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Abstract

The derived category of a hypersurface has an action by "cohomology operations" k[3,
deg3 = 2, underlying the 2-periodic structure on its category of singularities (as matrix

factorizations). We prove a Thom-Sebastiani type Theorem, identifying the k[#]-linear

tensor products of these dg categories with coherent complexes on the zero locus of the

sum potential on the product (with a support condition), and identify the dg category of

colimit-preserving k[#]-linear functors between Ind-completions with Ind-coherent complexes

on the zero locus of the difference potential (with a support condition). These results imply

the analogous statements for the 2-periodic dg categories of matrix factorizations. We

also present a viewpoint on matrix factorizations in terms of (formal) groups actions on

categories that is conducive to formulating functorial statements and in particular to the

computation of higher algebraic structures on Hochschild invariants. Some applications

include: we refine and establish the expected computation of 2-periodic Hochschild invariants

of matrix factorizations; we show that the category of matrix factorizations is smooth, and

is proper when the critical locus is proper; we show how Calabi-Yau structures on matrix

factorizations arise from volume forms on the total space; we establish a version of Kn6rrer

Periodicity for eliminating metabolic quadratic bundles over a base.

Thesis Supervisor: Jacob A. Lurie
Title: Professor of Mathematics, Harvard University
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Chapter 1

Introduction

This thesis is a revised and somewhat extended version of [P2]. Our goal is to establish some

basic results about tensor products and functor categories between 2-periodic (=k((#))-linear,
deg # = -2) dg-categories of matrix factorizations, beyond the case of isolated singularities.

These results are surely unsurprising, however our approach may be of interest: Rather

than working directly in the 2-periodic or curved contexts, we deduce the results from more

refined statements about the k[0]-linear dg-category of coherent sheaves on the special fiber

so that we are able to remain in the more familiar world of coherent sheaves. This is done

using a convenient (derived) geometric description of the k[3-linear structure of cohomology

operations.
One motivation for this work was establishing certain expected computations of Hochschild

invariants of the 2-periodic dg-category of matrix factorizations. In chapter 6 we do this

at the level of underlying complexes. In chapter 7 we extend this to some of the richer

structures carried by the Hochschild invariants. Specifically, we address the E2-algebra

type structures; though we had planned to also address the "connection"-type structure on

periodic cyclic chains that didn't quite make the editting-cut for this thesis.

1.1 Integral transforms for (Ind) coherent complexes

Suppose X is a nice scheme (or derived scheme, stack, formal scheme, etc.). The non-

commutative viewpoint tells us to forget X and pass to its "non-commutative" shadow: the

dg-category Perf(X) or its Ind-completion QC(X). Work of Ton [T2], ... , Ben Zvi-Francis-

Nadler [BZFN} provide us with useful tools relating the commutative and non-commutative

worlds:

- A "tensor product theorem," stating that (derived) fiber products of schemes go to

tensor products of dg-categories:

Perf(X)@per(s)Perf(Y) -~+ Perf(X x SY) QC(X)@Qc(s) QC(Y) -~+ QC(XxsY)

- A description of functor categories: Every quasi-coherent complex on the product gives

rise to an "integral transform" functor, and this determines an equivalence

QC(X xS Y) -- + FunQC(S)(QC(X), QC(Y))

identifying QC(X x Y) with the dg-category FunQc(s)(QC(X),QC(Y)) of colimit-
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preserving QC(S)O-linear functors QC(X) -+ QC(Y) (also known as "bimodules").
The identity functor corresponds to A.0x (=the diagonal bimodule), and the trace
of endofunctors (=Hochschild homology) corresponds to taking global sections of the
pullback along the diagonal. Thus we have descriptions of the functor category and of
the Hochschild invariants in familiar commutative terms.

When studying non-smooth schemes X, it's convenient to replace vector bundles by
coherent sheaves. Analogously, to replace perfect complexes Perf(X) by (bounded) coher-
ent complexes DCoh(X); and, to replace quasi-coherent complexes QC(X) by the larger
QC (X) = Ind DCoh(X) of Ind-coherent (aka shriek quasi-coherent) complexes. Provided we
work with finite-type schemes over a perfect base-field, the analogs of the above two theorems
remain true: this is essentially the content of Lunts paper [LI]. 1 Section A.2 develops the
mild extensions which we will need (to derived schemes, and with support conditions) in
the more geometric language that we will wish to use: The "tensor product theorem" for
DCoh and QC! (Prop. A.2.3.2), and a description of functor categories in terms of "shriek"
integral transforms (Theorem A.2.2.4).

Two direct applications may be worth highlighting:

- One can write down formulas for the Hochschild invariants of DCoh(X) for not-
necessarily smooth X, and with support conditions (Cor. A.2.5.1). For HH., this
makes manifest the "Poincar6 duality" between what might be called Hochschild
K-theory and Hochschild G-theory. For HH*, one obtains the somewhat strange
looking fact that HH*(DCoh(X)) ~ HH*(Perf(X)).

- Obviously one re-obtains Lunts' result that DCoh(X) is smooth, and one sees that
this fails for even very nice formal schemes:2 DCohz(X) = DCoh(Xz) is not usually
smooth (even when both Z and X are smooth), though the failure of smoothness is
in a sense mild (e.g., the identity functor is a uniformly t-bounded filtered colimit of
compacts). One consequence is that HH.(DCohz(X)) admits a nice description while
HH*(DCohz(X)) does not.

1.2 Matrix factorizations

Suppose f: M -* A' is a map from a smooth scheme to A1, and that we are interested
in the geometry of f over a formal disc near the origin. We can attach to it several non-
commutative shadows, the two simplest candidates being the dg-categories DCoh(Mo) and
Perf(Mo) = PerfM0 (M). However, these both lose too much information: they do not
depend on the defining function f, and the second one doesn't even depend on the scheme
structure on Mo. A standard way to remedy this is to consider the 2-periodic(=k((#3))-
linear, deg# = -2) dg-category MF(M, f) ~ DSing(M) of "matrix factorizations" or "LG
D-branes" (at a single critical value).

A starting point for our study is the observation 3 that there are three (essentially
equivalent, pairwise Koszul dual) refinements of this. Using f, one can put extra structure

'The author originally learned that such a result might be true from Jacob Lurie, who attributed it to
conversation with Dennis Gaitsgory. The author wrote up the mild extensions of Section A.2 before finding
Lunts' paper and realizing that it proved essentially the same thing.t

2 There are several ways one could wish to define DCoh(Xz): Our choice is as the compact objects in
QC!(Xz) which is constructed as the oo-categorical inverse limit along shriek-pullback of QC! on nilthickenings
of Z. See Theorem 4.1.2.8 for a sketch of the comparison and references.t

3 Due in parts to several people, notably Constantin Teleman for the connection to S'-actions.t
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(k[#] -linearity) on DCoh(Mo) and extra structure (an S1 -action or BGa-action) on DCoh(M)

or DCoh(Mo):

(i) One can regard DCoh(M) as linear over Perf(Al)O = (Perf k[x], 0k[x). Variant: One

can regard DCoh(Mo) = DCohmo (M) as linear over Perf(U)* = Perfo(A 1 )*.

(ii) (See Section 3.1.) The 2-periodicity on DSing(Mo) comes from a k[#]-linear structure
on DCoh(Mo), for which we give a (derived) geometric description in §3.1.1. We

call this k[#]-linear dg-category PreMF(M, f) to emphasize the dependence on f.
Despite the "Pre" in the name, PreMF(M, f) is a refinement of MF(M, f). We'll see

in Cor. 3.1.4.4 and Cor. 3.1.2.4 that PreMF(M, f) allows one to recover all the other

actors in the story:

PreMF(M, f) Okipl {locally /-torsion k[]3-modules} ~ Perf (Mo)

PreMF(M, f) O®lp, k((#))-mod ~ MF(M, f)

PreMF(M, f) Ok['3] k ~ DCohMo (M)

(iii) (See chapter 5.) There is a (homotopy) Sl-action on DCohmo(M) = DCoh(Mo). This

Sl-action is fundamental, as it allows one to recover the other actors in the story

(Cor. 5.2.1.4):4
DCoh(Mo)si ~ Perf (Mo)

DCoh(Mo)S ~ PreMF(M, f)

DCoh(M0 )Tate ~ MF(M, f)
where these equivalence are C*(BS 1 ) = k[]3-linear. Important Variants: One can

avoid completing along the zero fiber(/imposing support conditions) in two ways:

Replacing maps M -+ A' by maps M -4 Gm; or, replacing Sl-actions with BGa-

actions. The latter requires a diversion into the theory of derived formal groups acting

on categories.

Remark 1.2.0.1. There are two bits of Philosophy that can help to organize the tangled

list above, and that are worth bringing to the fore:

- In chapter 5 we note that for A a finite rank free abelian group (i.e., Z") and for V a

vector space one has equivalences

dgcat/GmAv ~ dgcat/B2A dgcat/ G.yv ~ dgcat/B2pr.

The left hand side should be thought of as a higher form of Cartier duality, and the

right hand side as a higher form of Fourier duality. In each case, one was classically

relating functions or locally constant sheaves on two "dual" abelian groups things.

Setting A = Z and V = k, let us spell out what these statements are saying. On the

left, it is saying that making something k[x, z- 1]-linear (e.g., a map from a scheme

to Gm) is the same as giving it an action of the simplicial group S1 = BZ. Under

this, invariants and coinvariants will go to two different notions of "the fiber over 1"

4 1t is important in the following formulas that we passed to compact objects: Taking invariants does not

commute with forming Ind categories.t
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that exist; there's a map between them, and the quotient is the Tate construction that
comes up so much. On the right, it is saying that making something k[x]-linear (e.g.,
a map from a scheme to Ga) is the same as giving it an action of the derived formal
group BGa.

Under this, invariants and coinvariants will go to two different notions of "the fiber over
0" that exist; there's a map between them, and the quotient is the Tate construction that
comes up so much. These two senses of taking fiber can be thought of as taking "star"
and "shriek" pullbacks of small dg-categories, where the "star" one takes Perf F4 Perf,
and the "shriek" one-at least along closed immersions, like the inclusion of a fiber-takes
DCoh F4 DCoh. This gives one explanation why Perf and DCoh of the fiber should
be k[#]-linear: k[#]3 is the "ring of functions" on B2Ga or B2Z.

- In chapter 3 and chapter 4 we take a slightly less categorical tack. The starting
point there is the following geometric incarnation of Koszul duality: If one has a map
f : E -* B, and one wants to study it in a neighborhood of the fiber over b E B, then
just taking the fiber Eb is insufficient. However, taking the fiber Eb and remembering
that it is acted on, in a homotopy sense, by the the loop space ObB is great-it lets you
completely recover the map f over the connected component containing b. Importing
this into algebraic geometry gives a way of working with the kl#-linear structure
using algebro-geometric methods.

Each viewpoint has its pros and cons for our purposes:

- Viewpoint (ii) is well-suited for reducing questions about PreMF(M, f) (resp., MF(M, f))
over k[#J (resp., k((#))) to questions about coherent complexes in (derived) algebraic
geometry. This will be the focus of Section 3.1 and Section 4.1. Using this we deduce
k[31- and k((#3))-linear versions of the tensor product theorem (Theorem 3.2.1.3) and
identifications of functor categories (Theorem 3.2.2.3). It is worth noting that in the
k[#]-linear context, certain support conditions appear naturally.5

- Viewpoint (iii) is well-suited to formulating comparisons between structures and
invariants for DCoh(M) over k, and PreMF(M, f) (resp., MF(M, f)) over k[3] (resp.,
k((#8))). It is needed for the finer points of many of our applications, such as computing
E2-algebraic structure on the Hochschild invariants in chapter 7.

1.3 Summary of results

For us an LG pair (M, f) consists of a smooth orbifold M and a map f: M -+ A', not
necessarily flat. Then PreMF(M, f) = DCoh(M XA1 0) is coherent complexes on the derived
fiber product, equipped with a certain k[31-linear structure depending on f; MF(M, f) =
PreMF(M, f) Okgg8 k((#6)) is its two-periodic version. Our main results are variants of the
"tensor product theorem" and description of functor categories in the k[#]-linear context:

Theorem 3.2.1.3 ("Thom-Sebastiani"). Suppose (M, f) and (N, g) are two LG pairs. Set
Mo = f-1(0), No = g-1(0), (M x N)o = (f [ g)-1(0), and let f: Mo x No -+ (M x N)o be
the inclusion. Then, there is a k[#1-linear equivalence

f.(- 0 -): PreMF(M, f) O®kpl PreMF(N, g) -~-+ PreMFMoxNo(M x N, f EB g)

5 In the 2-periodic case, it is largely possible to ignore these by e.g., summing over critical values.t
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Theorem 3.2.2.2 and Theorem 3.2.2.3 ("Duality and Functors"). Let (M, f), (N, g),
etc. be as before. Grothendieck duality for DCoh(M) lifts to a k[#]-linear anti-equivalence
PreMF(M, f )P ~ PreMF(M, -f), and with the above this induces a k[#]-linear equivalence
of dg-categories

Funk] (PreMF (M, f), PreMF" (N, g)) = PreMFc (M, -f)Skg PreMFc (N, g)

= PreMFMo x No (M x N, -f EB g)

In case (M, f) = (N, g), there are explicit descriptions of the identity functor and "evalua-

tion" (=Hochschild homology).

The reader is directed to the actual statements of the Theorems below for variants:

support conditions, the 2-periodic versions, and removing support conditions in the 2-periodic

setting.
As applications of the main results, we establish several expected computations and

properties MF.

Theorem 6.1.1.1. Suppose (M, f) is an LG pair. Then, MF(M, f) is smooth over k((#)),
and is proper over k((#)) provided that crit(f) n f-1 (0) is proper.

Theorem 6.1.3.4. Suppose (M, f) is an LG pair, m = dim M, and that M is equipped

with a volume form volM: O -m WM [-ml (= m). Then, volM determines an m-Calabi-Yau

structure (in the smooth, non-proper sense) on MF(M, f) over k((#)).

In the case of computing Hochschild invariants, we also obtain k[#]-linear refinements.

Theorem 6.1.2.5. The expected computations of 2-periodic Hochschild invariants for

matrix factorizations hold: There is a homotopy Sl-action on HH.(M) and HH*(M),
whose B-operator can be identified under HKR with df A - and iaf, such that

HH (MFt**(M, f)) = (HHk(M))Ta t e (~ RT (M;, ' )), . (-df A

HH((fi)) (MFt *t (M, f)) = (HH%(M))Tate (~ RTr (M, TM((#p)),3 -iaf))

Moreover, there are k[#]-linear refinements, which in the case of M a scheme can be explicitly

identified via HKR and local cohomology

HHk' (PreMF(M, f)) = HHk(DCohMo(M))Sl (~ RPM0 ([M;, 3 (-df A -

(The reader is directed to the body of the text for a more precise statement.)

Furthermore, the above Theorem gets spruced up:

- In chapter 5, we see that the Sl-action on HH.(M) and HH*(M) comes from a

BG-action on the dg-category DCoh(M) itself. Consequently, the description as Tate-

construction is compatible with all the functorially attached structures on Hochschild

invariants (SO(2)-action on HH., E 2-algebra structure on HH*, etc.).

- In chapter 7, we get a handle on this Sl-action in terms of the "adjoint action" by

f E HH 0 (M). Leverage a formality theorem of Dolgushev-Tamarkin-Tsygan [DTT],
we show that the above descriptions in terms of differential forms and polyvector fields

can be made to respect the "homotopy Calculus" structure on both sides.

13



Along the way, we stop for a few other nearby applications: Using a mild extension of
the "tensor product theorem" we prove an extension of Kn6rrer periodicity allowing one to
discard metabolic quadratic bundles; motivated by this, we identify matrix factorizations
for quadratic bundles with sheaves over Clifford algebras (and the k[#]-linear analog, upon
imposing a support condition).

Theorem 6.2.1.7 and Theorem 6.2.3.4. Suppose (M, f) is an LG pair, and Q a non-
degenerate quadratic bundle over M. View (0, q) as an LG pair. Then, the structure sheaf
O9 M induces equivalences

PreMF 4(Q, q) ~ PreCliffom(Q)-mod(QC(M)) and MF (Q, q) ~ Cliffe M(Q)z/2-moddgz/2 (QC(M))

Exterior product over M induces an equivalence

PreMF(M, f) OPrf(m)p] PreMFM(Q, q) -~- PreMF(Q, f + q)

and its 2-periodic analog. Finally, if Q is metabolic, in the sense of admitting a Lagrangian
sub-bundle Z C Q, then tensoring by Q& induces an equivalence

Oz ® -: Perf(M)[#1] = MF(M, 0) -+ MF(Q, q).

1.3.1 Comments

A few comments on the main ingredients and tools:

(i) In addition to the language of derived algebraic geometry, we make use of Grothendieck
duality/the upper-shriek functor for QC of derived schemes (and certain nice derived
DM stacks). Since the first version of this document became available, a preliminary
reference for this has appeared in [G]. Nevertheless, we have chosen to present (in
Section 3.2) a proof of the Main Theorems which we hope is reasonably concrete
and minimizes the use of this general machinery. If one is only interested in matrix
factorizations for a flat map f: M -+ A' from a smooth scheme, one only needs extra
input in one place: determining the kernel of the identity functor in Theorem 3.2.1.3 uses
duality and base-change properties on some very mild derived schemes. Nevertheless,
even this proof uses some results from Section A.2-the Appendix contains some fairly
meaty arguments.

(ii) We were heavily inspired by Constantin Teleman's description of PreMF (resp., MF)
arising as Sl-invariants (resp., Tate construction) of perfect complexes on the total
space: this proves to be a great organizational principle, as well as a useful tool for
obtaining natural comparison maps.

(iii) The k[l-linear structure, and its relation to DSing of a hypersurface, is well-known in
the commutative-algebra literature (as "cohomology operations" on DCoh of ci rings).
Seidel's preprint [S] also explicitly mentions the description of DSing as arising by
inverting # on PreMF.

(iv) We freely use abstract oo-categorical tools from [L9] to make life easier: relative tensor
products, Ind completions, limits and colimits (esp. in PrL and PrR). Similarly, we
use results in "higher algebra" from [L6]: structured module categories for Ek-algebras,
etc.

14



Chapter 2

Notation and background

2.1 Gradings, categories, etc.

2.1.1 Grading conventions

- We work throughout over a fixed characteristic zero field k.

- We use homological grading conventions (i.e., differentials increase degree) and we

write 7ri for H' = Hj; e.g., Ext(M, N) = gri RHom(M, N)). For a chain complex

M, the symbol M[n] denotes the chain complex with M[nlk M._.- (i.e., if M is in

degree 0, then M[n] is in homological degree +n).

- k[#], k((3)) will denote the graded-commutative k-algebras with (homological) deg/3 =

-2. Fix once and for all an equivalence C*(BSl; k) = k[#] (say by /3 '- c1(0(1)) in

the Chern-Weil model for ci).

- We will write t-bounded-below for what might otherwise be called homologically bounded-

below = cohomologically bounded-above = almost connective = right-bounded. Similarly

for t-bounded-above = homologically bounded = truncated = left-bounded; and for

t-bounded = (co/)homologically bounded. For example, if A, B are discrete R-modules,
L

then A 0 B is t-bounded-below, while RHom(A, B) is t-bounded-above.

2.1.2 Reminder on dg-categories and oo-categories

For background on oo-categories and dg-categories, the reader is direct to e.g., [L9} and [T2].

- Let dgcatk be the oo-category of k-linear dg-categories with quasi-equivalences inverted;

a Theorem of Tosn identifies this with (the coherent nerve of) the simplicial category

whose morphisms are (Kan replacements of the nerve of) a certain full subspace of the

oo-groupoid of bimodules. Let dgcat?" be the oo-categorical "Morita localization" of

dgcatk; it may be identified with the oo-category of small stable idempotent complete k-

linear oo-categories (with exact k-linear functors). Let dgcat' denote the oo-category

of stable cocomplete k-linear oc-categories (with colimit preserving k-linear functors).

- We will generally write Map for simplicial mapping spaces and RHom (with various

decorations) for k-linear mapping complexes, so that e.g., Map(x, y) ~ Q00 RHom(x, y).
(Q' denotes taking the infinite loop space corresponding to a spectrum; if RHom(x, y)
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is viewed as a k-linear chain complex, this may be interpreted as applying the Dold-Kan
construction to the connected cover r>o RHom(x, y).)

- dgcatidm (resp., dgcato) is equipped with a symmetric-monoidal tensor product

0 = Ok (resp., 0 = 0k). These satisfy the compatibility Ind(C 0 e') = Ind e Ind e'.
(In particular, 0 preserves the property of being compactly-generated.) 1

- Many of our dg-categories will be R - k[#]- or R - k((#))-linear, in the sense
of being module-categories for the symmetric-monoidal o-categories Perf(R) E
CAlg(dgcatgkm) (resp., R-mod E CAlg(dgcatk)): Heuristically, this is a e E
dgcat4m equipped with a k-linear 0: Perf(R) x C -+ C suitably compatible with OR
on Perf(R). This notion gives rise to the same oo-categories dgcat"m (resp., dgcatR)
as the more rigid notion of literal R-linear dg-category, but is more convenient for
our purposes. If R is a commutative dga, when no confusing arises we will sometimes
write R in place of Perf R or R-mod: i.e.,

COR C OPerf R OR = C OPerf R Perf

D RD'def DR-modD 9®RR' 9R-modR'-mod

- The internal-Hom associated to (R will denoted Fun (-, -) (the "L" standing for left-
adjoint, i.e., colimit preserving); FunR(-, -) is explicitly a dg-category of bimodules.
Similarly, Fun'(-, -) will denote the oo-category of exact (i.e., finite limit- and
colimit-preserving) functors, etc.

- If e E dgcatem or dgcatR, then there is a functor RHom"(-, -): ( x e -* R-mod
determined up to contractible choices by

MaPR-mod (V RHom=()) Mape (V OR 9, 9) for V E Perf(R), and , 9 E C

Similarly if R-mod is replaced by another rigid cocomplete symmetric-monoidal oo-
category (e.g., QC(X) for X a perfect stack).

- PrL (resp., PrR) denotes the oo-category of presentable oo-categories and left (resp.,
right) adjoint functors. They are anti-equivalent, admit small limits and colimits, and
forgetting down to Cat. preserves limits. Colimits in PrL of a diagram of compactly-
generated categories along functors preserving compact objects can be computed by
taking Ind of the colimit of the resulting diagram of categories of compact objects.

2.1.3 Derived schemes, stacks, etc.

Mild derived schemes will come up naturally for us. In order to be able to uniformly discuss
the orbifold, and graded, contexts we will also need some mild derived stacks. The very
simplest variants suffice for our desired applications, since for us all the derivedness will
be affine over an underived base. Nevertheless, we find it convenient to use the general
language (and in Section 4.1 and the Appendices we prove things about derived stacks more
general than necessary for our applications). Our primary references for derived algebraic
geometry are [L2], the DAGs, and Toen/Tosn-Vezzosi. Since there does not seem to be a
good universal source for notation or terminology, we make clear our choices:

'Warning: This use of the symbol & is not the same as in [L4].T
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- Our derived rings, DRngk, will be connective commutative dg-k-algebras. We say
that A E DRngk is coherent (resp., Noetherian) if r0A is coherent (resp., Noetherian)

and each ri;A is finitely-presented over 7r0 A. Meanwhile, DRng will be the full
subcategory of almost finitely-presented commutative dg-k-algebras (=those which are
Noetherian with ir0 A finitely-presented over k). A(n almost finitely-presented) derived

space is an 6tale sheaf in Fun(DRng , Sp). A(n almost finitely-presented) derived
n-stack is a derived space which admits a smooth surjection from a disjoint union of
affine schemes, such that this map is a relative derived (n - 1)-stack. (For n = 0, take
one of affine derived schemes, (Zariski) derived schemes, or derived algebraic spaces.
The first notion gives rise to "geometric n-stack," while the last gives the one most
easily comparable to usual stacks.)

- A derived scheme is a Zariski-locally (derived-)ringed space X = (X, Ox) which is

locally equivalent as such to the Zariski spectrum Spec A for A E DRngk. A derived

DM stack (resp., derived algebraic space) is an 6tale-locally (derived-)ringed topos

X = (X, Ox) which is locally equivalent as such to the 6tale spectrum Spec A for
A E DRngk. 2 . Having said that, we will forget it: We will identify (almost finitely-
presented) derived schemes/derived algebraic spaces/derived DM-stacks with their

functors-of-points as derived spaces, and will restrict to quasi-compact ones with affine

diagonal (so that affine derived schemes are the building blocks).

- For a derived n-stack X, there is a universal discrete (aka "-truncated") derived
n-stack mapping to it: 7roX = Specx(7ro0x) -+ X . Note that this morphism is

affine and indeed a closed immersion. Note also that 7roX is in the essential image of

"ordinary" Artin n-stacks (for n = 1, it seems justifiable to remove the quotes around
ordinary!).3

- For a derived stack X: QC(X) denotes the k-linear (stable cocomplete) oo-category

of quasi-coherent complexes on X; it is equipped with a natural t-structure, whose

heart QC(X)9' is equivalent to the (ordinary) category of quasi-coherent complexes

on 7roX. Perf(X) C QC(X) is the full-subcategory of perfect complexes; if X is a

quasi-compact and (quasi-)separated derived scheme, or more generally perfect in the

sense of [BZFN], then QC(X) = Ind Perf(X). PsCoh(X) C QC(X) denotes the full-

subcategory of pseudo-coherent (= "almost perfect") complexes, i.e., those F E QC(X)
that are (locally) t-bounded-below and such that r<. E QC<,(X) is compact for all

n E Z.

- We say that a derived stack X is coherent (resp., Noetherian) if it admits an fppf
surjection from Spec A with A a coherent (resp., Noetherian) derived ring. If X is

2 Except for algebraic spaces, these definitions are more restrictive than those in [L2], disallowing any

derived-ness in the gluing process. This is rigged so that e.g., a derived DM stack will have an underlying

(1-)stack.t
3 In particular, for n > 1, 7roX need not be equivalent to an ordinary (1-)stack. The issue is most

apparent when thinking of derived (DM) stacks in terms of oo-topoi, where the issue is analogous to the

difference between an (ordinary) DM stack and a coarse moduli space. Writing X = (X, Ox), we have

7roX = (-V, WoOx). There is an underlying (ordinary) DM stack X = (r<oX, 7roox), but the natural map
X -+ i<or<o 9 need not be an equivalence. The prototypical failure mode is the following: Choose E. a

simplicial diagram of (ordinary) stacks etale over X, and let X' be the oo-topos of etale sheaves of spaces on

r<oX over the geometric realization lE.1; then (X', 7ro0x I ,) is a perfectly good discrete DM stack, which

is not in any reasonable way a nilthickening of an ordinary DM stack.t
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coherent, then PsCoh(X) admits an alternate description: Y E PsCoh(X) iff - is t-
bounded below and 7rF is a coherent 7roX-module for all i. Let DCoh(X) C PsCoh(X)
denote the full subcategory of coherent complexes, i.e., complexes with locally bounded,
coherent (over roX), cohomology sheaves. Let QC!(X) Ind DCoh(X) denote the
oo-category of Ind objects of DCoh(X) ("Ind coherent complexes").4 We say that X
is regular if Perf(X) = DCoh(X). 5

- We say that a derived n-stack X is bounded if it admits a smooth surjection U
Spec A -+ X which is a bounded relative (n - 1)-stack. A 0-stack (derived scheme
or algebraic space) is bounded if it is quasi-compact and quasi-separated. This is an
analog of the technical condition that a scheme is quasi-compact and quasi-separated,
but buys one somewhat less: One can try to compute pushforwards via a Cech complex,
but this now involves a cosimplicial totalization (rather than a finite limit) and so only
commutes with colimits, finite Tor-dimension base-change, etc. on t-bounded-above
complexes.

- With all that out of the way, we now introduce two convenient conditions on a derived
stack X (the conditions are somewhat redundant for clarity):

X is Noetherian, has affine diagonal, and is perfect (*)

X is Noetherian, has finite diagonal, is perfect, and is Deligne-Mumford (*F)

A (*) (resp., (*F)) morphism f : X -+ Y of Noetherian derived stacks is one such
that X xy Spec A is an (*) (resp., (*F)) derived stack for any Spec A -+ Y almost of
finite-presentation.

It will be our standing assumption that any derived stack (including plain schemes)
for which we consider DCoh or QC! satisfy condition (*) (and usually they will satisfy
(*F) and be almost finitely-presented over k). Note that (*F) holds for separated
Noetherian schemes, and in char. 0 for separated Noetherian DM stacks with affine
diagonal whose coarse moduli space is a scheme. Both conditions pass to quotients by
finite group schemes (in char. 0), and BG is (*) for G reductive (in char. 0); both pass
to things quasi-projective over a base, and are stable under fiber products provided one
of the maps is almost of finite-presentation (to preserves the Noetherian condition).

2.1.4 LG pairs

- An LG pair (M, f) is a pair consisting of a smooth (*F) stack ( "orbifold") M over k,
and a morphism f : M -+ A'. (We do not require f to be non-zero. However, if f is
not flat, various fiber products throughout the paper must be taken in the derived
sense.) If (M, f), (N, g) are two LG pairs, define the Thom-Sebastiani sum LG pair to
be (M x N, f E g) where (f @ g)(m,n) = f(m) + g(n).

4This is not the best definition for arbitrary X, since it does not manifestly have descent. Instead, one
should make this definition on affines and then extend by gluing as in Section 4.1. But Section A.1 implies
the two agree on, e.g., reasonable DM stacks.t

5For X = Spec R coherent with 7roR a Noetherian local ring, the inclusion DCoh(X) C Perf(X) is
equivalent to requiring that the residue field k = R/m be perfect over R. For X = Spec R coherent, the
inclusion Perf(X) C DCoh(X) is not automatic since R as it requires that R have only finitely many
non-vanishing homotopy groups each of which is finitely-presented over 7roR; e.g., it is satisfied for anything
of finite Tor-amplitude over an underived stack. If X = Spec R coherent with 7roR Noetherian, it seems likely
that X is regular iff R = iroR is a regular ring.t
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- For an LG pair (M, f), PreMF(M, f) denotes the k[#]-linear oo-category with un-
derlying k-linear oo-category DCoh(M) and 3 acting as a "cohomological opera-
tion". See Construction 3.1.1.5 below for a geometric description of this structure.
Then, MF(X, f) denotes the k((/))-linear (i.e., 2-periodic) oo-category MF(X, f) ='
PreMF(X, f) Ok p k((#)). (The relation of this to actual "matrix factorizations" is
given by Prop. 3.1.4.1 and Orlov's Theorem [02].) We also define Ind-completed
versions:

PreMF' (X, f) n Ind PreMF(X, f)

MF' c(X, f) ' Ind MF(X, f) = PreMF' (X, f) 'kp k((#B))

- [ eji], i.e., it is placed in homologically positive degrees. Meanwhile, WM
denotes the dualizing complex in its natural degree (not generally zero). With these
conventions if M is smooth of dimension m, then wM - Qn [m] is in homological
degree n and there is a sheaf perfect-pairing A: Og 0om fJ* -4 wM. Similarly

lei / TM [-i],i.e., it is placed in homologically negative degrees.

2.2 Primer on QC = Ind DCoh

2.2.0.1. The usual construction of Ind e, as the full subcategory of the functor category
Fun(e, Sp) generated under filtered colimits by the image of the Yoneda functor, provides a
description

QCI(X) =FunLex(DCoh(X)*P, Sp) DCoh(X) 3 X '-* RHom(-, X) E FnLex(DCoh(X)*P, Sp)

where FunL" denotes the full-subcategory of functors preserving finite limits. In dg-
language, this translates to an identification of QCI(X) with (a full subcategory of)
dgmodk(DCoh(X)*P): (the derived category of) dg-modules over a dg-category model

DCoh(X)*P. Our first step will be giving a slightly smaller model:

Lemma 2.2.0.2. Suppose that X is a coherent derived stack.

(i) Let i: (-7oX) -+ X be the universal map from a discrete stack (i.e., Specx(iroOx) -4

X), and i,: DCoh((iroX)) -) DCoh(X) the pushforward. Then, the image of i,
triangulated-generates DCoh(X). In fact, objects of the form i,9, for 9 E DCoh(7roX)' =

Coh(noX), triangulated-generate DCoh(X).

(ii) The right-adjoint i!: Ind DCoh X -+ Ind DCoh(7roX) to i,: Ind DCoh(iroX) -+ Ind DCoh X
is conservative.

(iii) Suppose that -A' c 7r00x is a nilpotent ideal sheaf (e.g., the nilradical on a Noetherian

derived stack). Let i 2 : X' = Specx iro0x/. 4 -+ X be the corresponding map from the
discrete derived stack X' = Specx ro0x/|A'. Then, the image of (i2 ), triangulated-

generates DCoh(X). In fact, objects of the form (i2 ),., for Y E DCoh(X') =

Coh(X'), triangulated-generate DCoh(X ).

Proof. (i) Suppose 9 E DCoh(X), and consider the Postnikov stage

(k~~g -- +T>g -- + (7rk.F)[kI
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Note that wrF is a coherent iroDx-module since 9 E DCoh(X), and thus is in the
essential image of i,.. Since X is quasi-compact and 9 E DCoh(X), only finitely many
k are non-zero, completing the proof.

(ii) Suppose F = "li" E Ind DCoh X is such that iKg = 0. It suffices to show that

0 = MapIndDCohx(X, F) = 11 MapQc(x)(X, 9a) for all X E DCoh(X). By (i),

it suffices to note that 0 = MapInd DCoh X (i*X', 9) = MapInd DCoh X (W', i!Y) for all

K' e DCoh(woX).

(iii) By the above it suffices to show that the triangulated closure of the image contains
i,F for 9 E Coh(7roX). The filtration of 9 by powers of -AY

,FD-r Dy 2 g D..

is finite by hypothesis, and each associated graded piece is in the essential image of

(i2 ),. 

This yields the following comforting description of QCI(X):

Corollary 2.2.0.3. Suppose X is a Noetherian derived scheme. Let C denote a dg-
category whose objects are ordinary coherent sheaves on 7roX and whose morphisms are
RH om0 ( i,9). Then, QC' (X) may be identified with (a full subcategory/localization
of) the dg-category of dg-modules over CP.

Alternatively, let C' be the dg-category whose objects are coherent sheaves on (7roX)"d
and whose morphisms are as above. Then, QC'(X) may be identified with the (a full
subcategory/localization of) dg-category of dg-modules over (C')*P.

2.2.0.4. In case X is a (discrete) Noetherian separated scheme, there are more explicit
dg-models for QCI(X) and QCI(X)v = Ind(DCoh(X)0 P) in the literature:

- K(Inj X) the "homotopy" dg-category of (unbounded) complexes of injective quasi-
coherent sheaves. This description emphasizes that "the difference" between QCI(X)
and QC(X) is that the later is complete with respect to the t-structure, i.e., acyclic
objects are equivalent to 0. It models QCI(X) by results of Krause.

- Km(Proj X) Murfet's "mock homotopy category of projectives" (after Jorgensen and
Neeman). In the affine case, one can literally take the dg-category of (unbounded)
complexes of projective quasi-coherent modules, while in general one must take a
certain localization of the dg-category of (unbounded) complexes of flat quasi-coherent
modules. It models QCI(X)v by results of Neeman and Murfet.

One can give similar dg-models in the derived setting, based on Positselski's coderived and
contraderived categories of dg-modules.

Notation 2.2.0.5. Suppose S is a perfect stack, so that QC(S) = Ind Perf (S).

- If f: X -+ S is a relative derived stack, then QC(X) is a QC(S)-module category (via
the symmetric monoidal pullback functor). This gives rise to an inner-Hom functor
'R'KomQf(X): QC(X)*P x QC(X) -+ QC(S) characterized by

MapQC(S) T, Q'om X($, )) = Mapac(x) (f*T 09o 9, 9)Y Qfom® - )(fg, 9
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for all T E Perf(S), and 9, 0 E QC(X). If X = S, then we will omit the superscript

Os. If S = Speck, we will write RHomQc(X)-

- If f: X -+ S is an S-scheme, then QCI (X) is a QC(S)-module category. This gives
rise to Yoms : QCI(X)OP x QCI(X) -+ QC(S) characterized by

QC, (X) Q!

MapQc(s) T, T5om C '(X)(g, ) = MapQC'(X) (f*T 0ox 9, 9)

for all T E Perf(S) and $, E9 ( QC (X). If X = S, then we will omit the superscript

Os. If S = Speck, we will write RHomQC (X). If 9, 9 E DCoh(X), we may write

'RfJomQ(X) (, 9) or RHomQc(X)(9, 9 ): Since DCoh(X) -+ QC(X) is fully-faithful,
there is no ambiguity.

Note that if Y E Perf(X) (or 9 E DCoh(X)) then f*T ®Ox 9 is compact in QC(X) (or

Ind DCoh(X)) for all T E Perf (S), so that fWoms (g, -) preserves colimits.

Notation 2.2.0.6. There is a natural localization functor FM: QCI(X) -+ QC(X), charac-
terized by preserving colimits and taking the compact-objects DCoh(X) to themselves

FM

It is a colimit-preserving functor between presentable oo-categories, and so admits a right-

adjoint FR: QC(X) -+ QC!(X). In terms of the identification QC!(X) = FunLex(DCoh(X)oP, Sp),
FR is just the restriction of the Yoneda embedding; in particular, the restriction of FR to

DCoh(X) is the natural inclusion DCoh(X) -+ Ind DCoh(X).
The names for the functors are motivated by the following: Suppose that X is perfect and

that Perf(X) c DCoh(X); let F: Perf(X) -+ DCoh(X). Denote by FL: Ind Perf(X) -+
Ind DCoh(X) the colimit extension of F. Then, FL is left-adjoint to FM, while FM is

left-adjoint to FR (so, "left", "middle", and "right").6

2.2.0.7. Associated to a bounded morphism f: X -+ Y of derived stacks, one can attach

a variety of functors. The reader is directed to [G] for more on the construction. With

notation as above:

Construction 2.2.0.8. Suppose F: QC<e (X) -+ QC<. (Y) is a colimit-preserving functor

(on t-bounded above quasi-coherent complexes) which is t-bounded above in the sense

that there exists a constant N such that F(QC(X)<k) C F(QC(X)<k+N). Then, define

-F: QCI(X) -+ QC!(Y) as the filtered-colimit extension of the composite

DCoh(X) + QC(Y) A QC!(y)

Since FM o FR = id, it follows that FM o IF o FR = F. The importance of the t-boundedness

condition is that FR commutes with t-bounded above (but not arbitrary) colimits, so that

the condition guarantees that FR o F = o FR on t-bounded above objects.

6 Suppose that X is perfect, so that QC(X) = Ind Perf(X), but that Perf(X) ( DCoh(X) (e.g., X = Spec R
with R having infinitely many homotopy groups). In this case, our notation is potentially confusing since Fm

need not admit a left-adjoint "FL": Since FM is itself a left-adjoint, any such FL would have to preserve

compact objects; in particular, the colimit extension of FRIp,, (X) : Perf(X) -+ Ind DCoh(X) cannot be the

left-adjoint of FR in this case.t
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In particular, the t-bounded-above condition guarantees that the construction is compat-
ible with composition of functors: If F: QC(X) -+ QC(Y) and F': QC(Y) -+ QC(Z) are
two functors, one would very much like for the natural map ' o I -+ '(F' o F) to be an
equivalence. Everything is colimit-preserving, so it suffices to check on the compact objects
X E DCoh(X), which are bounded above and remain so after applying F, so that

' o -(X) = 'o FR o F(X) = FR o F'o F(X) =(F'o F)(X)

- The functor f.: QC<oo(X) -+ QC<Q,,(Y) is colimit-preserving and t-bounded above.
Therefore, it gives rise to a functor f.: QC'(X) - QCI(Y) by the above procedure. If
f is a bounded relative proper algebraic space,7 then f, preserves compact objects.

- Provided f is of finite Tor-dimension, the functor f*: QC(X) -+ QC(Y) will be colimit
preserving and t-bounded above (and below). In this case, it gives rise to a functor

f*: QC(Y) -+ QC(X) as above. Furthermore, there is an adjunction (f*, f.).

- The functor fI = Dof*oDy: QC<.(Y) -+ QC<oo(X) on t-bounded above complexes
is colimit preserving and t-bounded above. (In case f is of finite Tor-dimension,
f!(-) ~ wf 0 f* (-) is well-behaved with no boundedness though still preserves
boundedness.) Consequently, it gives rise to a functor f': QC!(Y) -+ QC!(X).

- To understand fl, it will suffice for our purposes to recall explicit formulae for two
special cases: If f is finite (i.e., affine, with f*0x pseudo-coherent) then f!(-) =
RHomx(f* Ox, -) equipped with the evaluation-at-one trace map trf: f~fI -+ id. If f
is quasi-smooth (i.e., finite-presentation and Lf of Tor-amplitude in [0, 1]), then f! (-) =
det Lf 0 f*(-) equipped with the Berezinian integration trace map trj: f*f! -* id.

2.2.0.9. The natural functors on QC, f* and f., are simply adjoint and so determine one
another. In contrast, properly spelling out the relations between the two natural functors,
f! and f., on QC' requires some (oo, 2)-categorical structures which we won't get into here

(e.g., one needs to remember the transformation trf: f~f! -+ id when it exists, etc.). Instead,
we'll just mention a few facts (that hold in say, the (*F) case)

The formation of f* commutes with flat base-change on the target. The formation of f!
commutes with flat base-change on the target and 6tale base-change on the source. If f is
finite8 the natural transformation try : f~f! -+ id is the co-unit of an adjunction (f., f ).

Given a commutative square

X, >

there is an equivalence (g'),(f') ~ f g, e.g., in case f proper as the composite

(',f)ctrf ((g')*(F)') Il fg.(trf,)

and in case f smooth a map the other way deduced from the projection formula, base-change,
and the map (g')* det Lf -+ det Lp. This natural transformation is an equivalence when

70r e.g., a sufficiently nice bounded relative proper DM stack in characteristic zero.t
8or with more difficulty: a bounded relative proper algebraic space, or a sufficiently nice bounded relative

proper DM stack in characteristic zerot
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the square is Cartesian: Using compatibilities with base-change, the claim is 4tale local
on X and Y, so we reduce to the case where f: X -+ Y admits a factorization as a finite
morphism followed by a smooth morphism; it then remains to check (using the standard
QC tools, e.g., base-change for star pullback, the projection formula, etc.) that the natural
transformation is an equivalence in each of the two cases.
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Chapter 3

From coherent complexes to
matrix factorizations: Derived
(based) loop spaces, and first
proofs of Theorems

3.1 Generalities on PreMF and MF

3.1.1 Preliminaries

Construction 3.1.1.1. For the duration of this section, set

B = 0 XA1 0 = Spec k[B]/B 2  deg B = +1

B admits the structure of derived group scheme (i.e., its functor of points admits a factoriza-

tion DRng -+ MonS)(sSet) -+ Kan, where MongP(sSet) denotes group-like Segal-style
monoids in sSet) by "composition of loops". Since A' = Ga is a commutative group scheme,
B admits the structure of commutative derived group scheme (i.e., its functor of points
admits a factorization DRng -+ sAb - sSet) by considering "pointwise addition of loops."
These two structures are in fact strictly compatible (i.e., determine a factorization of the
functor of points as DRng -+ Mong'(sAb) -+ sSet refining each of the other two in the

obvious way).

- The ("loop composition") product pi: B x B -+ B and identity id: pt -+ B may be

explicitly identified as

p: B x B = (0 XA1 0) x (0 XA1 0) ~ 0 XA1 0 XA1 0 ±14 0 XA1 0

id: pt 4 pt XA1 pt = B

The rest of the Segal-monoid structure admits a similar description via projections and
diagonals. A homotopy inverse is given by the explicit anti-isomorphism i: B ~ BP
which on underlying space can be identified with

i: B = pt xA1 pt swith pt XA1 ptB
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- The ("pointwise addition") product +: B x B -+ B, identity 0: pt -+ B, and inverse
B ~ B*P may be explicitly identified as follows: The commutative diagram

0 x 0 --- 0

A' xA1 +- 0 A'

gives rise to a map

+: B x B ~ (pt x pt) XA1xA pt X pt -+ pt x4 pt = B

Analogously, base changing the identity 0 -+ Al and the inverse map -: Al -+ A' one

obtains maps

0: pt = 0 xO 0 -- 0 XAi 0 = B

-: B = 0 xA1 0-- 0 xA1 0 =B

and an (anti-)isomorphism -: B ~ B*P.

- For R E DRug, let R. = MapDpng(k[x], R) E sAb. In terms of functor of points on
DRng, we have

B(R.) = Map,(S1, R.)

which is equipped with a Segal-monoid structure ("loop composition") via mapping in
wedges of length n

[n] '-+ Map,(unAl/ LJ A0, Re)

For any pointed simplicial set X, Map,(X, R.) is naturally a simplicial abelian group
via the composite

Map,(X, R.) 2 = Map,(X, R2) -+ Map,(X, R.)

providing the lift to Mong"(sAb).

We will heuristically write these (indicating e.g., maps on (7ro of) functor of points) as

p: B(R.) x B(R.) 3 ([hi: 0 - 0], [h2 : 0 -+ 0]) - ([hi -h2 : 0 % 0 % 0]) E B(R.)

and

+: B3(R.) x B(R.) E ([hi: 0 -+ 0], [h2: 0 -+ 0]) - ([hi + h2: 0 -+ 0]) E B(R.)

Construction 3.1.1.2. Let (QC(B), o)* denote QCI(B) equipped with its symmetric
monoidal convolution product: 9 o 9= +,(W 0 9).

More precisely: Construction 3.1.1.1 provides a lift of B to (B, pi, +) E Mon(CMon(Der. Sch.)).
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Composing with the lax symmetric monoidal (via exterior product) functor

X - QCI(X), f - f,

one obtains (QCI(B), o,, o+) E A1g(CAlg(dgcat')). Finally, (QCI(B), o)O is the image of
this under the forgetful functor to CAlg(dgcatk).

Remark 3.1.1.3. One can give explicit dg-algebra models for the two products on B, for
the two actions, and an equivalence between the two (as well as an equivalence with a
convenient smaller non-Segal model for loop composition).

Consider the following diagram of cosimplicial commutative dg-algebras:

deg E=+1

degBi=+1 deg 7;=+1

where the cosimplicial structure maps, and morphisms, are

- The middle term models the co-commutative "pointwise-addition" co-multiplication
(and co-identity) on k[x] [Ei, e2]

A+(x) =x®1+ 1ox A+(ei) = e 0 1+ 10 Ei coid+(x) = 0

under the evident identification of the n-th term with the n-fold tensor product of

k[x][ei, e21-

- The right-hand term models the (Segal-style) "loop composition" co-multiplication

(and co-identity) on k[x] [yi, y2] (note that the n-th term is quasi-isomorphic to the
n-fold tensor product, though isn't strictly isomorphic to it).

- The left-hand term gives a compact model for both. It comes from the co-commutative
co-multiplication on k[B]/B 2 given by A(B) = B 0 1 + 1 ® B, coid(B) = 0.

- The right-hand map sends all x to x, and e '-4 -yi+j-1. It is a weak equivalence.

- The left-hand maps sends Bi -+ e - e'. It is a weak equivalence.

The next (standard) Proposition is the starting point for this Section. Morally, it is the
following Koszul duality computation: One identifies (93 ~ C,(Sl; k) as Eoo-coalgebra in
dg-algebras, so that a cobar construction yields kI[] ~ C* (BS 1 ; k) as Eoo-algebra. (Alterna,

tively, replace S1 by the abelian dg-Lie algebra k[+11: U(k[+1]) ~ O and C*(k[+1I]) = k[3].)

Proposition 3.1.1.4. There is a symmetric monoidal equivalence (QCI(B), o)* ~ (k[#]-mod, ®kgPIa),
given on compact objects by (a suitable enrichment of)

DCoh(B) E V '-+ VS1 = RHom 3 (k, V) E Perf k[]

'In general, the correct way to say this would require considering a suitable coCartesian fibration

(QC', f.) -+ Der. Sch, and then pulling back along the A*P x I-shaped diagram encoding (B, y, +). In the

present case, however, all the maps are finite so that it is not hard to give a strictly functorial diagram of

categories.T
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Proof. It suffices to prove the equivalence on compact objects. We will carry out the

computation in the explicit (characteristic zero) dg-model for 09 of Remark 3.1.1.3. Let

Cpx(B) denote the (ordinary) category of dg-(9a-modules, and Cpx(k[J) the (ordinary)

category of dg-k[31-modules.

Identify

O = k[x] [Ei,e2] /1 Ei 0
11 dci = x

deg e=+1

as commutative dg-k-algebra (recall, related to the smaller model by B = cl - E2). The +-

comultiplication, -coidentity, and -coinverse of Remark 3.1.1.3 make OB into a cocommutative,
commutative, dg-Hopf algebra. Then, A+, coid+, and - Ok - equip the (ordinary) category

Cpx(B) with a symmetric monoidal structure by setting

M 0D M' d (A+),(M EM M')

with unit k = coid+(k) and the evident associativity, unitality, and commutativity constraints

coming from those for 9k on complexes of k-modules.

Recall the Koszul-Tate semi-free resolution

k - OB [u'/m!] / {du = El - 62}

degu=+2

on which k[#] acts by # = d/du. This gives rise to the usual explicit model for (-)S' (recall

B = ei - 62) as a functor on (ordinary) categories of complexes

((V, dint))s3 = RHomoa-mod (OB [u'/m!] , (V, dint)) = (V[#], dint + 3B)

It will be more convenient for our purposes to instead work with the functor

F: Cpx(B) -+ Cpx(k[#3]) F(V) = V (o. (O3#], #3B) = (V[#], dint + #B)

Note that for V bounded-above (resp., homologically) the natural map F(V) = V 00B

(0[#], #B) -+ VS' is an isomorphism (resp., equivalence). 2 The functor F is monoidal via

the natural isomorphism

F(V, dint) O®qa F(V', dint) = (V[3], dint + 3B) Okp8] (V'[3], dint +3B)

-- + ((V Ok V')[#], dint 0 1 + 10 dint +#B(B 0 1 + 1 @ B))

= F [(V, dint) 0 (V',dint)]

and the equality F(k) = k[#1 of tensor units, evident compatibility with associativity, etc.

The symmetry isomorphisms on both sides are given by the usual graded-commutativity

2 On homologically bounded-above complexes, it follows that F preserves quasi-isomorphisms. On arbitrary

complexes it need not: Say that a map #: V -+ V' is an F-equivalence if F(#) is a quasi-isomorphism, and let
F~ denote the collection of F-equivalences. One can show that: every F-equivalence is a quasi-isomorphism,
but not vice versa; the localization Cpx(O)[(F~)-'] is naturally identified with IndDCoh(B), so that F
induces a functor Ind DCoh(B) -+ k[#]-mod which one can show is an equivalence; since every F-equivalence
is a quasi-isomorphism, we obtain Cpx(O)[(F~)~ 1 ] -+ Cpx(OB)[qiso-1] = QC(B) which coincides via the
above with the usual localization functor.T
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rules, and # is even, so that F is symmetric monoidal.
Note that the symmetric monoidal unit 9 id = k E DCoh(B) generates DCoh(B) under

cones and shifts (c.f., Lemma 2.2.0.2): For any V E DCoh(B) simply consider the finite
Postnikov stages -r>(m + 1)V -+ T>mV -+ (7rmV)[m], and observe that .rmV[m] is a

7roB = k-module. It follows that F ~ (-)S' takes DCoh(B) to Perf k[#].We claim that F
can be used to construct a symmetric-monoidal functor of oo-categories (DCoh(B), o)* -+

(Perf k[31, ®kigg)® which is equivalent to (-)S' on underlying categories. Assuming the
claim, we complete the proof. A symmetric-monoidal functor is an equivalence iff it is so
on underlying oo-categories so that it suffices to show that RHomo,-mod(k, -): DCoh(B) -+
Perf k []3 is an equivalence. The map of complexes k [#] -+ RHonj-mod (k, k) described
above is evidently a quasi-isomorphism. Since DCoh(B) is stable, idempotent complete, and

generated (in the stable, idempotent complete sense) by k it follows by Morita theory that

the functor RHomo-mod(k, -) is an equivalence.
The rest of the proof will be devoted to giving the details of obtaining from F a symmetric

monoidal functor of oo-categories:

- Equip Cpx(0]) with its injective model structure, i.e., the weak-equivalences and

cofibrations are maps which are so on underlying complexes. Together with 0 above,
this makes it into a simplicial symmetric-monoidal model category in the sense of

[L3, Def.4.3.11]; e.g., the compatibilities of tensor and weak-equivalences/cofibrations
follow from the analogous statements for chain complexes over k. It follows that

the symmetric-monoidal oo-category (DCoh(B), o)® -+ N(F)O admits a description

as the homotopy coherent nerve of a fibrant simplicial category (Cpxo,DCoh(OB))®

over r formed as follows: Its objects are tuples ((n), C1,..., Cn) with (n) E F and

with each C; a bounded-above injective-fibrant dg-O-module with bounded coherent

cohomology, and its simplicial mapping spaces are

Map (((n), C1 . .. , Cn) , ((mn), Cl, .. ., C,)) = C 'Cac'(s e1g
a:(n)-(m) 1 jin

with the evident composition law.

- Equip Cpx(k[#]J) with its projective model structure, i.e., weak-equivalence and fibra-
tions are maps which are so on underlying complexes. Equipped with OkV, it is also

a simplicial symmetric-monoidal model category. So (Perf k[#8], Ok[pfi) -+ N()*
admits a description as the homotopy coherent nerve of a fibrant simplicial category

(CpxoPerf(k[]))* over F formed as follows: Its objects are tuples ((n), C1,... , Cn)

with (n) E r and with each Ci projective-cofibrant perfect dg-k[]3-modules, and

simplicial mapping space are given by the same formula as above (with @ now being

taken over k[3]).

- The functor F preserves fibrant objects, i.e., F(V) is fibrant for every V. If B acts

trivially on V this is clear, since then F(V) ~ V Ok k[#] and - Ok k[p]3 is left-adjoint

to the forgetful functor which creates fibrations in the projective model structure;

the general case reduces to this by writing V as the cone on (imB)[-2] -+ kerB

and so F(V) as a cone on projective-cofibrant modules. Furthermore, F obviously

preserves cofibrant objects. We have seen that F maps complexes with bounded

coherent cohomology to perfect complexes. We conclude that there is a well-defined
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simplicial functor FO: (CpxoDCoh(O]))" -4 (Cpxo,Perf (kH)) over N(P) defined by
applying F to the objects and using the symmetric monoidal structure on the mapping
spaces.

- Taking homotopy coherent nerves, we obtain a functor N(FO) : (DCoh(B), o)* -+

(Perf k[J, ®keJJ)O of coCartesian fibrations over N(F). To prove that it is a symmetric-
monoidal functor, it remains to show that it preserves coCartesian morphisms. The
criterion of [L9, Prop. 2.4.1.10] allows us to reduce to showing that if C1,. . . , Cs, D E
Cpx oDCoh(0B) and & C -+ D is a morphism which induces an equivalence on
Map(-, E) for all E E CpxoDCoh(OB), then the same is true for @; F(C;) -* F(D).
Since &i Ci is still cofibrant, the first condition is equivalent to the map being a weak-
equivalence; since we have seen that F preserves cofibrant objects, and restricts to
fibrant-cofibrant objects, it suffices to observe that it preserves weak-equivalences. [

This yields the promised geometric description of the k[1]-linear structure on QC of a
hypersurface:

Construction 3.1.1.5. Suppose f: X -+ A' and set Xo = X xyA 0. Then:

- There is a right action of B (with its "loop composition") product on Xo. It is easy to
give a rigorous Segal-style description via various projections. Heuristically, it is given
as follows on (7ro of) functor of points:

Xo(R) x B(R) 3 (x E X(R), [hf : f(x) -+ 0] E R) x ([h: 0 -+ 0] E R)

(x E X(R),[hf -h: f(x) 4 0 E 0| e Xo(R)

- There is an action of B (with its "pointwise addition") product on Xo. It is easy to give
a rigorous description of it by base-changing the addition map on A1. Heuristically, it
is given as follows on (7ro of) functor of points:

Xo(R) x 1B(R) 3 (x E X(R), [hj: f(x) -+ 0] E R) x ([h: 0 -+ 01 E R)

+ (x E X(R), [hf + h: f(x) -+ 0) E Xo(R)

- As in Construction 3.1.1.2, applying QC! to the above group actions equips QCI(Xo)
with the structure of right QCI(B)-module (under convolution along loop composition)
and compatibly of QCI(B)-module (under convolution along addition). These are
"the same up to homotopy" in the precise sense of the Eckmann-Hilton argument
Lemma 3.1.1.6 (c.f., also Remark 3.1.1.7). Note that the structure maps of these actions
are finite (i.e., affine and finite on 7ro): So in fact DCoh(Xo) is a DCoh(B) = Perf k[1-
module, and this recovers the above by passing to Ind-objects.

Lemma 3.1.1.6. ("Eckmann-Hilton") Suppose A E Alg (CA1g(C®)). Let ~ E CAIg (C®)
and A E Alg(C) be its images under the forgetful functors. Set D* = A-mod(C®), and note
that there is a (lax symmetric monoidal) forgetful functor DO -+ C®. Then:

(i) The other commuting product on A gives rise to a lift of A to an object A' E Alg ('DO).

(ii) There are equivalences of oo-categories

'D : ~' A'-mod (D) ~ A-mod (C)
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Remark 3.1.1.7. In the spirit of Remark 3.1.1.3, one can give a similar construction of
cosimplicial commutative dg-Ox-algebras encoding the actions of B on Xo, and the map
Xo/B -+ X: 3

( 'e X C e l . , e d e = d e, =

Ox [xx 7X1 ,--- 1 1 , 1 O x
E,, d = X - f, de2X = x

{ x[x][x, Y1, .. .7Y.+1]/ (+- x[x][7x]/(dtx = - f ~ DX
d-yx = x - (( d(Bi) =0

Ox[Bx,B,...,B.I/ -d(B f0 Ox
(d(Bx) =-f)

In particular, one can avoid explicitly invoking the Eckmann-Hilton argument.

Remark 3.1.1.8. There is an obvious variant of Construction 3.1.1.5 for QC(B) acting on

QC(Xo). The one notable difference is that this does not pass to compact objects: Perf(B)

is not even monoidal, since the putative tensor unit Oid = k is not perfect. This is however

all that goes wrong: Perf(B) is an 0-ideal of DCoh(B), the inclusion FL: QC(3) -+ QG!(B)
is symmetric-monoidal, and the inclusion FL: QC(Xo) - QCI(Xo) is linear over FL* (c.f.

Lemma 3.1.1.9). In particular, one may recover the QC(B)-action on QC(Xo) from the

QCI(B)-action on QCI(Xo):

V 0 .F = FRFL(V ®QC(B) 9) = FR (F*(V) ®QC!(B) FL(.)

The relationship between QC(B) and QCI(B) is spelled out by the following Lemma:

Lemma 3.1.1.9. Under the identification of Prop. 3.1.1.4, the recollement diagram of

QC(B), QCI(B), DSing *(B) associated to the Drinfeld-Verdier sequence4

Perf (B) = Perf Q3 -F+ DCoh(B) = Perf k[#] -+S DSing(B) = Perf k((6))

may be identified with

k((3))-mod - G m >------ k[#-mod FM- > OB-mod

where

- FL = ()s1[ 1] = k[1] 00B -;

- Fm = RHomkp (k, -) = k kp --;

- FR= (-)s1 = RHomo,(k,-);

- GL k((k)) Ok I -;

3There is a choice of sign appearing here that will probably change at random later.t
4 In dg-category language the functors in the recollement diagram are restriction, induction, and co-

induction of right dg-modules over the terms in the Drinfeld-Verdier sequence; i.e., Fm is the restriction
along F, FL is induction along F, and FR is coinduction along F.T
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- Gm = RIIomk((,3))(k((3)), -) = k((#)) ®k((#)) -~

- GR = RHomkiJ (k((3)), -).

In particular, these satisfy all the usual relations (e.g., the unit id -+ FM o FL and the counit
FM o FR -+ id are equivalences, etc.) so that FL induces an equivalence

locally #-torsion In -torsion perfect

k[3]-modules k[3]-modules

Proof. We first focus only on the F side: The various functors have the right adjunctions
simply by Morita theory, so the identification follows from noting that FL does the right
thing on compact objects; the coincidence of two descriptions for FM is a straightforward
computation. The G side will follow similarly once we show identify G: DCoh(B) -+
DSing(B) with k((#8)) Ok[,6] -: Perf k[3] -+ Perf k((3)). The description of FL(QC(B)) as
locally /-torsion #-modules then follows from the description of GL.

The cofiber sequence

k[#]J[-2] A k[3] -+ k

identifies DSinge(B) (=the fiber of FM) with the full-subcategory of k[3]-mod consisting
of objects 9 on which t: F[-2] -+ 9 is an equivalence. This can be identified with the
oo-category of k((3))-module objects in k[#3]-mod: For any such 9, the natural map

k((#3)) O®gl JF = 1 -- +

is an equivalence (since the lim is taken over a diagram of equivalences). Finally, the
adjunction (GL, GR) is monadic and identifies k((#8))-mod with k((3))-module objects in k[1].
Passing to compact objects gives the desired identification. 0

Construction 3.1.1.5 tells us that any X E QC (B) gives rise to an endo-functor of
QCI(Xo). We'll spell this out for several distinguished objects of QCI(B).

Example 3.1.1.10. Consider 0B E Perf(B), i.e., k[B]/B 2 as a perfect k[B]/B 2-module.
Since it is perfect, FL(OB) = FR(09) and both are identified under the equivalence of
Prop. 3.1.1.4 with

RHomo,(k, 0B) ~ k[1] E k[3]-mod

Base-change in the Cartesian diagram (and the "loop composition" description of the action)

X0 xIB-a-a-Xo

Xo - >B X

implies 0 3 Okgg - may be identified with i*i.: QCI(Xo) -+ QCI(Xo). (This makes sense
on each of QC, QC1, and DCoh since i is finite and of finite Tor-dimension. The functor on
QC restricts to one on DCoh, and the functor on QC1 is then the Ind-extension of this.)
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Example 3.1.1.11. The object 0]3 E QC(B) admits an Sl-action ("multiplication by B",
i.e., the Sl-action on C.(Sl; k)), equipped with equivalences

(O3)si = 0 id (i.e., C,(S 1 ; k)si = C.(S1/S 1; k))

(IS) = id[1] (i.e., C*(Sl;k)sl = C,(S 1/S';k)[1])

The normalized chain complex of the simplicial-bar construction computing the homotopy
quotient is the Koszul-Tate resolution used in the proof of Prop. 3.1.1.4:

id +-' 0 Uk/k! /du = B E QC(B)

_deg u=+2_

By Construction 3.1.1.5 this gives rise to an explicit equivalence of endo-functors on

QC(Xo)
(i*i,)si ~! i*i,[u k/k!] ~ idQC(xo)

i.e., a natural equivalence

= (i*i*)+lgI (i*i*) [uk/k!] = Tot* ... i*i*9[2I + i*i,[1] -+ i*i,*} -+

for 9 E QC(Xo).

Example 3.1.1.12. Consider i9 id A,09pt E DCoh(B) C QC(B). It gives rise to a natural
cofiber sequence in QC (B)

FL(M;) -+ FR(Oid) -+ cone {FL(Oid) -+ FR(Oid)}

Under the identification of Prop. 3.1.1.4, this sequence may be identified (c.f., Exam-
ple 3.1.1.11) with the Tate sequence ki [1] -+ ks' -+ kTate:

k((#))/k[] [-1] -+ k[#] -+ k((/3))

OB[Uk/k!] Oid

The three act as follows: 9 id = FR(Oid) acts by the identity on QC!(Mo) (it had better, it is
the tensor unit); k((#)) acts by inverting #; FL(OiW) acts by the colimit/simplicial diagram of
Example 3.1.1.11, which coincides with the identify functor on QC(Mo) but not in general.

Example 3.1.1.13. The Postnikov filtration of k[B]/B 2 yields a fiber sequence

FR(k[l]) -- FR(k[B]/B 2) -+ FR(k)

k[.8][1] k[1] k[#]

which is just (a rotation of) the identification k[1] = cone{t: k[#][-1] -+ k[1[1]}. By
Construction 3.1.1.5 this gives rise to a fiber sequence of functors id[1] -+ i*i, -+ id. More
explicitly, for any # E QC! (Mo) there is a triangle

e[1] -h i*io -- + F -+

where the second map is the counit of the adjunction (recall i is of finite Tor-dimension).
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3.1.2 Circle actions

Proposition 3.1.2.1. Suppose F,& E PreMF(M,f). Let i: Mo -+ M be the inclusion.
Then, there is a natural circle action on i*i,,g and a natural equivalence (i*i*,)s1 = 9-
This gives rise, by adjunction, to natural S1 actions on Map(i,F,iW ) and RHomm(i.F ,i,*9)
such that

- There is a natural equivalence Map(.,9) = Map(i,9,i,*9)S1;

- There is a natural k[$J -linear equivalence

RHomo" (, 9) = RHomM(i*9,i*q)S'

- Let 7,9F E MF(M, f) denote the images of 9,!. Then, there is a natural k((/3)) -linear
equivalence

RHom ~f)G~, 9) = RHOmM(i*, i, 9 )Tate

Proof. This follows from Example 3.1.1.11, which gives an S1 action on i*i, E Fun(QCI (Mo), QC (Mo))
with (i*i*)Si = id. Since i*i, preserves DCoh(Mo), the indicated equivalence restricts.

Let us spell things out more explicitly: The simplicial bar construction computing (0B)S1
identifies under Dold-Kan with the Koszul-Tate resolution of Example 3.1.1.11. Thus we
have a functorial equivalence in QC(Mo)

[(i*i*)[uk/k!]/du = B] Tot* { -- - -i-+ 2

which, since PreMF(M, f) = DCoh(Mo) is a full subcategory of QC(Mo), gives rise to an
equivalence

MapPreMF(M,f)( , W) = Tot {MapDCoh(MO)(i*i*9)}

= Tot {MapDCoh(M)*(i*i) }

= MapDCoh(M) (* i*!)S

where the Sl-action is given by B. (See below for a yet more explicit form.) 0

Remark 3.1.2.2. For the simplicially-inclined reader, we mention the following alternate

description: For $ E QC(Mo), there is an augmented, i,-split, simplicial object

{(i*i.)*9} = { .. (i*i.)2 : i*i*1 -+ Jr

which realizes $ as the geometric realization of the simplicial diagram (c.f., Lemma 3.1.3.1).
Identifying OH = C.(S', k), the diagram encodes an S'-action on i*i~. E QC(Mo), with
quotient (i*i*F)si = F. For F E DCoh(Mo) there is also a Grothendieck-dual description

(c.f., Example 3.1.1.12)
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Lemma 3.1.2.3. Suppose V is a complex with S'-action. Then, the natural map

V s1 @k 3 k -+ V

is an equivalence.

Proof. Identify the oo-category of complexes with Sl-action with k[B]/B 2 -mod. Identify
k[#] = RHomoThmod(k, k). Then, the map in question is identified with the natural evaluation
map

RHomoN-mod (k, V) Okj31 k - V

i.e., the counit FM o FR -+ id. This is an equivalence by Lemma 3.1.1.9. O

Corollary 3.1.2.4. Suppose Z C MO is a closed subset. Then, i,: DCohz(Mo) -+
DCohz(M) induces an equivalence of oc-categories

i,: PreMFz(M, f) Oggi k -- + DCohz M

Proof. First, we will construct the desired lift of i, via a geometric description of the
simplicial bar construction implementing the tensor product: The augmented simplicial
diagram

{Mo x B*- xpt} = -f..-Mo x 1B x xpt M

gives rise to an augmented simplicial diagram of oo-categories, which via Prop. A.2.3.2 may
be identified with

{DCoh(Mo) 0 DCoh(B)*-®1 0 DCoh(pt) } -I*+ DCoh(M)

where the simplicial diagram is the simplicial bar construction for PreMF(M, f) @DCoh(B)
DCoh(pt) = PreMF(M, f) Ok p] k. Imposing support conditions everywhere, we obtain the
functor of the statement.

Next we verify that this functor is fully faithful: It suffices to check that for any

r, 9 E PreMF(M, f) the natural map

Mom ~ (9k[O

RPmreMF(M,f) (,) kp] k -+ RHomM (i,_F, i*9)

is an equivalence. This follows immediately from the triangle of Example 3.1.1.13 and
adjunction.

Alternatively, by Prop. 3.1.2.1 we may identify this with the map

RHomkPreMM,f)F( , 9) k~p] k = RHomM(i*, i,9)S' og[ k -+ RHomM(i.F, i*9)

which is an equivalence by Lemma 3.1.2.3.
We now prove that the functor is essentially surjective: Since it is fully faithful, and

DCohz M is a sheaf on M, the question is local and we may suppose M is a quasi-compact
coherent scheme. Since both sides are stable and idempotent complete, it suffices to
show that it has dense image. We conclude by noting that i.: DCohz(M) -+ DCohz M
has dense image by the usual t-structure and filtration argument, since Z C MO (c.f.,
Lemma 2.2.0.2). 0
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3.1.3 Computational tools

The following Lemma is rather categorical, and may be safely skipped on first reading: we
will try to extract and emphasize its more concrete consequences.

Lemma 3.1.3.1. Suppose X', X are coherent derived stacks, that i: X' -+ X is finite and
of finite Tor-dimension. Then,

(i) The adjoint pair i*: QC(X)' QC(X'): i, is monadic, and induces an equivalence

QC(X') ~ (iOx,)-mod (QC(X))

(ii) The adjunction of (i) restricts to an adjoint pair i*: DCoh(X) DCoh(X'): i.. It
is also monadic, and induces an equivalence

DCoh(X') ~ i,0x'-mod (DCoh(X))

Proof.

(i) Since i is affine, i, admits a Cech description and hence preserves all colimits. Fur-
thermore, i. is conservative: The question is local, and the result is true for X afline
because i* will pull back a generator to a generator. Since QC(X') has all colimits,
Lurie's Barr-Beck Theorem applies to give QC(X') ~ ii*-mod QC(X) and this monad
visibly identifies with that given by the algebra ii*Ox = i,0xr.

(ii) Since i is assumed finite, i., preserves DCoh. Since i is assumed of finite Tor-dimension,
i* preserves DCoh. So, the adjunction restricts to one on the full subcategories
i*: DCoh(X)' DCoh(X'): i.. It thus suffices to show that for 9 E QC(X'), we
have 9 E DCoh(X') iff i,9 E DCoh(X). Since i is affine, i. is t-exact; that is,

i 2 (7m) = rm (i,9) E QC(X)"' = iro(Ox)-mod

It remains to show that

if : QC(X'),: -+ QC(X)

is conservative, and that i:2(M) is finitely-presented over 7ro(Ox) iff M is finitely-
presented over ro(Ox').

The question is local on X, so we will assume X = Spec A and X' = Spec B. Note
that io: Spec roB -+ Spec 7roA is a finite map of discrete coherent rings, and that we
must show that the pushforward (io) 2 of discrete modules is conservative, and that
it preserves and detects the property of a module being finitely-presented. That it
is conservative is obvious. Since 7roB is finite over 7roA, it preserves the property of
being finitely-presented. To see that it detects coherence, suppose M is a 7roB-module
such that the corresponding 7roA-module, denoted MA, is coherent. Considering the
surjection MA ®9OA roB -+ M, we see that M is finitely-generated, so that if 7roB is
Noetherian we are done. To handle the general coherent case, we reduce to the case
of 7roA (and so 7roB) Noetherian: It suffices to note that we may find a Noetherian
subring of iroA over which the coherent roA-algebra woB, the coherent 7roA-module
MA, and the 7roB-action on MA, are all defined. 0
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Corollary 3.1.3.2. Suppose (M, f) is an LG pair. Set

A = 0M [BM]/
dBM = f

degBm-+1/

so that A is an algebra. Then, (i., i*) induces equivalences

QC(Mo) = A-mod (QC(M)) DCoh(Mo) = A-mod (Perf(M))

3.1.3.3. Under the identification of Cor. 3.1.3.2, we can make explicit the k[#]-linear
structure of Prop. 3.1.1.4(iii) as follows: Suppose 9 E A-mod(QC(M)). The resolution of
Example 3.1.1.11 is

~ [Bne][L/e!] / dBnew = f
degBnew=+1,degu=+2 du= Bew - BJ

where BM acts on the RHS by Bnew (in particular, F is not a submodule). The k[#1 action

on the right hand-side is given by # = d/du. For 9 E A-mod(Perf M) there is also the

Grothendieck dual resolution (c.f., Remark 3.1.2.2)

$ ~ (9[Bnew][)3,dy + (Bnew - Bj)/3)

on which BM acts as above and the # action is evident.

For concreteness, let us also make explicit the Dold-Kan computation mentioned several

times above: The augmented simplicial object of Example 3.1.1.11 can be identified with

94- 9[Bo 00] 9[Bo, B1] -+*- F[Bo, B1, B2] --

with the face maps determined, via the Liebniz rule, by

9: $[Bo,...,B+ 1 ] -+$[Bo,...,Bn] Bk a(I~{ otherwise

where by convention B_ 1 = By denotes acting by BM on Y. This determines a simplicial

object in the abelian category of dg-Om[Bm]-modules, to which we apply the Dold-Kan

correspondence by forming the normalized chain complex:

NI = f ker,_ 1 = E (±(-1)-'iBo... -- - Be D $ - (BoB 1 ... Be)
i>1 i=0

and with respect to these direct sum decompositions, the differential takes the form

ao( B 0)
Oot (- 1) Bt

One checks that (at least with an appropriate sign convention), the totalization of this
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coincides with the above "Koszul-Tate" complex under the identifications

el I
Bnew I B0 and (-1)-B0 --i -.. Be

i=0

3.1.3.4. Under the identification of Cor. 3.1.3.2, we can make explicit the Sl-action of
Prop. 3.1.2.1 as follows: Adjunction provides an equivalence

RHomoM (9, T) = RHomo,[B,] (9B], 9) # (f) '-* # (f + Bf') = # (f - BM - f')+BM# (f)

On the right hand side, the B-operator of the circle action is the (graded) dual of multipli-
cation by B. A straightforward computation then shows that the induced operation on the
left-hand side is (at least up to signs)

B# = BM o # +#0 o BM

3.1.4 Comparison of definitions

Proposition 3.1.4.1. Suppose (M, f) is an LG pair. Then, the natural functor

PreMF(M, f) -+ MF(M, f) 2= PreMF(M, f) ®k[pB k((#B))

factors through the quotient functor DCoh(Mo) -+ DSing(Mo) = DCoh(Mo)/ Perf (Mo). The

induced functor
DSing(M) -+ MF(M,f)

is an idempotent completion.

Proof. This can be found in the literature, but as this is important for our approach we
sketch an argument.
Claim: Suppose 9 E DCoh(MO). Then, TFAE

(i) F is perfect;

(ii) RHom I o(Mo)(g, ) is 3-torsion (i.e., there is an N > 0 such that #N i null-

homotopic);

(iii) RJom~C (Mo)(, ) is locally #-torsion (i.e., it is a filtered colimit of perfect t-torsion

k[#]-modules);

(iv) 1 E ir. RHomDoh(Mo)($, $) is 8-torsion;

(v) F-+ 0 E MF(M, f).

Assuming the claim, we complete the proof. The existence of a factorization through a
functor DSing(MO) -+ MF(M, f) follows from (iv) by the universal property of a Drinfeld-
Verdier quotient (as cofiber in small k-linear oo-categories). Since the image of DCoh(MO)
is dense (i.e., its thick closure is the whole) in both, it suffices to show that this functor is
fully-faithful. More precisely, it suffices to show that for 9,!W E DCoh(M) the natural map

7r0 RHomDsing(Mo) )-+rRomCoh(Mo)(,) k[] k((8))
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is an equivalence.

At this point, we may conclude in several ways:

- (Lazy) We may identify

7ro [RHom Coh(Mo) gW9) I ®k1 k((#)) = 7ro li RHomD*fC Mo (g W)

=1 7ro RHom*C MO ( W)

= 1 r- RHom (Mo
n

However, the following formula for maps in 7ro DSing(M) appears in the literature

ro RHomDSing(Mo)(#, W) - P'7r-n RHomD oh(Mo) Vl'
n

and one may check that it is induced by the map we wrote down above.

- (Less lazy) Consider applying DCoh(Mo) ODCoh(B) - to the (idempotent completed)

Drinfeld-Verdier sequence

Perf((B) -+ DCoh(B) -+ DSing(B)

which by Lemma 3.1.1.9 may be identified with

#-torsion -- + Perf k[#] Perf k((3))
perfect k[#]-mod I

The result will again be an (idempotent completed) Drinfeld-Verdier sequence (Lemma 3.1.4.2).

The Claim implies that

DCoh(Mo) ®DCoh(B) Perf((B) = Perf (Mo)

Indeed, the LHS identifies with the full subcategory of DCoh(Mo) consisting of objects

with locally 3-torsion endomorphisms. Since the first two terms of a Drinfeld-Verdier

sequence determine the third up to idempotent completion, this completes the proof.

Proof of Claim: Recall the resolution in QC(Mo) (Example 3.1.1.11)

hocolim{-. -- -+ i*i .[1] -+ i*i*..} -~+ 9

Computing RHom k1 ( , ) using this resolution, we see that for N > 0 a null-

homotopy of 3 N on RHomk [,I (g, 9) realizes $ as a homotopy retract of

hocolim {i*i.9[N] -+ - --+ i*i*$}

and conversely if $ is a homotopy retract of this then #N is null-homotopic on RHom*k[ 01($, F).

If J E Perf(Mo), then it is compact in QC(M) and the identity factors through a finite

piece as above. Thus (i) implies (ii).
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Conversely: i.? is coherent since i is finite, and thus perfect since M is regular. Thus
i*i,9 is perfect, and so is anything built from it by shifts, finite colimits, and retracts. This
proves that (ii) implies (i).

The implication (ii) implies (iii) is immediate.

Note that A = RHom *k (Mo) (, 9) is a k[#]-algebra, and consider the unit 1: k[#] -

A. If A is locally t-torsion, then we may write A = h P,, with Pa perfect and t-torsion;
since k[#] is perfect, 1 factors through 1: k[#] -+ P, for some a. Consequently, there exists
N > 0 so that #N - 1: k[#][2N] -+ Pa, and so also 3N - 1: k[#][2N -+ A, is null-homotopic.
This implies that ON - 1 = 0 E 7r-2A, proving that (iii) implies (iv).

Conversely, if #N- 1 = 0 E 7-2NA then #N - 1: k[/31 [2N] -+ A is null-homotopic. Since
A is an algebra, we conclude that #N: A[2N] -+ A is null-homotopic. This proves that (iv)
implies (ii).

Finally, note that 9 -+ 0 e MF(M, f) if and only if 1 = 0 E RHom f ,
Since

lro RomF((f) , $) = Wo 1 RHomDCo(Mo) (g
N ON

= 114-2N RHomDoj(Mo)
N

where the filtered limit is formed under multiplication by 8. This proves that (iv) <-> (v). 0

Lemma 3.1.4.2.

(i) Suppose AO e CAlg(dgcat'k'") is a rigid symmetric-monoidal dg-category, 'D E
A-mod(dgcaIkm) an A-module category, and

a diagram in A-mod(dgcat dm) which is a Drinfeld- Verdier sequence. Then,

e OA'D -- e OA'D -+ e" A D

is again a Drinfeld- Verdier sequence.

(ii) Suppose R E CAlg(k-mod) is a commutative dg-k-algebra,'D E dgcatI4m an R-linear
dg-category, and

an R-linear Drinfeld- Verdier sequence. Then,

OR R'D -- C OR D C R D

is again a Drinfeld- Verdier sequence.

Proof. For (ii) in the literal dg-framework see [D, Prop. 1.6.3]. We include a proof in the
framework in which we work: Note that (ii) follows from (i) by taking A = Perf(R) and
taking into account the equivalence dgcatjm = (Perf(R))-mod(dgcatikm). To prove (i),
note that it suffices to pass to the following Ind-completed version: Observe that

Ind C" +- Ind C +- Ind '



is a diagram in (Ind A)-mod(dgcat') whose underlying diagram in PrL is a cofiber sequence
along colimit and compact preserving maps (i.e., a recollement sequence). It suffices to show
that applying -GIndA Ind D sends this to another cofiber sequence in PrL: All three terms
are compactly generated, and the arrows are compact and colimit preserving, so that the
diagram of compact objects will be a cofiber sequence of idempotent complete oo-categories
(i.e., a Drinfeld-Verdier sequence).

It thus suffices to show that -@IndA Ind D preserves the property of being a colimit
diagram in PrL, or passing to right adjoints that it preserve the property of being a limit
diagram in PrR. Note that the forgetful functors (Ind A)-mod(dgcatyk) -+ PrR -+ Cato
create limits, so that it is enough to show that Ind D is dualizable over Ind A, since A* is
rigid, so that tensoring by it preserves limits.

The hypothesis that A® be symmetric-monoidal is un-necessary. Suppose that 'D is a left
A®-module category. Since A was assumed rigid, one can show that 'DOP may be equipped

DOP df

with the structure of right A®-module category, heuristically given by d ® V 0 V d.
Then, Ind('DoP) is the Ind(A)-linear dual of Ind('D), i.e., there is a natural equivalence

T OInd A Ind('D) -~-+ FUlod-A('DP, T) = Funmod- Ind A (IndDT

for T E mod- Ind(A). 0

Remark 3.1.4.3. If M is not assumed regular, then the above proof shows the following:

The natural map

PreMF(M, f) -+ MF(M, f) = PreMF(M, f) Okflg k((#))

identifies with the (idempotent completed) Drinfeld-Verdier quotient by the thick subcategory

of DCoh(Mo) generated by the essential image of i*: DCoh(M) -+ DCoh(Mo). In other
words, MF(M, f) is modelled by Positselski's relative category of singularities [P1].

The above proof also showed:

Corollary 3.1.4.4. Suppose (M, f ) is an LG pair. Then, the Drinfeld-Verdier quotient
sequence

Perf (Mo) -+ DCoh(Mo) -+ DSing(Mo)

is obtained, by tensoring DCoh(Mo) ODCoh(B) -, from the universal example of M = pt (so

that Mo = B).

3.1.4.5. Combining the previous Proposition with Orlov's Theorem relating actual matrix

factorizations to DSing [02,05], one finally sees that the notation MF(M, f) is justified.

Strictly speaking, Orlov's Theorem is only stated in the case where f is flat (i.e., not zero on

any component). However, it is possible to show that the above definition in fact coincides

with (any reasonable definition of) matrix factorizations in general:

The assignment U '-+ MFo (U, f) is an 6tale sheaf of k((3))-linear oo-categories on M

(Prop. A.1.3.1). The same should be true in any other reasonable definition of infinite rank

matrix factorizations, so that we are reduced to the affine case. Passing to a connected

component of M, we may suppose that f is either flat (covered by Orlov's Theorem), or

f = 0 (covered by direct inspection: both categories simply give 2-periodic OM-modules).
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3.2 Thom-Sebastiani & duality Theorems for (pre-) matrix
factorizations

3.2.1 Thom-Sebastiani

3.2.1.1. For the duration of this section, suppose (M, f) and (N, g) are two LG pairs. Set

(M x N)o = (f E g)- 1 (0) [(M x N)o]o = (f H g)-'(0)

Define

PreMF(M x N, f, g) = DCoh (Mo x No) equipped with its k[#M, ONj-linear structure

PreMF(MxN, fEg, fHg) N DCoh ([M x N]0 ) equipped with its k[#+,#j-linear structure

By Theorem A.2.2.4, exterior product induces a kI[#M, /N]-linear equivalence PreMF(M x
N, f, g) ~ PreMF(M, f) ®G PreMF(N, g). These two constructions are related as follows:

Lemma 3.2.1.2. Suppose (M, f), (N, g) are two LG pairs and ZM C M, ZN c N closed
subsets. Then, the k-linear equivalence 0 : DCohzm (Mo)®DCohzN (No) - DCohzm xzN (Mo x

No) of Theorem A.2.2.4 naturally lifts to a

kj#+,O-1 -~ + k[flM,ON] 0+ +,M +ON, X -+ OM - ON E k[Om, ON]

linear equivalence

0: PreMFzM(M, f) 0 PreMFzN(N, g) -+ PreMFzMxzN (M x N, f@g,f H g)

Proof. Set [(M x N)o]o = (f H g)-1 ((M x N)o). The equivalence

Mo x No ~+ [(M x N)o]o

(m, n, [hf : f(m) -+ 0], [hg: g(n) -+ 0]) i-- (m, n, [hf + hg: f(m) + g(n) - 0], [hf - hg: f(m) - g(n)- 0])

is equivariant with respect to the following group automorphism of B2:

(A, 2) : B 2 -- + B 2 ([hi: 0 -+ 0], [h2: 0 -+ 0]) - ([h, + h2: 0 -+ 0], [hi - h2: 0 -+ 0])

The k[#/M,#N]-action on DCoh(Mo) ® DCoh(No) ~ DCoh(M x No) is obtained from
the above action of B on Mo x No. The k[,#+, i-]-action on DCoh((M x N)o) is obtained
from the above action of B2 on [(M x N)o]0 .

It thus suffices to verify that pushforward along the group automorphism (A, 2K) induces
the indicated automorphism on the endomorphisms of the symmetric monoidal unit: In terms
of the explicit model of Prop. 3.1.1.4, (A,~S) corresponds to the algebra homomorphism

#: 092 ~ [X+, X-] [Et, E- __--+ 02 M NEE

O(x+)=xM+XN +(Et)= E -±E4

(x-) = xM -X-xN (E E -ZE

and is strictly compatible with the Hopf-algebra structure maps. Consider the Koszul-Tate
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resolutions that give the identifications with k[#3M, 3 N] and k[3+, -l]:

o &
k+,- ~ k[x+, x-][e, E-][u'/m!, u'/m!] 3+ = -a 3 -

+ a
kM,N ~ k [xM, xNI [4'][uM /M!, uN/m!] OM N

OuM OUN

There is an isomorphism #': k+,- 4 4kM,N of 0B2 -modules: Explicitly it is the algebra
map given by # on the x and e variables and

'(U+) = UM + UN u) = M - UN

It is now a simple check that this identifies the actions #+ = /3 M+N and 0- = fM -#N. 0

The first Main Theorem is the following result reminiscent of a Thom-Sebastiani theorem:

Theorem 3.2.1.3 (Thom-Sebastiani for Matrix Factorizations). Suppose (M, f), (N, g)
are LG pairs, (M x N, f 3 g) their Thom-Sebastiani sum. Suppose ZM C f-1(0) and
ZN C g~1 (O) are closed subsets. (The special case ZM = f-1(0), ZN = g'(O) is the
main one of interest. Note that the support conditions will still matter on the product since
(f B g)- 1(0) will generally properly contain ZM x ZN!) Then,

(i) The external tensor product determines an equivalence of k[/#1-linear oo-categories

f,(- 0 -): PreMFzM (M, f) Ok93J PreMFzN (N, g) ~ + PreMFzmxzN(M x N, f 8 g).

Passing to Ind -completions, it induces an equivalence of cocomplete k11#-linear oo-
categories

e,(- N -): PreMFOZM(M, f)pk[flp PreMF'N (N, g) -N+ PreMFM xzN (M x N, f E g).

(ii) The external tensor product determines an equivalence of k((#))-linear o-categories

e,(- N -): MFzm(M, f) Ok((p)) MFzN(Ng) -'+ MFzMxzN(X x Yf 8g).

Passing to Ind -completions, it induces an equivalence of cocomplete k((#))-linear oo-
categories

N,- -): MFOZOM(X, f)Ok((,8)) MFOZN (N, g) ~-_+M MFZux zN(M x N, f @g).

(iii) The functors of (ii) induce a k((/))-linear equivalence

e MF(M, f + A) Ok((B)) MF(N, g - A) -+ MF(M x N, f B g).
AE-cval(f)ncval(g)

Passing to Ind -completions, it induces an equivalence of cocomplete k((/))-linear oo-
categories

MF (M, f + A) Ok((P)) MF' (N, g - A) ~Z+ MF'*(M x N, f 8 g).

AE-cval(f)ncva1(g)
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Proof. Certainly the Ind-complete versions follow from the small versions, so we will show
those.

(i) Let i: Mo -+ M, j: No -+ N, k: (M x N)o -+ M x N, and f: Mo x No -+ (M x N)o
be the various inclusions. The functor in question will be a refinement of the k-linear
functor

DCoh(Mo) 0 DCoh(No) -+ DCohMoxNO((M x N)o) 9 0 9 -+ f, (,F 0 9)

Before writing down a k[#1]-linear functor, we show how to conclude from this: Once a
k[#]-linear functor is written down, it suffices to check that the underlying k-linear
functor is an equivalence. Write

PreMFzm (M, f) Ok[0] PreMFzN (N, g) N PreMFzm xzN (M x N, f, g) Dkp8M,Nk

Applying Lemma 3.2.1.2 identity this with

~ [PreMFzu xzN (M x N, f ED g, f E g)] ®kl#+,-] k[3+1

~ PreMFzm xzN ((M x N)o, f H g) ®k@p_] k

Finally, applying Cor. 3.1.2.4 we see that , induces an equivalence

i DCohzMx zN ((M x N)o)

We now complete the proof by constructing the desired (DCoh(B), o)-linear functor

DCoh(Mo) ®DCoh(B) DCoh(No) -+ DCoh((M x N)o)

using a suitable augmented simplicial diagram of derived schemes with B-action and
-equivariant maps

X. = {Mo x B* 1 x No} -+ (M x N)o = X_ 1

constructed as follows:

- Informally (i.e., at the level of lro of functor of points)

X_1(R) = (m E M(R), n E N(R), [hf+g: f(m) + g(n) -+ 0])

and for e > 0

Xe(R) = (m E M(R),n E N(R), [hf: f(m) -+ 0], [hg: g(m) -+ 0], [hi: 0 0],--- ,[ht: 0-+ 0])

with the simplicial degeneracies given by the inserting the identity loop [id: 0 -+ 01,
and the simplicial face maps given by "pointwise addition" of the appropriate
loops. The augmentation is given by adding together all the loops. It is clear
that this is a simplicial diagram, and that it is 3-equivariant.

- The same formulas can be made precise, either at the level of actual functors
of points on DRng, or using an explicit cosimplicial diagram of sheaves of dg-

44



algebras on M x N (representing the pushforwards of the structure sheaves to
M x N). For the second approach, one can use the explicit models

X_1(R) = SpecMxN OMxN [x+] [e+, ] (dc+ x - (f01 + 10 f), dE = x+)

zu ~{ ee ] de" = xM - (f 0 1)df = xM

XI(R) = SpecMxN OMxN N ENE dEN - (10 ,dcE=xN

1'...,XtJ EiE ,i = 1,..., dc =de =x

where the simplicial structure maps use the co-identity and co-multiplication/co-
action (c.f., proof of Prop. 3.1.1.4) and the augmentation uses those together with
X+ - XM + XN and Et F4 E + EN

This completes the construction as follows:

- Applying (DCoh(-), f.) to the augmented simplicial diagram X. gives an aug-

mented simplicial diagram DCoh(X.) in dgcatk. Applying Prop. A.2.3.2, we
identify the simplicial diagram with the simplicial bar construction computing

DCoh(Mo) ODCoh(B) DCoh(No). Thus, the augmented diagram precisely encodes

a functor

DCoh(Mo) ®DCoh(B) DCoh(No) -+ DCoh((M x N)o)

which is in fact an enrichment of f(- 0 -) since the map Xo - X-1 is precisely

f.

- Since X. was a B-equivariant diagram, the previous functor is naturally DCoh(B)-

linear.

(ii) Follows from (i) by the definition MF(M, f) = PreMF(M, f) O®k,6 k((#)).

(iii) Let Z = crit(f @ g) n (M x N)o be the components of the critical locus of f E g lying
over zero. There is a disjoint union decomposition

Z = U Zx where ZA = Z n (f-1(-\) x g~1 .
XE-cval(f)ncval(g)

By Prop. 3.2.1.6, the inclusion induces an equivalence MFz(M x N, f 0g) = MF(M x
N, f @ g) and the above disjoint union decomposition gives

MFz(M x M, f 0 g) = @ MFz, (M x M, f @ g)
AE- cval(f)ncval(g)

Combining with (ii) completes the proof.

Remark 3.2.1.4. Item (iii) above admits the following re-interpretation. Define MF*o (M, f)
to be the sheaf of oo-categories on A1, supported on cval(f), given heuristically by A F-

MF(N, f - A). Then,

MFtot(M x N, f D g) = MFtOt(M,f) * MFt**(N, g)

where * denotes convolution.
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Remark 3.2.1.5. In case cvalg = {0}, item (iii) has an especially simple formulation:
MF(M, f) Ok((#)) MF(N, g) ~ MF(M x N, f EB g). Taking N = A2, 2+ y2, one can show
that there is a k((#))-linear equivalence MF(N, g) ~ Perf k((#)). So, (iii) recovers Knirrer
Periodicity as a special case:

MF (M x A2 , f Em {z2 + y2}) = MF(M, f) Ok((6)) MF(A2 , {X2 + y2 }) ~ MF(M, f).

The following is of course well-known, e.g., from its role in [04]. We sketch a proof for
the reader's convenience:

Proposition 3.2.1.6. (Recall that we work in the world of idempotent complete categories,
and so have implicitly passed to idempotent completions!) Suppose (M, f) is an LG pair, and
Z c f -1 (0) a closed set containing all components of the critical locus lying over 0. Then, the
k[#] -linear inclusion PreMFz(M, f) <-+ PreMF(M, f) induces a k((#)) -linear equivalence
MFz(M, f) -~+ MF(M, f).

Sketch. Set X = f- 1 (0), U = X \ Z. A k((p))-linear functor is an equivalence iff it is an
equivalence when regarded as a k-linear functor, so it is enough to prove this. Since U
is regular, Perf(U) = DCoh(U) and this follows from the following diagram of k-linear
idempotent complete oo-categories

Perfz(X)'-> DCohz(X) :: DSingz(X) ~ MFz(X, f)

Perf(X)r-a DCoh(X) - DSing(X) ~ MF(X, f)

Perf (U) -- DCoh(U) > DSing(U) = 0

where each row and column is a Drinfeld-Verdier quotient. 0

3.2.2 Duality and functor categories

Recall the following standard Lemma

Lemma 3.2.2.1.

- Suppose AO e CAlg(dgcatkm) is a rigid symmetric-monoidal dg-category, and C E
A-mod(dgcatkm) is an A-module category. Then, Ind C e Ind A-mod(dgcatj*) is
dualizable, with dual Ind Ce9.

- Suppose R is an Eco-algebra, and C E dgcat Rm. Then, Ind C = dgmodR(COP) is
dualizable, with dual Ind Ce = dgmodR (e.

Proof. C.f., Lemma 3.1.4.2.

Our second Main Theorem analyzes the interplay of passage to matrix factorizations
with the usual (coherent) Grothendieck duality:

Theorem 3.2.2.2 (Duality for Matrix Factorizations). Suppose (M, f) is an L G pair,
Z c f-1(M) a closed subset. Then,
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(i) The usual Grothendieck duality lifts to a k[ 3-linear anti-equivalence D(-): PreMFz(M, f)P
PreMFz(M, -f). So, PreMFy'(M, f) is dualizable as cocomplete k[/3j-linear category
and (the above lift of) Grothendieck duality induces a k[ p3-linear equivalence

PreMFy (M, f)v -~+ PreMFy'(M, -f).

(ii) The usual Grothendieck duality lifts to a k((/))-linear anti-equivalence D(-): MFz(M, f)P ~
MFz (M, -f ). So, MFy' (M, f) is dualizable as cocomplete k((/8)) -linear category, and
the usual Grothendieck duality functor induces an equivalence

MF"Z (M, f )v - MFOZ (M, -f).-

Proof. Note that (i) implies (ii). By Lemma 3.2.2.1, it suffices to prove either the first or
the second sentence of (i): passing to compact objects, or to Ind-completions, goes between
the two versions. Note that Grothendieck duality preserves support conditions: DCohz(M)
is generated by pushforwards from Z, and Grothendieck duality commutes with proper
pushforward. So, it suffices to prove the version without support conditions.

In a rigid-enough dg-model for the k[3]-linear oo-category PreMF(M, f), it should be
possible to prove the first sentence of (i) by direct computation. Since we are not in such a
framework, we adopt a more indirect approach. It suffices to write down a colimit preserving,
k[/3]-linear functor

(-): PreMF (M, -f)DQc1(B3) PreMF** (M, f) -- + QC I(B)

and then show that it is a "perfect pairing" in the sense that the induced functor

PreMF*(M, -f) -+ FunL0 'B PreMF*M, f), QC(B)) ~ IndPreMF(M, f)*P

is an equivalence.

Let (M 2)0 = (-f f)-1(0); e: (Mo) 2 -+ (M 2 )o and k: (M 2 )o _+ M 2 the inclusions;
A: M _+ M 2 the diagonal, and K: M -+ (M 2 )o its factorization through k. To define (-),
we apply Theorem 3.2.1.3 to identify

f, (- 0 -) : PreMF" (M, -f)&Qc!(B) PreMF' (M, f) ~+ PreMF**(M 2 , _f E f)

and then the functor

RHom oreF*(M 2 _f) *&OM, ~): PreMF* (M 2 , -f @ f) -+ QCI(B)

is colimit preserving (since K.OM E DCoh((M 2)o) is compact) and naturally admits a
QCI(B)-linear structure (since QC (B) is symmetric monoidal). Define (-) as the composite

(-0@ -) = Rom*preMFOO(M2,_fEf) (*oM,e*(- -

It remains to show that this induces a perfect pairing, i.e., that the adjoint map is an
equivalence. For this it suffices to check that the underlying k-linear functor of the adjoint
is an equivalence. But this underlying k-linear functor is simply Ind of regular Grothendieck
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duality for DCoh(Mo): Note that there is a Cartesian diagram

AMOI

(Mo) 2  
2(M2)

with i and e of finite-Tor dimension. So, for 9, E DCoh(M) there are natural equivalences

RHomMo (ID9, 9) = Rr(Mo, Y® W)

= RHomMo((AMO)*OMO, 9 0 9)
= RHomMo((AMo) *i* OM, 0 9)

= RHomMo (f*2* Om, 9N9

= RHomMo A*OM, * ( )

Formally combining the above two theorems, we obtain the following descriptions of
functor categories:

Theorem 3.2.2.3 (Functors between Matrix Factorizations). Suppose (M, f), (N, g) are
LG pairs. Then,

(i) There is a k[ J1-linear equivalence

FunB (PreMFM (M, f), PreMFN(N, g)) -+ PreMF'zM xZN(M x N, -f @ g)

(ii) There is a k((/3))-linear equivalence

Funk((6)) (MFM (M, f), MFy'N (N, g)) ~4 MFzM xZN (M x N, -f E g)

(iii) Summing (ii) over support conditions giving different components of (-f H g)- 1 (O)
yields an equivalence

@ Fun(6) (MF* (M, f - A), MF *(N, g - A)) -~+ MF 3 *(M x N, -f H g)
AEcva1(f)ncval(g)

(iv) Specializing (i) and (ii) to the case M = N, f = g, we obtain equivalences

FunL 81 (PreMFg (M, f), PreMF (M, f)) -~-+ PreMF'xz (M x M, -f H f)

Funk((#)) (MFj'(M, f), MFZ(M, f)) + M (M x M, -f H f)

Let (M 2 )o = (-f H f)-1(0). The diagonal A: M -+ M 2 factors through E: M -+

(M 2)0. Set

(A=A*OM E DCoh((M2 )o, wz = A* RFz WM E Ind DCohz2((M 2 )o)

Under the equivalence above,

idPreMF(M,f) eVPreMFz"(M,f) : Ro reMF*(M2,_fEg)( ,~
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idMFo(M,f) 1-WA,Z evMFoo(M,f)(-)i :RHom*MF M 2 ,f)O

(v) Specializing (iii) to the case M = N, f = g, we obtain an equivalence

Funlgy (MFC (M, f - A), MF (M, f - A)) -~+ MF(M 2 -
AEcval(f)

under which

®AEcval(f) idMFoo(M,f-A)A*WM

® evMFo(M,f-A)(-)1 :-RHomEO (M2,-f[f)((, -)

Proof.

(i) The first equality follows from the adjunction of Fin and §R on dgcat, together
with Theorem 3.2.2.2. The second from Theorem 3.2.1.3.

(ii) Base change of (i).

(iii) Combine Theorem 3.2.2.2 with the adjunction and Theorem 3.2.1.3(iii).

(iv) The only new statement is the identification of the functor represented by WA,z and
the trace. The identification of ev trace follows from the proof of Theorem 3.2.2.2. To
identify WA,z with the identify functor, we must trace through the equivalence of the
theorem.

Let i: MO -+ M, j: No -+ N, and k: (M x N)o -+ M x N be the inclusions. For a
compact object X E PreMFMoxNo(M x N, -f W g), let < denote the corresponding
functor. We claim that <' is determined by the following refinement of the statement
that j* o < = 4 .X o i* compact objects:
Claim: There is a k[#]-linear equivalence

R rMFN (Ng) '(T')) = RHomrF (M2 x NJ-fg)

= RHOmQCI(M2xN) (A*OM jT, i*T 0 *

= RHJomQC (N) (j*T, X*)S

naturally in T E PreMFzN(N, g) and T' E PreMFzm(M, f), where 4DI denotes the
shriek integral transform of Theorem A.2.2.4.
Proof of Claim: Tracing through the proof and using the previous Theorems repeatedly,
we see that

RHomPreMFO (N,g) (T, @ID1 (

= RHomPreMFOO(M2xN,-fEfg) (A*OM, 9 T) ®k[#] RHomPreMFm (N,g)(T)

= RHomPreMF' (M2x N,-fEf[g) (A*OM T, Z V Z 0?)

= RHomPreMF' (M2x N,f@-f g) (*OM 0 T, T Z Z
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so that, extending by colimits, we obtain

RHomPreMF<o(N,g) (T, 'y(T')) = RHomPreMFI(M2xNJf@-fEg) (A*OM 0 T, V X)

= RHomQCI(M2xN) (A*OM Z j*T, i*T'N kX) S

Running the analogous argument for QCI and V!, we identify the last line with

= RHomQCI(N) * X *

as claimed.

We now complete the proof: Note that the property in the claim characterizes '
up to natural equivalence: Since 4' is colimit-preserving, it is determined by its
restriction to compact objects T' E PreMFzM (M, f), and since PreMFO'N(N, g) is
compactly-generated it is determined by the above mapping functors.

First, a feasibility check: Note that

k~wA,z = A. RIz WM

so that Theorem A.2.2.4 implies that = RI'z which is naturally the identity on
the essential image of i,: DCohz(M) -+ DCoh(M); thus, we're done up to identifying
the Sl-action. This seems inconvenient in this viewpoint, so instead we take a different
approach.

Consider the (simplicial diagram of) Cartesian diagrams

MO x B. D2 )M x MO X B*

Di

MO x M x B* (M 3 )o x B*
A2

where the Di,2K; are the evident diagonal maps. All the arrows finite and of finite
Tor-dimension. Considering *= 0, we obtain a k-linear identification

RHomPreMFOO(M,f) (T, 4 (T')) = RHomPreM(M3,fEBfof) (*OM T7, ' * RI'z WM)

= RIompreMFO(M3,foBfEf) (A 1 *(OM Z T), 2 (T' C9 * RIz WM))

= RHomQC!(MXMO) (OM Z TY1 ,!(T' 0 , RI'z wM))

= RHomQc!(MXMO) (OM M T, (D 2 ),(Di) I(T' M . RI'Z WM))

= RHomQC!(MO) ((D2)*(OM M T), (D 1 )'(T * PJ'z WM))

= RHomQc(Mo) (0Mo ® T, T' 0 R'Rz WMO)

= RHomQC'(Mo) (T, T') = RHomPreMF"(Mf)(T7 T)
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To obtain a DCoh(B)-linear identification we apply an analogous argument for all e,
obtaining natural k-linear identifications

RHomPreMFOO(M,f) V *** 0 V 0 T, < (T')) = RHomPreMFo(M,f) (V1 0 V'' T,')

for V1,..., V. E DCoh(B) and T, T' E PreMF(M, f).

(v) Follows from (iv). 0

Remark 3.2.2.4. Note that in (iv), the Hom in the formula for ev is taking place in a
category without support conditions. Note also that, owing to the application of RLz
in obtaining the identity functor, the identity functor on PreMF will almost never be
compact-that is, PreMF is almost never smooth over k[31.

Remark 3.2.2.5. The above proof of (iv) is somewhat opaque, due to the attempt to isolate
and minimize the use of operations on oo-categories. The discussion of chapter 5 allows for
an argument via identifying the Sl-action, based on viewing WA,Z as a lift of A. RFz WM to
S'-invariants for a certain action on the category of endofunctors on QCI(M). Meanwhile,
Section 4.1 contains an alternate argument based on a description of the above equivalence
via shriek integral transform functors on the simplicial diagram Mo x B* x Mo.

Remark 3.2.2.6. In the previous Theorem we have written down an equivalence: roughly,
the one corresponding to Grothendieck duality D(-) = RHom(-,wMo) using the dualizing
complex wMO on Mo. Working from the viewpoint of literal matrix factorizations, it seems
more natural to write down a different equivalence: roughly the one corresponding to
Grothendieck duality D'(-) = RHom(-,wM/M) using the (trivialized by f, in degree -1)
relative dualizing complex wMO/M on Mo. For instance, it is this other equivalence that is
written down by Lin and Pomerleano in [LP].

3.2.2.7. Warning: The two equivalences give rise to different explicit identification of the
trace and identity functors.
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Chapter 4

Support and completion in DAG,
and more matrix factorizations via
derived (based) loops

4.1 Completion via derived Cech nerve and derived groups

In this section, we put the constructions of Section 3.1 and Section 3.2 into a more general
context and use this to give what we feel are better statements and proofs. Unfortunately,
making precise some parts of this requires more (oo, 2)-categorical preliminaries on the
relations of f! and f, on QC' than we wish to get into here. Consequently, we will only
sketch these proofs (being cavalier about these compatibilities) and will further defer these
sketches to their own subsection. Since we first wrote this in [P2], similar results have
appeared in [GR2].

4.1.1 Motivation

The starting point for this section is the following re-interpretation of Cor. 3.1.2.4, using the
identification DCohMO (M) = DCoh(Mo) (c.f., Theorem 4.1.2.8):

4.1.1.1. Associated to the natural inclusion i: Mo -+ Mo = MM0 , is a map i from its Cech

nerve. Since MO -+ M is a monomorphism, this identifies with

MO -- {Mx"*} ~ {Mo x Bx*-l}

The realization (say in dtale sheaves) of the last simplicial diagram is the definition of Mo/B,
and we have constructed a map i: Mo/B -+ MM0 . At the level of R-points

- Mo(R) consists of an m E M(R) together with a factorization through f = 0, while
B(R) acts transitively on these factorizations. So, (Mo/B) (R) consists of those R-points
in M(R) which, 4tale locally, admit a factorization through f = 0.

- Meanwhile, Mo(R) consists of the R-points in M(R) which, 6tale locally, admit a

factorization through f" = 0 for some n.
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4.1.1.2. Using Theorem 4.1.2.8, identify QCVI (M) = QC!(Mo). Applying Prop. A.2.3.2

QC!(Mo/B) = holimprR {QC!(Mo x BX*-) f!}

= hocolimprL {QC!(Mo x Bx*--f9

= hocolimp {QC!(Mo) ( QC!(B)**-, o QC(pt), f*

= QC!(Mo)@Qc'( 5 ) QC!(pt)

So, Cor. 3.1.2.4 may be re-interpreted as saying that the inclusion i induces an equivalence

on QC!. The approach of this section will be to give a direct proof of this sort of statement.

4.1.2 Support conditions, completion, and (derived) Cech nerves

4.1.2.1. Recall our notation QC =(X) Ind DCoh(X); the notation is suggested by the fact

that for a morphism f : X -+ Y the natural notion of pullback Ind DCoh(X) -+ Ind DCoh(Y)

does not come from the pullback f* of quasi-coherent complexes, but from the shriek pullback

fI of Grothendieck duality theory. This tells us that QCI(Xz) must be defined as, roughly,
a sequence of sheaves on nilthickenings of Z related by shriek pullback:

Definition 4.1.2.2. Suppose X E Fun(DRng, Sp) is a derived space over k. Define

QC! () d holimspec A-X (Ind DCoh(Spec A), f!)

A natural transformation f: X -+ 9 of functors gives rise to a colimit-preserving func-

tor f': QC!(3) - QC!(X) by restricting the test diagram along f. We will see later

(Lemma 4.1.4.1) how to define a colimit-preserving f,: QCI(K) -4 QC(g) using base-

change, and that (f., f!) is an adjoint pair if f is (representable and) finite or close to it.

Section A.1 shows that this definition is sheaf for the smooth topology, and that it coincides

with Ind DCoh(X) for X a (*F) derived DM-stack.

Definition 4.1.2.3. Suppose X is a derived stack and Z C X is the complement of an

open substack. Define .z to be the sub-functor of X given by

Xz(R) = {t E X(R): t factors set-theoretically through Z, i.e., Spec(iroR) = t-1(Z)}

4.1.2.4. Suppose X is a locally Noetherian discrete stack, and JS a defining ideal for Z.

Then, the above definition agrees with the usual one when restricted to discrete R: Note

that SpecX 0X/3", -+ X is a monomorphism on discrete rings, with

(Specx Ox /:J')(R) = {t E X(R): J" - R = 0}, and

(ing Spec- OX/3"z) (R) = {t E X (R): Sg - R is nilpotent on Spec R}

Since X was locally Noetherian, J3 is coherent so that 3, - R is nilpotent iff it is contained

in the nilradical of R (i.e., t factors set-theoretically through Z).

4.1.2.5. In the derived setting, a similar directed colimit description is possible locally

(e.g., when there is an ample family of line bundles) using suitable Koszul complexes (c.f.,
the proofs of Lemma 4.1.4.2 and Lemma 5.4.1.2). But now there is also a global way to
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understand completions via a Cech-nerve construction, in the style of the Adams spectral
sequence:

Construction 4.1.2.6. Suppose X is a derived space, Z C X a closed subset (i.e.,
compatible family of closed subsets of Spec A for all Spec A -+ X), and p : 2' -+ X a finite

map having support Z (e.g., if X is a Noetherian derived stack one can take the discrete
stack T = Zrd). Form the Cech nerve of p

p.: {. = gx X.+1 x

Note that |p. factors through the monomorphism i: z -+ X, and let 5: {2.} - Xz be
the factorization.

Note that the structure maps in this augmented simplicial diagram are all finite. Note
that even if -T and X were discrete, the other terms in the Cech nerve will generally not
be. As defined above, QC! takes colimits of derived spaces to limits of categories so that

QC (|.I) ~Tot {QC(.),i!} = Tot QCl( )Z' QCl(o xx f) ... }
Theorem 4.1.2.7. With notation as in Construction 4.1.2.6, there are adjoint pairs

1y*: QC' (|.|) tQC!(.z): p'i!
such that

(i) The adjoint pair (p*,!) consists of mutually inverse equivalences QC' (I ) QC z

(ii) The adjoint pair (|p.|*, p.i) identifies QC(i.|) with QC (X). More precisely, (p.),
is fully faithful with essential image QC' (X) and (p.),(p.)! ~Ez.

As a consequence, we obtain the following result which is morally important for us:

Theorem 4.1.2.8. Suppose that X is a coherent derived stack, that Z is the complement of a
quasi-compact open substack, and let i: Xz -+ X be the inclusion. With the above definition,
i!: QC!(X) -+ QCI(.z) restricts to an equivalence i!: IndDCohz(X) = QC(X) -+

QC'(z) with inverse i,. This equivalence identifies the adjoint pairs ((iz),,RJ'z) and

(i.,iY) (i )
QC!(X) ( ) QC (.r)

R'z

QC !(. z) <d k QC()

(In case X is smooth, it turns out that i*: QC(Xz) -+ QCz(X) is also an equivalence.
However, its inverse is substantially more complicated than i,.)

Sketch. The only thing new beyond Theorem 4.1.2.7 is that QC (X) = Ind DCohz(X),
which is the content of Lemma 4.1.4.2. For moral comfort, we sketch a less derived-looking
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argument (independent of derived Cech nerve) in case X is a locally Noetherian discrete
stack:1 Let Sz be an ideal of definition for Z, and X, = Specx Ox/3z for all n > 1. Consider
the diagram

X1  2  - Xz -- +

where each of the ti is proper, so that ((ti),, (ti)') is an adjoint pair. Observe that by
definition, together with the previous adjunction,

QC!(Xz) = QC(X1) QCI(X 2) -- - QC'(X) ...

QC(X 1 ) QC (X2) - - QC!(Xn) - - }
QC(X) -L 24Q(~)(~

=1 QC ( 1 )~ QC! (X2 ) - QC!(X ) --

Since tn is proper, the functor (tn)*: QC!(Xn) -+ QC!(Xn+1 ) will preserve compact objects.
We have the following recipe for forming a colimit in PrL of compactly generated categories
along left-adjoints preserving compact objects: Take Ind of the colimit of categories of
compact objects. In this case, this identifies the previous displayed line as

= r {QC!(X1) N2 QCI(X 2) ( --- "~ QC!(Xn) - }
= Ind ( {DCoh(Xi) L DCoh(X 2 ) -2... 4~* DCoh(Xn) - --

One can show, essentially by computing local cohomology, that the natural functor h1 DCoh(Xn) -

DCohz(X) is fully-faithful; it is essentially surjective by Lemma 2.2.0.2. Combining with
Lemma 4.1.4.2, we identify the previous displayed line with

= Ind(DCohz X) = QC1(X). 0

Remark 4.1.2.9. Passing to compact objects, one obtains DCohz(X) = DCoh(Xz) where
now DCoh(Xz) = QCI(Xz)c are what one might normally call the torsion coherent com-
plexes.

4.1.3 Geometric Koszul duality for QC

4.1.3.1. For the duration of this section:

- We work over a base S, which is assumed to be a smooth stack over k that is very good
in the sense that the conclusion of Prop. A.2.3.2 and Theorem A.2.2.4 holds over S
(where in interpreting Theorem A.2.2.4 we must work relative to S, i.e., the "dualizing
complex" of f : X -4 S is f!(Os)). In particular, when we write pt we mean S.

- 9 be (the functor of points of) a smooth formal S-scheme, pt E 9. Let pi denote the
formal completion of pt E 31, i.e., Spf 09. Note that pt is also a formal scheme, and

'Locally on X, a similar argument can be made in the derived setting by replacing powers of ?z by a
suitable filtered diagram of Koszul-type complexes.t
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the map p-t -- is an inclusion of connected components on functors of points.

- G = pt x 0' pt viewed as a derived (formal) group scheme by "composition of loops" as
in §3.1.1. If 9 is itself a (commutative) group formal scheme, then G may be equipped
with a compatible (commutative) group structure by "pointwise addition" of loops (also
as in §3.1.1). We will mostly ignore "pointwise addition" in this section, but one can
put it back in to obtain QCI(G)O-linear statements as follows: After one writes down
the relevant functors using pointwise addition (instead of loop composition), using the
added G-equivariance coming from using the commutative product, it suffices to check
that the underlying k-linear functors are equivalence; an Eckmann-Hilton argument
show that this k-linear functor is homotopic to that gotten by using composition of
loops, thereby reducing to the case considered in this subsection.

- , ' E Fun(DRngfP, Sp) be derived spaces, equipped with natural transformations
f: X -+ Y and g: X' -+ Y which are relative (*F) derived DM stacks.

Construction 4.1.3.2. Imitating §3.1.1 we observe

- tp = X x, pt and =' = X' x Or pt are right G-schemes, via "composition of loops."

- Xpt, 2 'pt are the left G-stacks obtained from Vpt, ,'t using the inverse ("read loop
backwards") i: G*P ~ G.

- pt' = pt xov X, and ptr' = pt xg, X' are left G-stacks.

- ptX, pt.' are the right G-stacks obtained from ptX, ptX' using the inverse i: GoP ~ G.

- There are obvious (G-equivariant) equivalences Xpt ~ ptX, pvX' ~ X'pt, etc.

We now isolate a key part of the proofs of Theorem 3.2.1.3 and Theorem 3.2.2.3:

Construction 4.1.3.3. Consider the "Koszul duality" map of derived spaces over W2:2

BQpt9Y = pt//G = - -- G2 G pt -4 pt

Base-changing, we obtain an augmented simplicial diagram

{ xy G' x* Y} -+ X x!Y pt x9 X' ("-+ X xg w xg X')

given heuristically on functor-of-points by

(x E (R),x' E X'(R), [hf: f(x) -+ pt], [hi: pt -+ pt],... , [h.: pt -+ pt], [hg: pt - g(x')])

-+ (x E 9(R),y E 3(R), [hf - h1 ---- -h. -h9 : f(x) -+ g(x')])

Taking geometric-realization, this gives a map

G-
i: xpt x 'pt -4 Xy9 pt xg X, = xpt x pt.

2 On R-points, pt(R) is the union of connected components of 91(R) consisting of maps such that, dtale
locally, the reduced pair (Spec 7roR)red admits a factorization through pt -+ Y; Bnpt6S(R) is the union of
connected components of 61(R) consisting of maps which 6tale locally themselves admit a factorization
through pt -+ 0'.f
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There is the following "tensor product theorem," which roughly asserts that although
pt//G -+ pt is not an equivalence, it is universally an equivalence on QC:

Theorem 4.1.3.4. There is a commuting diagram of equivalences

G *
QC p x , _' __ QC! ( x 1 2p X ')

QC!(Xt)QC(G) QC(,') Q(xtl')

Proof. It suffices to prove that the functors in the left column, right column, and top row
are equivalences. The right column follows by Theorem 4.1.2.8. The top row follows from

G
Theorem 4.1.2.7, since the simplicial object for Xpt x ptX' is nothing but the Cech nerve
for .pt x ptX' -+ X xy X'. It remains to handle the left-column: Applying QC! to the

G
simplicial diagram defining Xpt x pvV', and using that the structure maps are finite so that
(f,, f!) is an adjoint pair, we find

QCG 7p iTt) = Tot (QC!(Xpi x x

QC= QCIpp x G* x Gopt'), f
= IQC!(.rp

= QC!(APt)Qc(G) QC!(pte')

where the last equality is computing the relative tensor product by a bar-construction. [

Remark 4.1.3.5. Suitably interpreted, a version of the previous Theorem is true more
generally (e.g., replacing pt -+ 3/ by an lci map i: Z -+ M):

Q (Z//z(Z C Z) ~ QC! (M
The case of i a regular closed immersion can be deduced from the above. The case of i
smooth is the equivalence of D-modules via the de Rham stack and D-modules as crystals.
See [GR2] and/or [GR1].

Once this is done, we can deduce an identification of functor categories (which is perhaps
more clear than Theorem 3.2.2.3; e.g., it makes identifying the identity functor more
straightforward):

Theorem 4.1.3.6. The categories of Theorem 4.1.3.4 are all equivalent to

F'ms i(G) (QCinte'ral QCr fpt))

via a cosimplicial diagram of shriek integral transform functors

*<Ip: QC! (.p X G* X pX') -_+ Funik (QC! (X,'t x G'), QC! (7,t))
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Proof. To see this, we use Theorem A.2.2.4 and the explicit cobar resolution of the functor
category:

QC (pt X Pt') ~ Tot {QCI (Xt x G* x ptX

Tot {FunL (QC! (t x G*), QC (p

Un ) Tot {FnL (QC! (,'t)@ QC! (G)**, QC!(pt)

=FunL(GP
=FIQC*!(G)(QC (XP~)' QC!(xpt))

We must verify that the various

'<b: QC! (G* x Xpt x ptX) ---+ FimL (QC! (G' x ptX), QC! (ptX)

commute with the cosimplicial structure maps. The first instance of this verification is the
following: Let

a, &': G x Xpt x ptX' -+ Xpt x ptX'

be given by

&(g, x, x') = (xg, x') = (g-lx, x') and a'(g, x, x') = (x, gx') = (x, x'g-

Then, there are natural equivalences

< )~ (V ( 9 ) and <bat f(V z g) = V <

The verification is routine using projection, base-change, etc.

4.1.4 Sketch proofs

Lemma 4.1.4.1. Suppose i: X' -+ 7 is a map of derived spaces. Then,

(i) There is a well-defined functor i.: QC'(X') -+ QC'(.r)

(i. )(a: Spec R - X) V hocolim .1 (i'),$(R' -+ X
Spec R Spec R'1:

L)

0

')

together with a natural map i~i! -+ id.

(ii) If i is a monomorphism, then there is a natural equivalence id ~+ iii,;

(iii) Suppose that i: W' -+ X can be written as a colimit of i,,: .% -+ X with each in

and each transition map finite. Then, the map i~i! -+ id of (i) is the counit of an
adjunction (i., i!).

(iv) Suppose the hypotheses of (iii) are satisfied, that i is a monomorphism, and that i! is
conservative. Then, i! and i, are mutually inverse equivalences.
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Proof.

(i) The structure maps in the hocolim defining i, are defined as follows: Given an
arrow j: Spec R" -+ Spec R' over Spec R x X X'. There is a natural equivalence

9(R" - X') -+ j!9(R'-+ X') giving rise to a composite

j,(R"1 -* ') -+ jij (R -+ X') -+ F(R' -+ X')

where the second arrow is the candidate co-unit that always exists (though is not
always a counit of an adjunction).

To prove existence of i*i! -+ id, consider

(i*i!g)(SpecR - X)"= hocolimspec R'-+spec R x X X'(i'),F(Spec R' -+ -+ X)

and compose with the natural arrow

(i'),9(SpecR' - X' -+ X) - (i')*(i')! (Spec R -+ X) -+ g(Spec R -+ )

(ii) If i is a monomorphism, then 7' x X X' = X'. So, for any Spec R' -+ X' the
following diagram is Cartesian

Spec R' Spec R'

Writing

(i~i ) (Spec R' --+ X) = i,(SpecR' - ' -+ )

= hocolimspec R'-+spec R' x X '(R )

we see that the diagram over which the hocolim is taken has a terminal object, given
by Spec R' itself. The inclusion of this terminal object induces a natural equivalence
F(Spec R'-4 X') ~+ (ili,)(Spec R' a X').

(iii) We first handle the case of i itself finite. Since i is affine, i, takes on an especially nice
form

(i~g)(Spec R -+ X) = (i')*.F(Spec R xx X')

since Spec R x X X' is again affine. Since fiber products commute with colimits in a
(pre-)sheaf category, we have

X'= X x & X'= hocolimspec RIX (Spec R x & X')

and so QC!(K') = limSpe R- QC'(Spec R x X 1') and we may identify i! and i,
with the limits

i,: QC'(X') = lim QC'(Spec R x X X') <-> lim QC!(SpecR) = QC'(X): il
Spec R-+X Spec R-+X
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Since i is finite, so is each i': Spec R x K X' -+ Spec R. Since they are adjoint at each

stage of the limit via the indicated counit, the same is true of the limit.

Now the general case: Note that we have QC(X') = holimQC1(f) and il = holimi .

Since the transition maps are finite, the above implies that we're taking a holimit of
a diagram in PrR; also by the above, the (i0 )! are morphisms in PrR, and so general
non-sense tells us that the same is true of i!. So, il admits a left adjoint which general

non-sense tells us is the colimit of the left adjoints (ia),; this colimit coincides with i,
by inspection.

(iv) If follows by (iii) that there is an adjunction (i., i!). It follows from (ii) that i, is
fully-faithful, and it suffices to show that it is essentially surjective. Considering the
factorization of the identity ids.g = couniti.g o il(unitg), we see that i!(unitg) is an
equivalence for each 9. Since il is conservative we see that the unit for the adjunction
is an equivalence, completing the proof. E

Lemma 4.1.4.2. Suppose X is a (*F) derived stack, that j: U -+ . is a quasi-compact
open substack, and Z its closed complement. Set QC1 (.X) = kerj*: IndDCohX -

Ind DCoh U and DCohz(X) = QC (x) f DCoh(X). Then, there is a natural equivalence

Ind DCohz(K) = QC1(X)

Sketch. If there are line bundles Yi, i = 1,...,k, and sections si E P(Er, i) such that
U = U D(si) then one has an explicit model for j! by inverting the sections, and one can
show that QC1(X) is generated by Koszul-type objects

k

X 0 cone {s': i;-" -+ } X E DCoh(X), ni E Z>0

Indeed, suppose 9 E QC1(X), X E DCoh(X) and that #: X -+ 9 is a map in

Ind DCoh(X). The formula for j* as a filtered colimit under multiplication by the si,
together with compactness of X, implies that there exist ni > 0 such that s"' o # is null-
homotopic. A choice of null-homotopies then gives rise to a factorization of # through the
appropriate Koszul-type object of DCohz(X).

When X is affine, or more generally has an ample family of line bundles, this is

automatically satisfied. In general, Ind DCohz(.W) -+ QC(X) is fully-faithful, since
objects in DCohz(X) are compact in Ind DCoh(X) and QC1(X) is closed under colimits
in Ind DCoh(X). We have just proved that it is an equivalence locally, so that it suffices to

verify that QCI(&) has smooth descent. Since the formation of j* commutes with smooth

base change, it suffices to note that QCI(X) is a sheaf on X,,. (Theorem A.1.2.5). 0

Sketch proof of Theorem 4.1.2.7.

(i) First observe that 5 is a monomorphism: It suffices to check this on R-points before 6tale

sheafification, where it is just the claim that Icosk f : X -f SI -+ S is a monomorphism
for any map f : X -+ S of spaces (c.f., [L9, Prop. 6.2.3.41). Furthermore the hypotheses
of Lemma 4.1.4. 1(iii) are visibly satisfied (consider the simplicial diagram). Applying

Lemma 4.1.4.1(iv) it suffices to to show that P1 is conservative. Letting PO : . -+ .z,
it suffices to show that -' is conservative.
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Since z -+ X is a monomorphism, j5 is affine (indeed finite) since X - 5 is.

Suppose 9 E QC' (Xz) is non-zero; then by definition, there is some t: T -+ Z c X
such that tLg 0 0. Let t': T' -+ -T be the base change of t along the affine morphism 1o,
and p': T' -+ T the corresponding base-change of 7o. Note that (t')!( 0 )! = () t!g,
so it suffices to prove that (t')' is conservative. This follows from Lemma 2.2.0.2, upon
noting that T' -+ T is an equivalence on reduced parts since it is base-changed from
ff -+ Xz.

(ii) The composite |p. = i oT is again a monomorphism. So Lemma 4.1.4.1 (iii) shows that

(1p.1), is fully-faithful and left-adjoint to (1p.1)'. Let j: U -+ X be the inclusion of the
open complement to Z. Base-change implies j*(Ip.|), = 0 so that the essential image
of (1p.1), is contained in kerj! = QC1(X). It suffices to show that the restriction of

(|p.I)! to QC' (X) is conservative. In light of (i), it suffices to show that the restriction

i! I QCQ(!) -+ QC!(.Xz) is conservative.

Suppose F E QC!(27) is non-zero, so that by definition there is some t: T -+ X
such that t!9 = 0. Let p': T' = (t-1 (Z))red -+ T be the reduced-induced (discrete)

scheme structure on t-1(Z) C roT, and note that t o p': T' -+ & factors through Z.
Thus, it suffices to show that (p')': QC!-1(z)(T) -+ QCI(T') is conservative. Since

QC-1(z)(T) = Ind DCoht-1(z)(T) by Lemma 4.1.4.2 in the affine case, this follows by
Lemma 2.2.0.2.
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Chapter 5

MF via groups acting on
categories: Categorified
Cartier/Fourier duality

5.1 Introduction

Consider the category of abelian algebraic groups A which are extensions of tori and discrete
groups. Cartier duality is a contravariant involution of this category, taking a group to its
character group

A ++ X*(A) = Hom(A, Gm)

It preserves finite group schemes, and interchanges the affine and discrete groups.
In this context, it is straightforward to see that:

- (n = 0) Algebraic functions on X*(A) = algebraic distributions on A.

- (n = 1) Quasi-coherent sheaves on X*(A) = Quasi-coherent sheaves on BA (=vector
spaces acted on by A). Note that we could have replaced sheaves and vector spaces
by complexes throughout. For A = Gm, this is the description of Gm-representations
as Z-graded vector spaces. For A Z, this is the description of a Z-representation as
a vector spaces with an automorphism.

- (n = 2) Quasi-coherent categories over X*(A) = Quasi-coherent categories on B 2 A
(=category acted on by BA). For A = Z, this is the description of a category with
BZ = Sl-action as a category with a central automorphism. As before, there are
higher-categorical analogs which we will discuss in more detail below.

Though we don't wish to get into higher-categorical details, the pattern in fact continues for
all n:

(Quasi-coherent n-categorical Quasi-coherent n-categorical n-categorical gadgets

gadgets on X*(A) gadgets on B"A acted on by B-A J J
Here, "n-categorical gadgets" could for instance be a suitable notion of "k-linear (oo, n - 1)-
categories." For instance, one direction of the above should be:
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Theorem 5.1.0.3. Suppose Y is an (n - 1)-connected space and regard C,(Q"Y) as an
En-algebra. Then, there is an equivalence

C.(S2"Y)-mod" -~+ (k-mod")OY

commuting, up to homotopy, with the forgetful functor to C.

Heuristic Proof. We give a sketch, assuming the existence of a suitable notion of (oo, n)-
categories enriched over k-mod. In particular, for n = 1, this can be made precise:

(k-mod")O = Map(o,1)Cat (Y, k-mod")

= Map(o,n)cat (Y, k-mod")

= Map(oo,")cat (B" ["Y] , k-mod")

= Map(oc,n)cat(k-mod) (Bet [C.(n"Y)] , k-mod")

= Mapmodn+-k (mod"-C.(q"Y), k-mod")
= C,(nnY)-mod" 0

In particular, setting Y = B 2Z and n = 2, we see that

quasi-coherent dg-catgories acted

dg-categories over Gm on by S' = BZ

Given a category with S'-action, one has several constructions available: coinvariants,
invariants, and the Tate construction. It turns out to be possible to describe (a variant of)
matrix factorizations in these terms. But the usual version of matrix factorizations involves
the line or additive group, Ga, rather than multiplicative group Gm. To fit this into this
framework, we will need to pass to an infinitesimal variant of the above:

Suppose A is an extension of vector group and formal completions of vector groups. Let
X*(A) 4 Inf Hom(A, Ga) be the (possibly formal) group of infinitesimal (=set-theoretically
constant) characters to Ga: If A = V is a vector group, then X*(A) is the formal completion
of the dual Vv. If A = V is the completion of a vector group, then X* (A) is the dual V.

Then,

- (n = 0) Algebraic functions on X*(A) = algebraic distributions on A. This is
an algebraic version of the Fourier transform, identifying functions on a line with
distributions on the dual line up to finiteness conditions (thus the completions).

- (n = 1) Quasi-coherent sheaves on X*(A) = quasi-coherent sheaves on BA (=vector

spaces acted on by A). This is a consequence of the fact that the Fourier transform
makes the commutative cocommutative Hopf algebra k[x] self-dual up to finiteness

issues. If A = Ga, this is the identification of Lie-representations of k and endomor-
phisms. If A = Ga, this is the identification of nilpotent Lie-representation of k and
endomorphisms.

- (n = 2) Quasi-coherent categories over X*(A) = quasi-coherent categories on B 2 A(=category
acted on by BA). For A = Ga, this is the identification of categories acted on by BG.

(or the dg-Lie algebra k[+1]) and categories with a central endomorphism. We will
discuss this in more detail below.
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In particular, the case we will be interested in is

{ quasi-coherent quasi-coherent L dg-categories acted

dg-categories over A' dg-categories over B"Ga acted on by the Lie algebra k[+1]

5.2 Discrete Version: MF via invertible functions and S1-
actions

In this section, we sketch Constantin Teleman's description of matrix factorizations (for a
map to Gm instead of A') as arising from Sl-actions on complexes on the total space. We

also give a variant of this replacing Sl by BGa which actually corresponds to map to A1.
For simplicity we will first focus on the case where M is a scheme rather than an orbifold,
and later will indicate the necessary domifications. One shows thaoOne shows that Let us
prove the special case of "Theorem 5.1.0.3" that we will actually want:

Theorem 5.2.0.4. Suppose A is a grouplike E2 -space, and regard k[A] V C,(A) as an
E 2 -algebra. Then, there is an equivalence of oo-categories

{k[A]-linear dg-categories} = dgcat -+ (dgcatidm)BA = {dg-categories acted on by BA}.

commuting, up to homotopy, with the forgetful functor to dgcatidm. The same holds true

replacing dgcatidm by dgcat**.

Proof. To produce the functor, we will construct a BA-action on Perf k[A] as a (right)
Perf k[A] module category. The functor will then be given by C '-+ Perf k[A] ®Pef k[A] e
where now BA acts via the left-most k[A]-mod.

Let us compute the space of BA-actions on Perf k[A] as a k[A]-linear category. This is
the space of pointed maps from B2 A to the simplicial set of k[A]-linear categories or taking
iterated de-loopings:

MaPEOSpaces(B 2 A, dgcat m ) c MaPEiSpaces(BA, Autd gcae (Perf k[A]))

c MaPE2 Spce(A, (2*HH[AI (Perf k[A]))

SMapE2 lg(k [A], k[A]) D id

Corresponding to this element is a BA action on Perf k[A], and the above functor.
Having produced a functor, we will conclude by changing tracks and appealing to a Barr-

Beck argument. We claim that evpt: Fun(B 2 A, dgcatidm) = (dgcatidm)BA -> dgcatidm

satisfies the conditions of Barr-Beck: It is conservative since B 2A is connected. It preserves
all limits and colimits since they are computed pointwise. In particular, it admits a left-

adjoint L-heuristically given by left Kan extension-since dgcatidm is presentable ([L6, 4.2.3.7,
6.3.4.2]). It remains to identify the monad evpt oL on dgcatidm with Perf k[A]( -. From the

functor above, we obtain a map of monads and it is enough to prove that it is an equivalence.

To do so, we use the description of L as a Kan extension

evpt(L(C)) - colimMapB2 A(pt,pt) e e colimQB2A C L colimBA C = CA.

To complete the proof, we apply the following Lemma together with the n = 1 case of Theo-

rem 5.1.0.3, thus identifying CA with the compact objects of (Ind C)AP = k[A]-mod(Ind C) =
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Ind(Perf k[A] 3 C).

Remark 5.2.0.5. A similar Barr-Beck + induction argument is possible to make precise
the higher n cases of Theorem 5.1.0.3. However, it requires some cardinality book-keeping
in the formation of -mod".

Lemma 5.2.0.6. Suppose a simplicial group G acts on a small, idempotent complete,
oo-category C. Then:

(i) (Ind C)G ~ Ind(eG*P), and in particular the former is compactly generated.

(ii) The natural functor i: (Ind e)G - Ind(C) admits a compact-object preserving left
adjoint iL, and a colimit-preserving right adjoint iR. Furthermore, i is conservative
and so induces equivalences

(Ind C)G = (i o iL)-mod (Ind e) (Ind C)G - (i o iR)-comod (Ind e)

(iii) The natural functor CG -+ (Ind C)G is fully-faithful, with essential image consisting of
those objects x E (Ind C)G for which i(x) E C C Ind(C). In particular, CGoP C im CG

(iv) There is a natural equivalence

G = (i iL)-mod(C).

Proof.

(i) Note that G acts on the presentable oo-category Ind(() by right-adjoint maps; their
left adjoints may be taken to be the inverses of the action, i.e., the action of Gop on C.
So (Ind e)G may be computed in PrR, or equivalently as the colimit of the opposite
diagram in PrL. This opposite diagram is just the action of GIP on Ind(e), and it is by
colimit and compact object preserving maps; so the colimit in PrL may be computed
by taking the colimit of the (small, idempotent complete) oo-categories of compact
objects and then forming Ind. Putting this together, we obtain:

(Ind e)G ~ Ind(C)Gop ~ Ind(Gop)

PrR PrL

(ii) Since G acts by equivalences, the limit (Ind C)G may be computed in either PrL or
PrR, the natural functor i is both colimit and limit preserving; since the diagram of
left-adjoints is consists of compact-preserving functors, i is also compact-preserving
(as in the argument for (i)). Since Ind(e) is compactly-generated, this implies the
existence of left- and right-adjoints with the indicated properties.

The fact that i is conservative follows from observing that (Ind C)G is the homotopy
limit over a connected diagram (BG). Now, Lurie's Barr-Beck Theorem implies the
desired equivalences.

(iii) Since C -+ Ind(C) is fully-faithful, the same is true for any limit. Realize the G-actions,
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and the natural functor, by a diagram

*' I
BG

where the vertical maps are Cartesian fibrations and the horizontal map preserves
Cartesian simplices (and is fully-faithful since C -+ Ind C is). Then, CG is explicitly
given by Cartesian sections of ( -+ BG, while (Ind C!)G is explicitly given by Cartesian

sections of Ind C! -+ BG. Since BG is connected, to check if a Cartesian section of

Ind C -+ BG lands in (! it suffices to check at the base-point.

(iv) Note that the monad i o iL on Ind e preserves compact objects, and so gives rise to a
monad on the compact objects. Then, this follows by combining (ii) and (iii). 0

Corollary 5.2.0.7. Suppose C! E dgcatldm, A is a discrete abelian group, and k[A] its group
ring as commutative algebra. Then, the following spaces are naturally equivalent:

- MapE 2spaces(A, HH*(C)X);

- MapE2aIg(k[A], HH'(C));

- {BA-actions on (}.

Furthermore, suppose given one of these two pieces of data. Regard Perf k as commutative
k[A]-algebra via the augmentation A '-+ 1, and let X*(A) = Spec k[ A] as commutative group
scheme. Then,

- There are equivalences

CBA = e ®k[A| k CBA = FUn A (Perf k, C)

of module categories over the symmetric monoidal category (Perf k)BA - Fun" (Perf k, Perf k).

- This symmetric monoidal category can be identified with the convolution category

(DCoh 01X*(A), o).

- If A = Z, so that X*(A) = Gm, then the equivalence of completed Hopf algebras

exp: OGM, OG together with Prop. 3.1.1.4 provides a symmetric monoidal equivalence
(DCoh(%1Gm), o) ~ (DCoh(GoGa), o) ~ (Perf k[#31, ®kgbt]).

Proof. The first equivalence is immediate from the previous Theorem, as is the computation
of coinvariants and invariants. For the identification with the convolution category, one
identifies both as subcategories of FunA (k-mod, k-mod) ~ QC(f?1X*(A)). Finally, it is
easy to see that this convolution category only depends on the completed Hopf algebra,
proving the last claim. 0

5.2.1 Hypersurfaces and S'-actions on coherent sheaves

Lemma 5.2.1.1. Suppose M is a (discrete) k-scheme, and Z C M a closed subset.
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(i) Suppose that M is finite-type over k. Then, there is an equivalence of oo-groupoids

S -actions on DCoh(M)

as k-linear oo-category J

(ii) Suppose that M is finite-type over k. Then, there is an equivalence of oo-groupoids

Sl-actions on DCohz(M)
H-0 ( ( 2) X = Gmn (Z) ~ {as k-linear oo-category

(iii) There is an equivalence of oo-groupoids

HO (M,Om)x= Gm (M) S' -actions on Perf (M)
as k-linear oo-category

Proof. In light of Cor. 5.2.0.7 applied with A = Z, and the fact that k[Z] is discrete, it is
enough to show that -r-o(HH*(Perf(M))) = reo(HH*(DCoh(M))) = HO(M, OM) and that

r o(HH*(DCohz(M))) = H 0 (Z, 02). For then in each case

Mapaig(k[Z], HH*) = MapE-Ig(k[Z], r>oHH')

is just the discrete space of commutative algebra maps, which will be the units as claimed.
For Perf(M) this is standard, for DCoh(M) this is Cor. A.2.5.1. The case of DCohz(M) we
argue as follows:

OY*HH* (QC!(M)) = 0 RHomQc2(M2) (A* RiZ WM, A* RFZ WM)

= 0 RHonQc!(M2) (A*P Z WM, A*WM)

= * RHomc'i(M2) M* om"A*foi(0/Z, WM), A*WM

= RHomDCoh(M2) (A*ER om(O/jZ, WM), A*WM)
n

= ** _RHomDCoh(M2) (A*OM, A*/Z)
n

= 7ro mRHomDCoh(M2) (A*OM, A*/Z)

= m7ro RHOmDCoh(M2) (A*OM, A*/Z)

= HO (Z, )02

(While the full HH*(QC!(M)) may be unwieldy, it still has no positive homotopy groups
so that f * = 7ro admits a nice description.) 0

Definition 5.2.1.2. Suppose M is a discrete finite-type k-scheme, Z c M a closed subset,
and Z the formal completion. For f E Gm(M) (resp., f E Gm(Z)), define CircMF(M, f)
(resp., CircMF(Z, f)) to be DCoh(M) (resp., DCohZ(M) = DCoh(Z)) equipped with the
S-action of Lemma 5.2.1.1.
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5.2.1.3. The previous Lemma encoded the intuitive statement that an S1 - BZ action on C
is just a compatible family of automorphisms of the Hom-spaces, here given by multiplication
by f E Gm(M). We now move on to showing the intuitive claim that CS' consists of objects
equipped with trivializations of this automorphism, with maps given by the the fixed points
for the induced S-action on mapping spaces. Since a trivialization of multiplication by f is
precisely a null-homotopy of f - 1, we will show that (DCoh M)s1 = DCoh(Mi) where M 1

is the derived fiber of f over 1 E Gm. This can be viewed as explaining Prop. 3.1.2.1.

Corollary 5.2.1.4. Suppose that M is a (discrete) k-scheme, Z c M closed. Set C =

Perf(M) (resp., if M is finite-type, C = DCohz(M) = DCoh(Z)). Via Lemma 5.2.1.1, a

morphism f: M -+ Gm (resp., f: Z -+ Gm) gives rise to a natural S 1 -action on C. The

monad i o iL of Lemma 5.2.0.6 identifies with GM, = OM OG k E Alg(QC(M)) (resp.,

= (DOg o k E Alg(QC(Z))) giving rise to natural equivalences

Cs' - 0M-mod(C) and eS = (0M,-mod(Ind C))c

(resp. O versions). Consequently,

- If e = DCoh(M) (resp. DCohz(M)), this gives Cs ~ DCoh(Mi) (resp., DCoh( )).
In particular, DCoh(M1) (resp., DCoh(.W')) is naturally C*(BSl, k)-linear.1

- If C = Perf(M), this Csi = Perf (Mi).

Proof. Follows form Cor. 5.2.0.7. 0

Remark 5.2.1.5. The previous two results imply a very slight refinement of the statement
that MF(M, f) depends only on a formal completion of the (critical locus intersect the) zero
fiber in M: It depends only on the oo-category of coherent complexes on the completion,
together with an S-action encoding the function.

5.2.1.6. If M = U//G is a global quotient orbifold, then G acts on Perf (U) with Perf(U)G -

Perf(M) (by faithfully flat descent for Perf(-)). It follows from Lemma 5.2.1.1, applied
to M, that a G-invariant invertible function on M gives rise to an action of S1 on Perf (U)
compatible with this G-action. Thus we obtain an S-action on Perf(U)G = Perf(M), and
applying Lemma 5.2.1.1 on G we see Perf(M)S1 = DCoh(U1)G = DCoh(U1//G).

However, even in the global quotient case there could be other S'-actions not coming
from a function on the quotient. The point is that HH 0 (Perf(M)) involves functors and
so is naturally local on M 2 , rather than M. In the scheme case this went way, but in the
orbifold case the inertia stack IM = 7rOLM = iro(M XM2 M) will intervene

Lemma 5.2.1.7. Suppose M is an orbifold. Then, there is an equivalence of oo-groupoids

Ext(im, Om) x HHO(Perf (M))X x 5r4 S -actions on Perf(M)
as k-linear oo-category f

'This corresponds to the k[1]-linear structure one gets by applying the construction of Section 4.1 with
base 9 = Gm in place of Ga. As mentioned in Cor. 5.2.0.7, the formal exponential induces an equivalence

exp: QoGa 6i Gm and so a symmetric monoidal equivalence DCoh(12iGm) ~ DCoh(QoGa) ~ Perf k[#].t
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e.g., if M = U//G with U a smooth scheme and G a finite group, then the RHS is the units
(for a certain product) in

G

ExtM(OMOM) ~ g#HO(U1, 7roOu)

\codir(U9)=O

~O H(U9, 0 u, )zGC (91)
[g] conj. class in G

codirn(M9)=O

where the (right) G-action on the direct sum is by (g#a) - h = h-Igh#ah. (In case M is
disconnected, we must sum over components of Mg of codimension zero.)

Proof. This follows from the computation

HH2k(Perf(M)) = ExtQ2C(M2)(A*OM, A*OM)

= ExtQC(LM) A*OM, OM)

= ExtQC(LM)(r oA*A*OM, OM)

= ExtQC(LM) M , (M)

and the following computation of Hochschild cohomology of an orbifold, which we sketch:
Consider the commutative (not Cartesian) diagram

U q > UIG * BG

U 2 
- >- U 2 /G 2  , >- BG 2

A straightforward computation shows that

q* AUIG= g#(g)*ou E QC(U 2 )
gEG

The fact that A.OU/G is an algebra (indeed, the monoidal unit) for the convolution product
on QC((U//G) 2) manifests itself in the usual crossed product associative algebra structure
(g#a)(g'#a') = gg'#as'a'. It is (U2-linear by (a1 0 a 2) - (g#a) = g#aia(a2 )9 . There is a
right G 2-action on this giving descent data to QC(U 2/G 2 ): Locally on a G-invariant affine
piece it is (g#a)(g"g2) -ggg2#a92 for g, 9, 92 E G and a E Ou (regarding Ou as having
a right G-action in the natural way). Pulling back,

A*q*A.IG = 9g#A*(rg)*Ou E QC(U)
gEG

equipped with the diagonal of the above G-action as descent data to U//G.
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In particular, by descent

HH2 (Perf(U//G)) = [Ext0 2 (q*A*0yfG, q* A*y/G) G2

- - G2(
= Ext,2 @g#(g)*0u, 9 g'#(Jrg)OuY

gEG g' EG

a form which makes the product structure evident. Any such G2-equivariant self-map is
determined by where it sends idG #1, and is in fact just right-multiplication by the image
of 1. Writing this image as Zg, g'##, for #g' E r(oy), we see that it must satisfy various

conditions such as #yg(a - ag') = 0 for all g' E G and a E P(U). From these one can deduce
the indicated description in terms of connected components and supports of fixed sets.
However, we prefer to give a more geometric description, via essentially describing all of
HH*:

HH (Perf(U//G)) = RHomU/G (A*A*OUG, OUIG)

= [RHomu (q*A*A,01G, q*O/G)] G
-G

= RHomu ( g#A*(Frg), 0 , 0 G

g6EG

L
In the following lines, LgU denotes the derived fixed points SpecX2 () A0x2 r,, while

Ug = 7roLgU denotes the ordinary closed subscheme of fixed points.

-G

= RHomu (OLU,, OU)
g9EG

Passing to 7ro:

-G

HH (Perf (U//G)) = E Exto (O.,U, OU)
EgEG

- G

=DExto(O(gUOu]

gEG[codim(U9)=O
where the final equality results from noting that for a connected (discrete) closed sub-

scheme Z c U, Exto?(Oz, 9u) = 0 unless Z is a connected component of U in which case
Extor(Oz, 9u) = H0 (Z, Oz). 0
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One can also describe the invariants for these "exotic" Sl-actions, but the description is
less geometric: In the case of a global quotient, it is like a "non-commutative" fiber over
1 E Gn for the crossed product algebra.

Lemma 5.2.1.8. Suppose M is an orbifold and set C = Perf(M). Via Lemma 5.2.1.7,
an element a E HHO(Perf(M))x gives rise to an Sl -action on C. The monad i o iL of
Lemma 5.2.0.6 identifies with O OG ,n k E Alg(QC(M 2), o), where OA is a k[Z]-algebra by
n '-+ an and where QC(M 2) is equipped with its convolution product and its "star integral
transforms" action on C. So, CS' = (O(A ®OGm k)-mod(Perf(M)).

In case M = U/G, and a = Zg fg E (@gHO(Ug, Oug ))G (with fg 0 0 only on codimen-
sion zero components), this admits a "crossed product" description

Perf(U//G)s' -- @g#rg),0u (&Gm k -mod(Perf(U)).
g6EG

Proof. The only thing new is the following: Suppose that M = U/G. Note that Perf(M) =
Perf(U)G combined with Lemma 5.2.0.6(iv) give Perf(M) = (qlq)-mod Perf(U). We may
identify the monad q!q* with the "crossed product" algebra in endofunctors: q*A,0U/G E
QC(U 2) under star convolution. The k[Z]-action on A,0U/G corresponds to a G 2-equivariant
k[Z]-action on q*A.0U/G ~qq*, where n E Z acts by right multiplication by (Eg g#fg)".

It follows that Perf(M)S = (q!q, 0k[z] k)-mod(Perf(U)), whence the desired formula. O

5.3 Generalities on Formal Groups acting on Categories

There are some subleties with formal group actions on categories-this is what led us to
lead with the case of S actions instead of BGa-actions, even though we're perfectly happy
only dealing with maps to A'. In this section, we will discuss these subleties and show
that-for the most part-they do not arise in the case of BGa. We will also mention how
these subleties relate to curved dg-categories.

5.3.1 Definitions

Definition 5.3.1.1.

- A derived Artin k-algebra is an A E DRngk such that irA is a finite-dimensional k-
vector space, and r0A is a local Artin k-algebra with residue field k. Let DArtk be the
full-subcategory of DRngk spanned by the derived Artin rings. For any A E DArtk,
there is a natural A -+ k whose fiber will be denote MA.

- A formal moduli problem (fmp) over k is a functor in X E Fun(DArtk, Sp) such that
X (pt) ~ pt and the natural map 1V(B X ekk[] k) -+ fib{.X(Spf B) -+ X (k e k[])} is
an equivalence for all t > 0 and all B - k E k[t] E DArtk (c.f., [L7, Remark 6.18]). We
will call an arbitrary such functor with X(pt) contractible a pre-fmp. The inclusion
of formal moduli problems into pre-fmp admits a left-adjoint [L5, 1.1.17], the "formal
moduli completion.' A derived formal group G is a group object in formal moduli
problems, i.e., a formal moduli problem G together with a factorization of its functor
of points through sGp. If G is a derived formal group, let BG denote the universal
formal moduli problem receiving a map from A i-+ B(G(A)); if G(k @ k[f]) is connected
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for e > 0, then this is already a formal moduli problem. Our motivating examples are:

Ga, whose functor of points is Ga(A) = mA (viewed as a simplicial abelian group via

Dold-Kan); and BGa, whose functor of points is BGa(A) = BmA (since it satisfies the
connectivity assumption above).

Remark 5.3.1.2. Though, we will not need this, we note that DArtk admits various
explicit simplicial models. For instance, define simplicial categories DArt' c Coo-alg' as
follows:

- If A is an augmented algebra, mA denotes its augmentation ideal. If mA is a non-unital
algebra, then A = k e mA is the corresponding augmented algebra.

- Recall that a non-unital Coo-algebra structure on a graded vector space mA is, by
definition, a differential dA on coFre&oie(mA[+1}) that makes it into a dg-coLie coal-
gebra. A map of non-unital Coo-algebras is, by definition, a map of the corresponding
dg-coLie coalgebras. If mA, mA' are non-unital Coo-algebras, one has

Homc,-alg (mA, mAI) = HomeoLie-coalg ((coFreecoLie(mA [+1]), dA) , (coFreeoLie(mA, [+1)), d)

= MC ([coFreeoLie(mA[+1]), dA]v 0 (mAI, dAr))

- There is a simplicial structure by

Mapco-alg(mA, mA,)p = HomC.-alg(mA, mAI,@Qp) = MC ([coFre4eo~ie(mA[+1]), dA]v 0 A' M ~p

where £, is the commutative dg-algebra of algebraic differential forms on the p-simplex.

- This defines a simplicial category Coo-alg' having objects non-unital Coo-algebras and
mapping spaces as above. Let DArt' be the subcategory consisting of those mA which

are connective, finite-dimensional as graded vector space, and for which 7roA is local.

- Above, we cheated and implicitly used the following fact in our notation: Given an

Loo-algebra L and a Coo-algebra (mA, dA), one can equip the tensor product L 0 mA

with the structure of Loo-algebra. If mA were a dg-commutative algebra, rather than

Co,, this would be obvious: [li r i , 12 ® r 2] = [li, 12] 0 r 1 r 2 and similarly for the higher

brackets. However, the natural quasi-isomorphism of dg-operads

Coo & Loo -+ Comm Loo = Loo

admits a homotopy inverse by cofibrancy of Loo.

The following Lemma asserts that DArt' models DArtk:

Lemma 5.3.1.3. The Chevalley-Eilenberg complex of the dg-coLie coalgebra (coFredz*be(mA[+1I),dA)

is an augmented commutative dg-algebra. The formation of this determines a functor of

oo-categories

CLie(LkIA): N(DArt') -+ CAlgaug(Cpxk) -+ CAlgaug(k-mod)

This functor is fully faithful with essential image DArtk.
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5.3.2 What we're up against: One category level down

5.3.2.1. Notation for this Section: L is a dg-Lie algebra, BL the corresponding formal
moduli problem, GL = QBL the coresponding formal group, and BGL the pre-formal moduli
problem BGL(A) = B(GL(A)).

There is an evident map i: BGL -+ BL which is the inclusion of a connected component
pointwise, and which realizes BL as the formal moduli problem completion of BGL-

5.3.2.2. To start with, let us think about what it means for L to act on a fixed complex
M o E k-mod in terms of formal moduli problems. Put differently, we wish to understand the
underlying (oo, 0)-category (throwing out non-invertible) morphisms of (k-mod)L. There is
amiguity for two reasons: The first is the difference between BGL and BL. The second is
the following:

Suppose Mo E k-mod is a complex, and consider the pre-formal moduli problem of its
deformations

(k-mod) 'p'(A) = {M E QC(A), i*M~ Mo E k-mod

It turns out that this is not a formal moduli problem, but that it is only a matter of
connected components - that is, it injects into its formal moduli completion. One can given
an explicit description of this completion via QC' [L5, 5.2.16]:

(k-mod) (A) = {M E QCI (A), i!M~ M E k-mod}

5.3.2.3. Thus, we have the following reasonable candidates:

- Take the (oc, 0)-category having as objects pairs (Mo E k-mod, #: BGL -+ (k-mod)g'"j)
where # is a map of pre-fmp, and with morphisms given by equivalences of k-modules
and homotopies of the induced maps of pre-fmp. Call this Pairpre,pre. Unravelling the
definitions, we see that this is equivalent to the following data: Mo and a compatible
family of group morphisms GL (A) -+ AutA-md(Mo Ok A).

- Take the (oo, 0)-category having as objects pairs (Mo E k-mod, q: BL -+ (k-mod)pre)
where # is a map of pre-fmp, and with morphisms given by equivalences of k-modules
and homotopies of the induced maps of pre-fmp. Call this Pairf!mp,fmp.

- There are also evident variants Pairfmp,pre and Pairpr,,e,jmp according to which of BGL
and (k-mod)ipre we choose to complete to a formal moduli problem.

These are related as explained by the following Lemma.

Lemma 5.3.2.4. There is a commutative diagram of spaces

Pairpre,,,pre :- Pairfmp,pre

eI 
. I

Pairprefmp ~ Pairfmp,fmp ~ U(L)-mod~

If i: BGL -* BL is an equivalence (i.e., if BL(A) is connected for all A), then these
are all equivalences. This holds, for instance, if L is connective.
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Proof. Note that the equivalence in the bottom-left is formal nonsense (the definition of a
formal moduli completion), and the equivalence in the bottom-right can be deduced form
the theory of formal moduli problems. That the left vertical arrow is an equivalence follows
because BGL(A) is connected for all A, and the map (k-mod)iyre -+ (k-mod)j is an
isomorphism on T;>1.

If L is connective, then BL(A) is connected for all A. Indeed, in this case mA 9 L is
again connected and the zero simplices MC(mA 0 L)o vanish. [

5.3.2.5. Suppose now that we want to define an (oc, 1)-category (k-mod)L of chain complexes
with L action, up to homotopy, and to relate this to the theory of formal moduli problems.
Here are a few sensible options:

- Take the dg-category of dg-Lie modules over (a cofibrant dg-model of) IL, and invert
quasi-isomorphisms. This will be equivalent to U(L)-mod, where U(L) is a universal
enveloping Ei-algebra for (that model of) L.

- Take QC(BGL): That is, for each A E DArt and points 77 E B(GL(A)) we must
provide an A-module M,7. For a map (A, 77) -+ (A', 7') of such, we must provide the

compatibility data of M OA A' ~ MW, and so on for higher diagrams of morphisms in
DArt.

- Take QCI(BGL): That is, for each A E DArt and points r E B(GL(A)) we must
provide M,7 E QCI(A). For a map (A, 77) -+ (A', 7') of such, we must provide the

compatibility data of M,7 OA A' = RHomA(A', M,7) ~ M,, and so on for higher
diagrams of morphisms in DArt.

- Take QC(BL) or QC'(R): Analogous to the above.

The following Lemma summarizes how they are related. Note that there are many other
functors not indicated (e.g., adjoints of the ones drawn) to further confuse things. What's
worse, one must be very careful with explicit chain models: One can obtain the natural
functors U(L)-mod -+ QCI(BL) and U(L)-mod -+ QC(BL) by taking two different localiza-
tions of the same strict functor of dg-categories. The relation of these is explained by the
following Lemma.

Lemma 5.3.2.6. There is a commutative diagram of (oo, 1)-categories

U(L)-mod : ~ QC!(_B) >QC I(BGL)

QC(BL) > QC(BGL)

If i: BGL -+ BL is an equivalence (i.e., if BL(A) is connected for all A), then these

are all equivalences. This holds, for instance, if L is connective.

Proof. The top-left equivalence is [L5, 2.4.2, 3.5.1]. The fully faithfullness of the vertical
arrows follows from the fully faithfulness of QC(A) -+ QCI(A) for any A E DArt. The
top-right equivalence follows by an argument analogous to that for Theorem 4.1.2.7.

It remains to argue that the right vertical arrow is essentially surjective: Suppose

that M E QC!(BGL). It suffices to show that for all A E DArt and 'q E B(GL(A))
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that M, E QC!(A) lies in the essential image of QC(A). But the space B(GL(A)) is
connected so that the various M are all equivalent to Mpt where pt refers to the composite

morphism Spec A 2+ pt -+ BGL. But, this composite diagram provides an equivalence

Mpt = p!Mo = wA G p*Mo, proving that Mpt is in the essential image of QC(A). 2  0

5.3.3 What we're actually up against

5.3.3.1. Notation for this Section: L is a dg-Lie algebra, BL the corresponding formal
moduli problem, G' = Q'BL the coresponding formal EI-group, and BIG' the pre-formal
moduli problem B"G'(A) = B'(GL(A)).

There is an evident map in: B"G' -+ BL which is the n-connected cover of the base-point

component, and which realizes BL as the formal moduli problem completion of B"G.

We collect some basic facts analogous to those in the previous subsection:

Lemma 5.3.3.2. For each n > 1,

(i) There are equivalences QC(B"G) 4 QCI(B"G ) +~- QC(BL) on QC'.

(ii) Suppose that L is (n - 2)-connected (i.e., ,riL = 0 for i < n - 1). Then, in is an
equivalence.

Proof. (i) We must check that 7roBL(A) = 0 for all A E DArt and 0 < f < n. To do this,
it suffices to note that (with a suitable model) MC(mA 0 L)0 = MC(mA 0 Q1 ® L) = pt
for all A and f < n. Indeed, take a model for L with Li = 0 for i < n - 1, for mA with

(mA)i = 0 for i < 0, and note that (Df); = 0 for i < -f. Thus, (mA o Q, 0 L)_ 1 = 0
for 0 < f < n, and so is MC.

(ii) Same proofs as in the previous section. 0

Remark 5.3.3.3. Define the pre-fmp

(dgcat1dm)&fe(A)= E dgcat A~/ dg /AOA

and let
j: (dgcaid e -o (dgcatle- e

be its formal moduli problem completion. This completion exists by general nonsense, but
one can describe it (sort of) explicitly:

Proposition 5.3.3.4. (i) The map

(dgctum pre(A) -+ (dgcatim)e'e(A)

is an equivalence on -7>2: That is, only ,ro and ,r1 need to be corrected.

(ii) The maps

B 2 AutAut(eo) (ideo)Qi* -+ B Autgaidm ((0)i -- + (dgcatidm) -e

2 Note that this is just just a reformation of one of the arguments of Lemma 5.3.2.4. Indeed, it is not hard
to see that the underlying (oo, 0)-categories of the four things in a square here are the four Pair categories.t
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induces equivalences on T>2 and thus on formal moduli completions. The pre-fmp
AutAut(e0 )(ideo)fmP is already a formal moduli problem. The underlying complex of
the tangent Lie algebra of each is HH*(Co)[+1].

(iii) There is a natural equivalence

(dgcatidm)e(A) ~ MC.(mA®HH*(Co)[+1]) =: {curved A-linear deformations of Co}

for the Lie algebra structure on HH*(Co)[+1] gotten from the E2 -algebra structure on
HH*(Co). (Note that in the previous displayed equation, the last equals sign is giving

a definition of the space of curved deformations.)

Proof. - It suffices to show that the map is an equivalence after taking Q2 pointwise.
By [L5, 5.1.9] it is enough to show that Q 2(dgcatidm) pre is a formal moduli problem.
Note that

Q2 (dgcatidm)e- (A) = Aut(ideo) -(A)

= fib{HH7A(eo Ok A)X -+ HH)k(Co)}

fib{(HH'(e0 ) Ok A)' -+ (HH*(o))x}

1 + Q (HH*(Co) ® mA)

where the second-to-last equivalence holds since A is perfect over k so that A Ok -

commutes with all limits, and the last equivalence is a manifestation of the exponential.
Finally, note that for any complex V the assigment

Ai -*f(mA®V)

is a formal moduli problem: One can check that directly that the conditions hold, or

note that this is the fmp associated to the abelian Lie algebra V[-1] (i.e., MC(mA 9

V[-1]). ~ m 4A 0 V)).

- Clear from the proof of (i).

- For some Lie algebra structure, this is clear from the above. To demonstrate that it
is the right one requires us to produce a morphism, which we will not do here but

see [L5, 5.3.16, 5.3.18]. Alternatively, one should be able to produce a very explicit
morphism in terms of actually constructing deformations and correspondences of dg-
categories from the subspace of MC. corresponding to non-curved deformations. 0

5.3.3.5. Next, we consider candidates for the (oo, 0)-category underlying (dgcat)L. That

is, given Co E dgcatidm we'd like to understand what it means to give an L-action on Co.
Rather than listing all the "reasonable" definitions as before, we will list merely the ones

which are equivalent to what we want. We will call any of these a GL action on Co.

- Define the (oo, 0)-category of pairs (Co, #: L -+ HH*(C)[+1]) where # is a map of

dg-Lie algebras, etc.

- Define the (oo, 0)-category of pairs (Co, #: BL -+ (dgcatidm)e, where # is a map of

pre-fmp, etc.
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- Define the (oo, 0)-category of pairs (Co ,#: B"G' -+ (dgcatidm)e-, where q is a map
of pre-fmp, etc. for any n > 1.

- Define the (oo, 0)-category of pairs (CO, #: B"Gn -+ (dgcatidm) pre, where # is a map
of pre-fmp, etc. for any n > 2. For n = 2, this may be thought of as the compatible
data of maps

B 2 ( 2BL(A)) -+ { A-linear deformation of CO}

- Define the (oo, 0)-category of pairs (Co,# : G2 -+ Aut(ide)ij), where # is a map of
E2-objects in pre-fmp, etc. This may be thought of as the compatible data of E2-space
maps

Q2B(A) -+ HHA(C Ok A)X or equivalently C,(Q 2BL(A)) -+ HH*(C) Ok A

for all A E DArt.

Lemma 5.3.3.6. The above are all in fact equivalent spaces.

Proof. The first two are related by the equivalence of fmp and dg-Lie algebras. The 2nd and
3rd are equivalent formally from B"G" -* BL being a formal moduli completion, and the
target being an fmp. The 3rd and 4th are equivalent since B"G" for n > 2 is 1-connected,
and the map on the right is an equivalence on -r>2 . The 4th and 5th are equivalent pointwise
by loop space theory in spaces.

5.3.3.7. Now we wish to define candidates for the (oo, 1)-category (dgcatidm)L (with the
obvious modifications for (dgcat*)L). If there were an existing (oo, 2)-category of curved
Aco-categories over reasonable rings, that would be a good candidate. Lacking that, we'll
make do with:

- Let UE2 (L) be the E2-enveloping algebra of L. Then, one can consider dgcat(L)'

- Let dgcatB3'G2 be the (oo, 1)-category of quasi-coherent categories over B2 G2: That

is, for every A E DArt and 2 E B2 ( 2BL) we must provide e, E dgcat m, etc.

Theorem 5.3.3.8. There is an equivalence dgcatB2G2 -~+ dgcat' (L) commuting, up to

homotopy, urith the forgetful functor to dgcatidm.

Proof. There is a natural equivalence

dgCatB2G2 = TottBQG "
dgas~2= gat~os~+Tot f dgcatk dgcatBOGL cgcat(BQGL 2 ---

and some Barr-Beck trickery identifies

dgcatB2QGL ~- (QC(BQGL), o)-mod

where QC(BOGL)_inherits a convolution monoidal structure o from the remaining product
on BQGL = BQ2BL. By the results of the previous subsection, there is a natural equivalence
QC(BOGL) = U(QL)-mod where LL is the loop space of L in Lie algebras.

Finally, recall that Koszul duality furnishes a natural equivalence of Ei-, co-Eo-, bialge-
bras C.(QL) = coBar(C,(L)) ~ U(L). Taking cobar once more, this produces an equivalence
of E 2-algebras U(fL) ~ coBar2 (C.(L)) ~ UE2 (L). 0
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Definition 5.3.3.9. We will henceforth refer to either of the above two equivalent categories
as the (oo, 1)-category of "dg-categories acted on by the Lie algebra L" or "dg-categories
acted on by the formal group GL," and will denote them interchangeably (dgcatidm)L or

(dgcatidm)GL.

Remark 5.3.3.10. Though we don't prove it here, the above can be lifted to an equivalence

of (oo, 2)-categories. This gives, perhaps after some unwinding, a funny putative definition

of the (oo, 2)-category of curved Ac-categories over A e DArt: As the (oo, 2)-category

dgcatKDs2 (A) of dg-categories linear over the E 2 Koszul dual of A. With QCI we were

lucky, and we could define it for many more commutative rings than just those in DArt.

Unfortunately, it is not clear if the same is true for this higher-categorical version.

At this point, the reader could ask why-other than perverse aesthetics-we bothered with

formal moduli problems. The point was to give a clean construction, without having to

produce formulas in dg-models and check well-definedness, of things like the following:

Proposition 5.3.3.11. Suppose L is a Lie algebra and GL the corresponding formal group.

An L-action on a category ( 0 induces an L-action on its Hochschild invariants. That is,
one has a functor of (oo, 1)-categories

(HH., HH*): ((dgCatiam)~)L -- + Ef"-alg(L-mod)

Proof. For each A E CAlg(k-mod), one has a functor

(HH , HH>): (dgcat7i)~ -+ Eilc(A-mod)

where (dgcatfd)~ denotes the the theory of A-linear dg-categories with non-invertible

morphisms discarded, and where E1Lc is 2-colored operad governing pairs of an E 2-algebra

and an E 2-module over it with a circle action compatible with the circle action on the

E 2-operad. (If one is concerned by issues of actually getting functoriality, see the discussion

in Section 7.3.) Furthermore, this construction is functorial in A-that is, for a map A -+ A'

there is a natural transformation HH (-) OA A' -+ HHA (- OA A'). If A - A' is such

that - OA A' commutes with all limits (such as a finite map of Noetherian derived rings),
then this natural transformation is an equivalence. 3

Composition with this functor produces a functor

((dgcaidm)~)GL ~ (dgcatBQG)X (HH* H*) QC(B 2 GL) ~ (k-mod)GL.

Note that this preserves quasi-coherence' because any map A -+ A' E DArt is finite, so

that the functor - OA A' preserves limits. 0

Remark 5.3.3.12. Having constructed this without formulas, we can now write down some

partial formulas. This attempt may to help explain why we did not just try to define the

functors above by formulas from the start.

3 More precisely, there are two coCartesian fibrations over CAIg and a map between them. First, one

considers the (oo, 1) category of pairs (A, C) with A E CAlg(k-mod) and C E dgcatA and morphisms

(A, C) -+ (A', C') given by pairs of a CAIg-map A -+ A' and an A-linear equivalence e ~> C'; it is a

coCartesian fibration via forgetting C. Then, one considers the (oo, 1)-category of pairs (A, M) where

A E CAlg(k-mod) and M E E2-alg(M) and maps are maps of pairs in the evident sense (with no

restriction on anything being an equivalence); it is a coCartesian fibration via forgetting M.t
4i.e., preserves coCartesian sections of the above fibrationst
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Let us try to describe the HH* part of the above in terms of curved Ao,-categories. For
the remainder of this remark, nothing is up to homotopy! Fix a (actual, strict) Ao-category
e and consider the chain complex

coBar(e) = 1 RHome(co, c1)[+1] 0- RHome(c_1, c,)[+1I]
n>O,co,...,cnEob e

equipped with the coBar differential de encoding the differentials and composition laws on e.
It is a dg-coalgebra with the evident coproduct. Then, coDer(coBar(e)) is a dg-Lie algebra
modelling HH*() [+1].

Let A E DArt', so that in particular - Ok A commutes (on the nose) with products.
An element 7 E MC(mA 0 coDer(coBar(e))) gives rise to a (potentially curved) A-linear
Ao-category structure on C Ok A by equipping coBar(C) Ok A = coBar/A(C Ok A) with the
differential de &1+77. Consequently, coBar(C) Ok A equipped with the differential de 0 1+q
will be a B,-algebra (see §7.5.1) in CpxA=the dg-category of dg-A-modules. In fact, it
is in the full subcategory Cpx' of dg-modules whose underlying graded module over the
underlying graded algebra of A is free; it can be deduced from work of Positselski that this
models QC'(A) (with tensor product of dg-A-modules corresponding to the shriek tensor
product)!

Thus, we have defined a map of sets

MC(mA 0 coBar(e))o -- Bo,-alg(Cpx')

To extend to higher simplices one defines an explicit Kan complex for E 2-alg(QC(A))~
in terms of B,-algebras in Cpx' with coefficients in S4,. Having done that, one realizes
that this Kan complex is none other than MC(mA 0 DerB- (coDer(coBar(C)) [-1])) and that
the map one wrote down was determined by a map of dg-Lie algebras (on explicit models
of) HH*()[+1] -+ DerE,(HH'(E)). We will come back to this in chapter 7, including
describing this map of dg-Lie algebras in §7.5.1.

5.4 Infinitesimal Version: MF via functions and BGa-actions

Lemma 5.4.0.13. Suppose V is a (discrete) vector space, and consider the abelian Lie
algebra V[n - 1]. Then, there is a natural identification of the En-enveloping algebra of V,
UEn(V), with the (discrete) En-algebra Sym V.

Proof. The evident inclusion of abelian Lie algebra V[n - 1] < (Symk V)[n - 1] induces a
map of En-algebras UEn (V[n - 1]) -+ Symk V. It suffices to show that this map induces
an equivalence of Pn-algebras on homotopy groups. Since V, with vanishing bracket, is a
filtered algebra over the filtered algebra Lie[n - 1], one has that UE, (V[n - 1]) is a filtered
En-algebra with grUE, (V[n - 1]) = Upn(grV[n - 1]). But now, there is a straightforward
identification Up (L) = Sym L[1 - nj with the induced bracket.

Alternatively, we could have argued as follows: UE, (L) may be computed (at least up
to issues of completion) by iterated Koszul duality. That is, one forms the cocommutative
coalgebra C,(L), restricts it to an E-coalgebra, and then forms its En Koszul dual algebra by
iterated cobar constructions. In this case C,(V[n - 1]) = coFredocomm(k[+n]) ~ H,(B"Z, k)
with no differential, and coBar*(C,(V[n - 1])) ~- H,(B"~'Z, k) for i < n, and finally
coBar"(C,(k[+1])) ~- k[x].0
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Theorem 5.4.0.14. Suppose V is a (discrete) vector space. Let L = V[+1| as an abelian
dg-Lie algebra, and let BV(A) = B(V 0 mA) be the corresponding (derived) formal group.
Let Vv = Spec Symk V as abelian group scheme. Then, there are equivalence of the following
oo-categories

- dgcati symkv ~ vv -linear dg-categories};

- (dgcatlc)L = {dg-categories acted on by V[+1]} in the sense above;

- dgcatB29 in the sense above: That is, for every A and y7 E B 2 (mA) we have C, E
dgcat/A"; this is equivalent to giving a compatible family of B(mA) actions on COk A E
dgcat m

commuting, up to homotopy, with the forgetful functor to dgcatldm. The same holds true
replacing dgcatidm by dgcat .

Proof. The equivalence of the first two follows from Theorem 5.3.3.8 and Lemma 5.4.0.13.
Since L is abelian and connected, one readily checks that GL = BV and G2 = V-so

that the last term is in fact the same as what we called (dgcatAm)G earlier. Note that

the maps B 2G2 -+ BGL - BL are equivalences since L is 0-connected (Lemma 5.3.3.2 for
n = 2), so that the subleties we were worried about do not arise! E

And, the infinitesimal analog of Cor. 5.2.0.7:

Corollary 5.4.0.15. Suppose e E dgcat'0, V is a (discrete) vector group, and maintain

the notation of the previous Theorem. Then, the following space are naturally equivalent

- {Curved C*(V[+1]) = Symkl'-linear deformations of e}.

- MapLie-alg(V[+1], HH*(C)[+1J);

- Map12a1g(Symk V, HH*(C));

- {V[+1]-actions on E};

- {BV-actions on e};

Furthermore, suppose given one of these two pieces of data. Regard Perf k as commutative

SYmk V-algebra via the augmentation V F-+ 0, and let V" = Spec Symk V as commutative
group scheme. Then,

- There are equivalences

e ! = e symk v k eBV = F ym v(Perf k, E)

of module categories over the symmetric monoidal category (Perf k)BY = Funx, y(Perf k, Perf k).

- This symmetric monoidal category can be identified with the convolution category

(DCoh QOVv, o).

- If A = k, so that Vv = Ga, then Prop. 3.1.1.4 provides a symmetric monoidal

equivalence (DCoh(QoGa), o) ~ (Perf k[3], k[btj).
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Proof. All but one of the equivalences in the first part follow from the previous Theorem.
For that one equivalene, we note that

MapLieag(V[+1], HH*(C)[+1]) = MC.(mc*(V[+l])HH*(e)[+1])

which was our definition of the space of curved deformation of C. The computatoin of

invariants and coinvariants follow from the identification (dgcatdm)Bv ~dgcats v
The symmetric monoidal identification follows by identifying both as subcategories of
FunL y(k-mod, k-mod) = QC(GoVv).

5.4.1 Hypersurfaces and BG-actions on coherent sheaves

5.4.1.1. The use of Sl-actions gives rise to natural comparison maps HHMYl 1 ((Perf M)S 1 )
HHk(Perf M)S , etc. However, it imposes the constraint that we work with an invertible
function f: M -+ Gm instead of the usual superpotential f: M -+ A1 . If we are willing to
complete near the zero fiber, it is always possible to replace f by ef. However, completing is
inconvenient in cases where we wish to retain nice global properties of M (e.g., smoothness
of Perf M) and incompatible with the graded context. Thus, it is desireable to repalce

replace the (constant) simplicial group S' by the formal group stack BGa.

We have the following analog of Lemma 5.2.1.1:

Lemma 5.4.1.2. Suppose M is a (discrete) k-scheme, and Z c M a closed subset.

(i) Suppose that M is finite-type over k. Then, there is an equivalence of oo-groupoids

B 0 (M, 09M) = Ga(M) ~ BGa-actions on DCoh(M)
as k-linear oo-category

(ii) Suppose that M is finite-type over k. Then, there is an equivalence of oo-groupoids

BGa-actions on DCohz(M)
H ZI 0-) =G(Z) {Bas k-linear oo-category

(iii) There is an equivalence of oo-groupoids

H (M0 OM) = (Ga(M) BGa-actions on Perf(M)
as k-linear oo-category

And:

Lemma 5.4.1.3. Suppose that M is a smooth k-scheme. Via Lemma 5.4.1.2, a mor-
phism f: M -+ Al gives rise to a BGa-action on C = Perf(M) = DCoh(M). Under the

identification of (i), there is a naturml k[flJ -linear equivalence

BG' =Perf (9o 0 omPerf(M) = Perf(Mo) and !BG" = OMo-mod(DCoh(M)) = DCoh(Mo)

where the kJpI-linear structure on the left is as in Cor. 5.4.0.15 and on the right is as in

§ 3.1.1.
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And the orbifold variants, which are exactly analogous to what we have done above.

Lemma 5.4.1.4. Suppose M is a an orbifold. There is an equivalence of (discrete) oo-
groupoids

~ BGa-actions on Perf(M)
E M Mas k-linear oc-category

e.g., if M = U//G with U a smooth scheme and G a finite group, then the RHS is

Extoy (OIM,_O9) ( o g#HO(U9,7ro0u9 )
codim(U9)=0

~ D HO (U9, 0 ug)Z 1)z(

19] conj. cis in G
codirn(Mg)=0

where the (right) G-action on the direct sum is by (g#a) - h = h-lgh#ah. (In case M is
disconnected, we must sum over components of Mg of codimension zero.)

Lemma 5.4.1.5. Suppose M is an orbifold and set e = Perf(M). Via Lemma 5.4.1.4,
an element a E HHO(Perf(M)) gives rise to a BGa-action on e. The monad i o iL of
Lemma 5.2.0.6 identifies with OA ®k[z] k E Alg(QC(M 2),o), where OA is a k[x]-algebra via
x i-+ a and where QC(M 2) is equipped with its convolution product and its "star integral

transforms" action on e. So, CBGa - (OA ®k[z} k)-mod(Perf(M)).

In case M = U/G, and a = Eg fg E (egHO(Ug, (Ug))G (with fg =A 0 only on codimen-
sion zero components), this admits a "crossed product" description

Perf(UG)B [("= g#(P9 )*u) ®k[x, k -mod(Perf(U))

5.5 Comparison of three viewpoints

Lemma 5.5.0.6. The inclusion Z -4 G. induces a map of pre-fmp BZ -+ BGa which

realizes the target as the fmp-completion of the source. Furthermore, there is a natural

equivalence BGa = BGa.

5.5.1 Back and forth

We begin with the following variant of Lemma 5.2.1.1, which is motivated by the idea that

PreMF(A1 , x) over k[#] is "like" Ga over Ga.

Lemma 5.5.1.1. There is an equivalence of oo-groupoids

SI '-actions on k-mod + k x*
as k/I-linear category

Proof. This is a variant of Lemma 5.2.1.1, using Theorem 3.2.2.3: An Sl-action on k-mod
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as QCI(B)-linear category, is the same as the data of a loop map

S' -0-+ AutQC!(B)(QCd(k))

Since S = BZ, this is the same as giving a double loop map

Z Aut,6L (QC!(k)) (idQC(k)) c Endinc(B> (QC!(k)) (idQC(k))

Identify QC'(k) = PreMF (A1 , -x) as QC (B)-linear category. By Theorem 3.2.2.3 (and

Theorem 4.1.2.8) there is an equivalence of oo-categories

FunL )(QC(k), QCd(k)) = PreMF' O(A2 , -X+y) = QC!xo ({X = y}) = QC A1 = QC '

under which the identify functor corresponds to

idQc!(k) 4 A* (Rro WA1) -+ Rro WA1 i w6

so that

End L(idQC!(k)) = EndQcI 6 (w6) = 000 RHomQc! (62a, w6)

= f RHomQca (0-, 0-0) = Qek[x] = k[x].

In particular, we see that (as a 2-fold loop space) Aut(idQc!(k)) identifies with the (discrete)

2-fold loop space k[x] X. Since both Z and k [x]X are discrete, 2-fold loop maps are just the

same as ordinary (abelian) group homomorphisms:

Map®2 (Z,Autidct()) = Map.2 (Z, k[zx]) = MaPAbGp(Z, k[x]') = k[x]x. Q

Definition 5.5.1.2. For V E k[x] X, let k-mod, and Perf k, (or just k, for short) denote

k-mod and Perf k equipped with the S'-action of the previous Lemma. Although we don't

introduce notation for it, it should be regarded as a mixture of PreMF and CircMF with
the two functions -x (to Ga) and s (to Gm):

kv = Pre/CircMF(Ga, -X, s) Ga a Ga x G^

The k[1-action is from taking the fiber over 0 in the first variable, the Sl-action is from

the second.

This allows us to incorporate S1 actions into Cor. 3.1.2.4:

Proposition 5.5.1.3. Suppose (M, f ) is a formal LG pair, and so E k[x] x. Set Mo =

M XA1 0, and Mo the formal completion of M along Mo. Then, there is an S' -equivariant

equivalence
PreMF(M, f) ogggO k, = CircMF(Mo, s(f))

Proof. At the level of underlying dg-categories,

PreMF(M, f) Okip k, = PreMFMo xo(M x Al, f EB -x) = DCohmo (Tf(M)) = DCoh(Mo)
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Consider the diagram

rf - P2 
MO MO x G. > Ga > Gm

The Sl-action comes from the second projection p: Ga -+ Gm, i.e., p(f). O

Finally, we sketch a few of the compatibilities between the various constructions we have
seen:

Proposition 5.5.1.4. Suppose M is a smooth formal k-scheme and f E Gm(M). Then,
there is a k[i -linear equivalence

CircMF(M, f)S ~ PreMF(M1, log(f))

where log(f) = log(1 + (f - 1)) = Z(-1)m (f - 1)m/m.

Proof. Consider the diagram
f -- log

Mi Gm " Ga

and note that the second map is an equivalence of abelian formal groups. Now combine
Section 4.1 and Cor. 5.2.1.4 (with its footnote). 0

Proposition 5.5.1.5. Suppose (M, f) is an LG pair, and V E k[x] n kIx]x with W(O) = 1.
Shrinking M if necessary, suppose that W(f) E Gm(M) so that both CircMF(M, V(f)) and
PreMF(M, f) make sense. Then,

(i) There is a k131 -linear equivalence

CircMF(M, V(f))S' = PreMF(M, f) O®kJj (kp)s

(ii) If cp'(x) 54 0, then (k,)sl is an invertible ki/3j-module category (in fact, equivalent to
Perf k[i).

Proof.

(i) The inclusion CircMF(Mo, W(f)) - CircMF(M, V(f)) induces an equivalence on 31-
fixed points. By Prop. 5.5.1.3 it remains to check that the natural map

PreMF(M, f) O®kpJ (k,)S' -+ (PreMF(M, f) Okgp] kW)S'

is an equivalence. This will follow from (ii) upon noting that the underlying k-linear
category on both sides identifies with DCoh(Mo) by Cor. 5.2.1.4, and the k-linear
functor with the identity functor.

(ii) Consider the diagram

A - x id xp - -
Ga a GaxGa Ga Gm

Using Prop. 5.5.1.4, there is a k[31 9 k[J]-linear identification of (k)s with DCoh
on the fiber over 0 x 1. By hypothesis, id x p is an isomorphism of formal groups, so
this identifies with PreMF(Ga, x, x). 0
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Remark 5.5.1.6. If (M, f) is an LG pair, then Perf(M) with the BGa-action corresponding
to f (or CircMF(M, f) in the case of f E Gm(M)) remembers information about all the
fibers of f. An easier version of the construction in this section tells us how: The space
of BGa-actions (resp., Sl-actions) on Perf k identifies with J'(pt, Opt) = k (resp., kx). For

t E k (resp., A E kX) let kt (resp., k\) denote this. Then, we can twist the formation of
invariants by kt (resp., k\)

Fun- (kt, Perf(M)) = (k. ( Perf(M))Bda = PreMF(M, f - t)

One could in principle hope for a refined version of Theorem 6.1.2.5, not factoring through
taking invariants on the category level, which retains information about finer global invariants

(e.g., non-commutative Hodge structures). However, the trick then lies in forgetting some
information so thatthe construction is not trivial!
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Chapter 6

Applications: Hochschild invariants

(unstructured), smoothness, etc.

6.1 Smooth, proper, CY, and HH

6.1.1 Smoothness (and properness) of MF

Using Theorem 3.2.2.3, we are able to obtain the show that MF is smooth, and that it is

proper when the critical locus is proper:

Theorem 6.1.1.1 (Smoothness and Properness). Suppose (M, f) is an LG pair, Z c f-1(0)
closed. Then,

(i) Suppose Zrea is proper. Then, PreMFz(M, f ) is proper over k [31 and MF z(M, f) is
proper over k({O3).

(ii) Suppose Z contains each connected component of crit(f) which it intersects. Then,
MFz(M, f) is smooth over k((O)).

(iii) Suppose crit(f ) n f-1(0) is proper. Then, MF(M, f) is smooth and proper over k((B)).

Proof.

(i) It suffices to show that ev, restricted to compact objects, factors through Perf k[#].
Unraveling, it suffices to verify that

ev($ 0 9) = Rom*PreMF(M,f)(9,9) E k[#]-mod

is perfect for all $, 9 E PreMFz(M, f). By Prop. 3.1.2.1

R PmreMF(M,f)(,)= RHomDCoh(M) (i* 9, i*) S1

where i: MO -+ M. Regarding HomDCOh(M)(i*Y, i*9) with its S'-action as a k[B]/B2_

module, it suffices by Prop. 3.1.1.4 to show that it is t-bounded and coherent over
k[B]/B2, or equivalently perfect over k.

Thus, it is enough to show that RHomDCoh(M) (', 9') E Perf k for any 9', 9' E
DCohz(M). Let k: Zred -+ M be the inclusion. By Lemma 2.2.0.2 we are reduced to

the case where 9' = k*9 for some 9 E DCoh(Zrea). Since M is regular, $' is perfect
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and hence the pullback k* ' is also perfect so that .J'Rom(k*F', 9) E DCoh(Zre)-
But now, Ze is proper so that

RHomDCoh(M)(' , k*9) = RHomDCoh(Zred) (k* 9)

= R. (Zed, HomDCoh(Zred)( , ) E Perf k

as desired.

(ii) We must prove that idMFz(M,f) is a compact object in the functor category. An object

in a k[#]-linear oo-category is compact iff it is compact in the category, viewed as a
plain oo-category. Using Theorem 3.2.2.3, we are reduced to showing that

WA,z = A* (Rrzwm) E MF'2 (M 2 , -f f) = IndDCohz2((M 2)o)k[k((#))

is compact. Since wM is coherent and A proper, M = K*WM is coherent and so compact
in PreMF (M 2 , -f B f) = Ind DCoh((M2)o). Note that K*RZWM = RIZ2A*WM,

since Z C MO, so that it is only the R7z 2 that can cause problems.

Let W = crit(-f e f) n (M 2)o be the components of the critical locus of -f e f lying
in the zero fiber. By Prop. 3.2.1.6, the natural inclusions

DCohz2nw((M2))c > DCohz2t (M 2 )0)

DCohw((M2 )o) -- DCoh(M2 )

induce, upon applying Ind(-)&kgpgk((3))

R~z2nw(E) E MF**2mw(M 2 , _f [ f) ~>MF2 (M 2 ,-f f) 3 Rz 2 (E)

w(E) E MF(M 2 , _f f) ~ MF**(M 2 , -f E f) 3 A

The functors in this diagram are left adjoints, whose right adjoints are the ap-
propriate IE_ functors. Using the top row, we see that it suffices to show that

lz2nw(WE) is compact in MFm2mw (M 2 , -f f). Using the bottom row, we see
that Ew( ) is compact in MFw(M 2 , -f E f). It thus suffices to show that

z2w: MFw(M 2 , -f [ f) _ MF2w(M2 , -f @ f) preserves compact objects;
the property of preserving compact objects is preserved under -&k[OJk((#)), so it

suffices to show that rEz2nw: IndDCohw((M2)o) -+ Ind DCohz2nw((M 2)o) pre-

serves compact objects. But, our assumptions on Z imply that Z 2 n W is a union of

connected components of W: so, RPz2nw may be identified with the restriction to

those connected components, and in particular preserves compact objects.

(iii) Set Z = crit(f) nf f1(0). By (i) and (ii), MFz(M, f) is smooth and proper over k[31.
By Prop. 3.2.1.6, the inclusion induces an equivalence MFz(M, f) _ MF(M, f). 0

Remark 6.1.1.2. It seems likely that the Theorem remains true if (M, f) is replaced by

a formal LG pair: i.e., a relative DM stack f: X -+ pt = Spf 9O1 c A' over pt with X
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formally smooth. However, the methods of this paper seem to be insufficient for this beyond
the algebrizable case.

6.1.2 Hochschild-type Invariants

6.1.2.1. Suppose (M, f) is an LG pair. The BGa-action on DCoh(M) corresponding to f
via Section 5.4 provides a BGa-action on HH.(DCoh(M)) and HH'(DCoh(M)), and by
naturality maps

HH' (DCoh(M)B6) -+ HH,(DCoh(M))B6a

and
HH%(DCoh(M))B" -+ HH* (DCoh(M)B6)

preserving all the structures naturally present on Hochschild invariants (SO(2)-action on
HH., E2-algebra structure on HH*, and HH*-module structure on HH. suitably compatible
with the SO(2)-action).

6.1.2.2. The goal of this section will, roughly, be to study the degree to which these are
equivalences. Our main tool will be an alternate description of these actions. Equip M 2 with
the difference -f EB f, so that (M 2 )o = {(mi, m 2) : f(mi) = f(m 2 )}. Let f: (M 2)o -+ M2

be the natural inclusion. The discussion of chapter 3, in particular Prop. 3.1.2.1, equips the
complexes

HH.(DCoh(M)) = RHomDCoh(M2) (f4AKM, e*A*WM)

HH'(DCoh(M)) = RHomDCoh(M2) (fE50M, f*A*oM)

with S 1-actions. Under the identification of S1- and BGa-actions on complexes, and the
identification of Cor. A.2.5.1, these are equivalent to the functorially induced actions of
6.1.2.1.

Before moving on to our goal, let us decribe this Sl-action in more detail. In chapter 7,
we will show that this this action-in a way compatible with the higher algebraic structure-is
determined purely by the algebraic structure itself: It is given by the adjoint action by
f E HH0 (M) in the Lie algebra HH* (M) [+1]. At the level of complexes-ignoring the higher
structure-we can see this directly:

Proposition 6.1.2.3. Suppose (M, f ) is an LG pair with M a scheme. Then, the HKR
identifications HH,(Perf(M)) ~ Q1, and HH'(Perf(M)) ~ TM = 9 AM [-i lift to S1-
equivariant identifications, where the Sl-actions on the right are given by -df A - and

igf(-).-

Proof. We prove the result in the affine case M = Spec R; the proof globalizes in the same

way as HKR itself, by completing the cyclic bar complexes, etc. Recall the cyclic bar-type
resolution of A,0M = R as OM2 = R 0 R-bimodule

R -+ RO(+2 degeneracies given by inserting 1, face maps given by multiplying adjacent elements.

It remains to give this a structure of OM2[BM2]-module quasi-isomorphic to ,0M. We
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claim that this can be explicitly done by setting

n-1

BM2(ai -... an) = (-1)1a i9 -9 - ai 9 f 0 ai+1 ... 0 an
i=1

Indeed, a straightforward computation verifies that BN2 = 0 and d(BM2 - ) = (-f B f)-
x + BM2 - dx, where d is the internal differential on the cyclic complex. Regarding A.T as
an OM2[BM2]-module via the augmentation (M2[BM2] -+ M2(-f E f), 3.1.3.4 tells us
that the S1 -action on

'R'om(A,0M, A*T) =Rfo0mA(AA*OM, T) = Tot {lyJOmA (((*+),T)

is simply dual to B = BM2 00M2 0
M in the first variable. Finally, it suffices to observe that

the usual HKR map intertwines -df A - and B: We compute

m-1

B=BM20M2 OM (al ''...9 am) -1)al ... ai 9f ai+1 ... am
i=i

+ (-1)mai 0---O0am 0f

so that

HKR (B (ai ® ... am)) = (-1)iai A - -dai A df A dai+1
=1

df
= A (maida2 A ... dam)

M!
= -df A HKR (a1 0 ... am)

The analogous operator on HH* is dual, which is i&(-). 0

Remark 6.1.2.4. Expanding on the proof of of Lemma 5.2.1.7, and noting that the natural
map L(U 9) -+ LgU is an equivalence,i one obtains a natural equivalence

L(U//G) = (9,eG LgU) /G ~ (®9EGL(U9 )) IG

So that

HH.(U/G) = Rr (L(U//G), OL(UIG)) = [0 9 EG Rr(oLYU)]G = gEG Rr(OL(U,))]G

HH*(UG) = RF (L(U//G), WL(UIG)/UIG) = [@gEG RHomU((9LU, ,U)] G = [gEG RHomU(OL(U9), ()U)] G

Identifying O9L(U,) = HH,(Perf Ug) and using its HKR description, one obtains an HKR de-

'It is evidently an equivalence on 'ro, both terms being identified with U9 . So it suffices to verify that we
have an equivalence on cotangent complexes. Applying Luna's Slice Theorem, one sees that U9 is smooth
and that its cotangent bundle is the (g)-invariant piece in the Oujug; in particular, the conormal bundle
(say at each point) contains only non-trivial (g) representations so that g acts invertibly on the conormal
bundle. One can identify the cotangent complex of LU with the cone of the action of g on Lu; the cotangent
complex of L(U 9 ) with the cone of the zero map on Lug; and the map of cotangent complexes with the
pullback Luu, -+ Lug. Since both U and U9 are smooth, this restriction map is surjective and its kernel is
the conormal bundle of U 9 in U. It thus suffices to recall that g acts invertibly on the conormal bundle.t
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scription of these orbifold Hochschild invariants.2 Presumably a similar explicit computation
is possible, though we have not tried to carry it out.

Finally, using Theorem 3.2.2.3 we are able to complete the computation of Hochschild-
type invariants:

Theorem 6.1.2.5 (Hochschild-type Invariants). Suppose (M, f) is an LG pair with, and
Z c f- 1 (0) a closed set. Then,

(i) There are natural kO3I-linear equivalences

HHk 1 (PreMFz(M, f)) = HHk(DCohz(M))Sl

and
HH'flJ (PreMFz(M, f)) = HH%(DCohz(M))S'

(where the circle action is given, under the HKR isomorphism, by -df A - and not the
usual B-operator) The descriptions as invariants are compatible with the B-operator
on HH. (=de Rham differential), and the E2 -algebra structure on HH*, and the
HH -module structure on HH..

(ii) There is a natural k((3))-linear equivalence

H Hk) (MFz(M, f)) = HHk(DCohz(M))Tate

(iii) Either assume 0 is the only critical value of f, or set

Mt = D MFO *(x, f -A)
AEcval(f)

Then, there are natural k((/))-linear equivalences

HH (Mi t t ) = (HHk(DCoh M))Tate

HH*((i)) (MFt*) = (HH%(DCoh M))Tate

The description in terms of Tate-cohomology of an S1 -action on the Hochschild complex
of DCoh(M) is compatible with: the B-operator on HH., the E 2 -algebra structure on
H H*, the HH*-module structure on HH.. Given a volume form on M inducing a
CY structure on MF(M, f ) (see Theorem 6.1. 3.4 below) the description is compatible
with the resulting BV-algebra structure on HH*.

(iv) Suppose furthermore that M is a scheme. Then, HKR induces equivalences

HHk' (PreMFz(M, f)) RTz ([RG'M3,I, 03- (-df A

HH (MiFz(M, f)) RT'z (['M((3)),/3 (-df A

HHkO (MFt*t ) ~Ri ([~j ((8)), 03. (-df A -)(*)
2Presumably there is a different HKR-type description where one stops at L 9 U, so that the normal bundles

of U9 appears explicitly.t
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HHg((6)) (MF to) ~RP ([AT1](),# -i (-

HCk (PreMFz(M, f)) ~ Rrz ([Q'[#p, u], 3- (-df A -) + u d])

HC (MFz(M, f)) ~ Rrz (['M((#3))[u], o - (-df A -) + u- d])

H C (MF**) ~ Rr ([Q*M((3))[u], # - (-df A -) + u d])

Proof.

(i) Let k: (M 2)o -+ M 2 be the inclusion, A: M -+ M 2 the diagonal, and 2: M -+ (M2)0
the reduced diagonal. By Theorem 3.2.2.3,

HHk" (PreMFz(M, f)) = ev(idPreMF'zO(M,f)) = RomrF0(M 2 ,_ ()* 9 M, *[ZWM

Since WM is coherent, the standard formula for local cohomology shows that we may
write

A*RrzWM

as a uniformly t-bounded filtered colimit of compacts. Then, applying Prop. 3.1.2.1:

RJrom Fo(M2,_fqf) (A*OMA*RLZWM)= [RHomDCoh(M2)(A*OM, k*Xa)S

By t-boundedness of the l, and regularity of M 2 , we see that {RJHomDCoh(M2)(A* 0M, k*a)}
will be uniformly t-bounded. Since taking S'-invariants commutes with uniformly
t-bounded colimits, we obtain

- SI

= h JRHomDCh(M2)(A*OM,k *k )

= [RHomQC!(M2)(A*OM, A* WM)

which by Cor. A.2.5.1 we may identify with

= HH'(DCohz(M))]Sl

Analogously,

HH* (PreMFz(M, f)) = RHom,*OO(M 2 _f8) * WM, r*zWM)

= RHomPeMFo(M2_-fOf) "AR".-2 '

= R ~o~oooM I Xf) ( 7~'

=[lRHom Fgk (M2

S1
= m [RHomQC! (M2) (X, )

Of a/
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As before, the t-boundedness of X, and the regularity of M 2 imply that we may
commute h past the invariants. Finally, we commute the m past the invariants, to

obtain

= [RlomQCr(M2) (*RPzM, A*RPzWM)]S

which by Cor. A.2.5.1 we may identify with

= [HH (DCohz(M))]S'

Recall that the compatibility with the various structures follows from the argument of
6.1.2.1.

(ii) Follows from (i) since HH. is compatible with the symmetric monoidal functor

- ®kJOIg k((f3)).

(iii) The computation follows in a manner analogous to (i) from Theorem 3.2.2.3(v). For
the Hochschild cohomology computation, it is important that the identity functor is
represented by a compact object in MF**(M 2, -f EB f): This lets us avoid the question
of commuting gm past a Tate construction. (This was the reason that (ii) above did

not include a statement about Hochschild cohomology.)

(iv) We first prove the first equality: From (i), we must identify HHk(DCohz(M)), com-
pute the Sl-action on it, and then conclude. By Cor. A.2.5.1, HHk(DCohz(M)) =

Rz HH,(DCoh(M)). Since M is regular, DCoh(M) ~ Perf(M) and HKR identifies
this inner term (de Rham complex) and its B operator (de Rham differential). Then,
Prop. 6.1.2.3 identifies the circle action with -df A -. (That this identification can be
made compatibly with the B operator can be checked explicitly, but in any case will
follow from chapter 7.) Finally, the desired computation follows by noting that RIz is
a right adjoint and so commutes with homotopy limits, e.g., taking Sl-invariants:

[HHk(DCohz(M))] = [RTz ([EN'M 0 ])]S'

= [Rrz ([Q',M]S')]
= Rz (['M1, /(-df A))

The second equality follows from the first, since ok1g k((#8)) is monoidal, upon noting
that RFz commutes with the filtered colimit of inverting 3. The third and fourth
equality follow analogously from (iii) and Prop. 6.1.2.3. 0

Remark 6.1.2.6. The presence of support conditions, and the existence of a comparison
map, has a down-to-earth description in terms of Prop. 3.1.2.1 and Lemma 6.1.2.7: Use an
explicit cyclic bar construction to write (leaving the differentials implicit)

HH.(DCoh(M)) = @ @ RHomM(ci, c2) Ok -.. Ok RHomM (c, cl) [n - 1]
n;>1 Ci..,cnEDCoh(M)
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Then, Lemma 2.2.0.2 and Morita-invariance of HH. give quasi-isomorphisms

~@ (D RHomM(c1, c2) Ok . -- k RHomM(c, ci)[n - 1]

n>1 ci,..,cnEDCohz(M)

RHomM(i.(c'), i,(c')) Ok - Ok RHomM(i*(c'), i*(c j))n - 1]
n>1 c',...,c'.ECohz(Mo)

We thus obtain a natural map

HH.(DCohz(M))S'

+--@ (@ I
n>1 c',...,c-,'ECohz(Mo)

n>1 c',..,c.E Cohz(Mo)

= HHN'1' (PreMFz(M, f))

Si

Hom(i,(c'),i,(c2)) Ok -.. Ok RHom(i,(C'), i,(C)

m(i*(c'1),i*(c))s' Okp - - p RHom(i,(cn), i,(c'))sI In - 1]

at least upon verifying that the above identifications are compatible with the differentials
(i.e., that Prop. 3.1.2.1 plays well with composition). As already implicit in the above, the
inner direct sum is uniformly t-bounded and so commutes with (-)Sl. From this perspective,
it is not clear why the outer direct should also commutes with (-)Si; this is some sort of
"convergence" statement about the cyclic bar complex.

Lemma 6.1.2.7. Suppose V, V' are t-bounded complexes with S1 -action, and V Ok V' their
tensor product as complex with S' -action. Then, the natural map

Vs1 OkpJ (V')S' -- + (V Ok V')S1

is an equivalence.

Proof. C.f., the proof of Prop. 3.1.1.4. 0J

6.1.3 Calabi-Yau structures on MF

We first recall the notion of a Calabi-Yau structure on a smooth, not necessarily proper,
dg-category (e.g., [L8, Def. 4.2.6 & Remark 4.2.17]):

Definition 6.1.3.1. Suppose C E dgcatI"m is smooth. An m-Calabi- Yau structure on e is
an SO(2)-invariant cotrace

cotr: R -+ ev o coev[-m](R) = HH.(C)[-m]

satisfying the following non-degeneracy condition:

- Note that cotr gives rise to a 1-morphism in FunL(R-mod, R-mod) ~ R-mod:

cotr(V) = idy OR cotr: id(V) V OR R -- 4 V OR HH.(e) [-m] ~ ev o coev[-m] (V)

- The non-degeneracy condition is that this be the co-unit of an adjunction (coev[-m], ev),
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i.e., that the composite

MaPFunI(Ind eInd e) (coev(V)[-m], 9) - MapR-mo (ev o coev(V)[-n], ) c MapR-mod (V, coevF)

be an equivalence for all V e R-mod and 9 E FunL(Ind C, Ind C). Since C is smooth,
it suffices to check that this condition is verified for V = R[n], n E Z, and 9 E

(FunL(Ind E, Ind C))c compact.

Of course the motivating example is:

Lemma 6.1.3.2. Suppose that M is an m-dimensional Calabi- Yau variety (in the weak
sense that M is Gorenstein and wM[-m) is trivializable), and that volM: Om ~ wM[-m]
is a holomorphic volume form. Then, volM gives rise to an n-Calabi-Yau structure on
DCoh(M) as follows:

- There is a cotr[,OImI: k -+ HH*(DCoh(M))[-m] determined by

[volM] = A, volM E MapM2(A*OM, A*WM[-M])= Mapk-mod (k, HH.(DCoh(M))[-m])

- There is a natural SO(2)-invariant lift of [volM], which determines SO(2)-equivariance
data for cotrOlm, and cotry,1, is non-degenerate in the above sense.

Furthermore, this determines a bijection between equivalence classes of the n-Calabi-Yau
structures and the set of holomorphic volume forms.

Proof. By assumption, A.OM and A*wM[-m] are both coherent sheaves, i.e., the heart of
the t-structure. It follows that

MapM2(A. OM, A*WM[-m]) = Q' RHomM2(A.OM, A.wM[-m])

= Ext M2(A0M, WM[-m])

= Ext'M(0M, WM[-m])

= MapM(A.OM, WM[-m])

and that both spaces are discrete. Any homotopy SO(2)-action on a discrete space is trivial,
so that

7ro (MapM2(A*0M, A*WM [~m])SO(2)) MapM2(A*0M, A.WM[-im])

This shows that [volM] lifts to SO(2)-invariants. The same argument shows that volM is
an isomorphism iff A volM is so, proving the "Furthermore." In fact, we didn't need the
discreteness argument:
Claim: A,, admits a natural factorization through SO(2)-invariants

A.: RHomM(OM, WM[-m]) ---+ RHomQCI(M2) (A*OM, A*WM in])SO( 2).

Assuming the claim, we now complete the proof: We must show that cotrolm is non-
degenerate, i.e., that the composite

evk cotr
MaP~FuL(QCr(M),QC!(M))(coev(V)[-m], F) -4 v+ ap-m (ev ocoev(V)[-in],) 4Ma-+ m (Vev9)
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is an equivalence for all V E k-mod and J E Funm(QC!(M), QC (M))c ~ DCoh(M2 ). By
Theorem A.2.2.4, we know that DCoh(M) is smooth; so, it suffices to verify the condition
for V = k[n], n E Z, and 9 compact. Using the identification of Theorem A.2.2.4, we may
identify the relevant map with (global sections of shifts of)

-TXOMDCoh(M2) (A.WM [--M), 9) -+ EJL'OmDCoh(M2) (A*OM, 9)

given by pre-composing with the equivalence A. volM.

Finally, we include two proofs of the claim: the first by general nonsense for which we
do not give all the details, and the second much more concrete in case M is smooth:
First Proof of Claim:

Base-change for the diagram

LM -- >2 M

M >M2

identifies
RHomQc'(M2)(A*, A.9) = RHOmLM ((P2)*, (P1))

so that in particular

RHomQC!(M2) (A M, A.wM -m]) = RHomLM(OLM, WLMf-rn)

Let s: M -+ LM be the inclusion of constant loops, which is naturally SO(2)-equivariant.
Under the above, A* is identified with

RHomM(OM, WM[-m]) * >RHomLM(s* SLM, s*S WLM r, o(-)o omLM(OLM, WLM[-m])

The lift to SO(2)-invariants is provided by naturality from the SO(2)-equivariance of s.

Second Proof of Claim:
In case M is smooth we can be completely explicit: By HKR, we may identify HH,(Perf(M)) =

D Q M[i] and the SO(2)-action with the de Rham differential dDR. Then, the lift of A is

O'"M-n-1 a Brm
O'm-2 d m-1d,2m

P(WM f-rn]) ) -+ RP - (HH.(Perf M)[-m])Sl

0M M 2M2

w rd ,d o 2 d -

where the boxed entries are in degree 0. The induced map on mapping spaces is Q' of this,
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which is just the identity on H5(M).

Remark 6.1.3.3. The cotrace can also be made very explicit in the Dolbeault model (over
C) for Hochschild homology: Represent volM by a holomorphic (n, 0)-form, [volM] E r(A">0).
Then, [volM] is visibly a cycle in

(HH.(Perf M) [-m])SO( 2) _ [(ppqF(A,q) [p - q - m]) [u], 8 + u -0]

Indeed (9vanishes since [volM] is holomorphic, and a vanishes since it is is an (n, 0)-form.

We now come to the main result of the section.

Theorem 6.1.3.4 (Calabi-Yau structures). Suppose (M, f) is an L G pair, m = dim M,
and that M is equipped with a volume form volM: O M ~ WM[-m]. Then, volM determines
an m-Calabi- Yau structure on MF(M, f ).
Proof. Replacing M by an open subset, we may suppose for simplicity that 0 is the only
critical point of M. For the remainder of the proof, let MF = MF(M, f), and FunL =

Funk())(MF, MF) which we will identify with MF(M 2 , -f E f) via Theorem 3.2.1.3 (with

the support condition dropped by the reasoning of Theorem 6.1.1.1). Let k: (M 2 )o -+ M2

be the inclusion.
The m-Calabi-Yau structure on DCoh(M) corresponding to volM

[volM] = A, volM E HH.(DCoh(M))[-m] = RHOmDCoh(M2)(A*OM, A*WM [-M)

admits the refinement

[volM] = A*[volM] E RHomPreMF(M2,_fEgf) (A40*M, *WM[-m]) = RHomM2 (A*OM, A*WM[-m])S

which upon inverting 3 gives an element

[volM]Tate def ,[volM] E HH (MF)[-m] = RHomMF(M2,-fEBf) \LA*OM,1K*WML-mJ

Claim 1: There is an SO(2)-action on RHomPreMF(M2,_fEf) (*OM,2*wm[-m]) refining

the natural SO(2)-action on HH (MF).-
Claim 2: The description as a pushforward via A equips [volM] (and so [volM]T) with
a natural lift to SO(2)-invariants.

Assuming the claims for now we complete the proof: From the claim, it follows that
Trate

[volM] determines an SO(2)-invariant cotrace

cotrvoiM : k((#3))[m] -+ HH k"(MF)

We will be done if we can prove that cotryOm is non-degenerate in the sense that it is the
unit for an adjunction (coev[-m], ev), i.e., that the composite

id y O V

MaplsL (coev[-m] (V), -+ MaPk((8))-mod (ev o coev[-m](V), Mapk((mo (V, evF)

is an equivalence for all V E k((#))-mod and 9 E FunL. Since MF is smooth (Theo-
rem 6.1.1.1) it suffices to verify this condition when V = k((f3))[n], n E Z and 9 E FunL is
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compact. Using the identifications of Theorem 3.2.2.3, we see that it suffices to check that

RHomMF(M2,-fgf) (A*WM[--mi,$)

-- RHomk((f))-mo (RHomL (-,0 M,2KwM[-m]) , RHOmnL (*0 M, ))

-4 RHomga))-mo (k((O)), RHom M2,_faf) (A*9M, ))
RHom Fk(()3))

RIoMF(M2 -fef) (A* OM, g)

is an equivalence for all 9 E MF(M 2 , -f EB f). The composite is just given by pre-

composition with [volM] ate, so it suffices to observe that [volMF" is an equivalence: It is

-S1the image by a functor of [volM] = A, volM, and volM is an equivalence.

Proof of Claims: Let BG. act on Perf(M) corresponding to f (Lemma 5.4.1.2), and

on Perf(M2 ) corresponding to -f EB f. By functoriality we know that BGa-acts on

HHk(Perf(M)) compatibly with the SO(2)-action, and this induces an SO(2) action on

H~k (Prf M))B6Ok[pf -
HHR(Perf(M))BG = RHomM2(AOM, AWM)Ba = RHomPreMF(M2,ff) (A*OM, A*WM)

which evidently refines that on HHk (MF(M, f - HHk(Perf(M))Ta*. We must produce

a lift of [volM) E MapM2(A*0M, A*WM[-m]) to SO(2) x BGa invariants.

The mere existence of a lift is actually automatic: Since

Map = MapM2(A,0M, A*WM [-ml) = f20 RHomM2(A*OM, A*WM [-Ml])

with both A*OM and A.wM[-m] in the heart of the t-structure, this space is discrete.

Regarding it as a complex in degree 0, it has an action of SO(2) x BGa such that the map to
the whole Hochschild complex is equivariant. But, since it is in degree 0 the action cannot
help but be trivializable. So, [volM) admits a lift to fixed points which is unique up to

contractible choices; and similarly, ro MapSO(2)xBda = 7ro Map = Map.

As before, it is possible to make the choice naturally (i.e., dependent only on some

universal choice). We describe how to do this in the case where M is a smooth variety, so
that we can use HKR descriptions: We will produce a lift

RHomM (OM, WM [-m]) -- + RHomPreMF(M2,_f[f) (A* )M, K*WM -~ml)SO( 2 )

of L, in the HKR model of Theorem 6.1.2.5. There's an obvious map

RT(Qm) -4 (HHk(Perf M)[-m])BG x80(2) = RT ([f2*[M] [a, uJ, ' (-df A -) + u ' d])

since 9mM is the degree 0 piece of the complex of sheaves on the right, and this piece has

no differentials into it (there's nothing in positive degree) or out of it (both d and -df A -
vanish for degree reasons). Again, the map on connective covers can be identified with the

identity on H0 (M, n). 0

Remark 6.1.3.5. The Claim is also apparent in a Dolbeault model (over C): If volM E
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F(AmO) is a holomorphic volume form, it evidently gives rise to a cycle in

(HHk(Perf M)[-m]) c xso(2) = [(®p,qr(AP'4) [p - q - m]) [,3, u], +#8 - (-df A -) + u -]

Indeed, OvolM vanishes since volM is holomorphic, while 9volM and -df A volM vanish
since they would have to be (m +1, 0)-forms.

6.2 Quadratic bundles

The goal of this section is two-fold:

- We carry out a first class of computation of PreMF, in the spirit of Kapustin-Li: For
non-degenerate quadratic bundles over a space, PreMF (with supports along the zero
section) admits a description in terms of a k[]3-linear variant of sheaves of Clifford
algebras. (Upon inverting 3, this recovers a relative form of the computations of
Kapustin-Li for matrix factorizations.)

- We use a variant of Theorem 3.2.1.3 to prove a a relative form of Kn6rrer periodicity
for metabolic quadratic bundles, and so re-construct using MF a 2-periodic version of
the Clifford invariant on the Witt group. Note that Kn6rrer-type result is valid only
after inverting 3.

6.2.1 Metabolic quadratic bundles and relative Knbrrer periodicity

Definition 6.2.1.1. A quadratic bundle (.2, Q) over a scheme X is a pair consisting of: a
locally free sheaf -9, and a non-degenerate symmetric bilinear pairing Q: .2 0x a -+ Ox.3

6.2.1.2. We associate to a quadratic bundle (a, Q) over X:

- The total space Q -+ X, a scheme smooth over X: Q = A(a") = Specx SymOX 3"

- The quadratic form q: 0 -+ A1: defined on points by q(v) = !Q(v 0 v) (or on sheaves,

by )x _ 9V (& @3V -+ Sym 2 (g)).

We will regard (0, q) as an LG pair.

Lemma 6.2.1.3. Let (9, Q) be a quadratic bundle over a smooth scheme X, and (0, q) the
resulting LG pair. Then:

(i) crit(q) = X, in particular 0 is the only critical value.

(ii) There is a natural identification *xt/o = a, under which Q corresponds to the Hessian.
In particular, q is Morse-Bott.

Proof.

3Non-degenerate means that the induced sheaf map 2 -> 3" is an isomorphism.t
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(i) Follows from the condition that Q is non-degenerate: Working locally, we may
suppose 9 = ED 10xvi, so that 00 = (x[x1,..., Xn] (xi dual to vi) and q =

E , Q(vi, vo)xixj. Then, crit(q) is cut out by the equations

2j
0=- = Q (vi,oj) xy for i = 1,...,In

0 =- dq= Z( -dQ(vi,vj)) xixj for E TX

The first set of equations may be reformulated as the vanishing of the vector Q(xi, .. ,)T.

Since Q was assumed non-degenerate, this cuts out precisely the locus xi = ... , X = 0,
i.e., X. The second set of equations are contained in the ideal generated by the first,
i.e., they vanish along X as well.

(ii) The (dual) identification is routine: v= 'Jx = 3" ® 0 = . The previous

computation in local coordinates shows that

dq = Q(vi,v)
dxidxj

which, tracing through the identification in this case, proves the claim about the
Hessian. 0

Remark 6.2.1.4. The formal Morse Lemma tells us that the LG pairs (Q, q) are (formally
locally) representative of LG pairs with Morse-Bott singularities.

6.2.1.5. Suppose X is a smooth variety. Regard Perf(X)O as a symmetric monoidal oo-
category, and let Perf(X)[#]@ = Perf(X) ®k k[#] (resp., Perf(X)((#8))0 = Perf(X) ®k k((#8)))
be the associated k[1]- (resp., k((#))-)linear symmetric monoidal oo-category. If , 'D are
Perf(X) [,6- (resp., Perf(X) ((#))-)module dg-categories, let us denote

'C O gp'De OPerf(x)# D (resp., OX((p)) D X=! C Operf(x)((#)) )

6.2.1.6. Earlier in the paper, we noted that Kndrrer periodicity could be deduced from our
Thom-Sebastiani Theorem together with an explicit computation of matrix factorizations
for a rank 2 quadratic form. Part (ii) of the following Theorem provides a globalized version
of Kn6rrer periodicity. Part (i) of the following Theorem provides a relative form of the
Thom-Sebastiani Theorem, under an additional hypothesis:

Theorem 6.2.1.7 (Relative Knbrrer Periodicity). Suppose X is a smooth variety, (P, Q)
is a quadratic bundle over X, and (Q, q) is the associated LG pair.

(i) Suppose (Y, f) is a relative LG pair over X: That is Y is a smooth X-scheme equipped
with a map f to A 1. For any closed subset Z C f-1 (0), exterior tensor product induces
Perf (X) 1[#] - (resp., Perf (X) ((#))-)linear equivalences

PreMFz(Y, f) ®xpJ PreMFx(Q, q) ~+ PreMFzxxx(Y XX Q , f 1 q)

MFz(Y, f) OxDpg MF(Q, q) ~'+ MFzxxx(Y xx Q, f E q)
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(ii) Suppose (a, Q) is a metabolic quadratic bundle, i.e., there is a locally free subsheaf
2 c -9 such that 2 = 2 and 2 is locally a direct summand (i.e., a subbundle).
Let Z = Spec Symo , 2  be the total space of 2. Regard Z as a closed subscheme of

Qo, so that (z is an object of DCoh(Qo) and thus of MF(Q, q). Then, tensoring with
Oz induces an equivalence

Perf(X)((#8)) = MF(X,0) -+ MF(Q, q).

Proof.

(i) The first equivalence follows from the proof of Theorem 3.2.1.3, replacing the reference
to Prop. A.2.3.2 with Prop. A.2.4.1 (applied to the second factor, since X is certainly
always smooth over X). The second equivalence follows from the first.

(ii) It suffices to prove the Ind-completed version, i.e., that QC(X)[31 -+ MF" (Q, q) is an
equivalence. Both sides are dtale sheaves (Prop. A.1.3.1) and the functor is evidently
local, so that the claim is local. We are thus free to assume that X = Spec R. It now
suffices to verify the following two claims:
Claim 1: O generates MF(Q, q) (recall, X is affine).
Note that Z D X = crit(Qo), so the inclusion MF (Q, q) -+ MF(Q, q) is an equiva-
lence by Prop. 3.2.1.6. It thus suffices to show that Qc generates DCohz (Qo). By
Lemma 2.2.0.2, DCohL(Oo) is generated by the image of i.: DCoh(L) -+ DCohL(Qo)
so that it suffices to show that 0L generates DCoh(L) = Perf(Z). Since X was assumed
affine, so is Z and the claim follows by the Hopkins-Neeman-Thomason Theorem.

Claim 2: The natural map Ox[8] -+ RHomo (Oz, OZ) becomes an equivalence after

- ®kOP] k((#3)).
The claim is local on X, so that we may assume that

- There are trivializations -2 ~ ® =1Ox - yi and 2 ~' e_:iox - xi.

- (9, Q) is not just metabolic, but hyperbolic (see e.g., Bass' work on quadratic
df

forms over rings): i.e., there exists an isomorphism (a, Q) ~ H(2) (2 ®

V QH) where QH is just the natural duality pairing pairing.

In terms of the above local identifications:

OZ = Ox[Xi, ... ,xr], 000 = Ox X1i ... , Xr, /q, and q = iyi
/Y1, -- - J, yr

Writing O - (Symox ") [el/de = q, we are led to the following Koszul-Tate

resolution of Of over 0 Q0:

0L Koso,0 (O" 0 o0 -+ 0") [U] / {du = -e}

2 = 0

~ C Jo1,...,6r,ruk/k!] / d { = yi

deg bi=+1,degu=+2 du = iiu
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where e E Koso, (- 9 v , 0 -+ O() satisfies d(e) = q (in local coordinates, it may be

given by the formula above). The natural Ox[#] action on this resolution admits
the following description: 3 acts by # = d/du, while Ox acts by multiplication. It
remains to use the resolution to compute RHomo (Oz, O,) as Ox [1]-module, and
show that after inverting 3 it is a free module on the identity morphism. Dualizing
the differentials, we readily compute:

RHomo (OZ,0OZ) = OP[#][1,.,,/ *y] -i=0)®~c~f \(q~f l~l/ 7y9=0Qj d-yj = -X#
deg my=-1,degj3=-2

where 1 is the identity map. Note that the "yj" Koszul differentials have gone to
zero, and we are left only with the differentials in the "u-direction." Moreover these
remaining differentials are all part of potentially truncated "-xi" Koszul complexes.
Upon inverting #, the truncation disappears and we obtain a splitting into shifts of a
Koszul complexes resolving Ox:

R4om* (OZ, 0) ®kgsg k((3)) = Oz((3)) [yi,.... ,yr] / Y = 0
d-Yi = -zitl

= J@ tiKoso,, (t-'Y0OZ:24O,
iEZ

~ tiox = Ox((#)) 0
iEZ

6.2.2 Witt group and "derived Azumaya algebras"

6.2.2.1. Suppose (a, Q1), (a2, Q2) are quadratic bundles over X, with associated LG
pairs (Q1, qi), (Q2, q2). Form the "orthogonal sum" (21 D -2, Q1 -L Q2); its associated LG
pair will be (Q1 XX Q2, q1 EB q2).

Define the Witt semigroup W'(X) of X to be the semi-group of (isomorphism classes of)
quadratic bundles over X, equipped with orthogonal sum. Define the Grothendieck- Witt
group GW(X) to be the Grothendieck group of the Witt semigroup. Define the Witt group
W(X) to be the quotient of GW(X) by the subgroup generated by metabolic quadratic
bundles.

Any element of GW(X) may be written in the form .21 - a2. Letting . 2 denote 3Q2
equipped with the negative quadratic form, we may rewrite

91 - a2 =(Pi 192) - (-92 -L9 2 )

where now 32 1 :12 is metabolic (with Lagrangian subspace 2 = A.02 the diagonal). In
particular, W(X) is the quotient semigroup of W"(X) by the metabolic elements.

Thus Theorem 6.2.1.7 implies

Corollary 6.2.2.2. The assignment

(Q, Q) -+ MF(Q, q)

takes orthogonal sum of quadratic bundles to tensor product of oo-categories over Perf(X)((#)).
It takes isomorphisms to equivalences. It takes metabolic bundles to the tensor unit (i.e.,
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MF(X, 0) = Perf(X)((#0))). Therefore, it descends to a group homomorphism

(W(x) Equivalence classes of invertible
Perf (X)((#3)) -linear oo- categories

Remark 6.2.2.3. In the statement of the previous Corollary, "invertible" means in the
sense of invertible object for the tensor product - Ox(p)) -. The right hand side is thus a
2-periodic version a "derived Azumaya algebra" of Toin [T3].

6.2.3 Relation to Clifford bundles

6.2.3.1. At this point (if not earlier), the conscientious reader should object: There's a
more down-to-Earth construction of (usual) Azumaya algebras out of elements in the Witt
group, by taking the bundle of Clifford algebras associated to a. The following Theorem
explains this. Since it's proof is independent of the above, we could presumably have proven
part (ii) of Theorem 6.2.1.7 in the world of Clifford algebras. 4

6.2.3.2. Suppose (9, Q) is a quadratic bundle on a scheme X. Then, Cliffox (2) is the
following sheaf of Z/2-graded algebras

CliffoX(2)z/ 2 = Ox(2)/{ pV2 = -Q(v,v)}

where 9 is in odd degree, and v denotes a section of 9.

6.2.3.3. In this paper, it has been our convention to replace Z/2-graded objects with
Z-graded objects over k((3)), deg # = -2. Under this equivalence, the above sheaf of algebras
goes to

Cliffox (2) = Ox((1#)) (2)/ {v2 = -Q(V, v)#}

where 9 is in degree -1, and 3 is in degree -2. There is also a k[/]-linear version:

PreCliffox (9) 4 Ox [#(2)/ {v2 = -Q(v, v)3}

Theorem 6.2.3.4 (Relative Kapustin-Li). Suppose X is a smooth scheme, (9, Q) a
quadratic bundle on X, and (Q, q) the associated LG pair. Then, the structure sheaf

Ox induces a natural equivalence of k[#]-linear dg-categories

PreMF (Q, q) ~ PreCliffox(9)-mod(QC(X))

and of k((/3))-linear dg-categories

MF* (Q, q) ~ Cliffox(9)-mod(QC(X)) = Cliffo,(9)z/ 2-moddgz/2(QC(X))

Remark 6.2.3.5. Before giving a complete proof of the Theorem, we should point that it
is in essence a straightforward computation of a relative Koszul dual over Ox (with a little
extra book-keeping for the k[]3-action). In local coordinates, it is saying that the Koszul

4Though I'm not aware of the desired Z/2-graded Morita equivalence appearing in the literature in
the metabolic case. If X is affine, then any metabolic bundle is hyperbolic and the Morita equivalence is
well-known and visibly Z/2-graded. [KO] shows that the Brauer class does vanish in the metabolic case, but
that it is is not necessarily the case that Cliff o (.9) Endox (A* 2) as one might naively guess.t
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dual of the dg-algebra

Ooo ~ Ox[xi,.. .,x][E]/de = q

is PreCliffox (-9) viewed as a filtered algebra (depending on the differential above), having
associated graded

()X[5i, - Jn] [t]

Proof. We first outline our plan of proof: We first use descent to reduce to the affine case,
and note that (locally on X) PreMFx(Q, q) (and MF(Q, q)) are generated by Ox. It thus
suffices to identify RHomiX (Ox, Ox) with PreCliffox (9) and analogously for MF. In
Step 2, we will explicitly construct a resolution on which we can see the k[#]-action and use
this to compute the underlying complex of the endomorphisms in Step 3. Finally, to identify
the algebra structure we explicitly describe the Clifford action on this resolution in Step 4.

Step 1: Identifying the generator.
Note that both sides are 6tale sheaves on X by Section A.1. In the following steps, we will
identify RHomrXM (O x x) ~ PreCliffox(9) as sheaves of algebras, i.e., objects inPreMF(Q,Q)(OOX
Alg(QC(X)); note that this implies the analogous identifies on - O®p] k((#3)). Then, the
functor in question will be RHom MFo(QQ)(O(x, -) (resp., RHom*Mo), factored through

RHom*eMFoo(QQ)(Ox, -)-modules (resp., MF*); in particular, the functor is local on X by

Lemma A. 1.1.1. To complete the proof it then suffices to show that RHom*eMF (Q)(X, -)

(resp. MF) is an equivalence locally on X. To do this, it is enough by Morita theory to
note that locally on X Ox generates PreMFx(Q, Q) by Lemma 2.2.0.2; and Ox generates
MF(Q, Q) by the preceding, Lemma 6.2.1.3, and Prop. 3.2.1.6.

Step 2: Constructing the resolution.
Let j: o -+ Q be the inclusion. For r E DCoh(Qo), recall the functorial resolution of
Example 3.1.1.11

$ ETo* j*j,$ Ej*j,$ E2j

We begin with the Koszul resolution of j*(i*Ox) over O, which we will think of in two
ways:

j*(i*Ox) + Koso, (M: Y ®OX 00 -+ 0Q) = (QIXiE = ix

where m is the "multiplication" map (recall, 00 = Symeo "v). Here we have identified

" 00 OQ = Q1 and so have identified the Koszul complex with the relative differential
forms. The multiplication map gives rise to a differential on this, which can be described as
contraction iE with an "Euler vector field" E = x i ling back we

j*j*(i*Ox) P- KosO 0 (m: 0V® OQ -+ OQO) = (j*Q; ,iE)

It remains to compute the map B: Ej*jg -+ j*j,, in these terms: It is (the restriction
to 0O0 of) left-multiplication by the section

SE r(Q, n/x) or i 0 E f(QOv Ox OQ)
2 2 di
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This satisfies iE(Bx) = q.x - BiE (x) since q is homogeneous of degree 2 so that iE(dq/2) = q.
Putting this together, we obtain the following resolution for i, 0 x as O9O-module. For

convenience, we follow the Tate convention of writing Koszul-type complexes in terms of
graded-commutative (divided-power) algebras:

k d(x 0 a) = xa dq ]
i,0x +- (j) 000 E(Y 00X OQO) U /k! , = j*Q;/x {I/k], iE q

N./! ' d(u) = dq/2 2 + u
deg=+1 _-deg u=+2/

Step 3: Identifying the underlying complex.
Using the previous complex, we readily compute that (as object in QC(X), ignoring the
algebra structure)

'R'Kom X (i,0x, i,Ox) = ([om X j* IX[uk/k!], m + (dq/2) -a/iu] , i*ox)

= 'R'Comx ([i*j*G QX[uM/m!], 0 , Ox)

= Ox[ "v[-1]

deg=-1.

Indeed, RHom* takes the hocolimit (i.e., Tot®) in the first variable to a holim (i.e., Totr),
and all the differentials vanish.

Step 4: Producing the algebra map.
We wish to produce a map of (sheaves of dg) algebras

<p: PreCliffo_ (2) -+ RHomo (i,0x, i,0x)

To construct the map, we make PreCliffo, (2) act on our explicit resolution: Ox acts via
Ox -+ 0%; # acts by d/du (i.e., shifting the resolution in the u). It remains to describe the
action for v E = T/X, and show that it satisfies the Clifford relations and (anti-)commutes
with the differentials. We define the action of v E '(TO/x) by contracting i, where we
imagine u as standing in for the Hessian tensor; explicitly:

- On the Koszul piece, fX, v acts by contraction i.

- On u, v acts by taking it to the contraction of the Hessian of q (i.e., Q) by v:

v - u = i, Hess(q) =v ( dxidxjQ(vivj) = dx dqd)

- We extend by requiring the action to be by derivations

v- + (-1)1 (w A (iv Hess(q)))

an lina ry (k-)!
and linearity.
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By explicit computation, this satisfies the Clifford relations

/ yk / k Uk-1
v - ( - (Wo ) = v. (iv(w) - + (-1)WIW A (iv Hess(q)) (k 1)!)

= (-1)I'I-1iv(w) A (i Hess(q)) uk-1 + (-1)IwIv(w) A (ik Hess(q))k-1

(- 1)! A i s (k( - 1)!
k-1

+ A iv(iv Hess(q))(k- 1)!

Uk-1 uk\
- A Q(, v)( = (-Q(v)#) A- I

-wQvv(k -1)! (ik

and (anti-)commutes with the differential

Uk) k Uk-1
v-d w- =V. E (W)---+ (- Aw

k!k! (2 (k - 1)!
Uk uk-1

= iv(iE(w))T! + (-1) E(w) A (iv Hess(q)) (k - 1)!

q uk-1 uk-2

+i A2^) (k - 1)!+(-1)I**(dq/2^w^(in Hess(q))) (k - 2)!

while

d(v (w ) = d (i(w) + (-1)wlw A (iv Hess(q)) (/ 1

uk uk-1
= iE(iv(W))T!- + (-1)lw iE(w A (i, Hess(q))) (k 1)!

+ - A iv(w) + (-u1 q uAA(ivHess(q)) 2

2 ()(k - 1)! +2~)w ~ A(~Hs~) (k - 2)!

Step 5: Checking equivalence.
We now verify that the algebra map 4 of Step 4 induces an equivalence on underlying

complexes, by using the description of the underlying complex given in Step 3.
The first observation is that # goes to #: More precisely, the isomorphism of Step 3 is in

fact an isomorphism of Ox[#]-modules; in Step 3, ,3 k was dual to uk/k!, which is compatible
with # acting by d/du. Thus, # is a map of locally free Ox[1]-modules of the same rank,
and it suffices to work locally and match up generators. This is straightforward. 0

Remark 6.2.3.6. Sheaves of Clifford algebras and quadratic bundles also appear in

Kuznetsov's homological projective duality ([K]). The relationship of those results to the

previous Theorem can be loosely summarized as a relative version of the LG/CY correspon-

dence ([03]): Let P(Qo) c P(jv) denote the bundle of projective quadrics associated to

(2, Q). Then, the LG/CY correspondence asserts (assume dim -9 > 2) the existence of a

fully-faithful functor DSingQo - DCohP(O). 5

5 1n general, the picture is a little delicate due to the interaction of "Gm-weight gradings" with duality:

The direction of the functor depends on some numerology. Roughly, it is an equivalence if the projective

zero-locus is relative Calabi-Yau, fully-faithful in the direction indicated if it is Fano, and fully-faithful the

other way if it is of general type.t
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6.2.3.7. Kuznetsov's 3 is our PreCliffo,(3Q, Q) viewed as a weight graded, non differential
by formality, algebra. Kuznetsov's !o (the even part of B) is (Cliffo,(3Q, Q))O in our notation
(the subscript denotes taking weight zero part), where this is regarded as an ungraded,
non differential by formality, algebra. Kuznetsov's constructs (n > 2) a semiorthogonal
decomposition of DCoh P(Qo) whose first term is DCoh fo-mod(QC(X)), which may be
identified with DSingg0 £2.
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Chapter 7

Adjoint Actions for E2-algebras
and the Hochschild Package of
Matrix Factorizations

7.1 Introduction

Suppose (M, f) is an LG pair and assume for simplicity that 0 is the only critical value. In

chapter 5, we saw that there was a BGa-action on DCoh(M) for which DCoh(M)BGa -

PreMF(M, f) as k[#]-linear categories and DCoh(M)T ae = MF(M, f) as k((3))-linear cate-
gories. By Prop. 5.3.3.11, this BGa-action induces a BGa-action on the Hochschild invariants
of DCoh(M). In chapter 6, we saw that the Hochschild invariants

(HH'ks,))(MF(M, f)), HH(") (MF(M, f)))

~ (HH%(DCoh(M)), HH"(DCoh(M))) e Eacalg(k((#3))-mod)

with their various higher algebraic structures could be computed as the Tate construction
for this BGa action on the Hochschild invariants of M.

The goal of the present chapter is to leverage this to actually compute these higher
structures. Our approach will be two-fold:

- First, we will show that the induced BG,.-action on HH*(M) E E2 -alg (resp.,
HH*(M)[+1] E Lie-alg, etc.) depends only on: the E2- (resp., Lie-, etc.) algebra itself;
and the Lie map k[+1] - HH*(M)[+1] encoding f.

- Second, we will use a formality theorem of Dolgushev-Tsygan-Tanarkin to get a handle
on the E 2-(resp., Lie-, etc.) algebra stucture on HH*(M) (etc.).

7.1.1 Classical Motivation

Suppose C c e and set A = Ende(c). Let A'* denote the underlying Lie algebra of the
associative algebra A. It is well-known that AUe controls the deformation theory of the
object c E C. Given a deformation F of c E e, one may form its endormphisms Ende(-) to
obtain a deformation of A. More precisely, the formation of endomorphisms gives rise to a
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map of (pre-)formal moduli problems

d.- ef cF E C Ok R
End( - e I{R E DArtk F4 {with an equivalences c R k ~ c E C

ZAEAlg(R) f
-+Alg' ̂ e R E DArtk F4, EAgR

FA { with an equivalence A OR k ~ A

and thus a map of Lie algebras ALie -+ Der(A).

Our starting point is the following simple observation: Though the above construction

proceded via c E e, this map of Lie algebras in fact depends only on the algebra A and

not its realization as Ende(c). It is nothing more than the adjoint action of the ALie on A,

which one checks are by algebra derivations. This is the infinitesimal analog of a familiar

discrete fact: The group of units AX acts on A by conjugation, and this is an action by

algebra automorphisms.

7.1.2 Higher analogs of adjoint actions

The first result for this chapter will be a higher analog of the above:

Theorem 7.1.2.1. Suppose C E dgcatidm.

- Let A = HH*(E) E E2-alg. The map of deformation problems

HH*(-): dgcate -+ E2-alg^

gives rise to a map of Lie algebras

HH*(e)[+1]Lie __+ Derk (A)

This map may be naturally identified, up to homotopy, with the E 2 adjoint action (see

§ 7.4.3). In particular, it depends only on the E2 -algebra A and not on the category C.

- Let A = (HH*(C), HH. (e)) E E'l-alg. The map of deformation problems

(HH*(-), HH.(-)): dgcati -+ Efte-alg

gives rise to a map of Lie algebras

HH*(C)[+]i - DerF-ac(A)

This map may be naturally identified, up to homotopy, with the ECale adjoint action

(see § 7.4.3). In particular, it depends only on the Eesac-algebra A and not on the

category C.

Proof. See §7.4.5. 0

Note that (i) is included above only as a more familiar sounding orientation for (ii),

which is a strict generalization of it. More generally, Section 7.3 will discuss the discrete

analog of adjoint actions and the above result for all En, n > 1. Then, Section 7.4 will

discuss the infinitesimal results-e.g., the above Theorem-again for all En, n > 1.
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In practice, E 2-algebras can be somewhat involved to compute with. In contrast,
computations with Lie-algebras tend to be easier. Furthermore, there are formality results
giving computationally convenient descriptions of the Lie algebra HH*(C)[+]Lie in Cases of
interest. For this reason, we will find it convenient to have the following Lie-variant of the
above. It says that if one only wants to Lie-type output one only needs Lie-type input:

Theorem 7.1.2.2. Suppose C E dgcatidm.

- Let A = HH*(C)[+1]Lie E Lie-alg. The map of deformation problems

HH*(-)[+1]Lie: dgcat2e -+ Lie-alg-

gives rise to a map of Lie algebras

HH*(C)[+1]Lie -4 Der+ie(A)

This map may be naturally identified, up to homotopy, with the Lie adjoint action. In
particular, it depends only on the Lie-algebra A and not on the category C.

- Let A = (HH*(e), HH.(C)) E Lie[+1]+-alg (see § 7.2.1). The map of deformation
problems

(HH*(-), HH.(-)): dgcat' ---+ Lie[+1]+-alg2

gives rise to a map of Lie algebras

H *)[+1]Lie -+DrLie[+1]+-alg(A

This map may be naturally identified, up to homotopy, with the Lie[+1] adjoint action

(see § 7.4.2). In particular, it depends only on the Lie[+1]f -algebra A and not on the
category C.

Proof. Follows from Theorem 7.1.2.1 and a compatibility between E2 and Lie adjoint actions
Theorem 7.5.4.1.

7.1.3 Comparison of En and Pn adjoint actions

Like Lie algebras, computations with P2-algebras tend to be tractable. Choosing a Drin-
feld associator <I, one obtains an equivalence of filtered operads DQ@: P2 ~ E2 (resp.,
DQ,: Calc2 ~ E2ac) and so a universal, if complicated, way of reducing computations
on E2 algebras to computations on P 2-algerbas. In cases of interest, formality results
give computationally convenient descriptions of the P 2-algebras DQ,(HH*(C)) (resp.,
DQeo(HH*(C), HH.((!))):

Theorem 7.1.3.1 (Dolgushev-Tsygan-Tamarkin [DTT]). Suppose M is a smooth scheme
and let

A = (HH'(M), HH.(M)) E E2 - algflt

grA = (RP(M, Symom Tm[-1]), RT(M, Symom Qm[+1])) E Calc 2-alg'

so that both DQq (A) and 9 can be regarded as filtered Calc2-algebras with associated graded
naturally identified with the graded P2 -algebra 9. (The filtration and grading are induced, by
taking RP, from the sheaf-theoretic Postnikov filtration/its associated graded.) Then, there
is a "formality" equivalence: That is, an equivalence DQe(A) ~ 9 of filtered Calc2-alg such
that the associated graded of this equivalence may is the identity on & as graded P2-alg.
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Just like E2 -algebras (resp., Elc- algebras), P2-algebras (resp., Calc 2-algebras) have
evident underlying (shifted) Lie algebras and an evident adjoint action construction (Sec-
tion 7.4). It is natural to ask how the two are related. It is straightforward to check that
one is the associated graded of the other, in the sense that:

Proposition 7.1.3.2. Suppose A = F.A is a filtered algebra over the filtered operad E2
(resp., Egalc)_i.e., we work with algebras/operads in filtered complexes. Let grA = grF.A be
its associated graded. It is a graded algebra over the graded operad P2 (resp., Calc2 )-i.e., we
work with algebras/operads in graded complexes. Then:

- (grA)[+1]Lie = gr(A[+1])Li* as Lie algebras in graded complexes (with Lie bracket in

grading 1). The adjoint action construction, in graded complexes, produces (grA)d E
P2 -alg((grA) [+1]Liegrmod).

- A[+l]Lie is a Lie algebra in filtered complexes (with the Lie bracket in filtration 1),
and one can consider the symmetric monoidal category A[+1]Iefiltmod of filtered

A[+ 1ILie-modules. The adjoint action construction, in filtered complexes, produces
Aa E E2-alg(A[+1]Liefiltmod). Taking associated gradeds, one obtains gr(A& ) E
P 2-alg(gr(A[+1|Lie)grmod).

- There is a natural equivalence (grA)[+1]Lie - gr(A[±lILie). Identifying graded module
categories using it, there is a natural equivalence (grA) a = gr(AM ).

Proof. See §7.5.3 for a hands-on demonstration. 0

One could also ask about compatibility with quantization ("DQ" stands for de-quantization),
starting with the remark that there is a natural equivalence ALie ~ DQq(A)Lie. However,
we are - somewhat embarassingly! - not at present able to verify the following conjecture
about the compatibility of these constructions under quantization!

Conjecture 7.1.3.3. Suppose A E E2-alg (resp., Eale). Then, the following diagram of
Lie algebras is naturally commutative up to homotopy

A[+1]Lie E2 ad. DerE2 (A)

I IDQ4

DQeb(A)[+1]Lie aiDeP2 (A)

As a workaround, we note that for many of our applications it will suffice to have the
following much weaker result:

Proposition 7.1.3.4. Suppose M is a smooth scheme and let A = _HH(M) E E2-alg(QC(M))
be the sheaf of Hochschild cohomologies and 9 = grA = Synm TM[-1] E E 2-alg(QC(M))
its associated graded sheaf. Let CDR(M) E Shv(M) denote the sheaf of de Rham complexes

of M. Then,

(i) There is a fiber sequence of sheaves of Lie algebras on M CDR(M)[+1] - 9 4

Def 2(q), where CDR(M)[+1 is viewed as an abelian Lie algebra.

(ii) 1riDer?2(g) = 0 for all i > I, and ,r1 DerP2(W) can be identified with the sheaf of closed
1-forms on M.
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(iii) The following diagram (of sheaves of Lie algebras homologically concentrated in degree
+1) is commutative

>1 (A[+1]Lie) E2 ad. > T1 (DerE2(A))

1DQ2

-rei (DQ.,(A)[+1]Lie) P2 ad.,e DeP()

(iv) The following diagram (of Lie algebras homologically concentrated in degrees > 1) is
commutative

721 (HH*(M)[+1]Lie) E2 ad.: r;I- (P(M, DerE2 (A))) : rei (DerE2 (HH*(M)))

IDQt

* Lie) P2 ad. 4~ 2  *
rgi(D e( H*M)[+]Le) a. >1(RP(M, DerP2A) :_2 (DerP2(DQz,(HH* (M))))

and the long horizontal composites are identified with ig1 of the respective adjoint
actions.

Proof.

(i) Applying the first of the two Lemmas below, it suffices to show that HH% (9) ~
CDR(M). One can verify that the formation of HH%(9) has Zariski descent on R,
so we are reduced to producing a sheaf map and the affine case. The second Lemma
below identifies the sheafy version of HH% (9) with U '-+ RY(U, (Sym, Lq[-1], ddR)).
It is well known that the natural map of sheaves of complexes

(Symm LM[-l], ddR) -+ (Symog4 LW[-1], ddR)

is a quasi-isomophism of sheaves on M since 9 is a nilthickening of 0M.

(c.f., [DTT] for a different way of wording these arguments: There one finds explicit
equivalences 9-mod'2 ~ Dg-mod ~ DM-mod carrying 9 -+ 0& '-g 0M. This identifies
REndq9 adP2 (9) = REndDm(OM) = CDR(M) )

(ii) Follows from (i). To elaborate: one can identify the underlying complex of DerP2 (9)
with RP (M, (Sym~q EL[-1], din + ddR)) [+1]. Picking a small model for Lg-as

W ®Om (fM + TM[- 1]) with vanishing differential-the complex of sheaves has nothing
above degree 1, and only fM in degree 1 with the outgoing differential being the de
Rham differential on M.

(iii) By (ii), all four terms are Lie algebras concentrated in homological degree 1. In
particular, they are necessarily abelian and it suffices to check that the corresponding
diagram of abelian groups gotten by taking 7ri is commutative. For this, we must
compare two maps from T(M, oM) - P(M, ()closed).

First assume that M is affine. It is enough to show that in this case the natural map

F(M, (pl)CIosed) = 7r1DerP2(A) -+ 7rDerLie(A[+1])
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is injective, for the composited to the end agree by Theorem 7.1.2.2. But indeed, the

derivation of Schouten bracket with a closed form recovers the form as follows: Any

such is OM-linear, so that we may twist by top forms UM after which we in particular

recover the map dfA: Om -+ G.
The general case follows from the afline case: The formation of adjoint actions is

compatible with homotopy limits, so that the map we're interested in is gotten by
taking global sections of the local maps.

(iv) The right-most square is obviously commutative, as it is just the formation of a

homotopy limit of derivations, and similarly for the long horizontal arrows being the

adjoint actions. The left-most square commutes because it is gotten from that in (iii)

by taking -r> 1(P(M, -)).

Lemma 7.1.3.5. Suppose 9 is a P-algebra and let HH (9)[n] = REndq.my dn (9)[n]

be its (shifted?) operadic cohomology. Then, there is a fiber sequence of Lie algebras

[n -1 $ Der"(1) -+ H H7 (g)[n]. De-looping, there is a fber sequence of Lie algebras

QHH%(09)[n] -+ ![n - 1] + Defn(V) where QHH%(9)[n] is quasi-isomorphic to the

abelian Lie algebra HH% (9)[n - 1].

Proof. For n > 1, one can deduce this (in a silly roundabout way!) by applying En formality
and the analogous statements for En (see [L6, §6.3.7]). Note also that any dg Lie algebra

admitting a delooping is (equivalent to) an abelian Lie algebra.

There is also a more direct approach, using self Koszul duality of the operad P, up to a

shift: Form C = coFreecoPn (9[+n]). Then, HH% (9)[n] identifies-as dg-Lie algebra-with

coP, coderivations of C. Meanwhile, Defn(9) identifies with the sub dg-Lie algebra of

coderivations vanishing on the counit. Evaluation at the counit identifies the quotient

complex with 9[n]. It follows that there is a fiber sequence, of chain complexes, 9[n - 11 -+

Dern (9) -+ HH% (9) [n]. It remains only to verify that the adjoint action map of dg-Lie
algebras is an equivalence onto the fiber. 0

Lemma 7.1.3.6. Suppose 9 is a Ps-algebra, and let 9' denote the underlying commutative

algebra of W viewed as a Pn-algebra with the trivial bracket. Then,

(i) There is a natural equivalence of dg-Lie algebras HH % (') [+n] ~ (Sy q,Tw,[-n]) [+n],

where the latter is equipped with the Lie bracket coming from that on Tgr. The Pn-

algebra structure on 9 gives rise to a Maurer-Cartan element II in this ("Poisson

bivector"), and there is then an equivalence

HH%(9) (SyanTT[-n], dintemnal + [II, -]) [+n]

where dinteriwi is the differential on the underlying complex of SynTg [-n] induced by

the commutative dga structure onW.

(ii) Contraction against II induces a map of complexes (even of HH% (9')[+n] -modules)

ir (-): SmVLw[-1], dinteai + ddeRham - SymT [-n], dintemd + II , -)

(iii) Suppose that the P structure is non-degenerate in the sense that i1 2 : Le[-1] -+

Tg [-n] is an equivalence. Then, the map in (ii) is an equivalence.
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Proof. One can identify HH%(9)[+n] with coP, coderivations of

C = coFreecP2(!W[+n]) = coFrecoGomm(coFrecoLie( 9[1J) [n - 1])

equipped with a certain differential that may be described as follows. The complex
coFreecoLie(9[1]) is made into a dg-Lie-bialgebra (with some degree shifts) via a differ-
ential d encoding the dg-commutative algebra structure on 9 and a bracket gotten by
extending [, ] : !W[n - 1] ® W9[n - 1] -+ W9[n - 1] by cobrackets. Then, the total complex is a
dg-coPn-coalgebra via a differential that is the sum of two parts d = d,4 + d[,]. Here d is
the extension by coproducts of d on coFreepoLie(W[+1]), while d[,] encodes the Lie bracket on
coFreepLie([±1]).

The key points are now that the differential always splits into these two pieces, each of
which is a differential and which satisfy:

- dm depends only on the underlying commutative algebra of 9, and dm preserves the
grading of coFreeoP2 gotten by the number of co-commutative terms (i.e., the grading
on coFredocomm)

- d[,] = 0 for W', i.e., if the bracket on 9 is trivial.

Let coDeri(C) C coDer(C) L coDefoP2(C) denote the subspace of those derivations
which are allowed to be non-vanishing only on coFredoComm(coFreeLie(g[+1])[n - 1]) C
C. In general, this gives rise to a decreasing filtration by subcomplexes of coDer(C)
by FmcoDer(C) = Rm coDerf(C) - for instance, F1 = Derp"(g)[-n]. Since d, pre-
serves the coFreeCom summands, in case the bracket on 9 vanishes one gets that the
coDer make coDer(C) a graded complex. Finally, there are natural quasi-isomorphisms
Sym,(Tqg[-n])[+n] ~ coDeri(C), proving (i).

The proof of (ii) is a computation to verify that the map is compatible with the differential.
If the Pn structure is non-degenerate, then the map induces an isomorphism on the associated
graded of our favorite decreasing Hausdorff filtration. 0

The computation of the above proposition, for M = A', was a key input in Tamarkin's
first proof of P2 formality of DQeHH*(A") in [T1]. It seems plausible that the Calc 2
formality proof in [DTT] can extended to prove compatibility of quantization and adjoint
action for A = (HH*(M), HH.(M)) E Ec-alg. More precisley, one would ask to show
formality for

(HH*(M)[+1]Lie, DQg (H H*(M), HH.(M))a]

as an algebra over the 3-colored operad of a Lie-algebra 2, and a Calc2-algebra A on which
2 acts by derivations. This would completely circumvent the general Conjecture for our
purposes, but we have not carried this out in part because we believe the general Conjecture
should hold!

7.1.4 Applications

Finally, we come to the reason we went to all this mess. Applying Theorem 7.1.2.2 and
Theorem 7.1.2.1, we have:

Corollary 7.1.4.1. Suppose C E (dgcakm)BG^a is a category acted on BGa. Let #: k[+l] -

HH*(C)[+1] be the Lie map encoding the action. Then,
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- The Lie k[+1] action on HH*(C)[+1] E Lie-alg(k-mod) is equivalent to the composite

k[+1] -'0+ HH*(e)[+1] N DerLie(HH*(C)[+1])

of p and the Lie adjoint action.

- The Lie k[+1] action on (HH*(C)[+1],HH.(C)) E Lie[+11-alg(k-mod) is equivalent

to the composite

k[+1] --0- HH*(C)[+1]a iL[4j-~ DerLiel+1]f.-alg (HH* (C)[+ 1], HH. (C))

of p and the Lie[+1]+-alg adjoint action.

- The Lie k[+1] action on HH*(C) E E2 -alg(k-mod) is equivalent to the composite

k[+1] --0- HH*(C!)[+1] L-4 DerE2 (HH*(C))

of p and the E 2 adjoint action.

- The Lie k[+1] action on HH* (C)[+1] E E l-alg(k-mod) is equivalent to the composite

k{+ 1] -0- HH* (e)[+1] ! DerE"I' (HH* (e), HH. (e)])

of # and the EfC adjoint action.

Applying the Lie- and Lie[+1]+-alg- formalities on M, we get:

Corollary 7.1.4.2. Suppose (M, f) is an LG pair, C = DCoh(M) acted on by BGa according

to f. Then,

- There is an equivalence of Lie[+1]+-alg(k-mod) acted on by k[+1]:

# (HH*(e)[+1], HH.(C), 3 = Connes B) *e*1]

~ #* (RP(SymM TM[-1])[+1], RT(SymM lMf+1I),3 = ddR) Lie+1]

where on the right we have the usual operations of polyvector fields, so that for instance

the B-operator of the k[+1]-action is the Lie action by f.

- There is an equivalence in Lie[+11-alg(k((3)))

(H H* (e)[+1], HH.,(e), B)Bda"

~ (RT(Symm Tm[-1]((#)),# -igf)[+1], RT(SymmfGu[+1]((#o)), -#Bdf A),dR)

and an equivalence in Lie[+1]+-alg(k((#)))

(HH*(e)[+1]B'6", 
H H.(e)Bd^.xso(2)

~ (RP(Symm Tm[-1]((3)),3 - idf)[+1],RF(SyLM fm[+1]((13))((u)),u - ddR - #df A), ddR).

Applying the Eric-formality on M along with Prop. 7.1.3.4, we get:
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Corollary 7.1.4.3. Suppose (M, f) is an LG pair, C = DCoh(M) acted on by BGa according
to f. Then,

- There is an equivalence of Calc2-alg(k-mod) acted on by k[+1]:

#* QC, (HH*(C), HH.(C), 6 = Connes B) Ealc

~ #* (RP(SymM TM[-1])[+1], RF(SymM QM[+1]), j = ddR)adCaIc2

where on the right we have the usual operations of polyvector fields, so that for instance
the B-operator of the k[+1]-action is the Lie action by f.

- There is an equivalence in Calc2-alg(k((#8))-mod)

(H H* (C)[+ 1], HH. (C), B)" "d

~:- (Rr (SymM TM ~-1i (p#)), o ' idf )[+ 1], R (SymM QM [+ 1]((p)), -#3df A), ddR)

and an equivalence in 91-alg(k((3)))

(HH*(C)[+1]BG^, HH. (e)BGaxSO(2)

~ (RT(SymM TM[-1](()),3 ' idf)[+1],RF(SymM fM[+1(())((U)),u ' ddR - 3df A),ddR)-

7.2 En-algebras, Pn-algebras, and Calculus-variants

7.2.1 Generator-and-relation operads

We first recall the definitions of, and fix out notation for, several operads defined by generators
and relations:

Definition 7.2.1.1. For each n E Z, there is the operad Lie[n] of (shifted) Lie algebras is
generated by a single binary operation [-, -) of degree n satisfying (graded-skew-symmetry)
[x, yJ = -[y, x] and (Jacobi identity) [x, [y, z]] = [[x, y], z] + [y, [x, z]]. An algebra for Lie[n]
is a complex L such that L[+n] is a dg-Lie algebra. Note that the Jacobi identity is precisely
the statement that [x, -] is a derivation of the bracket.

Definition 7.2.1.2. There is the 2-colored operad Lie[+1]+ whose algebras are pairs (L, M)
such that L[+1] is a dg-Lie algebra, M is a dg-Lie module over DM, and M is equipped
with a unary operation 6 of degree 1 satisfying 62 = 0 and such that 6([a, -1) = [a, 6(-)].
There is an obvious map of operads Lie[+1] -+ Lie[+1]+ by forgetting the M color.

Definition 7.2.1.3. For each n E Z, there is the operad Pn of n-Poisson algebras is generated
by two binary 2 operations - - - of degree 0 and [-, -] of degree (n - 1). The operation
- - - satisfies the relations of a commutative product, the operation [-, -] satisfies the
relations of a Lie bracket, and there is a further compatibility: [x, -] is a (graded) derivation
for the commutative product. There is an obvious morphism of operads Lie[n - 1] -+ Pn by
forgetting the commutative product.

Definition 7.2.1.4. There is the 2-colored operad Calc 2 whose algebras are pairs (9, M)
such that 9 is a P 2-algebra, M is a -module, 6 is a unary operation of degree 1 satisfying
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32 = 0 and [3, a] = [a, -]. There is a map of operads Lie[1] -+ Calc 2 by taking the Lie
operation and Lie module structure, and 6 to 6.1

Remark 7.2.1.5. Each of the above operads is graded. In all cases, the commutative

operations have degree 0,the Lie operations have degree n - 1, and 6 has degree 1. If n > 1,
they are positively graded.

7.2.2 Topological operads

Now a few operads from topology:

Definition 7.2.2.1. For each n > 1, there is the operad En of chains on the configuration

spaces of little disks. For all n > 1, this is a filtered operad with grF.En = Pn. For n > 2,

the filtration is the Postnikov filtration F_V =r>V. For n = 1, it is the usual filtration on

the associative operad having associated graded the Poisson operad.

Definition 7.2.2.2. For each n > 1 there is the 2-colored operad E"le whose algebras are

pairs (A, M) where A is a En-algebra, and M is a fEe-module over A (i.e., a complex M

with SO(n)-action together with SO(n)-equivariant maps En(m) 0 A0m-1 0 M -+ M giving

M an A-module structure compatibly with the SO(n)-action on En(m)). For all n > 1,
Ecnale is a filtered operad with grF.E"Le = Calc. (So, for instance, the Bi and 3 correspond

to the standard generators for H,(SO(n)).) For n = 2, there are several models for this in

[KS, §111.

Remark 7.2.2.3. As written, the above are various operads in (literal) chain complexes.

We will often regard them as objects in an (oo, 1)-category of oo-operads: In that context,
cofibrant replacement is implicit and we will not give explicit names to the cofibrant replace-

ment operads. For instance, the notation En-alg, En-alg(k-mod), Lie-alg, Calc2 -alg(R-mod),
etc. will almost always be intended in this sense. That said, when we write "a dg Lie algebra"

we may sometimes mean a literal dg Lie algebra (with a well-defined underlying graded

abelian group, etc.).

7.2.2.4. There are natural maps Lie[n - 1] -+ En and Lie[1] - E2"'. These can be seen

in two ways: Either as the inclusion of the first piece of the filtration mentioned above

(which guaranteed uniqueness up to Aut(Lie) = QX). Or, more conceptually: as the map

Koszul dual to the En -+ Comm under the self-Koszul-dualities KD(Comm) = Lie[-1] and

KD (En) ~:- En [-n].

7.3 Units and adjoint actions for loop spaces, Ek-algebras,
etc.

7.3.1 Reminder: categorical delooping machine

Suppose A is an Ek-algebra in a presentable Ek-monoidal (oo, 1)-category (*. It would be

convenient to think of "BkA" as a e-enriched (oo, k)-category, with a single i-morphism for

'There are also operads Calcn for other n. In all cases there is a Pn-algebra, and a 9-module. If n is
even, then there is a unary operator 6 of degree (n - 1) and unary operators Bi, i = 1,..., (n - 2)/2 of
degree 4i - 1. If n is odd, there are unary operators Bi, i = 1, ... , (n - 1)/2 of degree 4i - 1. All the unary
operations square to zero; the Bi are maps of 9-modules; and if 6 exists, it satisfies the same relations as in
Calc2.t
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0 < i < k, and with A worth of k-morphisms. The theory of such enriched higher categories
doesn't seem to be written down, but we can approximate what we need from it by repeated
formation of module categories:

- mod-A = RModA(e)-the oo-category of right A-modules in e-is an Ek-l-algebra in
the Ek_1-monoidal (oo, 1)-category mod- e N RMode(PrL).

- If k > 2, we thus iterate this and define mod 2-A V RModmod-A(mod-e). This is a
version of the theory of A-linear categories.

- We can continue iterating this procedure, and for each 1 < i < k we can define

mod-C = RModmodi-i-e(PrL) E Ek-i-alg(PrL)

mod-A N RModmdk-iA(mod -C) E Ek-i-alg(mod-C)

with the base case

modo-e e E-alg(PrL) and modo-A t A E Ek-alg(C).

- For each i < k, note that mod1-A is the monoidal unit in the Ek-l-monoidal
modi+1-A. Taking its mod2-C-enriched endomorphisms, one obtains REndomio+lA (mod'-A)

mod'7A E Ek_i-alg(modi-e).

Remark 7.3.1.1. Disclaimer: In order to maintain presentability we need to worry about
set-theoretic issues that have been ignored above-literally, mod-C is too big to be presentable.
This can be dealt with, and we refer the reader to [L6, §6.3.7].

Remark 7.3.1.2. The above construction determines a sequence of fully-faithful embeddings

RMod RMod RMod R EMod g k~e).
E"-alg(C) - Ek-l-alg(mod-C) '-+ Ek- 2-alg(mod2 -+) - - - Eo-alg(mod

7.3.2 Delooped space of units and adjoint action, for k = 1

If A is an ordinary algebra, then the group A X acts by algebra automorphisms on A via the
conjugation action: g - a = gag-1 . Let's make sense of this for Ei-algebras:

7.3.2.1. Suppose A is an Ei-algebra in C. It has a "(multiplicative) underlying E 1-space,"

JAI = Mape(le,A) - the E 1 -structure comes from tensoring maps and using the multiplica-

tion on A. One can define the grouplike Ei-space AX to be the union of those components

of JAI which axe invertible in the monoid 7ro(IAI).
One can think of the delooping of A X in terms of moduli of objects in mod-A:

- Note that A ~! RHommndA(A, A). So, I! MaPmodA(A, A) and A X ~ Autmod-A(A).

- Form the space of objects, (mod-A)~ e Spaces: This is the maximal sub-oo-groupoid

of mod-A, gotten by discarding all non-invertible 1-morphisms of mod-A. It is a

pointed space, by virtue of A.

- By (i), we see that 11(mod-A)~ - AX and that BAX is just the connected component

of (mod-A)~ containing A - more colloquially, its the moduli space of twists of

A E mod-A.
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7.3.2.2. We now wish to define a map of grouplike E 1 -spaces AX - AUtEi (A). We may do

this by delooping, and constructing a map of pointed spaces BA X - B AUtE1 (A): So to a

family of twists of A E mod-A, we must associate a family of twists of A E Ei-alg(C).

We do this using functoriality, under isomorphisms, of e-enriched endomorphisms

End-A(-): (mod-A)~ -+ (Ei-alg(C))~-

and restricting to the connected components containing A E mod-A and A E Ei-alg(e).

A word on building this functoriality: One construction is as the composite

(mod-A) ,-F + Eo-alg(mod-e) -4 E 1-alg(C)

where F(M) = M E mod-A, and G is the right-adjoint to RMod: Ei-alg(C) e-+ Eo-alg(mod-e).

7.3.3 Higher deloopings and adjoint actions, n > 1

7.3.3.1. If A is an En-algebra in e, then |Al (resp., AX) is in fact an E,,-space (resp.,
grouplike) in the same manner as above. One can construct the n-fold delooping of AX in

terms of moduli of objects in mod"-A, as follows:

Note that, (mod"-A)~ is a pointed space via (mod-n - 1A). For each 1 < i < n, one

has an inclusion of spaces
Q2 (mod"-A)~ c (mod'-'-A)~

that can be described as follows: for i > 1, (mod"-'-A)~ is an Ej-space and Qi(mod"-A)~

is the inclusion of those components which are units in 7ro. In particular, we find that

Q"(mod"-A)~ = AX c (modo-A)~ = JAI

is the space of units. So, we obtain a map

B"AX = B"Q"(mod"-A)~ -- + (mod"-A)~J.

7.3.3.2. The adjoint action will now be a group map B"lAX -+ AutE, (A), or rather its

delooping: A map of pointed spaces

BnAX -+ BAutEn(A).

So to a family of twists of mod"- 1-A E mod"-A, we must associate a family of twists of

A E En-alg(C).
We do this again by using functoriality of a e-enriched "higher endomorphism" construc-

tion and passing to (n - 1)-connected covers over the basepoints. As before, one construction

of this "higher endomorphism" construction is as the composite

End/: [mod"-A]' F Eo-alg(mod"-e) - En-alg(e)

where F(M) = M E mod"-A, and G is the right-adjoint to RMod: Ei-alg(C) -* Eo-alg(mod-C).

7.3.3.3. This construction is also functorial in A in the following sense:

- Let [mod"--]~ denote the (oo, 1)-category of pairs (A, e) of A E En-alg and C E
mod"-A. A morphism of pairs (A, C) -+ (A', C') consists of a map A -+ A' of En-
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algebras, and an A-linear map C -+ C' over it which is required to induce an equivalence
C & A' -+ C'.

- Then, there is a functor [mod"--]~ -+ E.-alg given heuristically by (A, C) i-+ End'(C)
or more precisely by the composite (A, C) '-+ G (C e mod"-A) with G as above.

Remark 7.3.3.4. Suppose that C is chain complexes and that n = 2. In this case, A is
an ordinary E 2-algebra and mod 2-A is the theory of A-linear dg-categories (recall we're
being sloppy about size and colimit preservation). In this case, the higher endomorphism
construction is something familiar: The A-linear Hochschild cochains

End 2 = HH : (dgcat/A)~ -- E2-alg

7.3.4 Units and augmentations

7.3.4.1. Thus far, we have only considered the case where A was a unital En-algebra.
However, this restriction is not material: Suppose mA is a nonunital En-algebra, and let
A = 1 D mA denote the augmented En-algebra generated by it. We will now describe an
augmented version of the adjoint action:

7.3.4.2. Suppose A -+ le is an augmented En-algebra in CO. Then, tensoring along the
augmentation we obtain a diagram

(mod"-A)~ nd E.n-alg(C)

-0modn-1A mod- -ie I j-®Ale

(mod"-le)~ nd En-alg(IC)

or in other words, a natural transformation of functors End _+ le making End> land in
augmented En-algebras. This allows us to define a reduced version

End _ fib{Endn -+ le}: (mod"-A)~ -+ E"u-alg(C)

such that Enda (A) = mA. Consequently, we obtain a non-unital (or augmented) adjoint
action

End /: B"(k A)' -- + B AutEn (mA) c Enu-alg(C)~.

7.3.4.3. There is one further property of the non-unital adjoint action that we'd like to
record. The inclusion 1 "- 1 e A induces 1x '-+ (1 e A)@. The restriction of the adjoint
action to 1 is trivialized. This follows from the discussion in [L6, 6.3.7], since 1 -+ A factors
canonically through 3En(idA).

7.3.5 Variation with a module or Calculus-type structure

7.3.5.1. Suppose that A is an En-algebra. We will have reason to consider the pair of (not
adjoint) functors

A®-

A-mod E n En-alg gA;

where I denotes the augmentation ideal.
There is also an evident where the algebra is allowed to vary:
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- Let Es-mod denote the oo-category of pairs (A, M) of an Es-algebra A and an E-
module M over A.

- Let En-alg// denote the oo-category of pairs (A, A') of an En-algebra A and an

Es-algebra A' over and under A.

- Then, there are functors - D -: En-mod -+ En-alg//: I over the forgetful functor to

En-alg.

7.3.5.2. Suppose that (A, M) is a pair of an Es-algebra and an E.-module M over A. Then,
A ( M E En-alg/A/ is an En-algebra over and under A. The above gives an adjoint action of

B"- 1 (A E M)X on (A e M). Furthermore, the restriction along Bn-Ax -+ B"-l(A e M)X

preserves the augmentation so that we obtain

Bn-1A x -- + AutEn-alg/ 1 (A D M) _I+ AutEn-mod (A, M)

This is the E+ adjoint action for (A, M).

7.3.5.3. Suppose now that (A, M) E Ecac-alg. This provides A D M with equivariance

isomorphisms A D M 4 g-1 (g(A) e M) for g E SO(n - 1). Applying the above construction

to this diagram, one can construct the ELc adjoint action for (A, M)

Bn-Ax ---+ AutEcarc-mod(A, M)

7.3.6 Universality for n = 2

We have the discrete analogue of Theorem 7.1.2.1.

Theorem 7.3.6.1. Suppose e E dgcatidm. Let A = HH*(e) E E 2-alg(k-mod). Then,
B(HH*(e)x) acts on e and consequently on A E E2-alg. This action may be naturally

identified, up to homotopy, with the E2 adjoint action described above. In particular, it

depends only on the E2 -algebra A and not on the category e.

Proof. The identity map A -+ HH*(() lifts e to an object of dgcati". Consequently, we

have a diagram

B 2(HH7(Perf A)x) (mod-(Perf A))_ -A E2-alg(k-mod)

-0P fAe
PT

B 2 (HHk(e)X) (dgca HHk E2-alg(k-mod)

i.e., an equivalence Perf A OPerr A e -+ C natural in A-linear automorphisms of idPe A; and,
a natural transformation HH7A(-) -+ HH'(- OA C). This second natural transformation

is an equivalence on objects equivalent to Perf A. Consequently, we have produced an

equivalence of functors between the two horizontal composite arrows: The one on the top is

the adjoint action for HH*(C) and the one on the bottom is the one induced by the action

of B(HH*(C)x) on e. 0

The same proof also establishes, up to set-theoretic issues that we're neglecting, the

higher n analog:
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Theorem 7.3.6.2. Fix n > 1, and suppose C E mod"-k. Let A = End"(C) E En-alg(k-mod).
Then, Bn-l(Ax) acts on C and consequently on A E En-alg. This action may be naturally
identified, up to homotopy, with the En adjoint action described above. In particular, it
depends only on the En-algebra A and not on C.

Proof. Look at

M~In-A End7A
Bn(End"n (mod"~-A) x) mo 0-- (mod"A~ Ed En-alg(k-mod)

1 A I: _ M ® n 1 A e

Bn(Endnk(C)x) (mod"-k)~ -Ed E -alg(k-mod)
End/k

7.4 Infinitesimal adjoint actions for Lie-, En-, Pn-, etc. alge-

bras

7.4.1 Some (pre-)formal moduli problems

We will only really need the following for n = 2, but will state it more generally than we use

or prove:

Proposition 7.4.1.1. Suppose A is an Es-algebra as above, and consider the En pre-fmp
n Pre

mod"-A given on A E DArt by

modn-A (A) = {M E mod"-(A 9 A),#$: M OGA n ~ mod- 1 -A}

Then,

pe
(i) mod"-A is a n-proximate-fmp in the terminology of [L5], i.e., " of it is a fmp;

(ii) There is a natural equivalence of non-unital En-algebras

TEn o]M A A

(iii) Letting modn-A denote also the restriction of the above to a commutative pre-fmp, this

equips A[n - 1] with the structure of Lie algebra vie the identification

T m*[-1] -A ~_+ A[n - 1]

Proof. The first point follows by an argument analogous to Prop. 5.3.3.4(i): Identify
-~nid pe pre-

Q~mod"-A with modo-A , and then show that the latter is a formal moduli prob-

lem, with End'(mod"~1-A) ~ A taking the role of HH*(Co). The third point is a definition,
rather than a claim. For the second point, in light of (i) it suffices to provide a morphism

from mod -A to the fmp corresponding to A

A F Map(KDE_(A),A)
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At least for n = 2, which is all we will need here, it can be done in a manner analogous to
that of [L5, 5.3.18]. E

Definition 7.4.1.2. Consider the commutative pre-fmp E.-alg2 given on A E DArt by

En-alg^e = { E E,-alg(R),<p: A 0A k ~ A

Then, define DerE"(A) to be the shifted tangent Lie algebra TLie _1]Em-alg2. (This pre-fmp

is defined on En+-algebras, so that this Lie algebra structures comes from a En+-algebra

structure on on TEn+1 [-n - 1]E,-a1g2')

7.4.2 Infinitesimal Lie-, Ps-, Calcn-adjoint actions

7.4.2.1. Suppose L is a dg Lie algebra. Then, there is a map of dg Lie algebras L -+ DertIe(L)

given by a '-+ [a, -].
This has an interpretation in terms of formal moduli problems as follows: Consider the

inclusion of constant loops s: BGL -+ L(BGL) along with the projection p: L(BGL) -+ BGL-
Then, the relative tangent complex T, E QC(BGL) ~ (k-mod)" carries the structure of a

Lie algebra: This is the adjoint representation Lad as a Lie algebra in Lie-modules over L.

7.4.2.2. Suppose (L, M) is a Lie[+11+-algebra. Recall that this means that L[+1] is a dg
Lie algebra and that M[+1] is a dg Lie module for k[+1] e L[+1]. Then, there is a map of

dg Lie algebras L[+1] -+ DerLie[+1I+ (L, M) given by a '-* [a, -] on L and a '-+ [a, -] on M.

7.4.2.3. Suppose 9 is a Pa-algebra. Then, there is a map of dg Lie algebras 9[n - 11 -+
Derp?(9) given by a '-+ [a, -]. We will see below a model of this for a bigger model of P2 ,

the operad Goo, in §7.5.2.

7.4.2.4. Suppose (9, M) is a Calcn-algebra. Then, there is a map of dg Lie algebra
9[n - 1] -+ DerCalcn(g, M) given by a '-+ [a, -] on 9, and a '-+ [a, -] on M.

Remark 7.4.2.5. For us, these formulas will be interpreted as giving maps of colored

operads. e.g., for the Pn adjoint action we have:

- There is the 2-colored dg operad Lie[n - 1] x Pn whose algebras are pairs (L, 9) such
that L[n - 1] is a dg Lie algebra and & is a Pn-algebra in dg Lie modules for L[n - 1].
(Or, equivalently, L[n - 1] is a Lie algebra, 9 is a Pn-algebra, and there is given a map

L [n - 1] -+ Derpr (9).)

- The formula above determines a factorization

Lie[n - 1] Pn

-ad

Lie[n - 1] t Pn

of the map Lie[n - 1] -+ Pn.
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7.4.3 Infinitesimal E, adjoint action

Suppose that e is a k-linear En-monoidal (oo, 1)-category, and that A is an En-algebra in C.
The infinitesimal adjoint action will be a lift of A to an En-algebra in Lie-modules over the
Lie algebra A [n - 1]. Or, what is the same, a map of Lie algebras A [n - 1] -- + DerEn (A).

7.4.3.1. In light of the above, to define the infinitesimal adjoint action we just imitate the
moduli-theoretic description from before. We must verify that there is a map of pre-formal
moduli problems

End">: B"" (mod"-A - E-alg2

In light of the functoriality 7.3.3.3, it suffices to check the following: Suppose A -+ A' is a
map in DArt, and M E [mod"-(A ® A)] is equivalent to mod"- 1-(A 0 A), then the natural
map

EndA®A(M) GA A' -+ EndAA, (M OGA A')

is an equivalence. Similarly, §7.3.5 gives map of pre-fmp giving the infinitesimal E"c' adjoint
action.

7.4.3.2. Since the Lie theoretic definitions above did not require any unitality, one might
expect the same here. Suppose that MA is a non-unital En-algebra. Imitating the construc-
tions of §7.3.4, one obtains a map of Lie algebras (k @ mA)[n - 11 -+ DerEn(mA) together
with a trivialization of the restriction to k~n - 1]: This gives to the non-unital infinitesimal
En adjoint action desired morphism mA[n - 1] -+ DerE"(mA).

7.4.4 Calculus-type adjoint actions variant

7.4.4.1. The functor of §7.3.3 admits a refinement as follows. Let (A, M) E Eid'-alg, then:

- Consider the En-monoidal category A-modEn of operadic A-modules. Since A is
the monoidal unit, it is certainly an En-algebra and M is certainly a module over
it, with prescribed equivariance. In other words, we can lift (A, M) to (A, M)a" E
Eilc-alg(A-modEn) with the caveat that the notion of Ecr-algebra must take into
account the SO(n)-action on the category. The sense in which this refines the previous
construction is:

- There is an SO(n)-equivariant lax monoidal functor F: A-modEn -+ A[n - 1]-modLie
determined by an SO(n)-equivariant map of Lie algebras A[n - 1] -+ UEn(A)Lie.

Identifying UE" (A) with the topological chiral homology fan-.1 A (recall that while
S"- 1 is not framed, it is n-framed), one should presumably be able to produce this
map by lifting ALie E Eni-alg(Lie-alg) to SO(n - 1)-invariants, taking topological
chiral homology on S"-', and composing with the fundamental class of S"- 1 .

- Now, taking the image of (A, M)d E Eclc-alg(A-modEn) under this lax monoidal
functor produces F ((A, M)aI) E E~cae-alg(A-modEn).

7.4.5 Universality for n = 2

We now prove Theorem 7.1.2.1, that the action of HH*(C)[+1] on A = (HH*(e), HH.(e)) E
Epic-alg only depends on A itself.

Proof of Theorem 7.1.2.1. The same as Theorem 7.1.2.1, just with formal moduli problems
instead of spaces. 0
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7.5 Making things explicit in the case k = 2

7.5.1 Explicit model for E2 : Bialgebras and B,-algebras

Definition 7.5.1.1. A Bo-structure on a complex A is a dg-bialgebra structure on Bar(A) =

coFreecoAs(A[+1]) equipped with its usual coproduct. It is a model for the E 2-operad,
which while not cofibrant, is good enough in the following sense: If one begins with the

(ordinary) category of B,-algebras and inverts quasi-isomorphisms, one obtains the oo-
category E 2-alg(k-mod).

7.5.1.2. The inclusion Ei e-+ E 2 can be modeled by a map A, -+ B, as follows: Recall
that an A0-structure on A is a dg-coalgebra structure on Bar(A) equipped with its usual
coproduct, so one obtains a map by forgetting the extra product on Bar(A).

Lemma 7.5.1.3. Suppose (a,d,m,A) is a dg-bialgebra. Let [,]: 0 HC9 -+ X be the graded
commutator [x,x'] = m(x,x') - (-1)\X'im(x',x). Set

Prim(Xf) = {a E a: A(a) = a 9 1 + 1® a}

Then,

(i) Prim(X) is preserved by the differential and closed under the graded commutator. The
triple (Prim(a), d, [, ]) is a dg Lie algebra.

(ii) The restriction [, 1: Prim(H) 0 a -+ 9f makes a a Lie module over Prim(X).

(iii) (a, d,m, A) is a dg-bialgebra in dg Lie-modules over Prim(X). (i.e., the action in (ii)
is by derivations of the dg-bialgebra)

7.5.1.4. The map Lie[+1] -+ E2 can be modelled by a map Lie[+1] -+ B, as follows: If
A is a B, algebra, then A[+1] '-+ Bar(A) is the inclusion of primitives for the co-algebra
structure. By the above Lemma(i), the bi-algebra structure thus equips A[+1] with the
structure of dg Lie algebra. By the above Lemma(iii), Bar(A) is a dg-bialgebra in dg Lie
modules over Prim(X)-i.e., A is a Bo-algebra in dg Lie modules over A[+1].

7.5.2 Partially resolved model for P2 : Lie bialgebras and G,-algebras

Definition 7.5.2.1. A G,-structure on a complex 9 is a dg Lie bialgebra structure on
Harr(g, k) = coFredo"ie(q[+1]) equipped with its usual cobracket. This is a model for the
P 2-operad, which while not cofibrant, is good enough in the following sense: If one begins
with the (ordinary) category of G.-algebras and inverts quasi-isomorphisms, one obtains
the oo-category P2-alg(k-mod).

Lemma 7.5.2.2. Suppose (g, d, W,) is a dg Lie bialgebra. Set

4 =ker5 = {a E g: 6(a) = 0}

Then,

(i) 4 is preserved by the differential and the bracket. The triple (4, d, []) is a dg Lie algebra.

(ii) The restriction []: 4 0 g -+ g makes g a Lie module over 4.
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(iii) (g, d, [],6) is a dg Lie bialgebra in dg Lie modules over 4. (i.e., the action in (ii) is by
derivations of the dg Lie bialgebra).

7.5.2.3. The map Lie[+1] -+ P2 can be modelled by a map Lie[+1] -+ Go as follows: If 9
is a G, algebra, then 9[+1] -+ Harr(g, k) is the inclusion of ker 6 for the Lie co-algebra
structure. By the above Lemma(i), the Lie bi-algebra structure thus equips W[+1] with the
structure of dg Lie algebra. By the above Lemma(iii), Harr(A, k) is a dg Lie bialgebra in dg
Lie modules over ker 6-i.e., 9 is a Go-algebra in dg Lie modules over !W[+1].

7.5.3 Etingof-Kazhdan Quantization: From Lie bialgebras to Hopf alge-
bras

7.5.3.1. We sketch a description of DQ- 1 using Etingof-Kazhdan's theory of quantization
of Lie bialgebra. We largely follow the exposition in [H]. It will be more convenient to work
with coalgebras everywhere.

7.5.3.2. The procedure will go from co-Go-coalgebra structures on a graded vector space
V to co-Bo-coalgebra structures on V as follows:

- Etingof-Kazhdan guarantee an equivalence of categories

{ k[h]-linear Lie bialgebras Q k[h]-linear Hopf algebras

whose cobracket vanishes mod h deforming U(g) for some g

such that Q(G) Oker, k = U(g 9kD k), 6 = - A*P (mod h2 ), and Q is given by
universal formulas in [ and h on g not using h.

- Begin with a co-Go structure on V. That is, a dg Lie bialgebra structure (Fr*eeLe(V[+1]), d, 5,
equipped with the usual free [,]. Passing from a filtered object to its Rees construction,
we will instead work with g = (Free*ie(V[+1])[h], d, 6, [) as graded k[h]-module with
degh = 1.

- Apply Q to this dg Lie bialgebra to obtain an equivariant dg bialgebra

Q(g) = Q (FrLe(V[+1])[hbarJ, d, 5, 0) = (Sym(Free"e(V[+1]))[hbar], d m6 , A64g)

Now, the inclusion V[+1] -+ Freie(V[+1]) -+ Q(g) induces a map of graded dg
algebras over k~h]

4 = 4 bg : Freek"(V[+1])[h] -+ Q(g)

- The above implies that 4 Okp, k is the identity, so that this is an isomorphism of dg
algebras. Then,

(FreeA"s(V[+1])[h],4D*,gday, mFree, 5 5*,g A6,g

is a k~h]-linear graded algebra having the standard free product. This determines a
co-B,-coalgebra structure on V.

This explicit description, for instance, allows us to deduce the compatibility of the E2
and P2 adjoint actions under the passage to associated gradeds:
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Proof of Prop. 7.1.3.2. We first claim that the associated graded of

adE

Lie[+1] x Boo 2 Bo

is (on the nose)
adp2

Lie[+1] K Go -2 Go

Tracing through the above construction, this is be a consequence of the condition that
6 A - AOP (mod h2 ).

The fact that

gr (Lie[+1] Ee ad2 Ecarc) = Lie[+1] t Calc 2 42 EjaLC

will then follow, since we already know that the associated graded of the Lie algebra and its

module structure is correct. 0

7.5.4 Compatibility of Lie and E2 adjoint actions

Theorem 7.5.4.1. Let #: Lie[+1] -+ E 2, #': Lie[+1]+ -+ Ec*c be the usual maps. Then,
the diagrams of colored operads

Lie[+1] x Lie[+1] > Lie[+1]

id +E 1
Lie[+1] K E2  E2

adel+
Lie[+1] K Lie[+1]+ U+ : Lie[+1]+

lid x4'0

Lie[+1] v EIcar adE 2  >Eac

are homotopy commutative.

Proof. In the B, model given above, this diagram is strictly commutative. The Lie[+1]+

version then follows since we already knew that the underlying Lie algebra, its module, and

6 were compatible with passage to associated gradeds (by looking at where Lie[+1]+ -+ Ejcre

sits in the filtration). 0
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Appendix A

Ind-Coherent Complexes

A.1 Descent for QC and MF'

A.1.1 Preliminaries

We need the following standard local-to-global tool:

Lemma A.1.1.1. Suppose 7r: U -+ X is a flat map between (*) derived stacks.

(i) For JF, 9 E QC(X) there is a natural map

r*'R'om (X)(9, W) -- + 'omQC (7r* 9,7r*g) E QC(U)

which is an equivalence provided that either

- J E Perf(X) and 9 is arbitrary; or,

- 9 pseudo-coherent, and 9 is (locally) bounded above.

(ii) For 59,g E Ind DCoh(X) there is a natural map

ir*J~fJ orn OX
IndDCoh(X)(>) n DCoh(U)(7r*,7r*W) E QC(U)

which is an equivalence provided that 9 E DCoh(X) and 9 is arbitrary.

Proof.

(i) The map is adjoint to a morphism

'Rom*X (g, W) -+ ir*R!fJom1g(U) (7r*$ ,7r*W) = 'RomQc(u) (r*, r*9)

characterized by the mapping property

MapQC(X) (T 0 9, 9) - MapQC(U) (7r*T 0 r* , 7r*9)

If 9 is perfect, then
'ffoQ (X) (gq) = 0 q

so that the claim is immediate from 7r* being symmetric-monoidal.
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Next suppose that F is pseudo-coherent and q (locally) bounded above: We first

reduce to the case of U and X affine.1 The affine case implies that

[p: Spec A -+ X] -+ RHom*A(p*gp*9)

is a Cartesian section, i.e., lies in lime/X QC(A) = QC(X) where the last equality is

by faithfully flat descent. Since tensor product commutes with pullback, one readily

checks that it satisfies the universal property characterizing IlHom"X(9,9). By

faithfully flat descent, and since colimits of sheaves are preserved under fiber products,

it suffices to prove that the map is an equivalence after further pullback along each

fppf map q: Spec B -+ U admitting a lift 7r': Spec B -+ Spec A of 7r; that is, we must

check that the natural map

q* 7r* RHomX (9, W) -+ q* RHomOU(7r*9, 7r*W)

is an equivalence. But by the above (applied once to X, once to Y) we naturally

identify both sides with RHom*®B( B, WIB).

We may thus suppose X = Spec A and U = Spec B. Since X is affine, it is in particular

quasi-compact so that (shifting if necessary) we may suppose that F is connective and

that 9 is bounded above. Furthermore, since X is affine we may write 9 ~ 1P.1 as

the geometric realization of a diagram of finite free connective A-modules, Pk ~ A"nk.

In this case, we may identify

7r*'RfonQ (, !W) = B OA Tot {P. A 9}

'Wom*U (Cr*(, 7r*9) = Tot {B OA (P. 0 )

and it remains to verify that tensor in fact commuted with the Tot by computing

homotopy groups using a Bousfield-Kan spectral sequence. Since B is flat over A, we

see that 7roB OwOA - of the Bousfield-Kan spectral sequence for the first Tot identifies

with the B-K spectral sequence for the second Tot, so that it suffices to prove that

both are convergent. Noting that Pk" OA 9 = (A*nk)V OA _ ~ W" has homotopy

groups in the same degrees as 9, and the same after the flat base extension BOA -, we

readily conclude that they are convergent: If N is such that -r>NW = 0, then the only

terms that contribute to 7rf Tot are (7roB GOwA - of) 7rq+I(Pq OA 9) e r for

1 < q < N.

(ii) The map is constructed analogously to that in (i) above. Note that 7r* always preserves

pseudo-coherent, and here it preserves (local) boundedness since 7r is flat. So, if

9 E DCoh(X) then 7r*9 E DCoh(X). Suppose now that F E DCoh(X), and

9= h"l"p E Ind DCoh(X). We claim that there is a natural equivalence

Ind DCoh(X) GFIq Lr -1OQC(X) (,W6
p

'This reduction, and thus (i), does not actually require the hypothesis (*).t
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(and similarly on U). Indeed for T E Perf(X) we have TO F E DCoh(X), so that

MapqC(X)(T,'RomInd DCoh(X)(g, 9)) = MapIndDCoh(X)(T 0 ')

= liT MapDCoh(X) (T 9 9, p9)
13

= li MapQC(x)(T, 'om X(F, 9))

= MapQc(x) (T, lL 'om X) (9, 98)
)3

since T is compact. This reduces us to the case 9, 9 E DCoh(X), which follows from
the second point of the QC case.

A.1.2 Descent for QC'

Definition A.1.2.1. Suppose X is a derived scheme (or stack). Let Xet (resp., Xsm) denote
the (small) site of morphisms f : U -+ X such that f is representable, bounded, and 6tale

(resp., smooth); covers are defined as usual (i.e., surjectivity on geometric points). Note that
any morphism between objects of Xet (resp., X.m) is dtale (resp., of finite Tor dimension). By
Nisnevich descent, we mean descent for the Grothendieck topology generated by Nisnevich
distinguished squares.

A.1.2.2. Recall that all morphisms in X.m are of finite Tor-dimension. So, it makes sense
to consider Ind DCoh as a pre-sheaf on Xsm via star pullbacks:

U F-+ Ind DCoh(U), f: U' -+ U F f*: Ind DCoh(U) -+ Ind DCoh(U')

We will do this only for the next proposition, elsewhere we will use shriek pullbacks.

Proposition A.1.2.3. Suppose that X is an (*) derived stack, and that 7r = x7.: U. - X

is a smooth hypercover. Then, the natural functor

7*: Ind DCoh(X) -+ Tot {Ind DCoh(U.), -*}

to the descent category is fully faithful. Consequently, the natural functor

S!: Ind DCoh(X) -- + Tot {Ind DCoh(U.), '

is also fully faithful.

Proof. We must show that the natural map

Map~ndD~ohX 7 -+ Tote MapInd DCoh U. K~," 19
\ a p \a

is an equivalence. Since homotopy limits commute, we may reduce to the case of no a, i.e.,
just mapping out of 9 E DCoh(X).
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Suppose _ E DCoh(X), and "Ilin"i 9 E IndDCoh(X). Set U_ 1 = X, and

def jo*UD U"iU Un

for n > -1. By Lemma A.1.1.1, the natural map

is an equivalence. Now, fppf descent for QC implies

MapIndDCOhx 9, "i"90 = MapQc(x)(Ox, 7RJom_1)

= Tot. MapQc(Un) (OxlUn'J , om_1|U )
= Tot. MapQC(un) (O 7Un, JLXomn)

- Tot.MapIndDcohUn 1Un1" " iUn

as desired.
Finally, it remains to prove the "Consequently": Note that the totalization of a cosimpli-

cial object coincides with the homotopy limit over its underlying semi-cosimplicial object.

All the morphisms in the semi-simplicial object underlying U. are smooth, so that there

is an equivalence f!(-) = f*(-) Oo Wf and the relative dualizing complex wf ~ det Lf is

invertible. Let w, = 7'(OX), regarded as an invertible object in Tot {QC(U.)&, f*}. Then,

7!(-) ~ 7*(-) (9e, w, is fully-faithful since both 7r* and tensoring by an invertible object

are fully-faithful. 0

Lemma A.1.2.4. Suppose f : X' -+ X is a map of (*) derived stacks. Then,

(i) Suppose f is surjective (on field valued points) and proper with (f., f!) an adjoint pair

after any base-change (e.g., finite).2 If IndDCoh(-) is a sheaf on X',, then it is a

sheaf on X.,

(ii) Suppose that f satisfies the conditions of (ii). Then, there is a natural equivalence

Ind DCoh(X) = (q!q.)-mod (Ind DCoh(X'))

Proof.

(i) First note the property of f being proper and surjective is stable under base-change.

Consequently, it suffices to show if 7r = xr.: U. -+ X is a smooth hypercover of

X itself, then the functor lr*: Ind DCoh(X) -+ Tot {Ind DCoh U.} to the descent

category is an equivalence. By the previous Proposition, it suffices to show that 7r*

is essentially surjective. Since the totalization may be computed in PrL, viewing p*

2More generally this condition is satisfied if f is a relative proper algebraic space, or (in char. 0) a relative

proper DM stack.T
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as left adjoint to p., we note that 7r* admits a right adjoint 7r, which is explicitly
given by 7r,(9.) = Tot {(ir.), .}. It suffices to show that the counit 7r*gr, -+ id is

an equivalence. Since the left-adjoint 7r* is fully faithful, the unit map id -+ 7rr* is

an equivalence; so, it suffices to show that 7r, is conservative: Indeed, consider the
factorization of id,,g as

7r,9 -~'-+ 7r.,7r*7r.9 * 7r , 

Since the categories involved are stable, and the functors exacts, it suffices to show the

following: If 7r,(A.) = 0, then A. = 0; since F., n > 0 is a pull-back of A, it suffices

to show that go = 0 under these hypotheses. So, we must prove that the functor

(7ro)*7r, = (7ro)* Tot {(7rn),9n}

is conservative.

Let U' = Un xX X', 7r' the base-changed structure maps, and fn: U', -+ Un the

first projection. It suffices to show that (fo)! o (7ro)* o 7r, is conservative. By various

standard compatibilities (which one, e.g., first checks on QC then extends to QC by
t-bounded-above arguments):

(fo)!(7ro)* Tot {(7rn),n} = (7ro)*f! Tot {(irn)*n}

Since fl is a right adjoint, it commutes with arbitrary limits

= (ro)* Tot f!(7rn),*A

= (7r )* Tot ((r)*(fn)!$n} =(

If this vanishes, then (by the hypothesis on X') we find that fblo = 0. So, it suffices to

show that (fo)!: Ind DCoh Uo -+ Ind DCoh U6 is conservative. Note that fo is, being

a base-change of f, also finite and surjective so that it suffices to show the following:

If f: X' -+ X is a proper (in the sense of the footnote), surjective, map of (*) derived

stacks, then f! is conservative. Given F E Ind DCoh(X) such that f19 = 0, it suffices

to show that MapInd DCh(X)(G, 9) = 0 for all X E DCoh(X). By Prop. A.1.2.3,
this is smooth local on X, so we may suppose X = Spec A is an affine derived scheme.

Considering the diagrams

roX' a WroX Ind DCoh(iroX') : Ind DCoh(7roX)

I I and

X' X Ind DCoh(X') - Ind DCoh(X)

and noting that Ind DCoh(X) -+ Ind DCoh(7roX) is conservative by Lemma 2.2.0.2,
we may reduce to the case of X and X' = Spec irOA discrete and in particular ordinary
separated stacks. Since 7roA is Noetherian, Chow's Lemma for stacks [01] shows that

X' receives a proper surjection from a projective 7roA-scheme. Thus, it suffices to

prove the claim in case X' is a projective 7roA-scheme; let 0(1) be a relatively ample
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line bundle. Let T denote the smallest thick subcategory of DCoh(X) containing
f. DCoh(X'). Since fI is right adjoint to f., it suffices to show that T = DCoh(X):
Indeed, ker fI is right-orthogonal to T.

Since X is quasi-compact, a t-structure argument shows that it suffices to show that the
intersection of T with the heart T ' = T nDCoh(X)9' is all of Coh(X) = DCoh(X)Q.
By the usual form of devissage, noting that TQ is closed under direct summands,
it suffices to show that for all x E X there is some 9(x) E DCoh(X') such that

p.W9(x) E TQ and has a non-zero fiber over x. Since f is surjective, we may take
X' E X' lying over it, and set W9(x) = 07 0 0(N) for N > 0 large enough so that
p.W(X) E TQ: That such an N exists is Serre's Theorem. Note that W(x) 0 Ox,x is
a non-zero, coherent, Ox,-module whence the fiber at x is non-zero by Nakayama's
Lemma.

(ii) By the proof of (ii), we have seen that fI is conservative. Since it preserves all colimits,
Lurie's Barr-Beck Theorem applies to prove the first equality.

We are now ready to prove the main result of this subsection:

Theorem A.1.2.5. Suppose X is a (*) derived stack. Let Ind DCoh(-) denote the pre-sheaf

U '-+ Ind DCoh(U), [f: U -+ U'] + f!

Then,

(i) Ind DCoh(-) has Nisnevich descent, and finite itale descent.

(ii) Ind DCoh(-) has representable 6tale descent.

(iii) Suppose furthermore X is a derived DM stack, then Ind DCoh(-) has smooth descent.

(iv) Suppose furthermore X is a derived DM stack almost of finite-presentation over k.
Then, Ind DCoh(-) has smooth descent and Ind DCoh(X) coincides with QC'(X) (as
defined in Section 4.1).

Proof.

(i) By Prop. A.1.2.3, the pullback map to the descent category is fully faithful for any
smooth hypercover so that it suffices to check essential surjectivity.

Step 1: Finite etale covers.
Suppose p: X'= Uo -+ X is an 6tale cover which is a finite morphism, and 7r.: U. -+ X

the Cech nerve. Let U' = U. xX X', with 7r': U' -+ X' the base-changed maps, and

p.= U' + U. the projections. Suppose {.} is such that Tot {(ir).9} = 0; we
must show that _o = 0.

Note that lro is both finite and 6tale, so that (Wo)* = (lro)! preserves all limits since it
is right-adjoint to (lro)*. Consequently, there are natural equivalences

0 = (ro)* Tot {(7rn4).g} = Tot {(7ro)*(1n)*.n}

= Tot '),(pn)*gn}

= (r'),*(r') *go
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Fully-faithfullness of (w')* implies that the unit o -+ (7r') ,(')*Ao is an equivalence,
so that Ao = 0.

Step 2: Distinguished Nisnevich squares. Suppose given a distinguished Nis-
nevich square

U'/ X'

U .>X

with j an open immersion, p 6tale. Let Z = X \ U and Z' = X' \ U'. We must prove
that

7r*: Ind DCoh X -+ Ind DCohU XIndDCohU' Ind DCoh X'

is an equivalence. We know that lr* is fully faithful so that it suffices to prove essential
surjectivity. Given the adjunction (7r*, r*), it suffices to show that the counit lr*r. -* id
is an equivalence; since 7r* is fully faithful, the unit id -+ 7r*lr* is an equivalence and
considering the following factorization of the identity on 7,9

reduces us to showing that 7r, is conservative. Since all categories involved are stable
and ,r is exact, it suffices to prove that kerir, = 0. Suppose

9, = (9u, YU, 9x,) E Ind DCoh U -+ Ind DCohU XIndDCohU Ind DCoh X'

and recall that

7r,( F) = j*$U Xj.pr.$, P* Fx = j*u Xp. (jI).gu, pYx9 E Ind DCoh X

It suffices to construct equivalences j**F ~ 9U and p*x,$g = x,, for then
9,f, = 0 implies 9u = 0 and 9x, = 0 (and so Ay, = 0).

Note that the counit j*j, -+ id is an equivalence and that there is a natural equivalence
j*p, = (p')*(j')*: Both are true on QC and all functors involved are t-bounded-above.
Consequently,

j'*,F* = Jy X (p).*r, (P')*9U' = AU.

It remains to provide an equivalence p*r$g = gx,. First note that

p*g = p* ( Uj(u) xp*(jI)., P*,x'

= p*J (9U) xpp*P*(U).P *, * pFxI

= j')*U' X(j').(p)*(p')*g,, PP*X'

and from the last term we obtain a natural map q5: p*r*? -+ JFx, using the struc-
ture maps that the counit p*p, -+ id. Let i: Zrd -+ X and i': Zr'ed -+ X'. By
Lemma A.1.2.6 below, it suffices to show that (j')*# and (i')!# are equivalences. The
former is straightforward (both sides naturally identity with U,), as is the latter (since

pz' : Z'e ~ Zred is an isomorphism by the definition of distinguished Nisnevich).
red
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(ii) By Lemma A.1.2.4 we may reduce to the case of X discrete. Then, note that descent
for distinguished Nisnevich squares and finite 6tale covers implies representable 6tale
descent ([R, Theorem D, Remark 5.4]).

(iii) A derived DM stack with affine diagonal admits a representable 6tale cover by a

scheme, so that every 6tale cover admits a representable refinement representable-6tale
locally. Since the cotangent complex of a derived DM stack is connective, any smooth

cover admits an 6tale refinement.

(iv) By (iii) applied to Spec A for A E DRngk, QCI(-) is a smooth sheaf on X. Note
that (iii) applies to X, so that Ind DCoh(-) is a smooth sheaf on X. Since X was

assumed DM and almost of finite-presentation, X is 6tale locally of the form Spec A
for a E DRng so that the two sheaves are locally isomorphic. 0

Lemma A.1.2.6. Suppose X is a (*) derived stack, j: U C X a quasi-compact open, and

i: Za -+ X the reduced-induced structure on the closed complement. Suppose $ : 9 + 9 is

a morphism in Ind DCoh(X). Then, $ is an equivalence if and only if j*p and i!$ are both

equivalences.

Proof. Taking cone($), it suffices to show that 9 E Ind DCoh(X) is zero iff j*9 = 0 and

i19 = 0. One direction is clear, so suppose j*9 = 0 and i! = 0. We must show that

MapInd DCoh(X)(X, 9) = 0 for all X E DCoh(X). By Lemma A.1.1.1, it suffices to show

that RHom DCoh(X) (X, 9) = 0 E QC(X) and the question is fppf local on X by fppf

descent for QC(X). In particular, we may assume that X is affine so that we are in the

situation where we have sketched a proof of Lemma 4.1.4.2. It thus suffices to note that

i!: Ind DCohz(X) -+ Ind DCoh(Z) is conservative, since its left-adjoint i, hits a generating
set by Lemma 2.2.0.2.

Remark A.1.2.7. In fact, more is true than Theorem A.1.2.5. Let Xh denote the (derived)
Grothendieck topology on representable, bounded, almost finitely-presented X-stacks gen-
erated by distinguished Nisnevich squares and proper (with (f., f!) adjunction) surjective
maps.3 The Theorem together with Prop. A.1.2.8 below imply that Ind DCoh(-) has
h-descent in this funny sense: Since Xh has covering morphisms which are not flat, the

corresponding oo-topos looks substantially different from the ordinary h-topos of 7roX even

if X is a discrete affine scheme, e.g., the map Xre -+ X is no longer a monomorphism, so
that the natural map 9(X) -+ 9(Xred) need not be an equivalence.

Proposition A.1.2.8. Suppose that X is a (*) derived stack. Then, Ind DCoh(-) has

proper descent on X: i.e., Suppose q: X' -+ X is proper and surjective, and let r =

7.: {X' = (X')*/x } -+ X be the Cech nerve of q. Then, the functor

7r!: Ind DCoh(X) -+ Tot Ind DCoh(X'), f'

is an equivalence of categories.

Proof. Note that all structure maps in X' are proper since X' -+ X is proper, and in

particular separated; so, the totalization may be regarded as being computed in either PrR

or PrL. Consequently 7 admits a left-adjoint -x.. Consequently r! admits both preserves

3 The naming is suggested by the fact that on an ordinary Noetherian scheme, the ordinary Grothendieck

topology generated by the Nisnevich squares and proper surjections is precisely the ordinary h-topology.t
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colimits and admits a left-adjoint 7r.. We can check that 7r, is computed by the geometric
realization

(7r, (9.)= I(rn)*(n)|
It now suffices to check that the unit and counit maps ir,7r -+ id and id -+ r!7r* are
equivalences. Since q is conservative by Lemma A.1.2.4, so is ?r!. Thus it is enough to check
that the unit map is an equivalence (c.f., Lemma 4.1.4.1(iv)).

For the unit: Since q! is conservative by Lemma A.1.2.4 it suffices to check this after
applying q!, so that we are interested in verifying that map

g 7r*7r !g = Iq!(7rn),(7rn)! 1 -+ qgf

is an equivalence. Let p,: Xn+ 1 -+ X' be the first projection (i.e., this is the base change
of 7r, along q), and qn: X+ 1 -+ X, the last projection (i.e., the induced map on simplicial
objects). Base-change gives q!(7r,),(7r,)! = (pn),(qn)(7r)!F = (pn),(rn+1)!F, so that our
augmented simplicial diagram is in fact split and consequently a colimit diagram. 0

A.1.3 Descent for MF*

Proposition A.1.3.1. Suppose X is a (*F) derived stack, and f: X -+ A'.

(i) The assignments

U -+ PreMF(U, flU) and U 4 PreMF**(U, fly)

determine sheaves of k[,3 -linear oo-categories on Xet.

(ii) The assignment
U - MF (U, fIU)

determines a sheaf of k((#))-linear oo-categories on Xet.

Proof.

(i) Note that any dtale cover of Xet restricts to an 6tale cover of X 0 , and that a k[#8]-linear
presheaf is a sheaf if and only if it is a sheaf forgetting the extra linear structure. So,
it suffices to show that DCoh and QC! are sheaves on (Xo)et; the former follows from
the analogous theorem for QC and the local definition of DCoh (since Xo is coherent),
and the latter follows from the analogous theorem for QC! (Theorem A.1.2.5).

(ii) It suffices to note that -Reggjk((3)): dgcat 1 -+ dgcat)) commutes with homotopy-
limits, since k((3))-mod E dgcat 1  is dualizable (c.f., Lemma 3.2.2.1). 0

A.2 Integral transforms for (Ind) Coherent Complexes

We give here an exposition of the Tensor Product and Functor Theorems for QC! of derived
schemes. As this is essentially a mild generalization of [Li], we will be brief.

A.2.1 Fully faithful

Proposition A.2.1.1. Suppose S is a regular (*) derived stack, and X and Y (*) derived
stacks over S. Then, exterior product over S determines a well-defined and fully faithful
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functor
s: DCoh(X) Os DCoh(Y) -- + DCoh(X xs Y)

Proof. We first check that it is well-defined. Since DCoh (with star pullback) is an fppf

sheaf, the question is local on X and Y so that we may suppose X = Spec R, Y = Spec R'.

Since S is assumed to have affine diagonal, X and Y are also affine over S so that the

pushforward is t-exact, etc. Exterior product always preserves pseudo-coherence, and since

S is regular we conclude that it preserves being locally bounded since we may check so after

pushforward to S.
Next we check that it is fully-faithful, i.e., that the exterior product

RHoms (9x, 9x)®oSRHomOS(y)(9y,&y) -- + RHom s

is an equivalence in QC(S) for all 9x, 9x E DCoh(X), and gy, Wy E DCoh(Y). By

Lemma A.1.1.1, the claim is fppf local on X,Y and S, so that we may assume they are all

affine: S = Spec A, X = Spec R, Y = Spec R'.

The claim is clear when Jx = Ox and gy = (y, and so more generally whenever 9x

and gy are perfect. Shifting as necessary, we may suppose that 9 x, O9y, and 9 x Ms gy

are all co-connective (i.e., 7ri = 0 for i > 0), while 9x, gy (and hence 9x Ms 9y) are

connective. Then, 9x (resp., 9y) can be written as the geometric realizations of a diagram

of finite free R-modules P. (resp., R'-modules P'); since exterior product preserves colimits,

9x Ms JYy will then be the realization of the bisimplicial object P. Ms P.. Under our

connectivity assumptions, it is straightforward to check that the Bousfield-Kan spectral

sequence for RHomx (Jx, Wx) = Tot RHomx (P., 9x) is convergent and that the RHom

complex is co-connective:

Eiq= rpR ~qomx(Pg, x) = (7rx)@p :> 7rp_ RHomx(9x, 9x)

where n, is the rank of the finite free R-module Pp. Similarly, the RHom complexes on Y

and X x Y are also co-connective.

Next, note that that - OS - commutes with totalizations of co-connective objects in

each variables. This follows by another Bousfield-Kan spectral sequence, since S is regular

so that it has bounded flat dimension.

Putting the above together, we may conclude

RHomx(fx, 9x) Os RHomy($y,y) = (TotaRHomx(Pa, 9x)) ®s (TotbRHomy(b, y))
= Tota,b (RHomx(Ya, 9x) 9s RHomy(Y(,!Wy))

= Tota,bRHomxxsY(-a Os Y'b, x Ms 9 y)

RHomxxsy(9x Ms fy, 9x Ms 9y) 0

A.2.2 Shriek preliminaries

Lemma A.2.2.1. Suppose X is a (*F) derived stack over S = Spec k, $,19 E DCoh(X).

Then, there are natural equivalences

(i) D(g 0 ?)= D(g) Z D(q).

(i x W =
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Proof. Note that (P2)W = wx 0 W. In particular, WX 2 
= (P2) Wx = Wx M Wx. Part (i) now

follows from Prop. A.2.1.1 and the formula D(-) = 'R'Komx(, w). Part (ii) follows by
noting that

Wx 0 =A'(Wx Z0')=-A!(P2) 1=-!

Lemma A.2.2.2. Suppose X is a (*F) derived stack over S = Spec k, and $, 9 E DCoh(X).
Then, there is a natural equivalence in QC(X)

Y &~ R'omx (Dg, g)

Proof. Since A is finite, we have a relative adjunction (A., A!) and we may rewrite

= (p)A.R'Komo (Ox, A (g z 0))

= (p1),'R'Kom* 2 (A*Ox, 9)

and since AOx has coherent homotopy sheaves we may apply coherent duality to rewrite
this as

= (pi),'R'9om~X2 (D(g Z 9), DAOx)

Applying Lemma A.2.2.1(i)

= (p1),'R'om~X2 (D(9) 0 D (9), DA,0Ox)

= (P1).'R'Kom~X2 (D(9) M 0x,'R'Kom*X2 (Ox Y D DA40x))

Undoing the above operations on the inner-'R'Kom®:

= (P1),'R'om~X2 (D() Z Ox,YJom 2 (A*Ox, D(Ox 0 D(9))))

= (p1).'R'Kom0 2 (D(9) Z Ox, A, (Wx 10 &)

Applying the relative (A*, A.) adjunction

= (p 1),AR'Kon* (D(g) 0 Ox, x

Finally we complete by Lemma A.2.2.1(ii)

= J''omO (D(), W)

Remark A.2.2.3. Lemma A.2.2.2 admits the following reformulation: Define

ev: QC1(X) ® QC!(X) -+ k-mod - o Y e RI($ o o) = RHom2(A*x, 9)
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Then, the functor D(-): DCoh(X) -+ QCI(X)v = Fun*(DCoh(X), k-mod) is characterized

by

RHom"1k(D(g), -) = ev(9 ® -) = RF(, ® -) = RHom(A,0x, 2 E -)

Grothendieck duality implies that this is part of a duality datum giving QC' (X) ~ QC! (X)v.

Theorem A.2.2.4. Suppose S = Spec k is a perfect field; that X, Y are almost finitely-
presented (*F) stacks over S; and that Zx C X, Zy C Y are closed subsets. Then, there

are equivalences of categories

Funk(QCE (X), QCIZ(Y)) 4--QC x xZy (X x S Y)

QCZ! (X) §k QC1y (Y)

where

- 0 denotes external tensor product over S, and restricts to an equivalence on compact

objects
0: DCohzx (X) Ok DCohzy (Y) -~+ DCohzXx Szy (X Xs Y)

- +!(X) = (p2), ((-) E is the !-Fourier-Mukai functor with kernel X.

- 09!(Y ® ) = Homx/s(D(9), -) Ok T for 9, compact objects.

Restricting to the case X = Y:

- idac!Zx) = 4 (wA,z), where wA,z =A. Rrz(wx) and wx = D(Ox) is the dualizing

complex and RLz(-): QC!(X) - QC(X) is (the Ind-coherent version of) local

cohomology along Z.

- More generally, t!(A $) = -.

- ev(4!(JX)) = HomQC!(2)(A*Ox, X) (no support condition!).

Proof. The Grothendieck Duality anti-equivalence respects supports and so restricts to

D(-): DCohzx (X)"P ~ DCohzx (X). This implies that QC! (X) is self-dual over QC(S)

via D(-), so that V, is an equivalence (it does not even matter that the target category is of

geometric origin). We will now verify commutativity of the diagram, the indicated formulas,
and only finally that the relevant maps are equivalences.

Diagram commutes:
Let us prove that the diagram commutes up to natural equivalence. Since each of 0, I,
and ! is colimit preserving it suffices to give a natural equivalence V (D = for

Y E DCoh(X), 9 E DCoh(Y). Since both functors are colimit preserving, we may check
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this for T E DCoh(X):

<bDir (T) = (p2), (pi)!T G! (g z q)

= (p2), ((T N wy) 0 (g g))
= (p2),,Mm

= (p2).RHomXXy (D(9) Z D(W), T X wy)

= (p2)* (RHomx' (D(9), T) RHom*(D(9), wy))

= (P2)* (Rom' (D(g), T) 0 RHom (Oy, 9))
= RP (RHom"(D(9), T)) Ok 9

= Mapx(ID(), T) Ok 9

Here have have implicitly used Lemma A.2.2.1, Lemma A.2.2.2, and coherent duality.

Formulaire: We first prove that <A -) = - 0 9. Extending by colimits, it suffices to

note that for T, 9 E DCoh(X)

= (p2)* (P1)!T A*

= (p2)* RHomX2 (D(T) X Oy, A.9)

- (p2)*A. RHomo (A*((D(T) N Oy), )

= RHomX(D (T),$)

By Lemma A.2.2.1(ii), it follows that 4! = idQcX). More generally, setting WA,z =

A. RIz(wx), we see that

Az(T) = T 0 Rz(wx) = RJz(T) ! wX = Rrz(T).

Since RPz is the identify functor on QC!z(X), we obtain = idQc (x) in case of
supports.

To check the formula for the trace, it suffices (since both sides preserve colimits in both
variables) to check it in case X = 0 !W with $, 9 E DCoh(X). Applying Lemma A.2.2.2

we see that

ev (<b = ev ( iir®9) = MapX (D(9), 9) = R' ( 9 9) = MapQC!(X2) (A* Ox, 9 N 9)

Equivalences:
Since the diagram commutes and V is an equivalence, it suffices to show that 0 is an

equivalence. By Prop. A.2.1.1 it preserves compact objects and is fully faithful. It suffices

to show that it is essentially surjective on compact objects. In Prop. A.2.3.2 below, we we
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handle the case without support conditions. Let us show how this implies the general case:

DCoh(Zx) 0 DCoh(Zy) ~-> DCoh(Zx x Zy)

DCohzx (X) 0 DCohzy (Y) > DCohzxxzy (X x Y)

We have seen that the bottom horizontal arrow is fully faithful, so since both categories
are stable and idempotent complete it suffices to show that it has dense image. We have
seen that the the top horizontal arrow is an equivalence. The right vertical arrow has dense
image by Lemma 2.2.0.2. Consequently, the bottom horizontal arrow has dense image as
desired. E

A.2.3 Devissage

Lemma A.2.3.1. Suppose X is a quasi-compact quasi-separated scheme and U C X is a
quasi-compact open, uith closed complement Z = X - U. Suppose that M is an equivalence
for the pairs (U, Y) and (Z, Y). Then, it is an equivalence for (X, Y).

Proof. Observe that DCoh(Zx sY) -+ DCohZxky(X x sY) has dense image by Lemma 2.2.0.2
and filtering by powers of the ideal sheaf of Z. Considering the diagram

DCoh(Z) Ok DCoh(Y) > DCoh(Z x s Y)

'I I
DCohz(X) Ok DCoh(Y) -- > DCohzxky(X x s Y)

we see that the right vertical arrow has dense image; since the top horizontal arrow does by
assumption, so does the bottom horizontal arrow.

Consider the diagram

DCohz(X) Ok DCoh(Y) - DCoh(X) Ok DCoh(Y) -> DCoh(U) Ok DCoh(Y)

I 1 I-'
DCohzxsy(X xs Y) : DCoh(X xs Y)-> DCoh(U xs Y)

We claim both rows are Verdier-Drinfeld sequences. For the bottom row, this is the usual
localization sequence of a closed subset for DCoh. For the top row, reduce to the usual
localization sequence by Lemma 3.1.4.2. Set A = (im xy) C DCoh(X xs Y). We will
show that A = DCoh(X x s Y), using the following categorical version of the "5-lemma":

Examining the left-most arrow, we see that A contains DCohzxsy(X xs Y). Letting A
denote its image in the Verdier quotient DCoh(U xs Y), it suffices to show that A is dense
in DCoh(U xS Y). Since the right-most vertical arrow is an equivalence, this follows from
observing that DCoh(X) Ok DCoh(Y) -+ DCoh(U) Ok DCoh(Y) has dense image. 0

Proposition A.2.3.2. Suppose k is a perfect field, S = Spec k, and that X, Y are almost
finitely-presented (*F) derived stack over S. Then, the exterior product induces equivalences

M: DCoh(X) Ok DCoh(Y) ~ 2+ DCoh(X x Y)
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0: Ind DCoh(X) 0kInd DCoh(Y) -~+ Ind DCoh(X x Y)

This remains true with support conditions.

Proof. We have seen how to reduce the case with support conditions to that without in
Theorem A.2.2.4. Also, note that it suffices to prove either the small or the Ind-completed
version.

Suppose U. -+ X is an 6tale cover, so that Ind DCoh X = Tot {Ind DCoh U.} by Theo-
rem A.1.2.5; since U. x Y -+ X x Y is again an etale cover, we also have Ind DCoh(X x Y) =
Tot {Ind DCoh U. x U}. Since Ind DCoh(Y) is dualizable over k-mod by Lemma 3.2.2.1,
-®k Ind DCoh(Y) preserves arbitrary limits. Consequently, we have a diagram of equiva-
lences

Ind DCoh(X)Rk Ind DCoh(Y) 7r* d Tot {lnd DCoh(U.)} ®k Ind DCoh(Y)

- Tot {Ind DCoh(U. x Y)} +) Ind DCoh(X x Y)

Exterior product commutes with finite Tor-dimension pullbacks, so we conclude that our
claim is local on X. Similarly, it is local on Y. Consequently, we may reduce to the case of
X and Y affine derived schemes.

We will now prove the small, idempotent complete, variant. Since 0 is fully faithful
by Prop. A.2.1.1, it suffices to prove that it is essentially surjective. Since both the tensor

product and DCoh(X xs Y) are stable and idempotent complete, it suffices to show that
the image of 0 is dense in the sense that its thick-closure is the whole category.

Step 1. Case of X, Y regular (discrete) schemes:
The analogous statement is well-known (see, e.g., T6en or [BZFN]) with DCoh replaced by
Perf throughout. Since X, Y are regular we have DCoh(X) = Perf(X), DCoh(Y) = Perf(Y).
It remains to observe that X xs Y is again regular, since X, Y are finite-type over a perfect
field k. Consequently, DCoh(X x s Y) = Perf(X xs Y), and we're done.

Step 2. Reduction to the case X, Y reduced (discrete) schemes:
Consider the natural map i: (roX)red -+ X. Under our finiteness hypotheses, it is proper
and consequently we obtain a functor i,: DCoh((roX)ed) -+ DCoh(X). The standard
filtration argument shows that every object of DCoh(X) admits a filtration with associated
graded in the image of i,, from which it follows that i.: DCoh((iroX)red) -+ DCoh(X) has
dense image.

Consider the diagram

DCoh(X) 0k DCoh(Y) DCoh(X xs Y)

II
DCoh((iroX)ed) 0k DCoh((7roY)red) DCoh((roX)red xS (,7oY)red)

Nred

If red has dense image then so does 0, since the right vertical arrow has dense image by

the above (the map [iro(X xs Y)Ired -+ X xS Y factors through (7roX)red x s (7rOY)red, and

is in fact an equivalence under our hypotheses).

Step 3. Reduction to the case X, Y integral (discrete) schemes:

By Step 2, we may assume X, Y are reduced schemes. Since they are finite-type over

a field, they have finitely-many irreducible components X 1 , .. ., X, Y1 , ... , Ym. Using

Lemma A.2.3.1, we may induct on the number of irreducible components.
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Step 4. Completing the proof:

By the above, we may suppose X, Y are integral schemes. By Noetherian induction, we may
suppose the claim is known for all pairs (X', Y') such that dim X' < dim X, dim Y' < dim Y
with at least one of these inequalities is strict. Since X, Y are integral and of finite-type
over a perfect field, they are generically regular. Let U c X, V c Y be dense open regular
subsets, and Zx = X - U, Zy = Y - V. Using Lemma A.2.3.1, we see that the claim holds
for (X, Y) if it holds for (U, V), (Zx, V), (U, Zy), and (Zx, Zy): The first of these follows
by Step 1, while the rest follow by the inductive hypothesis. 0

Remark A.2.3.3. After reducing to the case of a reduced discrete scheme, one can also
conclude quite quickly using de Jong's alterations and Lemma A.1.2.4(ii): Using de Jong's
alterations one may produce proper surjective maps p: X -+ X, q: Y -+ Y with X and Y
regular. Then, Lemma A.1.2.4(ii) identifies QCI(X) = (plp.)-mod QC (Z) and similarly for
QCI(Y) (using q) and for QC!(X x Y) (using p x q). Since X and Y are regular, as is their
product, we know that QC(X)&k QCI(Y) = QC(Z x k). Finally, it suffices to identify
(p x q)!(p x q), with the algebraic tensor-product monad.

A.2.4 Extensions

Proposition A.2.4.1. Suppose S is regular (*) stack.

(i) Suppose Y -+ S is a smooth relative scheme. Then,

0: DCoh(X) 0s DCoh(Y) -+ DCoh(X xs Y)

is an equivalence for all excellent (i.e., 1roX is an excellent ordinary scheme) derived
stacks X over S. If S is excellent (in the sense that all schemes of finite-type over it
are excellent), then this holds for any almost finitely-presented (*) derived stack over

S.

(ii) Suppose S is regular and excellent; that X, Y are (*) derived DM stacks over S; and
that Zx C X, Zy C Y are closed subsets. Suppose furthermore that Zy, with its

reduced induced scheme structure, is smooth over S. Then,

Z: DCohzx (X) os DCohzy (Y) -+ DCohzx xszy (X X S Y)

is an equivalence.

Proof.

(i) The second sentence follows from the first. As in Prop. A.2.3.2, the question is local
on X so that we may suppose X is affine. If X is regular, than so is X xs Y (being
smooth over X) and we are done by the analogous statement for Perf. Otherwise, we
may proceed by Noetherian induction on X, as in the proof of Prop. A.2.3.2. Since all
derived schemes occurring in the Noetherian induction will be almost finitely-presented
over X, they will all be Noetherian and excellent. As there, we reduce to the case of
X discrete and reduced, and apply Lemma A.2.3.1 to reduce to the case of X integral.
By excellence, there is an open dense subset on which X is regular and applying
Lemma A.2.3.1 the Noetherian induction continues.
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(ii) We will reduce to the case of Y smooth over S and without support conditions i.e., (i):

As before, this is local on X and Y, so that we may suppose they are affine. Let Zx,

Zy denote the reduced induced scheme structures on the closed subsets, and consider

the diagram

DCoh(Zx) Os DCoh(Zy) > DCoh(Zx xs Zy)

I I
DCohzx (X) Os DCohzy (Y) > DCohzx xszy(X X Y)

The horizontal maps are fully faithful by Prop. A.2.1.1, so it suffices to prove that the

bottom horizontal map has dense image; but, the right-hand vertical arrow has dense

image. This reduces us to showing that the top horizontal map is an equivalence. O

A.2.5 Hochschild-type invariants of coherent complexes

Corollary A.2.5.1. Suppose X is a finite-type (*F) derived stack over a perfect field k.

Then, Grothendieck duality induces

(i) An isomorphism
HH'(DCoh(X)) -~-+ HH'(Perf(X))

of Hochschild cochain complexes.

(ii) A "Poincari duality"

HH.(DCoh(X)) ~-+ HomQc(X)(A*A.Ox, wx) = RI' [X, D (HL(Perf(X)))]

(iii) Suppose Z C X a closed subset. Then,

HH.(DCohz(X)) -~-+ RI'z (HH,(DCoh(X)))

Proof.

(i) Recall that idQc(x) = IoA and idQc'(x) = (Theorem A.2.2.4). So,

HH*(DCoh X) = HomRFL(Qc!(x),Qc!(x))(id, id)

= HomQc! (X 2 ) (WA, WA)

= HomDcoh(x2)(DOA, DOA)

= HomDCoh(X2)(OA, 0A)

= HomQc(x2)(0A, O)

= HomFnL (QC(X),QC(X)) (id, id)

= HH*(Perf X)

(ii) Recall that HH..(Perf(X)) = A*AOx is the sheafified Hochschild homology of Perf X.
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Then, Theorem A.2.2.4 implies

H H.(DCohX) = ev(id c!(x))
= HomQcr(X2)(A*Ox, A*wx)

= HomDcoh(X2)(A*(OX, A*WX)

= HomQc(x2)(AOx, Awx)
= HomQc(X)(A*A*OX iWX)

= Rr (D(A*A Ox))

(iii) Recall that

H ,(DCohX) = (p1)* omQc'(X2) (Ox, AIAwx) = A x

and that

HH. (DCohz X) = MapQc!(X2) (A,0x, A*EBzwx)

= MapQCi(x) (ox, AA*RFzwx)

= Ri (A!A*REz2wX)

Note that A! OREz2 ~ RLz oAl (the left adjoints coincide), and that the natural map
A, oREz 4 RLz2 o A, is an equivalence (e.g., using the Cech-nerve description of
Section 4.1). So, we conclude

= RT (A!Rrz 2AWx)

= R1z (A!A*wX) 0

Remark A.2.5.2. In particular, item (ii) implies that

U '-+ HH.(DCoh(U))

forms a sheaf of quasi-coherent complexes, which we'll denote HH, (DCoh X). (This can
also be seen directly.) Then, (ii) may be reformulated as the (more evidently a duality)
assertion that

HH,(DCoh(X)) = ID (HH.(Perf(X)))

If X is proper, this implies a (vector space) duality on global sections.
Note that this really is using duality: In the case that X is smooth over a characteristic

zero field, and identifying HH, (Perf(X)) = Q.4 via HKR, this is a reflection of the sheaf
perfect-pairing A: f~j ) % -+ wx (where %4 = e;ilx [i]).

Remark A.2.5.3. Meanwhile, item (i) seems somewhat bizarre. It does, however, lead to
the following observation:

Suppose X is Ici over a perfect field, and that (for simplicity) X is affine. Then, it
is (?) known that thick subcategories of DCoh(X) may be classified by Gm-equivariant
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specialization-closed subsets of Spec7rHH*(Perf X). Using the above, we may interpret

this latter space as intrinsic to DCoh(X).

Remark A.2.5.4. Cor. A.2.5.1 may be flushed out to the following picture:

HH* DCoh(X)

HH* Perf(X) HH. DCoh(X)

(iv) (i)

HH. Perf(X)

(i) Are isomorphic by the Corollary.

(ii) Differ by a shift provided X is Calabi-Yau in the very weak sense that Wx ~9x[-d]

for some d. (For this, X need not be smooth. For instance, any Gorenstein local ring

is Calabi-Yau in this sense.) Indeed, Theorem A.2.2.4 allows us to identify

HH* DCoh(X) = HomQc'(x2)(WA, WA) = HomQc(x)(A*AOx, Ox)

HH. DCoh(X) = HomQcr(X2)(0A, WA)= HomQc(x) (A*A* Ox, Wx)

(iii) Are linearly dual provided that X is proper. A sheafified ("local") version of this

duality holds always, by Remark A.2.5.2.

(iv) Are dual up to a shift provided X is proper and Calabi-Yau. (This is very well-known,
at least when X is also regular.)

A.2.6 Case of hypersufaces

A.2.6.1. In this subsection (M,f) is an LG pair, MO = M XA1 0 is the derived fiber

product, and i: Mo -+ M is the inclusion. The goal of this subsection is to make explicit

the Hochschild invariants of the terms of the Verdier-Drinfeld sequence

Perf (Mo) -+ DCoh(Mo) -+ DSing(Mo)

for the purposes of comparison to Theorem 6.1.2.5.

Proposition A.2.6.2. With notation as above, and supposing that M is a scheme in the

HKR-type statements, we have natural isomorphisms

HH k (Perf(Mo)) = i* (HH(Perf(M)) ~ i* (Q, du = df)

_Hk (DCoh(Mo)) = i! (HH,(DCoh(M))BG i! (1,81, /3 dfA)

4H_Hk (DSing(Mo)) = i! (HH(DCoh(M))T  ) i ( (()), - dfA)

Furthermore, the maps induced by the Verdier-Drinfeld sequence identify with i! applied to

the Tate sequence for HH,(DCoh(M)) via the identification

i* (H (Perf(M))Bg = i! (HH,(DCoh(M))B -±1])
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coming from noting that Perf(M) = DCoh(M) and i* = i![+1].

Proof. We are implicitly using the BG action on Perf(M) = DCoh(M), and the compu-
tation of the induced action on HH,, of 6.1.2.1. The computations then follow from the
functor theorems for Perf and DCoh, by using base-change in the square

Mo > M

AMOj IjA-

(Mo)2 >(M2)

to rewrite for instance

HH(k (DCoh(Mo)) = RHom(Mo)2 ((AM)* OM, (AMO)*i !WM

= PHom(MO)2 ((AMO)*i*OM, k!*wM)

= R i

and then noting that A'A*wM = HH(DCoh(M))BGa by the proof of Theorem 6.1.2.5. 0

Remark A.2.6.3. To summarize, the difference between the formulas appearing in the
previous Proposition and those in Theorem 6.1.2.5 is the following: Here we take il, while
there we take RTMO.

- Recall that RTMO may be regarded as shriek-pullback to the formal completion
Mo. Consequently for any complex F on M: RTMo(F) is k[x]-linear, and i'(9) =
fib(x: RTMO(9) -+ RMo(9-)).

- The above is a general phenomenon: If E is a k[#]J-linear category, then HH. (C) is
naturally k[#]1 ® k[x]-linear and HH(e) = fib (x: HHk[I8 (e) -+ HHkL8 (e)).
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