the Lagrangian

immersion Ln : Sn -+ p", and the other is the Lagrangian immersion L' : Sn -+ CP"

which is the double cover of the real locus RP". The situation is analogous to that

in Section 1.4.8, in which we explained why our Morse-Bott description of the Fukaya

category using pearly trees was equivalent to the standard one using disks. Namely, we

will define the A, structure maps so that the A, endomorphism algebra of Ln counts

holomorphic disks as in Section 1.3.1, and in particular is the same as A, while the A,

endomorphism algebra of L' counts Morse-Bott objects which we call 'admissible flipping

holomorphic pearly trees'.

Recall that one can think of a pearly tree as a degeneration of holomorphic disks, as

the Hamiltonian part of the Floer datum for the pair (L, L) converges to 0 (see Remark

1.4.2.4). Similarly, one should think of L' as the limit of L' as E --+ 0, i.e., the double

cover of RP" C CP' by Sn (recall that L' is constructed as the graph of an exact 2-

valued 1-form edf in the cotangent disk bundle D*RP" embedded in CP). One should

think of a flipping holomorphic pearly tree as a degeneration of a holomorphic pearly

tree with boundary on L', in the limit E -+ 0.

Because we wish to consider only holomorphic pearly trees which lie inside P" (i.e.,

do not intersect the boundary divisors), we must impose an additional condition ('admis-

sibility') on our flipping holomorphic pearly trees. Thus, although the admissible flipping

holomorphic pearly trees themselves may intersect the boundary divisors, they should

be thought of as degenerations of holomorphic pearly trees which avoid the boundary

divisors.

We show that, for sufficiently small E > 0, the objects L' and Ln of this Ao category

are quasi-isomorphic, and hence that we can compute A := CF* (L", Ln) up to quasi-

isomorphism by computing A' := CF*(L', L').

In Section 1.5.2 we describe some features of pearly trees, which help us to explicitly
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identify the moduli spaces of flipping holomorphic pearly trees that give the structure

coefficients of A'. This is possible because the pearls involved are just holomorphic disks

in CP" with boundary on RP' (with some additional restrictions), hence well-understood.

In Section 1.5.3, we carry this out. In particular, we prove Theorem 3, which identifies

the cohomology algebra of A' (and hence A) as an exterior algebra. We also identify

certain higher A, structure maps of A'.

Finally, in Section 1.5.4, we show that A' is versal in the class of A, algebras with

cohomology algebra the exterior algebra, and the equivariance and grading properties

established in Section 1.3. This identifies A' (and hence A) up to quasi-isomorphism, in

the sense that any A, algebra in the same class must be quasi-isomorphic to A.

1.5.1 Flipping pearly trees

For the purposes of this section, we think of CP" as the hyperplane

{ z = 0 c CPn+,

RP" as its real locus, L' : S" -+ CP" the composition of the double cover of RP" with the

inclusion RP" -+ CP", and {xj} the real coordinates on S". We define an A, category

C with two objects: one is the Lagrangian immersion Ln : Sn -+ p', and the other is

the Lagrangian immersion L': S" -+ CP" just defined.

Definition 1.5.1.1. We define Floer data and morphism spaces for the pairs of objects

(Lo, L1 ) = (Ln, L"), (Ln, L') or (L', L') as in Definition 1.3.1.5.

Definition 1.5.1.2. The Floer datum for the pair (L', L') consists of two Morse func-

tions on Sn: one is h, a function whose only critical points are a maximum P[n+2] and

minimum po. The other is f, the function constructed in Definition 1.2.2.3, which has
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critical points PK for each proper, non-empty subset K c [n + 2), as shown in Corollary

1.2.2.11. Both, when paired with the standard round metric g on S', form a Morse-Smale

pair. One then defines

CF*(L', L') CM*(h) e CM* (f ~ C(pK).
KC[n+2]

We equip it with the Q-grading

i(pK) := n K

(compare Corollary 1.3.3.2).

Remark 1.5.1.3. Given a complex volume form r on 'P, we can define a Z-grading on

the morphism spaces CF*(Lo, L1) as usual.

Definition 1.5.1.4. We call generators of CF*(L', L') corresponding to critical points

of f flipping generators, and those corresponding to critical points of h non-flipping

generators.

Definition 1.5.1.5. Suppose we are given a set of Lagrangian labels L, consisting only

of the objects L' and L" of C. We define a pearly tree with labels L to be a pearly tree

as in Definition 1.4.1.6, except that we only allow edges labeled L' (not L").

Definition 1.5.1.6. We define a perturbation datum (K, J, V) for the family of pearly

trees as in Sections 1.4.3, 1.4.4, with one difference. Namely, the part of the pertur-

bation datum V (associated to the edges, which all have label L') now consists of two

components: the 'flipping component'

V E C (Se, Vs.)

and the 'non-flipping component'

V" nf Co (Se, Vsn).
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We require that

on an internal edge e of length le < 1, and

Vf = Vf and Vnf = Vh

on an external edge or an edge e of length 1e > 2.

Definition 1.5.1.7. (Compare Definition 1.4.3.2) Given a set of Lagrangian labels L

and associated generators y, we define a flipping holomorphic pearly tree with labels

y to consist of the following data:

" A designation of certain edges as flipping and the remaining edges as non-

flipping, such that external flipping edges are labeled by flipping generators and

external non-flipping edges are labeled by non-flipping generators. We call the

marked points attached to flipping edges flipping marked points and those at-

tached to non-flipping edges non-flipping marked points;

" A smooth map

Ue S' -± S'

satisfying

Due - V - 0 on flipping edges, and

Due - V -= 0 on non-flipping edges;

" A smooth map

UP: SP -+ CPn

satisfying

(Du, - Y) 0' = 0,
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such that

u,(C) E im(Lc) for each boundary component C of SP with label Lc;

e A lift ic of the map upIc : C -+ im(Lc) to Sn,

Sn

C -,> im(Lc),
unc

for each boundary component C with label Lc,

satisfying the following conditions:

" sc is continuous except at flipping marked points, where it changes sheets of the

covering;

" We have

i'(m(f)) = ne(b(f)) for all f E F*(S),

where we denote by ii+, respectively f-, the right, respectively left, limit of ii (this

is necessary because ii is discontinuous exactly at the flipping marked points), and

where F+(S), respectively F-(S), denotes the subset of flags whose orientation

agrees, respectively disagrees, with the orientation of the tree;

" The external edges are asymptotic to the generators y, in the same sense as in

Definition 1.3.1.8.

Recall that p' is obtained from CPn by removing the divisor D which is the union

of the divisors Dj = {zy = 0} for j = 1,.. . , n + 2. We wish to count only flipping

holomorphic pearly trees that do not 'intersect' the divisors Dj. We now explain how to

do this in a well-defined way.
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Definition 1.5.1.8. Given a flipping holomorphic pearly tree u as defined above, one

obtains a well-defined homology class [u] E H 2 (CIP", Ln) as follows:

" Start with the continuous map u : S -+ CP" associated with the flipping holomor-

phic pearly tree.

" Glue a thin strip along the boundary of the flipping pearly tree (see Figure 1-1(a));

" If the boundary component or edge has label L", then it already gets mapped to

L7, so we map the strip into CP" by making it constant along its width.

" If the boundary component or edge has label L', then by construction, there is a

continuous lift of the boundary of the strip to S'. Namely, it is given by the lift jic

along a boundary component C of a pearl with label L'; by a flowline of Vf and

its antipode along the boundary of a strip coming from a flipping edge; and by a

flowline of Vh on both sides of the boundary of a strip coming from a non-flipping

edge.

" Thus, we can map the strip into CIP" by letting it interpolate between the zero

section and the graph of edf in the Weinstein neighbourhood D*S' used in the

construction of L". Thus, boundary components of the strip with label L' now lie

on L".

We now define the intersection number u - Dj to be the topological intersection

number of this class [u] E H2 (CP", Ln) with Dj E H 2n-2(CPn). We say that a flipping

holomorphic pearly tree u is admissible if u - Dj = 0 for all j.

Proposition 1.5.1.9. Let u be a flipping holomorphic pearly tree. Then the intersection

numbers u . Dj are non-negative. Furthermore, in nice situations they can be calculated:

Suppose that the boundary lifts &c of each boundary component C with label L' are

transverse to the real hypersurface D C S", and no flipping marked points lie on D'.

Then one can calculate u . Dj by counting the usual intersection number for internal
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intersections of each pearl u, with Dj (this is positive by positivity of intersections), +1

for each time a flipping edge of u crosses D , and +1 for each time a boundary lift fic

crosses D' in the negative direction.

Proof. We observe that the first statement follows from the second: in the transverse

situation the intersection number is non-negative because the only contributions are

positive. We can put ourselves in the transverse situation by making a small perturbation

of the divisor Di. Namely, define a 1-parameter family of divisors

Dt := z + t E akzk = 0
k

for t E [0, 6], where a3 E R and 6 > 0 is real and sufficiently small that the real part (D')'

remains transverse to the gradient vector field Vf, and hence Dj avoids the Lagrangian

L' (by Lemma 1.2.2.2). We also make 6 small enough that Dj avoids all other Lagrangian

labels of the flipping holomorphic pearly tree. Therefore the intersection number u - D'

remains constant, so we can compute u -Dj by computing u -D6. That D can be made

transverse to the boundary lifts iic is an easy application of Sard's theorem. Furthermore,

one can easily make Dj avoid all marked points and critical points of pearls (since these

are isolated).

Now we prove the second statement. Internal intersections of u with Dj contribute

the usual intersection number (which is positive by positivity of intersections, recall-

ing that the almost-complex structure is standard near the divisors Dj). The other

intersections happen near boundary components of u with label L':

" If a flipping edge crosses D', one can see that the image of the surrounding strip

under projection to the zj plane looks like Figure 1-1(b), hence contributes +1 to

the intersection number;

* If a non-flipping edge crosses D , the image of the strip under projection to the zj
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plane looks like Figure 1-1(b) except that the strip gets folded in two, so that both

edges get sent to the same sheet of L', and the contribution to the topological

intersection number is 0;

" If a boundary lift iic crosses DR positively, the projection of the strip and nearby

disk to the zj plane looks like Figure 1-1(c) (the projection is a holomorphic map,

which by assumption has no singularities near the divisor Dj, and its boundary

crosses Dj positively, hence maps to the upper half plane in a neighbourhood of this

point). There is a 'fold' along the real axis, and one can see that the contribution

to the topological intersection number with Dj is 0;

" If a boundary lift iic crosses DR negatively, the projection of the strip and nearby

disk to the zj plane looks like Figure 1-1(d) (as before, because the disk is holo-

morphic, non-singular, and its boundary crosses D negatively, it must get sent to

the lower half plane in a neighbourhood of this point). Thus the contribution to

the topological intersection number with D is +1.

This completes the proof. E

Corollary 1.5.1.10. In an admissible flipping holomorphic pearly tree, the flipping edges

can not cross the hypersurfaces DR and the boundary lifts can only cross D, in the

positive direction.

Definition 1.5.1.11. We define the moduli space Msft(y) of admissible flipping holo-

morphic pearly trees with asymptotic conditions y, by analogy with Definition 1.3.1.8.

Remark 1.5.1.12. We remark that it follows from the proof of Proposition 1.5.1.9 that,

if u is an admissible flipping holomorphic pearly tree, then its homology class [u] can

be represented by a smooth disk in P' with boundary on L'. Namely, we perturb the

divisors Dj to put ourselves in the transverse situation as described. The disk defining

[u] can only intersect the divisors Dj when a boundary lift jic crosses D' in the positive
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/S
I

I-

(a) Adding a strip to a flipping pearly tree, to

define its homology class in H2 (CIP", L').
(b) Projection of the strip surrounding a flip-
ping edge crossing the hypersurface Dj trans-
versely, to the zj plane. The topological inter-
section number with Dj (which corresponds to
the point 0 in this projection, drawn as a solid
circle) is +1.

Dj

(c) Projection of part of the disk and strip near a
positive crossing of a boundary lift ac with D',
to the zj plane. There is a 'fold' along the real
axis, so the topological inter-section number with
D is 0.

(d) Projection of part of the disk and strip near
a negative crossing of a boundary lift ac with
D?, to the z3 plane. The topological intersection
with D is +1.

Figure 1.5.1.1: Defining and calculating u - Dj.

104



direction. It is obvious from Figure 1-1(c) that the disk can be perturbed to avoid the

divisor in this case.

It follows that admissible flipping pearly trees inherit any properties of holomorphic

disks in Pf with boundary on L' that depend only on the topology. For example,

the energy of an admissible flipping holomorphic pearly tree is given by the differences

of symplectic action functionals of input and output generators, and in particular is

constant in the moduli space Msft(y). Furthermore, we can prove the following:

Proposition 1.5.1.13. Suppose that L is a set of Lagrangian labels and y an associated

set of generators. Then, for generic choice of perturbation data, Msft (y) is a manifold

of dimension

dim(Msfpt (y)) = i(y) + k - 2.

Proof. The proof follows that of Proposition 1.4.4.13 - we must construct charts from

the moduli spaces MSfpt(TsB)(y) for each (Ts, B) as in Definition 1.4.4.8, and glue the

pieces MSfpt(TsB) (y) X (-6 )B together to obtain a manifold, using an analogue of

Proposition 1.4.4.12.

The dimension is given by the index of the Fredholm operator used to cut out the

moduli space. One might worry that the index theory of Cauchy-Riemann operators

depends on a choice of holomorphic volume form rq on P', and our holomorphic pearls

can intersect the boundary divisors Di, where 7 is not defined. However, this is dealt with

by Remark 1.5.1.12, which shows how to construct a smooth disk in P' with boundary

on L', near any given admissible holomorphic flipping pearly tree. One can show that

the Fredholm index of the operator cutting out the moduli space of flipping pearly trees

is equal to the index of the pseudo-holomorphic curve equation on the nearby disk, which

depends only on the homology class of the disk in P" relative to its Lagrangian boundary

conditions. This is sufficient to prove the dimension formula.

Now observe that, when a new Morse edge with label L' is created as in Figure

105



1.4.1.2, there are two possibilities: either the lifts ii of the two boundary components

of the strip on the left are antipodes, in which case a flipping edge is created, or they

coincide, in which case a non-flipping edge is created. With this convention, the gluing

maps of Proposition 1.4.4.12 define boundary lifts iic as well as the map up. They also

preserve the homology class of Definition 1.5.1.8, and hence admissibility. 0

Definition 1.5.1.14. We define a stable flipping holomorphic pearly tree by anal-

ogy with the definition of stable pearly trees (Definition 1.4.5.4). The only difference

is for edges of trees T with both sides labeled L': these can be broken Morse flowlines

of f (for flipping edges) or h (for non-flipping edges). We define a stable admissible

flipping holomorphic pearly tree to be a stable flipping holomorphic pearly tree,

each component of which is admissible.

Remark 1.5.1.15. We observe that the admissibility condition rules out sphere bub-

bling in families of admissible flipping holomorphic pearly trees: any sphere bubble must

have intersection number 0 with the divisors Dj by admissibility, and hence have trivial

homology class. But then its symplectic area is 0, so it must be constant.

Proposition 1.5.1.16. The moduli space of stable admissible flipping holomorphic pearly

trees has the structure of a compact manifold with corners.

Proof. As in Section 1.3.1, we run into the problem that we can not appeal to a Gromov

compactness theorem for immersed Lagrangians. Furthermore, we can not bypass this

problem by passing to the cover P" of P' defined in Corollary 1.3.2.3, as we did in Section

1.3.1, because the image of the Lagrangian immersion L' does not lie in Pn. Even if

we considered the corresponding branched cover of CPn (branched around the divisors

Dj), the Lagrangian immersion L' would only lift to a piecewise smooth embedded

Lagrangian, with 'edges' along the branching divisors Dj. Again, there is no Gromov

compactness theorem that deals with piecewise smooth Lagrangians.
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Instead, consider the quadric

(n+2 n+2

Qf : z = 0, zj = 0 C CPn+2

j=0 j=1

and the branched double cover

p : Q, -4 CP"

p([zo :...:zn+2]) = [Zi :...:Z,+2].

The cover is branched along the divisor

{ : z = 0 C CP".

The real locus of Q" in the affine chart zo = i is the unit sphere S", and plsut

is the double cover of the real locus RP4 of CPn. It is well-known that there is a

symplectomorphism

T*S -+ Q" \ {zo = 0},

sending the zero section to the real locus. This sends the radius-r/ disk bundle D*S" to

a neighbourhood of RPn , as in the construction of L" (Section 1.2.2). Thus, the lifts of

Ln and L' to T*S" C Q" are embedded. L' lifts as the graphs of the exact one-forms

cdf, and L' lifts to the zero section via the identity and via the antipodal map.

For any flipping holomorphic pearly tree u G Msfrt (y), the topological intersection

number [u].Qn depends only on the generators y (compare Proposition 1.5.2.3). We can

arrange that positivity of intersection with Q" holds in our moduli space, for appropriate

choice of perturbation datum, and then each flipping holomorphic pearly tree in the

moduli space intersects Qn some finite number of times, which is bounded above by

the topological intersection number. Then the lifts of flipping holomorphic pearly trees
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u E Msfpt (y) to the branched cover Q" are branched over some finite number of points,

hence have bounded genus. Gromov compactness for curves with bounded genus and

boundary (see, for example, [42, 43]) then implies that the lifted family has a convergent

subsequence, which corresponds to a convergent subsequence downstairs.

This shows that a sequence of admissible flipping holomorphic pearly trees has a

subsequence converging to a stable flipping holomorphic pearly tree whose intersection

number with each divisor Dj is 0. The intersection number of the stable flipping holo-

morphic pearly tree with Dj is the sum of intersection numbers of each component

flipping holomorphic pearly tree with Dj. Since these are all non-negative by Proposi-

tion 1.5.1.9, they must all be 0. Thus the limit stable flipping holomorphic pearly tree

is also admissible, and we have proven compactness. l

We define A, structure maps ptk as in Section 1.4.7, by counting rigid flipping holo-

morphic pearly trees. The proof that they satisfy the A, associativity equations essen-

tially follows that of Proposition 1.4.7.1. The proof that the A, product is Q-graded

relies on Proposition 1.5.1.13.

Proposition 1.5.1.17. For sufficiently small e > 0, the objects L' and L' are quasi-

isomorphic.

Proof. We observe that RP" and L" intersect transversely in the points PK. Therefore

we can choose the Hamiltonian component of the Floer datum for the pairs (L', Ln)

and (L', L') to be 0. The morphism space CF*(L', L") is generated by pairs of points

(p, q) E S" x S" that get sent to the same point by the respective Lagrangian immersions

defining L', L h . Thus p is a critical point of f, and q is either equal to p or its antipode.

As we saw in Corollary 1.2.2.11, there is a critical point PK of f for each proper non-

empty subset K C [n + 21. Therefore, we can label the generators of CF*(L', L") as

P := (PK, PK) and ps = (pK, a(pK)) (M stands for 'Morse' because the generators pm

correspond to the Morse cohomology of L", and S stands for 'self-intersection' because
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the generators pK correspond to the self-intersections of L'). So, additively,

CF*(L', L") ~ CM (f ) e CM (f)

and similarly for CF*(Ln, L'). One can check that the gradings of these generators are

i(pN) = ' |K|, tat) =hn - pa(pK) = n + 1 -|lK\.

Now observe that we have natural inclusions

CM(f)

CM(f)

CF*(L', L"),

CF*(Ln, L')

as graded vector spaces.

Lemma 1.5.1.18. For sufficiently small e > 0, the inclusions <pj are chain maps.

Proof. We first observe that, for sufficiently small e > 0, the holomorphic strips

U : Z -+CP"

used to define the differential

P1 : CF* (L, L") -+ CF*(L', Ln)

must remain entirely within the Weinstein neighbourhood D*RP" used in the construc-

tion of L'. To see why, suppose that u passes through some point p of distance > r/

from RP'. Then for sufficiently small e > 0, the ball B(p; r//2) is disjoint from Ln and

L'. Therefore, by the monotonicity lemma (see [44, 3.15]), the symplectic area of the

intersection of u with the ball B(p; r//2) is at least c(r//2) 2 for some constant c. However,

the symplectic area of u is given by the difference in symplectic actions of the generators
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(see Remark 1.5.1.12 and its sequel), which is proportional to 6 and hence can be made

arbitrarily small. Thus, for sufficiently small e > 0, the strips never leave the Weinstein

neighbourhood D*RP .

Now we observe that any strip u contributing to the differential on CF* (L', L') lifts

to the double cover D*S" ~+ D*RP", because it comes equipped with a lift of one

boundary component to S by definition. This lifted strip contributes to the differential

PI : CF*(S", F (edf )) - CF*(S", r (cdf ))

in the Fukaya category of T*Sn. Conversely, any strip u contributing to the differential

on CF*(Sn, P(Edf)) projects to a strip contributing to the differential on CF*(L', Ln).

The only thing to check is that these projected strips are all admissible - for this one

needs a certain amount of control on the topology of u. It was proven in [45, Proposition

9.8] that, given J > 0, there exists co > 0 such that for any strip contributing to the

differential on CF*(Sn, F(edf)), with c < co, there is a Morse flowline of f,

y : R -> S'

such that

d(u(s, t), -y(es)) < J for all s, t.

Because Morse flowlines of f cross the hypersurfaces D positively, it follows from Propo-

sition 1.5.1.9 that all such strips are admissible.

It follows that the inclusion

CF*(Sn, r (edf)) <-+ CF*(L', Ln)

(where the left hand side is a morphism space in the Fukaya category of T*S and the

right hand side is a morphism space in the Fukaya category of P" as we have defined
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it) is a chain map. Now the Lagrangians S', F(edf) in T*S' are Hamiltonian isotopic,

hence quasi-isomorphic in the Fukaya category of T*Sn. So there is a quasi-isomorphism

CF* (S", IF (edf )) r-'CF* (S", S") -- CM* (f )

(the second quasi-isomorphism comes from Proposition 1.4.7.3). Thus, there is a chain

map

CMjy(f) CF*(Sn,Sn) e CF*(S",F(edf <CF*(L',L")

as required.

Now consider the elements

f1 E CF*(Ln, L'), f2 E CF*( L, Ln)

that correspond to the identity in CMJg(S"). Explicitly,

n+2

fi =Zp
j=1

(and the same for f2).

Lemma 1.5.1.19. For sufficiently small e > 0, we have

pLI(fh)

p2 ( f1, f2)

= Oforj= 1,2, and

= po E CF*(L', L')

Proof. The fact that pl(fj) = 0 follows from Lemma 1.5.1.18. We now prove that

Observe that i(fi) =i(f2 ) = 0, so i(p 2 (fi, f 2 )) = 0. Therefore, po is the only term

that can appear in the product p2 (fi, f2). Its coefficient is the signed count of points
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M M

P01 PP0

Figure 1.5.1.2: The flipping holomorphic pearly trees whose count gives the coefficient

of pp in p2(fi, f2). The solid circle denotes a non-flipping point. The upper half of the

boundary gets sent to L', and the lower half to L'.

in the moduli space of flipping holomorphic pearly trees which are holomorphic strips

running between some intersections p, and pm of L' and L', with one marked point

on the boundary labeled L' which gets sent to pp (see Figure 1.5.1.2). As we saw in

the proof of Lemma 1.5.1.18, such strips must lie inside the Weinstein neighbourhood

D*IRP", and lift canonically to the double cover D*S. The lift is a holomorphic pearly

tree contributing to the product

P2 : CF*( ((Edf ),S") 0 CF*(Sn,F (edf)) - CF*(Sn, Sn).

Conversely, by the same argument as in the proof of Lemma 1.5.1.18, any holomorphic

pearly tree contributing to this product projects to an admissible flipping holomorphic

pearly tree contributing to the product p 2 (fi, f2).

It now follows from the quasi-isomorphisms (in the Fukaya category of T*S)

CF*(Sn,(edf)) CF*(Sn, S") - CF*(I (Edf ), Sn)

and

CF*(Sn, Sn) CM*(S")
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that, on the level of cohomology,

[p2(fi, f2)] = [p4]

(product of identity with identity is identity in CM*(Sn)). But CF 0 (L', L') has only the

single generator pe, so we have

p 2(fi, I 2) = p4

as required.

Because CF*(L', L') and CF*(Ln, L") have the same rank (by Corollary 1.3.1.11), it

follows that fi and f2 induce mutually inverse isomorphisms on the level of cohomology,

and therefore are mutually inverse quasi-isomorphisms in the category C. This completes

the proof that L' and Ln are quasi-isomorphic, for sufficiently small e > 0. 0

1.5.2 Properties of the A,, algebra A':= CF*(L', L')

We define the A,, algebra A' := CF*(L', L'). It follows from Proposition 1.5.1.17 that

A and A' are quasi-isomorphic A, algebras. Henceforth we will only be concerned

with computing the A,, structure of A'. In particular, we will assume that our flipping

holomorphic pearly trees have all boundary components labeled L'.

Lemma 1.5.2.1. If u is an admissible flipping holomorphic pearly tree with associated

morphisms y = (pKo,-... , PKk), then

k

Z eK3 = eKo
j=1

in M.

Proof. The proof is identical to that of Proposition 1.3.2.4, since the proof relies only
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on the homology class [u] E H 2 (CP" , Ln), which is determined by the admissibility

condition.

Lemma 1.5.2.2. A' inherits the following properties of A:

" It is T -equivariant in the same sense as in Corollary 1.3.2.5, by Lemma 1.5.2.1;

" It has the Q-grading given by n/(n+2) times the normal Z-grading, as in Corollary

1.3.3.2;

e As a consequence of these two properties, it satisfies the analogue of Corollary

1.3.3.3, namely the only non-zero A, products are ,2+nq for q E Z>;

" It satisfies the analogues of Corollaries 1.3.4.4 and 1.3.4.5 (regarding signs and

supercommutativity).

We now establish some results about flipping holomorphic pearly trees which will be

used in Section 1.5.3 to identify the moduli spaces that give rise to the A,, structure

coefficients of A'.

Proposition 1.5.2.3. For K c [n + 2], define

{ n+2 K=,[n+2]

JK| otherwise.

If u is an admissible flipping holomorphic pearly tree with labels y = (PKo, .- , PKk ), then

the homology class of u in H 2 (CP" , RP") ~ Z is given by the formula

|Ko|' - -Kj' i.
n + 2

Proof. Note that the Fubini-Study symplectic form w acts on H 2 (CP", RP'), with value

27r on the generator. It follows that

w(u) = 27rd,
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so we can compute d, by computing w(u).

Recall that we add a strip to u to obtain a disk i : (D, 8D) -+ (CP4, L'). Note that

the symplectic area of the strip we add is O(E). So we can compute w(u) by evaluating

w(6z) in the limit e -+ 0.

The Fubini-Study form is given by the Kshler potential

n+2

=log E 2rj 2r1

(j=1

on CIPn+ \ D1 , where z3 = exp(ry + iOj). Thus

w = dd"p,

(recall that dcp = dp o J), so we define

a= dcp

)7 + e 2rj dcrN c=1 2r - 2dcri

n+ 2 e2rjd0
= n 2 e 2 r +2

Ej-i

Then w = da. Of course this is really r*a, where 7r : Cn+2 - {0} -+ Clpn+l is the

projection.

Because t -Di = 0 by admissibility, we can deform i to avoid Di then apply Stokes'

theorem to obtain

6*a = I*W.

JID
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Now recall the lift of L' to Cn+
2 that arose in the construction of L', namely

n+2 
n+2

, 2 X = 0 +Cn+2

j=1 j=1

(Ti, . .. , In+2) (1 e 1, - -, Xn+2 i~fn+2) + 0(62.

We can lift &D to Cn+ 2 (the result will not be a cycle, because when BD changes sheets

of Ln the lift stops and reappears at the antipode). Call the lift 1. Then

/ a = 1 a = /r*a.

Observe that on the lift of Ln, dOk is small everywhere except for when rk is small,

and when rk is small then
e2rk
n+2 .2rj

is small. Thus the first term in ir*a is negligible. So

jrx*a = f2d01 + 0(E).

The projection of the lift of the point pK to the angular variables is 7reK (now thought

of as living in Ma rather than Ma). Thus, as the lift of 8D travels from PK, to pg ,

the contribution to the integral is (to order E)

kj+i 2d01 = 27rei - (ek2±1 - eKj)
PKj

An exception occurs when K (respectively K'+ 1 ) = # or [n+2], in which case pKj (respectively pkj±1)

represents the bottom or top cohomology class of L , so (D does not change sheets of

Ln as it passes through pKj (respectively pg+,). In this case we should simply replace

ei - (eKj) (respectively ei - (eg3±,)) in the expression above by 0.
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For the moment, assume that K, $ # or [n + 2]. Adding up and regrouping the

contributions of each part of BD, and recalling that pKo is the 'outgoing' point, we

obtain:

k

JOD 27relyeK - ek~o +Z e1 , - eK3 ) +0(6)

= 27r 2ei eKo - eK + k - 1) + 0(c)
j=1

(27r 2 -Z -1 IKjI + k - 1) + O(E)
n + 2

(in the last step we used the fact that the vector is a multiple of e[n+2] by Proposition

1.3.2.4).

Now if K3 = or [n + 2], recall that we must replace ei - (eg, - eKj) by 0 in the

first two lines above. This is equivalent to replacing |Kj| by |Kyj' in the final line. This

completes our proof. l

Definition 1.5.2.4. Given an admissible flipping holomorphic pearly tree, it is useful

to label certain points on its boundary with proper, non-empty subsets of [n + 2], as

follows: At each flipping marked point, the boundary immediately before and after the

point get sent (by the lift ii of the boundary) to antipodal points of Sn \ D'. Thus they

lie in the antipodal regions Sk, S. respectively, for some K C [n + 2] (recall that Sk

is defined to be the region where xj < 0 for j E K and x > 0 for j K). We will

ignore the case where a flipping marked point lies on some Dj, but it presents no real

additional problem in our subsequent arguments. We label the point immediately before

our flipping marked point with K, and the point immediately after with K. Non-flipping

marked points do not get labels.

Remark 1.5.2.5. We observe that, because of the condition that Morse flowlines do

not cross the hypersurfaces D (by Corollary 1.5.1.10), the labels at opposite ends of an

internal flipping Morse flowline are identical. Furthermore, at a flipping marked point
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connected by an incoming edge to the flipping generator PK, the label immediately before

is K and the label immediately after is R. Also, by Corollary 1.5.1.10, the boundary

lifts can only cross the hypersurfaces positively. So as we follow the boundary around

anti-clockwise between two adjacent flipping marked points, the label at the beginning

of the segment contains (not necessarily strictly) the label at the end of the segment.

Suppose the pearl corresponding to vertex v of the underlying tree has degree d, E

H2 (CP", nRIP') ~ Z. Then it must intersect Dj dv times, and none of the intersections

can be internal by admissibility, so the boundary lift must intersect Df dv times. It

follows that

Z ekg - eKj = dve[n+2]
j mod k,

in M, where Ki,... , Kk, are the labels given to the points immediately before the

flipping points (traversing the boundary of the pearl in positive direction) on the pearl

corresponding to v. It follows quickly that

kv kv ~ de
ZeK 3 - e[n+2]
j=1

for each pearl. Figure 1.5.2.1 shows a possible labeling of a flipping holomorphic pearly

tree.

Remark 1.5.2.6. We will choose the almost-complex structure component of our per-

turbation data to be equal to the standard integrable complex structure Jo, and the

Hamiltonian perturbation to be identically 0. Then the pearls in a flipping holomorphic

pearly tree with labels L' are holomorphic disks with boundary on RIPn, hence they

can be 'doubled' to a holomorphic sphere by the Schwarz reflection principle. It fol-

lows from [40, Proposition 7.4.3] that the moduli space of holomorphic spheres in CP",

in a given homology class, is automatically regular. The moduli space of pearls is the

real part of the moduli space of spheres, hence also regular. It follows that for every
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7 7

2 123 1234 6

2 4567 567 6

33 5 5

Figure 1.5.2.1: An example of a legal labeling of a flipping holomorphic pearly tree,
which might contribute to the coefficient of pp in the A,, product p'(p{1}, ... ,P{7}). We
have illustrated a simple case, in which all external flowlines are constant because the
points p{j} are maxima of the Morse function f. The external label '1' means the set
{1}, while 'T' means the complement {2, 3, 4, 5, 6, 7}. The big label '1' in the middle of
a pearl means that the pearl has degree 1.

(r, u) E Msft (y), the linearized operator

DfptrU : T(,,,u) ('3 sfpt) -+ (Es,)u

of Definition 1.4.4.4 is automatically surjective. Thus, to show that a moduli space

Msft(y) of flipping holomorphic pearly trees is regular, we need only check that the

evaluation map

ev : ker(dsfpt) + Tu ((Sn)F(S)

is surjective at each (r, u) E Msf,t (y). Note that ker(dsfpt) is the space of holomorphic

pearls and Morse flowlines, without the constraint ev(u) E As.

Definition 1.5.2.7. The following notation will be useful. If K 1 ,..., Kk are disjoint

subsets of [n + 2], we define

FK1,K 2 . ,Kk := {x E Sn : x, = xm for all 1, m E Ki, for all i}.

Remark 1.5.2.8. Observe that

FK,R = {PK,PR}-
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As we saw in Lemma 1.2.2.12, the unstable manifold U(K) of PK is an open subset of

FK, and the stable manifold S(K) is an open subset of FK.

1.5.3 Computation of A'

In this section we compute the A., structure of A'.

First, we observe that the analogue of Corollary 1.3.3.5 holds for A'. I.e., PL = 0 and

the only possibly non-zero p2 products are

pAI,(pK1 , PK2 ) = a'(Ki, K2)PK1UK 2

for disjoint K 1 , K 2 . The proof is exactly the same, using the corresponding properties of

A' given in Lemma 1.5.2.2.

Proposition 1.5.3.1. We have

a'(K1, K 2) = ±1.

Proof. Let K 3 := K 1 L K 2 , so K 1 U K 2 U K 3 = [n + 2]. If any of K1, K 2 , K 3 are # or

[n + 2], the result is easy as the corresponding holomorphic disks are constant. If that

is not the case, then a'(K1, K 2 ) is given by a count of flipping holomorphic pearly trees.

The homology class of such a flipping holomorphic pearly tree is

( 2K1 UK 2|'-|K1|'- K 2 |' +2- 1 1
2~ +2- =1

by Proposition 1.5.2.3. Therefore the corresponding flipping holomorphic pearly tree has

two incoming and one outgoing legs, and a single pearl with the homology class of half

of a line in CP" with boundary on RP".

The real part of such a pearl is a line. Thus, a'(K1, K 2 ) counts lines passing through
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the unstable manifolds U(K 1 ), U(K 2 ), U (K 3 ). Recall from Lemma 1.2.2.12 that the

unstable manifolds U(Ki) are contained in the linear spaces FR, (see Definition 1.5.2.7).

Given points pi E F 1 and P2 E FR2 , the line through pi and P2 is contained in the

linear space FRnk2 = FK 3 . This space intersects Fk, transversely at PK3 . Therefore

there is a unique line (namely FK 1,K2 ,K 3 ) that intersects U(K 1 ), U(K 2 ), U(K 3 ) (at PKi,

PK2 , PK 3 respectively), and the intersections are transverse so the flipping holomorphic

pearly tree is regular.

We check that it is admissible, using Proposition 1.5.1.9. Firstly, the Morse flowlines

are constant at the pK1, hence do not cross the hypersurfaces Df. Secondly, the boundary

lifts as

PK1  PK2UK 3 - PK2 -* PK1UK3 -+ PK3 ^+ PK1uK 2 -4 PK1

where -+ denotes a straight line connecting two points and ~> denotes changing sheet.

This lift clearly crosses all hypersurfaces D positively (since the label at the beginning

of a straight line always contains the label at the end), so the flipping holomorphic pearly

tree is admissible and regular.

Thus a'(K1, K 2 ) = i1 as required. 0

We are now in a position to prove Theorem 1. It is implied by the following:

Theorem 3. The cohomology algebra of A is

H*( A) ~ A*Mc

as Z2-graded associative C-algebras. The isomorphism is given by

PK U ('K A ej,
jEK

for some sign o-K = ±1.
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Proof. We define a homomorphism of C-algebras from the tensor algebra of M, to the

cohomology algebra of A, by

(Mc) -k H* (A),
k=1

ey p{,} for all j E [n + 2].

By Corollary 1.3.4.5, this descends to a homomorphism

A*Mc -+ H*(A).

It follows from Proposition 1.5.3.1 that the elements pfj} generate the algebra H*(A'),

and hence the corresponding elements generate H*(A), by Proposition 1.5.1.17. There-

fore this homomorphism is surjective, so because both sides have the same rank it must

be an isomorphism. M

Now we consider the next non-trivial A, product in A', Pn+2. We aim to compute

/-In+2(Pt(1)} - -. i Pjo(n+2)}),

where o is a permutation of [n + 2] (these are the important products to compute in

order to apply deformation theory, because they determine the deformation class of the

Ao structure (see Section 1.5.4).

Proposition 1.5.3.2. In A', we have

P n+2 (P(1)} -.. iPpo(n+2)}) - iP4,

for exactly one permutation - of [n + 2]. For all other permutations, the result is 0. A

different choice of the point pp (the minimum of the Morse function h) will lead to a

different permutation -.
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Proof. First, note that po is the only term that can appear in this product, for grading

reasons (Corollary 1.3.3.2).

Note also that U(p{j}) = {p{j}} and S(pe) = {p+}, so the external gradient flowlines of

the flipping holomorphic pearly trees contributing to the coefficient of po in this product

are constant. We split the proof into two parts: counting the flipping holomorphic pearly

trees with a single 'pearl' (we show that these give the desired answer) and proving that

there are no 'multiple-pearl trees' contributing to the product.

For the first part, Proposition 1.5.2.3 shows that a disk contributing to this product

must have degree n. By pairing such a disk with its conjugate we obtain a degree-n

curve through the n + 3 points P{11,. . . , P{n+2}, P$. It is a classical theorem of Veronese

that there is a unique rational normal curve through n + 3 generic points in CP'. A

constructive proof is given in [46, p. 10]. We just need to check that this curve satisfies

the conditions required for the definition of an admissible flipping holomorphic pearly

tree - namely, the curve should be real, and its real part should admit a lift to Sn which

changes sheet at each point p{jl and crosses the hypersurfaces D' positively.

By the construction in [46], we can parametrize our curve as u : CIP1 + CP",

n+1 1 ..-1 (Z - vi)-

- - S . . -1 (z - 2) -i

-1~ -.. n+1 (Z -u1n+2)4 /

n+1 1 n+1 1 n+1 1

Z V Z- 3Z 12 -2 Z -1n±2 Z Vz v j$n+2z

Observe that this curve has degree n: if we clear denominators, the leading coefficients

Zfn+1 in all factors cancel, leaving polynomials of degree n. Furthermore, we have

u(vj) = [-1 : -1 : ... : n + I : ... : -1] = pj.
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We choose the vj so that u(0) = pg, i.e.,

n +1 -1 .. 1-1

-1 n + 1 ... -1v

-1 -1 ... n+1 vn-2

Note that this parametrization automatically gives a lift of the boundary RP1 to

Rn+ 1 \ {0} and hence to S". Furthermore, the parametrization changes sheets exactly at

the flipping points vj, because the sign of the dominant term (z - vj)-' changes there.

We just have to check that it crosses all of the real hypersurfaces DR positively. This is

true because if
n +1 1 0-z =0,Z - u j -k--V

then the derivative
n + 1 1

(z - uk) 2  (Z -v

by the quadratic-arithmetic mean inequality (alternatively one can graph the function).

Thus, the two halves of this curve are the only disks that can contribute to such a

product, and only one passes through po (the other has the opposite lift of the boundary,

hence passes through the antipode of po). The permutation o- is determined by the

ordering of the coordinates of the chosen point pp.

It is clear from our construction that this pearl is regular. Namely, because we have

exhibited a construction of a degree-n curve through n + 3 arbitrary generic points in

RPn, if we fix all boundary points p{,}, po except for one, then the evaluation map at the

remaining point is transverse to the point.

Now we proceed with the second part of the proof, namely showing that multiple-

pearl trees do not contribute. Suppose we have a contribution from a multiple-pearl tree.
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1

k+1
Figure 1.5.3.1: Part of a multiple-pearl tree that may contribute to ptn+2 . The label 'j'
on a marked point means that marked point gets mapped to plj}, while the big label 'k'

in the middle of the pearl means that pearl has degree k.

The tree must contain a pearl with exactly one internal edge attached. Without loss

of generality it has input flipping generators P1 }, ... , P{k+1} and a single Morse flowline

attached at point q, as shown in Figure 1.5.3.1 (it may also have the 'output' point po

on its boundary, but whether it does or not is irrelevant to the following argument). If

q is non-flipping then it follows from Remark 1.5.2.5 that k = n + 1, so this is not a

multiple-pearl tree. If q is flipping, then it follows by Remark 1.5.2.5 that it has degree

k, where we assume k < n.

Any degree-k curve in CP" is contained in a linear subspace of dimension k (this can

be proved by induction on n: choose any k + 1 points on the curve and a hyperplane

through those points, then the hyperplane intersects the degree-k curve in more than k

points so the curve is contained in the hyperplane by Bezout's Theorem). In our case,

there is a unique dimension-k linear subspace through the points pl1,... , P{k+1}, namely

Flk+1] (to clarify: [k + 1] = {k + 2,... ,n + 2}).

Therefore our pearl is a degree-k curve in a k-dimensional projective space, so by the

first half of the argument, the evaluation map at q runs over an open subset of Fk+11-
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But this subspace is preserved by the Morse flow of f, by the equivariance of f with

respect to the Sn+2 action. Hence the Morse flow at q is parallel to the evaluation map,

so the evaluation map at po has dimension (at least) 1 less than expected. Thus, for a

generic choice of po, the moduli space will be empty.

Thus the only contributions to the product come from the single-pearl tree, which

gives the advertised result. D

Remark 1.5.3.3. We observe that the final argument, in which we showed that multiple-

pearl flipping holomorphic pearly trees do not contribute to the product, remains true

even if we make a small change in our perturbation data: observe that, by Remark

1.5.2.5, q lies in the region S ]. If we perturb the holomorphic curve equation by a

small amount, the perturbed evaluation map at q can be made arbitrarily C0 -close to

the unperturbed one. Thus, the image of the perturbed evaluation map at q is contained

in an arbitrarily small open neighbourhood of F7-. n s

Now the Morse flowline emanating from q remains inside the region S 1, since

flipping flowlines cannot cross the hypersurfaces by Corollary 1.5.1.10. But Flk+1] n Sn

is exactly the intersection of the unstable manifold of P[k+1] with Sn , so the flowline

remains inside an arbitrarily small open neighbourhood of Fk+1 n Sn Given that,

for generic po, the evaluation map at the other end of the Morse flowline misses Fk+1,

it also misses a sufficiently small neighbourhood of it. Therefore, for a sufficiently small

perturbation, the moduli space remains empty.

1.5.4 Versality of A'

We aim to prove Theorem 2 by applying the techniques of [9, Section 3], in the equivariant

setting. All our conventions on signs and gradings are taken from that paper. We review

some necessary definitions and results.
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Definition 1.5.4.1. Consider the Q-graded algebra

A:= A* (MC) ,

where the grading is given by n/(n + 2) times the normal (Z-)grading. Define an action

of the character group of M,

T := Hom(M, C*),

on A by

a - e := a(e)e.

Let 2(A) denote the set of Q-graded, T-equivariant Aco-algebras with underlying graded

vector space A, p' = 0 and

P 2 (a2,ai) = (-1)|ada 2 A a1 .

Proposition 1.5.4.2. Recall that the (T1-equivariant) Hochschild cohomology of A is

given by the Hochschild-Kostant-Rosenberg isomorphism [4 7]:

HHS+t(A, A) tT 0D

HH 2 (A, A)2-dT { C.W

0

for d = n + 2

otherwise,

where W = Z1 ... Zn+2 = Ze[n+2] is the superpotential of the mirror, viewed as an element

of the symmetric tensor product Symn+2 (M~
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Proof. Suppose we have a generator

za A ek E HH 2 (A, A)2--d'I.
kEK

Here a E M,vo, K C [n + 21 and d = deg(za) > 2. T-equivariance simply says that

a = eK + qe[n+2]

for some q E Z>o (here we identify Mv with M in the natural way). To lie in HH 2 we

must have

2 n
2 = deg(za)+ K|n+2 n+2

2 n
- (IKI+q(n +2))+ n |K\n +2 n+ 2

= |K|+2q.

Now we have

2 < d = deg(za) = IKI + (n + 2)q = 2+nq,

hence q > 0. Therefore, we must have K = <, q = 1 and a = e[n+2]. Thus the generator

is Za =W. 1

Proposition 1.5.4.3. A' is a versal element of %(A), in the sense of a T-equivariant

version of [9, Lemma 3.2], with deformation class ±W E HH 2 (A, A)--". In particular,

any element of %(A) with the same deformation class is quasi-isomorphic to A'.

Proof. The fact that A' lies in 2t(A) follows from our previous results, namely Lemma

1.5.2.2:

P' 1 = 0 as the only non-zero A,, products are p2+nq for q E Z>o;

e the underlying algebra is A (Theorem 3);
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e the grading on A is n/(n + 2) times the usual grading;

e it is equivariant with respect to the action of T.

The fact that A' is versal follows from the results:

" t = 0 for 2 < k < n + 2 (by the analogue of Corollary 1.3.3.3);

" The first non-trivial higher product pn+2 satisfies

pfn+ 2 (ei, - - - , en+2) = ±1

(without loss of generality) but is 0 on all other permutations of the generators

ej (Proposition 1.5.3.2). Therefore the deformation class of A' in HH 2 (A, A)~- is

given (by the HKR isomorphism) by

pn+2(z, ... = ii. . .Zn+2 = iW(z),

where z = EJ zjej. Combining this with Proposition 1.5.4.2 gives the result.

1.6 Matrix factorizations

We now consider the other side of mirror symmetry. Recall (from the Introduction) that

the putative mirror to Pn is the Landau-Ginzburg model (Spec(R), W), where

R

W

:=-. C M[n ]
= zeu+21.
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Observe that there is a natural action of T on R that preserves W (recall T := Hom(M, C*)).

Also recall (from the Introduction) that the B-model on (Spec(R), W) is given by

the triangulated category of singularities of W 1 (0), which is quasi-equivalent (by [12,

Theorem 3.9]) to the category MF(R, W) of matrix factorizations of W. The object

corresponding to our Lagrangian L' is the skyscraper sheaf at the origin,

Oo E DSig(W-1(0)).

Henceforth, we work entirely in the category MF(R, W). We abuse notation, and de-

note also by 00 the matrix factorization corresponding to 00 under the above quasi-

equivalence.

To prove Theorem 2, we must show that the differential Z2 -graded algebra of endo-

morphisms of 00,

B :Hom*MF(R,W)(Oo, 00),

is quasi-isomorphic to A.

It is explained in [25] how to compute a minimal A, model for the endomorphism

algebra of 00. That paper focuses on the case where W has an isolated singularity at 0,

which is certainly not true in our case, but the computation of the minimal A, model

does not rely on this assumption. We briefly review the construction, explaining how

the T-action enters the picture.

The matrix factorisation corresponding to 00 is the Koszul resolution of 00

R®A*M

with the deformed differential

: t, + v A
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where

n+2

U = z.0Y ER A*Mv
j=1

n+2 W
v = aj z- E R Z a QA*M

j=1

where {O;} is a relabeling of the canonical basis for M, {0j'} is the dual basis of Mv, and

a3 are numbers adding up to 1. Alternatively, we can write this matrix factorisation as

(R (61, . .. ,n+2) , 6),

where
& W

Tz = 9 + aj W j.

The endomorphism algebra of 0 0 is the algebra

R 0 A*Mv A*M.

This can be thought of as the commutative algebra of differential operators

B:yR 1,... On+2 ca chc that001 ' an+2

with the differential given by d = [6, -. One can check that

d(03 )

d ( )
0j

= zi
W

= as-.
azi

Thus the cohomology algebra H* (B, d) is generated by the elements

- 9 - W O

a 3 Zk
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for some k / j (this is proven in [25] by constructing an explicit homotopy contracting

B onto the subcomplex generated by the aj). The generators (9 supercommute, so the

cohomology algebra can be naturally identified with

A A*(Mc)

via

(9 -* ej.

This proves that

H* (Hom*MF(RW)(OO, 00)) ~*Cn+
2

as Z2-graded associative C-algebras.

We observe that the action of T extends in the natural way to B, and that 6 is invariant

under the action of T, so the differential algebra structure of B is T-equivariant.

Furthermore, observe that if we assign Q-gradings

= 2 n 8 n
Izyl = 1y0 -.n + 2' n 2' n 0+ n+ 2'

then the product structure on B respects the grading (because 10I + 8/89j = 0), and

the differential on B has degree l6 = +1. Therefore (B, d) is a T-equivariant differential

(Q-)graded algebra. Observe that the grading on the cohomology algebra A is n/(n +2)

times the usual one, as
n

n +2

In [25, Section 4], it is shown how to construct a homotopy contracting B onto its

cohomology, and hence (via the homological perturbation lemma) a minimal A, model

for B. The homotopy used is manifestly T-equivariant in our setting (see [25] to check

this), so the resulting minimal model is also T-equivariant. Furthermore, the homotopy
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has degree 0 with respect to the grading introduced above, so the Q-grading is preserved

under the perturbation lemma construction (in the sense that the A, product p k has

degree 2 - k with respect to this grading). Thus we obtain a T-equivariant, Q-graded

minimal A, model for B, which we shall denote by B'. It is clear from our discussion

that B' satisfies the necessary conditions to lie in %(A).

Proposition 1.6.0.4. B' is a versal element of %(A), in the same T-equivariant sense

as in Proposition 1.5.4.3. It has the same deformation class as A'.

Proof. The fact that B' lies in 2(A) follows from the preceding discussion. The fact that

B' is versal with the same deformation class as A' follows from the results:

* pk = 0 for 2 < k < n + 2 because of the grading and T-equivariance (exactly as in

Corollary 1.3.3.3);

" The first non-trivial higher product pn+2 satisfies

pn+2 (ei,. . . , en+2) = ±1

for an appropriate choice of contracting homotopy h (see [25, Theorem 4.8]) but is

0 on all other permutations of the generators ej (by similar computations - one can

show that only one tree gives a non-zero contribution to such a product). Therefore

the deformation class of B' in HH 2 (A, A)~' is given (by the HKR isomorphism)

by

pn+2 (z,..., IZ) = tZi ... zn+2 = iW(z),

where z = J ze.

Combining this with Propositions 1.5.4.2 and 1.5.4.3 gives the result.

Corollary 1.6.0.5. There are quasi-isomorphisms

A A' B' B.
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In particular, Theorem 2 is proved.

Proof. That A a A' follows from Proposition 1.5.1.17. That A' = B' follows from

Propositions 1.5.4.3 and 1.6.0.4, by a T-equivariant version of [9, Lemma 3.2]. That

B' - B follows by construction. E
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2.1 Introduction

2.1.1 Mirror symmetry context

The mirror symmetry phenomenon was discovered by string theorists. In its original

form, it dealt with Calabi-Yau Kihler manifolds. On such a manifold, one can define

symplectic invariants (the 'A-model') and complex invariants (the 'B-model'). Broadly,

mirror symmetry says that there exist pairs of manifolds (M, N) such that the A-model

on M is equivalent to the B-model on N, and vice versa.

The closed-string version of the A-model is encoded in Gromov-Witten invariants

(the quantum cohomology ring), and the closed-string version of the B-model is encoded

in period integrals of the holomorphic volume form. Mirror symmetry first came to the

attention of mathematicians in 1991, when Candelas, de la Ossa, Green and Parkes [48]

applied it to make predictions about rational curve counts on the quintic three-fold M.

They constructed a manifold N which ought to be mirror to M, and computed the closed-

string B-model on N. Assuming mirror symmetry to hold, this allowed them to predict

the closed-string A-model on M, from which they extracted rational curve counts. This

closed-string version of mirror symmetry was proven by Givental for Calabi-Yau (and

Fano) complete intersections in toric varieties in 1996 [49, 50].

In the meantime, Kontsevich had introduced the open-string version of mirror sym-

metry, called the Homological Mirror Symmetry conjecture [3] in 1994. He proposed

that the A-model should be encoded in the Fukaya category, and the B-model should be

encoded in the category of coherent sheaves. Then if M and N are mirror Calabi-Yaus,

there should be an equivalence of the Fukaya category of M with the category of coherent

sheaves on Y (on the derived level). Complete or partial proofs of homological mirror

symmetry for Calabi-Yau varieties are known for elliptic curves [4, 5], abelian varieties

[6] (see [7] for the case of the four-torus), Strominger-Yau-Zaslow dual torus fibrations
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[51], and the quartic K3 surface [9].

In this paper we consider a smooth Calabi-Yau hypersurface M' C ClP- 1 , and its

(predicted) mirror N'. Our main result is to prove one direction of homological mirror

symmetry: we prove that there is an equivalence of triangulated categories between

the split-closed derived Fukaya category of Mn and the bounded derived category of

coherent sheaves on N' (see Theorem 4 for the precise statement). M 3 is the elliptic

curve considered by Polishchuk and Zaslow, M 4 is the quartic surface considered by

Seidel, and M' is the quintic three-fold. We remark that Nohara and Ueda have also

considered the case of the quintic three-fold [52], using the results of Seidel [9] and our

earlier paper [1].

In future work [53], we will extend this result to the case of Fano hypersurfaces in

projective space, and we plan also to consider the case of hypersurfaces of general type.

2.1.2 Statement of the main result

First let us introduce the coefficient rings of the categories we will be considering.

Definition 2.1.2.1. We define the universal Novikov ring A0 , whose elements are

formal sums

Q(r) E j ~
:=1

where cj E C, and A3 E R;>o is an increasing sequence of non-negative reals such that

limA = oo.
j-+00

It is a valuation ring whose value group is R. Its field of fractions is the universal

Novikov field

A := Ao[r 1].
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We denote the maximal ideal by m C A0.

Definition 2.1.2.2. Given an element E E C[[r]] such that 0(0) / 0, we obtain an

automorphism

A -- A, such that

f14 (r) =r@(r).

If C is a A-linear category, and # such an element, we define a new A-linear category

0 - C: it is the same category as C, but the A-vector space structure of the morphism

spaces is changed via fp. We say that @-C is obtained from C via a change of variables

in the Novikov field.

Now we introduce the relevant categories.

Definition 2.1.2.3. On the symplectic side, let Mn C CIP'-- be a smooth hypersurface

of degree n. M" is an (n - 2)-dimensional Calabi-Yau. The Fukaya category T(Mn)

(as defined in [54]) is a Z-graded A-linear A,, category. The split-closed derived Fukaya

category D'F(M") (see [11, Section 1.4]) is a A-linear triangulated category. We remark

that the Fukaya category is a symplectic invariant (up to A,, quasi-isomorphism), so it

does not matter which smooth hypersurface Mn we choose.

Definition 2.1.2.4. On the algebraic side, we define

n

wnov:= U1...un + r u nE A[ui,...,un).
j=1

We set N 0n0 := w 0} c P 1. We equip N'n, with the action of a finite group.

Observe that the group

F* := (Z)n/(1,1,t.h..o , 1)

acts on jPn 1 by multiplying the homogeneous coordinates uj by nth roots of unity(w
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include the '*' for consistency with later notation). We have a homomorphism

F* --+ Z,

given by summing the coordinates. We denote the kernel of this homomorphism by F*.

Note that the action of F1* preserves 'NO" I so * acts on -no"* We define

We consider the bounded derived category of coherent sheaves on Nnnov, which is

DbCoh(Nn",,) D' (Cohr (j )

It is a triangulated category over A.

Theorem 4. If n 2 5, then there exists a power series @ E C[[r]], 0(0) = ±1, and an

equivalence of A-linear triangulated categories

D"F( M" ) L- 0 . DbCoh(N,0 ).

In fact, we will see that V@ E C[[r"n]| c C[[r]].

Remark 2.1.2.5. The requirement that n > 5 can be removed without difficulty, but

would require some ad-hoc arguments in the cases n = 3 and n = 4. We prefer to leave

these to the reader, as they distract from the main flow of the argument.

We remark that the reference [54], in which the full Fukaya category F(M") is defined,

and one of the results we use in the proof of Theorem 4 is proven (we have stated it as

Theorem 8), is still in preparation. This is not an ideal situation, but we reassure the

reader that this paper is written with minimal reliance on [54]. Let us explain what we

mean.
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We rigorously define a version of the Fukaya category called the 'relative' Fukaya

category F(Mn, D). It is an A, category defined over some coefficient ring R, and

there are natural homomorphisms of C-algebras

R -+ C[[r]] <-+ A.

We also define a certain category of matrix factorizations, denoted by p*MFG(Sw),

which is a differential graded category over the same coefficient ring R. We introduce

full subcategories

A c F(M", D), B c p*MFG(S, W),

and prove (without reference to [54]) that there exists V" E R and an A, equivalence

&b- 3 r-A.

For a more precise statement, see Theorem 5. Using a theorem of Orlov relating matrix

factorizations to coherent sheaves, we show that there is an equivalence

DbCoh(N,,,) e Ho (p*MFG(S, W) OR A)

(the 'Ho' on the right-hand side denotes the homotopy category of a differential graded

category), and the full subcategory 3 OR A generates. It follows that we have a fully

faithful embedding

0 -DbCoh(N,,) - Db (T(Mn, D) OR A).

We can come to this point without reference to [54], but no further.

In Section 2.8, we make the assumption (Assumption 2.8.1.1) that there is a fully

faithful embedding

.F(Mn, D) Oa A -+ (M),
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where F(M') is defined as in [54]. We justify this assumption 'heuristically', and show

that the full subcategory

Z (o A c F(Mn)

split-generates, by applying the split-generation criterion Theorem 8 (also due to [54]).

This completes the proof of Theorem 4.

In the rest of this section, we give an overview of the main techniques introduced

in the rest of the paper, and how they are used to prove Theorem 4. We will make a

few imprecise statements and definitions, in the interest of giving the reader the correct

intuitive picture.

2.1.3 Affine and relative Fukaya categories

Let M be a Kshler manifold, with a tuple D = (D 1,..., D) of smooth, ample, ir-

reducible divisors with normal crossings. In this paper, we consider three versions of

the Fukaya category: the affine Fukaya category Y(M \ D), the relative Fukaya

category F(M, D), and the full Fukaya category F(M).

First let us describe the affine Fukaya category. It is closely related to the exact

Fukaya category of the exact symplectic manifold M \ D, as defined by Seidel in [11],

but it has a more interesting grading structure.

First we explain the objects of the affine Fukaya category. If P is a symplectic

manifold, we denote by gP - P the Lagrangian Grassmannian, whose fibre over p E P is

the space of Lagrangian subspaces of TP. Any smooth Lagrangian immersion i : L -+ P

comes with an associated lift i, : L -+ gP. We define an anchored Lagrangian brane
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L# in P to be a Lagrangian immersion i : L -+ P, together with a lift

QP
i#. j

L *>P,

where 9P is the universal cover of the total space of gP, together with a choice of Pin

structure on L. The terminology comes from [55], where a closely-related concept is

studied.

We define the objects of the affine Fukaya category F(M \ D) to be compact, ex-

act, embedded, anchored Lagrangian branes in M \ D. The category is C-linear, and

morphism spaces and A, structure maps are defined in exactly the same way as in the

exact Fukaya category of the exact symplectic manifold M \ D. Namely, the morphism

spaces are

CF(M\D) (Lo, L 1 ) e C p

pELOflL1

(with appropriate modifications to allow for non-transverse intersection of Lo with L 1 ).

The A, structure map

p" : CF* (L,_ 1 , L.) 0D... CF* (Lo, L1 ) - CF* (Lo, L,)

is defined by counting rigid holomorphic disks with s + 1 boundary punctures in M\

D. Namely, the coefficient of po in pi(p,...,p1) is given by the signed count of rigid

holomorphic disks

u : D \ (,..(}-+ M \ D,

sending the jth boundary component to Lagrangian Lj, and asymptotic at puncture (i

to intersection point pj. However, we treat the grading differently.

To start with, we equip each morphism space with a grading in the abelian group

H 1 (M \ D). The A, structure maps respect this grading, essentially because if there
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is a holomorphic disk contributing to some A, product in M \ D, then its boundary is

nullhomologous in M \ D. Gradings of this type have appeared in, for example, [20, 1].

Remark 2.1.3.1. Another way of defining this grading (following [55]) would be to

equip M with a basepoint q E M \ D, and define an object of the Fukaya category to

be a Lagrangian L C M \ D, equipped with a path from q to a point qL E L, inside

M \ D. Then, given an intersection point p E LO n L 1 , which by definition is a generator

of CF*(Lo, L 1 ), we can define a class in H 1 (M \ D): start from q and follow the path

from q to qLo, then follow a path in LO to the intersection point p, then follow a path in

L 1 to qL1 , then follow the path back to q. The class of this path in H1 (M \ D) defines

the grading of p.

Secondly, if we were given a quadratic complex volume form on M\D, we could define

a Z-grading of the morphism spaces (as in [11]). This defines a Z e H1 (M \ D)-graded

category. However, this formulation is unsatisfactory: the Z-grading and Hi-grading are

related. For example, changing the quadratic volume form has the effect of changing the

Z D H1 grading by an automorphism preserving the H1 factor. We really want a new

notion of grading.

In Section 2.2, we define a grading datum G to be an abelian group Y together

with a morphism f : Z -+ Y. We say that an A, category is G-graded if its morphism

spaces are Y-graded, and the A, structure map pL has degree f(2 - s). We also study

the deformation theory of G-graded A, algebras and categories, and prove various

classification results about them.

In Section 2.3.1, we introduce a grading datum G(M, D) associated to M \ D, as

follows: we consider the fibre bundle 9(M \ D), with the associated fibration

Ti(M \ D) xa c(M \ D) -+ M \ D.

Taking the abelianization of the asso'ciated exact sequence of homotopy groups, we obtain
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an exact sequence

H1 (g,(M \ D)) -+ Hi (9(M \ D)) -+ H1 (M \ D).

We observe that g,(M \ D) is the Lagrangian Grassmannian of the symplectic vector

space TM, so H 1 (g(M \ D)) a Z (see [56]). Thus we can define the grading datum

G(M, D) to be given by the first morphism in this exact sequence. We show that the

affine Fukaya category is naturally G(M, D)-graded. Observe that the second map in

the exact sequence gives the H1 (M \ D)-grading mentioned earlier.

Next, we introduce the relative Fukaya category, denoted F(M, D) (following [57, 9]).

Its objects are exactly the same as those of F(M \ D): compact, exact, embedded,

anchored Lagrangian branes in M \ D. It is defined over the coefficient ring

R(M, D) :=C[[r1, . . . ,rk]],

a power series ring with one generator for each divisor. We will often write R instead of

R(M, D) when no confusion is possible. We define morphism spaces by

CF(M,D)(LoL1):= @ R.p.
pELonL1

The A, structure maps p count rigid boundary-punctured holomorphic disks in M.

Namely, the coefficient of po in t"(ps, . . . , pi) is given by a signed count of rigid holomor-

phic disks

u : ID \{,.. }-+M

with boundary and asymptotic conditions as before. Each such disk u contributes a term

uD itD uDkr

where u Dj denotes the topological intersection number of u with Dj. We observe that
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u - Dj > 0 by positivity of intersection, so indeed the coefficients lie in R.

T(M, D) is still a G(M, D)-graded category, but we remark that the coefficient

ring R must have a non-trivial grading for this to be true. For example, consider the

H1 (M \ D)-grading that we mentioned earlier. It is no longer true that a holomorphic

disk u contributing to an A, product p- has nullhomologous boundary in M\D, because

the disk now maps into M, not M \ D as it did for the affine Fukaya category. However,

if we remove small balls surrounding each intersection point of a with a divisor Dj, then

the resulting surface defines a homology in M \ D between the boundary of u and a

collection of meridian loops around the divisors. Thus, if we define the H1(M \ D)-

grading of the generator rj E R to be the class of a meridian loop around divisor Dj,

then the A. structure respects the Hi-grading. Of course there remains more to check

to show that F(M, D) is G(M, D)-graded, but this is the basic idea - the details can

be found in Section 2.5.

We observe that the zeroth-order part of F(M, D) defines an A, category over C, in

which a holomorphic disk u : ID -+ M contributes to p' only if u - Dj = 0 for all j. This

corresponds to counting only holomorphic disks which avoid the divisors D, i.e., which

lie in M \ D. By definition, this corresponds to the affine Fukaya category F(M \ D).

We therefore say that F(M, D) is a G(M, D)-graded deformation of F(M \ D) over

R(M, D).

Finally, we recall the definition of the full Fukaya category T(M), as in [24, 54],

where M is a Calabi-Yau symplectic manifold. Its objects are graded spin Lagrangians

L C M. It is linear over the Novikov field A. Its morphism spaces are Z-graded A-vector

spaces (where A has degree 0 E Z), defined by

CF (M)(Lo, L1) := (@ A -p.
pELonL 1

The A, structure maps are defined by signed counts of rigid boundary-punctured holo-
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morphic disks u : D -- M as before. Each such disk u contributes a term r'(*) E A to

the corresponding coefficient of p".

If we define the ring homomorphism

R --+ A

r r for all j,

then A becomes an R-algebra. We expect that there is a fully faithful embedding of

Z-graded A-linear A, categories,

T(M, D) OR A -4 T(M).

We do not rigorously establish that such an embedding exists, so we state this as As-

sumption 2.8.1.1, and give some justification in Remark 2.8.1.2.

We summarize

following table:

the properties of the three versions of the Fukaya category in the

Affine: F(M \ D) Relative: T(M, D) Full: F(M)

Objects Eq. branes L# in M \ D Same as for F(M \ D) Graded, Spin L C M

Coefficients C R(M, D) A

Morphisms C(Lo n LL1 ) R(Lo n L1 ) A(Lo n L1 )

Grading G(M, D)-graded G(M, D)-graded Z-graded (if M is C-Y)

A, maps [L' #{u: D -+ M \ D hol.} #{u: ID -+ M hol.},

with r"D E R

#{u: ID -+ M hol.},

with rw(u) E A

F(M \ D) G(M, D)-graded deformation) F(M, D) -" ) T(M).
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2.1.4 The B-model mirror to the affine, relative and full Fukaya

categories

We define the smooth Calabi-Yau Fermat hypersurface

M := zE =j 0 c (CPn-,

j=1 )

with ample divisors D: {zj = 0} for j = 1,... ,n. In this section, we will introduce

the B-models which ought to be mirror to T(M" \ D), 7(M', D), and F(M').

We define the power series ring

R := (C[[ri,, rn]],

which is the coefficient ring of F(Mn, D). We define the R-algebra

S := R[ui, .. ., un],

and equip it with the Z-grading so that R is concentrated in degree 0, and each uy has

degree 1. We define the element

n

w =ui...un+ rjun E S,
j=1

of degree n.

Now note that Proj(S) = P'a 1 . We consider the variety

N' := {w = 0} C Pn-1

and equip it with the action of F*, exactly as we did for Nn, in Definition 2.1.2.4, then
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define

N' :=N"/P*.

We note that the algebraic torus

T:= {(:,-. .. An) E (C*)" : A, ... An = 1}

acts on S, by sending

H-j Ai.~

This action preserves w, and commutes with the action of F*, and therefore defines an

action of T on Nn.

We note that there are homomorphisms

C +-R -+A,

given by

0 r r-+ r

for all j. Hence, by base change, we obtain

N> :N" < Nn",

4I 4I
Spec(C) -> Spec(R) <-- Spec(A).

We call Nn the total space of the family over Spec(R), we call Non the special fibre,

and Nno, the generic fibre. We observe that this Nnov coincides with the definition

given in Definition 2.1.2.4.
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We expect mirror relationships as follows:

(however note that we do not necessarily claim to prove all of these equivalences - this

table is included to assist the reader in seeing the 'big picture').

Note that the map from R to C is naturally T-equivariant. Thus, we can define T-

equivariant sheaves on No and N'. However it is impossible to equip A with a T-action

so that the map R -+ A is T-equivariant, so we can not talk about T-equivariant sheaves

on N,,.

We expect that T-equivariant sheaves correspond to anchored Lagrangian branes.

Namely, we have seen that the morphism spaces between anchored Lagrangian branes

admit a grading in the group H 1 (M" \ D), and hence an action of its character group.

In this case, there is a natural isomorphism

Hom (Hi(Mn \ D), C*) - T,

and we expect the mirror correspondences in the above table to be T-equivariant (exclud-

ing the last column). In fact, we expect something stronger: they should be equivalences

of G-graded categories.

In [1, Theorem 7.4], we proved that there is a fully faithful, T-equivariant embedding

Perf(No) " Db.F(Mn \ D).

In this paper, we extend this to prove results about the other columns.
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Our ultimate aim is to understand the final column, and give a proof of Theorem 4.

Thus we need a method of making computations in DbCoh(Nan,0 ). For this purpose, we

use the category of graded matrix factorizations. Let us denote

Snov :=-: S OR A = A[ui,. .. ,Un],

with

nov E Snov

Then Sno is Z-graded, and enov is homogeneous of degree n. In [58], Orlov introduced

the differential graded category of graded matrix factorizations of a homogeneous super-

potential, GrMF(Sov, wnoo), and proved that there is an equivalence

Ho (GrMF(Snov, wnon)) 2 DbCoh (N ,

where

n0V := {wno} c P 1

(see [58, Theorem 3.11]). Similarly, there is an equivalence of F*-equivariant categories,

Ho (GrMF(Snov, Wno)* * D6Coh (Nnov).

Orlov's theorem applies because we work over the field A, and Nan'Q = Wnm= 0} is

smooth and Calabi-Yau. However, recall that by passing from the variety Nn, defined

over R, to the variety Nnos, defined over A, we lose the T-action. This is a disadvantage,

because T-equivariance constrains the algebraic structures we consider significantly, and

makes our classification problems tractable.

Therefore, we introduce (in Section 2.7) the category GrMF(S, w) of graded matrix

factorizations of w) E S, over the coefficient ring R (Orlov mainly considered graded

matrix factorizations over a field in [58], but the definition works over any ring). The
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coefficient ring R and the graded R-algebra S admit an action of T, which preserves

w. Therefore we can talk about T-equivariant objects in GrMF(S, w), and furthermore

there is a fully faithful embedding

GrMF(S, w) OR A e- GrMF(Sno, wno0 ).

However, because R is not a field, Orlov's theorem does not apply to give a relationship

between the categories GrMF(S, w) and Perf(N") (although it seems reasonable to hope

that some sort of relationship might hold).

In fact, we first introduce a differential G-graded category MFG(S, w) of G-graded

matrix factorizations of w E S (these combine the T-action with the Z-grading, in the

same way that anchored Lagrangian branes combine the H1 (Mn \ D)-grading with the

Z-grading in the Fukaya category). We show that GrMF(S, w) * is some 'orbifolding' of

it.

The starting point for this is the observation that GrMF(S, w) is a Zn-equivariant

version of MFG(S, w) (compare [59, 60]). In fact there is an action of F* on MFG(S, w),

and we show that there is a fully faithful embedding

MF G(S, W)a f * GrMF (S, w) Fn

(recall that P* is an extension of Z, by I*; the Z got eaten up turning MF into GrMF).

In fact, our notation for the IFn equivariant category is different - we will write it as

p*MFG(S,w) = MFG(S W)f'n.

We will not give the precise meaning of 'p*' in this introduction, but will continue to

use it for consistency with our later notation.

We consider the object O of MFG(S, w), corresponding to the ideal (ui,. . , un) C S.
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We denote its endomorphism algebra by '3. It is a deformation of the exterior algebra

Extcoh(cn) (o, Oo) - A*

over the power series ring R. Deformations of A*Cn are governed by the Hochschild

cohomology, which is given by polyvector fields, by the Hochschild-Kostant-Rosenberg

isomorphism:

HH*(A*C") _ C[[ui,.. ., un]][61, . ... ,On],

where the variables uj commute and the variables Oj anti-commute. We construct a

minimal A, model for this A. deformation of A*C", and prove that its deformation

classes are given exactly by the coefficients of w (following [21]). We prove a classification

theorem (Theorem 6), which shows that these deformation classes, together with the G-

grading, are enough to determine the deformation up to A, quasi-isomorphism and

formal change of variables.

We then consider the full subcategory of p*MFG(S, w) whose objects are the equiv-

ariant twists of 00. We denote it by '3. It can be determined completely from '3. We

also introduce a full subcategory

A c F(M", D)

(the remaining sections of this introduction will consist of an explanation of how to

compute A). We prove the following generalization of [1, Theorem 7.4]:

Theorem 5. There exists a V) E C[[T]] C R, where T = r1 . .. rn, with V)(0) = ±1, and

a quasi-isomorphism of G-graded R-linear A, categories
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By our previous discussion, there is a fully faithful embedding

Ho (p*M FG(S, W) OR A) <-> DbCoh(N",,) - D"Coh'n n)

The images of the equivariant twists of 00 correspond to equivariant twists of the

restrictions of the Beilinson exceptional collection Qj(j) restricted to Nnnov (for j =

0,1, ... , n - 1) by characters of F.

The equivariant twists of the restrictions of the Beilinson exceptional collection gen-

erate DbCoh(Nnn0o), so it follows immediately from Theorem 5, by tensoring with A, that

there is an equivalence of triangulated categories

p.D bCoh(Nn"ov) - Ho (Tw (J n OR A)) C D"'F(M")

(under our assumption (Assumption 2.8.1.1) that the second embedding above exists).

Finally, to complete the proof, we wish to show that A OR A split-generates the

Fukaya category. We do this by applying the split-generation result of [541, which says

that, if the closed-open string map

CO : QH* (M) -+ HH* (A ORA)

is non-zero in the top degree 2(n - 2), then q OR A split-generates D'F(M').

We observe that

CO([w) =r E HH2 (A[®R A)
Br

(in words, the image of the class of the symplectic form under the closed-open string

map is the class in HH 2 corresponding to deforming the Fukaya category by scaling the
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symplectic form). We now observe that CO is a A-algebra homomorphism, so

CO([w]n 2 ) = (r ) .

We then compute that this class is non-zero in the Hochschild cohomology. It follows

from the split-generation criterion that ZRA split-generates D'T(Mn). This completes

the proof of Theorem 4.

In the rest of this introduction, we explain how we make computations in the relative

Fukaya category F(M", D), which are sufficient to prove Theorem 5.

2.1.5 Behaviour of the Fukaya category under branched covers

Suppose that N and M are compact Kdhler manifolds with ample normal-crossings

divisors E C N and D C M as before, and that

# : (N, E) -+ (M, D)

is a branched cover ramified about the divisors E, sending divisor Ej to divisor Di, and

with ramification of degree aj about divisor E. We aim to understand how the affine

and relative Fukaya categories of (N, E) and (M, D) are related.

First, we observe that the map

# : N \ E -+ M \ D

is an unbranched cover. Therefore, any holomorphic disk in M \ D lifts to N \ E,

because it is contractible. It follows that the problem of relating F(N \ E) to F(M \ D)

is essentially one of algebraic bookkeeping: we need to keep track of how the holomorphic

disks lift, but do not need to compute any new moduli spaces of disks. This leads one to
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the statement that F(N \ E) is a 'semi-direct product of F(M \ D) with the character

group of the covering group of #' (see [9, Section 8b] and [20, Section 9]). We rephrase

this in Section 2.3.4 using the language of G-graded categories, in which we write

F(N \ D) - p*T(M \ D)

(we won't explain this notation in the introduction).

Now we try to understand the behaviour of the relative Fukaya category with respect

to branched covers. This is not as simple as the unramified cover case, because holomor-

phic disks may pass through the branching locus, and then they do not lift to the cover.

In order to relate F(N, E) to F(M, D), we introduce a 'smooth orbifold relative Fukaya

category' F(M, D, a), where a = (a1 , . . . , ak) denotes the degrees of ramification of the

cover about the divisors (but we could define the orbifold Fukaya category for any tuple

a of k positive integers).

The objects, morphism spaces and coefficient ring of F(M, D, a) are the same as for

T(M, D). The A, structure maps ytS, however, count holomorphic disks u : D -+ M

that have ramification of degree aj about divisor Dj wherever they intersect it. Each

such disk contributes

#(intersection points with D1 ) #(intersection points with Dk)
ri~. . . r E R(M, D).

In particular, if a = (1, 1, . . . , 1) then we recover the relative Fukaya category. The

category is still G(M, D)-graded, but the coefficient ring R(M, D) is equipped with a

different G(M, D)-grading depending on a.

The holomorphic disks u : D -> M contributing to the orbifold relative Fukaya

category, now do lift to holomorphic disks u : D -+ N (by the homotopy lifting criterion).

Thus, the relative Fukaya category T(N, E) is related to F(M, D, a) in exactly the same

way that the affine Fukaya category T(N \ E) is related to T(M \ D): in the language
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of G-graded categories,

F(N, D) 2 p*F(M, D, a).

It now remains to relate F(M, D, a) to F(M, D). In fact, we are only able to relate

the 'first-order' parts of the categories (but this turns out to be enough for our purposes).

The first-order relative Fukaya category is defined to be

F(M, D)/m 2 := T(M, D) OR R/m 2 ,

where m C R is the maximal ideal. It is linear over R/m 2 . It retains only the information

about rigid holomorphic disks u :D -+ M passing through a single divisor Dj (with

multiplicity 1).

Let us write

p* =L *+ p*

for the A, structure maps p* in F(M, D)/mn2 , where p* gives the affine Fukaya category

and p* gives the first-order terms. Then the A, relations tell us that p* is a Hochschild

cocycle, hence defines an element

k

( raj E HH*(7(M \D)) 0 m/m2

j=1

We call a, the first-order deformation classes of F(M, D).

We prove (Theorem 7) that, if F(M, D) has first-order deformation classes aj, then

F(M, D, a) has first-order deformation classes aj , where the power is taken with respect

to the Yoneda product on Hochschild cohomology. The proof looks very similar to the

proof that the map QH*(M) -+ HH*(F(M)) is a ring homomorphism.

Remark 2.1.5.1. At first sight, this may seem a strange result: first-order deformation

classes of a category live in HH 2 , and the Yoneda product respects the Z-grading, so one
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would expect the class a"' to no longer live in HH2 and therefore not be an appropriate

first-order deformation class. The solution lies in the fact that the coefficient rings R have

non-trivial gradings, and in fact the coefficient rings for F(M, D) and T(M, D, a) have

different gradings: thus, both rjaj and rja have degree 2 in the respective Hochschild

cohomology groups in which they live.

Combining this result with our previous observations, if we have a branched cover

#5: (N, E) -+ (M, D), then we can compute F(N, E) to first order if we know T(M, D)

to first order.

2.1.6 The Fukaya category of M"

We will now explain how to compute the Fukaya category of M". We will keep the

one-dimensional case (n = 3) as a running example throughout, despite the fact that

we do not prove this case of Theorem 4 completely in this paper. We do this because

one can see all of the holomorphic disks in the Fukaya category in this case, and gain

intuition for the various versions of the Fukaya category that we introduce, and results

that we prove about it.

We consider the Fermat hypersurfaces

M" := z = 0 c (CP"~1

j=1)

with the smooth ample normal-crossings divisors D = f{zy= 0} for j = 1, ... , n. There

is a branched cover

# :(Ma, D) - (M, D),

[z :.. :z ] [z" :. .:z"].
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Thus, applying the results described in the previous section, if we can compute E(Mn, D)

to first order, then we can compute .F(Me", D) to first order.

We observe that M 1" = CP 2 , and D consists of n hyperplanes in general position.

Min \ D is called the (n - 2)-dimensional pair of pants. In Section 2.6, we construct a

Lagrangian immersion

L : Sn- 2 --+ Mf' \ D

which has an anchored Lagrangian brane structure. This Lagrangian was introduced in

[1].

Example 2.1.6.1. M = CP 1, and D consists of three divisors (points). The La-

grangian immersion L : S1 -+ CPI \ D is shown in Figure 2.1.6.1. The A.. algebra

CF*(L, L) was described in [20]. It was introduced as a Z G H 1 (Ml \ D)-graded cate-

gory, but it is not hard to see the underlying G(M 3 , D)-graded structure.

The reason this Lagrangian is important is because it can be regarded as a 'fibre'

in a Strominger-Yau-Zaslow fibration. See Figure 2.1.6.2 for the picture in the one-

dimensional case. More generally, as shown in [22], the pair of pants CIPn- 2 \ D is a

singular torus fibration over the 'tropical amoeba of the pair of pants', which is some

space stratified by affine manifolds. The torus fibration is non-singular over the top-

dimensional faces of the tropical pair of pants.

We suggest that one should think, not of an SYZ fibration of the pair of pants

over the tropical pair of pants, with some singular fibres, but rather of an SYZ family of

objects of the Fukaya category, parametrized by the tropical pair of pants. The immersed

Lagrangian sphere L is the object corresponding to the central point in the tropical pair of

pants in this picture. The objects corresponding to points of the top-dimensional strata

are Lagrangian torus fibres (recall that the fibration is non-singular there). The objects

corresponding to points on the in-between strata are lower-dimensional incarnations of

L, crossed with tori. We provided some evidence for this philosophy in [1], where we
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Figure 2.1.6.1: CP1 with its real locus RP1 is shown in black, with the divisors D
indicated by black dots. The Lagrangian immersion L : S1 - CP1 \ D is shown in red,
and its self-intersection points are marked in blue.
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#1

Figure 2.1.6.2: The Lagrangian L : S' -> CP' \ D can also be drawn as a 'trefoil', shown

here in red on the pair of pants (upper left). It lies over the central point (shown in red)

in the tropical pair of pants (bottom). The mirror is the union of coordinate axes in

C3 (upper right), and the object corresponding to L is the structure sheaf of the origin

(shown in red).

showed that the endomorphism algebra of L in F(CPn- 2 \ D) is quasi-isomorphic to

the endomorphism algebra of the structure sheaf of the origin in the mirror category of

matrix factorizations. We plan to make this picture more precise in future work.

In Section 2.6, we compute CF*(L, L) to first order in F(CP,-2, D), using a Morse-

Bott model for the relative Fukaya category, based on the 'cluster homology' of [27). We
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compute that the underlying vector space is an exterior algebra:

CF* (L, L) -_ A*C" -= C [01, ... ,I6O),

where the variables 6j anti-commute. For example, when n = 3, CF* (L, L) is generated

by H*(S 1 ) (whose two generators we identify as the bottom and top classes 1 and

01 A 02 A 03), together with two generators for each self-intersection point, which we

label as in Figure 2.1.6.3.

We next show that the zeroth-order algebra structure, p, coincides with the exterior

algebra. In the case n = 3, the corresponding holomorphic triangles are shown in Figure

2-3(a). The shaded triangle can be viewed as having inputs 01 and 02 and output 01 A 02,

while the corresponding triangle on the back of the figure can be viewed as having inputs

02 and 01 and output -01 A 02. The other products follow similarly.

A, structures with underlying cohomology algebra A*C" are classified by the Hochschild

cohomology, which is given by polyvector fields, by the Hochschild-Kostant-Rosenberg

isomorphism:

H H(A*C") - C[[Ui, . .. , un]][01,. ... , On],

where variables ui commute and 0, anti-commute. We show that the endomorphism

algebra CF* (L, L) in the affine Fukaya category F(Cpn-2 \D) is completely determined,

up to A. quasi-isomorphism, by a single higher-order product, having the form

p"(01, . .. ,On) = 1,

corresponding to the Hochschild cohomology class

u I...un E C[[Ui, ... , Un]][1,..., 6o ].

In the case n = 3, we can see the corresponding holomorphic disk in Figure 2-3(a). It is
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3,,0 A02 2,'3 A

D- 2 3D

(a) Disks contributing to CF* (L, L) in the affine
Fukaya category, .F(CP1 \ D).

D A6 D23 1 02 03

(b) Disks contributing to the first-order defor-
mation class of CF*(L, L) in the relative Fukaya
category, F(CP1 , D).

Figure 2.1.6.3: Holomorphic disks contributing to CF*(L, L).

the shaded triangle, which we view as a degenerate 4-gon having inputs 01, 02, 03, and

output a degenerate vertex on one of the sides of the triangle, corresponding to 1.

We next compute that the endomorphism algebra of CF*(L, L) in the first-order

relative Fukaya category F(CP,- 2, D)/m 2 ) is determined by structure maps of the form

p(0) = r 1,

corresponding to first-order deformation classes

rjus E (C [[1, ... , u][01, .. ,6] 9 m/m2

When n = 3, we can see the corresponding holomorphic disks in Figure 2-3(b). The

shaded 'teardrop' shape has one input 01, and a degenerate output vertex corresponding

to 1. It intersects divisor D1 exactly once, and does not intersect the other divisors,

hence contributes with a coefficient ri. Thus it gives rise to the term p1 (01) = r1 -1.

It follows from the result described in Section 2.1.5 that the first-order deformation
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classes of the A. algebra

A := CF*F(cp--,D,(n,...,n))N (L L

in the orbifold Fukaya category, are ryng. Thus, the full deformation class of A is

n

ui. .. n +SrU + O(r2),
j=1

which we observe coincides with the defining polynomial w of N , to first order.

We prove a classification theorem (Theorem 6) which shows that this is enough

information to determine the full G-graded deformation, up to A, quasi-isomorphism

and formal change of variables.

We show that the A, algebra

'3 := HomMFG(S,)(Oo, 00)

also has the same underlying algebra, G 2 G(CPn-2, D)-grading, and deformation

classes (recall the deformation classes were given exactly by w itself). Therefore, by the

above-mentioned classification theorem, we have a formal change of variables 4, and an

A, quasi-isomorphism

'3 -A.

Now the algebraic procedures of passing from .F(CP,~2 , D, (n,. . . , n)) to the branched

cover .F(M', D), and of passing from MFG(S, w) to p*MFG(S, w), are equivalent: we

have

T c e p T ph 5. S.

This completes the proof of Theorem 5. See Figure 2.1.6.4 for a picture in the case n = 3.
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Figure 2.1.6.4: A fundamental domain of the elliptic curve M 3 , with the divisor D

consisting of nine points, indicated by black dots. The 9-fold cover (M 3 , D) -+ (CP', D)

has ramification of order 3 about each divisor. The black lines are the pullback of RP'.

The lifts of L are the curves shown in red, with their intersection points in blue. We

have shaded two of the holomorphic disks contributing to the A,, products between lifts

of L. Note that the triangle of Figure 2-3(a), which contributes to the affine Fukaya

category, lifts directly to M 3 , whereas the 'teardrop' illustrated in Figure 2-3(b), which

contributes the term ri 1u to the deformation class of the relative Fukaya category, does

not lift, but rather gives rise to the 'clover-leaf' shape, which contributes the deformation

class r 3U.
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2.2 Graded and equivariant categories

The main purpose of this section is to introduce the relevant notions of graded and

equivariant algebraic objects, and modify the results in [9, Section 3] to classify such

objects.

2.2.1 Grading data

For the purposes of this section, we fix an integer n > 3.

Definition 2.2.1.1. An unsigned grading datum G is an abelian group Y together

with a morphism f : Z -+ Y. We will use the shorthand G = {Z 4 Y}. We will often

write G as

Z >Y _">X > 0,

where X is the cokernel of f. We say that G is exact if the map Z -+ Y is injective.

Definition 2.2.1.2. A morphism of unsigned grading data, p : G 1 -+ G 2 , is a mor-

phism p: Y1 -+ Y2 that makes the following diagram commute:

Z fi > Y

7Z->Y1

f 2 ,

Composition of morphisms is defined in the obvious way, and this defines a category of

unsigned grading data. We say that a morphism of unsigned grading data is injective

(respectively surjective) if the map p is injective (respectively surjective). We will

sometimes write p as

Z Y 91 Xi > 0

P N/ PXI

Z h Y2 92 > X2 > 0,
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where px is the map induced by p.

Definition 2.2.1.3. We define the sign grading datum, G, := {Z -+ Z2}.

Definition 2.2.1.4. We define a grading datum (G, o) to be an unsigned grading

datum G, together with a sign morphism, which is a morphism of unsigned grading

data,

o : G -+ Ga.

We define a morphism of grading data to be a morphism of unsigned grading data that

is compatible with sign morphisms. Henceforth, we will often omit the sign morphism

o from the notation to avoid clutter.

The sign morphism is important because it allows us to define certain signs in our

algebraic objects, which allows us to work over fields of characteristic not equal to 2.

id
Example 2.2.1.5. We define the grading datum Gz := {Z + Z}, with the obvious

morphism o. It is an initial object in the category of grading data.

In practice, it is often simpler to work with objects called pseudo-grading data.

Definition 2.2.1.6. A pseudo-grading datum H is a morphism of abelian groups

f : Z -+ Y, together with an element c E Hom(Z, Z), whose image lies inside 2Z C Z.

Definition 2.2.1.7. A morphism of pseudo-grading data,

p : Hi -+ H2,

consists of maps pz and py that make the following diagram commute:

Z1 fi> Y

PZ1 
PYI

Z' 2 > Y2,
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together with an element d E Hom(Y, Z), whose image lies inside 2Z C Z, such that

Ci = p~z(c2) + fi(d).

Definition 2.2.1.8. Given a pseudo-grading datum H:

Z Y,

together with c, we define a grading datum G(H) by

Z > (Z G Y)/Z,

where we define the map Z -+ Z e Y by

z - c(-z) e f (z)

and the other maps in the obvious way. We define the sign morphism a : G(H) -+ G,

by

a: (Ze Y)/Z

-(j e y)

-+ Z2,

:=1j

Observe that the condition that the image of c lies in 2Z ensures that a is well-defined.

Definition 2.2.1.9. Given a morphism of pseudo-grading data p : Hi - H 2 as in

Definition 2.2.1.7, we define a corresponding morphism of grading data

G(p) : G(H1) -+ G(H2),

where

G(p)(j e y1 ) := (j + d(y 1 )) e p(yi).
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It is not hard to check that this defines a functor from the category of pseudo-grading

data to the category of grading data.

Example 2.2.1.10. If we denote by 0 := {0 -+ 0} the zero morphism, then G(0) = Gz.

Example 2.2.1.11. Given n > 0, we define the pseudo-grading datum HMF(n) {=

Z}, with c = 2. We denote the corresponding grading datum by GMF(n). It is exact,

and has corresponding short exact sequence

0 yZ (Zo )/(, n) -L-> Z, > 0,

This grading datum is important because it controls Orlov's 'category of graded matrix

factorizations' of a superpotential of degree n (hence our terminology).

Now we will introduce another important grading datum, although first we introduce

a bit of convenient notation.

Definition 2.2.1.12. We denote [k] := {1,... , k} for any positive integer k and, for any

K c [k],

YK: yj E Z(Yl,.. , yk) - Z.

jEK

Example 2.2.1.13. Given n > 1, we denote by H,, the pseudo-grading datum

Z -2 Z(yi,... -, yn),i

together with c = 2(n - a). We denote by G' the corresponding grading datum. This

grading datum is important because it controls both the Fukaya category and the cate-

gory of equivariant matrix factorizations that we will consider.

Now we prove a Lemma relating some of the grading data that we have introduced.

We will use it to relate the category of matrix factorizations to the category of coherent

sheaves.
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Lemma 2.2.1.14. For any n > 1, there is a commutative square of grading data:

G" -- >> Gz

P1l P2I

G" -4 GMF(n),

such that p1 and P2 are injective.

Proof. The morphism P2 is uniquely defined because Gz is an initial object. It is clearly

injective. The morphism qi comes from the zero morphism of pseudo-grading data, with

d = 0 (note this is a morphism of pseudo-grading data because c = 0 in Hg).

The morphism pi comes from the morphism of pseudo-grading data,

X Y[nZ

Z Z" Zn

with d = 2(1 - n)y[n] (where here we denote by y[n] the element of the dual space

(Zf)v Z,). It is clearly injective.

The morphism q2 comes from the morphism of pseudo-grading data,

Z "")Z"

x I){ Y[n] I

Z X n) Z,

with d = 2ytn]

It is a simple exercise, applying Definition 2.2.1.9, to check that the diagram com-

mutes. El
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2.2.2 Graded vector spaces

We recall that, if Y is an abelian group, then a Y-graded vector space is a vector space

V, together with a collection of vector spaces V, indexed by y E Y, and an isomorphism

V D Vy.
yEY

Definition 2.2.2.1. Let p : Y -+ Y2 be morphism of abelian groups. Given a Yi-graded

vector space V, we define the Y2-graded vector space pV, where

(pV)b:= Q Va.
p(a)=b

In particular, the underlying vector space V does not change.

Definition 2.2.2.2. Let p: Yi - Y2 be morphism of abelian groups. Given a Y2-graded

vector space V, we define the Y1-graded vector space p*V, where

(p*V)a := Vp(a).

Remark 2.2.2.3. If p : Y - Y 2 is injective, then p*V is just the part of V whose

Y2-degree lies in im(p).

Definition 2.2.2.4. Let G = Z -+ Y} be a grading datum. A G-graded vector space

V is the same thing as a Y-graded vector space V.

In fact, for the purposes of this section, 'G-graded' is virtually identical to 'Y-graded'.

Things will get more complicated in the subsequent sections.

Definition 2.2.2.5. Given an element y E Y, and a G-graded vector space V, we define

V[y] to be V with grading shifted by y.

Definition 2.2.2.6. Given a morphism p of grading data, we define operations p, and

p* on G-graded vector spaces to be identical to p, and p*.
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Definition 2.2.2.7. If V is a G-graded vector space, then it automatically becomes a

Z2-graded vector space:

V eV,

where o is the sign morphism of G. Given v E V of pure degree with respect to this

Z 2-grading, we denote its Z2-degree by u(v).

Definition 2.2.2.8. A G-graded algebra is a Y-graded algebra, i.e., one whose multi-

plication respects the Y-grading.

Example 2.2.2.9. Recall the grading datum G' of Example 2.2.1.13. We define the

n-dimensional Gi-graded vector space

U" := C(Ui, .u),

where we equip uj with degree (-1,yj) E (Z D Y)/(2(1 - n) e Y[n]).

Example 2.2.2.10. Let a be an integer. We define the Gn-graded vector space

V" := C(ri, . .. , rn),

where we equip rj with degree (2 - 2a, ayj) E (Z D Y)/(2(1 - n) E Y[n]).

Remark 2.2.2.11. We observe that, if pi and qi are the morphisms of grading data

defined in Lemma 2.2.1.14, then

q1.p*V" V"

is a Z-graded vector space concentrated in degree 0.

We remark that, if V is a G-graded vector space, then the exterior algebra A(V) and

symmetric algebra Sym(V) have natural G-graded algebra structures.
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Definition 2.2.2.12. We define the G"-graded exterior algebra

A, := A(U,) _- C[01, ... , O,

where the variable 0, anti-commute.

Definition 2.2.2.13. We define the G"-graded power series ring

Ra := (C[[Vav]] - (C[[ri, .. ., r")).

The next Lemma looks abstruse, but will be used in Section 2.7.5 to relate equivariant

matrix factorizations to equivariant coherent sheaves:

Lemma 2.2.2.14. Suppose we are given a commutative diagram of exact morphisms of

grading data:
G1 -> Gz

P1 P2lI

G *2> G2,

where pi and P2 are injective, and a G-graded vector space

grading data and morphisms, we find there are morphisms

V. Taking the X-part of the

whose composition is 0 (by commutativity of the diagram). We define the group r to be

the homology of this sequence:

F := ker(q 2,x)/im(p1,x).

Then p*q 2-V admits a F-grading, and hence an action of

there is an isomorphism

( p* q2iV)* pV
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as Z-graded vector spaces, where the superscript * denotes the P*-invariant part (or

equivalently the part of degree 0 E F).

Proof. We have, by definition, the degree-j parts

(p *q 2-V)' 0 Ay,
q2 (Y) =P2(j)

and

(q 1*piV)J 0 Ap(y).
qi (y)=j

Note that the first of these is equal to the part of A whose Y-grading lies in qj1 (im(p 2 )),

while the second is equal to the part of A whose Y-grading lies in im(pi) (using the

exactness of pi and P2). By commutativity of the diagram,

y = p1(Y1)

q2(y) = p2(ql(yi))

Sy E g2i1(im(gi)),

so im(pi) c q2 (im(p2)). Therefore, we have

q*p1,V c p*q 2-V.

Furthermore, the left-hand side is exactly equal to the part of the right-hand side whose

Y-grading lies in

im(pi) c q2 (im(p2)),

so we can equip the right-hand side with a grading in

q2 1 (im(p2 ))/im(p 1 ) , F,

and the left-hand side is equal to the part of degree 0 E F.
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The fact that the Z-gradings match up also follows from commutativity of the dia-

gram:

q1(y) j => P2(j) = q2 (Pi(y)).

This completes the proof. L

2.2.3 G-graded A,, algebras and Hochschild cohomology

We now define appropriate notions of G-graded A,, algebras and Hochschild cohomology.

For the purposes of this section, let G be an exact grading datum.

Definition 2.2.3.1. Let R be a G-graded algebra, and let A, B be G-graded R-bimodules.

For each s > 0, we define a Y G Z-graded R-bimodule, whose degree-(y, s) part is

CCe'(A, B IR) := HomR-bimod(A ®R5 , B)yf(s),

called compactly supported Hochschild cochains of length s and degree y. Note

that the Y-grading is not quite the obvious one: if #' changes Y-degree by y', then we

define the Y-grading of #' to be y := f(s) + y'. We will omit the 'IR' from the notation

unless it is necessary to avoid confusion. There is a natural filtration of CC* (A, B),

called the length filtration, given by

(CC*(A A, B))": (CC*(A A, B)8).

We also define a filtered G-graded R-bimodule, whose degree-y part is

CCY(A, B) := f1 CCY(A, B),
s>0

which is the G-graded completion of CC* (A, B) with respect to the length filtration.

Note that we call it a 'G-graded' completion because it is the completion in the category

174



of G-graded R-bimodules - this is different from taking the completion of CCe (A, B)

in the category of R-bimodules, which would no longer be Y-graded (elements could be

sums of non-zero elements of infinitely many different Y-degrees). If B = A, we denote

CC*(A) := CC*(A, A).

Given # E CC*(A, B), we write #' for the length-s component of #.

Definition 2.2.3.2. We consider the morphism f : Z -+ Y coming from the grading

datum G, and define

p: Ze --+ Y e Z

(j, k) - (f(j), j - k).

Then we define the Z e Z-graded R-bimodule

CC*,G(A, B) := p*CC*(A, B).

We denote the degree-(s + t, t) part of CC (A, B) by

CC"t (A, B)t the degree-f (t) part of CC"(A, B).

We also define the Z-graded R-bimodule

CC (A, B) : f*CC* (A, B),

which is the completion of CC*,G(A, B) with respect to the length filtration.

Remark 2.2.3.3. Note that CCa(A, B) is the part of CC*(A, B) whose Y-grading lies

in the image of Z -+ Y. In our applications, CC (A, B) will be easier to compute (being

smaller), and most of our deformation theory problems take place inside it. It is this

observation that makes many of our deformation theory problems tractable.
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Definition 2.2.3.4. We also define a 'truncated' version of CC(A, B), by restricting

to elements of non-positive degree t. Namely,

TCC (A, B) := ( CCbt(A, B).
s>0 t<O

Definition 2.2.3.5. Suppose that R is a G-graded algebra, and A and B are G-graded

R-bimodules. The Gerstenhaber product is a map of degree (f(-1), -1) E Y G Z,

CC*(A, B) OR CC*(A) -+ CC*(A, B), which we denote by

#5 0@4 @ o @, and which is defined by

#o@)(a.,...,ai) :=

(-1)foi+k+1 (ai+j+k, ... , ai+j+1, $O (ai+j, -.. , ai+1), ai,. . ., ai),
i+j+k=n

where

t = (o-() + 1)(o(ai) + ... + or(ai) - i)

(recalling Definition 2.2.2.7). If the left and right actions of R on the R-bimodules A and

B coincide, then the Gerstenhaber product is R-bilinear; otherwise it is only R-linear in

#. Because the Gerstenhaber product respects the length filtration, it defines a product

CC*(A, B) OR CC*(A) - CC*(A, B)

of degree f(-1), also called the Gerstenhaber product.

Definition 2.2.3.6. If R is a G-graded algebra and A is a G-graded R-bimodule, then we

define the Gerstenhaber bracket, which is a Lie bracket of degree f(-1) on CC*(A),

by

Definition 2.2.3.7. If R is a G-graded algebra, then a G-graded associative R-
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algebra is a G-graded R-bimodule A, together with an element

p2 Cz CC2p A)0It cG(A),

satisfying the associativity relation,

P 2 Op 2 = 0.

Remark 2.2.3.8. If A is a G-graded associative R-algebra, then the product

a2 - ai := (-1)y(a,). 2 (a1, a 2 )

is associative and respects the G-grading, and makes A into a G-graded associative

R-algebra in the usual sense.

Remark 2.2.3.9. If R is semisimple:

R ~Cui, ui u 3. U~
iEI

(where I is finite) and A is unital, then this is equivalent to a category with objects

indexed by I.

Definition 2.2.3.10. If (A, p 2) is a G-graded associative R-algebra, then we define the

Hochschild differential

6: CC*(A)

3(r)

-+ CC*(A)

[p 2,-

It has degree f(1) E Y and increases length by 1 (i.e., it is induced by a similar differential

of degree (f(1), 1) on CCe*(A)). It follows from the fact that p 2 a P2 = 0 that 6 is

a differential, i.e., J2 = 0. We define the Hochschild cohomology of A to be its
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cohomology,

HH*(A) H*(CC* (A), 6),

which is a G-graded R-bimodule (as 6 has pure degree in Y), and similarly

HH (A) := H*(CC A), ),

which is Z-graded. Furthermore, because 6 is pure of degree (1, f(1)) on CC*(A), we can

also define compactly-supported versions, HH*(A) which is YE Z-graded and HHc*,G(A)

which is Z D Z-graded. As before, we denote the degree-(j, k) part by HHc,G(A)k.

Definition 2.2.3.11. If R is a G-graded algebra, then a G-graded A. algebra over

R is a G-graded R-bimodule A, together with an element

p E CCG2(A),

satisfying p0 = 0, and such that the A, associativity relation

y o y = 0

is satisfied. We denote A, algebras by A:= (A, p*). If pl = 0 (or equivalently, if p sits

inside TCCG(A)), we say that A is minimal. If we have p* such that p' # 0, but still

p o p = 0, then (A, p*) is called a curved A. algebra.

Remark 2.2.3.12. In other words, A is a Y-graded R-bimodule, equipped with R-

multilinear maps

p8 : A*R8 -+ A

of degree f(2 - s) E Y, for all s > 1, satisfying the A, associativity relations.

178



Definition 2.2.3.13. If A and B are G-graded R-bimodules, we define a new 'product'

CC*(B) On CC*(A,B) - CC*(A,B), denoted by

#O'b # q # oV, and which we define by

#7 o (V)il (ail1+...+i, . . . a i2+...+ij ), Oi2 ( a2+...+i, .), . . . ,@ (aij ., ai1)).
il+...+i,=n

It is R-linear only in the first variable #. Note that o is clearly associative: (F oG)o H

F o (G o H).

Remark 2.2.3.14. We remark that o descends to a product

CC (B) 0 CC (A, B) -- CC (A, B),

because the Y-degree of a summand of # o @ clearly lies in the image of f : Z -+ Y.

Although o does not have a pure grading, it is an easy exercise to check that it maps

CC (B) 0 CCG(A, B) -+ CC (A, B).

Definition 2.2.3.15. If A = (A, p) and B = (B, i-) are G-graded A, algebras over R,

then an A, morphism from A to B is an element F E TCCb(A, B) such that

F o y -,q o F =0 E CCG(A, B)

(note that the class lives in degree 2 by Remark 2.2.3.14). Composition of two A,

morphisms is defined using the product o. F is called strict if Fj = 0 for all j ;> 2.

If an A, morphism induces an isomorphism on the level of cohomology, then it is

said to be a quasi-isomorphism. In fact, when our A, algebras are minimal, there is

an easier notion, that of formal diffeomorphism (see [11, Section 1c]).

179



Definition 2.2.3.16. If R is a G-graded C-algebra, and A and B are G-graded R-

modules, then a G-graded formal diffeomorphism from A to B is an element

F E TCC'( A, B)

such that

F 1 : A -+ B

is an isomorphism of R-modules.

Lemma 2.2.3.17. If (A,,p) is a minimal G-graded A, algebra over R, and F E

TCCb(A, B) is a formal diffeomorphism from A to B, then there exists a unique G-

graded minimal A, structure Ftp on B, such that F defines an A, morphism from

(A, p) to (B, Fp).

Proof. Briefly, F~p is determined inductively in the length filtration: if Fp is determined

to length ; s - 1, then at order s we have (schematically):

(F,p)"(F'(as), F'(a_1 ),..., F1(a,)) = (Fp)")'(F(... ), F(......, F(...))+ p(..., F(
s'<s-1j

and since F1 is an isomorphism, this determines F8 uniquely. One can quickly check

that F~p satisfies the A, equations. E

Lemma 2.2.3.18. Formal diffeomorphisms can be composed using o: If F is a G-graded

formal diffeomorphism from A to B and G is a G-graded formal diffeomorphism from

B to C, then G o F is a G-graded formal diffeomorphism from A to C. Furthermore, if

p is a G-graded A, structure on A, then

(G o F),r = G(Fp).

Furthermore, o is associative.
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Lemma 2.2.3.19. G-graded formal diffeomorphisms can be strictly inverted: if F is

a G-graded formal diffeomorphism from A to B, then there exists a unique G-graded

formal diffeomorphism G from B to A such that G o F = id (where id denotes the for-

mal diffeomorphism whose length-1 component is the identity, and all other components

vanish).

Proof. The construction of G is by induction on length, as in the proof of Lemma 2.2.3.17.

Definition 2.2.3.20. If A is a G-graded vector space over C, then there is a group

O(A) := {F E TCCG(A) : F 1 = id},

called G-graded formal diffeomorphisms from A to itself. It follows from Lemmata

2.2.3.17, 2.2.3.18 and 2.2.3.19 that O(A) is a group, and that it acts on the space of

minimal G-graded A, structures on A. Note that this action preserves the underlying

algebra (A, p2 ), and that F defines an A, quasi-isomorphism from p to Fp.

Definition 2.2.3.21. If we are given a G-graded associative algebra A over C, we define

2t(A), the set of G-graded minimal A, algebras A = (A, p) over C, with p2 coinciding

with the product on A.

Definition 2.2.3.22. Suppose that A = (A, p) E 2t(A), and s = 0 for 2 < s < d.

Then the A, associativity relations p o p = 0 imply that pd is a Hochschild cocycle for

A. The class

[pad] E HH2G() 2 -d

is called the order-d deforming class of A.

Remark 2.2.3.23. In [9] and [1], the class [pd] is called an order-d deformation class.

However a large part of this paper is devoted to studying different objects (see Definition

2.2.4.8), also elements of Hochschild cohomology, and also called deformation classes in
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[9]. That is why, to avoid confusing the reader, and only for the purposes of the current

paper, we use the terminology 'deforming class' to distinguish this object.

We recall a versality result from [11], appropriately modified to take into account

G-grading:

Proposition 2.2.3.24. Suppose that A is a G-graded associative algebra over C, and

there exists d > 2 such that

H 2(2)
2  {C for s=d

0 for all s > 0, s # d.

Suppose that A1 = (A, p1) and A 2 =(A, p 2 ) both lie in lt(A), satisfy pi = p' = 0 for all

2 < s < d, and have non-trivial order-d deforming class in HH c2 )2-d. Then A 1 and

A2 are quasi-isomorphic.

Proof. The proof is by a straightforward order-by-order construction of a formal diffeo-

morphism F such that Fpi = P 2 , showing that all obstructions to the existence of F

vanish (see also [9, Lemma 3.2]). El

Now we define Hochschild cohomology of an A, algebra:

Definition 2.2.3.25. Suppose that A = (A, pi) is a G-graded A. algebra. We define

the Hochschild differential

6 :CC*(A) -+ CC*(A),

6() :=[ ]

It follows from the fact that y o = 0 that 6 is a differential, i.e., 62 = 0. We define the

Hochschild cohomology of A to be the cohomology,

HH*(A) := H*(CC*(A),5).
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The Hochschild differential has pure degree f(1), so HH*(A) is G-graded. However,

note that the Hochschild differential is no longer pure with respect to the length, so

we can not define the Y D Z-graded compactly-supported version, as we could for an

associative algebra. However, 6 does always increase (or preserve) the length; therefore,

we do still have the length filtration on the Hochschild cochain complex.

Definition 2.2.3.26. Similarly, we can define the G-graded Hochschild cohomology,

HH H( A) :=H* (CCt (A),I5).

It is Z-graded and admits a length filtration.

Definition 2.2.3.27. If A = (A, pu) is a G-graded minimal A,, algebra (i.e., y E

TCCG(A)), then the Hochschild differential preserves the truncated Hochschild cochains.

Thus it makes sense to define the truncated Hochschild complex (TCC (A), 6), and

call its cohomology the truncated Hochschild cohomology THH (A).

Remark 2.2.3.28. Suppose that A is a G-graded associative algebra and A E 2(A).

The length filtration on the Hochschild cochain complex CC* (A) yields a 'G-graded

spectral sequence' (Ed*, 6d**). The Ed page is Y D Z graded, and 6d has degree (f(1), d).

We have

E* = HH*(A).

When we need to prove that it converges to HH*(A), we will apply the 'complete

convergence theorem' [61, Theorem 5.5.10]. The length filtration is clearly bounded

above, because all Hochschild cochains have length s > 0, and hence it is also exhaustive.

It is also complete in the category of G-graded R-bimodules (because the Hochschild

cochain complex is defined to be a direct product). Therefore, to prove that the spectral

sequence converges to HH*(A), we must show that it is regular: for each (y, s) E YE Z,

the differentials

vd. : E(Ys) E(Y+f (1 ),sd)
d d

vanish for sufficiently large d. When we need to prove that the spectral sequence con-
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verges, we will in fact show that the differentials 6d vanish whenever d is sufficiently large

(independent of y, s).

Similarly, the length filtration on CC (A) induces a cohomological spectral sequence

(E*'*, 6**) with the standard grading convention, and

8'Et = HI HUs( A)t

Remark 2.2.3.29. Suppose that A is a G-graded associative algebra over C, and A E

%(A) has p" = 0 for 2 < s < d, and order-d deforming class [pd]. Then the first non-zero

differential in the spectral sequence is 6d_1, and it is given by

6d_1 : H HjY'")(A) -+H HY+/(1),s+d-1) (A),

6d-1( = [Pd],

where we observe that the Gerstenhaber bracket [-, -] descends to the cohomology.

Now we will define the appropriate notions of G-graded A,, categories and their

Hochschild cohomology.

Definition 2.2.3.30. Let G = {Z -+ Y} be a grading datum, and R a G-graded

algebra. A G-graded pre-category C over R is a set of objects Ob(C), together with

morphism spaces

Homc(K, L)

which are G-graded R-bimodules, and an action of Y on Ob(C) by 'shifts' [y], together

with (compatible) isomorphisms

Homc (K[yi], L[y2]) e Homc (K, L)[y2 - Y1].

We can think of this as equipping C with an R[Y]-bimodule structure. We define the

184



group CC*(C), and the G-graded version CC (C), by analogy with Definitions 2.2.3.1

and 2.2.3.2, restricting to the parts that respect the above isomorphisms. We can think

of this strict equivariance requirement as taking CC* (Cl R[Y]), where C acquires an R[Y]-

linear structure from the Y-action. Explicitly, it means that for # E CC(C), and any

yo, . . . , y, E Y, the following diagram commutes:

Hom(L,_, L,) ... Hom(Lo, L1 ) > Hom(Lo, L,)

Hom (L,_1 [y,_1], L, [y,]) 9 .&.. Hom(Lo[yo], L 1[y1 ])[y, - yo] -0. Hom(Lo[yo], L,[y,])[y, - yo].

Definition 2.2.3.31. We define a G-graded A, category C over R to be a G-graded

pre-category together with

p E CC2(C)

satisfying P0 = 0 and y o y = 0. An A, category is said to be cohomologically unital

if its cohomological category is unital. We define the Hochschild cohomology HH* (C)

and HH (C) by analogy with Definition 2.2.3.25. We define G-graded A. functors by

analogy with G-graded A, morphisms. We also consider the case where p0 f 0; in this

case we say that C is a curved A, category.

Definition 2.2.3.32. A G-graded A, category is said to be minimal if p lies in

TCCG(C).

Remark 2.2.3.33. The notions of unitality and equivalence for minimal A, categories

are simpler than for non-minimal categories. Because there is no differential p on the

morphisms spaces, p2 is strictly associative and therefore defines a category. Thus, if

(C, p) is minimal and cohomologically unital, then (C, pA2) is a category, in particular is

unital. We say that two objects of C are quasi-isomorphic if they are quasi-isomorphic

as objects of (C, t2 ). We say that an A, functor T : (C, p) -+ (D, I) between minimal

A. categories is a quasi-equivalence if the functor 1 : (C, p2) -+ (D, 72) is a quasi-

equivalence.

Lemma 2.2.3.34. If T : (C, p) -+ (D, 77) is an A, quasi-equivalence between minimal

185



A. categories, then there exists an A, functor 9 : (D, i) -+ (C, p) such that 'T and 91

are mutually inverse quasi-equivalences.

Proof. Follows from Lemma 2.2.3.19. E

Definition 2.2.3.35. If A is a G-graded A, algebra, then we denote by A the smallest

G-graded A, category with an object whose endomorphism algebra is A. Namely, A

has objects K[y] indexed by Y, and morphism spaces

Hom(K[y1 ], K[y2]) := A[y 2 - 1].

By definition, there are isomorphisms

CC* (A) - CC* (A)

and

CC ( A) '_" CC* (A).

We define the A, structure maps p* on A to be the image of those on A under the

latter isomorphism.

Now we explain how G-graded A, categories can be 'pulled back' along injective

morphisms of grading data, and how this operation affects the Hochschild cohomology.

Definition 2.2.3.36. Let p :G 1  G 2 be an injective morphism of grading data, R

a Gi-graded algebra, and C a G 2-graded pre-category over p*R. We define p*C, a Gi-

graded pre-category over R, to have the same objects as C, but Gi-graded morphism

spaces

Homp*c(K, L):= p*Homc(K, L)

(thus it is a faithful but not full sub-pre-category). We note that p*C still has an action

of Y2 by shifts, so the subgroup Y C Y2 acts, equipping p*C with the structure of a
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Gi-graded pre-category over R.

Because Y2 acts on p*C by shifts (shifting all objects simultaneously by the same

y E Y2), it acts on CC*(p*C). However the action of the subgroup Y is trivial by

definition, since we restrict to Hochschild cochains that respect the shifts by Y. So

there is an action of the group r := Y2/Y on CC*(p*C). It is not hard to see that the

F-fixed part is isomorphic to p*CC*(C). Thus, we have

p*CC*(C) e CC*(p*C)r,

and it follows that

CC 2(C) CCb1 (p*C)r c CCb,1(p*C).

Thus we can make the following:

Definition 2.2.3.37. If C is a G 2-graded A, category over R, with structure maps p*,

then we define p*C, a Gi-graded A, category over R, whose A, structure maps are

given by the image of [t* under the inclusion

CC 2 (C) "CC 1( p*C)r C CC 1(p*C).

Remark 2.2.3.38. It follows that there are isomorphisms

p*HH*(C) e HH*(p*Cjr

and

HHO2 (C) e HH 1 (p*C)r c HHb,(p*C).

Now we explain how a G-graded A, category can be 'pushed forward' along a sur-

jective morphism of grading data.

Definition 2.2.3.39. Let p: G1 -+ G 2 be a surjective morphism of grading data, and C
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a Gi-graded A, category over a Gi-graded algebra R. We now define a G 2-graded pre-

category pC over pR, as follows: First, observe that there are canonical isomorphisms

of G 2-graded vector spaces

p,Homc(K[y], L) ~ pHomc (K, L)

for any y E F. We define the set of objects of pC to be the quotient of the set of objects

of C by the action of F C Y1 . We define the G 2 -graded morphism spaces to be

Homp"c (K, L) := pHomc(K, L).

This is well-defined by our previous remarks. Furthermore, because p is surjective, there

is an obvious action of Y2 on p.C by shifts, so pC is a G 2-graded pre-category. In some

sense we have

pC = C ®R[Yfl R[Y2 ].

Now it is not hard to see that CCY(pC) is just the completion of (p*CC*(C))Y with

respect to the length filtration, for all y E Y2 (observe that the completion is only needed

when p has an infinite kernel). It follows that there is an inclusion

CCb, (C) " CC 2,(p*C).

Definition 2.2.3.40. If C is a Gi-graded A, category over R, with structure maps

p*, and p : G 1 -+ G 2 a surjective morphism of grading data, then we define pC, a

G 2-graded A, category over pR, whose A, structure maps are given by the image of

p* under the inclusion

CGI P " CC2,( p.C ).

Remark 2.2.3.41. It follows that HHY(p*C) is the completion of (pHH*(C))Y with

respect to the length filtration, for all y E Y2 . Observe that the completion is only needed

when p has infinite kernel and HH*(C) has infinite rank.
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2.2.4 Deformations of A, algebras

For the purposes of this section, let us fix a grading datum G, and a power series ring

R _- C[[ri,... , rk]]

with a G-grading.

We also equip R with its natural filtration by order. We denote the order-j part of

R by R-. There is a natural projection R -+ R C, given by setting all rj = 0, and we

denote the kernel of this projection by m C R.

We also denote by Ro the part of R of degree 0 E Y.

Definition 2.2.4.1. Given @ E Ro, there is a G-graded algebra homomorphism

fe:fR -+ R,

g(r-) := 3 --r, where ri E R has order j.

We now define a group, which by abuse of notation we call Aut(R), by setting

Aut(R) := { E Ro : V)(0) / 0},

# -V) := f(#b)#,

and an action of Aut(R) on R by G-graded algebra isomorphisms. Note that the condi-

tion 0(0) :4 0 ensures that V has a unique inverse in Aut(R), which can be constructed

order-by-order.

Definition 2.2.4.2. If A is a G-graded vector space, then A 0 R is a G-graded R-

bimodule, and we have an isomorphism

CC*(A R, A& R|R) c CC*(A, A f RIC).
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If we have

# E CC*(A, Ao R),

1: oil where
j>o

#j E CC*(A,A@ Rj),

then we call #j the order-j component of #.

Definition 2.2.4.3. Let A = (A, pto) be a G-graded minimal A. algebra over C. A

G-graded deformation of A over R is an element

p E CCG(A 0 R|R) - CC%2(A, A 0 R|C)

that makes A 0 R into an A, algebra over R (i.e., p o y = 0), and whose order-0

component is po. If p E TCCG(A, A ® R), then the deformation is said to be minimal.

Remark 2.2.4.4. Observe that CCG(A, A 0 R) and TCCG(A, A 0 R) are Ro-modules

in the obvious way.

Definition 2.2.4.5. The group Aut(R) acts on the set of G-graded deformations of A

over R, via its action on R. We write [- p for the action of V; E Aut(R) on a deformation

p.

Now suppose that (A, po) and (B, ,o) are G-graded A, algebras over C, and (A, p)

and (B, 77) are G-graded A, deformations of these over R. We recall (from Definition

2.2.3.15) that a G-graded A, morphism from (A,p) to (B, 7 ) over R is an element

F E TCCG(A o R, Bo RIR) c TCCG(A, B @ R|C)

such that

Fop - o F = 0.
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Once again, we write

F = Fj,
j>o

where F is the order-j component of F. Observe that Fo is a G-graded A, morphism

from (Aqpo) to (B,r/o).

The notion of A.. morphisms over R is not very well-behaved (for example, it is not

clear that A, quasi-isomorphisms can be inverted over R). It turns out that it will be

sufficient for us to work with minimal A, algebras, and formal diffeomorphisms. We

recall the notion of G-graded formal diffeomorphisms from Definition 2.2.3.16, and make

appropriate modifications for the case of A, algebras defined over R:

Definition 2.2.4.6. If A and B are G-graded vector spaces over C, and R a G-graded

power series ring, then a G-graded formal diffeomorphism from A 0 R to B 0 R is

an element

F E TCC'(A, B ® R)

such that

Fo' : A -- B

is an isomorphism of vector spaces (to clarify: this is the order-O component of the

length-1 part of F).

As before (see Lemmata 2.2.3.17, 2.2.3.18, 2.2.3.19), formal diffeomorphisms can be

composed, used to push forward minimal G-graded A, structures over R, and they

can be strictly inverted. This last point is particularly important, because (as we stated

above), there is no reason for an arbitrary A, quasi-isomorphism over R to be invertible.

Now we introduce an analogue of Definition 2.2.3.20 for minimal deformations of A,

algebras.

Definition 2.2.4.7. If A = (A, [to) is a G-graded minimal A, algebra over C, we

consider the group of G-graded formal diffeomorphisms from A to itself, whose leading-
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order term is the identity:

Q3R(A) := {F TCCG(A, A OR) : F1 =id+m}.

By the analogues of Lemmata 2.2.3.17, 2.2.3.18 and 2.2.3.19, OR(A) forms a group, and

this group acts on the set of G-graded minimal A. structures on A 0 R. The action of

F on p E TCCG(A, A 0 R) is denoted by F,p E TCCG(A, A 0 R), and it is the unique

element such that F defines an A, morphism from p to Fp.

Definition 2.2.4.8. Suppose that p is a G-graded deformation of the A, algebra A =

(A, po) over R. The first-order component of the A, relation p o p = 0 tells us that

p1 E CC2(A, A 0 R1)

is a Hochschild cochain. Thus, we obtain an element

{('1] E HHG2(A, A@ R 1),

which we call the first-order deformation class of p.

Definition 2.2.4.9. If p is a G-graded minimal deformation of the minimal A, alge-

bra A over R, then the first-order component of p defines an element in the truncated

Hochschild cohomology,

[1] E THHG2(A, A R 1),

which we also call the first-order deformation class of the minimal deformation p.

We are now almost ready to prove our main classification result for deformations of

A, algebras. It turns out that in our particular situation, we need to incorporate a finite

group action into the picture, so we now briefly explain how to do that.

Definition 2.2.4.10. Let H be a finite group. An action of H on a grading datum G
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is an action a of H on Y by group homomorphisms,

a: H -+ HomAb(Y, Y),

which preserves Z. We will denote a(h) by ah.

Example 2.2.4.11. In the case of Example 2.2.1.13, there is an action of the symmetric

group H = S on Ga, by permuting the generators of Z".

Definition 2.2.4.12. Suppose that H acts on the grading datum G, and V is a G-

graded vector space, and we have an action

p : H -+ Homvect(V, V).

We will denote p(h) by Ph. We say that the action p is G-graded if p(h) maps V, to

Vh(Y)-

Definition 2.2.4.13. Suppose that we have compatible G-graded actions of H on the

G-graded algebra R, and on the G-graded R-bimodules A and B. Then H acts on the

Z-graded vector space CC (A, B) (preserving the grading), via

(h - 0)'(a .... , a1) :=- h-1 - #"(h - a,, . .. , h . ai).

We denote the H-invariant part of CC (A, B) by

CC (A, B)H ={# E CC (A, B) :h . #= for all h E H}.

Definition 2.2.4.14. We say that a G-graded A,, algebra A = (A, p) over R is strictly

H-equivariant if p lies in CCG(A)H C CCG(A). Equivalently, we have

p'(h - ak,.-.., h - ai) =- h - p k(ak, . .. , ai)

for all k and all h E H.
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Remark 2.2.4.15. We remark that TCCG(A, A O R)H is naturally a RO'-module (com-

pare Remark 2.2.4.4).

Now we prove our main classification result for G-graded deformations of A, algebras

over R:

Proposition 2.2.4.16. Suppose that A = (A, po) is a G-graded minimal A, algebra

over C, and furthermore is strictly H-equivariant with respect to the action of some finite

group H on A. Suppose that

THH2 (A, A ® R)H

is generated, as an ROH -module, by its first-order part

THHG2(A, A9 R R)H

and this first-order part is one-dimensional as a C-vector space. Then any two strictly H-

equivariant G-graded minimal deformations of A, whose first-order deformation classes

are non-zero in

THHG (A, A® Rl)H,

are related by an element of Aut(R)H composed with a G-graded formal diffeomorphism.

Proof. Suppose that (A, p) and (A, r) are two such deformations. We will construct,

order-by-order, elements 0 E Aut(R)H and F E TCCG' (A, A 0 R)H so that . p = Fr.

The equation that 0 and F must satisfy is

- p = F.r7.

We call this the A. relation for the purposes of this proof.
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We denote

where @j E (Ri)H", and
3 0j>0

F = ZF, where Fj E TCCG,(A, A 3 R)H.
j>0

We start with FO = id. The order-zero component of the A, equation says that so = 70,

which is true by assumption.

Now suppose, inductively, that we have determined F

H-invariant and G-graded, and that

and @j_ 1 for all j k - 1,

( -p- F,r/)j = 0 for alli j< k - 1.

We show that it is possible to choose Fk and #k_1 so that

($ .p - F,77)k = 0.

The left hand side lies in TCCG(A, A 0 Rk)H.

First, we observe that

[@0p- Fr7, @ p + Frq] = 0,

by expanding out the brackets: the cross-terms vanish by symmetry (- p and F.r/ both

have degree 2), and the other terms vanish because # . p and F*,r are Ao structures.

Now note that

(0 - p + F*71)o = po + r7o = 2po,
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so taking the order-k component of the previous equation gives us

[) - y - F,7, Po]k = 0

->6($- y - F,q)k) = 0,

regardless of what Fk and _k-1 are.

Now we pick out the terms in (0 .- t - F, I)k that involve Fk and 4_k-1. After a little

calculation along the lines of the proof of Lemma 2.2.3.17, we see that it has the form

(V) - - Fk) -= k_1 - 1+ Fk o yo - 70 o Fk + Dk,

where Dk contains all the terms that do not involve Vk_1 or Fk. We recall that 0 = to,

and identify the Hochschild differential:

(W . - F77)k = k-1 - 1 + 6(Fk) + Dk.

Note that if we set Fk = 0 and Vjk1 = 0, our previous argument shows that 6(Dk) = 0,

so Dk defines a class

[Dk] E TH H2(A, A ® Rk)H.

Thus, we need to choose pk-1 so that 4k-1 - [p1] = -[Dk] in the truncated Hochschild

cohomology THHG(A, A 9 Rk)H. We can do this by our assumption that [p1] is non-

zero, hence generates the one-dimensional first-order component THHG(A, A 0 Rl)H,

which generates THHG(A, A 0 R)H as a Ro-module. We then choose Fk to effect the

Hochschild coboundary between 4' k-1 - pi and -Dk. We can make Fk H-invariant by

averaging over H.

Finally, note that at first order, we have

00 - [p1] = [11,
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from which it follows that Oo $ 0, because [p1] and [11] are both non-zero, so indeed

V E Aut(R)H. l

2.2.5 Computations

In this section, we introduce specific G-graded Ac algebras and deformations, and use

the results of the previous sections to prove classification theorems for them.

Let us introduce some notation. We fix an integer n > 4 (we will be considering

hypersurfaces in CP- 1 ) and a > 1 (this will be the degree of the hypersurface in CP- 1

that we will consider). In our intended applications in the current paper, a will be either

1 or n.

Throughout this section, we will be using the grading datum G := Gn from Example

2.2.1.13. For an element y E Y, we will denote

1y|:= yn) -Y .

We will denote by H the symmetric group on n elements, and recall that it acts on G

(see Example 2.2.4.11).

We recall the G-graded exterior algebra

A:= A, := A(Un)

of Definition 2.2.2.12. For each subset K C [n], we denote the corresponding element of

A by

K .
jEK

We equip the vector space Un with an H-action, which up to sign is the obvious action
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by permuting basis elements. In other words,

h(un) = tUhj).

We will not need to specify the actual signs. There is an induced action of H on A.

We recall the G-graded ring

R, := Ra =C[i rn]]

from Definition 2.2.2.13. We give a name to one important element of Ra: we denote

T:= r- = r 1 ... rn.

We equip Ra with an H action, which up to sign is the obvious action by permuting

basis elements. We furthermore denote

R := Rn

because a = n is the most important case we will consider. Finally, we will denote by Ra

the order-j part of Ra. Note the change of notation from Definition 2.2.2.13, where the

superscript denoted the number of generators. We hope this does not cause confusion.

Definition 2.2.5.1. Suppose that A ~ A

an arbitrary commutative ring. We define

Kostant-Rosenberg map

(b : CC*(A 0 RJR)

(U) is an exterior algebra over C, and R is

the R-algebra A 9 R, and the Hochschild-

-+R[[U]] @ A,
00

sq=O
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where
n

j=1

It has the following properties:

" If R is a field, then <D induces an isomorphism on the level of cohomology (the

Hochschild-Kostant-Rosenberg isomorphism [47]);

" If S is an R-algebra, then there is a commutative diagram

CC*(A 0 R|R) OR S h**$ (R[[U]] 9 A) OR S

CC*(A o S|S) ** : S[[U]] o A.

We call the latter property 'naturality' of the HKR map.

Definition 2.2.5.2. Let us fix a = n. We say that a G-graded A, algebra A over R

has type A if it satisfies the following properties:

* Its underlying R-module and order-O cohomology algebra is

(A, p_1) ~ A OR;

e It is strictly H-equivariant;

* It satisfies
n

<b(p ) = U1 . .. u" + rjuj + O(r 2 ).

j=1

Now we state the main result we will prove in this section:

Theorem 6. Suppose that A 1 = (A 0 R, p) and A 2 = (A 0 R, r) are two G-graded A,
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algebras over R of type A. Then there exists $ E Ro , of the form

00

(ri,.. ., rn)=1+Z cjT,
j=1

and a G-graded formal diffeomorphism F O OR(A), such that

$ .1 FA 2.

We will now give a brief outline of the proof. The first step is to prove (in Corol-

lary 2.2.5.7, using Proposition 2.2.3.24) that the order-O parts (A, [to) and (A, r/0) are

quasi-isomorphic. The classification of the order-O part is governed by the Hochschild co-

homology HH (A), which is determined via the Hochschild-Kostant-Rosenberg (HKR)

isomorphism. We thereafter denote by A 2 (A, po) this (unique up to formal diffeomor-

phism) order-O part.

We then study deformations of A over R. The classification of such deformations

is governed by the Hochschild cohomology HH (A, A 0 R), which is also determined

from the HKR isomorphism, via a spectral sequence. We apply Proposition 2.2.4.16 to

show that such deformations are unique up to A,, quasi-isomorphism and the action of

Aut(R)H.

Now let us begin. We first explain how to use the HKR isomorphism [47] to calculate

HH (A), and more generally HH (A, A D R,,). The HKR isomorphism show that, if

A = A(U) is a G-graded exterior algebra over C, then the map

<D : (CC*(A), 6) -+ (C[U] @ A(U), 0),

is a quasi-isomorphism of Y G Z-graded chain complexes. This allows us to determine

HH*(A) e C[[U]] 0 A(U)
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by taking the completion with respect to the length filtration, and also HH (A), where

now we equip A with its G-grading. We will make the G-grading of the right-hand side

explicit in Lemma 2.2.5.4.

More generally, it follows that there is an isomorphism of Y ED Z-graded vector spaces,

4 : HH*(A, A 0 Ra) -+ C[U] ® A(U) 0 Ra.

C[U] 0 A(U) 0 Ra is generated

we define Y>o : ) and K c

Hochschild cochain which sends

by terms ubK c, where b, c E Y>o (recall Y Z Z', so

[n]. If b = j bjej, then this is the image under 1 of a

(0j)*'i - rc6K.

j

We start by examining what the various gradings on a Hochschild cochain tell us.

Lemma 2.2.5.3. If a generator r E CCJ (A, A 0 Ra)t sends

(& K%- rcgKO,

i= 1

then we have

j = cl

ac + yKo - YK qy[n] in Y, for some q

t = (n - 2)q + (2 - a)j.

(2.2.5.1)

(2.2.5.2)

(2.2.5.3)

Proof. Equation (2.2.5.1) follows by definition. To prove Equations (2.2.5.2) and (2.2.5.3),

we recall that the grading of Oj is (-1, yj) (Example 2.2.2.9) and the grading of rj is

(2 - 2a, ayj) (Example 2.2.2.10). We alter the grading datum G by an automorphism
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sending

(j y) - (j + y[n] -Y, Y).-

This is equivalent to considering the pseudo-grading datum with the same exact sequence

as Ha, but

c = 2(n - 1) - y[n] - Y[n] = n - 2.

Then Oy has grading (0, yj) and rj has grading (2 - a, ayj).

If the grading of T is f(t) = (t, 0) E (Z D Y)/Z, then

(0, YKO) + ((2 - a) IC , ac) - (0, yKj)
j=1

(t, 0) modulo Z.

Recalling that the image of Z in Z D Y is given by

((2 - n)q, qy[n])

(in the altered grading datum), we have

(0, yKo) + ((2 - a) Ic , ac) - (,yK) (t, 0) + q(2 - n, y[n]),
j=1

from which the result follows.

Now recalling the Hochschild-Kostant-Rosenberg isomorphism, a generator of HH (A, A®

Ra)t has the form ubOK c, where b and c are elements of Y>o, and K c [n]. We examine

what the gradings tell us about such a generator of the Hochschild cohomology.

Lemma 2.2.5.4. If ubOKyc is a generator of H H2 (A, A 0 R)t, then the following
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j = Il

s = Ib|i

yK + ac - b = qy[n] in Y, for some q

t = (n-2)q+(2-a)j

IKI s+t +t2(q-j).

(n -2)|K| = (n -2)s +nt +2(a -n)j

Proof. Equations (2.2.5.4) and (2.2.5.5) hold by definition. Equation (2.2.5.6) follows

from Equation (2.2.5.2). Equation (2.2.5.7) follows from Equation (2.2.5.3). The first

step in proving Equations (2.2.5.8) and (2.2.5.9) is to take the dot product of Equation

(2.2.5.6) with y[n]:

Y[n] - (YK + ac - b)

== |K|

= qy[n] ' Y[n]

= |bI - ac|+ nq

= s-aj+nq.

To prove equation (2.2.5.8), we use equation (2.2.5.7) to substitute for nq:

IKI s -aj +t+(a-2)j+2q

= s+t+2(q-j).

We use the same equation to prove equation (2.2.5.9), but this time we first multiply by

n then substitute in equation (2.2.5.7):

(n - 2)IKI = (n - 2 )(s - aj + nq)

- (n - 2)s - (n - 2)aj + n(t + (a - 2)j)

= (n - 2)s + nt + 2(a - n)j.
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(2.2.5.4)

(2.2.5.5)

(2.2.5.6)

(2.2.5.7)

(2.2.5.8)

(2.2.5.9)



We now set about determining the order-O part of an A, algebra of type A. We

identify the possible G-graded A, algebras A = (A, po) over C with underlying vector

space and po given by A.

Lemma 2.2.5.5. We have

CC*,G(A)t  0

unless t is divisible by (n - 2).

Proof. Follows from Equation (2.2.5.7) with j = 0.

Lemma 2.2.5.6. The Hochschild cohomology of A satisfies, for d > 0,

HHG(A)
2 d {C - UYin] if d = n,

otherwise,0

where uY[n] = u 1 . .. un.

Proof. Let ubOK be a generator of HHcG (A 2 d. Equation (2.2.5.7), with j = 0, yields

d = 2 - (n - 2)q.

We want d > 0, so we have q < 0. Now equation (2.2.5.8), with j = 0, yields

2 + 2q = IKI > 0.

Thus, -1 < q < 0, so q = -1 and |K = 0, so K =.

Equation (2.2.5.6) now yields b = y[]. Therefore ubOK _ Uy'n, as required. El
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Corollary 2.2.5.7. There is an Ao quasi-isomorphism between the Oth-order parts of

A 1 and A 2 :

(A, po) (A, r/o).

Proof. First, we observe that CCc,G(A) 1  0 by Equation (2.2.5.3) (with j = 0, and

assuming n > 4), so the A,, algebras are minimal. Furthermore, tg = 0 for 2 < d < n

because CCc,G(A 2 d = 0 by Lemma 2.2.5.5. The result now follows from Proposition

2.2.3.24, because the deforming class of an algebra of type A is

)O(pO) = U1 ... Un = uY[n]

by definition. El

Henceforth, we will denote by A any G-graded minimal A,, algebra over C with

cohomology algebra given by A, and whose order-n deforming class is a non-zero multiple

of uY[n]. The previous lemma says that A is well-defined up to quasi-isomorphism.

We will consider deformations of A over Ra, which are controlled by the Hochschild

cohomology with coefficients in Ra,

HH (A, A 0 Ra).

Recall from Remark 2.2.3.28 that the filtration by length on the Hochschild complex

CC(A) yields a spectral sequence for the Hochschild cohomology, with

2 = HHe(A, A).

Lemma 2.2.5.8. The spectral sequence induced by the length filtration on the Hochschild

cochain complex CC* (A) converges to the Hochschild cohomology HH* (A).
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Proof. By Remark 2.2.3.28, it suffices to prove that the spectral sequence is regular.

A generator ub K of HH*(A) changes the Y-degree by

(-IKI +| b, -b + YK) E Z G Y/(2, Y[n]),

and its length is s = Ibl. Therefore, its grading is

(-|K| + 21b|, -b + YK)

(recalling the conventions for grading Hochschild cochains). Using a suitably altered

pseudo-grading datum as in the proof of Lemma 2.2.5.3, this is equivalent to a grading

(IKI, -b+ YK)

(note: c = 2 in this altered pseudo-grading datum).

Now recall that the differential on page d of the spectral sequence maps

6d : E("'") -+- EY+f ( 1),s+d)
d:d d

If both domain and codomain of the differential are to be non-zero, then we must have

generators ubi K1 and ub20 K2 such that

(IKiI + 1, -bi + YK,) = (IK 2 |, -b 2 + YK 2 )± q(2, yn])

and

jb2 | = |b 1 + d.

Because 0 < I K1, IK 21 < n, and |K 1 | + 1 = |K 2 | + 2q, we must have q (n + 1)/2. We

also have

b2= b1 + YK 2 - YKi + qy[n],
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and hence that

|b2| = |bi|+| K21 - K1 j +nq = bi+1+ (n - 2)q.

Therefore, for the differential od to be non-zero, we must have

d= |b2| - 1bil = (n - 2)q + I1< (n+ 1)(n 2) 1.
2

Hence, for d sufficiently large, the differential vanishes, so the spectral sequence is regular.

0

Now, if we are to apply the deformation theory of Section 2.2.4, we need to know

that our deformations are minimal.

Lemma 2.2.5.9. If a = n, and n > 5, then any G-graded deformation of A over R is

minimal.

Proof. Equation (2.2.5.3) with a = n shows that

CC2,CCCG(A, A0 ?)t =- 0

unless t is divisible by (n - 2). The po and pl terms live in the spaces with t = 2 and

t = 1, respectively. So when n > 5, any deformation of A over R satisfies p = 0 and

p' = 0, hence is minimal. L

Remark 2.2.5.10. Lemma 2.2.5.9 is the only place where we need the assumption n > 5,

as opposed to n > 4. If n = 4, then CC2, 0 is one-dimensional, generated

by the element TOM. These deformations can be ruled out in our situation with some

additional input (namely, by building a strictly unital model for our category), but we

prefer to avoid this additional complication. See [9].

The next step is to determine the first-order deformation space.
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Lemma 2.2.5.11. If n 2 4, then the vector space

H H2(A, A 9 R')

is generated by the elements

for j =1...,n.

Proof. We apply Lemma 2.2.5.4 with s + t = 2 and j = 1. Equation (2.2.5.8) yields

|K| = 2q 2 0.

Furthermore, Equation (2.2.5.7) gives

2-s = (n-2)q +2-a

- a - s = (n-2)q.

Furthermore, we have c =Yk for some k. Taking the dot product of Yk with Equation

(2.2.5.6) gives us

yk-(yK+ac-b) = qYk ' Y[n]

=> (0 or 1) = -a+yk .b+q

< -a+ s+q

= (3 - n)q.

If n > 4, then 3 - n < 0 and q 0, so we must have q = 0. Thus, we have |K| = 2q = 0,

so K = <. From Equation (2.2.5.6), we obtain b = ay,, so the generator has the form

rju
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Having determined the first-order deformation space, we now seek to understand the

higher-order parts of the deformation. The following lemma will be useful:

Lemma 2.2.5.12. If rcubgK is a generator of THHG(A,A0Ra), andj = |c| 2, then

C > Y[n].

Proof. We apply Lemma 2.2.5.4, with s + t = 2. Equation (2.2.5.8) yields

0 < |Kl = 2(1+ q - j).

It follows that q > j - 1. Now we split into two cases, depending on whether q = j - 1

or q > j - 1.

Case 1: q = j - 1. In this case, we have |K= 0 so K =$. Thus Equation (2.2.5.6)

gives

ac = qy[n] + b.

Taking the dot product with Yk yields

ack= q + bk > q = j - 1 > 0,

since j > 2. Hence ck > 1 for all k, and the result is proved.

Case 2: q > j - 1. In this case, we have q > j - 1 > 1, so q > 2. Thus, taking the

dot product of Equation (2.2.5.6) with Yk gives

ack = q + bk - yA YK q - 1 > 0.

Hence Ck >1 for all k, and the result is proved. E
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Now if a = n, then the grading of T = r[ 1 E Ro is 0 in Z, and furthermore T is

clearly H-invariant. Thus C[[T]] C R'H (in fact one can show they are equal). It follows

that THH2(A, A 0 R)H is a C{[T]-module.

Lemma 2.2.5.13. Suppose that a = n, and n > 4. Then the H-invariant part of the

truncated Hochschild cohomology group

THHG(A, A 0 R)H

is generated, as a C[[Tj]-module, by its first-order part

THHG(A, A 0 R )H.

Proof. We prove the result by induction on the order j, and using the spectral sequence

induced by the length filtration.

When j = 0, we must show that THHG(A) 0. Let ubOK be a generator of

THH2(A). By equation (2.2.5.7) with j = 0, we have

t = (n - 2)q < 0

(since we are considering the truncated Hochschild cohomology). By equation (2.2.5.8)

with j 0, we have

IKI = 2(1 + q) > 0.

Thus we have -1 < q < 0. We have two cases:

Case 1: q = 0. In this case, IKI = 2, t = 0, so s = 2. Equation (2.2.5.6) yields

YK= a,

so our generator has the form uiukOn A 0k. But now, if o-ik E H denotes the transposition
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of elements i and k, we have

Uik(UiUkO A Qk) UkUiOk A _' = UiUkOZ A 6 k

Hence, the coefficient of this term in any H-invariant element of the truncated Hochschild

cohomology must be 0.

Remark 2.2.5.14. Recall that H may differ from the obvious action by permutation of

basis elements, by some signs. However, each sign appears twice (once for ui, once for

0i), so they do not affect this computation.

Case 2: q = -1. In this case, IKI = 0, so K =. Equation (2.2.5.6) yields

Y[n] = b.

Thus, the generator is uYIn], the deforming class identified in Lemma 2.2.5.6. However,

this generator gets killed by the first non-trivial differential of the spectral sequence.

To see this, observe that, because pd = 0 for 2 < d < n by Lemma 2.2.5.5, the first

non-trivial differential is o 1, and is given by

on_1 (#) = [[p"n], #] = [UYM, ]

(see Remark 2.2.3.29). The Gerstenhaber bracket on CC*(A) gets carried to the Schouten

bracket on polyvector fields C[[U]] 0 A(U). It follows quickly from the explicit form of

the Schouten bracket (see [20, Equation (3.7)]) that for any W E C[[U]],

[W, 7 ] - tdW(q),

and therefore that the cohomology of [W, -] is the cohomology of the Koszul complex

associated to dW. In particular, the class W itself gets killed by taking the cohomology

of this differential. In our case, this means that UYVJ is killed by on-1.
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This completes the proof that THH (A) - 0.

When j = 1, the statement is simply that the first-order part is generated by the

first-order part. So it remains to prove that, for j > 2, the order-j part is generated by

the first-order part.

Suppose, inductively, that

THH2(A, A® Rk) c C[[T]] -THH(A, A 0 R1 )

for all k < j - 1, for some j 2. We prove that the same holds for k j. Let

rcubOK E THHG(A, A 0 Rj?)

be a generator. Because j > 2, it follows from Lemma 2.2.5.12 that rc T - rc', where

C C - Y[n] 0.

Because T E Ro, we have

rc'UbOK E THHG(A, A 0 Rj-").

It follows that

THHG(A, A ® R) = T -THHG(A, A® R'-),

and hence, from the spectral sequence induced by the length filtration, that

THHG2(A, A ® R3) = T . THHG(A, A 9 R-").

The result now follows by taking H-invariant parts of this equation.

This completes the inductive step, and hence the proof. [
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Corollary 2.2.5.15. There exists a p E C[[T]], with $(0) = 1, and an G-graded formal

diffeomorphism F, such that

S.A 1 = F.A2.

Proof. By Corollary 2.2.5.7, there is a formal diffeomorphism Fo from (A, ro) to (A, PO).

Therefore we can push forward q by FO, and reduce to the case where yo = mo. The

result then follows from Proposition 2.2.4.16 and Lemma 2.2.5.13. I

This completes the proof of Theorem 6.

We now make one final computation of Hochschild cohomology. For this computa-

tion, we will be interested in an extra structure on Hochschild cohomology: the Yoneda

product, which makes it into an associative algebra. In fact, together with the Gersten-

haber bracket, this makes the Hochschild cohomology into a Gerstenhaber algebra

(see [62]).

Definition 2.2.5.16. The Hochschild cohomology HH*(A) of a G-graded A,, algebra

A carries the G-graded, associative Yoneda product, which has the form

(# 0 @)"(za, . ,z) :

)3 (-1)tpm+k+i+2(Xi+j+k+l+m,. . . ,'(Xi+j+k+l, . . .), i ... , $ Xi+j . .), Xi,. .. ),
i+j+k+l+m=n

where t is some sign.

Remark 2.2.5.17. We record the following useful information about the Yoneda prod-

uct:

* If k is a field, and U a k-vector space, then the HKR isomorphism

<D: HH*(A(U)) -+ k[[U]] 0 A(U),
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is an isomorphism of k-algebras, where the product on HH*(A(U)) is the Yoneda

product, and the product on polyvector fields is the wedge product (see [63, Section

8]);

The spectral sequence Et -> HH*(A) induced by the length filtration (Remark

2.2.3.28) respects the multiplicative structure of the Yoneda product.

We now carry out our final Hochschild cohomology computation. Suppose that A is

an A, algebra of type A, and A its extension to a G'-graded category. We denote

A :p* A,

where qi and pi are the morphisms of grading data defined in Lemma 2.2.1.14. Note

that qiZ is a Gz-graded (or equivalently, Z-graded) A, category, over the Z-graded

coefficient ring q1 ,p*R a R, which has degree 0 E Z, by Remark 2.2.2.11. Therefore,

the homomorphism

R A,

rd - r for allj

respects the Z-grading, and we can form the Gz-graded A-linear A, category

nov := q1 A OR A.

Our aim now is to compute a certain part of

HH* nov A)

We observe that Yi" acts on A by shifts, hence also acts on Znov, hence also acts on

CC*(A 0 v). The action of ker(Yn -+ Z) c Yin is trivial, because shifts in this subgroup
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become trivial when we take qi,, of our category. The action of Z is also trivial, because

we consider only Z-equivariant cochains, by definition. It follows that the action of the

image of Y" in Yin is trivial, so there is an action of

f* Yi"/Yf"

on CC*(A,,). Note that this is the same f* as in Definition 2.1.2.4.

Lemma 2.2.5.18. There is an isomorphism of Z-graded A-algebras,

HH* (no') A[a|

where a has degree 2.

Proof. We consider the spectral sequence induced by the length filtration on

CC* (nov .

As we saw in Remark 2.2.3.28, the filtration is bounded above, hence exhaustive, and

is also complete. So if we can prove that it is regular, then it must converge to the

Hochschild cohomology.

We observe that there is an obvious morphism of chain complexes,

CC* (q1p*A) R A - * nov),

and indeed the A, structure maps on Ao, are the image of the Ao structure maps of A

under this morphism. However, this is not necessarily a quasi-isomorphism, because the

Hochschild cochain complex is defined as a direct product over cochains of all lengths

s > 0, and arbitrary direct products do not commute with ORA.

On the other hand, finite direct products do commute with ORA, so the above
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morphism of chain complexes does induce an isomorphism after we quotient by chains

of length greater than some fixed s. It follows that there is an isomorphism between the

spectral sequences induced by the length filtrations on

CC* (q1,p*A) OR A

and on

CC* (inov)

(it is just that the filtration on the former chain complex is not complete, so the associated

spectral sequence may not converge to its cohomology).

Now, applying Remarks 2.2.3.41 and 2.2.3.38, we have isomorphisms

CC* (q1,p*A) a qi*,CC* (p*A) (up to completing with respect to the length filtration)

Sq1.p*CC* (A)

e q1.p*CC* (A)

It follows from the preceding discussion that, if it is regular, then the spectral sequence

induced by the length filtration on

q1*p*CC* (A) OR A

converges to
H*

H H* (nov "

Now, note that p 0 in A unless s - 2 is divisible by (n - 2) (by Equation (2.2.5.3)

with a = n and s + t 2). In particular, A is minimal. Next, we show that there is an

algebra isomorphism (A, p) (A, p 2 ). I.e., the higher-order terms in the product p2

can be absorbed into the order-0 product p2, which we know to be the exterior product.
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This follows immediately from the calculation

THHG (A, A 0 R) 0  0,

which was carried out in the proof of Lemma 2.2.5.13 (as 'Case 1'), together with a

deformation theory argument. Thus, we can replace A by a quasi-isomorphic Ao algebra

A', whose underlying algebra is the exterior algebra

(A' IP2) c A 0 R.

Furthermore, A' and A coincide to order n, because the higher-order terms in p 2 were

functions of T = r1... r,,. So A' is still of type A. Henceforth we'll simply write A for

this replacement.

Now the E2 page of the spectral sequence induced by the length filtration on

CC* (A) OR A

is the Hochschild cohomology of the associative algebra (AORA, p20 1). By the preceding

arguments, this is exactly A 0 A, the exterior algebra over the field A. Its Hochschild

cohomology is given by the HKR isomorphism (because A is a field), so we have

E2 = q1,*p (A[[U]] 0 A).

Because p8 = 0 for 2 < s < n, the first non-trivial differential is 6 n-1, which is given

by Gerstenhaber bracket with the order-n deformation class [p"]. The Gerstenhaber

bracket gets carried to the Schouten bracket under the HKR isonorphism, and P' gets

carried to

wo <([p]) E A[[U]] 0 A,

where <b is the HKR isomorphism. By the 'naturality' property of the HKR map (see
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Definition 2.2.5.1), w,,,0, is the image of the element

w 1 E (R[[U]] ® A) ORA

under the natural map

(R[[U]] 9 A) ®n A - A[[U)] 0 A,

where w is the image of ["t) in R[[U]] 9 A under the HKR map.

Now, by the grading computations in the proof of Lemma 2.2.5.13, w has the form

n

j=1

where fi, f2 E C[[TI], and we recall that T := r1... rn. By the definition of 'type A', we

have f1(0) = 1 and f2(0) = 1. It follows that

wnov = fi(r")ui ... un + f 2 (r) ru n E A[[ui,...,u]].

j=1

In particular, wnov lies in A[[U]], i.e., there are no non-trivial polyvector field terms

appearing. Therefore, as we saw in the proof of Lemma 2.2.5.13,

6n_1(-) = [<D(p"), - = dwn2 (-)

gives the Koszul complex for the sequence

""wnov .. " E A[[U]].
19Ui aun

Now we show that this sequence is regular. This follows because wno has an isolated
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singularity at the origin. To see this, observe that we have relations

fi(rn) U1Un
ui

f2(r")f (r) =--n E C[[r"]],

Taking the product of these relations gives

(u1 . .. n- = rnf(r)"(ui ... un)n- 1 ,

and hence that

(u . .. n -1 = 0,

because 1 + O(r) is invertible in A. Returning to the original relation, we have

(rf(r)u)p- 1 = (a1 .. . u)n-1 = 0,

and hence sufficiently high powers of each generator uj vanish (recalling f # 0, so f E A*

is invertible). Therefore wnOv has an isolated singularity at 0, so the sequence is regular,

so the cohomology of the Koszul complex is the Jacobian ring.

Now we observe that

lep*A[[U]]

is generated, as a A-algebra, by the elements

n
'tn,
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-rf (r)u7-1

in the ring

where

f (0) L 0.

A[[ui, .. ., un]]/(81wnov, . . ., B9nwnov),

n
U1 ... UnU11



and each of these has degree 2 E Z. To see this, note that for ub to be in p*A[[U]], its

degree must be in the image of Ya" in Yi". From the definition, this means that

(IbI, -b) = (t + 2(n - 1)ImI, -nm) - q(2(1 - n), Y[n])

for some t, q E Z and m E Z", or in other words, setting s = |bi for the length,

s = t + 2(n - 1)|m|+ 2(n - 1)q,

b =nm + qy[n].

It is not hard to show that, since b > 0, we can arrange that m > 0 and q 0, so ub is

a product of the generators U1 ... un, 0.,.. ., un, as claimed. Furthermore, one can show

that s + t = 2q + 2|ml, where s = IbI is the length and t is the Z-grading. It follows that

the degree of each generator is 2, when regarded as an element of Hochschild cohomology.

It follows that the En page of our spectral sequence is given by

A[[ui,. . . , un]]/(1w9nov,. . . , 19wno,) n A[[ui ... un, u",.. . , Un]].

From the relations in the Jacobian ring, we have

1 . .. un = rf(r)un where f(r) / 0,

so we only need a single generator a := .. .un, and furthermore this generator satisfies

as we showed above. It is easy to check (for example using Gr6bner bases) that an-2

does not lie in the ideal generated by the partial derivatives Bywov- It follows that the
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E, page of the spectral sequence is given by

A[a]/a"-i.

Because a has degree 2 E Z, E, is graded in even degrees so all subsequent differentials

in the spectral sequence vanish, so the spectral sequence is regular. Since the length

filtration is bounded above and complete, it follows by [61, Theorem 5.5.10] that the

spectral sequence converges to the Hochschild cohomology. Thus the E" page is iso-

morphic to the associated graded algebra of the Hochschild cohomology; but since it is

one-dimensional in each degree, it is in fact isomorphic to the Hochschild cohomology.

This completes the proof.

Now we observe that the element

r E E CCOrj cc (k

is a Hochschild cochain (this follows by applying ry9/Drj to the A, relation y o p = 0).

Hence it defines an element in HH*(A). We denote by # the element of HH* (Ao) that

is the image of

ri 0 1 E HH* () A

under the obvious map.

Lemma 2.2.5.19. The element # lies in the Fn-equivariant part of HH*(Ano,), and

corresponds to g -a for some invertible g E A* under the isomorphism of Lemma 2.2.5.18.

Proof. The fact that # is f*-equivariant follows immediately from the fact that p* is. We

recall from the proof of Lemma 2.2.5.18 that, firstly, we arrange that P 2 is independent

of rj and, secondly, the image of p under the HKR map to R[[U)] 0 A has the form

n

w = fi(T)ui .. . u, + f 2 (T) r, n.
j=1
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It follows that the image of rj&1y*/arj under the HKR map has the form

awn
r = Tfl(T)ui... un + f 2(T)ru' +Tf2(T) rjn.

Dr1  j=1

It follows from naturality of the HKR map that the image of # = (rj p* /&r) 9 1 on the

E 2 page of the spectral sequence has the form

n

r f (r")ui . .. un + f 2 (r")rug + rnf (r") ru .
j=1

We now recall from the proof of Lemma 2.2.5.18 that the En page of the spectral

sequence is the Jacobian ring A[[ui,.. . , Un]]/(I1Wnov,. . . , &anonov). We recall (from the

proof of Lemma 2.2.5.18) that, in the Jacobian ring, we have relations

fi(Ir)i . . . Un = -- nf2 (r') ruj,

and we set a := u1 ... un, so the image of # on the En page of the spectral sequence is

equivalent to
1f(r"n) fi(r")

(rf(r ffl ir) - nfi(r") nf2(f2f(r ) a = g(r")a,

where g(rn) E C[[r]] and g(O) y 0.

Recalling that the spectral sequence degenerates at the E, page, this completes the

proof.

2.2.6 First-order deformations

In this section, we will consider a very specific situation. Let A = (A, po) be a G-graded

minimal A, algebra over C, and V a G-graded vector space. We consider the G-graded
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C-algebra

R = C[V]/m2,

where m c C[V] is the maximal ideal corresponding to 0. A G-graded first-order

deformation of A over V is an element

p E CC%2(A ® R, A 0 R),

whose order-0 component agrees with po, and such that y o y = 0. Equivalently, we have

p = po + 1i,

where

p1 E CCG(A, A 0 Vv)

is a Hochschild cocycle. Its class in HHG(A, A 0 Vv) is called the deformation class

of the deformation. Two first-order deformations are A, quasi-isomorphic if and only if

their deformation classes coincide.

Let C be an A, category over C with two quasi-isomorphic objects, which we call

LO and L 1 . We denote the A, endomorphism algebras of the two objects by A :

Hom(Lj, Lj) for j = 0,1. It is standard that AO and A1 are A, quasi-isomorphic.

Let C3 be the full subcategory with a single object Lj, for j = 0, 1. Then the inclusions

Co " C +- C1

are quasi-equivalences. It follows by Morita invariance (see, for example, [11, Lemma

2.6]) that the restriction maps

HH (Co,Co) +- HH (C,C) -+ HH (C1,C1)
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are isomorphisms.

Now suppose that we have a G-graded first-order deformation of C over V. As we

observed above, this is equivalent (up to quasi-isomorphism) to a choice of deformation

class

[ p1] £ H H(CC Vv).

The deformation classes of the induced first-order deformations of the endomorphism

algebras A, are given by the images of [p1] under the restriction maps

HHG(C,C @Vv) -- HHG4 A A DVv),

and hence they correspond under the isomorphism

HHG2(Ao, Ao 0 Vv) ' HH%(A 1 , A1  Vv)

induced by the quasi-isomorphism of A 0 with A1.

2.3 The affine Fukaya category

In this section, we introduce the affine Fukaya category F(M) of an exact symplectic

manifold, and explain its relationship with the exact Fukaya category as defined in [11],

which we will denote by F'(M). The difference is essentially that the affine Fukaya

category has less objects, but a richer grading structure.

2.3.1 Grading data from the Lagrangian Grassmannian

We recall some notions from (11, Chapters 11, 12]. Let M be a symplectic manifold. We

denote by !M the bundle of Lagrangian subspaces of TM. Observe that, because we
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have a fibration
gM C-> gM

\/
M,

there is an exact sequence

. 7r(gpM) --+ r(QM) -+ 7ri(M) - *.

We recall that

7r1 (gpM) - Z.

Assumption 2.3.1.1. For the purposes of this paper, we will only consider manifolds

M such that 7r1(M) is abelian. The reason for this assumption is that we will use 7ri(M)

to define a grading datum G(M), and the affine Fukaya category will be G(M)-graded.

However we have only set up the theory of grading data (Section 2.2) for abelian groups.

One should be able to define a sensible theory of non-abelian grading data, and apply it to

study Fukaya categories of exact symplectic manifolds M with non-abelian fundamental

group. On the other hand, when one studies the the relative Fukaya category (Section

2.5), it becomes absolutely necessary to consider abelian grading data. In this case, one

should consider the universal abelian cover of 9M, rather than the universal cover. Since

these issues do not concern us in this paper, we ignore them by making this assumption.

In particular, Assumption 2.3.1.1 implies that that 7ri(M) 2 H1 (M) and 7r1(GM) 2

H1 (M).

Definition 2.3.1.2. We define a grading datum G(M):

Z - f Y (M) 9 > X (M) >0

H1(gM) -> H 1(M) -> H1 (M) - 0.
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To define the sign morphism o, we must specify a map

o-: H1(9M) -+ Z2 -

To do this, we consider the real vector bundle Z -+ 9M, whose fibre over a point is

identified with the Lagrangian subspace at that point. The first Stiefel-Whitney class

defines an element

wi(L) E H' (gM; Z 2 ),

and u is defined by pairing with this element.

We will see that it is natural to define the Fukaya category as a G(M)-graded cat-

egory. That is because of the relationship between G(M) and index theory of Cauchy-

Riemann operators in M, which we now explain.

We recall (from [40, Appendix C.3]) the definition of a bundle pair (E, E, F) over a

Riemann surface with boundary E. It is a complex vector bundle E -+ E together with a

totally real subbundle F C Elar. We recall that a bundle pair defines a Cauchy-Riemann

operator

D :G(E, E) -+ *o(E, E),

whose zeroes are holomorphic sections of E whose boundary values lie in F. We recall

also the boundary Maslov index of a bundle pair, which is an integer pt(E, E, F)

such that the index of (an appropriate Sobolev-space version of) the Cauchy-Riemann

operator D associated to the bundle pair (E, E, F) is

ind(D) = nX(E) + p(E, E, F),

where n is the complex dimension of a fibre of E.

Now suppose we are given a map u : E -+ M, together with a Lagrangian subbundle
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F c u*TMlar. F defines a lift

which defines a class [p] E H 1(gM) = Y(M), which is a lift of

ujaE = au = 0 E H1 (M) = X(M).

So by exactness of the sequence G(M), [p] lies in the image of Z.

Lemma 2.3.1.3. We have

[p] f (p(E, u*TM, F)),

in Y(M), where f : Z --+ Y(M) comes from the grading datum.

Proof. Define a decomposition of bundle pairs,

(E, u*TM, F) = (Ei, u*TM, F) U (E2 , u*TM, F),

where E1 is a small ball in the interior of E, E2 is its complement, and the totally real

subbundle of u*TMIari is defined by a lift

p' : aE1 -+ 9M,

chosen in such a way that there is a trivialization

(E2 , u*TM, F) (E2 , E2 x CE 2 x R').

It follows quickly from the properties of the boundary Maslov index (see [40, Theorem
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C.3.5]) that

p(E2,u*TM, F) = 0.

Then, by the composition property of the boundary Maslov index,

p(E, u*TM, F) = p(Ei, u*TM, F)+ p(E 2 ,u*TM, F) = p(E1, u*TM, F).

By our definition of (E 2 , u*TM, F), there is a lift

gM

E2 -> M,

and P defines a homology between the class [p] and the class [p']. If the ball E1 is centred

on a point p, then there is an obvious isomorphism

u*TMIEi a Ei x TM,

so p' defines a class in H 1 (gM) ' Z, which is exactly equal to p(Ei, u*TM, F) (essen-

tially from the definition of the Maslov class). The result follows. E

2.3.2 Anchored branes

In this section, we will define the notion of an anchored Lagrangian brane in M.

These will be the objects of the affine Fukaya category T(M) (when M is exact). First

we recall the notion of a (non-anchored) graded Lagrangian brane from [11, Chapter 11],

which is an object of P'(M).

If 2c1 (M) = 0, and M is equipped with a quadratic complex volume form r/, then we

can construct a phase map

am : 9M -+ S'.
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Now if i : L -+ M is a Lagrangian immersion, there is a canonical lift of

gM

L -> M.

Hence, given 7r, there is a map

aL : L - S,

0L &M 0*.

A (non-anchored) graded Lagrangian brane in M is a compact embedded Lagrangian

L c M, together with a lift a# of tL to R, and a Pin structure on L.

Now we introduce a new notion. Let

7r : UM -+ gM

denote the universal cover of the manifold GM.

Definition 2.3.2.1. An anchored Lagrangian brane L# in M is a Lagrangian im-

mersion i : L -+ M of a compact manifold L into M, together with a lift i# as follows:

GM

L . gM,

and a Pin structure. Note that we do not need a quadratic complex volume form to

define the notion of an anchored Lagrangian brane.

We observe that there is a natural action of the covering group r1(9M) ' Y(M) on

GM, and hence on anchored Lagrangian branes. We denote the action of y E Y(M) on
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L# by y - L#.

Now we explain the relationship between anchored Lagrangian branes and (non-

anchored) graded Lagrangian branes. We observe that, given a quadratic complex vol-

ume form r7m, there exists a lift of the squared phase map

UM iL") R

I I
gM "-5 S1.

Definition 2.3.2.2. Given a quadratic volume form 77m, a lift aM as above, and an

embedded anchored Lagrangian brane L# = (L, i#), we define a Lagrangian brane f(L#)

in M (f for 'forgetting' the anchored structure), with the same underlying Lagrangian L

and Pin structure, and

aL = oi#

2.3.3 The affine Fukaya category

Let M be an exact symplectic manifold with convex boundary, with r1 (M) abelian (see

Assumption 2.3.1.1). In this section, we define the affine Fukaya category, F(M).

It will be a G(M)-graded A, category. The definition is very closely related to the

definition of the affine Fukaya category F(M), given in [11, Section 12], to which the

reader is referred for all technical details. We will see that F(M) is essentially a full

subcategory of F'(M) with a richer grading structure - in particular, the analytic details

of defining moduli spaces of pseudoholomorphic disks to define the A, structure maps

are completely analogous.

Objects of F(M) are embedded anchored Lagrangian branes. For each pair of ob-

jects, we choose a Floer datum on M, and for all moduli spaces of boundary-punctured

holomorphic disks with boundary components labelled by anchored Lagrangian branes,
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we make a consistent universal choice of perturbation data on M. We assume that the

action of Y(M) on anchored Lagrangian branes lifts to an action on Floer and per-

turbation data (i.e., if we change some of the boundary labels of a boundary-punctured

holomorphic disk by the action of Y(M), then the perturbation datum does not change).

We now define the G(M)-graded morphism spaces in F(M). Now, given anchored

Lagrangian branes L*, L*, we define the morphism space CF*(L#, L1) to be generated

by paths p : [0, 1] -+ M satisfying p(O) E Lo, p(l) E L(1), which are flowlines of the

Hamiltonian vector field associated with the corresponding Floer datum.

Given such a p, we define its grading y E Y(M) to be the unique element such that

p lifts to a path from LO to y . L* in #M, which has Maslov index 0 E Z. To explain

what this means, we observe that there is a commutative diagram

GM ':M\/4/
9M -> M,

where M -+ M is the universal cover of M. Thus, associated with any anchored La-

grangian brane L# is a lift, L, of L to M. The fact that p must lift to gM implies that

it must lift to M; this already defines y E Y(M) up to addition of an element in the

image of Z -* Y(M). Now we observe that the fibres of the bundle

are the universal covers of the fibres of the Lagrangian Grassmannian GM. Thus, the

anchored brane structures L*, L* equip Zo, L1 with the structure of 'abstract Lagrangian

branes' (see [11, Section 12a]). Therefore, if the path p lifts to a path p from Lo to y -Li

in M, then we can define the Maslov index i of any lift of P to GM, and it is equal to

the relative Maslov index of the abstract linear Lagrangian branes at either end of P. It

is this index that we require to be 0. Given p, it is clear that we can find y' E Y(M)
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such that the path p lifts to a path P from LO to y'. L1 , but the Maslov index i may not

be zero. However, we then necessarily have

y = y' - f(i),

so the Y(M)-grading of p is well-defined.

We define the Ac. structure maps in F(M) by counting rigid pseudo-holomorphic

disks in M. That is, given objects

L#),..., L#

and morphisms

pj E CF*(L_1, LI) for j = ,..., s

and

po E CF* (L#, L# )00 5)

we define the coefficient of po in p"'(ps, ... , pi) to be the count of rigid pseudolomorphic

disks in M with boundary conditions on Lj, asymptotic to the generators p3 .

We now explain why these structure maps are G(M)-graded. Firstly, observe that the

structure maps respect the action of Y(M) on objects, because we chose the perturbation

data to do so. From [11, Section 111], we recall the definition of an orientation operator

D, corresponding to a generator p of CF*(Lt, L#). We lift p to a path

p : [0, 1] -+ M

connecting Lo#(p(0)) to y . L#(p(l)), where y E Y(M) is the degree of p. Now define

a smooth, non-decreasing function # : R -+ [0, 1] such that ?/(s) = 0 for s < 0 and

Vb(s) = 1 for s >> 0. We consider the Hermitian vector bundle over the upper half plane

R x R>o, with fibre over (s, t) given by Tpp())M. We introduce Lagrangian boundary
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conditions along the real axis, given by p($O(s)). These Lagrangian boundary conditions

define a Cauchy-Riemann operator, which we denote by DP. D, is Fredholm, its index

is equal to the relative Maslov index of the abstract Lagrangian branes at either end of

p, which is 0 by the definition of y, and its determinant line is canonically isomorphic to

the orientation line o, of p.

Given a holomorphic disk u contributing to an A.. product p', we denote the lin-

earized operator of the perturbed holomorphic curve equation at u (with fixed domain

S) by Ds,u. It is a Cauchy-Riemann operator on the trivial Hermitian vector bundle

u*TM over S. We can glue the orientation operators D, 1 , . . ., D, and D' to Ds,u along

the strip-like ends to obtain a new Cauchy-Riemann operator over the closed disk. We

denote this operator by D. The gluing formula then implies that

i(D) = i(Ds,u)+i(pi)+...+i(p,)+(n-i(po))

i(Ds,u) + n,

and there is a canonical isomorphism

det(D) e det(Du) 0 o
p 0 ... 0 oP, 0 oP.

Now the Cauchy-Riemann operator D is given by a bundle pair (D 2 , E, F), which is

equivalent to a bundle pair (D 2 , u*TM, F), where u : D2 -+ M is obtained from the

original disk u (which had strip-like ends converging to the generators pj) by gluing

the orientation operators onto the ends. The boundary conditions for D define a map

p: 8D-+ M which lifts the boundary map ou.

If we think of p as a map

p : [0, 1] -+ gM
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such that p(O) = p(l) lies on LO, then we have a lift

SM

[0,1] -4 M.

The boundary conditions Lj lift to (y1 + ... + yj) - LO, and finally p(l) lands on (y1 +

.. + y - yo) - LO. It follows that

[p] = -Yo + Yj.
j=1

Lemma 2.3.1.3 now implies that

f (i(D) - nx (D 2)) = yo + y
j=1

- f(i(Ds,u)) = -yo + y in Y(M).
j=1

We now recall that, for the disk to be rigid, the extended linearized operator D, (in

which the modulus of the domain is allowed to vary, as well as the map) should have

index zero. The dimension of the moduli space of disks with s + 1 marked boundary

points is s - 2, so this means that

yo = f(2 - s) + yj
j=1

in Y(M). It follows that the affine Fukaya category is a G(M)-graded A, category (see

Remark 2.2.3.12). We observe that the A, associativity equations are satisfied, by the

same argument as for F'(M) ([11, Proposition 12.31).

We will now explain how T(M) is related to the Z-graded exact Fukaya category

P(M), as defined in [11]. We recall that, to define Z-gradings on F'(M), we require
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that 2c1 (M) = 0 and equip r/ with a quadratic volume form r/M.

Recall from Definition 2.3.2.2 that, if we equip M with a quadratic volume form 7
m,

then we obtain a squared phase map

gM : 9M -- Si,

and if we define a lift

am :M R7 R,

then we obtain a forgetful map f from anchored Lagrangian branes to (non-anchored)

Lagrangian branes.

Now on the level of Hi, am induces a map

Y(M) -+ Z.

This defines a morphism of grading data, p: G(M) -+ Gz. It follows that p27(M) is

a Z-graded A, category. We have:

Lemma 2.3.3.1. The forgetful map f on objects extends to a fully faithful embedding of

Z-graded Ax categories,

f : p27(M) -+ '(M).

Remark 2.3.3.2. The image of this embedding consists of all (non-anchored) La-

grangian branes L such that the image of H1 (L) in H1 (M) is zero.

2.3.4 Covers

We explain how the affine Fukaya category behaves with respect to finite covers (essen-

tially following [9, Section 8b]). Suppose that M, N are exact symplectic manifolds with

convex boundary, with assumptions as in Section 2.3.3, and # : N -+ M is an exact
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symplectic covering (i.e., a covering such that the Liouville one-form on N is pulled back

from that on M via #). Then we have an induced covering

9N > N

QM ->M,

and hence an injective morphism of grading data, p: G(N) -+ G(M), given by

H 1(gN) - Hi(9N) -> H1 (N) > 0

H 1 (g0(p)M) -- H1 (gM) -> H 1 (M) > o.

Proposition 2.3.4.1. There is a fully faithful embedding of G(N)-graded categories,

p*(T(M)) <-+ F(N).

Proof. We remark that the universal covers of 9N and !M are isomorphic, so there is

an obvious correspondence between anchored Lagrangian branes on N and on M. One

can similarly set up a correspondence between morphism spaces and moduli spaces of

pseudoholomorphic disks defining the A,, structure maps, and show that the gradings

correspond, so the categories are strictly equivalent.

2.3.5 The relative case

Now we specialize to a particular type of exact symplectic manifold with corners.

Definition 2.3.5.1. A Kihler pair (M, D) consists of:

* A smooth complex projective variety M, equipped with a positive holomorphic

line bundle L with a Hermitian metric, so that the curvature of C defines a KdIhler
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form w, with [w] = ci(1);

e A tuple D = (D 1 , D 2 ,. . . , Dk) of smooth irreducible divisors Dj C M with normal

crossings, each corresponding to some positive power dj of the bundle L.

That is, for each j = 1, 2,... , k, we have a section

hj E l(M, L*di)

such that

Di = {hj = 0}.

We furthermore assume that

" 7ri(M) = 0;

" 7ri(M \ D) is abelian;

" k > n+ 1, where k is the number of divisors and n is the complex dimension of M.

We define the affine part,

M \ D := M \U D.

We equip M \ D with a Khhler potential

h =1 log(j|hy l12)
1kdj

so that a = -dh o Jo is a Liouville one-form (i.e., w = da), and a is convex at infinity

(h is exhausting and bounded below on M \ D).

Example 2.3.5.2. We consider the Fermat hypersurfaces,

z = 0 C CPn~-,
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with the ample divisors

Dj := {zy= 0}

for j= 1, ... , n.

Now recall that there is a grading daturn G(M \ D) associated to M \ D, with exact

sequence

Z -+ H1(g(M \ D)) -+ H1(M \ D) -+ 0.

We will denote

G(M, D) := G(M \ D)

in the relative case, and write the exact sequence as

Z -+ Y(M, D) -+ X(M, D) -* 0.

We now introduce a pseudo-grading datum H(M, D), whose associated grading datum

is G(M, D). Compare [64, Section 5].

If we set U to be a neighbourhood of the union of the divisors D in M, and V to be

M \ D, then part of the Mayer-Vietoris long exact sequence for reduced homology gives

H 2 (M) -+ H1(U n V) -+H1(U) @ H1 (V) -+ H 1 (M) -+ 0,

which becomes

H2 (M) -+ Z (yi, .. ,yk) -+ H1 (M \ D) -- 0,

since we are assuming H 1 (M) = 0. Here yj E H1 (U n V) is the class of a meridian loop

around divisor Dj.

Definition 2.3.5.3. We define a pseudo-grading datum H(M, D), as follows: the exact
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H2 (M; Z) --> Z(yi,.. . , Yk) -- > H 1 (M \ D; Z) -> 0,

where we define

f(u)

g(yi)

- (u - Dj)yi, and
i=1

- the class of a ioop around Di.

We define the element c E Hom(Z, Z) to be given by 2c 1 (TM) E H 2 (M).

We now define a morphism of pseudo-grading data, p : H(M, D) -+ G(M, D). We

define pz : H 2 (M) -+ Z to be given by 2c 1 (TM), and px to be the identity. We define

the map d to be 0. To define the map

py : Z(Y1,. . ., yk) -+ H1(9(M \ D)),

it is sufficient to define the action on the generators yi. We denote the image of y, by gi.

To define gi, we consider a disk

ui : (D 2 , OD2 ) -+ (M, M \ D)

such that ui - Dj = 6ij. We trivialize the symplectic vector bundle u<TM, and choose a

lift of Our:
9M

S' > M,

so that the boundary Maslov index

p(D2, u*TM, pi) = 0.
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This defines the element py(yi) := 9i E H1(G(M \ D)).

Lemma 2.3.5.4. The diagram

H2(M) -> Z(yi,. . , yk) -> H1(M \D) > 0

2clI PYjI

Z > H1(g(M \ D)) --> H1(M \ D) > 0

commutes.

Proof. The only non-trivial thing to check is the commutativity of the left square. Sup-

pose that u : E -+ M is a surface representing a homology class in H 2 (M), and inter-

secting the divisors Dj transversely. One side of the square maps

k

u e (u -DZ)9j,
i=1

while the other maps

u H-+ f(2c1 (u)).

We consider the bundle pair (E, E, #) with empty boundary, simply given by the complex

vector bundle E : u*(TM). Its Maslov index is p (E, E, #) = 2c 1 (u). We now define

a decomposition of this bundle pair: E = E1 U E2, where E1 is a union of small balls

around each of the intersection points of u with divisors Di, and E2 is the rest of E. We

define the Lagrangian boundary conditions along BE1 by requiring that the bundle pair

over each ball around a single intersection point has boundary Maslov index zero. Then

the composition property for bundle pairs (see [40, Appendix C.3]) says that

2c1 (u) = p (E, E, #) = p(E1, E, F) + P(E2, E, F) = p (E2, E, F).

We note that the boundary conditions we have associated to a small ball around an
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intersection point of u with the divisor Di define a map

S1 -+ g(M \ D)

representing the class 9j, by definition. Because u maps E 2 into M \ D, it follows from

Lemma 2.3.1.3 and the previous argument that

k

f (2c1(u)) = f(p(E2, E, F)) Z(U - D)pi,
i=1

which proves that the left square commutes. E

Corollary 2.3.5.5. The grading datum corresponding to the pseudo-grading datum H(M, D)

is

G (H (M, D)) 2-- G (M, D).

Now suppose that we equip M with a meromorphic n-form q (i.e., an (n, 0)-form),

whose zeroes and poles lie along the divisors Dj. Then we obtain a quadratic complex

volume form rf2 on M \ D, and recall that this defines a morphism p" : G(M, D) -+ Gz,

allowing us to equip our category with a Z-grading.

Lemma 2.3.5.6. The morphism of grading data p" is induced by the morphism of

pseudo-grading data defined by

py : Z(yi,. , yk) Z,

py(yj) 2py,

where pj is the order of the pole of ij along divisor Dj.

Proof. Follows essentially from the definition of the boundary Maslov index, see [40,

Theorem C.3.5, 'Normalization' property]. I
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Remark 2.3.5.7. If M is Calabi-Yau, then it admits a nowhere-vanishing holomorphic

volume form r/, so there is a canonical morphism of grading data

G (M, D) -+ Gz,

which is induced by the zero morphism of pseudo-grading data, in accordance with

Lemma 2.3.5.6.

Lemma 2.3.5.8. The pseudo-grading datum associated to the Fermat hypersurfaces with

coordinate divisors, (Ma, D) (see Example 2.3.5.2) is

H(Ma, D) Ha,

where H, is the pseudo-grading datum of Example 2.2.1.13.

Proof. Follows from the fact that H 2 (Man) _ Z, generated by the class of a line [P), that

[P] - D = 1

for all j, and that

ci([P]) = n - a.

Definition 2.3.5.9. Suppose that (N, E) and (M, D) are Kihler pairs (each with k

divisors), and a = (ai, ... , ak) is a tuple of positive integers. An a-branched cover of

Kshler pairs,

#:(N, E) -+ (M, D),

is a branched cover # : N -* M which maps divisor Ej to Dj, and has branching of order

a3 along divisor Ej (and no branching anywhere else).
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Example 2.3.5.10. There is an (a,. . . , a)-branched cover of Fermat hypersurfaces

#a : (Ma, D)

#" ([zi : .. .: zn])

-+ (M , D),

= z" a z"].

Lemma 2.3.5.11. Let # (N, E) -+ (M, D) be an a-branched cover. The unbranched

cover

#:N \ E -+ M \ D

induces an injective morphism of grading data

p : G(N, E) -+ G(M, D),

as in Section 2.3.4. This morphism of grading data is induced by a morphism of pseudo-

grading data

p : H(N, E) -+ H(M, D),

where

p1y(Yj)

d(yj)

= ajy, and

= 2(1 - aj)

Proof. It suffices to prove that

py(O D yy) = (2(1 - aj) e ajyj).

This follows easily from the definition, and the local form

(zi, z 2,. .. ,zn) " (Z1, z 2 ,. zn)

of # near divisor Ej.
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Corollary 2.3.5.12. If #, : (M,,D) -+ (Mf4,D) is the (n,. . . ,n)-branched cover of

Fermat hypersurfaces introduced in Example 2.3.5.10, then the induced morphism of

grading data

p : G(M", D) - G(M", D)

Coincides with the morphism

pi : G' -+ G"

of Lemma 2.2.1.14 (recall also Lemma 2.3.5.8).

2.4 Moduli Spaces of Disks

In this section we introduce the various moduli spaces of pseudo-holomorphic disks that

we will need to define the versions of the Fukaya category that we will consider.

2.4.1 Moduli spaces of holomorphic spheres and disks

Definition 2.4.1.1. Given an unordered set E, with |El > 3, we define Ro(E), the

moduli space of holomorphic spheres with distinct marked points qe indexed by e E E,

up to biholomorphism preserving marked points.

Definition 2.4.1.2. Given an ordered tuple L = (Lo, . .. , Ld), a disk with boundary

labels L is a disk with d + 1 distinct boundary marked points, o, (, . . . , (d, with the

boundary component between (i and (4i labelled Li (understood modulo d + 1).

We define three types of moduli spaces of disks:

Definition 2.4.1.3. Given a tuple L, and a set E, with ILI + 21EI > 3, we define

R(L, E) to be the moduli space of holomorphic disks S with boundary labels L, together
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with distinct internal marked points qe indexed by e E E. We consider these objects up

to biholomorphism preserving all marked points.

Definition 2.4.1.4. Given a tuple L, we define R 1(L) R(L, {1}), the moduli space

of holomorphic disks S with boundary labels L and a single interior marked point q.

Definition 2.4.1.5. Given a tuple L, we define R 2 (L) C R(L, {1, 2}) to be the moduli

space of holomorphic disks S with Lagrangian labels L, together with interior marked

points qi, q2, such that there is a biholomorphism of S with the unit disk { w <; 11 C C

sending

(Co -i

q1 - -t

q2 t t

for some t E (0, 1) C R (see Figure 2.4.1.1).

Given a point r in one of these moduli spaces, we denote by S, the corresponding

(marked) disk, with all boundary marked points removed.

2.4.2 Deligne-Mumford compactifications

We make a universal choice of strip-like and cylindrical ends for each of these moduli

spaces. We denote by Ro (E), 1(L, E), 1,(L), R 2 (L) the Deligne-Mumford compact-

ifications of these moduli spaces by stable spheres and disks. We now describe these

compactifications.

The Deligne-Mumford compactification of Ro(E) consists of stable trees of spheres.

Boundary strata are indexed by stable trees T, with semi-infinite edges indexed by E.

We denote by V(T) the set of vertices of T, and E(T) the set of edges of T. A tree is
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Figure 2.4.1.1: The moduli space 7Z2(L), where ILl = 6.
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called stable if each vertex has valence > 3. For each vertex v of T, we denote by E,

the set of edges of T incident to v. The boundary stratum indexed by T is

RZ (E) := Ro(Ev).
V

Points in this stratum correspond to trees of sphere bubbles, with semi-infinite edges

corresponding to marked points, and finite edges corresponding to nodes (see [40, Section

D.3, Figure 4]). The Deligne-Mumford (or Grothendieck-Knudsen) compactification, as

a set, is the union of all such strata. It is a smooth manifold (see [40, Section D.5]). The

codimension of the stratum indexed by T is 2(IV(T)| - 1).

Definition 2.4.2.1. A directed d-leafed planar tree is a directed d-leafed tree T

embedded in R2 . It consists of the following data:

" a finite set of vertices V(T);

" a set of d semi-infinite outgoing edges;

e a single semi-infinite incoming edge, connected to a vertex v E V(T) called the

root of T;

" a set E(T) of internal edges.

A vertex is allowed to have zero outgoing edges, but must always have exactly one

incoming edge. We say that a vertex v E V(T) is stable if it has > 2 outgoing edges,

and semi-stable if it has > 1 outgoing edges. Given a tuple L, we say that T has

labels L if the connected components of R 2 \ T are labeled by the elements of L, in

order. A labeling of T induces a labeling Lv of the regions surrounding each vertex

v E V(T) (see Figure 2.4.2.1).

The Deligne-Mumford compactification of R(L, E) consists of stable trees of disk

and sphere bubbles with appropriate markings (see [39, Section 2.3]). It is a smooth
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Figure 2.4.2.1: If L is some tuple, then a k-leafed stable tree T is said to have labels L

if the connected components of R2 \ T are labeled by the elements of L, in order. In

this figure, L = (LO, LO, Lo, L 1 , L 2 , L 2 , L1 , Lo, L3 ). A labeling L of T induces a labeling

L, of the regions surrounding each vertex v. In this figure, the induced labeling of the

regions surrounding the uppermost vertex v is Lv = (LO, L 1 , L2 , L 2 ).
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manifold with corners. Each boundary stratum is indexed by a directed tree T, together

with a directed planar subtree TL with labels L. We denote TE T \ TL. We require

that the semi-infinite edges of TE are indexed by E. For each vertex v E TL, we have a

labeling Lv as above, and denote by Ev the set of edges incident to v in TE. For each

vertex v E TE, we denote by Ev the set of edges incident to v in TE. We require that

the tree is stable, in the sense that for each vertex v E TL,

|Lvj + 2|Ev| > 3,

while for each vertex v E TE,

IEvI > 3.

The tree T corresponds to the stratum

RT (L, E) j R R(LV , Ev) x rl Ro (Ev).
VEV(TL) vEV(TE)

Points in this stratum correspond to nodal disks, with semi-infinite edges of TL cor-

responding to boundary marked points, finite edges of TL corresponding to boundary

nodes, semi-infinite edges of TE corresponding to internal marked points, and finite

edges of TE corresponding to internal nodes. The codimension of this stratum is

IV(TL)l + 21V(TE)I - 1.

The boundary strata of 1Z2 (L) fall into three types (we have illustrated the codimension-

1 part of each stratum in Figure 2.4.2.2):

* strata indexed by directed planar trees T with boundary labels L, together with

a distinguished vertex vi, so that all vertices other than possibly vi have valence
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> 3; these correspond to codimension-(IV(T) - 1) strata

2l'(L) R2(Lol) x 11 L)
vEV(T)\{vi}

which consist of nodal disks glued together in the obvious way (see Figure 2-2(a));

e another set of strata indexed by directed planar trees T with boundary labels L,

together with a distinguished vertex vi, so that all vertices other than possibly vi

have valence > 3; these correspond to codimension-|V(T)| strata

2 '(L) c-- J1(Lvl) x rl RLv)
vEV(T)\{vi}

which consist of nodal disks glued in the obvious way, together with a sphere with

three marked points, two of which are the marked points qi, q2 and one of which

is a node, identified to the internal marked point q in the disk coming from the

factor 7? 1 (Lvi) (see Figure 2-2(b));

* strata indexed by directed planar trees T with boundary labels L and two (differ-

ent) distinguished vertices v1 , v2 , so that all vertices other than possibly vi and v2

have valence > 3, and the branch of T containing vi lies strictly to the left of the

branch containing v2 ; these correspond to codimension-(IV(T) - 2) strata

2 '(L) c-- R1(Lol) x R 1(L V2)xR()
vEV(T)\{vi,v 2}

consisting of nodal disks glued together in the obvious way, where the internal

marked point in the disk coming from the factor R 1 (L,3 ) corresponds to the marked

point qj, for j = 1, 2 (see Figure 2-2(c)).
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A

I o
(a) The codimension-1 part of RT (L).

I 4
(b) The codimension-1 part of R3'T(L).

( (0
(c) The codimension-1 part of R'(L).

Figure 2.4.2.2: The codimension-1 boundary components of R 2 (L), where ILl = 6.

251



2.4.3 Moduli spaces of pseudoholomorphic disks

Let (M, D) be a Kihler pair (see Definition 2.3.5.1). Thus, M is a Kihler manifold, and

D = D 1 U ... U Dk is a union of smooth ample divisors with normal crossings. In this

section we will define moduli spaces of pseudoholomorphic disks mapping into M.

Definition 2.4.3.1. Let F be a finite set, and let

f : F -+ [k]

be a function from F to the set [k] := 1... , k} indexing the divisors D 1 ,..., Dk. We

call such a function a labelling of F. Recalling the definition of the pseudo-grading

datum H(M, D) from Definition 2.3.5.3, we denote

k

d(E) Z If-1(i)Iy E Yeo
j=1

(where Y>o Z>o(yi, Yk)) . If a -- (ai,.. ., ak) is a tuple of positive integers, then

we define
k

da(e) : a|-1 (j)y E Y>o.
j=1

We denote 1 = (1, . . . , 1) (k copies), so that d = di.

Definition 2.4.3.2. Let E and F be finite sets, IEl + FI > 3. Let e : F -+ [k] be a

labelling of F. We define

R7o(EE) := Ro(E U F).

Definition 2.4.3.3. Given a tuple of objects L, finite sets E, F such that ILI +21E| +

2|F1 2 3, and a labelling f : F - [k], we define the moduli space

R(L, E, ) := a(L, E U M F).

For each pair of objects in the affine Fukaya category T(M \ D), we choose a Floer
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datum (see [11, Section 8e]). We make a universal choice of perturbation data (in the

sense of [11, Section 9h]) on each of the moduli spaces Ro(Et?), R(L,E,e), R 1(L)

and R 2 (L). Note that the choice of perturbation data on the moduli spaces Ro, R

may be different for different labellings f, even though they have the same number of

boundary components and internal marked points. Also note that we are choosing Floer

and perturbation data which are defined on all of M, not just on M \ D.

We require that

" the Hamiltonian part of each perturbation datum is 0 on the moduli spaces Ro (E);

" the Hamiltonian part of each perturbation datum vanishes, with its first derivatives,

along each divisor Dj;

" the almost-complex structure part of each perturbation datum makes each divisor

Dj an almost-complex manifold;

" on the strip-like ends, the perturbation datum agrees with the associated Floer

datum;

" the choices of perturbation data are consistent with respect to the Deligne-Mumford

compactifications outlined in Section 2.4.1, in the sense of [11, Section 9i];

" the choices of perturbation data are invariant under shifts of the anchored La-

grangian branes by the covering group action

7ri (G(M \ D)) c-- P (M, D),

as was the case for the affine Fukaya category (see Section 2.3.3).

We will use the shorthand

k

u - D := (u - Dj)yy E Y(M, D)
j=1
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(see Definition 2.3.5.3 for the definition of Y(M, D)), where u-Dj denotes the topological

intersection number, for any class u E H 2 (M) or H2 (M, M \ D). Note that with our

choice of perturbation data, any pseudoholomorphic curve u intersects the divisors Dj

positively, so

u -D E Y(M, D)>o

if u is a pseudo-holomorphic disk or sphere that is not contained inside any of the divisors

Dj.

Definition 2.4.3.4. We define an element of the moduli space M 0 (EE) to be a pair

(r, u), where r is an element of Ro(E, f) and u : S, -+ M is a smooth map, such that:

" a satisfies the perturbed holomorphic curve equation;

* u(qf) E Def) for each f E F;

* 'u- D = d(E)

(see [11, Equations (8.9) and (9.17)] for the perturbed holomorphic curve equation).

There is an evaluation map

ev : Mo(E,{) -+ ME.

If E is empty we may omit it from the notation, and we will also write M 0 (E, d) for

M 0 (E, f) where d = d(E).

Remark 2.4.3.5. Suppose that u E CO (E, f) is not contained in divisor Dj. Then our

assumptions on the perturbation data ensure that u intersects Dj in isolated points with

positive multiplicity. Since each marked point qf with f(f) j contributes at least 1 to

u -Dj, our requirement that u. D = d(E) ensures that u intersects Dj only at the marked

points qf with f(f), and each intersection has multiplicity 1.

Definition 2.4.3.6. Given a tuple L = (L, . , LO) of anchored Lagrangian branes,

an associated set of generators is a tuple p = (Po,..., p) where pj is a generator of

CF*(Lf, L*_1) for j > 1, and po is a generator of CF*(L*, Lf).
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Definition 2.4.3.7. Given a tuple of objects L with associated generators p, finite sets

E, F such that L l+ 21El +21F I > 3, and a labelling £ : F -+ [k] as in Definition 2.4.3.1,

we define an element of the moduli space M(p, E, f) to be a pair (r, u), where r is an

element of R(L, E, f) and u : S, -+ M is a smooth map, such that:

" u satisfies the perturbed holomorphic curve equation, with Lagrangian boundary

conditions given by the labels L;

" u is asymptotic to the generators p along the corresponding strip-like ends;

e u(qf) E De(f) for each f E F;

* u -D = d().

(see [11, Equation (8.10)] for the definition of 'asymptotic to the generators p'). There

is an evaluation map

ev : M(p, E,f) -+ ME.

If E is empty, we may omit it from the notation, and we will also write M (p, E, d)

instead of M(p, E, f), where d = d(f).

By the same reasoning as in Remark 2.4.3.5, every intersection point of an element

u E M (p, E, f) with a divisor Dj is a marked point (and the intersection has multiplicity

1).

Definition 2.4.3.8. For a tuple of 2 Lagrangian labels L with associated generators

p, we define M(p,0), the set of holomorphic strips with boundary conditions on L,

intersection number 0 with the divisors D, translation-invariant perturbation coming

from the corresponding Floer datum, asymptotic to the generators p, modulo translation

by R (see [11, Equation (8.8)]).

Given a holomorphic curve with an internal marked point, we define the notion of

'tangency to a divisor to order k' at the marked point, in accordance with [65]:
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Definition 2.4.3.9. Suppose we are given:

" a Riemann surface S with an internal marked point q E S;

" a perturbed holomorphic curve u : S -+ M;

e a choice of divisor Dj C M;

" an integer k > 1.

We say that u is tangent to Dj at q to order k if

e u(q) E Dj;

" all partial derivatives of u at q of order < k lie inside the tangent space TDj.

We remark that this does not depend on the choice of coordinates.

When k = 0, this is the same thing as a point constraint u(q) E Dj. For k > 1,

one should think of the curve u having 'ramification of order k + 1' about the divisor

Dj. We can find local holomorphic coordinates (zi,. .. , zn) for M near u(q), such that

u(q) corresponds to the origin, and Dj corresponds to {zi = 0}, and a local holomor-

phic coordinate z for S near q such that q corresponds to the origin. If we assume

that the almost-complex structure part of the perturbation datum is equal to the stan-

dard complex structure along the cylindrical end associated to the marked point q,

and the Hamiltonian part of the perturbation datum vanishes, then u takes the form

(u 1 (z), .. . , un(z)) in these coordinates, where uj (z) are holomorphic functions, and u1

has a zero of order > k + 1 at the origin. It follows that the point q contributes at least

k + 1 to the intersection number of u with Dj.

Definition 2.4.3.10. Suppose that a = (ai,... , ak) is a tuple of k positive integers. We

define the moduli spaces M 0 (E, i, a) and M(p, E, E, a) in exactly the same way as we

did M 0 (E, f) and M(p, E, f), with the following exceptions:
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* For each f E F, we require a to be tangent to De(f) at qf to order at(f) - 1;

" We require that u -D = da().

In particular, we have isomorphisms

MA4o(E, t) A4 Mo(E, f , 1)

and

M4(p, E, f) M M(p, E, f , 1).

Note that, because each marked point qf contributes > ae(f) to u - De(f), elements

U E M 0 (E, f, a) do not intersect any of the divisors Dj anywhere other than at marked

points qf, where they intersect with multiplicity ae(f), and similarly for M (p, E, f, a).

Definition 2.4.3.11. Let L be a tuple of Lagrangians with associated generators p, a

a positive integer, and j E [k]. We define F to be a set with a single element, and f a

labelling which assigns j to this element. We let a be any tuple such that a3 = a. Then

we define

M1(p, j, a) :=M(p, f, a),

the moduli space of pseudoholomorphic disks with a single internal marked point, which

is tangent to divisor Dj to order a - 1. Note that we're not defining anything new; this

is just convenient notation for us to have.

Definition 2.4.3.12. Given a tuple of Lagrangians L with associated generators p, a

positive integer a, together with a choice of divisor Di, we define an element of the

moduli space M 2 (p, j, a) to consist of the following data:

* a point r ER2(L);

" a smooth map u: S, - M,
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such that:

" u satisfies the perturbed holomorphic curve equation;

" u is asymptotic to the generators p along the strip-like ends;

e a. D = (a + 1)ej;

" u is tangent to D at qi to order a - 1, and to D at q2 to order 0.

Note that, as before, elements u E M 2 (p, j, a) do not intersect the divisors Di for

i # j, and intersect Dj only at qi (with multiplicity a) and q2 (with multiplicity 1).

2.4.4 Indices and orientations

Each of the moduli spaces of pseudoholomorphic curves we have defined can be defined

as the set of zeroes of a smooth section of a Banach bundle over a Banach manifold of

maps (more precisely, the moduli space can be covered by such). We follow [11, Chapters

8 and 91 in defining the functional analytic framework, with modifications following [65,

Section 6] to take into account the 'orders of tangency' restrictions. This just means we

have to use Wk+1,p maps rather than W 1'P, so that we can make sense of 'derivatives of

order < k'.

The linearization of this smooth section defines a Fredholm operator. The moduli

spaces are said to be regular when the linearization is surjective everywhere. When

they are regular, the moduli spaces are smooth manifolds, with dimension given by the

index of the Fredholm operator. In this section, we will outline the calculation of this

dimension.

Lemma 2.4.4.1. Let L be a tuple of anchored Lagrangian branes with associated gen-

erators p, and u an element of M(p, E,f). Let pj E Y(M, D) be the degree of p. Then
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the index of the extended linearized operator Du at u satisfies

f(i(Du) - 21El + 2 - s) = -9o + 93 + py(d(e)),
j=1

and there is a canonical identification of orientation lines

oPo a det(Du) 0 op, 0 ... 0 op..

Proof. Each path pj lifts to a path from Lj to q - LO in U(M \ D), which we use to

define orientation operator D,, whose index is 0.

We denote the linearized operator of the perturbed holomorphic curve equation at u

(with fixed domain S) by Ds,u. We glue the orientation operators DP, to Ds,u along the

strip-like ends to obtain a bundle pair over the closed disk, and hence a Cauchy-Riemann

operator D. The gluing formula implies that

i(D) =i(Ds,u) +i(D,1) +.. . +i(Dp,) +(n -i(Dpo))

i(Ds,u) + n,

and there is a canonical isomorphism

det(D) L det(Ds,u) 0 o p, 0 ... 0 op, 0 ov

As in Section 2.3.3, this bundle pair defining D is equivalent to a bundle pair

(D 2 , u*TM, p), where p : -+ G(M \ D) which lifts the boundary map au, and

hence has index

i(D) = n + p(D 2 , u*TM, p).
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As in Section 2.3.3, we can compute the homology class

[P] = -O + Z: 9.
j=1

As in the proof of Lemma 2.3.5.4, we define a decomposition of the bundle pair (D 2 , u*TM, p)

into two bundle pairs: (E1 , u*TM, p'), consisting of a union of small balls surround-

ing each of the points qf for f E F, with boundary conditions given by Ye(f), and

(E2, u*TM, p U p') the complement of E1. Then the decomposition property of the

boundary Maslov index, together with Lemma 2.3.1.3, say that

p(D 2 , u*TM, p) = p(E1, u*TM, p) + p(Z 2, u*TM, p U p')

= P (E2,u*TM, p U p')

=> f ((D 2 , u*TM, p)) = [p] + [p']

= -o90 + + py (d(f)).
j=1

The result now follows, as

i(Du) i(Ds,u) + dim (R.(L, E))

i(D) - n + s - 2+ 21El

p(D2 , u*TM, p) + s - 2 + 21E1.

The isomorphism of orientation lines follows after we fix an orientation for R(L, E). O

Lemma 2.4.4.2. Suppose we have objects L with associated generators p, a k-tuple a =

(ai,..., ak) of positive integers, and an element u E M(p, E, E, a). Let jj E Y(M, D)

be the degree of pj. Then the index of the extended linearized operator Du at u satisfies

5

f (i(D) + 2 - s -- 21EI - 2|d(E) - d()|) = -0 + E± jj + py(da(E)).
j=1

260



Proof. Follows from Lemma 2.4.4.1, where we observe that being tangent to De(f) at

qf to order ae(f) imposes an additional 2 (ay(f) - 1)-dimensional constraint on the disk,

leading to the final term on the left-hand side, which is equal to

2 1 - a(f).
fEF

We can perform similar calculations for M 0 , M 1 and M 2. We obtain:

Lemma 2.4.4.3. If D, is the extended linearized operator at u E M 0 (E, E, a), then

f (i(Du) - 2n + 6 - 21EI - 2 d(e) - da(e)|)= py(da (E))).

Lemma 2.4.4.4. If Du is the extended linearized operator at u E M 2 (p, j, a), then

5

f (i(Du) + 2a + 1 - s)=-90 + Qi + py ((a + 1)yj),
i=1

and there is a canonical isomorphism of orientation lines as before. To clarify, recall

that yi E Y(M, D) is the degree of pi, but yj is the jth generator of Y(M, D).

One can prove that these moduli spaces are regular for generic choices of perturba-

tion data, by essentially the same arguments as in [65] and [11, Section 9k]. Namely, for

each map u in the Banach manifold of maps, one can choose the perturbation datum

essentially arbitrarily on an open subset of the domain, and this is enough to achieve

transversality. There are two exceptions: firstly, the moduli space of holomorphic strips

that do not intersect the boundary divisors is defined using a translation-invariant per-

turbation data (see Definition 2.4.3.8). It is shown in [36, 37] that these moduli spaces

are regular for generic choice of Floer data. The second exception is for moduli spaces of

holomorphic spheres contained entirely within one of the divisors Dj: our assumptions
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on the perturbation data along the divisors make it impossible to guarantee regularity

in this situation. We will explain in Section 2.4.5 why this is not a problem for our

purposes.

2.4.5 Gromov compactness

We now describe Gromov compactifications of the moduli spaces we have defined. We

observe that each moduli space has bounded energy, and standard Gromov compactness

shows that any sequence in one of these moduli spaces has a subsequence which converges,

up to sphere and disk bubbling (see [40] for spheres and [39] for disks). We would like

to show that any sphere or disk that bubbles off must be stable, so that the Gromov

compactification of our moduli spaces is regular. First we discuss the case of sphere

bubbles.

Any non-constant sphere bubble u must have positive intersection with each divisor

Dj. So unless it is contained inside one of the divisors, it has > k > 3 marked points

(where k is the number of divisors). In particular, all such sphere bubbles have stable

domain, so they are regular for generic choice of perturbation data.

The main difficulty occurs when there are sphere bubbles lying entirely inside one of

the divisors Dj, because we restricted our perturbation data so that the Hamiltonian part

vanishes along Dj, and the almost-complex structure component makes Dj an almost-

complex submanifold. So we cannot guarantee regularity of these sphere bubbles, and

we need separate arguments to deal with this case.

Definition 2.4.5.1. Let E, F be finite sets, and f : F -+ [k] a labelling. A stratum of

Mo(E, f) is indexed by a tree T whose semi-infinite edges are indexed by E Li F. For

each vertex v, we denote by F, the set of semi-infinite edges incident to v with index in

F, and by le : Fv -+ [k] the induced labelling of F,. We denote by Ev the set of the

remaining edges (finite or semi-infinite) incident to v. The tree is required to be stable,

262



in the sense that for each vertex v E V(T) we have |Ecl + Fj > 3.

Definition 2.4.5.2. Given such a tree T, we define the corresponding stratum of the

Gromov compactification. For each vertex v E V(T), we define

M4 (V) := Mo(Ev, Ev).

We then define

(HM) (E,E):= ri
vEV(T)

M(v).

If Eint denotes the set of internal (finite) edges of T, then there is an evaluation map

evUT : (UlM)T (E, f) -+ MEint X M~ine

Note that each edge appears twice on the right-hand side, once for each of its endpoints.

We define

A4T(eVT) - (AT),
M (E, ):=(ev

where

AT C MEilit X MEint

denotes the diagonal.

Definition 2.4.5.3. As a set, we define

Mo(E, E) := M (E, e).
T

We equip it with the Gromov topology.

Proposition 2.4.5.4. If |Ej > 1, then the space M 0 (E,E) is compact.

Proof. Standard Gromov compactness (see [40]) says that any sequence in Mo(E, f) has

a subsequence which Gromov-converges to a tree of nodal spheres. The space M 0 (E, f),
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by definition, contains all stable nodal spheres. These are the nodal spheres such that

each sphere bubble has > 3 marked points. Thus, to prove the result, we must show

that, if a non-constant sphere bubbles off in our moduli space, it must be stable.

Suppose that u is a non-constant pseudoholomorphic sphere bubble appearing in

some nodal sphere which is the Gromov limit of a sequence in Mo(E, f). If u intersects

a divisor Dj in an isolated point, then the point must be a marked point. This is because

the intersection point persists in a neighbourhood of the nodal sphere in the Gromov

topology, and any isolated intersection point of a sphere in Mo(E, f) with a divisor Dj

is a marked point, by Remark 2.4.3.5. Now u has positive intersection with each of the

divisors Dj. Hence, if u has isolated intersection points with the divisors, it has > 3

marked points where it intersects the divisors, and its domain is therefore stable.

If u does not have isolated intersection points with some divisor Dj, it must be

contained in Di by analytic continuation (and our assumptions on the perturbation

data near the divisors).

Definition 2.4.5.5. If K c [k], we denote

DK := Dj.

jEK

Suppose that u C DK, but has transverse intersections with all other divisors Di.

The dimension of DK is 2n - 21KI (by the normal crossings condition), so for the sphere

to be non-constant we require that IKI < n -1. Then, because there are 2 n + 1 divisors

(by definition of a Kdhler pair, see Definition 2.3.5.1), there remain > 2 divisors Dj with

which a has isolated intersections. The sphere u must intersect these divisors positively,

and the intersections must be marked points. So u has > 2 marked points coming from

the corresponding intersections, as well as the marked point corresponding to the node

(or to the marked point q E E), hence its domain is stable. 0
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The virtual codimension of the stratum M'(E, f) in M(E, f) is 2(# vertices of TE)-

1. If every stratum is regular, then standard gluing theorems show that Mo (E, f) has

the structure of a compact topological manifold with corners, and the actual codimension

of each stratum is equal to the virtual codimension. Regularity of the stratum indexed

by the tree T means that the moduli spaces MT(v) are regular, and the evaluation map

evT is transverse to the diagonal AT.

If all nodal spheres in the moduli spaces MT (v) are transverse to the divisors D, then

the moduli space is regular for generic choice of perturbation data, as we can change

the perturbation arbitrarily away from D (compare [40, Section 6.3]). However, it is

possible that one of the holomorphic spheres appearing in this moduli space is contained

in some divisor Dj. In that case, our assumptions on the perturbation data along the

divisor Dj make it impossible to guarantee regularity of this moduli space in M.

However, with some additional assumptions on the perturbation data, one can show

that, if the virtual dimension of this stratum of M (E, C) is negative, then it is actually

empty, even if there are sphere bubbles contained inside some of the divisors Dj. We

can also show that transversality can still be achieved with these additional assumptions

on the perturbation data. This suffices for our purposes of defining algebraic structures

out of these moduli spaces.

Remark 2.4.5.6. We remark that this is the point at which we need the assfimption

(see Definition 2.3.5.1) that each divisor Dj is ample.

We now describe these assumptions:

Let E, F be finite sets, and C : F - [k] a labelling of F. Given a subset K C [k], let

FK := {f E F : (f) V K},
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and

fK :F -K

the restriction of f. There is a forgetful map

fK : Ro0(E, f) -+ Ro (E, EK.

Condition 2.4.5.7. For each K C [k], the perturbation data on Ro(E, f) coincides with

the pullback of the perturbation data on Ro(E, fK) by fK, when restricted to DK.

Observe that even in the presence of Condition 2.4.5.7, we can still perturb the

almost-complex structure arbitrarily away from the divisors Dj, so our previous transver-

sality arguments for pseudoholomorphic spheres which are not contained in a divisor Dj

are unaffected by this additional assumption.

Definition 2.4.5.8. Given a moduli space M cut out locally by a Fredholm section of

a Banach vector bundle, we denote by

v.d.(M)

the Fredholm index of the section, where 'v.d.' stands for 'virtual dimension': this is the

expected dimension of the moduli space, and the actual dimension if it is regular.

Proposition 2.4.5.9. Suppose |El > 1. For a generic choice of perturbation data

satisfying Condition 2.4.5.7, any stratum M'( E, [) of Mo(E, f) whose virtual dimension

is negative, is actually empty.

Proof. For clarity, we will omit the (E, f) from the notation throughout the proof. Let

us consider a stratum indexed by a fixed tree T. For the purposes of this proof, we will

make T a directed tree (arbitrarily), and denote by h(e) E V(T) the head of the directed

edge e E Ei, and by t(e) E V(T) the tail.
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Recall that any holomorphic disk either intersects a divisor transversely, or is con-

tained in it. For each vertex v E V(T), we define a stratification

MT(v) M,K(V),

KC[k)

where

MT,K(V) {U E MT(v) : uv C DK, uv ( Dj for j ( K}

(recall Definition 2.4.5.5).

We now consider the manifold DK, with divisors D n DKc for j K (these are

divisors are normal crossings in DK, because of the normal crossings condition in M).

We define the moduli space

M ) uo E MV (EV, u c DK}-

Assuming Condition 2.4.5.7 is satisfied, there is a forgetful map

obtained by forgetting the marked points with label j E K. Furthermore, the evaluation

map

evv: M0,K(v) -_ MEv

factors as follows:

MTK(v) e> MEv

M_,K (V) ev> vL 2r 1 on dt s

Lemma 2.4.5.10. For generic choice of perturbation data satisfying Condition 2.4.5.7,
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A ,0 is a smooth manifold of dimension

dim (TK (v)) <v.d.M (MT(v)) - 2|Kl.

Proof. As we saw in the proof of Proposition 2.4.5.4, |FjI > 2 and |Evl 2 1, so the

domain of u is stable. Because we can perturb the restriction of the almost-complex

structure part of the perturbation data to DK essentially arbitrarily away from the

divisors Dj n DK, the moduli space M ,K(v) is regular in DK for generic choice of

perturbation data (observe that this is not necessarily the same as being regular in M).

Its virtual dimension at u, (hence its actual dimension, when regular) in DK is

v.d.DK 4TK(v) = 2(n - |K|) + 2|Ev|I+ 2c 1(TDK)(Uv) - 6.

Denoting the normal bundle of the divisor Dj by NDj, we have

c1 (TM)(un)

because the symplectic area

that

v.d.M (MT(v)) - 21KI =

= c1 TDK G NDj (Un)
jEK

= cl(TDK)(Uv) + >: c1(NDj)(uv)
jEK

= c1 (TDK )(Uv) + E3C1 ( ~gdj)I D) (uv)
jEK

c1(TDK)(Uv)+I3djw(uv)

jEK

2 c1(TDK)(Uv),

of a pseudoholomorphic sphere is non-negative. It follows

2n + 2IEvI + 2c1(TM)(uv) - 6 - 21KI

2(n - IKI) + 2IEvl + 2c1(TDK )(Uv) - 6

v.d-D (TK
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The actual dimension of M4,K (v) near u, is generically the same as the virtual dimension

in DK, since it is generically regular in DK. L

Thus, we have a stratification of

(UM)T (E, f) = MT(V)

by smooth manifolds

where K denotes the choice of a subset K, c [k] for each v E V(T). We define

( TK
UM

vEV(T)

and

DEint := DKh()

eEEint

x DKt(e),

and observe that the evaluation map evT,K factors as follows:

HM K evT MEint X MEint

r T,K

A4~T~ jj0 DEint,
K

where fTK is a forgetful map.

Now, observe that the map

D EntK MEint X MEint

is not necessarily transverse to AT, and in particular we cannot hope for the map

ElM K -+ MEint X MEint
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to be transverse to AT. However, we will explain that

- T,K : T ,K -+ D "

is generically transverse to the diagonal

AT,K AT n D 2nt.

We have

A 1T J DKh(e)UKt(e) e DKh(e) XDKt o
eEEint eEEine

where the inclusion is via the 'diagonal map' p '-+ (p, p). The map eVoT,K is then

transverse to AT,K because, for any e E Eint, sphere bubbles inside DK,,() are generically

regular, so we can perturb them to make the marked point move in any direction within

TDKh(e). Similarly for the sphere bubble in DKt,)'

It follows that the manifold

(,T,K (AT,K)

is generically smooth of dimension

dim ((e'T'K) (AT,K) dim - codim (AT,K)

dim ( K(v)) - (2n - 2|Kh(e) n Kt(e))
V eEEint

- (v.d. (M T(v)) - 2IKv) - 2n - 2|Kh(e) n Kt(e)I

vEV(T) eEEint

v.d. (HMT) - 2n|Eint1 - 2 S KjI + 2 Y, Kh(e) n Kt(,)I
vEV(T) eEEint

< v.d. (MT) - 2 |Kh(e)I - IKh(e) n KIt(e)I

< v.d. (M') ,
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where the second-last line follows as each v E V(T) is the head of at most one edge

e E Ei(T).

In particular, if the expected dimension of M is negative, then the manifold is

empty. It follows that the intersection of the subspace

e 1 (AT ) n UM',K = (fT,K) 1 (( T,K)1 (AT,K)

is empty, for each K.

This completes the proof.

We have an analogous result for the moduli spaces M 0 (E, f, a). Now we describe

the Gromov compactification of the moduli spaces M(p, E, f, a).

Definition 2.4.5.11. Let L be a tuple of elements of the affine Fukaya category, p

an associated set of generators, E, F finite sets, f : F -4 [k] a labelling, such that

|L I + 2|EI + 21F I > 2, and a a k-tuple of positive integers. A stratum of M(p, E, f, a)

is indexed by an object T, where T consists of the following data:

" A tree T, together with a directed planar subtree TL with labels L;

" An indexing of the semi-infinite edges of TE := T \ TL by E LJ F;

" For each edge e of TL, a choice of generator pe E CF* (Lr(e), Ll(e)), where Lr(e), Li(e)

are the Lagrangian labels to the right and left of e respectively, such that the

generators are given by p for the external edges.

For each vertex v E V(T), we denote by F, the set of semi-infinite edges in TE that are

incident to v and have index in F, and by f, : Fv -+ [k] the labelling induced by f. We

denote by Ev the remaining edges (finite or semi-infinite) in TE that are incident to v.

For each vertex v E TL, we denote by L, the tuple of Lagrangians labelling the regions
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surrounding v, and by p, the set of chosen generators for the edges adjacent to v. The

tree T is required to be semi-stable, in the sense that for each vertex v E V(TL) we

have

|Lv| + 2|EvI + 2|Fv| > 2,

while for each vertex v E V(TE),

|Ev| + IFI > 3.

Definition 2.4.5.12. Given such an object T, we define the corresponding stratum of

the Gromov compactification. For vertices v E TE, we define

M T(V) := Mo (Ev, Ev, a).-

For v E TL, we define

Now, letting Eine denote

map

the internal (finite) edges of TE, we have an obvious evaluation

evT: 1 MT(v) -+ MEi"t X MEint

vEV(T)

M4T (p, E, t, a) :=(eVT)- (AT),

We define

where

AT C MEint X MEint

denotes the diagonal.

Definition 2.4.5.13. As a set, we define

.4I(p, E, f, a) := UMT (p, E, f, a).
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We equip it with the Gromov topology.

Proposition 2.4.5.14. The space M(p, E, , a), is compact.

Proof. Standard Gromov compactness (see [39]) says that any sequence in M(p, E, f, a)

has a subsequence which Gromov-converges to a nodal disk. The space M(p, E, , a),

by definition, contains all semi-stable nodal disks. These are the nodal disks such that

each sphere bubble has > 3 marked points, and each disk bubble has

# boundary punctures + 2(# marked points) > 2.

Thus, to prove the result, we must show that, if a non-constant sphere or disk bubbles

off in our moduli space, it must be semi-stable. Sphere bubbling was dealt with in

Proposition 2.4.5.4. Any unstable disk has one boundary puncture and no internal

marked points; these are constant by exactness of the Lagrangians in M \ D. Thus there

can be no unstable sphere or disk bubbling. l

Lemma 2.4.5.15. Suppose that all strata M T (p, E, f, a) of M (p, E, f, a) which contain

a sphere bubble have negative virtual dimension. Then, for a generic choice of perturba-

tion data satisfying Condition 2.4.5.7, M(p, E, f, a) is a compact topological manifold

with corners, and each stratum has the expected dimension.

Proof. It follows as in Proposition 2.4.5.9 that any stratum whose virtual dimension is

negative is actually empty. Therefore, there are no sphere bubbles. Holomorphic disks

intersect the divisors transversely, and are therefore regular. Standard gluing theorems

then show that the moduli space is a topological manifold with corners. l

We are particularly interested in moduli spaces of dimension 0 and 1, since we use

those to define the Fukaya category. In particular, since sphere bubbles always have

codimension > 2, we have the following result:
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Corollary 2.4.5.16. Suppose we are given a set of Lagrangian boundary conditions L

with associated generators p, a labelling f : F -+ [k], and a tuple a. Then, for a generic

choice of perturbation data,

" If the virtual dimension of M(p, f, a) is 0, then it is a compact zero-dimensional

manifold;

" If the virtual dimension of M(p,f, a) is 1, then it is a compact one-dimensional

manifold, with boundary consisting of the 0-dimensional moduli spaces MT (p, f, a),

where T has two vertices, both contained in TL.

Now let L be a set of Lagrangian labels, p an associated set of generators, a be a

positive integer, and Dj be one of the divisors. We define the three types of boundary

strata in the Gromov compactification of M 2 (p,j, a) (compare Figure 2.4.2.2). We

observe that any spheres bubbling off from a sequence in M 2 (p, j, a) are necessarily

constant, because they do not intersect the divisors Di for i =4 j; thus we need only

consider strata consisting of disk bubbles.

Definition 2.4.5.17. Let T consist of the following data:

" A directed planar tree T with Lagrangian labels L, and a distinguished vertex vi;

" For each edge e of T, a generator pe E CF*(Lr(e), Li(e)),

such that all vertices are semi-stable with the possible exception of vi. We define

M2T(p, j,k) := M 2 (P, j, a) x fJ7 M(pV,&)

(note that for v $ vi, Fv = #, so the l is irrelevant but we include it in the notation for

consistency).
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The second stratum corresponds to t -+ 0, so the marked points zi and z 2 come to-

gether and bubble off a pseudo-holomorphic sphere. This sphere has intersection number

0 with all the divisors other than Dj, hence it must be constant. Thus, the holomorphic

disk attached to the sphere has intersection number (a + 1) with the divisor Dj, and 0

with the other divisors, and only intersects Dj at the nodal point z where it is attached

to the constant sphere. It follow that the disk is tangent to Dj at z to order a + 1. In

other words, it is an element of M1(p, j, a+ 1) (i.e., we can choose our perturbation data

to make this so).

Definition 2.4.5.18. Let T consist of the following data:

" A directed planar tree T with Lagrangian labels L, and a distinguished vertex vi;

" For each edge e of T, a generator pe E CF*(Lr(e), L(e));

such that all vertices are semi-stable with the possible exception of v1 . We define

M2Tp j, a) := M(pvl, j, a + 1) x fj M (pV,2)

The third stratum corresponds to t -+ 1, so the marked points zi and z 2 move to the

boundary and bubble off disks at the boundary.

Definition 2.4.5.19. Let T consist of the following data:

" A directed planar tree T with Lagrangian labels L, and two distinguished vertices

vi and v 2 ;

e For each edge e of T, a generator pe E CF*(Lr(e), Ll(e)),

such that all vertices are semi-stable with the possible exception of vi and v 2 , and the
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branch of T containing vi lies strictly to the left of the branch containing v2. We define

MA4'T (p, j, a) :=4 M(pvs, j, a) x M41(po2, j, 1) x A4 M(p , fV).
VV1 ,V2

Definition 2.4.5.20. We define the moduli space

(p,: M 'T (p, , a)) ( Ma '(p, j, a) U M2'T (p, j, a)

as a set.

Lemma 2.4.5.21. For generic choice of perturbation data, M 2 (p, j, a) has the structure

of a compact manifold with corners, of the expected dimension (see Lemma 2.4.4.4).

Furthermore,

* The stratum M'(2p,j, k) has codimension IV(T)| - 1,

* The stratum M ',T(p,j, k) has codimension IV(T)I, and

e The stratum M ',T(p, j, k) has codimension IV(T)l - 2.

2.4.6 Branched covers

Let # : (N, D') -+ (M, D) be an a-branched cover of Kdhler pairs (see Definition 2.3.5.9).

Let L be a tuple of anchored Lagrangian branes in N \ D', p an associated set of

generators, E a finite set, and f a labelling. Denote by #(L) the image of these branes

in M \ D, and by #(p) the associated set of generators. We would like to related the

moduli space M(p, E, f) of disks in N and the moduli space M(#(p), E, E, a) of disks

in M.

Let us choose perturbation data for the moduli space M(0#(p), E, f, a) in M.
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Condition 2.4.6.1. In a neighbourhood of the divisors D c M, the almost-complex

structure part of the perturbation datum is equal to the standard (integrable) complex

structure.

Under Condition 2.4.6.1, the pullback of the perturbation data in M by # to N is a

valid choice of perturbation data in N. Note that this is not true for generic perturbation

data: the pullback of a generic almost-complex structure by # may be singular along the

divisors D.

Lemma 2.4.6.2. If our perturbation data in M satisfy Condition 2.4.6.1, and we use

the pulled-back perturbation data to define the moduli space in N, then there is an iso-

morphism of moduli spaces:

M4(p, E, f) _2 M4(# (p),I E, f , a),

u -+ # o u.

Proof. It is clear that this map is well-defined and injective. It is also surjective: suppose

we are given u E M(#(p), E, f, a). It is clear that, locally, u lifts to a pseudoholomorphic

curve in N \ D', away from the marked points qf. At a marked point qf, u is tangent

to the divisor De(f) to order at(f) - 1, and it follows that a loop around qf gets mapped

to a loop going at(f) times around divisor De(f). Therefore, a punctured neighbourhood

of qf lifts to N \ D'. By the removable singularity theorem, the point qf also lifts, so

u lifts locally on a neighbourhood of the marked points qf. Therefore, since the disk is

contractible, u lifts to N, and the lift is clearly an element of M(p, E, f, a). I

We observe that it is possible to achieve regularity of the moduli spaces M (#(p), E, f)

if we require our perturbation data to satisfy Condition 2.4.6.1, because we can still per-

turb the Hamiltonian part of the perturbation data essentially arbitrarily away from the

strip-like ends and marked points (the transversality argument follows [11, Section 9k]).
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However, it is not possible to achieve regularity of the moduli spaces M 0 (E, e): in par-

ticular, on a sphere bubble contained inside one of the divisors, the perturbation datum

is required to be equal to the standard complex structure, which may not be regular.

Therefore we can in general not guarantee regularity of the Gromov compactification

M(#(p), E, f)

since its strata involve sphere bubbles.

However, we recall that spheres can not bubble off from the moduli spaces M 1 (p, j, a)

and M 2 (p, j, a), because a non-constant sphere bubble must intersect all of the divisors.

Therefore, we can achieve regularity of the Gromov compactifications

M1(#(p), j, a) and M 2(#(p), j, a)

with perturbation data satisfying Condition 2.4.6.1. This allows us to prove:

Lemma 2.4.6.3. There exist choices of perturbation data in M and N such that Lemma

2.4.5.15 remains true in both M and N, and Lemma 2.4.5.21 remains true in M, and

such that there are furthermore isomorphisms of moduli spaces

M1,(p, j, 1) 4j(#(p),j, aj)

u '-+ #4ou

for all p, j.

Proof. First, we choose perturbation data on the moduli spaces M 1 (#(p), j, a3 ) satisfying

Condition 2.4.6.1. We define the perturbation data on M1(p, j, 1) to be the pullback of

this perturbation data under #. We can then extend these choices to consistent choices

of perturbation data for all of the moduli spaces M 0 , M, M 1, M 2 , separately in M and

N, such that the moduli spaces and their Gromov compactifications are regular. l
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2.5 The relative Fukaya category

In this section, we give our definition of the relative Fukaya category of a Kihler

pair (M, D), which we denote F(M, D). It is a (possibly curved) G(M, D)-graded

deformation of the affine Fukaya category, in the sense of Definition 2.2.4.3. We also

define an orbifold version of the relative Fukaya category. In Section 2.5.2, we describe

the behaviour of the relative Fukaya category with respect to branched covers.

2.5.1 The definition

Suppose that (M, D) is a Kihler pair, and a = (a1, ... , ak) a tuple of k positive integers

(where k is the number of divisors in D).

Definition 2.5.1.1. We define the ring

R,, := C[[ri, . .. , rkh,

and equip it with the G(M, D)-grading, where rj has grading

(2(1 - aj), ajyj) E (Z E Y)/Z

(see Corollary 2.3.5.5).

Example 2.5.1.2. Suppose that (M, D) = (M 14, D) as in Example 2.3.5.2, and a =

(a,..., a). Then we have

Ra cRa,

where R n is the G(M, D)-graded ring introduced in Definition 2.2.2.13.

We give a definition of the smooth orbifold relative Fukaya category F(M, D, a),

based on the definition of the relative Fukaya category given in [57]. It is a (possibly
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curved) G(M, D)-graded deformation of the affine Fukaya category over Ra. We denote

F(M, D) := F(M, D, 1),

and call it the relative Fukaya category.

The objects of F(M, D, a) are the same as in the affine Fukaya category: anchored

Lagrangian branes in M \ D. Given a tuple of anchored Lagrangian branes L with

associated generators p, and an element d E Z'O, we choose a labelling f such that

d(E) = d, and define the coefficient of rdpo in p"(Ps,.... Ipi) to be

# (M(p, f, a))
d!'

where we denote

d! := di!d2!. . dk!,

and # denotes a signed count of the zero-dimensional part of the moduli space, with signs

defined according to the canonical isomorphism of orientation spaces given by Lemma

2.4.4.2. We observe that this is a finite sum, by Corollary 2.4.5.16. Note that, while the

affine Fukaya category is not curved (any pseudoholomorphic disk with boundary on an

exact Lagrangian is constant, since it has zero energy), the relative Fukaya category may

be curved.

It follows from the index computation in Lemma 2.4.4.2 that the structure maps

y1 define a G(M, D)-graded A,, deformation of the affine Fukaya category over Ra.

Observe that the order-O component of p'9 counts disks that completely avoid the divisors

D, and therefore coincides with the definition of the structure maps in the affine Fukaya

category.

The fact that p o p = 0 follows also from Corollary 2.4.5.16, since the signed count of

boundary points of a compact 1-dimensional manifold with boundary is 0. The sign com-
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putation follows directly from that of [11, Section 12g], essentially because the fibres of

the forgetful maps R(L, E) -+ R(L, #) have a complex structure, hence are canonically

oriented.

Observe that we needed the factor (d!)- 1 in the definition of the structure coefficients

p". This is because, if d = di + d 2 , then given a labelling f : F -+ [k] with d(f) = d,

there are d!/(di!d2 !) ways of choosing a partition F = F1 L F 2 such that the restricted

labellings f1, f2 on F1 and F2 satisfy d(E1) = di and d(E2 ) = d 2 . So, in the boundary

of the one-dimensional component of the moduli space M (p, f), which consists of nodal

disks with two components, there are d!/(di!d 2 !) ways for the marked points qf to be

distributed between the two components.

It is important to consider in what sense the smooth orbifold relative Fukaya category

is dependent on the choices (of Floer and perturbation data) involved in its construction.

We recall the argument of [11, Section 10a]: Let I denote a set of possible choices of Floer

and perturbation data. For each i E I, we denote by F(M, D, a)' the smooth orbifold

relative Fukaya category defined using those choices. We define a new A.c category, the

total category F(M, D, a)t"t, as follows:

" Objects are pairs (L, i) where L is an object of F(M, D, a) and i E I;

" For each pair of objects we choose a Floer datum, and for each set of labels of

objects we choose a perturbation datum;

" We require that, for a pair (Lo, i), (L 1, i), the Floer datum is that given by i;

" We require that, for a set of labels (LO, i),..., (Lk, i), the perturbation data are

those given by the index i;

" The rest of the Floer and perturbation data we choose arbitrarily.

The rest of the construction (of morphism spaces and composition maps) follows that of
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the smooth orbifold relative Fukaya category. It follows that for each i E I, there is a

full embedding

.F(M, D, a)' -+ F(M, D, a) to

which is given, on the level of objects, by

L 4 (L, i).

When restricting to the affine Fukaya category (rj = 0), it follows from the PSS isomor-

phism that these embeddings are quasi-equivalences, and hence invertible, and therefore

that the affine Fukaya category does not depend on the choice of data i E I, up to

quasi-equivalence (see [11, Section 10a).

This need no longer be the case for the relative Fukaya category (these embeddings

need not be quasi-equivalences nor invertible), and in general the relative Fukaya may

depend on the data used to define it (compare [9, Section 8f]). However, in this paper

we are only interested in a certain full subcategory of the relative Fukaya category which

is necessarily minimal (for grading reasons). Therefore, rather than quasi-equivalence

(which we recall is not necessarily a well-behaved notion over the power series ring R),

we can use the simpler notion of formal diffeomorphism.

Let Z be a set of objects of F(M, D, a), and I be some set of possible choices of

Floer and perturbation data for the full subcategory C c F(M, D, a) with objects Z.

Let us form the total category Ct t, as above.

Lemma 2.5.1.3. Suppose that we can choose Floer data and perturbation data for Ct t

so that it is minimal. Then, for any ij E I, there is a G-graded quasi-equivalence of

minimal A,, categories over R,

Ci ~ C.
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Proof. First, note that we have A.. embeddings of minimal A,, categories

Ci c+ Cto t Cs,

as above. Now note that, because the objects (L, i) and (L, j) are quasi-isomorphic

when restricted to the affine Fukaya category, and Ct't is minimal, these objects are

quasi-isomorphic in C". It follows that the above embeddings are quasi-equivalences.

By Lemma 2.2.3.34, quasi-equivalences of minimal A,, categories can be inverted over

R. It follows that there is a quasi-equivalence C' Ci, as required. D

In other words, if we can choose the category Ctot to be minimal (e.g., for grading

reasons), then C is independent of the choice of perturbation data i E I made in its

construction, up to formal diffeomorphism.

Remark 2.5.1.4. If M is Calabi-Yau, then by Remark 2.3.5.7, there is a canonical

morphism of grading data

p : G(M, D) - Gz.

Thus, we obtain a canonical Z-grading on the category

.F(M, D) _' p ,F(M, D),

such that the Z-grading of R is zero.

2.5.2 Behaviour with respect to ramified covers

Suppose that # : (N, D') -+ (M, D) is an a-branched cover of Kdhler pairs, where

a = (ai, . .. , ak). In this section, we will examine the relationship between the following

three categories:

.F(M, D), F(M, D, a), and F(N, D').
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We first recall the behaviour of the affine Fukaya category under covers. Note that

#: N\D' -+ M\D is a finite (unramified) cover. Thus, it induces an injective morphism

of grading data,

p : G(N, D') -+ G(M, D).

We recall from Proposition 2.3.4.1 that there is a fully faithful embedding

p*F(M \ D) -+ F(N \ D').

We observe that, if it were possible to choose perturbation data in M such that

Condition 2.4.6.1 were satisfied, then Lemma 2.4.6.2 would imply, by a similar argument,

that there is a fully faithful embedding

p*F(M, D, a) -+ F(N, D').

Remark 2.5.2.1. We observe that p*Ra is exactly the G(N, D')-graded coefficient

ring over which F(N, D') is defined; this follows immediately from the definition of Ra

(Definition 2.5.1.1) and Lemma 2.3.5.11.

However, we recall (see discussion in Section 2.4.6) that it is not possible to guarantee

sufficient regularity of all of our moduli spaces under Condition 2.4.6.1, so we can not

quite make this statement. Ideally, we would find a better version of Condition 2.4.6.1

that would allow us to guarantee lifting and regularity. However, we have been unable

to do this, and instead circumvent this problem by a rather ugly and ad-hoc method,

which we now describe.

We recall, from the discussion at the end of Section 2.4.6, that it is possible to obtain

regularity for moduli spaces with only a single marked point, under Condition 2.4.6.1.

Therefore, we can make sure that the result is true 'to first order' (see Section 2.2.6).

Recall (Section 2.2.6) that we denote by m c R the maximal ideal. If T is an R-linear
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A. category, then F/m 2 is an R/m 2 -linear category, which retains only the information

about the first-order part of T. Now we prove the result:

Proposition 2.5.2.2. Given an a-branched cover of Kdhler pairs # : (N, D') -+ (M, D),

there exists a G(M, D)-graded A, category T(#) over Ra, such that there exist A,

functors

91 : p*.F(#) -+ F(N, D'),

and

92 : F(#)/M2 -+ F(M, D, a)/m 2,

and both 91/m and 9 2/m are quasi-equivalences of the zeroth-order categories.

Proof. We would like to choose perturbation data in N which are invariant with respect

to the action of Y(M, D), but this will be problematic, because the geometric action

of Y(M, D) on N is non-trivial, so we need to employ a trick to bypass this problem

(compare [9, Section 8b]).

The covering map # induces an injective homomorphism

p : Y(N, D') -4 Y(M, D).

We denote

F := Y(M, D)/Y(N, D').

As part of the construction of F(#), we choose a function

q : F -+ Y(M, D)

(not necessarily a group homomorphism) that splits the map Y(M, D) - IF.

Objects of F(#) are pairs (L, -y), where L is an anchored Lagrangian brane in M \ D

285



and -y E F. We define Y(M, D) to act on our objects by

y-(L, ) ((y -q(y)) -L + y),

and F to act by

7 - (L,7y') :=(L,7+7').

On the level of objects, the A, morphisms are given by

(Ly) " q () - L

(recall that there is a correspondence between anchored Lagrangian branes in M \ D

and anchored Lagrangian branes in N \ D').

We now choose Floer data for our anchored Lagrangian branes in M, satisfying

Condition 2.4.6.1, invariant under the action of Y(M, D) G F. This is possible because

the action of this group on the underlying geometric Lagrangians is trivial. We define

the morphism spaces as usual, with grading defined so that

CF (O)((Lo, yo), (Li, yi)) e CF(M\D)(q(yo) - Lo, q(yi) . L1)

as G-graded vector spaces.

This makes F(#) into a G(M, D)-graded pre-category. For labellings f with Id(E)I <

1, we choose perturbation data in M for the moduli spaces M(p, f, a), also satisfying

Condition 2.4.6.1 and invariant under the action of Y(M, D) G F. This allows us to

define F(#) to first order, by counting holomorphic disks in M intersecting only a single

divisor, exactly by analogy with F(M, D, a)/m 2 . Thus, we in fact have an isomorphism

of G(M, D)-graded categories

F(#)/m2 = T(M, D, a)/m 2 0 C[F],

286



where -y E F has degree q(-y). In particular, the categories are quasi-equivalent.

Furthermore, we observe that the above-defined map on the level of objects,

p*_F(#) ->(N, D')

(L,y) q(7- ) - L,

defines an equivalence of G(N, D')-graded pre-categories. I.e., a generator p of CF*((Lo, 'yo), (Li, y))

only lifts to a generator of CF*(q(7o)- Lo, q(71) .L 1 ) if its degree y+q(yo -yi) E Y(M, D)

lies in the image of Y(N, D').

Now we extend the definition of F(4) to higher-order terms. Given objects L

((Lo, -yo).... I (LsI y)), with associated generators p = (po, ... , p) of degrees (yo,... , y,)

in Y(M, D), and e a labelling, such that

yo = f (2 - s - 2|d(t) - d(E)I) + py(da(C)) + yJ
j=1

(recall that this condition must be satisfied if the coefficient of r d(o) in PS(p,... ,pi)

is to be non-zero), we define #*(L, p) to be the tuple of anchored Lagrangian branes in

N \ D',I

(q(70o) . Lo, (y1 + q(71i)) - L1,. . ., (y1 + . .. + ys + q(-ys)) -Ls),

with the associated generators which are the lifts of the p3 (note that po does lift, by

the equation we imposed on the yj). We define perturbation data for the moduli spaces

M(*(L, p), e) in N, such that:

" They are given by the pullback under # of the perturbation data on M(p, E, a) in

M, for Id()I < 1 (recalling that these perturbation data satisfy Condition 2.4.6.1,

and hence can be pulled back under #);

" They are invariant with respect to the action of Y(M, D) on objects.
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Note that, we can still achieve transversality in the presence of this final assumption.

To see why, observe that the action of Y(M, D) may involve a non-trivial geometric

action of the covering group F. However, under the action

y - (L, ) = ((y - q(y)) - L,y+ y),

the element in the first factor y - q(y) acts trivially on N. Thus, we can choose per-

turbation data by considering only the first factors of our objects, on which the action

of Y(M, D) is trivial, then push these perturbation data forward using the geometric

action of the second factors via q.

We now explain why the Gromov compactifications 4(#* (L, p), f) of zero- and one-

dimensional moduli spaces are generically regular. We recall the discussion of Section

2.4.6: the only obstruction to regularity is the appearance of sphere bubbles contained

entirely within one of the divisors D. If we imposed Condition 2.4.6.1 on all of our moduli

spaces, we could not guarantee this, because the almost-complex structure on each divisor

would be required to be the standard (integrable) complex structure, and hence not

necessarily regular. However, we have only imposed this condition on moduli spaces

M(#*(L, p), f) where Id(f)I < 1, and any sphere bubbling off from such a moduli space

is necessarily constant, because it does not intersect some divisor Di. Therefore, these

moduli spaces are generically regular. For the remaining moduli spaces with Id(f) I > 2,

we can perturb the almost-complex structure arbitrarily on the divisors, and therefore

we can apply the argument of Proposition 2.4.5.9 to prove regularity. Thus, our moduli

spaces satisfy the analogue of Corollary 2.4.5.16.

We now define the coefficient of rdP-(p.,... ,p) to be the signed count of points in

the zero-dimensional part of the moduli space M(#*(L, p), f), where d(f?) = d. It follows

as in the definition of the relative Fukaya category that p' define a G(M, D)-graded A,,

deformation of F(M \ D) over Ra. It follows immediately from the definition that there

288



is an A. quasi-equivalence

p*F(#) -+ F(N, D)

sending (L, -y) i-- -y L on the level of objects. This completes the proof. I

Remark 2.5.2.3. We recall that the notion of quasi-equivalence of A, categories over

R is not necessarily well-behaved; however, in the situation in which we will apply

Proposition 2.5.2.2, the parts of the categories F(#), F(M, D, a) and F(N, D') will

necessarily be minimal, so quasi-equivalences are well-behaved by Lemma 2.2.3.34.

Now we would like to relate F(M, D) to F(M, D, a). Again, we will only relate

the first-order part of the deformations. We recall from Section 2.2.6 that a first-order

deformation of the A, category F:= F(M \ D) over R consists of A, structure maps

P* = p1 + p*,

where p* gives the structure maps of F, and the A. relations say that p* defines a class

[[1] E H H2 F, F RI).

Theorem 7. Let F := F(M \ D), G := G(M, D), and let

k

[p1,1] := raj E HH(.F, F 0 RI)
j=1

be the first-order deformation class of F(M, D, 1) ~ F(M, D). Then the first-order

deformation class of F(M, D, a) is given by

k

[,p1a] = (Zrja E HHG(F,F ® Ri),
j=1

where the power is taken with respect to the Yoneda product on H H*(.F).
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Proof. We define elements

#3(b) E CC*(T),

for b > 1, as follows: Let L be a tuple of anchored Lagrangian branes in M \ D, with

associated generators p. Then the coefficient of po in #j(b)s(p.,... ,pi) is given by the

count of rigid elements in the moduli space M1(p, j, b). It follows from the fact that the

signed count of points in the boundary of the one-dimensional component of the moduli

space M 1 (p, j, b) is 0, that each #j (b) is a Hochschild cocycle. Furthermore, by definition

we have

[(1)] = a

and
k

l,a = rj fj(aj).
j=1

We also define elements

Hj(b) E CC*(.F)

by counting rigid elements in M 2(p, j, b).

Lemma 2.5.2.4. We have

#3,(b + 1) = f3(b) * #3 (1) ± a(Hj (b))

in CC*(F), where * denotes the Yoneda product and 0 denotes the Hochschild differen-

tial.

Proof. The result follows from the fact that the signed count of points in the boundary of

the one-dimensional component of the moduli space M 2(p,j, b) is 0. See Lemma 2.4.5.21

for the description of the boundary components. The boundary points M'T(p, j, b)

contribute the term BH3 (b) to the sum, the boundary points M2,T(p, j, b) contribute the

term Oj (b+ 1), and the boundary points MAT(p, j, b) contribute the term #j(b).f%(1). D
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It follows that, on the level of Hochschild cohomology,

[j (b+ 1)] = [#3(b)] 9 aj,

and hence, by induction, that

The result follows immediately.

2.6 Morse-Bott computations in the Fukaya cate-

gory

In this section, we consider the Kihler pair (M, D) = (M,", D) of Example 2.3.5.2, and

the tuple

a := (n, ... , n)

(n copies) associated to the branched cover of Kshler pairs

# : (Mn", D) - (Mf", D)

(see Example 2.3.5.10). We consider the grading datum G G(M, D). We define the

G-graded rings

R:= R ~ C[[ri, ... , r]]

and
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from Definition 2.2.2.13, and recall that they are the coefficient rings of F(M, D) and

F(M, D, a) respectively (see Example 2.5.1.2). Throughout this section, we denote by

Y := Z(yi, .. ., y,,)

the abelian group appearing in the pseudo-grading datum H(M, D).

We recall that

M := z}= CPn-,

with the divisors Dj := {zj = 0}. Thus M a CPn- 2 , and D consists of n hyperplanes

with normal crossings. M \ D is called the (generalized) pair of pants.

We construct an immersed Lagrangian sphere Ln : Sn 2 -+ M \ D in the pair of

pants (summarising the construction in [1]). The main result of this section (Corollary

2.6.5.6) is that the endomorphism algebra CF*(L", L"), computed in F(M, D, a), is of

type A (see Definition 2.2.5.2).

To do this, we first give a Morse-Bott description of the endomorphism algebra

CF*(Ln, Ln) in the relative Fukaya category, F(M, D), to first order. Structure coeffi-

cients in this description are given by counts of 'holomorphic flipping pearly trees' rather

than holomorphic disks. A holomorphic flipping pearly tree is a Morse-Bott version of

a holomorphic disk, made out of holomorphic disks and Morse flowlines. We introduce

them because it is often possible to explicitly identify moduli spaces of flipping pearly

trees, and therefore to make explicit computations of the structure coefficients in the

Fukaya category.

The construction is based on [1] (note that the original idea comes from [27]). The

extra content here is that, whereas [1] describes the endomorphism algebra in the affine

Fukaya category only, we will describe the endomorphism algebra in the first-order rel-

ative Fukaya category.
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There are some transversality issues in the definition of moduli spaces of flipping

pearly trees, involving the possibility of unstable disk and sphere bubbles. In the mod-

uli spaces of holomorphic disks that we used to define the relative Fukaya category, we

avoided this problem by introducing extra internal marked points where they intersected

the divisors D. This approach is no longer possible for flipping pearly trees: they can

intersect the divisors on their boundary. For this reason, we can not guarantee transver-

sality and therefore can not give a complete Morse-Bott description of CF*(L", L") in

the relative Fukaya category.

However, for moduli spaces with very few intersections with the divisors (in partic-

ular, those which intersect only a single divisor), we can rule out any unstable disk or

sphere bubbles in an ad hoc way. Thus, we are able to give a Morse-Bott description of

CF*(Ln, Ln) to first order, and in particular to identify the first-order deformation class

in F(M, D). This allows us, via Theorem 7, to determine the first-order deformation

class in F(M, D, a). The first-order deformation class is all we need to determine that

the algebra is of type A, so the failure of transversality in our Morse-Bott model at

higher order does not concern us (to clarify: CF* (L n, Ln) is perfectly well-defined at all

orders, but our Morse-Bott model for it is well-defined only to first order).

After describing the construction of the Lagrangian Ln in Section 2.6.1, the struc-

ture of this section follows that of Section 2.4: first we introduce the moduli space of

pearly trees (possible domains for a flipping pearly tree), then we describe our choice

of perturbation data, then we describe the moduli space of flipping pearly trees (pseu-

doholomorphic maps into M), explain why transversality holds, then describe Gromov

compactness.
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2.6.1 The Lagrangian immersion L' : S- 2 -+ M \ D

In [1], we introduced a one-parameter family of Lagrangian immersions

L" : Sn-2 -+ M \ D,

for c > 0 sufficiently small (actually we called these L'-2; apologies for the change in

notation, but it makes many formulae cleaner). We briefly recall the construction of L".

We consider the Lagrangian immersion L' : Sn- 2 -+ M which is the double cover of

the real locus RIP- 2 of M. If we think of

S"- 2 :

j=1

n

j=1

X 2 } CR nR2
x 1c "

then the immersion is given by

(x1,I..., Ixn) - [X1: .. Xn].

We construct the immersion L' by perturbing the immersion L'.

Namely, by the Weinstein Lagrangian neighbourhood theorem, L' can be extended

to an immersion of the radius-rj cotangent disk bundle

D*Sn-2 -+ M,

which is Jo-holomorphic along the zero section, and such that complex conjugation acts

by -1 on the covector.

We construct a function f : Sn2 - R by setting

f (X1,...,Xn)= g (X ),
j=1
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where g : R -+ R has the properties

1. g'(x) > 0;

2. g(-x) = -g(x);

3. g(x) = x for lxi < 6;

4. g'(x) is a strictly decreasing function of |xl for lxi > 6;

5. g'(x) < 6 for |x| > 26,

for some small 6 > 0.

We then define Ln : Sn- 2 -+ M to be the image of the graph of the exact one-form

edf in D*Sn-2, under the immersion into M, so that L' = L'. The fact that Vf is

transverse to the hypersurfaces {xj = 0} implies that the image L" avoids the divisors

{zj = 0} for e > 0, so we obtain a Lagrangian immersion Ln : Sn- 2 -+ M \ D. It has

self-intersections at the critical points of f (where it intersects the other branch of the

double cover). We observe that, for n > 4, L' automatically lifts to 9(M \ D), because

7ri(Sn-2) = 0. We choose such a lift, and hence define an anchored brane structure on

the Lagrangian L".

The flowlines of Vf are illustrated in Figure 2.6.1.1, in the case n = 4. The hyper-

surfaces {x = 0} split S - 2 into 2' - 2 regions, indexed by the proper non-empty sets

K C [n]. Namely, K corresponds to the region where coordinates xz are negative for

j E K and positive for xz V K. Each region contains a unique critical point PK Of f.

The Floer endomorphism algebra CF*(L', L") can be defined, despite L' being im-

mersed (see [1, Section 3.1]), and is generated by the self-intersection points of L" (which

are the points PK indexed by proper non-empty sets K C [n]), together with the Morse

cohomology of Sn (which we choose to have generators po and p[n], corresponding to the
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D2

Figure 2.6.1.1: The case n = 4. The dashed circles represent the hypersurfaces D' =

Dj n RP2 as labeled. Each region is labeled with the list of coordinates that are negative

in that region (e.g., the label '124' means that x1 < O,X 2 < O,X 3 > O,X4 < 0 in that

region). The arrows represent the index-i Morse flow lines of Vf. The dots represent

critical points of f. The picture really lives on a sphere, and the three points labeled '4'

should be identified (at infinity).
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identity and top class respectively). Thus, CF*(L', L') has generators PK indexed by

subsets K C [n].

It follows from [1, Proposition 3.3] and [1, Proposition 3.7] that there is an isomor-

phism

CF*(Ln, L") _ A

as G-graded vector spaces, where A a An is the G-graded exterior algebra of Definition

2.2.2.12.

We now observe that we can define the endomorphism algebra CF*(L", Ln) in F(M, D)/m 2 .

Most of the rest of this section is concerned with computing CF*(L, Ln) in F(M, D)/m2,

using 'flipping pearly trees'.

Remark 2.6.1.1. Note that, in [1, Section 3.1], well-definedness of CF*(L', Ln) in the

affine Fukaya category was proved by passing to the cover Mn \ D of M \ D, to bypass

proving Gromov compactness for immersed Lagrangians. One may worry that this will

no longer be valid when we consider disks passing through the divisors D, about which

the cover Mn -+ M has some branching. However, as we saw in the proof of Proposition

2.5.2.2, for the first-order relative Fukaya category it is possible to choose perturbation

data that lift to the branched cover; and therefore we can apply the same trick to

rigorously define CF*(Ln, L") in F(M, D)/m 2.

The main result we will prove is:

Proposition 2.6.1.2. There exists a G-graded Ao category F' over R/m 2 , such that;

e F' has two objects: L and L';

" L and L' are quasi-isomorphic in the zeroth-order category F'/m;

" The endomorphism algebra of L in F' coincides with the endomorphism algebra of

L in F(M,D)/m2
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Furthermore, the endomorphism algebra of L' in F' satisfies:

CF , (L L' L') 'k' ( A, p-* ),

where:

e A is the G-graded vector space of Definition 2.2.2.12;

e (A, p g) coincides with the exterior algebra multiplication on A;

" We have
n

<(p-*) = u 1 ... un +Z rju E HHG2(A, A Rm 2 )
j=1

where <b is the HKR map (see Definition 2.2.5.1).

Remark 2.6.1.3. The main result of [1] was the zeroth-order part of Proposition 2.6.1.2.

It remains to prove that flipping pearly trees can be made to work to first order, and

that the first-order deformation classes are as claimed.

2.6.2 Flipping Pearly trees

For the purposes of this section, L will denote a tuple of objects of F' (i.e., it consists

only of two types of entries: L (representing the Lagrangian immersion L" : Sn-2 M

for some e > 0) or L' (representing the Lagrangian immersion L' : Sn-2 -* M).

Definition 2.6.2.1. If T is a semi-stable directed planar tree with labels L, we introduce

the following notation:

" V(T) is the set of vertices of T;

* E(T) is the set of edges of T;

" E'(T) C E(T) is the subset of edges with both sides labeled L';
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* F'(T) is the set of flags (v, e) of T such that e E E'(T);

" C(T) is the set of 'segments' between consecutive edges around a vertex (these are

indexed by pairs of consecutive flags around a vertex);

" If C E C(T), then LC E L is the label associated to C.

Definition 2.6.2.2. Let L be a tuple. We denote by Z3 (L) the moduli space of flipping

pearly trees, where a flipping pearly tree r E R 3 (L) consists of the following data:

" A semi-stable directed planar tree T, with labels L, such that all internal edges

have both sides labeled L' (i.e., all internal edges are contained in E'(T,));

" A designation of each edge e E E'(T,) as either flipping or non-flipping;

" For each stable vertex v E V(T,), a point rv E R(Lv, #);

" For each internal edge e, a length parameter le E [0, 0C).

See Figure 2.6.2.1 for a picture of a flipping pearly tree. We also allow one special case:

if L = (L', L'), then we permit T, to have no vertices, just a single edge with both sides

labeled L'.

Now, given a flipping pearly tree r E R 3 (L), we define an associated topological

space Sr. There are a few special cases first:

Definition 2.6.2.3. If L (L', L'), and Tr is the tree with a single edge, then we define

Sr := R. If |LI = 2 but L (L', L'), then Sr := R x [0, 1].

Now we define Sr in the remaining cases:

Definition 2.6.2.4. Given a flipping pearly tree r E R 3 (L), we define a topological

space S, as follows:
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/

L'

Figure 2.6.2.1: A flipping pearly tree S. Observe that all edges have label L' on either

side.
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" For each semi-stable vertex v E V(T,) with both sides labeled L', we define S, to

be a disk with two boundary marked points, corresponding to the edges incident

to v.

" For each stable vertex v E V(T,), we define S, to be the boundary-marked disk

with modulus rv, with all marked points punctured except for those corresponding

to edges in E'(T,) (they remain as marked points). These are the 'pearls'.

" We define

SP Sv.
v6V (Tr)

" For each internal edge e, we define Se := [0, le]. For each external edge e in E'(T,),

we define Se := R+, with the + or - depending on the orientation of the edge.

" We define

S : Se.

eEE(r)

" For each flag f = (v, e) E F'(T,), there is a corresponding marked boundary point

m(f) E Sv and boundary point b(f) C Se.

" We define

S, := (SP u S*)/~

where

m(f) - b(f) for all f E F'(T,).

Definition 2.6.2.5. Given r E Z3 (L), we also define a 'boundary' (aS), and a contin-

uous map

(aS), 4S,

as follows:
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" For each segment C E C(Tr) adjacent to vertex v E V(Tr), we define (OS)c to be

the corresponding component of the boundary of Sv. Thus, (BS)c is an interval,

and its two ends correspond to consecutive marked points on the disk with modulus

rv. If the marked point is punctured in S, (i.e., if its sides are not both labeled

L'), then that end of the interval (OS)c is open, and if the marked point remains

in Sv (i.e., if its sides are both labeled L'), then that end of the interval (BS)c is

closed.

" We define

(BS)P : J (oS)c, with the obvious map

CEC(Tr)

(aS)p -+ SP.

" For each edge e, we define (BS)e Se x {0, 1} (two copies of Se).

" We define

(BS)* := (aS) , with the obvious map

eEE(Tr)

-+ S*.

" For each flag f = (v, e) E F'(Tr), there are points rinj(f) E (9S)v for j 0, 1, from

the boundary components to the right and left of m(f) respectively, and points

b(f) = (b(f),j) E (OS)e, for j = 0, 1.

" We define

(BS), := ((BS)P L (1S)")/ ~,

where

7 zy- (f) b (f) for all f E F'(r), and j = 0, 1

(see Figure 2.6.2.2).
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L

Figure 2.6.2.2: Defining the boundary aS -+ S of a flipping pearly tree S, and attaching
a strip (shaded in grey) along it.

* It is clear that there is a continuous map

(aS), -4 Sr.

Definition 2.6.2.6. An automorphism of a flipping pearly tree is a map S, + S,

such that each pearl gets sent to itself by a biholomorphism which preserves the marked

points, and each edge gets sent to itself by a translation preserving marked points (in

particular, edges are fixed by any automorphism, unless they are infinite).

In particular, the possible non-trivial automorphisms of a flipping pearly tree are:

* If L = (L', L') and S, = R, then automorphisms are translations of R;
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" If |LI = 2 but L $ (L', L'), then S, = R x [0, 1] and automorphisms are translations

in the R-direction;

" If v is a semi-stable vertex of T(r), then S is a disk with two marked boundary

points, and there is an R family of automorphisms (translations) of Sv preserving

the marked boundary points.

Definition 2.6.2.7. From our universal choice of strip-like ends for the moduli spaces

Z(L, #), we can define a subset

Sthin c SP,

called the thin region, which consists of the images of strip-like ends under gluing maps

(see [11, Remark 9.1]). To clarify: the thin region includes a neighbourhood of each

boundary marked point of a pearl, and also all of any semi-stable pearl Sv (see Figure

2.6.2.3). We define the corresponding thick region

Stpick \ Shin'

Definition 2.6.2.8. We define the region

Sthin C S

to be the set of points on edges which are distance > 1 from the boundary of the edge,

and

Stehick := Se \ Sehin

(see Figure 2.6.2.3).

As in [1, Section 4.1], we can define a topology on the moduli space 7Z3 (L). The

important point is that thin regions with opposite sides labelled L' can stretch until

they 'break', then become an internal edge (see Figure 2.6.2.4). The difference from [1]

is that we now allow semi-stable vertices, and this means that R.3 (L) no longer has the
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L

L'

L'L

Figure 2.6.2.3: The thick and thin regions of the same flipping pearly tree S illustrated
in Figure 2.6.2.2. The thick regions are shown in light grey, and the thin regions in dark
grey. Note that the unstable disk (with two marked points) is entirely thin, and also
that it is possible for an internal edge to be entirely thick (when it has length < 2).
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Figure 2.6.2.4: A thin region with both sides labelled L' (upper left) can stretch until it
becomes a thin region (upper right), then break, becoming a thick internal edge (lower
right), which then stretches until it has a thin region in its interior (lower left).

structure of a manifold with boundary. All we can say is that it is stratified by manifolds

- however we will see later that the space of holomorphic maps of pearly trees into our

manifold is a manifold with boundary, which is what we need to define our algebraic

structures.

The strata of 7Z3 (L) are indexed by semi-stable directed planar trees T with labels

L. Note there is no requirement that internal edges have opposite sides labeled L' here.

The tree T corresponds to the codimension-(IV(T)l - 1) stratum

3 (L) fJ R3(Lv).
v6V(T)

Points in this stratum correspond to flipping pearly trees, where the pearls are allowed

to be nodal and the edges are allowed to have infinite length.

Remark 2.6.2.9. The moduli space 7 3 (L) is not compact, because our flipping pearly

trees can have arbitrarily many semi-stable vertices. In practice (see the proof of Propo-

sition 2.6.4.1), we have an a priori upper bound N on the number of semi-stable vertices
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that we need consider. We consider the subspace

R 3(L, N) C R 3 (L),

consisting of stable flipping pearly trees with < N semi-stable vertices. This subspace

is compact.

2.6.3 Floer and perturbation data

Definition 2.6.3.1. We define

7 := C'(S", R)

(think of this as the space of Morse functions on S'), and

RP :{H E C (M, R) : H vanishes, with its first derivatives, along each divisor Dj}

(think of this as the space of Hamiltonians on M), and J, the space of smooth almost-

complex structures on M which are compatible with w, and make the divisors Dj almost-

complex submanifolds.

Definition 2.6.3.2. Let L = (Lo, L1 ) be a 2-element tuple. For each such tuple, we

choose a Floer datum (HL, JL) consisting of

HL E C ([0, 1], 7P) and JL E C ([0, 1], J)

such that:

e HL = 0 unless L = (L, L);

* the time-i Hamiltonian flow of H(L,L) makes L' transverse to itself;
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* J(L',L') Jo is constant, equal to the standard integrable complex structure.

Now, if (Lo, L 1 ) # (L', L'), then we define a generator of CF*,(Lo, L 1 ) to be a path

p : [0, 1] -+ M which is a flowline of the Hamiltonian vector field of HL, such that

p(O) E Lo and p(1) E Li. One defines CF ,(LO, L 1 ) to be the R/m 2 -module generated

by its generators. It is G-graded.

Remark 2.6.3.3. The G-grading is defined exactly as in the affine Fukaya category

(Section 2.3.3). One might worry that L' intersects the divisors Dj, hence doesn't lie

in M \ D. However, we simply push L' off itself using Vf (as in the definition of L"),

and use the pushed-off version of L' for all grading (and index) computations - see [1,

Proof of Proposition 5.3]. The point is that the grading of the relative Fukaya category

arises from index computations of the relevant Fredholm operators, which are computed

purely topologically.

Definition 2.6.3.4. If (Lo, L 1 ) = (L', L'), then we define the Floer datum to contain

additional information, namely:

" the Morse function f : S" -- R;

" another Morse function h : S" -+ R, with exactly two critical points.

One defines a generator of CF., (L', L') to be a critical point of one of the Morse

functions f or h, and CF , (L', L') to be the R/m 2 -module generated by these critical

points. We identify the critical points of f as PK for K C [n] proper and non-empty, and

the critical points of h as p, and p[,. Then CF;,(L', L') is G-graded, where PK has the

same grading as the corresponding generator 0 K of A, where A is the G-graded algebra

of Definition 2.2.2.12.
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Lemma 2.6.3.5. The G-graded morphism spaces in F' are as follows:

CF*, (L, L) CF , (L', L')

SA 0 R/m 2

S R/m 2 *pK,
KC[n]

and

CF , (L, L') CF;, (L',L)

l A®Rm/M2 eCM*(f) Rm 2

@ R/m2pK() R -2 qK,

KC[n] KC[n],K#$O,[n]

where CM*(f) is the Morse complex of the function f. The G-grading of generators

labelled by pK E A is as in Definition 2.2.2.12. The G-grading of generators labelled by

qK is (|K| - 1,0) (where |K| - 1 is the Morse index of qK).

Proof. See [1, Proof of Proposition 5.5]. LI

Definition 2.6.3.6. In each morphism space, we call the generators labelled PK, where

K c [n] is not equal to 4 or [n], the flipping generators, and the others (labelled qK,

p or p[n]) the non-flipping generators. The terminology comes from the definition

of L' as a perturbation of the double cover S' -> RP" -+ CIP". Flipping generators

correspond to paths p from one sheet of the cover to the opposite sheet; non-flipping

generators correspond to paths from one sheet to the same sheet.

Definition 2.6.3.7. A perturbation datum for a fixed flipping pearly tree r E 7Z3 (L)

consists of the data (Ke, KP, J), where:

" Ke E C (Se, We);

" KP E Q1(SP, WP);
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* J E C (SP, J),

such that, for each boundary component C of a pearl in S with Lagrangian label Lc,

Kp( )|JLC =0 for all E TC c T(&S).

Definition 2.6.3.8. We say that a perturbation datum is compatible with the Floer

data if, on each component of the thin regions of SP and Se, the perturbation datum

agrees with the corresponding (translation-invariant) Floer datum. Explicitly, this means

that:

" On each strip-like end of a pearl, (KP, J) is given by the translation-invariant

extension of the Floer datum (HL, JL);

" In a neighbourhood of each boundary marked point of a pearl, and also on all of

each semi-stable pearl with both sides labeled L', we have (KP, J) = (0, Jo);

* On each thin region of a flipping edge, Ke = f

" On each thin region of a non-flipping edge, K' = h.

Remark 2.6.3.9. Note that, if our perturbation datum is compatible with the Floer

data, then it is preserved by any automorphism of the flipping pearly tree.

Definition 2.6.3.10. We define the notion of a compatible universal choice of

perturbation data for the moduli spaces R(L), by analogy with [11, Section 9i].

Definition 2.6.3.11. Let L be a tuple of objects of P, and p an associated set of

generators. A holomorphic flipping pearly tree u with ends on p consists of the

following data:

* A flipping pearly tree r E Z3 (L);
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* For each vertex v E V(T(r)), a smooth map uv : Sv -+ M;

" For each edge e E E(r) with both sides labeled L', a smooth map ue : Se -+ S;

" A continuous map ii : OS, -+ S.

We impose the following requirements on these maps:

0

u is asymptotic to the generators p along the strip-like ends and external edges;

For each semi-stable vertex v, the map av satisfies the perturbed holomorphic curve

equation

where, for ( E TS, Y( ) is the

* The maps ue satisfy the Morse

(Duv - Y)04 = 0,

Hamiltonian vector field of the function KP(();

flow equation

Due - VKe = 0;

" For each boundary component C of a pearl So,

Lc o u|c = uvIc;

* For each edge e with both sides labeled L',

i|sex{o} =U e,

and {l tue if e is non-flipping

a o ue if e is flipping

where we recall that a : Sn -+ Sn is the antipodal map.
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* If v E V(T(r)) is semi-stable, then the map uv is non-constant.

Definition 2.6.3.12. Two holomorphic flipping pearly trees are equivalent if they

are related by an automorphism of the domain (recall from Remark 2.6.3.9 that any

automorphism of the domain preserves the perturbation datum and hence acts on the

space of holomorphic flipping pearly trees).

Definition 2.6.3.13. Given a flipping holomorphic pearly tree u as defined above, one

obtains a well-defined homology class [u] E H2 (M, Ln) as follows (see Figure 2.6.2.2):

" Start with the continuous map u : S -+ CP" associated with the flipping holomor-

phic pearly tree.

" Glue a thin strip along the boundary BS of the flipping pearly tree;

" If the boundary component or edge has label L, then it already gets mapped to

Ln, so we map the strip into CP" by making it constant along its width.

" If the boundary component or edge has label L', then by construction, there is a

continuous lift ft of the boundary of the strip to Sn.

" Thus, we can map the strip into CP" by letting it interpolate between the zero

section and the graph of edf in the Weinstein neighbourhood D*S' used in the

construction of L'. Thus, boundary components of the strip with label L' now lie

on L".

We now define the intersection number u - Dj to be the topological intersection number

of this class [u] E H 2 (CIP, Ln) with Dj E H2n-2(CP"), and

u-D := Sun] -Dj) yj Y.

Definition 2.6.3.14. Let u be a holomorphic flipping pearly tree. For each v E V(T(r)),

the map uv defines a homology class in H 2(CP", Rpn) Z Z, because its boundary gets
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mapped to a Weinstein neighbourhood of RP". We denote this homology class by d, E

Z>o (it is non-negative because holomorphic disks have non-negative area). We denote

the sum of all homology classes d, by d, E Z>o.

Now we explain how to compute these intersection numbers in a simple way. It helps

if the holomorphic flipping pearly trees are in general position, in the following sense:

Definition 2.6.3.15. We say that a holomorphic flipping pearly tree u is in general

position if:

" Each boundary component C with label L' is transverse to the real hypersurfaces

DR C Sn;

" No flipping marked points lie on the hypersurfaces D>.

Lemma 2.6.3.16. Given a holomorphic flipping pearly tree u, we can perturb the defin-

ing equations of the divisors D so that

" The intersection numbers u - Dj do not change;

e u is in general position with respect to the perturbed divisors.

Proof. See the proof of [1, Proposition 5.1].

If u is in general position, then we can split the surface defining our homology class

[u] into regions [u,] corresponding to the pearls v, and [ue] corresponding to the edges e

of the pearly tree, in such a way that the boundary of each such region does not intersect

the divisors D. We cut the pearls off from the strips in the obvious way - since they are

joined at boundary marked points, which don't lie on the hypersurfaces DJ, the cuts we

introduce do not intersect the divisors D.
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Thus, each region defines a class in H2(M, M \ D), and [u] -D is equal to the sum

of [u,] -D and [ue] -D over all pearls v and edges e of the pearly tree.

Lemma 2.6.3.17. Let u be a holomorphic flipping pearly tree in general position. Then

we have:

e For each non-flipping edge e, [ue] -Dj = 0;

" For each flipping edge e, [ue] -Dj is equal to the topological intersection number of

the edge ue : [0, le] -+ Sn with the hypersurface D' (this is non-negative because

the gradient of the function f crosses all hypersurfaces Di positively);

" For each pearl v, [uv] -Dj is equal to the sum of the number of internal intersections

of uv with Dj (these are counted positively by positivity of intersections), together

with +1 for each time a boundary lift £t|c with label L' crosses Di in the negative

direction (and 0 if the lift crosses in the positive direction).

Proof. See [1, Proposition 5.1]. I

Corollary 2.6.3.18. If u is a flipping holomorphic pearly tree, then the intersection

numbers u -Dj are non-negative.

Definition 2.6.3.19. Let L be a tuple, p an associated set of generators, and d E Y>o.

We define M 3 (p, d) to be the moduli space of holomorphic flipping pearly trees u with

labels L and ends on p, and such that

u -D = d,

modulo equivalence.

Proposition 2.6.3.20. Let L be a tuple, p an associated set of generators. Suppose

that (pK1, . - PKk) is the tuple obtained from p by keeping only the flipping generators
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(see Definition 2.6.3.6). Then we have

k

[u] . D = qy[n] + E yKS
j=1

for some q E Z, and the homology class of [u] E H 2 (Cp" , Rp") ~ Z is given by the

formula

[u] = 2q + k.

Proof. Follows from [1, Lemma 5.8], and a slight modification of [1, Proposition 5.10]. El

Definition 2.6.3.21. Let u be a holomorphic flipping pearly tree in general position,

all of whose boundary components are labelled L'. For each flag f corresponding to a

flipping edge of the tree, we have corresponding marked points in the boundary (OS),

namely

f~no(f) ~ bo(f) and rian(f) ~ 61(f).

The boundary map ft sends these points to antipodal regions Sk, SZ respectively, for

some K C [n] (recall that Sk is defined to be the region where xz < 0 for j E K and

x > 0 for j ( K). We attach the labels K and k to the marked points rno(f) and

m~n1(f), respectively. Figure 2.6.3.1 shows a possible labeling of a flipping holomorphic

pearly tree.

Lemma 2.6.3.22. Let u be a holomorphic flipping pearly tree with all sides labelled L',

in general position, and equipped with labels as above. We decompose [u] into regions

[ue], corresponding to edges, and [u,], corresponding to pearls, as before. Then we have:

e For each flipping edge e, the label Ko at the start of the edge contains the label K1

at the end of the edge, and

[ue] - D = yK1 - yKo
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4 4
2 123 12346

2 133 2
2 C4567 0567 6

1 1 7 7

Figure 2.6.3.1: An example of a legal labeling of a flipping holomorphic pearly tree,
which might contribute to the coefficient of p4, in the A.. product p7 (P{1}, ... , p{7}). We

have illustrated a simple case, in which all external flowlines are constant because the

points p{j} are maxima of the Morse function f. The external label '1' means the set

{1}, while '' means the complement {2, 3, 4, 5, 6, 7}. The big label '1' in the middle of

a pearl means that the pearl has degree 1.

e For each pearl v such that:

- The homology class is dv E H2 (CP" , Rp") , Z;

- The points immediately after the flipping marked points of u, have labels

K 1 , ... , K if we traverse the boundary in positive direction (in other words,

the points m'a1(f ) for all outgoing flags, and io (f ) for the incoming flag);

then we have:

- For some q, E Z,
k,

[u] . D = qvyfn +E yK-
j=1

- The homology class d, satisfies

dv = 2qv + kv.

We recall that non-flipping edges ue do not contribute to the intersection numbers.

Proof. For edges, the statement follows from the fact that Vf only crosses divisors

positively, and [ue] picks up an intersection point with Dj each time ue crosses Dj
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positively (compare [1, Figure 9(b)]). For pearls, the statement follows from Proposition

2.6.3.20.

2.6.4 Transversality and compactness

Proposition 2.6.4.1. For generic choice of Floer and perturbation data, the components

of M 3 (p, d) with |dl < 1 are regular, and have the structure of topological manifolds of

the expected dimension.

Proof. The moduli spaces M 3 (p, d) are constructed by gluing together pieces corre-

sponding to the different possible underlying trees (see [1, Section 4.4]). If we are to

obtain a topological manifold, we need each piece to be cut out transversely, and also

for the 'seams' along which the pieces are glued (corresponding to holomorphic flipping

pearly trees with nodal pearls, where a Morse flowline is about to form as in Figure

2.6.2.4) to be regular.

This amounts to checking the following:

" The Cauchy-Riemann operator (DuP - Y) 0'1 on each stable pearl is surjective;

e For the semi-stable pearls, we require that the moduli space of Jo-holomorphic

disks with two boundary marked points, modulo translation, is regular;

" The Morse flow operator (Due - VKe) on each edge is surjective;

" For moduli spaces consisting of a single Morse edge, we require that the moduli

space of Morse flowlines of f or h is regular;

" The restriction that marked points on pearls coincide with ends of edges is cut out

transversely;
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* The restriction that marked points on pearls coincide at a node (with both sides

labelled L') is cut out transversely (this is the requirement that the 'seams' are

regular).

The Cauchy-Riemann operators on pearls corresponding to stable vertices are generically

surjective, by perturbing KP (as in [11, Section 9k]). The moduli spaces of semi-stable

pearls with sides labelled anything other than (L', L') are regular for generic choice of

Floer data, by the arguments of [36, 37]. The semi-stable pearls with opposite sides

labelled L' are different - we have required that KP = 0 and J = Jo on these pearls,

which is not a generic condition. However, the moduli space of such pearls is regular

by the 'automatic regularity' result of [40, Proposition 7.4.3] (the automatic regularity

result deals with holomorphic spheres in CP = M, and our moduli space of holomorphic

disks is the real locus of this moduli space, hence also regular).

The Morse flow operators are surjective for generic choice of Floer and perturbation

data.

The intersections of marked points on pearls with the endpoints of edges are generi-

cally transverse, by perturbing K' near the end of the edge.

Now we deal with intersections of marked points at a node connecting two pearls,

which are necessary to make the 'seams' along which we glue different parts of our moduli

space. If one of the pearls involved is stable, then the intersection is transverse, because

we can perturb KP on the stable pearl (see [1, Section 4.6]) to move the marked point

in any direction we please. A problem arises if both pearls are semi-stable (with both

sides labelled L'). However, this situation does not arise in the moduli spaces M 3 (p, d)

with Idl < 1: any semi-stable pearl must contribute at least 1 to one of the intersection

numbers u D .

This follows from Lemma 2.6.3.22: if [u] - D = 0 for a pearl with two boundary
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marked points with labels KO and K 1 , then

qy[n] + YKo + YK 1 = 0.

If Ko =5 or [n), then Lemma 2.6.3.22 shows that d, = 0 so the unstable pearl u, has zero

energy and must be constant, which is not allowed. If KO # or [n], then necessarily

q = -1, and Lemma 2.6.3.22 shows that

dv = 2qv + kv = 0,

so again uv is constant. E

Proposition 2.6.4.2. For generic choice of Floer and perturbation data, the components

of M 3 (p, d) of virtual dimension < 1, and with |dl < 1, have the structure of compact

topological manifolds with boundary, of the expected dimension. The boundary strata of

the one-dimensional moduli spaces correspond to nodal holomorphic flipping pearly trees

(see [1, Definition 4.33, 4.34]).

Proof. This essentially follows from Gromov compactness, as outlined in [1, Proposition

4.6]. However, we must do a bit more work in this case: we must check that the number

of semi-stable pearls is bounded, so that we are only gluing together finitely many pieces

to make our moduli space (see Remark 2.6.2.9). This is true because the homology class

d, of any u E M 3 (p, d) is fixed, by Proposition 2.6.3.20, and any semi-stable pearl v

contributes at least 1 to du, because it is required to be non-constant.

Furthermore, we must rule out the possibility of sphere and disk bubbling in our

moduli spaces. Sphere bubbling is easy to rule out: any non-constant sphere bubble

must intersect each divisor Dj at least once, hence contribute at least n to d. So sphere

bubbling does not happen in moduli spaces with |dl < 1.

Disk bubbling needs a little more work. Suppose a holomorphic disk bubbles off some
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pearl in a holomorphic flipping pearly tree. Let us denote by ui the disk, and by u2 the

rest of the holomorphic flipping pearly tree. We will assume that ui has boundary on L'

(the case with boundary on L' is not very different). We can regard this configuration

as a holomorphic flipping pearly tree with a vertex v of valence 1, connected by a Morse

edge of length 0 to the rest of the holomorphic flipping pearly tree. We will show that, if

ui is non-constant, then its virtual dimension (by which we mean the virtual dimension

of the moduli space in which it lies) is > n + 1. This is the same as showing that its

Maslov index is at least 3. This will show that disk bubbling generically does not happen,

because the rest of the holomorphic flipping pearly tree has virtual dimension < 0.

Firstly, by Lemma 2.6.3.22 (which works exactly the same if there are pearls of valence

1), if the edge is non-flipping then the disk has zero energy, and hence is constant.

So let us assume that the edge is flipping, and the label attached to it is K C [n] (as

in Definition 2.6.3.21). By Lemma 2.6.3.22, we have

[u1 ] . D = qY[n] + YK-

Because Idl 5 1, it must be that [n1] - D = yj, q = 0, and K = {j} for some j E [n]. It

follows, by Lemma 2.6.3.22, that the homology class of u1 is di = 1. Thus, the virtual

dimension of u1 is (by the real analogue of Lemma 2.4.4.3)

v.d.(ui) = n + di(n + 1) - 3 + 1 = 2n - 1 > n + 1

(because n > 2).

The connect sum formula now says that the virtual dimension of u is

v.d.(u) = v.d.(ui) + v.d.(u 2 ) + 1 - n < 1
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(since we are considering moduli spaces of virtual dimension < 1), and hence

v.d.(u 2 ) < n - v.d.(ui) < -1.

We saw in Proposition 2.6.4.1 that moduli spaces of holomorphic flipping pearly trees

are generically regular, hence a moduli space of virtual dimension < 0 is generically

empty. So we may conclude that no disk bubbling occurs for generic choices of Floer

and perturbation data.

2.6.5 Morse-Bott model for the first-order Fukaya category

This section contains the proof of Proposition 2.6.1.2.

We define a G-graded A, category P over R/m 2 , with two objects, L and L'.

The G-graded morphism spaces CF* (LO, L 1 ) are the R/m 2-module freely generated by

their generators, and are described explicitly in Lemma 2.6.3.5. Given a tuple L with

associated generators p = (po,pi,. . ,p), the coefficient of rdpo in the A.. product

p" (ps, ... , pi) is given by the signed count of holomorphic flipping pearly trees in the

zero-dimensional component of the moduli space M 3 (p, d) (by analogy with the usual

definition of the Fukaya category). By the standard argument, the composition maps p8

satisfy the A, relations.

Furthermore, they are G-graded, by the same argument as for the relative Fukaya

category (keeping in mind Remark 2.6.3.3). To see why, recall that the grading de-

pended on the index theory of a Cauchy-Riemann operator coming from a bundle pair

(D 2, u*TM, F), where u : D2 -+ M \ D was some smooth map, and F a lift of au to

Q(M \ D). Given a holomorphic flipping pearly tree u, we can construct (by a modi-

fication of the construction of the smooth surface representing the homology class [u])

a smooth boundary-punctured disk u- mapping to M \ D, with boundary on Ln, such
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that the index of the associated Cauchy-Riemann operator is equal to the index of the

Fredholm operator defining the moduli space of holomorphic flipping pearly trees near

u. Note that 6L will not be holomorphic itself: we are simply using it to compute the

index topologically.

Lemma 2.6.5.1. For small enough e > 0, the objects L' and L' are quasi-isomorphic

in P/m.

Proof. See [1, Proposition 5.5]. 3

Lemma 2.6.5.2. For appropriate choices of perturbation data, there is a strict isomor-

phism

CFj{M,D)/m2(L L","L n CF ,(L L, L).

Proof. Suppose that L is a tuple, all of whose entries are L', I L > 3, and e is a labelling

such that d(C) = yj for some j. Then there is a forgetful map R(L, ) -+ R 3 (L),

obtained by simply forgetting the internal marked point. Suppose that we choose Floer

and perturbation data on the moduli space R(L, £) by pulling back the corresponding

data from R 3 (L).

With these assumptions, if p is a set of generators associated with the tuple L, then

there is a forgetful map M(p, f) -+ M 3 (p, ej). This map is clearly bijective: given a

holomorphic disk with topological intersection number 1 with the divisor Dj, there exists

a unique internal point which gets mapped to Dj (uniqueness follows from positivity of

intersections).

If ILI = 2, we choose the perturbation data on the moduli space R(L, E) to be

translation-invariant, like for R 3 (L, f). The definitions of the two moduli spaces now are

different: M 3 (p, ej) is a quotient of a moduli space of holomorphic strips by translation,

whereas M (p, f) is a moduli space of holomorphic strips with an internal marked point

getting mapped to Dj. However, this map is still bijective: given a strip with topological
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intersection number 1 with divisor Dj, there is a unique internal point which gets mapped

to Dj. Introducing this as a marked point defines a class in M (p, f), and the result is

independent of translation of the domain in the original strip.

Observe that, because the moduli spaces M 3 (p, ej) are regular, the moduli spaces

M (p, f) are regular, even though we have made a non-generic choice of perturbation

data. So it is legitimate to compute coefficients in the relative Fukaya category using

the moduli spaces M (p, f) defined using these Floer and perturbation data. EZ

Now we recall (Lemma 2.6.3.5) that the underlying G-graded vector space of CF*,(L', L')

is A. So CF*,(L', L') has the form (A, p*).

Lemma 2.6.5.3. As a G-graded algebra, we have

(A, pt) (A, A),

where 'A' denotes the usual product on the exterior algebra.

Proof. See [1, Theorem 5.12].

Now recall from Section 2.2.5 that there is a map

: CC (A,A0 R) -+ p* (C[[U]] & A 0 R).

Lemma 2.6.5.4. We have

U(*)=ui...un + ryui + m2

j=1

(up to some signs).
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Proof. See [1, Proposition 5.15] for the proof that

Our aim now is to calculate the first-order terms in b4(p*). By Lemma 2.2.5.11, we know

that the degree-2 part of

HH(A, A® R 1) p* (C[[U]] 0 A 0 R1)

is generated by the elements rjuj. Thus, the first-order part of <4(p*) can be written as

n

Z cjru 3
j=1

for some numbers cj E C.

The number cy is given by the count of holomorphic flipping pearly trees u in the

moduli space M 3((P$, P{j}), ey). Such a holomorphic flipping pearly tree must be a chain

of semi-stable Jo-holomorphic pearls (see Definition 2.6.3.8).

By Proposition 2.6.3.20, the homology class of such u is 1. Because semi-stable pearls

are not allowed to be constant, this means there can only be a single semi-stable pearl.

This pearl is a Jo-holomorphic disk with boundary on RP",

uV : (D,8aD) -4 (CPn , RlP"),

together with two marked boundary points, considered up to translation. The homology

class [un] E H 2 (CP", RPn) is 1. Thus, u, is one half of a Jo-holomorphic sphere of degree

1 in CIP". That is, it is one half of a complex line in CP", and its boundary is a real line

in RP".

The Morse index of the input pfjl is n (see [1, Corollary 2.11]), so the corresponding
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Morse edge must be constant: this means we just have a point constraint that our real

line must pass through the point L'(p{j}). Similarly, the Morse index of p is 0, so the

corresponding Morse edge must be constant: this means we have a point constraint that

our real line must pass through the point L'(po). There is a unique real line through the

points L'(p 3 }) and L'(po), so the pearl must be one half of the corresponding complex

line.

Furthermore, the pearl must admit a lift ft, of the boundary to S", which changes

sheets at plj} but not at pp. Since u, is one half of a complex line, this lift ft, must be

one half of a great circle, from pfj} to its antipode p-, and passing through the point

po. Clearly, there is exactly one such half-great circle. Furthermore, the orientation of

this half-great circle determines uniquely which half of the complex line we must take.

Thus, we have uniquely determined our holomorphic flipping pearly tree u.

It follows from Proposition 2.6.3.20 that [u] - D = yj.

We have shown that the moduli space M((p 3 }, pp), ej) contains a unique element u.

Thus, each coefficient c, must be t1. 0

Remark 2.6.5.5. We could also have calculated [u] -D using Lemma 2.6.3.17, and the

exercise helps us to get a picture of u: the edges ue are constant, hence do not contribute

to [u] - D. The pearl u, does not intersect any divisor Di in its interior (it is half of

a complex line, hence intersects the divisor Di exactly once, and that intersection is on

the real locus RP"). So we get no contributions to [u] - D from interior intersection

points. The boundary lift ii moves along a great circle from p{j} to p-, hence crosses

the divisors Di positively for i f j, and the divisor Dj once negatively. Therefore, we

have [u] - D = yj. See Figure 2-3(b) for the picture in the one-dimensional case.

This completes the proof of Proposition 2.6.1.2.
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Corollary 2.6.5.6. Let us denote'

A:= CF (O)(Ln, L"n),

where F(#) is the category of Proposition 2.5.2.2 and # (Mn, D) -+ (M, D) is the

branched cover of Example 2.3.5.10. Then A satisfies all of the conditions required to be

of type A, in the sense of Definition 2.2.5.2, except it may not be strictly H -equivariant.

Remark 2.6.5.7. If one is willing to accept that CF;(M,D,a) (L, L) can be defined to all

orders, despite Ln being immersed (compare Remark 2.6.1.1), then we could substitute

it for CF(,) (L", L") in the statement of Corollary 2.6.5.6. We prefer to work with T(#)

because it does not require us to assume a general statement of Gromov compactness

for immersed Lagrangians.

Proof. It follows from Proposition 2.6.1.2 and Proposition 2.5.2.2 that there is a quasi-

isomorphism

A/m 2 CF*,Im(L', L'),

because

.F(M, D, a) /m r-" F(M, D)/m.

It follows that the underlying G-graded vector space of A is A, and the product pA is

the exterior product. Furthermore, if A = (A, p*), it follows that

(p)=Ui ... U,, + m

(see Definition 2.2.5.1).

Now let A := A/m. We recall from Lemma 2.2.5.8 that the spectral sequence induced

by the length filtration on CC*(A) has E 2 page

E2*'* - H H*(A),
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and converges to HH*(A). It follows from Proposition 2.6.1.2 that the first-order defor-

mation class of

CFj(M,D)(LIL)

is given by
n

[p1] =E ryuj + (higher-order in length filtration).
j=1

It follows from Theorem 7, and the fact that the spectral sequence induced by the length

filtration respects the multiplication given by the Yoneda product, that the first-order

deformation class of

CF;(M,Da) (L', L')

is given by
n

[pti,a] = rju' + (higher-order in length filtration).
j= 1

It follows that
n

<(p*)ui...un+Z ri u+m2,
j=1

from which the result follows, by Proposition 2.5.2.2. D

We now have to deal with the fact that A may not be strictly H-equivariant. It is

clear that H acts on (M, D), preserving the anchored Lagrangian brane L', because all

of our constructions of (M, D) and L" have been symmetric with respect to permuting

the coordinates. However, it may not be possible to choose our perturbation data H-

equivariantly and still achieve transversality, so we may only have H-equivariance 'up

to homotopy'. We can fix this using the arguments of Appendix B, which says that we

can replace A by a quasi-equivalent algebra which is strictly H-equivariant: essentially,

we just apply the proof of Theorem 6 to this strictly H-equivariant replacement.

Corollary 2.6.5.8. Suppose that ' is a G-graded A,, algebra over R of type A. Then
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there exists $ G Aut(R), and an A, quasi-isomorphism

' - 0 .A.

Proof. First, observe that Corollary 2.2.5.7 does not require strict H-equivariance, so

there is a quasi-isomorphism

A/m 3/m=: A.

Now, by a version of Proposition B.O.2.7 the subcategory of F(#) with object L"

embeds, H-equivariantly, into a strictly H-equivariant A, category, in such a way that

the order-O component of the embedding is a quasi-equivalence. Now recall that A is nec-

essarily minimal (by Lemma 2.2.5.9), and it follows easily from the proof of Proposition

B.O.2.7 that this strictly H-equivariant A, category can be chosen to be minimal too.

Any A, functor between minimal A, categories, whose order-O component is a quasi-

equivalence, is necessarily a quasi-equivalence. Using the fact that quasi-equivalences of

minimal A, categories can be inverted (Lemma 2.2.3.34), we can apply [9, Lemma 4.3]

to prove that A is quasi-equivalent to a strictly H-equivariant A, algebra of type A.

The result now follows from Theorem 6. E

Definition 2.6.5.9. We denote

Ac .F(Mn, D)

the full G"-graded subcategory whose objects are the lifts of L.

Corollary 2.6.5.10. If 3 is any A, algebra of type A, then there exists '[[T]] E Aut(R)

and an A, quasi-isomorphism of G"-graded R-linear A, categories,
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Proof. Consider the branched cover

# : (Mn", D) -+ (M 1", D)

of Example 2.3.5.10. By Proposition 2.5.2.2, there is a fully faithful embedding

p*F(#) -+ F(Mn, D),

and in particular we have a quasi-equivalence

p*A A.

The result now follows from Corollary 2.6.5.8.

2.7 The B-model

The aim of this section is to prove Theorem 5.

2.7.1 Homological perturbation lemma

We will use a version of the homological perturbation lemma which is not quite the usual

one (for which see, for example, [661, [67]), but rather the slightly modified version used

in [20], so we feel it is as well to state it.

Suppose we are given:

" An A,, algebra (B, p*) (over a C-algebra R);

" A map a : B -+ B that is a Maurer-Cartan element for (B, p*), in the sense that
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(pI + 0, p2, ... ) is an A, structure on B;

e A chain complex (C, dc);

e Chain maps

(C, dc) ; (B, p');

* A map

h: B -+ B,

such that

* pi = id;

e h defines a homotopy between ip and the identity, which just means that

ip = id - [piI h];

* the side conditions

h = 0,

hi = 0, and

ph = 0.

are satisfied;

* there exists some integer N such that (0h)N = 0.

Then we construct:

* An A, structure v* on C;
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e An A, morphism * from (B, A*) to (C, v*);

* An A, morphism P* from (C, v*) to (BJ*),

such that I* and P* are mutually inverse A, quasi-isomorphisms. In fact, we can show

that P1 o I = id, and we can construct an A. homotopy H* such that

* o P* = id - [A*, H*].

This result is proved in the case = 0 in [66]. The operations v*, *, P*, H* are

defined by certain counts over stable directed planar trees (we use the opposite orien-

tation convention from Definition 2.4.2.1, so trees have s incoming edges and a single

outgoing edge). We attach the operation pk to each vertex of arity k (arity = number of

incoming edges). If & # 0, then we make exactly the same construction, but sum instead

over semistable directed planar trees, and attach the operation 0 to each vertex of

arity 1. The assumption that (Bh)N = 0 ensures that we need only sum over a finite

number of trees, because a tree with a sufficiently long chain of vertices of arity 1 does

not contribute to the sum.

For example, to define v', we sum over semistable directed planar trees with s in-

coming edges. We attach operations to each vertex and edge of such a tree, as follows

(omitting signs):

" to each vertex of arity 1, attach a;

" to each vertex of arity k > 2, attach pk.

" to each internal edge, attach h;

" to each incoming edge, attach i;

" to each outgoing edge, attach p.

331



Composing the operations as prescribed by the tree determines a map Co' -+ C. Sum-

ming these maps, over all such trees, defines v8 .

The modifications in the definitions of I, P*, H*, and the proofs that v* is an A,

structure, that I* and P* are A, morphisms, and that H* defines an A. homotopy

from I* o P* to id, should all be clear from [66]. The fact that P' o P = id follows easily

from the side conditions.

2.7.2 Matrix factorization computations

Let k be a field of characteristic 0, and R a commutative k-algebra. Consider the

polynomial R-algebra S := R[x 1,..., xJ. Suppose we are given w E S. We consider the

differential Z2-graded category of matrix factorizations MF(S, w). Objects are finitely-

generated free Z 2-graded S-modules K, equipped with a 'differential' 6K : K -+ K of

odd degree such that 6' = w - id. Morphisms are S-module homomorphisms, with the

standard differential and compositions.

By [68, Theorem 3.9], there is an exact equivalence between Ho(MF(S, w)) (where

'Ho' denotes the homotopy category) and Orlov's 'derived category of singularities'

Dg( w 1 (0)). We consider a matrix factorization (B, oB) which corresponds to the

ideal

00 := (x 1 ,. . . x)

under this equivalence. Following the method described in [25, Section 2.3], we take B

to be the free finitely-generated Z2 -graded algebra generated by odd supercommuting

variables 01, . . . , O, (with S in even degree). That is,

B := S[81, . . . , )
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We define the differential on B to be

6 := 60 + 61,

where

60 = x

j=1 3

61 0O,
j=1

where wj E S are elements chosen such that

n

w = E x.
j=1

Observe that

j2 = 0,

= 0,and

[0,6 S1] = w.

It follows that 62 = w - id as required.

Now consider the differential Z2-graded algebra

B := HomMF(S,w)(B, B).

Again following [25, Section 2.3], we take the underlying vector space to be the algebra

of differential operators

B := S 601,... ,On, ,..,3
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acting on B in the obvious way, with the natural multiplication and the differential

d := do + di, where dj := [6j, -). B is freely generated, as an R-module, by generators

XbOJ8K, where b = (bi,..., b,) is a multi-index, J C [n], K c [n]. We will use the

shorthand By for &/865.

Now we use the homological perturbation lemma to construct a minimal A. model

for B.

To put ourselves in the situation of Section 2.7.1, let us consider B with the A,

(in fact, differential graded) structure given by the differential A = do and standard

multiplication p2, and let a := di. Then (B, p*) = B. Furthermore, let

C R[8 1 ,...,8],

dc =0,

i: (C, dc) - (B, do) the obvious inclusion,

p: (B, do) -+ (C, dc) the projection defined by

XxbgJ&K) { K if b 0andJ
0 otherwise,

so that pi id. We define

IT:B B

One can check that

[do, h] (XbOJ8K) (IbI + IJI) (XbOJOK)
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Therefore, if we define

h (XbOJOK~ := 0 if b = 0 and J=#,

I (xbOJ&K) otherwise,

then we have

ip = id - [do, h].

Furthermore, we can check that the side conditions are satisfied:

h 2 = 0 (for the same reason the exterior derivative squares to 0),

hi = 0, and

ph = 0.

Finally, observe that ha decreases the grading |j bO.9KI := |K by 1, so (hO)n+1 = 0.

Thus, we can apply Section 2.7.1 to construct an A,, structure v* on C, which is

quasi-isomorphic to B. If w has degree > 3, then the differential vi = 0 and the product

v2 is the standard (exterior algebra) product on C. Thus, vu 3 defines a Maurer-Cartan

element in the Hochschild cochain complex CC*(C).

Now we recall, from Definition 2.2.5.1, the Hochschild-Kostant-Rosenberg map from

the Hochschild cohain complex to the space of polyvector fields,

<D : CC*(C) -+ S

given by

< as>O ... X
s9>0

where we denote
n

x := xyai.
j=1
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0 M M a 0 a 0 E

Figure 2.7.2.1: The only trees contributing to the homological perturbation lemma com-

putation.

Proposition 2.7.2.1. (see [21, Proposition 7.1]) The image of the Maurer-Cartan ele-

ment v 3 under <b is exactly the superpotential w.

Proof. We recall the construction of the maps v k from Section 2.7.1, by summing over

trees. The only trees that give a non-zero contribution to a product uk (1,.. .,8,) are

those depicted in Figure 2.7.2.1.

Given such a tree, with inputs 841 , I ... k,Ione easily determines the output: it is the

constant term of

.ik ' ' ' i 2 Wi 1

divided by (k - 1)! (coming from the terms in the denominator of h). Given a monomial

x in wj, there are Ib!/b! ways of choosing the order of the inputs (9m we take from the
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term

vibi+1(X. . . X)

of <D(v 3 ), in such a way that j i1 comes first, and the constant term of

is non-zero. Thus, each monomial xb of w contributes a term

1 l|!xx
jI b!(abb) X =X

x3b|! b!

to <b(v>3), and the result follows. Z

2.7.3 G-Graded matrix factorizations

For the purposes of this section, let G be a grading datum:

Z 4 Y - X - 0

with sign morphism o.

Let S be a G-graded algebra such that osS is concentrated in degree 0 E Z 2 , and let

w E S be an element of degree f(2) E Y.

Definition 2.7.3.1. A G-graded matrix factorization of w E S is a G-graded

finitely-generated free S-module K, together with a homomorphism

6K E Homs(K,K)

of degree f(1) E Y, such that

K= w - id.
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Definition 2.7.3.2. We define the differential G-graded category of matrix fac-

torizations, MFG(S, u):

" Objects are G-graded matrix factorizations of w;

" Morphisms are S-module homomorphisms:

Hom((K, 6K), (L, 43)) := Homs(K, L);

e Differential on morphism spaces is as usual:

O(F) := 6L o F - (-1)a(F)F o 6K

" Composition is composition of S-module homomorphisms.

We note that the morphism spaces are naturally G-graded S-modules, the differential

and composition maps have degrees f(1) and f(0) E Y respectively, and they satisfy the

Leibniz rule. It follows that MFG(S, w) is a G-graded A,, category over S (see Remark

2.2.3.12). In fact it is a differential G-graded category, since all p are zero.

We observe that ordinary matrix factorizations are nothing more than G,-graded

matrix factorizations. It follows that there is a fully faithful embedding

o-,MFG (S,w) - MF(S,w).

Now let us introduce our main example. We will introduce graded matrix factoriza-

tions mirror to the smooth orbifold relative Fukaya category (compare Section 2.6.1).

Let G := G' be the grading datum introduced in Example 2.2.1.13. Let

338



be the G-graded power series ring introduced in Definition 2.2.2.13.

Let U be the G-graded vector space of Example 2.2.2.9. We consider the G-graded

algebra

S := R[U) ~- C[[ri, . . . , rn]][Ui, ... ,Un].

We consider the element
n

w = Ui ... un + rju' E S,
j=1

which has degree f(2) E Y, hence we can define the G-graded category of matrix fac-

torizations MFG(S, W).

We consider the G-graded S-module

K : = R [U] (2 A (Uv) ~_C[[ , r U1 n101 . n

where the variables Oj anti-commute. We introduce the differential

6K : K -+ K

6K Ui j IV3j,
j=1 193

where

nug

We observe that 6K has degree f(1) E Y, and that

K = w - id.

Thus, (K, 6K) is a G-graded matrix factorization of w. We denote it by 00. Finally, we

observe that 6K is H-invariant, where H is the symmetric group acting in the obvious

way.
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Corollary 2.7.3.3. Let us define the G-graded A,, algebra over R:

'3 HomMFG(S,w)(00, 00) -

Then B is of type A, in the sense of Definition 2.2.5.2.

Proof. Follows from Proposition 2.7.2.1. We observe that it is necessary to check that the

G-grading and H-equivariance interact appropriately with the homological perturbation

lemma construction, but this is clear. D

Corollary 2.7.3.4. Let

A CF;) L", L ),

where F($) is the category of Proposition 2.5.2.2 and # (M"h , D) -+ (M, D) is the

branched cover of Example 2.3.5.10. Let

'3 := HomMFG(S,w) (00, 00)

as above. Both A and B are G-graded A,, algebras over R, and there exists a power

series p E C[[T]], with 0(0) = 1 (recalling T= r1 ... rn), and an Ao quasi-isomorphism

A b $ .'.

Proof. Follows from Corollary 2.7.3.3 and Corollary 2.6.5.8. 0

2.7.4 Equivariant matrix factorizations

Suppose that p : G' -+ G is an injective morphism of grading data. Then we consider

the G'-graded category

p*MFG(S,wu).
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Remark 2.7.4.1. Objects of p*MFG(S, w) are again G-graded matrix factorizations,

but the morphism spaces are just the parts whose Y-grading lies in the image of p : Y' -*

Y. Thus p*MFG(S, w) embeds, fully faithfully, in the category of coker(p)*-equivariant

matrix factorizations.

For example, let pi : G' -+ G' be the morphism defined in Lemma 2.2.1.14.

Definition 2.7.4.2. We denote

3 := p*_B C p*MFG(SW).

It is the full subcategory whose objects are 00 and its shifts by elements y E Y.

We obtain the following:

Corollary 2.7.4.3. There exists a power series b c C[[T]], V)(0) = 1, and an Ao

quasi-isomorphism of Gn-graded R-linear A, categories,

Proof. Follows from Corollary 2.7.3.3 and Corollary 2.6.5.10.

2.7.5 Coherent sheaves

In this section, we will explain how to relate equivariant categories of coherent sheaves on

a projective variety to equivariant categories of graded matrix factorizations. We state a

result closely related to [59, Proposition 1.2.2] (see also [60, Section 2]), in the language

of G-graded matrix factorizations. First, we recall Orlov's category of graded matrix

factorizations (see [58, Section 3.1]).
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Let S be a Z-graded ring, and w E S homogeneous of degree d. Recall from Example

2.2.1.11 the grading datum GMF(d). We define

q : Z -Z D Z/(2, -d),

q(j) = (0, j),

so we can equip S ~ qS with a GMF(d)-grading. Then w has degree (0, d) - (2, 0)

f (2) E Y, so we can define the category of GMF(d)-graded matrix factorizations. Now

there is a unique injective morphism of grading data, p : Gz -+ GMF(d). We define

GrMF(S, w):= p*MFGAIF(d) (5, W).

It is not hard to see that this definition coincides with Orlov's category of graded ma-

trix factorizations of w (actually Orlov defines graded matrix factorizations to be the

homotopy category of this differential graded category). Namely, if we denote

7r : Z Z -+ Z ( Z/(2, -d),

then given a GMF(d)-graded S-module K, 7r*K is a quasi-periodic complex of graded

S-modules, as in the usual definition of the category of graded matrix factorizations.

We recall the relationship of GrMF to coherent sheaves. Suppose that k is a field,

S = k[ui, ... , un] is the Z-graded polynomial ring, and w E S is homogeneous of degree

n. Suppose that the variety

X := {w = 0} C Pn~1

is smooth. Then, because X is Calabi-Yau, [58, Theorem 3.11] says that there is an

equivalence of triangulated categories,

D6Coh (X) ~ Ho(GrMF(S, w)).
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Remark 2.7.5.1. We observe that the matrix factorization 00 is always GMF(n)-graded.

If Oo[j] denotes the shift of 00 by the integer j (i.e., by f(j)), then we can arrange that

the object
n2-1

Ooa[j] E Ob(GrMF(S, w))
j=0

corresponds, under Orlov's equivalence, to the restriction of the Beilinson exceptional

collection

i*0 3(j)
j=0

where i : X <-+ P"~1 denotes the inclusion.

IV.A].

See [69, Remark 5.20], also [70, Section

Now let us consider the situation of Section 2.7.4. Recall the commutative square of

grading data of Lemma 2.2.1.14. We have

R C[[r1 , . . . , rn]]

and

S :=R[ui, . . ., Un)

are G"-graded rings, and w E S has degree f(2) E Y. Recall that the Novikov field A is

an R-algebra, via the map

-+ r.

We define

S.. := S OR A c A[ui

with the object

wnov :=W w3 1 E Snov .
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Equip Sn,, with the standard Z-grading (where A is concentrated in degree 0, and each

uj has degree 1). Consider the variety

N " := {Wno, = 01 C Proj(Sno,) r. P .

Define the group Fn to be the kernel of the map

(Zn)"/Y[n] --+ Zn,

and equip Nano with the action of the character group F*, acting by multiplying the

coordinates uj by nth roots of unity. We denote

Nn := Nn"Nv/TFn.

We observe that these definitions coincide with those given in the Introduction.

Lemma 2.7.5.2. There is a fully faithful embedding of triangulated categories,

Ho (q1,p*MFG(S, U))) OR A - DbCoh (Nn0 ).

Proof. First, observe that q2*S is a GMF(n)-graded ring. Furthermore, it is easy to check

that q2*R is concentrated in degree 0, and ui has degree (0,1). This coincides with the

GMF(n)-grading of S induced by the standard Z-grading.

There is a fully faithful embedding

q2 *MFGn (S, W) -+ MFGMF(n)

which sends
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Therefore, there is a fully faithful embedding

p*q2,MFG(S,w) -+ GrMF(S,w).

Now note that piq2,R ' R is concentrated in degree 0 E Z, so the morphism R -+ A

respects the Z-grading, and we obtain a fully faithful embedding of A-linear differential

graded categories

(p*q 2*MFG(S,w)) R A -> GrMF(S,w) OR A.

There is a fully faithful embedding of A-linear differential graded categories

GrMF(S, w) OR A -* GrMF(Sno,, wnov),

which sends

on the level of objects (recall that K is by definition a free S-module). By Orlov's

theorem [58, Theorem 3.11], there is an equivalence of A-linear triangulated categories,

Ho (GrMF(Se,,, wO,)) c DbCoh (No")

It follows that there is an equivalence of triangulated categories

Ho (GrMF(S,,ov, w 0v)' ) c DbCoh .

Hence, by the argument above, there is a fully faithful embedding

Ho (p*q2,MF G OR A) -+ DbCohr* R DbCoh(N"0 ).
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Now we recall Lemma 2.2.2.14. It shows that there is an isomorphism

p*q 2,MFG(S, ~) q1,p*MFG(S, U),

where

EF,:= ker(q2,x)/im(pi,x).

In this case, an examination of Lemma 2.2.1.14 shows that F, is indeed the kernel of the

map

(Zn)"/yn] -+ Zn

given by summing the coordinates, and the F,-gradings of morphism spaces correspond

under Orlov's equivalence. The result follows.

Corollary 2.7.5.3. There is an equivalence of A-linear triangulated categories,

(q1,5) (R A ~ DbCoh (Nn"o,) .

Proof. It follows from Lemma 2.7.5.2 that there is a fully faithful embedding of the left-

hand side into the right-hand side. In fact, the embedding is essentially surjective. This

follows from Remark 2.7.5.1, together with (the F*-equivariant version of) [9, Lemma

5.4], together with (the F*-equivariant version of) Beilinson's generation result [71]. E

Definition 2.7.5.4. We denote

no := q1,A OR A.

It is a full subcategory of qiF(Mn, D) oR A.

Corollary 2.7.5.5. There exists p E C[[rn]], and an equivalence of A-linear triangulated

categories,

0 . D"Coh(NanO,) ~ Ho (Tw ( )no)

where 'Tw' denotes forming the category of twisted complexes.
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Proof. Follows from Corollary 2.7.5.3 and Corollary 2.7.4.3.

2.8 The full Fukaya category

In this Section, we consider the full Fukaya category F(M'). We explain why there is

an embedding

.F(M , D) OR A -+ T(M"),

and prove that the full subcategory

k OR A c F(Mn)

(see Definition 2.6.5.9) split-generates, using the criterion of [54]. This allows us to

complete the proof of Theorem 4.

2.8.1 Relating the full and relative Fukaya categories

Let (M, w) be a compact symplectic manifold, satisfying c1 (M) = 0. The Fukaya cate-

gory F(M) is defined in [54]. It depends on the choice of a bulk class b E Heven(M; Ao),

and a background class st E H 2 (M; Z2). We choose both of these to be 0. The ob-

jects of T(M) are (L, b), where L C M is a graded spin Lagrangian submanifold, and

b E H 1 (L; AO) is a weak bounding cochain. Composition maps are defined by counting

holomorphic disks. F(M) is a Z-graded A, category.

We would like to relate F(M, D) to F(M). First, we observe that there is a canonical

morphism of grading data,

q : G (M, D) --+ Gz,
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by Remark 2.3.5.7. Thus we can define a Gz-graded (i.e., Z-graded) A, category

qF(M, D).

.F(M, D) is defined over the coefficient ring R a C[[ri, ... , rk]]. It is a simple task to

show that the coefficient ring qR has degree 0 E Z. Therefore, the ring homomorphism

R A,

respects the Z-grading, because both have degree 0 E Z. This makes A into an R-module,

and means that we can define the Z-graded, A-linear A. category

qF(M, D) OR A.

We remark that, up until this point, we have given a complete definition of the rela-

tive Fukaya category F(M, D) of a Khhler pair (satisfying assumptions as in Definition

2.3.5.1), using explicit domain-dependent perturbations of the holomorphic curve equa-

tion. To define the full Fukaya category F(M) however, we need virtual perturbations

as in [24, 54]. These two categories should be related as follows:

Assumption 2.8.1.1. There is a fully faithful embedding

q,F(M, D) OR A -+ F(M)

of Z-graded, A-linear A, categories.

To prove this, we would have to relate the two different perturbation schemes (explicit

domain-dependent perturbations versus perturbations of Kuranishi structures), which

would take us beyond the scope of this paper. So we leave it as an assumption. We do,
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however, provide the following justification:

Remark 2.8.1.2. We observe that there is an obvious map on the level of unobstructed

objects (Lagrangians with p 0 = 0):

Ob(q,7(M, D)),,0 b -+ Ob(F(M)),

L '-4 (L,0),

and anchored Lagrangian branes automatically come with a grading (recall that taking

q, of a category involves identifying certain objects; in this case, this exactly means that

we identify all anchored Lagrangian branes which have the same grading). However,

there is no map in the other direction: objects of F(M) may intersect the divisors D.

Suppose now that:

" L is a tuple of exact, transversely-intersecting anchored Lagrangian branes in M \

D;

" p is an associated set of generators (intersection points) of L;

" the moduli space of rigid, boundary-punctured holomorphic disks in M with bound-

ary on L, asymptotic to p, is regular.

We show that a rigid holomorphic disk in this moduli space contributes the same term

to an A,, structure map ps in F(M, D) (R A and in .F(M). We have

8

w(u) = -a(po) + E-a(pj) +|u -DI
j=1

by Stokes' theorem, where a(p) denotes the symplectic action of generator p. In partic-

ular, if we define the map

CF(M,D)®,A(Lo, L 1 ) -+ CF;(M)(LO, L1 ),

p , r(P) p,
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then the holomorphic disk u contributes the same term ±rw(u) to pS in both categories.

Note that, in F(M, D), we have (u - D)! choices for the labelling of the marked points

mapping to the divisors D, so this disk in fact contributes (u - D)! identical terms to

p, each of which is trw(u)/(u . D)! (see the definition in Section 2.5.1). Thus its total

contribution is exactly ±r(u).

2.8.2 Split-generation

We recall the subcategory

Anov c q1F(M", D) OR A

from Definition 2.7.5.4. By abuse of notation, we will identify this category with its

image under the embedding of Assumption 2.8.1.1. Our aim in this section is to prove

that Ao, split-generates D'Y(M").

Definition 2.8.2.1. We define the closed-open string map from the (small) quantum

cohomology ring of M (with coefficients in A) to the Hochschild cohomology of T(M),

CO : QH*(M) -+ HH*(F(M)),

as follows: let a E HJ(M; C) be Poincare dual to a smooth cycle A C M. Let L be a

tuple of objects with associated generators p. We consider the moduli space M 4 (p, A),

whose objects consist of pairs (r, u), where r C Ri(L) and u : S, -+ M is a smooth map,

such that

* u satisfies the (perturbed) holomorphic curve equation, with Lagrangian boundary

conditions given by the labels L;

" u is asymptotic to the generators p at the boundary punctures;
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* u(q) E A, where q E Sr is the internal marked point.

Then each rigid disk u E M 4 (p, A) contributes a term ±r"(u)po to

CO(a)(p.,.. pi).

We remark that

" When we say 'perturbed' holomorphic curve equation, it really means we must de-

fine a Kuranishi structure on M 4 (p, A) and introduce virtual perturbations thereof

(see [54]);

" The map CO is a homomorphism of Z-graded A-algebras, where the product on

QH*(M) is quantum cup product *, and the product on HH*(F(M)) is the Yoneda

product, and the Z-gradings are the standard ones.

We now aim to apply the following result, which is due to [54]:

Theorem 8. If (M, w) is a compact 2d-dimensional Calabi- Yau symplectic manifold, Z

a full subcategory of F(M) with some finite set of objects, and the map

CO 2d : QH 2d(M) - HH 2d(1C)

is non-zero, then Z split-generates T(M).

We consider the subcategory Ao0 , C T(M") (actually this is not a finite collection of

Lagrangians, because we include all shifts, but it will suffice to choose one representative

of each geometric lift of L" to M'). We aim to understand the map

COn"--2) : QH2(n~2) (M) - HH"--2)
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by first understanding the degree-2 part of the map, C0 2 , then using the fact that CO is

a A-algebra homomorphism. It is expected that the image of the class of the symplectic

form,

CO([w]) E HH 2 (F(M)),

should be the class corresponding to the deformation of T(M) given by scaling the

Novikov parameter r. In fact, in our relative setting, we can make a statement with a

cleaner proof:

Lemma 2.8.2.2. Let (M, D) be a Kuhler pair. Consider the full subcategory

qF(M, D) OR A C F(M)

of Assumption 2.8.1.1. Then CO([w]) is the image of the class

1( opr*( -" ) 0 1 E H H*(F(M, D)) OR A

in HH*(Y(M, D) OR A), for any j.

To clarify: p* E CC*(r(M, D)) is the A, structure map, and

alp*r3  E CC*(T(M, D))
Brj

is a Hochschild cochain, as can be seen by applying rj&/&rj to the A. associativity

equation p* o p* = 0. Thus, it defines a class in HH*(F(M, D), and we consider the

image of this class under the map

HH*(F(M, D)) OR A -+ HH* (F(M, D) OR A).

Proof. Given Lagrangian branes L with associated generators p, each rigid holomorphic
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disk u with boundary on L, asymptotic to p, contributes a term

ruDi uDkV1  k

to the coefficient of po in p(p,... ,pi), and hence a term

t(u - Dj)ri"- . .. r-D

to the corresponding coefficient of rjOys/Brj, and hence a term

±(u -Dj )rw(*)

to the corresponding coefficient of (rjoys/&rj) ®R 1 (see Remark 2.8.1.2).

On the other hand, recall that Dj is Poincare dual to dw by definition of a Kshler

pair. So, by definition of the map CO, each such holomorphic disk u together with an

internal marked point q mapping to Dj, contributes a term ±r(u) to the corresponding

coefficient of CO(dw). There are u - Dj choices for the internal marked point q, so the

total contribution of each such holomorphic disk u is ±(u - Dj)rw(u).

Therefore,

CO(dw)= r OR 1

as required. E

Remark 2.8.2.3. Again, Lemma 2.8.2.2 should perhaps be thought of as an assumption,

for the same reason that we make Assumption 2.8.1.1.

Proposition 2.8.2.4. Let M" be the Calabi-Yau Fermat hypersurface of Example 2.3.5.2,

and recall the full subcategory Ako C T(M"). The map

C02(n-2) : QH H(n-2)(M") -- HH 2(n-2 (Anov)
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is non-zero.

Proof. We recall from Lemma 2.2.5.18 that there is an action of I*7 on HH*(Z o0 ), and

the P*-invariant part is

H Hz ' n - A [a]/a"n-1

as a Z-graded A-algebra, where a has degree 2.

It follows from Lemma 2.8.2.2 and Lemma 2.2.5.19 that the image of CO([w]) under

this isomorphism is g - a, for some invertible g E A*. Therefore, because CO is a A-

algebra homomorphism, the image of CO([w]n- 2) under this isomorphism is gn-2 an-2,

which does not vanish in A[a]/an-1. Because it has degree 2(n - 2), this completes the

proof. l

Corollary 2.8.2.5. The full subcategory

Anov C F(Mn)

split-generates the Fukaya category.

Proof. Follows from Proposition 2.8.2.4 and Theorem 8. El

Theorem 4 now follows from Corollary 2.7.5.5, Assumption 2.8.1.1, and Corollary

2.8.2.5.
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Appendix A

Signs

This Appendix contains the proof of the following, due to [34]:

Proposition A.0.2.6. (Proposition 1.3.4.2) Let X = (X,w,I) be an exact symplectic

manifold with boundary with symplectic form w, and complex volume form r1. Define

X P := (X, -w, i). Then there is a quasi-isomorphism of A,-categories

: Fuk(X)P -+ Tuk(XP)

(where the opposite category of an A, category was defined in Definition 1.3.4.1).

Proof. We assume the conventions and notation of [11, Sections 8-11] - in particular, the

concepts of Lagrangian branes, determinant lines and perturbation data are used with

minimal explanation.

Recall that, to define the Fukaya category .Fuk(X) as in [11], one must make a choice

of universal perturbation data (essentially, a consistent choice of domain-dependent

Hamiltonian perturbations and almost-complex structures). Having made such a choice

for X, it is clear that we obtain a 'conjugate' choice of universal perturbation data
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for X0 P by reversing the sign of all almost-complex structures (because if w and J are

compatible then -w and -J are compatible). We will show that there is a strict iso-

morphism of A, categories from 7uk(X)"P, defined with the given perturbation data,

to Fuk(XOP), defined using the conjugate perturbation data. The result then follows

from the independence of the Fukaya category of the choice of perturbation data, up to

quasi-isomorphism.

On the level of objects, a Lagrangian brane L# = (L, a#, P#) (where L is a La-

grangian in X, a# a grading of L, and P# a Pin structure on L) gets sent to the brane

g(L#) = (L, -a#, P#). Suppose we have a morphism

x E homYuk(x,~woP (L#, L#) = homy2kix,3)2#, L1).

We send it to the morphism z = !(x) corresponding to the same intersection point as x

in

hoFuk(x,-w) (9 (L#), 9(L#).

We must also define an isomorphism of the orientation lines ox a os.

Recall the notion of an orientation operator for a morphism y E Li n L 2 in the

Fukaya category: choose a path in the space Gr#(TyX) of abstract Lagrangian branes

at y, A : [0, 1] - Gr#(TyX) from (L#)y to (LO), (i.e., a path in the ordinary Lagrangian

Grassmannian Gr(TyX) that is compatible with the grading and Pin structures). Define

a Cauchy-Riemann operator DY on the complex vector bundle H x (TyX, J) over the

upper half plane H, with boundary values specified by A(s) along the real axis. DY is

called an orientation operator for y, and there is a canonical isomorphism

oY c det(DY).

In our case, we choose the path A(s) from (L#), to (L#), and the orientation operator
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D, is on H x (TXX, J) with boundary conditions given by A(s). It is not hard to see that

the reverse path A(1 - s) runs from (9(L*))j to (g(Lf)), and gives boundary conditions

for the orientation operator D. on the complex vector bundle H x (TzX, -J). Our two

orientation operators are isomorphic, via reflection about the imaginary axis in H. We

define our isomorphism of orientation lines to be the composition of isomorphisms

ox c-- det(Dx) L-- det(D.7) -_ oj.

Now we must check that the composition maps y k agree. This amounts to proving

that

g pxo(Xk, .X1 ,z)) = -)*X,_,) (g(Xi), . 9(zk)).

where * is the sign given in the statement of the Proposition. We prove this equality

by showing that the holomorphic disks contributing to each product are in bijective

correspondence.

Suppose we are given a disk S = D 2 \ {k + 1 boundary points}, equipped with a

choice of strip-like ends, a map u S - X satisfying the perturbed J-holomorphic

curve equation (according to our perturbation data for X), sending the jth boundary

component to the Lagrangian Li, contributing a term x0 to the product on the left hand

side. Then the disk 9 (S with the conjugate complex structure), equipped with the same

map u: S -+ X, satisfies the perturbed (-J)-holomorphic curve equation (according to

the conjugate perturbation data for X0 P), and contributes to the product on the right

hand side. We define the conjugate boundary lift of any boundary component C with

label L' (see Section 1.3.1) by 6c = a o ic, where a : S- - Sn is the antipodal map

(recall that r o La = Ln o a so this is a valid boundary lift).

We just need to show that these disks contribute with the appropriate relative sign.

We recall, briefly, how signs are calculated: The linearized J-holomorphic curve equation
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along u yields a linearized operator

Ds,u : W''P(S, u*TX, u* TL) -* LP(S, Qs' 0 u*TX)

whose kernel is isomorphic to the tangent space at u of the space of J-holomorphic curves

v : S -+ X with the same boundary conditions as u.

When defining the Fukaya category, we are concerned with families of J-holomorphic

curves whose modulus can vary. Let Sk+ 1 4 7Zk+1 denote the universal family of disks

with k+1 boundary marked points, and suppose that the modulus of S is r E R. Then we

can also define an extended linearized operator (again by linearizing the J-holomorphic

curve equation)

Ds,,,u :TRk+1 x W"'P(S, u*TX, u*TLi) -+ LP(S, Q0s' u*TX).

The kernel of Ds,,,u is isomorphic to the tangent space at u of the space of J-holomorphic

curves with the same boundary conditions as u, and possibly varying modulus of the

domain. One says that u is regular if this operator is surjective, and rigid if it is regular

and has index 0. Observe that there is a canonical isomorphism

det(Ds,r,u) 2 A"P(TRRk+1) 0 det(Ds,u)

(obtained by deforming Ds,r,u to 0 E Ds,u through Fredholm operators).

The structure coefficients of the A,, maps yk are defined to be counts of rigid curves,

so we assume that u is rigid and therefore there is a canonical isomorphism

det(Ds,r,u) a R.

We choose an orientation of the moduli space Zk+1 by fixing the first three boundary

points and taking the induced orientation from the coordinates of the remaining ones.
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This defines an isomorphism

At P(TrRk+l) c R,

and hence an isomorphism

det(Ds,u) 2-- R.

One now chooses orientation operators D., for each 1 < j < k. One then glues the

orientation operators D.,. . , D21, in that order, to the operator Ds,u to obtain an

orientation operator Dx,, for xo. This gives a canonical isomorphism

o02 2 det(D :0 ) - det(Ds,u) 0 det(DXk) 0 . .. 0 det(D 1) oXk 0 ... 0 0XI.

This, together with an auxiliary sign

i(xi) + 2i(x 2) + ... + ki(xk)

(necessary to realize the correct signs in the A,, associativity equation, see [11, Equa-

tion (12.24)]) defines the sign with which u contributes a term x0 to the product

Pk(xk, . . . , i).

We need to explain how this sign changes under g. The determination of the sign

with which the conjugate disk contributes is almost completely isomorphic, except for

the following three changes:

" Complex conjugation of the domain of u acts on our chosen orientation of the space

Rk+1 with a sign
k(k - 1)

1+ 22

* We glue the orientation operators D.,..., D2 1 to Ds,u in that order, whereas

for the complex conjugate our convention demands that we glue the orientation

operators Dg(2 :),... , Dg(Xk) to Ds,, in that order. This difference in ordering
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results in a Koszul sign difference

Z i(xj)i(xi)
i1j<l

between the corresponding isomorphisms

oxo - det(Ds,u) 0 o x, -- 0. 1

I I
og(XO) > det(Ds,,) 0 O(xi) 0 ... 0(Xk);

* The auxiliary signs differ by

i(x1 )+2i(x2 )+. . .+ki(Xk)-i(Xk)-2i(Xk-1)-. . .- ki(xi) = (k+1)(i(x1 )+. .- +i(Xk)).

0Combining these three sign differences gives the desired result.
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Appendix B

Strict group actions on Fukaya

categories

This section is based on the argument of [9, Section 8b]. Suppose that we have a finite

group F, which acts on a Kdhler pair (M, D), permuting the divisors D, and preserving

the Liouville one-form a. We consider the relative Fukaya category F(M, D) defined

in Section 2.5.1. There is an obvious action of F on the objects of the relative Fukaya

category. We would like to say that this action extends to an action on the relative

Fukaya category, in a suitable sense.

Recall the notion of a strictly F-equivariant A,, structure from Definition 2.2.4.14.

NaYvely, one might try to argue that F acts on the moduli spaces of pseudoholomorphic

disks used to define the structure maps of the Fukaya category, and hence the structure

maps are strictly F-equivariant. However, this does not work: for F to act on the moduli

spaces of pseudoholomorphic disks, we would have to make a F-equivariant choice of

perturbation data, which would destroy our chances of achieving transversality. Instead,

we have the following:

Proposition B.O.2.7. In the situation described above, there is a fully faithful embedding
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of F(M, D) into a strictly F-equivariant A,, category. The order-O part of this embedding

is a quasi-equivalence, and respects the action of F on objects, in the sense that F(y. L)

is quasi-isomorphic to 7 - F(L).

Proof. We consider a category F(M, D) with objects (y, L), where L is an object of

.F(M, D) and -y E F. Think of (y, L) as representing the object Y - L of F(M, D), but

we now have |1l copies of each object.

We define an action of F on these objects, via

'Y1 - (7Y2, L) := (-y1 - 7y2, L).

Now for each pair of objects ((1, Lo), (-y, L1 )) of F(M, D), we choose a regular Floer

datum for the objects (Lo, LI) of F(M, D). We then define Floer data for pairs of

objects ((yo, LO), (-1, L 1 )) by acting with -yo on the Floer data for ((1, Lo), (-1 -yi, L1)).

We thus define morphism spaces

CF* ((y o, Lo), (-y1, L1))

for all pairs of objects. We define the Floer differential y as before, and note that it is

now strictly F-equivariant.

Now for each tuple of objects L ((1, Lo), (yi L 1), ... , (7k, Lk)), with associated

generators y, we choose regular, consistent perturbation data on the moduli spaces

R (p, e). We then define perturbation data for tuples L = ((yo, Lo),... , ('y,, Lk)) by act-

ing with 'yo on the perturbation data chosen for ((1, Lo), (%- .71, L1 ),.. ., (-1 -7k, Lk)).

This allows us to define the rest of the Floer products y k. Note that they are strictly

F-equivariant.

Observe now that the full subcategory with objects (1, L) is equivalent to F(M, D)
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(making the corresponding choice of perturbation data). Thus, we have an inclusion of

F(M, D) as a full subcategory of T(M, D). Furthermore, if we restrict to the affine

Fukaya category, then this inclusion is a quasi-equivalence, because each object (-Y, L)

is quasi-isomorphic to the element (1, y - L) of the subcategory. This concludes the

proof. E

363



364



Bibliography

[1] N. Sheridan, "On the homological mirror symmetry conjecture for pairs of pants,"
J. Diff. Geom 89 no. 2, (2011) 271-367.

[2] N. Sheridan, "Homological mirror symmetry for Calabi-Yau hypersurfaces in
projective space," arXiv: 1111.0632.

[3] M. Kontsevich, "Homological algebra of mirror symmetry," Proceedings of the

International Congress of Mathematicians (Zurich, 1994) (1994) 120-139,
arXiv: 9411018.

[4] A. Polishchuk and E. Zaslow, "Categorical mirror symmetry: the elliptic curve,"
Adv. Theor. Math. Phys. 2 (1998) 443-470, arXiv:math/9801119.

[5] A. Polishchuk, "Massey and Fukaya products on elliptic curves," Adv. Theor.
Math. Phys. 4 (2000) 1187-1207, arXiv:math. AG/9803017.

[6] K. Fukaya, "Mirror symmetry of abelian varieties and multi-theta functions,"
Journal of Algebraic Geometry 11 (2002) 393-512.

[7] M. Abouzaid and I. Smith, "Homological mirror symmetry for the four-torus,"
Duke Math. J. 152 no. 3, (2010) 373-440, arXiv: 0903. 3065.

[8] M. Kontsevich and Y. Soibelman, "Homological mirror symmetry and torus
fibrations," Symplectic geometry and mirror symmetry, World Scientific (2001)
203-263, arXiv:math.SG/0011041.

[9] P. Seidel, "Homological mirror symmetry for the quartic surface," arXiv: 0310414.

[10] M. Kontsevich, "Lectures at ENS Paris," Notes by J. Bellaiche, J.-F. Dat, I.

Marin, G. Racinet and H. Randriambololona (1998) .

[11] P. Seidel, Fukaya categories and Picard-Lefschetz Theory. European Mathematical

Society, 2008.

[12] D. Orlov, "Triangulated categories of singularities and D-branes in
Landau-Ginzburg models," Proc. Steklov Inst. Math. 246 (2004) 227-248.

365



[13] M. Abouzaid, "Homogeneous coordinate rings and mirror symmetry for toric
varieties," Geometry & Topology 10 (2006) 1097-1157, arXiv:math/0511644.

[14] M. Abouzaid, "Morse Homology, Tropical Geometry, and Homological Mirror
Symmetry for Toric Varieties," Selecta Mathematica 15 no. 2, (2009) 189-270,
arXiv:math/0610004.

[15] B. Fang, C.-c. M. Liu, D. Treumann, and E. Zaslow, "T-duality and homological
mirror symmetry of toric varieties," arXiv:0811. 1228.

[16] D. Auroux, L. Katzarkov, and D. Orlov, "Mirror symmetry for del Pezzo surfaces:

vanishing cycles and coherent sheaves," Invent. Math. 166 no. 3, (2006) 537-582.

[17] D. Auroux, L. Katzarkov, and D. Orlov, "Mirror symmetry for weighted projective
planes and their noncommutative deformations," Ann. of Math. 167 no. 2, (2008)
867-943, arXiv:math/0404281.

[18] L. Katzarkov, "Birational geometry and homological mirror symmetry," Real and

complex singularities (2007) 176-206.

[19] A. Kapustin, L. Katzarkov, D. Orlov, and M. Yotov, "Homological Mirror

Symmetry for Manifolds of General Type," Cent. Eur. J. Math. 7 no. 4, (2010)

571-605.

[20] P. Seidel, "Homological mirror symmetry for the genus two curve," Journal of

Algebraic Geometry 20 no. 4, (Dec., 2011) 727-769, arXiv:0812. 1171.

[21] A. Efimov, "Homological mirror symmetry for curves of higher genus,"
arXiv:0907.3903.

[22] G. Mikhalkin, "Decomposition into pairs-of-pants for complex algebraic
hypersurfaces," Topology 43 no. 5, (2004) 1035-1065.

[23] K. Fukaya, "Morse homotopy, Am-category, and Floer homologies," Proceedings of
GARC Workshop on Geometry and Topology 93 (Seoul, 1993) (1993) 1-102.

[24] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory

- anomaly and obstruction. American Mathematical Society, 2007.

[25] T. Dyckerhoff, "Compact generators in categories of matrix factorizations," Duke

Mathematical Journal 159 no. 2, (Apr., 2011) 223-274, arXiv:0904.4713.

[26] M. Abouzaid and P. Seidel, "An open string analogue of Viterbo functoriality,"
Geom. Topol. 14 no. 2, (2010) 627-718.

[27] 0. Cornea and F. Lalonde, "Cluster Homology," arXiv: 0508345.

366



[28] B. Feng, Y.-H. He, K. D. Kennaway, and C. Vafa, "Dimer models from mirror
symmetry and quivering amoebae," Adv. Theor. Math. Phys. 12 no. 3, (2008)
489-545.

[29] M. Passare and L. Nilsson, "Discriminant Coamoebas in Dimension Two,"
arXiv:0911.0475.

[30] A. Hattori, "Topology of C' minus a finite number of affine hyperplanes," J. Fac.

Sci. Univ. Tokyo Sect. IA Math. 22 no. 2, (1975) 205-219.

[31] M. Futaki and K. Ueda, "Tropical coamoeba and torus-equivariant homological
mirror symmetry for the projective space," arXiv: 1001.4858.

[32] M. Akaho and D. Joyce, "Immersed Lagrangian Floer Theory," arXiv:0803. 0717.

[33] P. Seidel, "Graded Lagrangian Submanifolds," Bull. Soc. Math. France 128 no. 1,
(1999) 103-149.

[34] J. Solomon, "Involutions, obstructions and mirror symmetry." In progress.

[35] M. Abouzaid, "A topological model for the Fukaya category of plumbings,"
arXiv:0904.1474.

[36] A. Floer, H. Hofer, and D. Salamon, "Transversality in elliptic Morse theory for

the symplectic action," Duke Mathematical Journal 80 no. 1, (1995) 251-292.

[37] Y.-G. Oh, "On the structure of pseudo-holomorphic discs with totally real
boundary conditions," J. Geom. Anal. 7 no. 2, (1997) 305-327.

[38] M. Schwarz, Morse Homology, vol. 111 of Progress in Mathematics. Birkhduser,
1993.

[39] U. Frauenfelder, "Gromov convergence of pseudoholomorphic disks," J. Fixed

Point Theory Appl. 3 no. 2, (2008) 215-271.

[40] D. McDuff and D. Salamon, J-holomorphic Curves and Symplectic Topology.

American Mathematical Society Colloquium Publications. American
Mathematical Society, 2004.

[41] S. Piunikhin, D. Salamon, and M. Schwarz, "Symplectic Floer-Donaldson theory

and quantum cohomology," Contact and symplectic geometry (1996) 171-200.

[42] R. Ye, "Gromov's compactness theorem for pseudoholomorphic curves," Trans.

Amer. Math. Soc. 342 (1994) 671-694.

[43] P. Pansu, "Compactness, in [72].".

[44] B. Lawson, Minimal Varieties in Real and Complex Geometry, vol. 57 of Sem.

Math. Sup. Presses Universit6 de Montr6al, 1974.

367



[45] K. Fukaya and Y.-G. Oh, "Zero-loop Open Strings in the Cotangent Bundle and

Morse Homotopy," Asian Journal of Mathematics 1 (1998) 96-180.

[46] J. Harris, Algebraic Geometry: A First Course. Springer, 1992.

[47] G. Hochschild, B. Kostant, and A. Rosenberg, "Differential forms on regular affine

algebras," Trans. Amer. Math. Soc. 102 (1962) 383-408.

[48] P. Candelas, X. de la Ossa, P. Green, and L. Parkes, "A pair of Calabi-Yau

manifolds as an exactly soluble superconformal theory," Nuclear Physics B 359

no. 1, (July, 1991) 21-74.

[49] A. Givental, "Equivariant Gromov-Witten invariants," International Mathematics

Research Notices 1996 no. 13, (1996) 613-663, arXiv: alg-geom/9603021.

[50] A. Givental, "A mirror theorem for toric complete intersections," Topological field

theory, primitive forms and related topics (Kyoto, 1996), Progr. Math. 160 (1998)

141-175.

[51] M. Kontsevich and Y. Soibelman, "Homological mirror symmetry and torus

fibrations," Symplectic geometry and mirror symmetry, World Scientific (2001)

203-263, arXiv:math.SG/0011041.

[52] Y. Nohara and K. Ueda, "A note on homological mirror symmetry for the quintic

3-fold," arXiv:1103.4956.

[53] N. Sheridan, "Homological mirror symmetry for Fano hypersurfaces in projective

space," in progress .

[54] M. Abouzaid, K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, "Quantum cohomology

and split generation in Lagrangian Floer theory," in preparation .

[55] K. Fukaya, Y.-g. Oh, H. Ohta, and K. Ono, "Anchored Lagrangian submanifolds

and their Floer theory," Mirror symmetry and tropical geometry, Contemp. Math.

527 (2010) 15-54, arXiv:0907.2122.

[56 V. I. Arnold, "Characteristic class entering in quantization conditions,"

Funkcional. Anal. i Priloien 1 (1967) 1-14.

[57] P. Seidel, "Fukaya categories and deformations," Proceedings of the International

Congress of Mathematicians (Beijing) 2 (2002) 351-360, arXiv:math/0206155.

[58] D. Orlov, "Derived categories of coherent sheaves and triangulated categories of

singularities," Algebra, Arithmetic, and Geometry (2009) 503-531,
arXiv:math/0503632.

[59] A. Polishchuk and A. Vaintrob, "Matrix factorizations and Cohomological Field

Theories," arXiv: 1105.2903.

368



[60] A. Caldararu and J. Tu, "Curved A-infinity algebras and Landau-Ginzburg
models," arXiv: 1007.2679.

[61] C. Weibel, An introduction to homological algebra. Cambridge University Press,
Cambridge Studies in Advanced Mathematics, 38, 1994.

[62] M. Gerstenhaber, "The cohomology structure of an associative ring," Annals of
Mathematics 78 no. 2, (1963) 267-288.

[63] M. Kontsevich, "Deformation quantization of Poisson manifolds," Letters in
Mathematical Physics 66 no. 3, (Dec., 2003) 157-216.

[64] E. Ionel and T. Parker, "Relative Gromov-Witten invariants," Annals of
Mathematics 157 no. 1, (Jan., 2003) 45-96.

[65] K. Cieliebak and K. Mohnke, "Symplectic hypersurfaces and transversality in
Gromov-Witten theory," Journal of Symplectic Geometry 5 no. 3, (2007) 281-356,
arXiv:math/0702887.

[66] M. Markl, "Transferring A-infinity (strongly homotopy associative) structures,"
Rend. Circ. Mat. Palermo 79 (2006) 139-151, arXiv:math/0401007.

[67] M. Markl, "Ideal perturbation lemma," Communications in Algebra 29 no. 11,
(2001) 5209-5232, arXiv:math/0002130.

[68] D. Orlov, "Triangulated categories of singularities and D-branes in
Landau-Ginzburg models," Proc. Steklov Inst. Math. 246 (2004) 227-248,
arXiv : math/0302304.

[69] M. Ballard, D. Favero, and L. Katzarkov, "Orlov spectra: bounds and gaps,"
arXiv:1012.0864.

[70] P. S. Aspinwall, "Landau-Ginzburg to Calabi-Yau dictionary for D-branes,"
Journal of Mathematical Physics 48 (2007) , arXiv: math. AG/0503632.

[71] A. A. Beilinson, "Coherent sheaves on IP" and problems of linear algebra,"
Functional Analysis and its Applications 12 no. 3, (1978) 68-69.

[72] M. Audin and F. Lafontaine, eds., Holomorphic Curves in Symplectic Geometry,
vol. 117 of Progress in Mathematics. Birkhiuser, 1994.

369


