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Abstract

Cyclometalated Ir(III) and Pt(II) compounds are among the most promising
phosphorescent emitters for various applications, such as organic light emitting diodes
(OLEDs), chemical sensors and bioimaging labels. This family of complexes exhibits
high thermal and photo-stability, excellent quantum efficiency, and relatively short
lifetime. More importantly, their luminescent properties can be fully tunable by
modifying the coordinating ligands.

In this thesis, a series of 2-(1,2,3-triazol-4-yl)-pyridine derivatives, referred to as
the "click" ligands, are used to build phosphorescent Ir(III) and Pt(II) compounds. The
robust and tolerant nature of the copper mediated 1,3-dipolar cycloaddition reactions
offers great flexibility in the molecular design.

Chapter 1 and Chapter 2 focus on the synthesis of heteroleptic cyclometalated Ir
(III) and Pt(II) complexes by utilizing the Cu(I) triazolide intermediates generated in
"click" reactions as transmetalating reagents. Ligand synthesis and metalation can be
achieved in one pot under mild reaction conditions. For the Ir(III) system, the "click"
ligands show switchable coordination modes, between the C, N- and N, N-chelation.
These ligands act as C, N, N-bridging units to form unique zwitterionic dinuclear
complexes with two cyclometalated Pt(II) units.

In Chapter 3, cyclometalated Pt(II) complexes with N, N-chelating "click" ligands
are synthesized. Their aggregation-induced solid-state emission is highly responsive to
environmental stimuli, such as solvents, heat and mechanical force. This family of
compounds represents the first thermotropic Col(h) liquid crystals with only one side-
chain. Furthermore, the combined liquid crystalline and mechanochromic properties
make them attractive functional materials.

Thesis advisor: Timothy M. Swager
Title: John D. MacArthur Professor of Chemistry
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Chapter 1

"Click" Synthesis of Heteroleptic
Tris-cyclometalated Iridium(III)

Complexes

Adapted and reprinted in part with permission from:
Shuang Liu, Peter MUller, Michael K. Takase, Timothy M. Swager*. "Click" Synthesis of
Heteroleptic Tris-Cyclometalated Iridium(III) Complexes: Cu(I) Triazolide Intermediates
as Transmetalating Reagents. Inorganic Chemistry, 2011, 7598
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1.1 Introduction

Phosphorescence-based organic light emitting diodes (OLEDs) have drawn significant

attention due to their ability to harvest both singlet and triplet excitons for

electroluminescence.' Cyclometalated iridium(III) complexes stand out as the most

promising high performance emitters due to their strong Ir-C bonds, which ensure good

photo and thermal stability and destabilize the thermally accessible, non-emissive metal

centered (MC) states.2 This family of complexes exhibits favorable photophysical

properties, such as high quantum efficiency, short excited state lifetimes, and, most

importantly, tunable emission colors. The triplet emission originates from a mixture of

metal-to-ligand charge transfer (3MLCT) and ligand centered (3 LC) excited states. This

strong coupling between the d-orbitals of iridium and the p-orbitals of the ligands allows

facile color tuning through the cyclometalating and ancillary ligands.3' Aside from their

appealing applications as OLEDs, cyclometalated compounds can also be used in light-

emitting electrochemical cells (LECs), 5'6 and as chemical sensors7- " and bioimaging

labels.12-16 Therefore, efficient and versatile synthetic methods that allow access to a

library of cyclometalated compounds will greatly facilitate the screening process for

various applications.

Bis- and tris-cyclometalated Ir(III) complexes are commonly synthesized from

chloro-bridged Ir(III) dimers [Ir(C^N) 2Cl]2, which can be readily prepared from

IrCl 3 nH20 and cyclometalating ligands. Thompson et al. reported the first selective

synthesis of mer and fac isomers by controlling the reaction temperatures,' 7 which

stimulated studies on differentiating the photophysical properties of the two isomers.

More recently, p-hydroxy-bridged Ir(III) dimers and solvated monomeric Ir(III)
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precursors have also been used to achieve fac/mer selectivity under mild reaction

conditions. 18

Transmetalation of metal-halide bonds with organometallic reagents has also been

studied as an alternative approach. For example, Hg(ppy)Cl (ppy = 2-phenylpyridine) has

been used to prepare mono-cyclometalated Ir(III) compounds. 19 However, this method

has not been extensively applied due to reluctance to work with Hg compounds.

Recently, organozinc reagents were used to selectively generate meridional tris-

cyclometalated Ir(III) complexes. 20 The organozinc reagents were prepared in-situ via

metal exchange reactions after the ligands were treated with n-BuLi. In all instances, the

ligands were pre-functionalized to facilitate the lithiation. Unfortunately, the need for

highly reactive n-BuLi and additional synthetic procedures limited the scope of this

method. Organolithiums have proven to be inferior to organozincs due to the low

stability,20 despite their applications in the synthesis of bis-cyclometalated Pd(I)/Pt(II)

complexes.2 1 2 3 Therefore, it is highly desirable to explore new organometallic reagents

that show high functional group tolerance and ease of preparation.

One of the most popular protocols of copper mediated reactions is the Huisgen

1,3-dipolar cycloaddition reaction of organic azides and alkynes. This well-known

"click" reaction provides high yields and regioselectivities under mild reaction

conditions, and has found numerous applications in organic synthesis, material science

and biological chemistry.24 The catalytic cycle has been widely accepted to proceed via a

Cu(I)-acetylide intermediate and a weakly coordinating azide, followed by cyclization

and then hydrolysis of the Cu-C bond.24 26 Similar mechanistic steps have been

convincingly characterized in a series of studies on Au(I) triazolides wherein the stable
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Au-C bond allows for the isolation of an intermediate similar to the postulated Cu(I)

intermediate in "click" chemistry.27,28 Moreover, Wu et al. reported that the Cu(I)-

triazolide intermediate can be trapped with electrophiles, such as ICl, to give 1,4,5-

trisubstituted triazoles.2 9 These encouraging results indicate that organocopper

intermediates can act as potential transmetalating reagents to "click" the in-situ generated

triazole ligands onto metal centers, which is the critical step in the synthesis of

cyclometalated iridium compounds.

Figure 1.1. Functionalized 1,2,3-triazoles as chelating ligands
C10H21

N CN
Ph N

F1 Ir ~ Php-pt-kcPh Ir
N\ Ph- Ph

N N N-N UCIN
I PhN

A B N C
C10H21

1,4-disubstituted 1,2,3-triazole derivatives prepared by "click" chemistry have

been recently investigated as ligands for a variety of transition metals. This family of so

called "click ligands" shows versatile coordination modes when combined with other

functional groups. For example, they can act as NAN and NANAN multi-dentate donors

for Ru(III), 30 ~2 Pt(II),3 3'3 4 Ir(III) (Figure 1.1A) 3 0 ,35 ,36 and other transition metals3 7 as

bipyridine and terpyridine equivalents. The resulting coordination complexes have

potential applications as light-emitting materials3 5 and in LECs. 38 Gandelman et al.

developed a family of 1,2,3-triazole-based pincer ligands that react with Na 2PdCl4 or

(COD)PtCl 2 (COD = cyclooctadiene) to give cyclometalated Pd(II) and Pt(iI) complexes,

compound B in Figure 1.1.31~41 Schubert et al. reported a series of bis-cyclometalated

Ir(III) complexes using 4-phenyl-1H-[1,2,3]triazoles as cyclometalating ligands (Figure

15



1.1 C). 3 6 It is important to note that all these 1,2,3-triazole type ligands were synthesized,

isolated and purified separately before the cyclometalation was performed.

Herein, we present a highly efficient one-pot procedure to synthesize heteroleptic

tris-cyclometalated Ir(III) complexes, ligated by derivatives of 2-phenylpyridine (ppy)

and 2-(1H-[1,2,3]triazol-4-yl)pyridine (trpy) ligands. The Cu(I)-triazolide intermediates

formed in the reaction of organoazides and commercially available 2-ethynylpyridine was

used to transmetalate trpy as the third cyclometalating ligand on to the Ir(III) center.

1.2 Results and Discussion

1.2.1 Synthesis and structural characterization

Scheme 1.1. Synthesis of tris-cylometalated iridium(III) complexes.

a) [CuL]]b) R
+ NNR N R R

~I NN 

1 R

R=

CF?

F F

-F

F F

a) Cu(MeCN) 4PF6, NaH, Et3N/THF, RT, 2 hours; b)

R * PF6

N N
N, R N

r N + R

N N-N N N

R N 1

2a, R = H, 87% 6a, R =H, 11%
2b, R = F, 57% 6b, R =F. 22%
3a, R = H, 82%

4a, R = H, 91%

Sa, R = H, 48%

[Ir(ppy) 2C1] 2 or [Ir(FFppy) 2C] 2, 65 *C, 2-4 hours.

Scheme 1.1 represents the general route to prepare tris-cyclometalated Ir(III)

complexes using the in-situ generated Cu(I)-triazolides (1) as transmetalating reagents. 2-

Ethynylpyridine was treated with stoichiometric Cu(MeCN)4PF 6 in THF in the presence

of NaH and Et3N, before the addition of 1-azidohexane. Proton NMR spectra of the

16



reaction mixture showed that the cyclization was very efficient and usually proceeded to

completion within one hour at room temperature. To the organocopper compound

containing mixture was added [Ir(ppy) 2Cl]2 or [Ir(FFppy) 2C] 2 (FFppy = 2-(2,4-

difluorophenyl)pyridine) at room temperature and the reaction was heated to 65 'C for 4

hours. Crystalline lr(ppy)2(trpy) (2a) and Ir(FFppy) 2(trpy) (2b) were isolated in moderate

to high yields, after purification by column chromatography. In order to maximize the

yield of either 2a or 2b, it was essential to prevent intermediate 1 from being quenched

by other electrophiles before the transmetalation reaction could occur. Therefore, a strong

base, such as sodium hydride, was used as an efficient proton scavenger.

The tolerant and robust nature of the click reaction provides an ideal route to

introduce different functional groups to the cyclometalated system. Alkyl, perfluoroalkyl

and aryl azides, readily prepared from the respective halides in one step, were tested in

this case. The 1,3-dipolar cycloaddition and subsequent transmetalation proceeded

smoothly to give compounds 3a-5a in high yields (> 80%). We attribute the slightly

lower isolated yield of compound 5a to repeated purification procedures. All the isolated

compounds exhibit good solubility in common organic solvents, such as tetrahydrofuran,

dichloromethane and toluene.

The tris-cyclometalated compounds obtained by this approach are expected to be

meridional isomers. The pyridyl nitrogen atoms adopt a trans configuration in the

dimeric Ir(III) precursors as confirmed by X-ray crystallography.' 8 This coordination

geometry has been proven to be stable and able to survive relatively harsh reaction

conditions. Therefore, we hypothesized that the tris-cyclometalated Ir(III) complexes

obtained would be meridional.2 0 This hypothesis is supported by comparing the NMR

17



spectra of 2a and 2b to literature compounds containing [lr(ppy)2]/[Ir(FFppy) 2]

fragments. 17

Table 1.1. Selected bond lengths (A) and bond angles (deg) for compounds 2a, 2b, 6b and 7b

2a 2ba 6b 7b

Lr(1)-C( 11 )b 2.016(3) 2.003(4) 2.000(3) 2.007(3) 2.008(2)

1r(l)-C(31)c 2.053(4) 2.048(3) 2.054(3) 2.004(3) 2.0044(19)

Ir(1)-C(47)d/N(4)e 2.088(4) 2.081(3) 2.091(3) 2.118(2) 2.1200(19)

Ir(l)-N(1) 2.046(3) 2.045(3) 2.039(3) 2.048(2) 2.051(2)

lr(l)-N(2) 2.062(3) 2.059(3) 2.057(3) 2.047(3) 2.039(2)

lr(l)-N(3) 2.188(3) 2.183(3) 2.184(3) 2.151(2) 2.172(2)

C(11 )-Ir(l)-N(1) 79.93(13) 80.80(14) 80.69(14) 80.39(11) 80.62(9)

C(3 1)-Ir(l)-N(2) 79.73(13) 79.54(13) 79.93(14) 80.52(12) 80.56(10)

N(3)-Ir(1)-C(47)d /N(4) 76.58(13) 77.27(13) 77.34(13) 76.18(9) 76.46(9)

a Data for the A (left column) and A (right column) isomers in the asymmetric unit cell.b Trans to Ir-N(trpy). c
dTrans to Ir-C(trpy). For compound 2a and 2b.*For compound 6b and 7b.

Two representative compounds, 2a and 2b, were characterized by X-ray

crystallography, using single crystals obtained from slow evaporation of respective

dichloromethane/hexane solutions. Both compounds crystallize in the monoclinic space

group P21/c, as racemates of the D and L enantiomers/helimers. Only the thermal

ellipsoid plots of the D isomers are depicted in Figure 1.2 for simplicity. Details of the

data quality and a summary of the residual values of the refinements are listed in Table

1.1, and selected bond lengths and angles are listed in Table 1.1. Full tables of bond

lengths, bond angles and atomic coordinates are provided in the supporting information.
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(a)

Figure 1.2. Ortep diagrams of 2a (a) and 2b (b). Thermal elliposoids are drawn at the 50% probability
level. Hydrogen atoms are omitted for clarity.

Both tris-cyclometalated compounds adopt the meridional configuration, with the

phenyl groups of the two ppy ligands mutually cis to each other. The in-situ generated

trpy ligand completes the octahedral coordination sphere through the pyridyl nitrogen and

triazolyl carbon at the 5-position. Compounds 2a and 2b are rare examples of

crystallographically characterized complexes with the trpy ligands acting as CAN

chelates, even though other binding modes have been reported before. 30,3 8

The bond lengths and bond angles of 2a are consistent with values reported for

other meridional Ir(III) complexes in the literature. As the X-ray structure of mer-Ir(ppy) 3

is not available in the Cambridge Structural Database (CSD), the averaged bond lengths

of the A and A isomers of mer-Ir(ppy)2(tpy) (tpy 2-(p-tolyl)pyridine)4 are used as

references. The length of the Ir-C(ppy) bond trans to Ir-N(trpy) in 2a is 2.016(3) A,

19



which is comparable to its equivalent in mer-Ir(ppy) 2(tpy) (2.010 A). However, the Ir-

C(ppy) bond trans to Ir-C(trpy) (2.053(4) A) is shorter than that of the Ir-C(ppy) trans to

Ir-C(tpy) (2.074 A). Meanwhile, the Ir-C(trpy) bond (2.088(4) A) is longer than the Ir-

C(tpy) bond (2.074 A). Such variation in bond lengths suggests that the Ir-C(ppy) and Ir-

C(tpy) bonds have a stronger trans influence relative to Ir-C(trpy). In other words, trpy

appears to be a weaker cyclometalating ligand than the ppy derivatives based on the bond

length analysis. This is probably due to the strongly a- electron-withdrawing nature of the

triazolyl group.

The structure of 2b resembles that of 2a, except that the asymmetric unit of 2b

consists of two crystallographically independent molecules with little variation in

individual bond lengths and bond angles (Table 1.2). The average bond lengths of the

mutually trans Ir-C(FFppy) (2.051 A) and Ir-C(trpy) (2.086 A) bonds are the same as

those observed in 2a, indicating little perturbation upon fluorination of the ppy ligand.

The two Ir-N(FFppy) bonds trans to each other have slightly longer bond lengths than

those of mer-Ir(FFppy)3 .43 The Ir-N(trpy) bond is elongated by roughly 0.13 A in

comparison with the trans Ir-N(FFppy) bonds.

It is worth noting that a minor Ir(III)-containing product 6a was also isolated from

the reaction mixture of 2a. High resolution mass spectra (HRMS) of the minor product

revealed a parent ion of m/z = 731.2446 m/e, which is the same as that of 2a (m/z =

731.2498 m/e). The 1H NMR spectrum of 6a appeared to be similar to that of 2a, with

one additional peak as a sharp singlet at 8.75 ppm. Careful examination of the gCOSY

NMR spectrum revealed that the ppy ligands and the pyridyl group of the trpy were intact

and the extra proton giving rise to the new singlet was completely isolated. Addition of

20



base to a solution of 6a had no effect on its 'H NMR spectrum, excluding the possibility

of 6a being a protonated version of 2a. The '9F NMR spectrum had a doublet signal at -

72.99 ppm (J = 711.0 Hz), suggesting the presence of fluorophosphate anions (PF 6 ).

Based on these characterizations, this minor product was tentatively assigned as a

cationic [lr(ppy) 2(N^Ntrpy)]+ complex similar to those reported in the literature. 30,38 The

counterion PF6 ~ was obtained from the reagent Cu(MeCN) 4PF6. The formation of a

similar minor product 6b (22%) was also observed during the synthesis of 2b. The 'H

NMR spectrum of 6b also showed a sharp singlet at 8.78 ppm, in addition to the

characteristic 19F NMR signal for PF 6-. Extensive heating or prolonged reaction time

were found to increase the yields of 6a and 6b. However, no isolable amount of side

products was obtained in other cases.

Single crystal structure of 6b confirmed the formation of positively charged

[Ir(FFppy) 2(N^Ntrpy)]+. As shown in Figure 1.3a, the two Ir-N(FFppy) bonds remain

trans to each other. The pseudo-octahedral geometry of the [Ir(FFppy) 2] fragment is

completed by the pyridyl group and N at the 3-position of the triazole. The Ir-C(trpy)

bond in 2b is cleaved and the triazolyl group flips to offer a NAN binding mode. The

hydrogen atom of the newly formed triazolyl C-H bond is located on the residual electron

density map and gives rise to the sharp singlet 'H NMR signal. One hexafluorophosphate

anion is also found in the asymmetric unit, in agreement with the 19F NMR spectrum. The

two Ir-N(FFppy) bonds trans to each other (2.048(2) and 2.047(3) A) are the same as

those previously reported for [Ir(FFppy) 2(NAN-trpy)]BF 4 (2.056 and 2.048 A), where

NAN trpy refers to pyridine-N-biphenyl-1,2,3-triazole. 38 The two trpy-based Ir-N bonds

are elongated due to the strong trans influence of the Ir-C(FFppy) bonds. It is interesting
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to note that the Ir-N(triazolyltrpy) bond (2.118(2) A) is shorter than the N(pyridyltrpy)

bond (2.151(2) A).

(a)

(b)

Figure 1.3. Ortep diagram of 6b (a) and 7b (b). Thermal ellipsoids are drawn at the 50% probability level.
Hydrogen atoms and counter ions are omitted for clarity.

1.2.2 Isomerization

In an attempt to obtain fac-Ir(C^N)2(trpy), 2a and 2b were heated in glycerol at 200 *C

for twenty hours before treated with saturated NaCI solution (Scheme 1.2). Unlike

previous cases reported in the literature, ligand scrambling products were not observed,

based on 'H NMR and HRMS characterization of the crude reaction mixture.
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Nevertheless, 1H NMR spectra indicated that compounds 7a and 7b had similar structure

to 6a and 6b. The characteristic singlet peak from the triazolyl C-H bond was shifted

downfield to 9.07 ppm and 10.95 ppm for 7a and 7b, respectively. Additionally, a PF6~

signal was not observed in the '9F NMR spectrum.

Scheme 1.2. Thermal and photochemical isomerization of compounds 2a and 2b.

R R * Cl~ R*Pe

N N N
R N i.a) or b) R N *... N AgPF6  R N ' N

i r R r NaCl R Ir"

N N--N N N N-N -N N-N

R C6H,3 R C6H,1  R C

2a. R = H 7a, R = H 6a, R = H
2b, R = F 7b, R = F 6b, R = F

a) glycerol, 200 'C, 20 hours; b) DMSO-d 6, UV, 88 hours; c) aqueous NaCl.

Single crystals of compound 7b were obtained by slow diffusion of hexane into a

dichloromethane solution. It is worth noting that 7b crystallizes in the P21 space group (Z

= 2) with only the A helimer (Figure 1.3b). Such enrichment of one optical isomer from a

racemic mixture is very rare for transition metal complexes with bidentate ligands.

Limited literature reports on the separation of A and A isomers of cyclometalated

compounds indicate the need for either rigid chiral ligands** or chiral chromatography

techniques45 . The coordination around the Ir(III) center in 7b greatly resembles that of

6b, with the trpy ligand acting as a neutral NAN chelate. However, the counter anion is a

chloride ion in this case, which likely arise from the saturated brine solution used during

the work-up procedure. Indeed, 6b and 7b are interchangeable through simple ion

exchange reactions. Treatment with one equivalent of AgPF6 in dichloromethane, affords

6b from 7b quantitatively. Conversely, 6b can be converted back to 7b using excess

NaCl.
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Figure 1.4. Photoisomerization of 2a in DMSO-d 6, monitored by 'H NMR.

Such switching of the binding mode of trpy ligands, from CAN to NAN, could also

be achieved photochemically. Broadband UV radiation of DMSO-d6 solutions of 2a and

2b afforded the respective cationic Ir(III) species. The conversion was monitored by 'H

NMR spectroscopy, and only a single product was observed (Figure 1.4). After the

isomerization was completed, the reaction mixtures were treated with excess saturated

NaCl solution. The isolated products showed identical NMR and HRMS spectra to those

of 7a and 7b, respectively. Evidence of the formation offac-Ir(CAN) 2(trpy) under either

the thermal or the photochemical conditions was not obtained. Moreover, treatment of 2a

with acetic acid and silica gel in dichloromethane also failed to produce thefac isomer.46

The mechanism of the mer-to-fac isomerization of tris-cyclometalated Ir(III)

compounds is believed to involve the dissociation of one of the mutually transoid

nitrogen atoms and protonation of at least one of the Ir-C bonds as indicated by the

unavoidable ligand scrambling.17, 42 The proton source is either the alcoholic solvent or

the activated C-H bond of an incoming ligand. The energy needed for the C-H activation

is compensated by the rearrangement of the coordination geometry and the chelation

effect. However, the trpy ligand used in this study can offer both C^N and NAN
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coordination modes, the latter being an analogue of the commonly-used bipyridine

ligand. As discussed in the previous section, the Ir-C(trpy) bond is considerably longer

than the Ir-C(ppy) bonds in 2a and 2b. Therefore, it is most likely to be activated prior to

either the Ir-C(ppy) or Ir-C(FFppy) fragments upon heating or UV radiation. Once the

triazole C-5 is protonated, the NAN chelating mode of the trpy offers a

thermodynamically stable product, which prevents isomerization of the ppy ligands. It

should be pointed out that the proton source is the glycerol solvent during the thermal

isomerization, as previously reported for the mer-to-fac isomerization. 17,4 2 The counterion

during the thermal isomerization is likely to be glycerolate ions before the addition of

NaCl. In the case of photochemical isomerization, the integration of the singlet

corresponding to the triazolyl C-H increased proportionally with other aromatic protons

from the ppy and trpy ligands, which precluded the formation of C-D bond (see

Appendix). A slight increase of the pH values of the reaction mixture was also observed,

in agreement with the formation of hydroxide counterions. Therefore, it is likely that the

residual water acted as the proton source instead of DMSO_d6 .

Scheme 1.3. Failed attempts to synthesize tris-cylometalated iridium(lII) complexes by literature methods.

INI N
.aN N a) or b)

r + [rpy)2Cl.

N N-N N-N N N'N

C6H 13 H 13  CH

2a 6a

a) (1) AgPF6, MeCN; (2) o-dichlorobenzene, 100 1C, 48 hours; b) AgPF6, 2-ethoxyethanol, 140 OC, 24 hours.

This speculation is further supported by attempts to prepare heteroleptic

cyclometalated Ir(III) compounds following the established procedures (Scheme 1.3). 18,47
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However, only the NAN chelating complexes could be isolated even in refluxing

ethoxyethanol. Therefore, the transmetalation approach described in this work is most

likely the only way to use the trpy ligand as a CAN chelator.

1.2.3 Electronic Spectroscopy

The absorption spectra of all the meridional tris-cyclometalated Ir(III) complexes are

given in Figure 1.5a. Compounds 2a-5a show intense absorption between 235 and 350

nm, which can be assigned to ligand-centered transitions. 3 These spin-allowed 2-7* bands

are accompanied by weaker spin-allowed and spin-forbidden charge transfer transitions

in the visible region up to 480 nm. The band shapes and extinction coefficients are

comparable to other ppy-based cyclometalated complexes, such as mer-Ir(ppy)3.17

All the ppy-based meridional isomers show green phosphorescence at room

temperature. Normalized photoluminescence (PL) spectra recorded in deoxygenated THF

solutions and poly(methyl methacrylate) (PMMA) thin films are provided in Figure 1.5.

Broad and structureless PL emission bands are observed across the series of mer-

Ir(ppy)2(trpy) in solution. In contrast, blue-shifted and relatively structured emission

spectra and higher quantum yields are observed in the solid state. These observations

suggest that the phosphorescence is based on excited states with strong 3MLCT character.

The low quantum efficiency and short triplet state lifetime in solutions likely arise from

the distortion or even cleavage of Ir-N and Ir-C bonds upon excitation, which may be

responsible for the photoisomerization processes described in the previous section.
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Figure 1.5. UV-vis absorption (a) and emission (b) spectra of all the mer-Ir(CAN) 2(trpy) compounds in THF
(10~6 M, under Ar), as well as the photoluminescence spectra in PMMA thin films (c).

The absorption spectrum of FFppy-based 2b exhibits similar spectral features as

found for 2a, except for a hypsochromic shift, consistent with the absorption spectra of

the free ppy and FFppy ligands. Unlike its ppy-based analogues, 2b exhibits a more

structured and narrower PL spectrum in solution, with an emission maximum at 464 nm.

Similar trends have also been observed with other Ir and Pt compounds bearing FFppy

ligands.17'4 8 It has been recognized that the difluoro substitution stabilizes the HOMO

more than the LUMO level, resulting in an increase in the band gap.4'49
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Table 1.2. Selected photophysical data of complexes 2-7

Solutiona Thin filmc

Xmax [nm] (_x 104 M' cmk) Xem [nm] 'em b t [ts] kem [nm] (Dem d

2a 263(47.7), 355(9.5), 397(6.0), 440(3.0) 500 0.002 0.90 493 0.10
2b 254(44.1), 346(9.1), 372(7.4), 427(1.3) 464, 485 0.003 0.40 464, 490 0.09
3a 262(47.3), 356(9.0), 396(5.6), 436(2.9) 492 0.007 1.6 490 0.17
4a 266(47.1), 359(8.3), 393(5.1), 432(2.6) 493 0.003 0.23 489 0.09
5a 263(48.0), 355(8.8), 396(5.2), 429(3.2) 505 0.015 1.9 488 0.07
6a 256(37.9), 384(4.8), 411(3.7) 477,507 0.20 1.7 478,508 0.35
6b 249(37.5), 362(5.1), 387(3.7) 453, 482 0.24 2.0 454, 483 0.57
7ae 255(44.0), 386(4.6), 415(3.0) 479, 508 0.35 3.5 479, 508 0.28
7b 248(47.1), 364(4.2), 390(1.7) 454, 483 0.45 3.5 455, 483 0.51

a Measured in deoxygenated THF solution (~10-5 M) at room temperature. b Determined by comparison with
Coumarin-343 (ethanol, <D = 0.63). 3 Measured in PMMA films doped with 2-5 wt % of the Ir(III) compounds. d

Determined by comparison with perylene (PMMA film, QY = 0.98)"4 and 9,10-diphenylanthracene (PMMA film,
QY = 0.83).55 e Measured in THF with 5% v/v of CH2Cl 2 due to the low solubility of 7a in THF.

Although there is little change in terms of the band shape or emission color of

compounds with different substituents on the trpy ligands (2a-5a), greater differences are

observed in the luminescence efficiency (Table 1.2). The perfluorooctyl pedant chain

rigidifies the molecule and provides efficient insulation between individual molecules.50

As a result, aggregation-induced quenching processes are minimized. Consistent with

these arguments, 3a exhibits the highest quantum yield (17%) in the solid state across the

series. On the other hand, the pentafluorophenyl group introduces strong intermolecular

interactions. Accordingly, aggregation-induced bathochromic shift in the PL spectrum of

5a is observed even when the concentration is as low as 4x 10-6 M. Moreover, crystals of

5a exhibit yellow phosphorescence under UV radiation instead of the green emission

observed for all the other mer-Ir(ppy)2(trpy) complexes. Differences are also evident in

terms of lifetimes. Compounds 2a and 4a show comparable lifetimes to those of

previously reported meridional tris-cyclometalated Ir(III) complexes, such as mer-

Ir(ppy)3 (0.15 ms),17 while highly fluorinated 3a and 5a both show longer lifetimes.

Hence, it can be established that certain photophysical properties can be tuned by varying
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the substituents on the triazole ring. Many potential applications can be envisioned

considering the huge library of organo azides established in the literature.

(a) 5 (b)
6a 1.0 , ,---2a -

4 -7a I- 6a-6b0.8 7a -

3b -2b
0.6 - 6b

21 ~7b
1~0.4- '

1 - 0.2-

20 360 350 400 4s0 suo 450 500 550 600 650
Wavelength (rm) Waveength(nm)

Figure 1.6. UV-vis absorption (a) and emission (b) spectra of the [Ir(C^N) 2(N^N trpy)]* compounds in THF
(10-6 M, under Ar).

The positively charged [Ir(CAN) 2(NAN_trpy)]* complexes exhibit photophysical

properties distinct from those of their tris-cyclometalated counterparts (Figure 1.6). The

absorption spectra show well defined absorption bands at around 385 nm for 6a/7a and

363 nm for 6b/7b. The room temperature solution PL spectra show well-resolved

vibronic structures typical of this type of complexes. 30' 38 These highly-structured

emission spectra indicate that the excited state is primarily ligand based. The emission

maximum is also slightly blue shifted relative to the corresponding meridional

compounds. For complexes with PF6 and Cl anions, the excited state lifetimes and PL

quantum efficiencies show counter ions dependency, despite their nearly identical

absorption and PL spectra. The excited states of the chlorides 7a and 7b display longer

lifetimes and higher quantum yields than 6a and 6b, respectively. This difference has

been observed previously between [Ir(FFppy) 2(NAN-trpy)]PF6  and

[Ir(FFppy) 2(NAN-trpy)]BF 4, and it is attributed to different packing interactions when the
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cations are not fully solvated.38 Indeed, an examination of the packing diagrams of 6b

and 7b reveals that PF6~ and Cl~ ions show different H-bonding interactions with the

FFppy and trpy ligands in the solid state (see the Appendix).

(a)

HOMO LUMO
(b)

HOMO LUMO
Figure 1.7. Contour plots of frontier orbitals of mer-Ir(ppy)2(trpy) (a) and [Ir(ppy) 2(NAN_trpy)]f (b).

In order to gain insights into the different electronic structures and photophysical

properties of the neutral and cationic Ir(III) complexes, density functional theory (DFT)

calculations were performed on two simplified structures mer-Ir(ppy)2(trpy) and

[Ir(ppy) 2(NAN_trpy)]+. The optimized ground-state geometries closely resemble the solid

state structures determined by X-ray diffraction. The most important frontier orbitals of

the two model compounds are shown in Figure 1.7. The highest occupied molecular

orbitals (HOMOs) of the two model compounds are both composed of a mixture of the d-
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orbitals of iridium and the p-orbitals of the two ppy-based phenyl groups, typical for bis-

or tris-cyclometalated Ir(III).' However, the lowest unoccupied molecular orbitals

(LUMOs) appear to be remarkably different. As for mer-Ir(ppy)2(trpy), the LUMO is

localized primarily on the ppy ligand that has transoid Ir-C bond with the trpy. Such

atomic orbital composition of the frontier molecular orbitals is very typical for meridional

bis-cyclometalated Ir(III) complexes.' 7 The absence of a significant contribution from the

substituted triazolyl group to the frontier orbitals explains the almost identical absorption

and emission spectra observed for 2a-5a. The LUMO for [Ir(ppy) 2(NAN_trpy)]4, on the

other hand, is dominated by the p*-orbital of the NAN trpy ligand with little overlap with

the HOMO. The orbital diagram of the Ir(III) cation greatly resembles that of bis-

cyclometalated complexes with neutral diimine ligands, such as 2,2'-bipyridine (bpy) and

1,10-phenanthroline. The HOMO of [Ir(ppy)2(bpy)]* is also a mixture of iridium d and

phenyl p-orbitals, while the LUMO is primarily on the bpy ligand. 1 ,12 Studies on the

excited states have confirmed the mixed 3MLCT and ligand-to-ligand charge transfer

(3LLCT) character of the low-lying triplet states. Therefore, the low energy absorption of

mer-Ir(ppy)2(trpy) can be attributed to excitation to mixed 3MLCT and 3LC excited states

of ppy, while the low-lying excited states of [lr(ppy) 2(NAN_trpy)]+ have an important

3LLCT character between the ppy and trpy ligands. This is in good agreement with the

highly structured emission spectra and longer phosphorescence lifetimes observed for 6-7

relative to their CAN_trpy counterparts. Since the neutral NAN trpy ligands are better p

acceptors than the anionic CAN_trpy, stronger back bonding from the metal center to

NAN trpy would further stabilize the Ir d-orbitals while destabilized the ligand p*-
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orbitals. This stabilization of the HOMO and destabilization LUMO led to the

hypsochromic shift observed upon switching from the C^N chelating mode to NAN.

1.3 Conclusion

In summary, we demonstrated that Cu(I)-triazolides generated by click chemistry can be

used to facilitate the synthesis of tris-cyclometalated Ir(III) complexes. This route

represents an efficient one-pot procedure for both ligand preparation and cyclometalation.

mer-Ir(CAN) 2(trpy) with various substituents of the triazole groups are isolated in

moderate to high yields and fully characterized. These meridional Ir(III) compounds

show short-lived phosphorescence at room temperature, and their quantum efficiencies

can be perturbed by varying the cyclometalating ligands. The robust nature of the click

chemistry affords the possibility of introducing different lateral functional groups to the

ligand that can act as sensing receptors or anchor groups. Many potential applications can

be envisioned considering the diversity of organo azides established in the literature. The

isomerization of neutral mer-lr(CAN) 2(trpy) to positively charged [Ir(CAN) 2(NAN_trpy)]+

is also discussed in detail. The neutral NAN chelating mode is thermodynamically favored

comparing to the anionic CAN mode. Therefore, the transmetalation approach described

in this work is required to utilize trpy as a cyclometalating ligand.

1.4 Experimental Section

General Methods and Instrumentation. All reactions were performed under an argon

atmosphere, using oven-dried glassware and standard Schlenk techniques. 'H and

3 C{lH}NMR spectra were recorded on either a Bruker 400 MHz or Varian 500 MHz
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spectrometer and referenced to the residual proton or carbon resonance of the deuterated

solvent. 19F NMR spectra were recorded on a Varian 300 MHz spectrometer and

referenced to an external standard CFCl 3 (0 ppm). Electrospray ionization (ESI) high

resolution mass spectrometry (HRMS) was measured on a Bruker Daltonics APEXIV 4.7

Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer and the most

abundant masses are reported.

UV/Vis spectra were recorded on an Agilent 8453 diode-array spectrophotometer.

Emission spectra were acquired on a SPEX Fluorolog fluorometer (model FL-321, 450

W xenon lamp) using either right-angle detection (solution measurements) or front-face

detection (thin film measurements). All room temperature solution samples for emission

spectra were degassed by at least three freeze-pump-thaw cycles in an anaerobic cuvette.

Solution photoluminescence quantum yields were determined against Coumarin-343

(ethanol, QY = 0.63)53 and corrected for solvent refractive index and absorption

differences at the excitation wavelength. Thin films were prepared by spin-coating a

chloroform solution of poly(methyl methacrylate) (PMMA) and the target compound (5-

10 % w/w relative to PMMA). Perylene (PMMA film, QY = 0.98)54 or -9,10-

diphenylanthracene (PMMA film, QY = 0.83)55 were used as the reference materials.

Phosphorescence lifetimes were determined by time-resolved phosphorescence

spectroscopy. The radiation source was an Oriel nitrogen laser (Model 79111) with a 5 ns

pulse width operating at approximately 25 Hz. The emitted light was dispersed in an

Oriel MS-260i spectrograph with a 600 lines/mm grating. The detector was an Andor

Technologies Intensified CCD camera (1024 x 128 pixels) with an onboard delay

generator and a minimum gate width of 5 ns operating in full vertical binning mode and
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triggered by a TTL prepulse from the nitrogen laser. The detector was calibrated with a

Hg(Ar) pencil-style calibration lamp. Solution data was acquired with a horizontal

binning of 2 or 3. 15 spectra at different delay times after the laser pulse were taken per

lifetime measurement, the integrated intensities of which were fit to a single-exponential

function.

Materials and Synthesis. Iridium(III) chloride hydrate (IrCl3 nH2O) and

tetrakis(acetonitrile)copper(I) hexafluorophosphate (Cu(MeCN) 4PF6) were purchased

from Strem Chemicals. 2-Ethynylpyridine, 2-(2,4-difluorophenyl)pyridine, NaH (60 %

dispersion in mineral oil), and all other reagents were obtained from Aldrich Chemicals

and used as received. Anhydrous tetrahydrofuran was obtained from a solvent

purification system (Innovative Technologies). Triethylamine (Et3N) was distilled over

sodium hydroxide pellets and stored under argon. m-chloro-bridged Ir(III) dimers1 7, 1-

azidohexane, 56 1 -azido-2-(perfluorooctyl)ethane, 57 1 -azido-3-(trifluoromethyl)benzene5 8

and 1 -azidopentafluorobenzene5 8 were prepared according to the literature methods.

CAUTION: There have been safety concerns about handling organoazides, especially the

ones with short alkyl groups. Therefore, all the organoazides used in this report were

synthesized on small scales and handled with great care.

Preparation of mer-Ir(ppy) 2(trpy-C6 H13) (2a). 2-Ethynylpyridine (41 mg, 0.4 mmol) in

THF (8 ml)/ Et3N (0.1 ml) was added to a mixture of Cu(MeCN) 4PF6 (149 mg, 0.4

mmol) and NaH (19 mg, 0.8 mmol), and the resulting suspension was stirred for 0.5 h at

room temperature before 1 -azidohexane (51 mg, 0.4 mmol) in THF (2 ml) was added.
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After stirring at room temperature for another 1-1.5 h, [Ir(ppy) 2C] 2 (107 mg, 0.1 mmol)

was added to the mixture as a solid and heated to 65 'C for 4 h. After cooling, the solvent

was removed under reduced pressure and the residue was purified by chromatography on

silica gel, using CH 2Cl2/ethyl acetate (15:1) as the eluent to remove small amount of side

product 6a, then CH2Cl2/ethyl acetate (6:1) to collect the desired product 2a. After

recrystallization from CH 2Cl2/hexane, 2a was isolated as bright yellow crystals (127 mg,

87%). HRMS (ESI): 731.2498 [calcd for (M+H)*: 731.2415]. 1H NMR (400 MHz,

DMSO-d6, ppm): 0.76 (t, J=7.2 Hz, 3 H), 0.87-1.00 (in, 4 H), 1.06 (m, 2 H), 1.21 (in, 2

H), 3.4 (in, 2H), 6.27 (d, J=7.2 Hz, 1 H), 6.31 (d, J=7.6 Hz, 1 H), 6.72 (t, J=7.4 Hz, 1 H),

6.83 (t, J=7.4 Hz, 1 H), 6.88 (t, J=7.4 Hz, 1 H), 6.95 (t, J=7.6 Hz, 1 H), 6.99 (t, J=6.3 Hz,

1 H), 7.07 (m, 2 H), 7.52 (d, J=5.4 Hz, 1 H), 7.56 (d, J=5.7 Hz, 1 H), 7.75-7.84 (m, 5 H),

7.87 (d, J=5.7 Hz, 1 H), 7.91 (d, J=7.9 Hz, 1 H), 8.12 (d, J=7.9 Hz, 1 H), 8.13 (d, J=7.9

Hz, 1 H). 3C NMR (126 MHz, CD 2Cl2 , ppm): 14.4, 23.1, 26.7, 32.7, 51.1, 118.1, 119.0,

119.5, 120.4, 121.5, 122.1, 122.5, 123.2, 124.6, 124.9, 130.0, 130.6, 131.6, 132.3, 136.0,

137.0, 138.2, 143.5, 145.5, 149.4, 151.1, 152.5, 154.1, 158.8, 162.8, 168.1, 169.4, 170.1.

Compound 6a was isolated as a bright yellow solid (20 mg, 11%).

HRMS (ESI): 731.2446 [calcd for (M-PF6 )*: 731.2415]. 'H NMR (400 MHz, DMSO-d6,

ppm): 0.84 (t, J=6.82 Hz, 3 H), 1.12-1.38 (m, 6 H), 1.83-1.98 (m, 2 H), 4.45 (t, J=7.4 Hz,

2 H), 6.30 (d, J=5.3 Hz, 1 H), 6.32 (d, J=5.3 Hz, 1 H), 6.87 (t, J=7.5 Hz, 1 H), 6.93 (t,

J=7.5 Hz, 1 H), 6.97-7.11 (m, 4 H), 7.30 (t, J=6.3 Hz, 1 H), 7.51 (d, J=5.8 Hz, 1 H), 7.66-

7.71 (m, 2 H), 7.73 (d, J=7.3 Hz, 1 H), 7.75-7.82 (in, 2 H), 7.84 (d, J=5.3 Hz, 1 H), 7.95

(d, 2 H), 8.02 (t, J=7.6 Hz, 1 H), 8.22 (d, J=7.8 Hz, 1 H), 8.75 (s, 1 H). 13 C NMR (126

MHz, CD2 Cl2, ppm): 14.2, 22.9, 26.3, 30.2, 31.4, 53.1, 120.1, 120.2, 122.7, 123.3, 123.5,
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123.6, 123.9, 124.9, 125.3, 126.2, 127.0, 130.4, 131.1, 132.1, 132.4, 138.6, 138.7, 140.2,

144.5, 146.8, 149.0, 149.8, 149.9, 150.0, 150.8, 167.9, 168.5. '9F NMR (282 MHz,

CD 2Cl 2, d ppm): -72.99 (d, J= 711.0 Hz).

Preparation of mer-Ir(FFppy)2(trpy-C 6H 3 ) (2b). 2-Ethynylpyridine (21 mg, 0.2

mmol), Cu(MeCN) 4PF6 (75 mg, 0.2 mmol), NaH (10 mg, 0.4 mmol), and 1-azidohexane

(25 mg, 0.2 mmol) were reacted with [Ir(FFppy) 2Cl]2 (61 mg, 0.05 mmol) following the

procedure detailed for the synthesis of 2a. The reaction mixture was purified by

chromatography on silica gel, using CH 2Cl2/ethyl acetate (10:1 to 8:1) as the eluent to

remove small amount of side product 6b, then CH 2Cl2/ethyl acetate (4:1) to collect the

desired product 2b. Compound 2b was isolated as light yellow crystals (91 mg, 57%).

HRMS (ESI): 803.2108 [calcd for (M+H)*: 803.2101]. 'H NMR (400 MHz, CD 2Cl2, d

ppm): 0.82 (t, J=7.3 Hz, 3 H), 1.04 (quin, J=7.4 Hz, 2 H), 1.09-1.22 (m, 4 H), 1.33-1.45

(m, 2 H), 3.57-3.74 (m, 2 H), 5.87 (m, 2 H), 6.48 (m, 2 H), 6.83-6.93 (m, 3 H), 7.59-7.65

(m, 2 H), 7.66-7.75 (m, 3 H), 7.97 (d, J=5.3 Hz, 1 H), 8.02 (br. d, J=5.3 Hz, 1 H), 8.25 (d,

J=8.3 Hz, 2 H). "C NMR (126 MHz, CD 2Cl2, d ppm): 14.3, 23.1, 26.9, 32.0, 32.8, 51.2,

96.7 (t, J=27.6 Hz), 98.5 (t, J=27.6 Hz), 113.4 (dd, J=16.7, 2.9 Hz), 113.8 (dd, J=15.3,

2.6 Hz), 118.5, 121.9, 122.9, 123.1 (d, J=19.6 Hz), 123.5, 123.7 (d, J=19.0 Hz), 127.8,

128.8, 137.1, 138.1, 138.9, 149.5, 150.9, 154.0, 156.7 (d, J=6.9 Hz), 158.4, 160.91 (d,

J=13.2 Hz), 161.5 (d, J=11.5 Hz), 162.8 (d, J=12.1 Hz), 163.0 (d, J=13.2 Hz), 163.6 (d,

J=11.5 Hz), 163.8 (d, J=10.9 Hz), 164.7, 164.8, 165.9 (d, J=10.9 Hz), 166.5 (d, J=8.1

Hz), 174.3. '9F NMR (282 MHz, CD2Cl2, d ppm): -111.24 (t, J=9.2 Hz), -110.16 (t,

J=12.2 Hz), -109.46 (d, J=9.2 Hz), -108.83 (d, J=9.2 Hz).
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Compound 6b was isolated as light yellow solids (43 mg, 22%).

HRMS (ESI): 803.2056 [calcd for (M-PF6)*: 803.2101]. 'H NMR (400 MHz, CD 2Cl2, d

ppm): 0.84 (t, J=6.8, 3 H), 1.15-1.30 (m, 6 H), 1.86-1.97 (m, 2 H), 4.46 (t, J=7.3 Hz, 2

H), 5.73 (dd, J=8.6, 2.1 Hz, 1 H), 5.79 (dd, J=8.4, 2.1 Hz, 1 H), 6.55 (ddd, J=12.2, 9.5,

2.1 Hz, 1 H), 6.61 (ddd, J=12.1, 9.5, 2.2 Hz, 1 H), 7.04 (t, J=6.4 Hz, 1 H), 7.10 (t, J=6.3

Hz, 1 H), 7.37 (t, J=6.4 Hz, 1 H), 7.50 (d, J=5.7 Hz, 1 H), 7.64 (d, J=5.7 Hz, 1 H), 7.80-

7.89 (m, 3 H), 8.08 (td, J=7.8, 1.0 Hz, 13 H), 8.26 (d, J=8.1 Hz, 1 H), 8.31 (d, 2 H), 8.78

(s, 1 H). 13 C NMR (126 MHz, CD 2 Cl 2, d ppm): 14.2, 22.9, 29.3, 30.1, 31.3, 53.3, 99.2 (t,

J=27.1 Hz), 99.7 (t, J=27.1 Hz), 114.5, 1114.6 (d, J=12.1 Hz), 114.7 (d, J=12.1 Hz),

114.8, 123.9, 124.0, 124.2-124.3 (m), 126.7, 127.3, 128.5, 139.6, 139.7, 140.9, 148.8,

149.1, 149.9, 150.0, 150.4 (d, J=6.9 Hz), 150.7, 153.8 (d, J=6.3 Hz), 160.5 (d, J=12.7

Hz), 160.9 (d, J=12.7 Hz), 162.5 (d, J=8.6 Hz), 162.6 (d, J=9.2 Hz), 163.0 (d, J=12.7

Hz), 163.1 (d, J=12.7 Hz), 164.5-164.6 (m), 165.1-165.2 (m). '9F NMR (282 MHz,

CD 2Cl 2, d ppm): -111.09 (1 F), -109.23 (1 F), -107.75 (1 F), -106.85 (1 F), -72.86 (d, J=

717.2 Hz, 6 F).

Preparation of mer-Ir(ppy) 2(trpy-C2H4CsFI7 ) (3a). 2-Ethynylpyridine (41 mg, 0.4

mmol), Cu(MeCN)4PF6 (149 mg, 0.4 mmol), NaH (19 mg, 0.8 mmol), and 1-azido-2-

(perfluorooctyl)ethane (196 mg, 0.4 mmol) were reacted with [Ir(ppy) 2Cl]2 (107 mg, 0.1

mmol) following the procedure detailed for the synthesis of 2a. The reaction mixture was

purified by chromatography on silica gel, using CH 2Cl2/ethyl acetate (8:1) as the eluent.

Compound 3a was isolated as bright yellow crystals (133 mg, 61%).

HRMS (ESI): 1093.1473 [calcd for (M+H)*: 1091.1503]. 'H NMR (500 MHz, CD 2 Cl2,

ppm): 1.85-2.05 (m, 1 H), 2.10-2.27 (m, 1 H), 3.99-4.12 (m, 2 H), 6.44 (d, J=7.2 Hz, 1
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H), 6.46 (d, J=7.7 Hz, 1 H), 6.78-6.89 (m, 4 H), 6.92 (t, J=7.6 Hz, 1 H), 6.96 (t, J=7.4 Hz,

1 H), 7.03 (t, J=7.2 Hz, 1 H), 7.59-7.76 (m, 7 H), 7.87 (d, 2 H), 7.98 (d, J=5.4 Hz, 1 H),

8.06 (d, J=7.7 Hz, 1 H). 13C NMR (126 MHz, CD 2Cl2 , ppm): 32.9 (t, J=21.3 Hz), 42.8 (t,

J=4.0 Hz), 108.9-120.12 (m, CF 2 and CF3 ), 118.4, 119.1, 119.7, 120.9, 121.9, 122.4,

122.7, 123.3, 124.9, 125.0, 130.3, 130.8, 131.4, 132.2, 136.2, 137.2, 138.4, 143.3, 145.4,

149.6, 151.2, 151.6, 153.9, 158.5, 163.6, 168.0, 168.7, 170.1. '9F NMR (282 MHz,

CD 2Cl 2, ppm): -126.63, -124.31, -123.21, -122.41, -122.23, -115.20, -81.40.

Preparation of mer-Ir(ppy)2(trpy-C6H4CF 3) (4a). 2-Ethynylpyridine (21 mg, 0.2

mmol), Cu(MeCN) 4PF6 (75 mg, 0.2 mmol), NaH (10 mg, 0.4 mmol), and 1-azido-3-

(trifluoromethyl)benzene (37 mg, 0.2 mmol) were reacted with [Ir(ppy)2Cl]2 (54 mg, 0.05

mmol) following the procedure detailed for the synthesis of 2a. The reaction mixture was

purified by chromatography on silica gel, using CH 2Cl2/ethyl acetate (15:1) as the eluent.

Compound 4a was isolated as bright yellow crystals (72 mg, 91%).

HRMS (ESI): 791.1709 [calcd for (M+H)*: 791.1726]. 'H NMR (400 MHz, CD 2 Cl 2,

ppm): 6.08 (d, J=7.6 Hz, 1 H), 6.33 (d, J=7.3 Hz, 1 H), 6.53 (t, J=8.1 Hz, 1 H), 6.75 (t,

J=7.3 Hz, 1 H), 6.81-6.89 (m, 4 H), 6.92 (t, J=7.3 Hz, 1 H), 7.00 (t, J=7.6 Hz, 1 H), 7.04

(d, J=8.1 Hz, 1 H), 7.28 (d, J=7.8 Hz, 1 H), 7.48 (d, J=7.6 Hz, 1 H), 7.59-7.69 (m, 6 H),

7.72 (t, J=7.8 Hz, 1 H), 7.81 (d, J=8.1 Hz, I H), 7.84 (d, J=8.1 Hz, 1 H), 8.06 (d, J=5.6

Hz, 1 H), 8.13 (d, J=7.8 Hz, 1 H). "C NMR (126 MHz, CD 2 Cl2, ppm): 118.7, 119.1,

119.7, 120.5, 120.9, 122.1, 122.4, 122.5, 123.5, 123.8, 124.6, 124.9, 125.9, 127.6, 129.1,

129.8, 130.8, 131.6, 132.0, 136.2, 137.2, 138.4, 141.1, 143.2, 145.3, 149.5, 150.9, 153.0,

154.1, 158.3, 159.1, 163.8, 167.1, 168.0, 169.8. 9F NMR (282 MHz, CD 2Cl2 , ppm): -

62.82.
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Preparation of mer-Ir(ppy)2(trpy-C6 F5 ) (5a). 2-Ethynylpyridine (41 mg, 0.4 mmol),

Cu(MeCN) 4PF6 (149 mg, 0.4 mmol), NaH (19 mg, 0.8 mmol), and 1-

azidopentafluorobezene (84 mg, 0.4 mmol) were reacted with [[Ir(ppy) 2Cl] 2 (107 mg, 0.1

mmol) following the procedure detailed for the synthesis of 2a. The reaction mixture was

purified by chromatography on silica gel, using CH 2Cl2/ethyl acetate (15:1) as the eluent.

Compound 5a was isolated as bright yellow crystals (77 mg, 48%). Samples for

photophysical study were purified by preparative thin layer chromatography (PTLC) to

remove trace amount contaminants using CH 2Cl 2/ethyl acetate (30:1) as the eluent.

HRMS (ESI): 813.1367 [calcd for (M+H)*: 813.1381]. 'H NMR (400 MHz, CD 2 Cl 2,

ppm): 6.15 (d, J=7.6 Hz, 1 H), 6.40 (d, J=7.1 Hz, 1 H), 6.54 (t, J=7.4 Hz, 1 H), 6.72 (t,

J=7.4 Hz, 1 H), 6.85-6.95 (m, 4 H), 7.00 (t, J=7.6 Hz, 1 H), 7.45 (d, J=7.6 Hz, 1 H), 7.62-

7.78 (m, 6 H), 7.81 (d, J=8.3 Hz, 1 H), 7.85 (d, J=8.1 Hz, 1 H), 8.10 (d, 2 H). 13C NMR

(126 MHz, CD 2 Cl2 , ppm): 118.8, 118.9, 119.6, 120.2, 122.4, 122.7, 123.4, 123.9. 124.9,

129.3, 130.7, 131.3, 132.3, 136.5, 137.3, 138.6, 143.4, 145.4, 149.5, 151.1, 151.3, 154.1,

157.8, 158.0, 168.0, 168.2, 168.4, 169.8. 9F NMR (282 MHz, CD 2Cl 2, ppm): -163.24 (d,

J=24.4 Hz), -163.27 (d, J=24.4 Hz), -154.92 (t, J=21.4 Hz), -146.87 ~ -146.80 (m).

Thermal Isomerization from 2a to 7a. 20 mg of 2a was suspended in 5 ml glycerol

under Ar. The mixture was heated to 200 'C for 20 h. After cooling to room temperature,

the slurry was added with saturated NaCl aqueous solution and extracted with CH2Cl 2.

The crude mixture was subjected to HRMS (ESI), which showed that there is only trace

amount of Ir(ppy)(tzpy)2 (<1%). Compound 7a was purified by flash chromatography on

partially deactivated neutral aluminum oxide (5% H2 0), using CH 2Cl2/CH 30H (97:3) as
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eluent. After recrystallization from CH 2Cl2/hexane, 7a was isolated as light yellow

crystals (14mg, 63%).

HRMS (ESI): 731.25 [calcd for (M-Cl)*: 731.25]. 'H NMR (400 MHz, MeOH-d 4, d

ppm): 0.85 (t, J=6.8 Hz, 3 H), 1.10-1.30 (in, 6 H), 1.81-1.95 (m, 2 H), 4.47 (t, J=7.1 Hz,

2 H), 6.24 (d, J=7.3 Hz, 1 H), 6.31 (d, J=7.3 Hz, 1 H), 6.78 (t, J=7.0 Hz, 1 H), 6.88 (t,

J=7.0 Hz, 1 H), 6.93 (t, J=7.2 Hz, 1 H), 7.02 (d, J=7.1 Hz, 1 H), 7.04 (d, J=7.8 Hz, 1 H),

7.09 (t, J=6.7 Hz, 1 H), 7.40 (t, J=6.2 Hz, 1 H), 7.63 (d, J=5.8 Hz, 1 H), 7.73 (d, J=7.8

Hz, 1 H), 7.76 (d, J=5.6 Hz, 1 H), 7.81 (d, J=7.8 Hz, 1 H), 7.84-7.91 (m, 3 H), 8.04-8.14

(m, 3 H), 8.26 (d, J=7.8 Hz, 1 H), 9.07 (s, 1 H). 13C NMR (126 MHz, CD 2Cl 2, d ppm):

14.2, 22.9, 26.4, 30.4, 31.4, 52.8, 120.0, 120.1, 122.6, 123.1, 123.5, 123.8, 124.8, 125.0,

125.2, 126.5, 129.4, 129.5, 130.3, 131.0, 132.1, 132.4, 138.4, 138.5, 140.2, 144.5, 147.3,

149.1, 149.3, 149.9, 150.2, 150.4, 150.8, 168.0, 168.5.

Thermal Isomerization from 2b to 7b. 7b was prepared following the procedure

outlined for 7a, and purified by flash column chromatography on partially deactivated

neutral aluminium oxide (5% H20), using CH2Cl2/CH 30H (97:3) as the eluent. After

recrystallization from CH2Cl2/hexane, 7b was isolated as light yellow crystals (12 mg,

58%).

HRMS (ESI): 803.2095 [calcd for (M-Cl)*: 803.2101]. 'H NMR (400 MHz, CD 2Cl2 ,

ppm): 0.83 (t, J=6.6 Hz, 3 H), 1.24 (m, 6 H), 1.83-2.03 (m, 2 H), 4.51 (t, J=7.3 Hz, 2 H),

5.73 (dd, J=8.6, 2.3 Hz, 1 H), 5.80 (dd, J=8.6 Hz, 2.3 Hz, 1 H), 6.54 (ddd, J=13.1, 9.4,

2.3 Hz, 1 H), 6.60 (ddd, J=12.9, 9.3, 2.3 Hz, 1 H), 7.01 (t, J=6.7 Hz, 1 H), 7.06 (t, J=6.8

Hz, 1 H), 7.31 (t, J=6.6 Hz, 1 H), 7.49 (d, J=5.8 Hz, 1 H), 7.65 (d, J=5.6 Hz, 1 H), 7.74-
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7.90 (m, 3 H), 8.10 (t, J=7.8 Hz, I H), 8.30 (d, 2 H), 9.26 (d, J=7.8 Hz, 1 H), 10.95 (s, 1

H). 13C NMR (126 MHz, CD 2Cl 2, ppm): 14.2, 23.0, 26.4, 30.2, 31.4, 53.0, 99.0 (t,

J=26.5 Hz), 99.5 (t, J=27.1 Hz), 114.6 (dd, J=6.9, 2.9 Hz), 114.7 (dd, J=6.9, 2.9 Hz),

123.8, 124.0, 124.1, 124.3, 125.7, 126.8, 128.5, 130.1 (d, J=23.6 Hz), 139.5, 139.6,

140.9, 149.2, 150.0, 150.1, 150.6, 150.9 (d, J=6.9 Hz), 154.4 (d, J=6.3 Hz), 160.5 (d,

J=12.7 Hz), 160.9 (d, J=12.7 Hz), 162.5 (d, J=11.5 Hz), 162.6 (d, J=11.5 Hz), 163.0 (d,

J=12.7 Hz), 163.1 (d, J=12.7 Hz), 164.5-164.6 (m), 165.1-165.2 (m).

19F NMR (282 MHz, CD 2Cl2, ppm): -111.16, -109.37, -107.92, -106.01.

Photochemical Isomerization. 15 mg of 2a or 2b was dissolved in DMSO-d in a NMR

tube capped with a rubber septum, and purged with Ar for 15 min. The sealed tube was

irradiated with a portable pen light with broadband UV radiation, and the reaction

completed after 3 days based on 1H NMR. Saturated NaCl aqueous solution was added

and the mixture was extracted with CH2 Cl 2 . 7a (12 mg, 58%) and 7b were isolated as

light yellow crystals.

Crystal Structure Determinations. Low-temperature diffraction data (p-and co-scans)

were collected on a Bruker D8 three-circle diffractometer coupled to a Bruker-AXS

Smart Apex CCD detector with graphite-monochromated Cu Ka radiation (A = 1.54178

A) for the structures of compounds 2a, 2b and 6b, and on a Bruker-AXS X8 Kappa Duo

diffractometer coupled to a Smart Apex2 CCD detector with Mo Ka radiation (k =

0.71073 A) from an IpS micro-source for the structure of compound 7b. The structures

were solved by direct methods using SHELXS5 9 and refined against F2 on all data by
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full-matrix least squares with SHELXL-97 60 following established refinement

strategies.61 All non-hydrogen atoms were refined anisotropically. Except for the two

hydrogen atoms on the water molecule in the structure of 7b, all hydrogen atoms were

included into the model at geometrically calculated positions and refined using a riding

model. Coordinates for the two water-hydrogen atoms were taken from the difference

Fourier analysis and the hydrogens were subsequently refined semi-freely with the help

of distance restraints. The isotropic displacement parameters of all hydrogen atoms were

fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl

groups).

Compounds 2a, 2b, and 6b crystallizes in the monoclinic space group P21/c, 2a and 6b

contain one molecule and 2b contains two molecules in the asymmetric unit. Compound

2a contains half a molecule of hexane which is located near a crystallographic inversion

center and disordered accordingly. Compound 2b contains two molecules of CH 2Cl2 , one

of which is disordered over three positions. Compound 7b crystallizes in the monoclinic

space group P21 with one molecule of 7b, its chloride counter ion, one water molecule

and one disordered molecule of dichloromethane. The N-bound n-hexyl group is heavily

disordered and was modeled to be distributed over three independent, mutually exclusive

positions. All disorders in all structures were refined with the help of similarity restraints

on 1,2- and 1,3-distances and displacement parameters as well as rigid bond restraints for

anisotropic displacement parameters.

CCDC 817543 - 817546 contain the supplementary crystallographic data for this paper.

These data can be obtained free of charge from The Cambridge Crystallographic Data

Centre via www.ccdc.cam.ac.uk/datarequest/cif.
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Computational Details. Ground-state geometries of [Ir(ppy)2(CN-tzpy)] and

[Ir(ppy) 2(NAN_tzpy)]+ were optimized by DFT calculations, which were performed

using the Gaussian03 software (Gaussian Inc.) 60 with a B3LYP exchange-correlation

functional and the LANL2DZ basis set under an effective core potential. The initial

geometries were based on simplified X-ray structures of 2a and 6b respectively, with the

hexyl groups replaced with methyl groups and F atoms with H atoms, and optimized

without any constraints.
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Appendix for Chapter 1

Photo-isomerization of mer-Ir(ppy) 2(trpy)
Packing diagrams of 6b and 7b

NMR spectra
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Crystallographic data for compounds 2a, 2b, 6b and 7b
2a 2b 6b 7b

Empirical formula

Formula weight

Crystal system

Space group

a (A)

b (A)

c (A)

a

p

Volume (A 3)

z
Density (calcd) (g/cm 3

Absorption coefficient
(mm')

F(000)

e range for data
collection

Reflections collected

Independent reflections

Data / restraints /
parameters

Goodness-of-fit on F2

Final R indices
[I>2o(I)]

R indices (all data)

3s 33 6
0.5 C6H14

772.96

Monoclinic

P21/c

20.3916(4)

15.2013(4)

10.4538(2)

900

97.9110(10)0

900

3209.62(12)

4

1.600

8.335

1548

35 29 4 6
CH 2Cl 2

886.77

Monoclinic

P2 1/c

22.2313(8)

16.1839(6)

20.5272(8)

900

116.927(2)0

900

6584.4(4)

8

1.789

9.861

3488

2.19 to 66.2 10

61406

5535

[Ri,,, = 0.0869]

5535 / 57 / 434

1.023

RI = 0.0264

wR2 =0.0626

RI = 0.0330

2.23 to 70.070

133671

12423

[R,,,= 0.0347]

12423 / 131 / 942

1.264

R = 0.0291

wR2=0.0705

RI = 0.0294

C35 H 30 F1oIrN6

947.82

Monoclinic

P21/c

12.9605(2)

14.0627()

18.7948(3)

900

92.2270(10)

900

3422.95(9)

4

1.83

8.819

1856

3.41 to 67.730

6186

6186

[Ri,,,=0.0486]

6186 / 149 / 479

1.068

RI = 0.0251

wR2=0.0599

RI = 0.0268

wR2 = 0.0660 wR2 = 0.0706 wR2 = 0.0609

C3sH30ClF4IrN6 -
CH 2C2- H20

941.24

Monoclinic

P2 1

12.9937(7)

10.5037(6

13.4237(7)

900

91.4950(10)

900

1831.47(17)

2

1.707

3.923

928

1.52 to 30.030

41064

10300

[Ri,,,= 0.0224]

10300 / 388 / 587

1.045

RI = 0.0178

wR2 = 0.0441

RI = 0.0186

wR2=0.0445
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C

Packing diagram of 6b.
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Packing diagram of 7b.
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Ortep diagram of 6b. Thermal elliposoids are drawn at the 50% probability level.

Ortep diagram of 7b. Thermal elliposoids are drawn at the 50% probability level.
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Chapter 2

Zwitterionic dinuclear
cyclometalated Pt(II) complexes

based on "click" ligands
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2.1 Introduction

Cyclometalated Ir(III) and Pt(II) compounds are among the most promising

phosphorescent emitters for various applications. Therefore, this family of complexes has

found wide application in the fabrication of phosphorescence-based organic light emitting

diodes (OLEDs),' chemosensors2'3 and bio-imaging. 4-7 The structures of cyclometalated

Ir(III) and Pt(II) complexes generally consist of at least one five- or six-membered

metallacycle.8 Ir(III) and Pt(II) centers greatly enhance the rate of intersystem crossing,

and offer high quantum efficiency and short excited state lifetime. Furthermore, the

strong M-C bond ensures high thermal- and photo-stability. More importantly, the

emission color can be tuned by varying the chelating ligands and their functional

groups. 9' 10 Triplet emission is key to their photoemission properties and is believed to

originate from a mixture of metal-to-ligand charge transfer (3MLCT) and ligand centered

(3 LC) excited states. 9,10

Unlike Ir(III) that usually adopts an octahedral coordination, the d8 platinum

prefers a square planar configuration. This geometry has two open axial positions that

favor non-covalent metal-metal interactions via the exposed metal dz2 orbitals and 2t-n

stacking between the ligands. The resulting intermolecular interactions leads to the

formation of dimers or oligomers, triggering the excimer emission via the metal-metal-to-

ligand charge transfer (MMLCT). The aggregation-induced phosphorescence has led to

various applications. For instance, the monomer and excimer phosphorescence has been

combined to fabricate white light OLEDs based on a single emissive dopant, which

greatly simplifies the fabrication process.' 1,12
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In the process of optimizing the ligation environment in search for efficient

emitters, the recent developments in organic chemistry have been adopted to facilitate the

design of ligands. One good example is the copper catalyzed Huisgen 1,3-dipolar

cycloaddition of organic azides and alkynes, also known as the "click" reaction. 3 When

combined with functional groups, such as pyridyl or phenyl, the "click" products based

on 1 ,2,3-triazoles prove to be versatile ligands." This "click-to-chelate" strategy has also

been applied to the cyclometalated Pt(II)"-' 7 and Ir(III)18- 20 compounds with interesting

photophysical and catalytic properties. However, the ligands need to be isolated and

purified prior to use in all cases.

Recently, we have reported a "click" method to synthesize heteroleptic tris-

cyclometalated Ir (1II) complexes by taking advantage of the Cu(I) triazolide

intermediates as transmetalating reagents.' In this approach, the ligand synthesis and

metalation can be achieved in one pot under mild reaction conditions. Meridional tris-

cyclometalated Ir(III) compounds were isolated readily in high yields, with the in-situ

generated 2-(1,2,3-triazol-4-yl)-pyridine (trpy) acting as CAN- chelating ligand. The

robustness of the "click reaction" provides a general strategy for synthesizing a wide

variety of target ligands. Moreover, the "click" ligands can switch from CAN- to NAN-

coordination modes upon thermal and photo-isomerization. As part of our continuing

effort to implement the transmetalation strategy, we have examined this approach in

preparing heteroleptic cyclometalated Pt(II) compounds.
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2.2 Results and Discussion

2.2.1 Synthesis

A synthetic route similar to that used in the tris-cyclometalated iridium(III) complexes is

adopted, as shown in Scheme 1.21 2-Ethynylpyridine was treated with stoichiometric

amount of Cul in THF in the presence of NaH and Et3N, followed by the addition of 1-

azidohexane. The Cu(I)-triazole intermediate was generated within 1 h at room

temperature. Cul initially exists in stable clusters and requires a certain concentration of

acetylide anion before the reactive complex can be formed. Therefore, NaH is necessary

to accelerate the reaction and prevent back-transfer of protons to the copper intermediate.

Decomposition of the Pt(II) species to metallic platinum was observed with a large

excess of NaH, as confirmed by the isolation of free cyclometalating ligands. This

phenomenon has also been reported for other low-valent organometallic compounds,

such as gold(I) acetylides.2 Mono-cyclometalated platinum(II) precursor

Pt(CAN)Cl(Et2S) (Pt-A, B or C), prepared according to Scheme 2.1, was added to the

Cu(I)-triazolide containing mixture at room temperature. The reaction was allowed to

proceed for 10 hours at 65 'C. Crystalline solid products were readily purified via column

chromatography.

Scheme 2.1. Synthesis of the starting materials Pt-A, Pt-B, Pt-C.

N +K t EtOEtOH/H 20(3:1) CI Et2S 'N PCI
+ K2PtCI4  Pt Pt6 Pt

75-80
0 0,20h CI N 45-50 OC, 15 h SEt2

Br

N, /CI N C1 N CI
Pt Pt Pt

Br
PtAPt-B F Pt-C
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All products exhibit good solubility in common organic solvents, such as

tetrahydrofuran, dichloromethane and ethyl acetate. It should be noted that the orange-red

DiPt-1 turned into an insoluble brown residue over time in dichloromethane, but no

similar decomposition was observed for the other products. Although the click reaction

allows different functional groups to be introduced easily, alkyl groups in the azide were

necessary to maintain good solubility of the products. For instance, the product obtained

with phenyl or benzyl azides exhibited very low solubility, which hindered further

purification and characterization.

Scheme 2.2. Synthesis of the dinuclear cyclometalated Pt(II) compounds.

Pt
[[CN SEt2  NNCut [uLnI 

+ NaH, Et3N/THF T HF, 50 C PN

RT, 2 h

F
Br

Br-
BN S NF N N e N

Pt /P//tePt N 'Pt P N N- p ' N N t

S'Br \N-F/ F\ F

Br DiPt-1, 27% DiPt-2, 52% F DiPt-3a, 7% F DiPt-3b, 29%

The 'H NMR spectra and HRMS indicate that the structures of the products are

more complicated than mononuclear Pt(II) complexes (Scheme 2.2). Take DiPt-1 as an

example, there are two sets of NMR signals originated from the brominated 2-

thienylpyridine with different chemical environments but only one set for the newly

generated "click" ligand. Therefore, the products are tentatively assigned as dinuclear

Pt(II) complexes with a trpy bridging two [Pt(CAN)] units. This result is a natural
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extension of the switchable CAN- and NAN- coordination modes found in cyclometalated

21
Ir(III) compounds.

Attempts to synthesize mononuclear Pt(II) compounds, with either CAN- or NAN-

trpy coordination, did not produce the expected products. Reactions using Cu(I) catalysts

with non-coordinating anions, such as Cu(CH 3CN) 4PF6, did not yield any isolable

cyclometalated complexes. Instead, free trpy ligand and a small amount of dimerized

bistriazole product were obtained. Formation of the triazole dimers has been attributed to

the basic conditions used this synthesis.2 3 Control reactions using stepwise synthetic

methods have also been performed, following the method used to prepare bis-

cyclometalated Pt(II) complexes.24 26 The "click" ligand was prepared and treated with

LDA to generate a lithium triazolide,27 a more reactive transmetalating reagent compared

to the Cu(I) intermediate (Scheme 2.3). Upon reaction with Pt-B, only the dinuclear

product DiPt-2-C1 was isolated even when excess Pt(II) precursor was used. Its structure

is almost identical to that of DiPt-2, expect for replacing a Pt-Cl bond with a Pt-I bond.

Therefore, the trpy ligand prefers to utilize all three coordination sites when associated

with Pt(II).

Scheme 2.3. Stepwise approach as the control reaction.

IN ,fCI

N C6H 13  LDA - CI 'Pt
/ Cu __ _______ , % ,

- NN THF THF ,rNPt N N
-30 to 00C, 1.5 h 00C, 1.5 h N

Cs- 1 3  DiPt-2-Cl, 37%

It is worth noting that two products (DiPt-3a and DiPt-3b) were isolated from the

reaction mixture when 2-(2,4-difluorophenyl)pyridine (FFppy) was used as the primary

cyclometalating ligand. The two products exhibited very similar properties, both
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exhibiting bright orange emission in the solid state at room temperature. Pure samples of

DiPt-3a and DiPt-3b could be obtained by preparative thin layer chromatography

(PTLC). High-resolution mass spectra (HRMS) revealed that the parent ions of the two

products have similar mass to charge ratios (m/z = 731.2446 m/e for DiPt-3a and m/z =

731.2498 m/e for DiPt-3b). The 'H NMR spectrum of DiPt-3a is similar to those of

DiPt-2 and DiPt-2-C, meanwhile, it is remarkably different from that of DiPt-3b in the

aromatic region. Therefore, DiPt-3a is likely to have similar structure to DiPt-1 and

DiPt-2, whereas DiPt-3b is expected to be a coordination isomer of DiPt-3a.

2.2.3 Structural characterization

The formation of dinuclear Pt(II) complexes has been confirmed by X-ray

crystallographic study. Two representative compounds (DiPt-1 and DiPt-3b) were

characterized using single crystals obtained from concentrated THF/hexane and

dichloromethane/hexane solutions, respectively. DiPt-1 crystallized in the monoclinic

space group P2 /n, while DiPt-3b in the triclinic space group P-1. Ligands and solvents

are severely disordered in both cases. Details of the refinement are provided in the

experimental section. Selected interatomic distances and angles are presented in Table

2.1 and Table 2.2, respectively. Full tables of bond lengths, bond angles and atomic

coordinates are provided in the appendix of this chapter.

There are two crystallographically independent molecules in the asymmetric unit

of DiPt-1. Two mono-cyclometalated Pt(II) units are connected by the trpy ligand,

through the NAN chelation and the Pt-C bond (Figure 2.1). The metal center Pt(1) (or

Pt(3)) is located in a distorted square planar environment, with 5-bromo-2-(5-
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bromothiophen-2-yl)pyridine (thpy) and the newly-generated click ligand acting as CAN

and N^N chelators, respectively. The two pyridyl groups in thpy and trpy are trans to one

another. On the other side of the molecule, Pt(2) (or Pt(4)) is coordinated by the triazolyl

carbon at the 5-position together with the cyclometalating thpy. The two Pt-C bonds are

cis to each other as expected. The coordination is further completed by one iodine atom

inherited from Cul. The two Pt(II) coordination planes are almost perpendicular to each

other. The two molecules in the asymmetric unit are indeed conformational isomers, with

the [(C^N)PtI] unit rotated by 1800 along the Pt-C(trpy) bond.

A~

Figure 2.1. Ortep diagrams of the two molecules in the asymmetric unit of DiPt-1. Thermal ellipsoids
are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity, and only one of the
disordered positions was shown.
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Tabl e 2.1.

Pt(1)-N(1)
Pt(1)-C(3)
Pt(1)-N(2)
Pt(1)-N(3)
Pt(2)-C(16)
Pt(2)-C(25)
Pt(2)-C(25A
Pt(2)-N(6)
Pt(2)-N(6A)
Pt(2)-I( 1)

DiPt-1

80.8(4)
78.2(4)
80.4(6)
79.2(8)

80.5(4)
78.6(4)
80.9(6)
80.3(10)

**N2,



More importantly, this dinuclear structure can be considered as an intramolecular

ion pair, or a zwitterion. The [(CAN)Pt(N^N)] unit carries a formal positive charge, in

contrast to the negative charge of [(CAN)Ptl]. It should be noted that metal containing

zwitterionic compounds have been well characterized and applied to catalysis. 2 8 In most

of the reported compounds, the negative charge usually rests on the organic ligand. It is

29
less common to find the two metal centers carrying the opposite formal charges.

t1i
1 12

Pt C18 KPA

Figure 2.2. Ortep diagrams of the two molecules in the asymmetric unit of DiPt-3b. Thermal ellipsoids
are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity, and only one of the
disordered positions is shown.

The structure of DiPt-3b resembles that of DiPt-1 in terms of the trpy-bridged

dinuclear framework (Figure 2.2). However, the [(CAN)PtIl] units in the two molecules in

the asymmetric unit of DiPt-3b are pointing to the same direction. There are only minor

variations in the individual bond lengths and angles, as listed in Table 2.2. Moreover, the

two pyridyl groups of the [(CAN)Pt(N^N)] moiety adopted a cis configuration, instead of

the trans coordination observed in DiPt-1.

The Pt-C and Pt-N bond lengths and the chelating angles in both compounds are

all within the expected range of similar cyclometalated platinum compounds. For
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instance, the average length of Pt-C(FFppy) bonds in the [(CAN)Pt(NAN)] and [(CAN)PtI]

units are 1.9908 A and 1.9340 A, respectively. They are consistent with those observed in

[(FFppy)Pt(3,5-di-tert-butylcatechol)] (1.976(10) A)30, but are slightly longer than those

in [(FFppy)Pt(CN) 2]+ (2.032(3) A).31 However, a close examination of the bond lengths

of the two compounds indicates that the Pt-C(FFppy) bonds, in general, are shorter than

those in Pt-C(thpy) by 0.03-0.05 A. Furthermore, the Pt-I bond (avg. 2.6797 A) in DiPt-

3b is longer than the one in DiPt-1 (avg. 2.6383 A), indicating a stronger trans influence

executed by the Pt-C(FFppy) compared to Pt-C(thpy). This effect is also observed when

comparing the average Pt-N(CAN) bond length in DiPt-3b (avg. 2.037 A) to DiPt-1 (avg.

2.013 A), with the disordered positions in both molecules in the unit cell accounted for.

The Pt-C(trpy) bond lengths are almost identical in both compounds, with 1.974 A for

DiPt-1 and 1.975 A for DiPt-3b, due to the similar coordination environment.

Table 2.2. Selected bond lenths A and bond anles Pde- for comound DiPt-3b

Pt(1)-N(1) 2.042(10) Pt(3)-N(7) 2.036(9) C(1 1)-Pt(1)-N(1) 79.7(6)

Pt(1)-N(1 A) 2.030(10) Pt(3)-N(7A) 2.038(10) C(l 1A)-Pt(1)-N(1A) 80.7(6)

Pt(1)-C(1 1) 1.997(10) Pt(3)-C(61) 1.973(10) N(3)-Pt(1)-N(2) 76.6(5)

Pt(1)-C(l 1 A) 1.989(10) Pt(3)-C(61 A) 2.004(10) N(3A)-Pt(1)-N(2A) 77.7(6)

Pt(1)-N(2) 2.188(9) Pt(3)-N(8) 2.176(8) C(35)-Pt(2)-N(6) 81.7(3)

Pt(1)-N(2A) 2.179(10) Pt(3)-N(8A) 2.196(11) C(18)-Pt(2)-I(1) 86.6(13)

Pt(1)-N(3) 2.010(9) Pt(3)-N(9) 2.018(8) C(1 8A)-Pt(2)-I(1) 89.7(16)

Pt(1)-N(3A) 2.005(10) Pt(3)-N(9A) 2.019(11) C(6 1)-Pt(3)-N(7) 81.3(5)

Pt(2)-C(1 8) 1.971(10) Pt(4)-C(68) 1.981(9) C(6 1A)-Pt(3)-N(7A) 79.5(5)

Pt(2)-C(18A) 1.978(11) Pt(4)-C(68A) 1.970(11) N(9)-Pt(3)-N(8) 77.2(4)

Pt(2)-C(35) 1.911(7) Pt(4)-C(85) 1.957(6) N(9A)-Pt(3)-N(8) 76.2(6)

Pt(2)-N(6) 2.083(6) Pt(4)-N(12) 2.075(5) C(85)-Pt(4)-N(12) 81.3(2)

Pt(2)-I(1) 2.6797(7) Pt(4)-I(2) 2.6822(6) C(68)-Pt(4)-I(2) 87.7(13)

C(68A)-Pt(4)-I(2) 89.4(19)
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The dinuclear structures were also supported by a series of 2D 'H NMR studies,

such as gCOSY, TOCSY and ROESY NMR. The protons at the ortho position of the Pt-

C/Pt-N bonds are highly sensitive toward the changes in the coordination modes. The

protons ortho- to the Pt-N(thpy) (HA and Ha) and those on the thienyl ring (HH and Hh) of

DiPt-1 display very different chemical shifts, but the other two protons on the pyridyl

groups overlap with their counterparts. The signal for HA is downshifted by 0.3 ppm

comparing to Ha. This shift is consistent with the fact that the Pt-N(thpy) separation

(2.109 A) of the [(CAN)PtI] unit is longer than the one of [(CAN)Pt(NAN)] (2.012 A),

attributed to the stronger trans influence of the Pt-C(thpy) comparing to Pt-N(trpy). A

more dramatic downfield shift is observed for HH, which is the sharp singlet peak

representing the thienyl proton. HH is shifted to the lower field by 0.96 ppm from Hh, and

this shift has been attributed to the intramolecular steric interactions between HH and

H .32 This argument is further supported by the through-space coupling peak between HH

and H' observed on the ROESY spectrum. Similar NMR studies were also performed for

DiPt-2. In addition to the cross peak between HH and H', the intra-ligand interactions

between HD and HE (Hd and He) can also be located.

2D 'H NMR techniques have also proven to be helpful for studying the difference

between DiPt-3a and DiPt-3b. The NMR spectra of DiPt-3a exhibit a pattern very

similar to that of DiPt-2 (Figure 2.3). Careful examination of the assignment of the peaks

suggests that the two pyridyl nitrogen atoms, N(trpy) and N(FFppy) are also trans to each

other in DiPt-3a. However, HA in Pt-3b shifted upfield by 1.4 ppm and HH downfield by

1.2 ppm compared to DiPt-3a (Figure 2.4). Other proton signals, especially the ones
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associated with the FFppy ligand in the [(CAN)PtI] unit, remained mostly unaffected.

Moreover, there is strong through space coupling interaction between H' and HA in DiPt-

3b, which is absent in DiPt-3a. Therefore, it is clear that the pyridyl groups from the trpy

and FFppy ligands are cis to each other in DiPt-3b, and trans to each other in the other

dinuclear complexes. As for DiPt-3a, H' and HH are close to one another and the

shielding effect leads to the upfield shift of HH. 32 Similarly, the switch in coordination

geometry in DiPt-3b leads to the shielding of HA and deshielding of HH
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Figure 2.3. ROESY spectrum
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of DiPt-3a and the assignment of the aromatic protons.
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Figure 2.4. ROESY spectrum of DiPt-3b and the assignment of the aromatic protons.

2.2.4 DFT Calculations

Density functional theory (DFT) calculations have been carried out to further understand

the electronic properties of these bimetallic compounds. The ground state geometries of

two representative structures are optimized based on simplified thpy, 2-phenyl-pyridine

(ppy) and trpy ligands. Details of the computational study are provided in the

Experimental section. The frontier molecular orbitals of DiPt-1 are plotted in Figure 2.5.

The highest occupied molecular orbital (HOMO) is localized within the [(CAN)PtI]

fragment, with contributions from the platinum center, the thpy ligand and the iodine

atom. The lowest unoccupied molecular orbital (LUMO) primarily consists of the 7c*

orbitals of the thpy and trpy ligands. It is delocalized across the entire [(CAN)Pt(NAN)]
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unit, with almost no contribution from d orbitals of the metal center. This charge

separation is in good agreement with the assignment of the zwitterionic structure. The

formal positive charge is evenly distributed through the trpy and thpy ligands.

LUMO LUMO+1

HOMO HOMO-1

Figure 2.5. Contour plots of frontier orbitals of the model compounds of DiPt-1.

Time dependent (TD-DFT) calculations have also been performed on the

optimized singlet ground state geometry of the DiPt-1 analogue. The direct excitation

energies of the first 25 singlet states, together with the first 5 triplet transitions, are

calculated. In Figure 2.6, the oscillator strengths are plotted against the excitation

wavelength, which match well with the peak in the absorption spectrum. The So-Si

transition is dominated by the HOMO-LUMO transition, indicating an MLCT character.

However, the oscillator strength of this excitation is close to zero, likely caused by the

minimum overlap between the HOMO and LUMO orbitals. A lower oscillator strength is

consistent with the crystal structure, in which the [(C^N)PtI] and [(C^N)Pt(NAN)] units

are almost orthogonal to each other. The absorption maximum in the low energy region

can be attributed to a transition corresponding to the MLCT/LC excitation within the

[(C^N)PtI] fragment.

80



300 350 400 450
Wavelength (nm)
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Figure 2.7. Contour plots of frontier orbitals of the model compounds of DiPt-2 with trans (a) and cis
pyridyl (b) coordination.
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The cis and trans coordination of the pyridyl groups has very little effect on the

frontier orbitals of the simplified DiPt-2 as shown in Figure 2.7. The composition and

energies of the orbitals is almost identical for these two configurations, suggesting that

the triazolyl and pyridyl groups exhibit similar coordination strengths, which is likely due

to the full conjugation across the trpy ligands.

2.2.5 Photophysical properties

UV-vis absorption spectra of all dinuclear compounds were recorded in dilute THF

solutions, as depicted in Figure 2.8. Additional photophysical properties are summarized

in Table 2.3. There are two broad absorption peaks for DiPt-1 in the range of 390-480 nm

and 270-390 nm. The low energy absorption peak is red-shifted by about 10 nm when

dissolved in cyclohexane, indicating the metal-to-ligand charge transfer (MLCT) nature

of this peak. As discussed in the previous section, the HOMO consists of mixed metal

and ligand contributions. Hence, the HOMO is destabilized in cyclohexane as compared

to THF while the ligand-centered (LC) LUMO remained unaffected, resulting in a

bathochromic shift in non-polar solvents. The increase in the extinction coefficient was

observed in the high-energy region in various solvents is indicative of LC 7[-ir*

transitions. Moreover, DiPt-1 shows the most intense MLCT transition among all the

dinuclear compounds, because the electron-rich nature of the thpy ligand greatly

facilitates the electron donation from the cyclometalated Pt(II) center to the x* orbitals of

the ligands. There is no well-resolved MLCT peak for the ppy/FFppy based complexes.

Compound DiPt-2 exhibits weaker absorption than DiPt-1, with the featureless spectrum

extending into the visible region (up to 450 nm). The two FFppy-based compounds have
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similar absorption spectra, except that DiPt-3b has an extra peak at around 382 nm. This

is consistent with the DFT calculations, which show that the two isomers have very

similar electronic properties.

a b
6 - - DiPt-1 ---- DiPt-1

- DiPt-2 1.0 - DiPt-2
- DiPt-3a - - - DiPt-3a

E -- DiPt-3b 8 0.8- - DiPt-3b
5 4

E 3 - 0.6-

2 2.0.4

I0 0.2

300 30 400 450 500 40 500 550 600 650 700 750
Wavelength (nm) Wavelength (nm)

Figure 2.8. UV-vis absorption (left) and emission (right) spectra of the dinuclear Pt(II) compounds in
THF (~10-6 M, under Ar).

All the compounds are emissive both in the solution and the solid phases at room

temperature. Normalized photoluminescence spectra recorded in deoxygenated THF

solutions are depicted in Figure 2.8. The emission bands for all compounds are highly

structured even at room temperature, with vibronic progressions of 1226-1256 cm-1. This

indicates that the nature of the phosphorescence is mainly due to LC emission. The

color of the phosphorescence is controlled by the cyclometalating ligands, varying from

orange-red to cyan-blue in the sequence of thpy, ppy and FFppy. The emission of DiPt-1

shows the lowest transition energy, with the emission maximum at 597 nm, which is

attributed to the polarizability of the sulfur atoms and the electron rich nature of thpy

ligands.3 3 The photoluminescence spectra for DiPt-3a and DiPt-3b are almost identical,

both blue shifted by 15 nm in comparison to that for DiPt-2. This hypsochromic shift is

caused by fluorination at the 4- and 6-positions of the phenyl groups, as observed with
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other Ir and Pt compounds bearing FFppy ligands."-" Lifetimes of the triplet excited

states of these doubly metalated compounds are on the order of microseconds. The values

are comparable to those of mononuclear compounds, such as (ppy)Pt(dmp) (8.9 ps) and

(FFppy)Pt(dmp) (8.1 ps). 33 The presence of additional heavy atoms, platinum and iodine

in particular, has little effect on the lifetimes.

Table 2.3. Selected photophysical data of DiPt-1, DiPt-2, DiPt-3a, and DiPt-3b

Solution Thin film

Imax [nm] (e* 10-3 Macm) lem [nm] t lem [nm]

DiPt-1 302(31.9), 339(34.4), 440(8.6) 597, 645 12.0 615

DiPt-2 287(26.3), 325(15.7), 349(12.7), 400(5.8) 489, 521 8.8 566

DiPt-3a 289(53.0), 357(18.6), 374(15.0), 415(7.2) 474, 501 8.0 574

DiPt-3b 288(51.7), 358(18.1), 382(17.5), 420(6.0) 474, 501 8.2 576

2.2.6 Aggregation-induced luminescence

In addition to the color tuning ability in solution, the luminescence properties in

the solid state are also ligand dependent. The solid state photoluminescence spectra were

measured with the target phosphors dispersed into the poly(methyl methacrylate)

(PMMA) matrix. The emission color of DiPt-1 remains indistinguishable in both fluid

solutions and thin films. In contrast, the photoluminescence of the ppy and FFppy based

complexes undergoes dramatic changes in the solid state. The emission color changes

gradually from green to yellow with increasing dopant concentration (Figure 2.9). For

instance, the emission band of DiPt-3a becomes red-shifted and broadened, with a new

band growing at around 575 nm, when the concentration is higher than 0.5% by weight

relative to PMMA. The ratio of the monomer and the excimer emission changes with the

concentration, and the photoluminescence is completely dominated by the featureless
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excimer emission with 20% of DiPt-3a. DiPt-3b has an even greater tendency to

aggregate in the solid state, in agreement with the fact that Pt-3b showed lower solubility

than DiPt-3a after crystallization. As seen in Figure 2.9, the aggregation-induced

emission band is already present when the concentration of the compound is as low as

0.1%. With only 2% of dopant, DiPt-3b can achieve the same degree of aggregation as

20% of DiPt-3b. Additionally the monomer emission vanishes completely with 10% of

DiPt-3b.
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Figure 2.9. The photoluminescence spectra of DiPt-3a (a) and DiPt-3b (b) in PMMA thin films, and
the images of the thin films taken under UV radiation (c).

The difference in the luminescence properties in the solid state can be explained

in part by the distinct degree of intermolecular interaction in the solid state. The two

molecules in the unit cell of DiPt-1 form a loose pair without any intermolecular

interactions. However, two of these pairs form an interdigitated tetrameric repeating unit,
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through the stacking of the [(CAN)Pt(NAN)] units. Figure 2.10 provides a schematic

illustration of the overall intermolecular interactions. The blue and orange bars linked

together by a grey dotted line represent two molecules from the same asymmetric unit.

There are two types of Pt Pt separations along the one-dimensional array. The Pt - Pt

distance observed between molecules labeled by the same color is very short (3.25 A),

indicating strong metallophilic interactions. The Pt Pt separation is 5.35 A between

different colored molecules. Moreover, the [(CAN)Pt(NAN)] units from different

molecular pairs slip away from each other to accommodate weak Pt- . S interactions (3.72

A). This type of Pt-S affinity has been observed in other compounds as well. For

instance, neutral [Pt(8-QNS) 2] (8-QNS = 8-quinolinethiolate) and cationic [Pt(tpy)(Cl)]*

are stacked together by alternating Pt- .Pt (3.35 A) and Pt- -S (3.85 A) interaction. 36 The

mismatch of the coordination disrupts potential Pt. Pt and .- -a interactions, and in turn

prevents the formation of long-range conjugation.

C 370 (

8A.
4 p3.72 A

disordered positions was shown.
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In contrast, the intermolecular interaction for DiPt-3b is much stronger. The two

molecules in the same unit cell are close to one another. The [(CAN)Pt(NAN)] units sit

almost on top of each other, with Pt -Pt distances of 3.36 A. These dimers stack in a

head-to-tail fashion to form infinite chains as indicated in Figure 2.11. Although the

Pt - Pt separations (4.54 A) between these dermic structures are still larger than the sum

of the van der Waals radii of two Pt atoms (3.55 A), the n... n stacking interaction is

much stronger than that of DiPt-1. This dissimilarity can be attributed to the FFppy

ligands in DiPt-3b. This ligand has been widely used to promote formation of excimers

or aggregated structures. 37-39 Moreover, [(CAN)PtI] units from the adjacent molecules are

rotated from each other by roughly 90' to avoid the steric hindrance, wrapping the zig-

zag columns formed by the [(CAN)Pt(NAN)] moieties in a pseudo-helical fashion. They

act as extended arms to hold the columns together through I-n interactions, with a plane-

to-plane spacing of 3.30 A.

0

-3.3A 4

40'

Figure 2.11. The packing diagram of DiPt-3b: side-view (left) and top-view (right). All of the hexyl
groups and hydrogen atoms are omitted for clarity, and only one of the disordered positions was shown.
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2.3 Experimental Section

General Methods and Instrumentation. All reactions were performed under an argon

atmosphere, using oven-dried glassware and standard Schlenk techniques. 'H, gCOSY,

TOCSY, ROESY and "C{'H}NMR spectra were recorded on either a Bruker 400 MHz

or Varian 500 MHz spectrometer and referenced to the residual proton or carbon

resonance of the deuterated solvent. 19F NMR spectra were recorded on a Varian 300

MHz spectrometer and referenced to an external standard CFCl3 (0 ppm). Electrospray

ionization (ESI) high-resolution mass spectrometry (HRMS) was measured on a Bruker

Daltonics APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass

Spectrometer and the most abundant masses are reported.

UV-vis spectra were recorded on an Agilent 8453 diode-array spectrophotometer.

Emission spectra were acquired on a SPEX Fluorolog fluorometer (model FL-321, 450

W xenon lamp) using either right-angle detection (solution measurements) or front-face

detection (thin film measurements). All room temperature solution samples for emission

spectra were degassed with Ar in an anaerobic cuvette. Solution photoluminescence

quantum yields were determined against Coumarin-6 (ethanol, QY = 0.63) and

Coumarin-343 (ethanol, QY = 0.63)40 and corrected for solvent refractive index and

absorption differences at the excitation wavelength. Thin films were prepared by spin-

coating a chloroform solution of poly(methyl methacrylate) (PMMA) and the target

compound (5-10 % w/w relative to PMMA). Perylene (PMMA film, QY = 0.98)41 or

9,1 0-diphenylanthracene (PMMA film, QY = 0.83)42 were used as the reference materials.

Phosphorescence lifetimes were determined by time-resolved phosphorescence

spectroscopy. The radiation source was an Oriel nitrogen laser (Model 79111) with a 5 ns
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pulse width operating at approximately 25 Hz. The emitted light was dispersed in an

Oriel MS-260i spectrograph with a 600 lines/mm grating. The detector was an Andor

Technologies Intensified CCD camera (1024 x 128 pixels) with an onboard delay

generator and a minimum gate width of 5 ns operating in full vertical binning mode and

triggered by a TTL prepulse from the nitrogen laser. The detector was calibrated with a

Hg(Ar) pencil-style calibration lamp. Solution data were acquired with a horizontal

binning of 2 or 3. 15 spectra at different delay times after the laser pulse were taken per

lifetime measurement, the integrated intensities of which were fitted to a single-

exponential function.

Materials and Synthesis. Potassium tetrachloroplatinate(II) (K2PtCl4 ) and copper(I)

iodide (CuI) were purchased from Strem Chemicals. 2-Ethynylpyridine, 2-(2,4-

difluorophenyl)pyridine (FFppy), NaH (60 % dispersion in mineral oil), and all other

reagents were obtained from Aldrich Chemicals and used as received. Anhydrous

tetrahydrofuran was obtained from a solvent purification system (Innovative

Technologies). Triethylamine (TEA) and diisopropanolamine (DIPA) were distilled over

sodium hydroxide pellets and stored under argon.

The Pt(II) precursor Pt(ppy)Cl(SEt2) (Pt-B) were synthesized from K2PtCl4 and

corresponding ligands over two steps. 24 5-bromo-2-(5-bromothiophen-2-yl)pyridine

(thpy),43 2-(1-hexyl-1H-1,2,3-triazol-4-yl)-pyridine (trpy),44 and1 -azidohexane 45 were

prepared according to the literature methods.
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CAUTION: There have been safety concerns about handling organoazides, especially the

ones with short alkyl groups. All the organoazides used in this report were synthesized on

small scales and handled with great care.

Preparation of Pt(thpy)Cl(SEt 2) (Pt-A). K2PtCl4 (207 mg, 0.5 mmol) and 5-bromo-2-

(5-bromothiophen-2-yl)pyridine (319 mg, 1.0 mmol) in a 3:1 mixture of 2-ethoxyethanol

(18 mL) and water (6 mL) was heated under argon for 16 hours at 75 'C. The reaction

mixture was cooled down and poured into 150 mL water to yield an orange precipitate.

The precipitate was filtered, washed with water, ethanol and diethyl ethyl. The Pt(II) p-

dichloro-bridged dimer was used without characterization due to its low solubility.

Et2 S (2.0 mL, 18 mmol) was added to the suspension of the Pt(II) p- dichloro-bridged

dimer in dry chloroform, and the mixture was stirred at 50 'C for 12 hours under Ar. The

reaction mixture was cooled down and evaporated to yield an oily residue. The orange-

red residue was chromatographed on silica gel using CH 2Cl2/hexane (3:1) as the eluent to

yield 115 mg (51% over two steps) of Pt(thpy)Cl(SEt2) (Pt-A) as an orange powder.

Pt-A Br

-N, ,CI
Pt

Br

HRMS (ESI): 603.8545 [calculated for (M-Cl)*: 603.8552]. 'H NMR (400 MHz, CD 2 Cl 2,

ppm): 9.42 (dt, J = 1.8, JPt-H= 17.7 Hz, 1 H), 7.88 (dd, J = 2.1, 8.5 Hz, 1 H), 7.17 (d, J =

8.5 Hz, 1 H), 7.13 (t, JPt-H = 10.7 Hz, 4 H), 3.40 - 3.22 (m, 2 H), 3.06 - 2.82 (m, 2 H), 1.39

(t, J = 7.3 Hz, 6 H). 13C NMR (126 MHz, CD 2 Cl 2, ppm): 13.4, 32.9, 114.6, 116.8, 118.3,

133.7, 140.5, 143.2, 146.0, 150.8, 160.3.
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Preparation of Pt(FFppy)Cl(SEt 2) (Pt-C). K2PtCl 4 (622 mg, 1.5 mmol) and 2-(2,4-

difluorophenyl)pyridine (FFppy) (430 mg, 2.3 mmol) in a 3:1 mixture of 2-ethoxyethanol

(15 mL) and water (5 mL) was heated under argon for 20 hours at 75 'C. The reaction

mixture was cooled down and poured into 150 mL water to yield a light yellow

precipitate. The precipitate was filtered, washed with water, ethanol and diethyl ethyl.

The Pt(II) p-dichloro-bridged dimer was used without characterization due to its low

solubility.

Et2 S (2.0 mL, 18 mmol) was added to the suspension of the Pt(II) p-dichloro-bridged

dimer in dry chloroform, and the mixture was stirred at 45 'C for 17 hours under Ar. The

reaction mixture was cooled down and evaporated to yield an oily residue. The yellow

red residue was chromatographed on silica gel with using CH2Cl2/hexane (2:1) as the

eluent to yield 480 mg (67% over two steps) of Pt(FFppy)Cl(SEt 2) (Pt-C) as a light

yellow powder.

Pt-C

N, ,CI
Pt

F

HRMS (ESI): 475.0618 [calculated for (M-Cl)*: 475.0609]. 'H NMR (400 MHz, CD 2 Cl 2,

ppm): 9.70 (dt, J = 5.8, JPt-H= 16.2 Hz, 1 H), 8.08 (d, J = 8.2 Hz, 1 H), 7.96 - 7.86 (m, 1

H), 7.32 (td, J = 9.6, JPt-H= 26.9 Hz, 1 H), 7.27 (t, J = 6.1 Hz, 1 H), 6.65 (dt, J = 2.4, 8.5

Hz, 1 H), 3.45 - 3.26 (m, 2 H), 3.09 - 2.85 (m, 2 H), 1.40 (t, J = 7.3 Hz, 6 H). 3 C NMR

(126 MHz, CD 2Cl2 , ppm): 13.4, 32.7, 100.2 (t, JC-F 30.5 Hz), 114.6 (dd, JC-F 19.6, 2.9

Hz), 122.7 (t, JC-F= 13.8 Hz), 140.6 (d, JC-F= 7.5 Hz), 144.6, 150.5, 159.9 (d, JC-F 12.7
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Hz), 162.0 (d, JC-F 12.7 Hz), 162.7 (d, JC-F = 12.7 Hz), 163.6 (d, JC-F 6.9 Hz), 164.7 (d,

JC-F 12.7 Hz). '9F NMR (282 MHz, CD2Cl2 , ppm): -110.40 (1 F), -107.76 (1 F).

Preparation of DiPt-1. 2-Ethynylpyridine (30.9 mg, 0.3 mmol) in THF (6 mL)/ TEA

(0.1 mL) was added to a mixture of CuI (57.1 mg, 0.3 mmol) and NaH (24 mg, 60% in

mineral oil, 0.6 mmol), and the resulting suspension was stirred for 0.5 h at room

temperature before 1-azidohexane (38.2 mg, 0.3 mmol) in THF (2 mL) was added. After

stirring at room temperature for another 1.5 h, Pt(thpy)Cl(SEt 2) (Pt-A, 153.3 mg, 0.24

mmol) was added to the mixture as a solid and heated to 45 'C for 20 h. After cooling,

the solvent was removed under reduced pressure and the residue was purified by

chromatography on silica gel, using CH2Cl2/ethyl acetate (15:1) to collect the desired

product DiPt-1. After recrystallization from THF/hexane, DiPt-1 was isolated as an

orange solid (45 mg, 27%).

DiPt-1 2 Br3 1 H_
Br a ,

c\NPt N' DI S
S . AN C

h Br
Br

HRMS (ESI): 1254.7565 [calculated for (M-I)*: 1254.7564]. 'H NMR (400 MHz,

CD 2Cl2, ppm): 10.16 (dd, J=6.82, 1.00 Hz, Ha), 9.87 (d, J=5.30 Hz, HA), 9.41 (d, J=7.33

Hz, H4), 8.93 (d, J=6.06 Hz, H'), 7.86 - 7.94 (m, Hc and H), 7.82 (m, H3 and HD), 7.75

(d, J=8.08 Hz, H ), 7.55 (d, J=7.07 Hz, H*), 7.48 (d, J=7.80 Hz, HE), 7.38 (d, J=7.83 Hz,

HH), 7.21 - 7.31 (in, Hb, HB and HG), 7.19 (t, J=6.60 Hz, H2), 7.11 (t, J=7.83 Hz, HF) 704

(t, J=7.58 Hz, He), 6.81 (t, J=7.83 Hz, H9), 6.42 (dd, J=6.80 Hz, JPt-H=32.80, Hh) 4.77-

4.90 (m, 1H-CH 2), 4.58 - 4.69 (in, 1H-CH 2), 1.98 - 2.25 (m, CH2 ), 1.19 - 1.45 (m, 3CH2),
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0.80 (t, J=7.07 Hz, CH3 ). "C NMR (126 MHz, CD 2Cl2 , ppm): 14.5, 23.4, 27.2, 29.7, 32.2,

55.3, 115.1, 116.1, 116.2, 116.6, 118.8, 119.2, 123.0, 124.9, 135.1, 135.3, 139.1, 140.5,

141.8, 142.7, 143.9, 144.1, 145.8, 148.5, 150.4, 152.5, 153.1, 154.6, 155.5, 160.4, 161.6.

Preparation of DiPt-2. 2-Ethynylpyridine (20.6 mg, 0.2 mmol) in THF (6 mL)/ DIPA

(0.1 mL) was added to a mixture of CuI (38.1 mg, 0.2 mmol) and NaH (16 mg, 60% in

mineral oil, 0.4 mmol), and the resulting suspension was stirred for 0.5 h at room

temperature before 1 -azidohexane (30.5 mg, 0.24 mmol) in THF (2 mL) was added. After

stirring at room temperature for another 1.5 h, Pt(ppy)Cl(SEt 2) (Pt-B, 75.9 mg, 0.16

mmol) was added to the mixture as a solid and heated to 45 'C for 20 h. The reaction was

worked up following the procedure detailed for DiPt-1. The mixture was purified by

column chromatography on silica gel, using CH 2Cl2/ethyl acetate (15:1~10:1). After

recrystallization from CH 2Cl2/hexane, DiPt-2 was isolated as an orange solid (44 mg,

52%).

DiPt-2 2 G
31 HF

b a 4 N /

C\ N N1 PNI
d __",I

NAN C
e h AB

f 9

HRMS (ESI): 927.2035 [calculated for (M-I)*: 927.2051]. 'H NMR (400 MHz, CD 2 Cl 2 ,

ppm): 10.16 (d, J = 5.6 Hz, Ha), 9.87 (d, J = 5.3 Hz, HA), 9.41 (d, J = 7.3 Hz, H4), 8.93 (d,

J = 6.1 Hz, H'), 7.97 - 7.86 (in, Hc and H'), 7.86 - 7.78 (in, H3 and Hd), 7.75 (d, J = 8.1

Hz, HD), 7.55 (d, J = 7.1 Hz, He), 7.48 (d, J = 7.3 Hz, HE), 7.38 (d, J = 7.8 Hz, HH) 7.30-

7.21 (in, Hb, HB and HG), 7.19 (t, J = 7.6 Hz, H2), 7.11 (t, J = 8.6 Hz, HF), 7.07 - 7.00 (in,

J = 9.3, 9.3 Hz, He), 6.81 (dt, J = 1.0, 7.5 Hz, H9), 6.42 (dd, J = 6.8, , JPt-H = 33.6 Hz, Hh),
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4.88 - 4.76 (m, 1H-CH2), 4.68 - 4.55 (m, 1H-CH 2), 2.27 - 2.04 (m, CH 2), 1.48 - 1.15 (m,

3CH 2), 0.80 (t, J = 6.8 Hz, CH 3 ). 13C NMR (126 MHz, CD 2Cl2 , ppm): 23.1, 26.9, 29.6,

31.8, 118.9, 119.6, 122.6, 123.0, 123.2, 123.4, 123.6, 124.2, 124.4, 125.2, 130.1, 130.8,

133.7, 133.8, 138.6, 139.2, 140.0, 144.2, 145.5, 145.6, 146.7, 147.4, 150.1, 151.1, 152.6,

154.4, 155.7, 165.9, 167.9.

Preparation of DiPt-3a and DiPt-3b. 2-Ethynylpyridine (30.9 mg, 0.3 mmol) in THF (6

mL)/ TEA (0.1 mL) was added to a mixture of Cul (57.1 mg, 0.3 mmol) and NaH (24 mg,

60% in mineral oil, 0.6 mmol), and the resulting suspension was stirred for 0.5 h at room

temperature before 1-azidohexane (38.2 mg, 0.3 mmol) in THF (2 mL) was added. After

stirring at room temperature for another 1.5 h, Pt(FFppy)C(SEt 2) (Pt-C, 122.6 mg, 0.24

mmol) was added to the mixture as a solid and heated to 50 'C for 15 h. The reaction was

worked up following the procedure detailed for DiPt-1. The mixture was first purified by

column chromatography on silica gel, using CH 2Cl2/hexane (3:1) as the eluent. Extra care

should be taken in order to isolate DiPt-3a and DiPt-3b, respectively. Samples of the two

isomers for photophysical studies were purified by preparative thin layer chromatography

(PTLC) to remove trace amount contaminants using CH 2Cl2/hexane (2:1) as the eluent.

DiPt-3a was isolated as an orange solid (10 mg, 7%), after recrystallization from

CH2Cl2/hexane.

DiPt-3a 2 F

b a e * F
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HRMS (ESI): 999.1652 [calculated for (M-I)*: 999.1674]. 'H NMR (400 MHz, CD 2Cl2,

ppm): 10.23 (d, J = 5.56 Hz, Ha), 9.91 (d, J = 5.81 Hz, HA), 9.33 (d, J = 7.83 Hz, H4),

8.80 (d, J = 5.56 Hz, H'), 8.18 (d, J = 8.34 Hz, Hd), 8.01 (d, J = 1.00 Hz, HD) 7.87 - 7.96

(m, Hc, H3 and Hc), 7.24 - 7.37 (m, H', H2 and HB), 6.86 (d, J= 9.09 Hz, HH), 6.65 (td, J

= 10.60, 1.00 Hz, HF), 6.54 (td, J = 10.10, 1.00 Hz, He), 5.95 (dd, J = 8.72, JPt-H 37.9 Hz,

H h), 4.80 (m, 1H-CH 2), 4.57 - 4.65 (m, 1H-CH2), 2.06 - 2.24 (m, CH2 ), 1.19 - 1.47 (m,

3CH2), 0.80 (t, J = 6.82 Hz, CH 3). 13C NMR (126 MHz, CD 2Cl2, ppm): 14.3, 23.0, 26.7,

29.6, 31.7, 54.6, 99.4 (t, J = 29.9 Hz), 101.1 (t, J = 27.1 Hz), 115.6 (d, J = 17.9 Hz),

116.6 (d, J = 19.0 Hz), 122.4 - 123.2 (m), 123.5 (t, J = 28.2 Hz), 129.3 - 129.5 (m),

130.5 - 130.8 (m), 139.2, 139.7, 140.5, 144.6, 148.1 (d, J = 6.9 Hz), 150.1, 150.5 (d,

J = 22.5 Hz), 150.7, 152.7, 154.8, 155.3, 159.2 - 165.3 (m). "F NMR (282 MHz,

CD 2 Cl2 , d ppm): -110.68 (1 F), -110.30 (1 F), -109.03 (1 F), -106.97 (1 F).

DiPt-3b was isolated as a yellow solid (39 mg, 29%), after recrystallization from

CH 2Cl2/hexane.

DiPt-3b 2 B
3 A C

b 4 N ,N -D
C/ 

/p F
d h N H F

FF

FF

HRMS (ESI): 999.1656 [calculated for (M-I)*: 999.1674]. 'H NMR (400 MHz, CD 2Cl2,

ppm): 10.22 (d, J = 5.56 Hz, Ha), 9.28 (d, J = 7.83 Hz, H4), 8.49 - 8.56 (m, H' and HA),

8.18 (d, J = 8.34 Hz, Hd), 8.11 (d, J = 8.34 Hz, HD), 7.97 - 8.05 (m, HH and Hc), 7.93 (t, J

= 7.96 Hz, Hc), 7.73 (t, J = 7.58 Hz, H3), 7.37 - 7.44 (m, H2 and HB), 7.30 (t, J = 6.57 Hz,

H ), 6.49 - 6.62 (m, HF and He), 5.94 (dd, J = 8.84, JPt-H= 35.9 Hz, Hh), 4.86 (m, 1H-CH 2),
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4.50 - 4.58 (m, 1H-CH2), 3.66 (m, CH2 ), 1.15 - 1.41 (m, 3CH 2), 0.80 (t, J=6.95 Hz, CH3).

13C NMR (126 MHz, CD 2Cl2, ppm): 14.3, 23.0, 26.8, 29.4, 31.7, 55.0, 99.4 (t, J = 28.2

Hz), 100.9 (t, J = 28.2 Hz), 115.6 (d, J = 19.6 Hz), 117.8 (d, J = 24.2 Hz), 122.7 (t, J =

21.3 Hz), 123.6 (t, J = 20.7 Hz), 124.0, 139.2, 139.4, 140.3, 143.3 - 143.6 (m), 144.3 -

144.6 (m), 148.0, 150.1, 151.0 - 151.4 (m), 153.2 - 153.5 (m), 154.7 - 155.0, 162.8,

165.1. 9F NMR (282 MHz, CD 2Cl2 , d ppm): -111.54, -110.80, -108.71, -107.49.

Preparation of DiPt-2-CI. 2-(1-hexyl-1H-1,2,3-triazol-4-yl)-pyridine (46.1 mg, 0.2

mmol) was dissolved in THF (5 mL), and was added freshly prepared LDA (0.1 M, 2

mL, 0.2 mmol) at -30 'C. The mixture was slowly warmed up to 0 'C. After stirring at 0

'C for 1 h, Pt(ppy)Cl(SEt2) (Pt-B, 95.0 mg, 0.2 mmol) was added. The reaction was

brought to room temperature slowly and stirred for another hour before quenched with

NH4Cl (aq). The solvent was removed under reduced pressure and the residue was

extracted with ethyl acetate, and dried with MgSO 4. The oily orange residue from the

extract was purified by chromatography on silica gel, using CH2Cl 2/ethyl acetate (15:1)

as the eluent to collect the desired product. After recrystallization from CH 2Cl2/hexane,

DiPt-2-C was isolated as light yellow crystals (36 mg, 37%).

DiPt-2-Cl 2 G
3 - 1 H NF

b a N,O 'E
/I Pt\

c N,'tN
d N N C

e h B
f g

HRMS (ESI): 927.2077 [calculated for (M-Cl)*: 927.2051]. 'H NMR (400 MHz, CD 2Cl 2,

ppm): 0.79 (d, J=4.70 Hz, 4 H), 1.18 - 1.32 (m, 7 H), 1.38 (br. s., 3 H), 2.05 - 2.26 (m, 3

H), 4.59 (d, J=6.00 Hz, 1 H), 4.92 (d, J=6.00 Hz, 1 H), 6.44 - 6.67 (m, 1 H), 6.75 (d,
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J=5.02 Hz, 1 H), 6.92 - 7.05 (in, 2 H), 7.06 - 7.23 (in, 3 H), 7.29 (br. s., 1 H), 7.36 (br. s.,

2 H), 7.54 (br. s., 1 H), 7.68 (br. s., 1 H), 7.79 (d, J=3.24 Hz, 1 H), 7.83 - 7.95 (m, 2 H),

8.59 - 8.90 (in, 1 H), 8.81 (br. s., 1 H), 9.43 (br. s., 1 H), 9.70 (br. s., 1 H), 9.77 (br. s., 1

H). "C NMR (126 MHz, CD 2Cl 2, ppm): 14.4, 23.1, 26.8, 30.2, 31.8, 53.6, 118.6, 119.8,

122.2, 122.7,122.9, 123.0, 123.1, 124.1, 124.5, 125.0, 130.0, 133.7, 133.1, 135.2, 139.0,

140.0, 143.3, 144.3, 145.4, 146.5, 147.3, 149.0, 150.7, 151.0, 152.1, 155.4, 166.1, 167.5.

Crystal Structure Determination:

Low-temperature diffraction data ((p-and co-scans) were collected on a Bruker-AXS X8

Kappa Duo diffractometer coupled to a Smart Apex2 CCD detector with Mo Ka radiation

(k = 0.71073 A) from an IpS micro-source. Structures were solved by direct methods

using SHELXS 46 and refined against F2 on all data by full-matrix least squares with

SHELXL-97, 47 following established refinement strategies. 48 All non-hydrogen atoms

were refined anisotropically. All hydrogen atoms were included in the model at

geometrically calculated positions and refined using a riding model. The isotropic

displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the

atoms they are linked to (1.5 times for methyl groups). All disordered atoms were

refined with the help of similarity restraints on 1,2- and 1,3- distances and displacement

parameters as well as rigid bond restraints for anisotropic displacement parameters.

Dark red single crystals of DiPt-1 (Xl 1089) were obtained by slow diffusion of

hexane into the saturated THF solution. It crystallizes in the monoclinic space group

P21/n with two molecules in the asymmetric unit along with 1.54 molecules of THF
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which are located at three independent positions. One of the ligands as well as the alkyl

chain, on each platinum complex, was modeled as disordered over two positions. All

atoms in the disordered aromatic ligand were restrained to be flat within 0.1 A3. The

anisotropic displacement parameters for the eight bromine atoms involved in disorders

were constrained to be pairwise equivalent. Two half-occupied THF molecules are

located near inversion centers and are disordered accordingly. The third partially

occupied THF molecule clashes with the second component of one of the disordered

alkyl groups and its occupancy was constrained to be equivalent to the first component of

that alkyl group. A direct result of this solvent disorder is the non-integer number of

THF molecules per asymmetric unit and the non-integer numbers for the elements C, H,

and 0 in the empirical formula.

Light yellow needle-like single crystals of DiPt-3b (Xl 1075) were grown from

slow evaporation of the dichloromethane/hexane solution. It crystallizes in the triclinic

space group P-I with two molecules in the asymmetric unit along with two molecules of

dichloromethane. One of the two dichloromethane molecules is disordered over two

positions. Two of the three ligands on each platinum complex were modeled as two part

disorders. In addition to similarity restraints, the anisotropic displacement parameters for

nearly overlapping disordered atoms (that is Ni/NiA, N9/N9A, N10/N10A, Cl2/12A,

C13/Cl3A, N7/N7A, N8/N8A, C55/C55A, C5/C5A, C54/C54A, C62/C62A, and F2/F2A)

were constrained to be pairwise equivalent. And all aromatic rings were restrained to be

flat within 0.1 A3 . The crystal was non-merohedrally twinned. Two independent

orientation matrices for the unit cell were determined using the program CELLNOW,49

and data reduction taking into account the twinning was performed with SAINT. 0 The
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program TWINABS5 1 was used to perform absorption correction and scaling, and to set

up the HKLF5 format file for structure refinement. The twin ratio was refined freely and

converged at a value of 0.4648(4).

Computational Details. Ground-state geometries of DiPt-1 and DiPt-2 was optimized

by DFT calculations, which were performed using the Gaussian03 software (Gaussian

Inc.)52 with a B3LYP exchange-correlation functional. The LANL2DZ basis set under an

effective core potential was used for Pt, S, and I. The initial geometries of the trans

pyridyl isomers were based on simplified X-ray structures of DiPt-1, with the hexyl

groups replaced with methyl groups and Br atoms with H atoms, and optimized without

any constraints. The initial geometries of the cis pyridyl isomers were based on simplified

X-ray structures of DiPt-3b, with the hexyl groups replaced with methyl groups and F

atoms with H atoms, and optimized without any constraints.
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Appendix for Chapter 2

X-ray Crystallography
Photophysical properties

NMR spectra
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Crystallographic data for compounds DiPt-1 and DiPt-3b

Identification code DiPt-1 DiPt-3b

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Z

Density (calculated)

Absorption coefficient

F(000)

for data

Index ranges
Reflections collected
Independent reflections
Completeness to theta =
30.570
Absorption correction
Max. and min.
transmission

Refinement method
Data / restraints /
parameters
Goodness-of-fit on F2
Final R indices
[I>2sigma(I)]

R indices (all data)
Largest diff. peak and
hole

C34.09 H31.18
Pt2 S2

1438.07

100(2) K

0.71073 A
Monoclinic

P2(1)/n

a= 15.3011(11)

b = 28.749(2) A
c = 19.7328(14)

a= 900

b= 103.889(2)0
g = 900

8426.4(11) A'

Br4 I N6 00.77

8

2.267 Mg/m 3

11.293 mm'

5319

0.30 x 0.08 x 0.08 mm 3

1.52 to 26.37'
-19<=h<=19, -35<=k<=35, -
24<=l<=24

229127

17227 [R(int) = 0.0522]

100.00%
Semi-empirical from equivalents

0.4653 and 0.1327
Full-matrix least-squares on F2

17227 / 2051 / 1276

1.079

RI = 0.0577, wR2 = 0.1466

RI = 0.0868, wR2 = 0.1743

4.696 and -2.255 e.A~3

C36 H31 C12 F4 I N6 Pt2

1211.65

100(2) K

0.71073 A
Triclinic

P-1

a= 14.2235(15) A
b = 16.6299(18) A
c = 17.8419(19) A
a= 65.616(3)'

b= 74.681(3)0

g = 78.606(3)'

3688.4(7) A3

4

2.182 Mg/m 3

8.616 mm'1

2272

0.35 x 0.05 x 0.05 mm3

1.28 to 30.57'
-1 9<=h<=20, -21<=k<=23,
0<=l<=25

22545
22545 [R(int) = 0.0000]

99.60%
Semi-empirical from equivalents

0.6726 and 0.1524
Full-matrix least-squares on F2

22545 / 3768 / 1438

1.08

RI = 0.0369, wR2 = 0.0776

RI = 0.0520, wR2 = 0.0853

2.683 and -2.692 e.A-3
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Chapter 3

Platinum(II) complexes
with responsive phosphorescence to

environmental stimuli

119



3.1 Introduction

The degree of intermolecular interactions of Pt(II) complexes can be effectively

controlled by varying the coordinating ligands, functional groups, and counterions. This

strategy has been utilized to design functional materials that are responsive toward

external stimuli, such as liquid crystals,' mechanochromic materials' and sensors.4

The intermolecular interaction, which controls the photophysical properties of the

aggregated compounds, is greatly influenced by the nature of the counterions. Yam et al.

recently reported that the colors of [Pt(terpy)(CC-R)]X (X = OTf ~, PF6J, C10 4 , BF4) in

the aggregated states change from yellow to blue, magenta, pink, and orange

respectively.5 The aggregation is disrupted when bulky ions, such as BPh4 are used.

Similar counterion effect has also been observed with [Pt(terpy)(CC-R)]X (X = Cl,

C10 4 , PF6, BF 4 )6 and [Pt(terpy)(Cl)]X (X =CO 4 , Cl , PF6J, OTf). 7 Unfortunately, no

simple systematic correlation between the nature of anions and their solid-state colors

could be made.

We have utilized a series of 2-(1,2,3-triazol-4-yl)-pyridine (trpy) derivatives

prepared by "click" chemistry8 to synthesize a variety of lr(III)9 and Pt(II) compounds

with interesting photophysical properties. These "click" ligands show versatile

coordination modes and can act as C, N- and N, N-chelating ligands as well as C, N, N-

bridging units.' 0

As discussed in Chapter 2, the trpy-based dinuclear Pt(II) compounds exhibit

excimer emission in the solid state or concentrated solutions, depending on the degree of

aggregation. The compound bearing 5-bromo-2-(5-bromothiophen-2-yl)pyridine (thpy)
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as the cyclometalating ligand (DiPt-1) shows slightly red-shifted emission in thin films in

comparison to that in solution. However, its 2-(2,4-difluorophenyl)pyridine (FFppy)

based counterpart (DiPt-3b) exhibits significant photoluminescence changes in the solid

state. X-ray crystallography study indicates that DiPt-3b forms closely packed infinite

zig-zag columns through intermolecular Pt - Pt and 7u -. stacking interactions.

In order to take advantage of the photophysical properties of the these compounds

in their aggregated states, we will focus on the [(C^N)Pt(NAN)] fragment of the dinuclear

molecules (DiPt-1, 2, 3) that is responsible for the strong intermolecular interactions in

this chapter. A series of mono-cyclometalated Pt(II) complexes with the general structure

of [(CAN)Pt(NAN)]X has been prepared, with the trpy ligands acting as neutral N^N-

chelators.

3.2 Results and Discussion

3.2.1 Synthesis and structural characterizations

Instead of the one-pot procedure adopted in the previous two chapters, the synthesis of

the cationic [(CAN)Pt(NAN)]+ compounds were carried out stepwise (Scheme 3.1). The

trpy ligands with different alkyl groups at the 1-position were prepared from 2-

ethynylpyridine and the respective alkyl azides in the presence of CuSO 4 and sodium

ascorbate. The ligands were purified by column chromatography and recrystallization

prior to reactions. The Pt(II) compounds were prepared by having the mono-

cyclometalated platinum(II) precursor Pt(ppy)Cl(Et2S) (ppy = 2-phenyl-pyridine, Pt-B)
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react with 2-(1,2,3-triazol-4-yl)-pyridine (trpy) derivatives in dichloromethane at room

temperature for 3 h. One equivalent of silver salts was added to the reaction mixture to

facilitate the activation of the Pt-Cl bond. The products precipitated out of the solution

immediately after the addition of the silver reagents. The AgCl precipitate was

subsequently removed by filtering after the reaction mixture was diluted with

dichloromethane. The filtrate was concentrated and added toluene to give pure products

in high yields (> 90%).

Scheme 3.1. Synthesis of Pt1_X (X = SbF6 ~,

S<

N CI N

Pt-B Li

+SbF6

N N

\N N
N-N N-N

C6 H13 Pt1 SbF, C6H13 Pt1
92% 9

Trans-/ Cis-= 1:0.17 1:0
(in CD 2CI 2)

PF6 , BF4 , OTf).

CH2

+ PF

N-

PF6
6%
.23

AgX NP

Cl2, RT, 2-5 h N
N-N

Pt1

+BF-

NPt Pt
/ N N

N-N N NN
C69 13 Pt1_BF4  C6H13 Pt1 0

94% 91%
1:0.22 1:0.31

This synthetic approach offers great flexibility in the molecular design and allows

quick access to a library of complexes to study the structure-property relationships. The

trpy ligands can be modified easily by varying the substituents on 2-ethynylpyridine, as

well as the organic azide. The counterions can be controlled simply by choosing the

proper silver reagents, or by ion exchange reactions. A series of trpy-C 6HI3 (L1) based

complexes, Pt1_X (X = SbF6~, PF6(, BF 4 ~, OTf), were prepared to examine the effect of

counterions on the physical properties (Scheme 3.1). Meanwhile, the trpy-C12H25 (L2)

and trpy-C 2H4C8 H1 7 (L3) were adopted to yield Pt2_SbF6 and Pt3_ONTf (ONTf =

nonatriflate, C4H9SO3) in order to study the role of the trpy substituents (Scheme 3.2).
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Scheme 3.2. Synthesis of Pt2_SbF6 and Pt3_ONTf.

S~/ N AgX N,
Pt + Pt

N CI N CH2CI2, RT, 2-5 h N"N

Pt-B R = -C12H25, L2 R = -C12H25, X- = SbF6-, Pt2_SbF6 ; 82%
R = -C2H4 C8F17, L3 R = -C2H4C8F17, X- = ONTf, Pt3_ONTf; 90%

Regardless of the counterions or substituents, each compound exists as a mixture

of two isomers. Take PtlSbF6 as an example; there are two sets of IH NMR signals

corresponding to the same number of protons, although the high resolution MS suggests

the formation of a single product. The presence of two sharp singlets between 8.5 ppm

and 9.9 ppm indicates that the C-H bond at the 5-position of the triazole ring is intact and

only the NAN-chelation of Li is present.9 The ratio of the two components changes when

the sample is dissolved in different solvents. The ratios of the two isomers in these three

solvents are 1:0.17, 1:0.42 and 1:0.91, respectively.

'H NMR signal corresponding to the proton at the 5-position of the triazole ring

shows a significant downfield shift in acetone-d 6 and DMSO-d, as compared to that in

CD 2Cl 2 . The chemical shift of the triazolyl proton shifts from 8.63 ppm in CD 2Cl2 to 8.94

ppm in acetone-d6 and 9.28 ppm in DMSO-d6 for the major isomer. Similar downfield

shift in polar solvents is also observed for the minor isomer, with the triazolyl singlet at

8.53 ppm in CD 2Cl 2, 8.91 ppm in acetone-d, and 9.26 ppm in DMSO-d6 . This solvent

dependence is likely originated from the H-bonding interactions of this acidic C-H bond

with acetone and DMSO molecules that can act as H-bond acceptors. This type of

interactions has found wide applications in building supramolecular architectures and

chemosensors."
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DMSO-d.: major: minor = 1:0.91

A 5 1 3 4/CID 21E B H/F/G

j5 1' A 4 B E 2H/

Major: P2
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4N D q ii
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4 t6
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2' B 9.
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9.6 9.2 8.8 8.4 8.0 7.6 7.2

Figure 3.1. ROESY spectrum of Ptl SbF6 in DMSO-d and the assignment of the aromatic protons.

Furthermore, variable-temperature (VT) NMR spectra of Pt1_SbF6 were recorded

between 22 'C and 100 'C to study the existence of oligomers in the solution. 2" The

entire spectrum is shifted downfield with increasing temperature, and the largest shift is

observed for the triazolyl proton at the 5-position (H5 and H5 ). Other protons that are

close to the platinum center also exhibit large shifts. As the temperature increases, the

peaks also become broader and start to merge. No change in the ratio of the two

components is observed across the temperature range. The temperature dependent

spectral shift is reversible, suggesting dimeric or oligomeric structures are not present in

the sample solutions. Moreover, the equilibrium between the trans and cis isomers is

more sensitive to solvent polarity than temperature in this regard.
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CD2CI2: major: minor= 1:0.17
A 1 5 3 4 C D 2/E B/H/FIG
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Figure 3.2. ROESY spectrum of PtI_SbF6 in CD 2CI 2 and the assignment of the aromatic protons.

The two coexisting components of PtlSbF6 are assigned as coordination isomers

based on a series of 2D 'H NMR techniques, such as gCOSY, TOCSY and ROESY

NMR. As discussed in Chapter 2, the protons at the ortho-positions of the Pt-C/Pt-N

bonds are used as probes to study the coordination geometry. As for the major isomer,

there is a clear cross peak between the protons at the ortho-position of the Pt-C(ppy) bond

(HH) and the one adjacent to the Pt-N(trpyPy) bond (Hi) on the ROESY spectrum taken

in DMSO-d 6 (Figure 3.1). The same through-space coupling between HH and H' is also

observed in CD 2Cl 2 (Figure 3.2), indicating that the two pyridyl groups from the ppy and

trpy ligands are trans to each other (similar to DiPt-1, DiPt-2 and Dipt3a in Chapter 2).

On the other hand, the minor component shows coupling interactions between HA and

H' in DMSO-d6 , clearly indicating a cis pyridyl configuration. It should be noted that the
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H A'- H cross peak is weak in Figure 3.2 because of the low solubility of PtlSbF6 in

CD 2 Cl2 . The proton signals of the other Pt1_X (X = PF6J, BF4 , OTf ) complexes can be

assigned accordingly, and the ratios of the trans/cis isomers in CD 2Cl2 are listed in

Scheme 3.1.

The presence of counterions can be confirmed by 19F NMR spectra for most of the

compounds, as evidenced by the characteristic signals for PFJ (-72.66 ppm), BF4 (-

151.30 ppm), and OTf~ (-79.06 ppm). There is only one signal for each compound

despite of the coexistence of two isomers in each sample. Poorly resolved 19F NMR

resonance is observed for SbFJ .

3.2.2 Polymorphs

Interestingly, Ptl_SbF6 has two stable polymorphs that are interconvertible at room

temperature, as shown in Figure 3.3. PtlSbF6 is soluble in acetone and dimethyl

sulfoxide, and only exhibits limited solubility in CH2 Cl2. Unlike other square planar

Pt(II) complexes, PtlSbF6 is not soluble in acetonitrile. Bright yellow crystalline solids

(Morph-A) can be isolated from CH 2Cl 2 . This polymorph shows intense yellow emission

when exposed to UV radiation. There is also an orange metastable polymorph (Morph-B)

formed during rapid precipitation from CH 2Cl2, which transforms into the yellow-colored

Morph-A in the presence of CH2Cl 2 . On the contrary, a red solid (Morph-C) with bright

red solid-state emission is obtained when the compound is precipitated from its acetone

solution. Morph-A and Morph-C are interconvertible by simple solvent annealing.
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Morph-A

Figure 3.3. Polymorphs of [Pt(ppy)(trpy-C6 H 3 )]SbF6 (PtlSbF6): yellow crystals recrystallized from
CH 2CI2/hexane (left) and red solid precipitated rapidly from acetone (right).

Although the two polymorphs of PtlSbF6 show strong solvatochromic effect,

there is no indication of incorporation of neither solvent in the crystal lattice.

Thermogravimetric analysis (TGA) shows no weight loss below the decomposition

temperature (304'C, < 5% weight loss). The differential scanning calorimetry (DSC)

analysis shows no transition associated with solvent loss, either.

3.2.3 Photophysical properties

The UV-vis absorption and emission spectra of PtlSbF6 exhibit moderate solvent

dependence, as shown in Figure 3.4. Unlike the featureless absorption spectra of DiPt-3a,

the absorption of PtlSbF6 shows two well-resolved peaks in the UV region and a broad

band in solution. The two intense absorption peaks at 330 nm and 347 nm are assigned to

allowed ligand-centered (LC) transitions. The low energy band between 375 nm and 430

nm is mainly due to the metal-to-ligand charge transfer (MLCT), similar to most of the

(CAN)Pt(LL) complexes.' 4 However, the entire spectrum is slightly red shifted in CH 2C12

compared to that in acetone. The low-lying band shows a larger shift (6 nm) than the

high-energy peaks (2-3 nm). The spectral shift is likely originated from the hydrogen
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bonding interactions between the trpy ligand and the solvent molecules, as evidenced in

the 'H NMR spectra.

a 1.2- b 1.2
- Acetone ( - Acetone(482nm)

1.0- -DCM 1.0- - DCM (490nm)

E 0.8- 0.8

0.6 0.6t0.6
IT EQ 0T- 0.4- 0.4.

0.2 R 0.2

0.01 -4 0.01
325 350 - 375 400 425 450 450 500 550 600 650 700

Wavelength (nm) Wavelength (nm)

Figure 3.4. UV-vis absorption (a) and emission (Xex 400 nm) (b) spectra of Pt1_SbF6 in acetone and

dichloromethane (~10~6 M, under Ar).

Compound Pt1_SbF6 is only weakly emissive in the solution at room

temperature. The low quantum efficiency is commonly observed among heteroleptic

platinum complexes, attributable to the presence of a low-lying or thermally accessible

3d-d excited state.4 The photoluminescence obtained in acetone shows fine vibrational

slitting patterns. This highly structured emission band suggests that the trans and cis

coordination isomers have very similar photophysical properties, as discussed for DiPt-

3a and DiPt-3b in Chapter 2. The emission band is also red shifted in CH 2Cl 2 by 8 nm,

with a growth of emission intensity in the low-energy region. This bathochromic shift is

consistent with the formation of close intermolecular interactions in CH 2Cl 2.
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Figure 3.5. Solid-state emission spectra of PtI_SbF6 (e = 400 nm).

PtlSbF6 is highly emissive in the solid state, as shown in the luminescence

spectra (Figure 3.5). The yellow crystals of Morph-A exhibit broad and featureless

emission ()em = 565 nm) in the range of 480-700 nm. This turn-on of luminescence in the

solid state is introduced by the self-assembly of Pt1_SbF6 . The solid-state emission is

attributed to the excited triplet metal-metal-to-ligand charge transfer (3MMLCT)

states.4 15 The quantum yield reaches 86% in neat films prepared by drop-casting a

suspension of PtlSbF6 in hexane onto glass substrates, which is on par with the best

solid-state Pt(II) emitters reported. 6 ,17 The red-colored Morph-C shows bright red

emission between 550 nm and 800 nm. This band could potentially resolve into two

distinct peaks from the trans and cis isomers, with emission maxima at 635 nm and 660

nm. It is likely that the isomers adopt slightly different emission properties in the

aggregated states. In order to demonstrate that the two polymorphs are interconvertible,

Morph-C is annealed with CH 2Cl2 for 10 min, and the emission spectrum is also plotted

in Figure 1. The emission band of the annealed sample overlaps with that of Morph-A,

and the slightly narrower bandwidth is due to the annealing.
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3.2.4 Aggregation-induced luminescence

Preliminary powder X-ray diffraction (XRD) of the polymorphs of PtlSbF6

shows that they have distinct diffraction patterns. The yellow-colored Morph-A is highly

crystalline, as indicated by the sharp diffraction peaks (Figure 3.6). The primary layer

spacing is around 6.6 A. On the contrary, the red-colored Morph-C only has one broad

diffraction peak, corresponding to 3.53 A. The metastable Morph-B (orange-colored)

does not have any long-range order. Given that these polymorphs have identical chemical

composition and the only structural difference is the intermolecular distance, the

difference in the color and luminescence among the polymorphs of PtlSbF6 is

attributed to the extent of intermolecular interactions.

XRD
-- - M o p C- -

Morph C

Morph B

-Morph A

5 7 10 13 15 18 21 23 26 28 31

Figure 3.6. XRD patterns of the polymorphs of Pt1_SbF6 .

It has been documented that square planar Pt(II) complexes, in particular

terpyridine coordinated compounds, show favorable photophysical properties in the

aggregated states. Subtle changes in the Pt- -Pt distance and ... -x, may led to dramatic

change in color and emission. For instance, Yam et al. has recently reported that

[Pt(terpy)(CC-CCH)]OTf crystalizes into two polymorphs with distinct colors.' 8 The dark
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green crystal form consists of a Pt - Pt separation of 3.388 A, while the red crystal form

contains alternating Pt - Pt distances of 3.394 A and 3.648 A.

a b
T 1.2- PS (660nm)

- PEO (663nm)
). - PMMA(575nm)

. -P4VP(481nm)

- 0.6

0.4-

0.2 --

z0.0

PS PEO

450 500 550 600 650 700 750 800 850
Wavelength (nm)

Figure 3.7. (a) Solid-state emission spectra of [Pt(ppy)(trpy-C 6H 3)]SbF6 (PtlSbF6) when doped into
polymer matrixes: PS (red), PEO (magenta), PMMA (orange), and P4VP(green); (b) distinctive
photoluminescence colors contrast observed under UV radiation (365 nm).

Doping PtlSbF6 into different polymer matrixes offers an effective method of

controlling the degree of the intermolecular interactions. Four polymers are selected for

studying the interactions between Ptl_SbF6 and the host materials, namely polystyrene

(PS), polyethylene oxide (PEO), poly(methyl methacrylate) (PMMA) and poly(4-

vinylpyridine) (P4VP). Samples for the solid-state emission spectra were prepared by

spin-coating a solution of the polymer and PtlSbF6 (6-8 % w/w relative to the

polymer). The photoluminescence spectra and the images of the films are depicted in

Figure 3.7. PtlSbF6 exhibits red emission in both PS and PEO, which are acting as inert

hosts. The emission in PMMA is concentration-dependent, varying from yellow to

orange as the concentration of PtlSbF6 increases. The small feature at 490 nm matches

the monomer emission of Ptl_SbF6 observed in fluid solutions, suggesting incomplete

aggregation. The green emission (?em = 481 nm) together with the well-defined
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vibrational splitting patterns in P4VP indicates that the emission is based on monomeric

PtlSbF6 . The pyridyl groups in P4VP are ideal to coordinate with the metal center and

break up any intermolecular aggregation. In fact, a full-range color tuning based on a

single emitter can be envisioned by screening different host materials and dopant

concentration.

3.2.5 Mechanochromism

Apart from the organic solvents, PtlSbF6 also exhibits switchable colors and

luminescence in response to mechanical force. The conversion of Morph-A to Morph-C

can be achieved by grinding the solid in a mortar (Figure 3.8). Grinding the yellow

crystals obtained from CH 2 Cl 2 using a pestle causes the color as well as emission to

change into orange-red immediately. The fully ground sample exhibits emission similar

to that of Morph-C of PtlSbF6 . The yellow emission can be recovered when it is

exposed to CH 2Cl2 , as indicated by the yellow circle in the lower left corner of Figure

3.8.

Despite of the attractive properties of mechanochromic materials, there are only a

few examples involving phosphorescent materials. Low coordination Au(I) complexes

are one of the most popular candidates, partially due to the strong aurophilic

interactions. 2, Only a few Pt(II) compounds have been reported to exhibit luminescence

change in response to mechanical force to date.19-22 Recently, cyclometalated Ir(III)

compounds have been reported to be piezochromic' for the first time.2 3 Unfortunately, the

mechanism of the mechanochromic transformation is still under debate.
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Figure 3.8. Mechanochromic luminescence exhibited by [Pt(ppy)(trpy-C 6H 3 )]SbF6 (PtlSbF6 ): (a)
crystals recrystallized from CH 2CI 2/hexane (upper left) were ground with a pestle (upper and lower
right); the yellow emission was restored when CH 2Cl 2 was dropped onto the ground sample (lower left).
All images were obtained under UV radiation (365 nm); (b) solid-state emission spectra of crystals
recrystallized from CH 2CI2/hexane (green), the ground solid (red), and the solid annealed with CH 2CI 2
after grinding (orange) (Xex = 400nm).

In the pursuit of investigating the nature of this mechanochromic behavior, the

photoluminescence (PL) switch is studied in detail in collaboration with Wendi Chang

and Gleb Akselrod from Prof. Bulovic's research group at MIT. A motorized metal pin is

used to apply controlled mechanical force or pressure onto the neat film of Ptl_SbF6

sandwiched between two glass substrates. The displacement of the springs in the setup is

proportional to the applied force, and fiber optics is used to collect the PL spectra with a

laser excitation. The layout of the experimental setup is provided in the appendix of this

chapter. Two types of measurements are performed, namely the X-scan and the Z-Scan.

The PL spectra are recorded within ±500 pm of the center of the pin, which is

marked as 0 pm during the measurement, with a specific force applied to the sample film.

Figure 3.9 offers a schematic illustration of the X-scan measurement. The PL spectra are

stacked along the X-axis and traces representing the 0.25, median (0.5) and 0.75 of each

PL spectrum are plotted against the position relative to the center of the pin. Figure 3.10

summarizes the PL change around the pin, with the displacement of the pin being 4 mm,
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5 mm, and .6 mm. In all of the three measurements, the emission spectra are shifted

toward longer wavelength. The maximum shift occurs around the center of the pin, where

the force is the strongest. According to Figure 1-(d), the degree of red shift increases as

the displacement increases. The spectral median shift is as large as 60 nm with a

displacement of 6 mm.

a b
Compression E

X scan _j

C-

cepter of the pin

Position relative to the pin (urn)
Figure 3.9. Schematic illustration of the X-scan measurement: (a) experimental set up; (b) the PL
spectra were recorded within ±500 pm of the center of the pin, which is at 0 mm.

Consistent red shift of the PL spectra is observed with increasing pressure during

the Z-scan (Figure 3.11). During the Z-scan, the PL spectra are recorded at the center of

the pin as a function of the displacement, which directly reflects the force applied to the

surface. The turn-on displacement (-3 mm) is marked by a dotted line. This cut-off force

is dependent on the mechanical strength and stiffness of the glass substrates used in the

measurement. An overall shift of 80 nm of the emission maximum is observed with a

displacement of 10 mm. This is approaching the difference between the emission maxima

of Morph-A (565 nm) and Morph-C (-650 nm) in the solid state. The bathochromic shift

of the solid-state emission spectra of PtlSbF6 during these pressure sensitive

measurements clearly indicates that mechanical force provides a driving force for the

reorganization of the molecules in the solid state.
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Figure 3.10. Significant red-shift of the PL spectra around the pin during the X-scan of PtlSbF6 , with
the displacement of the pin being 4 mm (a), 5 mm (b), and 6 mm (c). The green, blue and red traces
represent the 0.25, median (0.5) and 0.75 of each PL spectrum; (d) comparison of the median peak
position relative to the applied force.
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Figure 3.11. Consistent red shift of the PL spectra around the pin during the Z-scan of PtlSbF6 with
increasing pin displacement: (a) schematic illustration of the Z-scan measurement; (b) the PL spectra
recorded at the center of the pin. The green, blue and red traces represent the 0.25, median (0.5) and
0.75 of the PL spectra.
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3.2.6 Counterion effect

In spite of the similarity in the chemical structure, Pt1_X exhibit distinct physical

properties depending on the anions. Ptl_SbF6 only exhibits limited solubility in CH 2C12,

but all the other Pt1_X complexes are more soluble in this solvent. The solubility

increases in the order of Ptl_SbF6 < Ptl_ PF6 < Pt1_OTf < Ptl_ BF 4. All the

complexes show very high solubility in acetone and dimethyl sulfoxide.

1.2
- SbF6

1.0 - PF6
BF4

E 0.8 -OTf

E 0.6

0.4

0.2

0.0
325 350 375 400 425 450

Wavelength (nm)

Figure 3.12. UV-vis absorption spectra of PtI_X (X = SbF6 , PF6 ~, BF 4 , OTf ) in acetone solution
(-10~1 M).

Compound Pt1_ PF6 also has the switchable yellow and red polymorphs that are

similar to those of Ptl_ SbF6. However, Pt1_ BF4 and Pt1_OTf only have a single stable

morphology at room temperature. The color of Ptl_ BF4 solid precipitated from CH 2Cl2

is orange-yellow, but the color immediately darkens to orange-red when removed from

the solution. The orange-yellow color is restored as soon as the sample is exposed to

CH 2Cl 2 vapor. On the contrary, no visible color change occurs when Ptl_ BF 4 is

annealed in the acetone atmosphere. This fast and selective response to CH 2Cl 2 shows the

promise of utilizing Pt1_ BF 4 as colorimetric and luminescent VOC sensors.
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Figure 3.13. (a) Solid-state emission spectra of PtlX (X = SbF6 , PF6 , BF 4 , OTf-) recrystallized
from CH 2Cl2/hexane (kex = 400 nm for PtlSbF6/PF6,; Xe, 430 nm for PtlBF4/OTf); (b) distinctive
colors and emission of the four complexes under room light and UV radiation.

In dilute solutions, the counterions exhibit no influence on the photophysical

properties of Pt1_X (X = SbF6 , PF67, BF4J, OTf~). The UV-vis spectra are compared in

Figure 3.12. The absorption bands overlap with each other, with a little variation of the

extinction coefficient (-0.7x10~3 M-1 cm'1) at 347 nm. This series of compounds is only

weakly emissive in the solution state at room temperature.

The solid-state luminescence of complexes Pt1_X shows high counterion

dependence. Emission spectra of Pt1_X (X = SbF6 , PF 6 , BF 4 , OTf-) are recorded using

solid samples obtained from CH2Cl 2. As shown in Figure 3.13, Pt1_ PF6 shares similar

luminescent profiles with Ptl_ SbF6 ; whereas, the emission maxima of Ptl_ BF 4 and

Ptl_ OTf are red-shifted by 100 nm. The red shift of emission for OTf salt comparing to

SbFC has also been observed for other Pt(II) complexes, but the origin of the difference

remains unclear.' 8
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3.2.7 Side-chain effect

Compound Pt2_SbF6 , which bears a dodecyl group, greatly resembles PtlSbF6 , since

the increase in the length of the alkyl group has little effect on its solubility. The

formation of two polymorphs is also observed. However, the stability of Morph-A

Pt2_SbF6 decreases in comparison to Pt2_SbF6 ; an orange-colored solid is usually

obtained instead of the yellow emitting Morph-A. The solubility of Pt3_ONTf in organic

solvents is much lower than its non-fluorinated counterparts. It is only slightly soluble in

acetone, but more soluble in THF. Pt3_ONTf adopts several colors in the solid state,

ranging from yellow to red. The most stable polymorph has a unique coral color, and is

insensitive to CH 2Cl2 vapors.

The side chains have little influence on the UV-vis absorption, but greatly affect

the solid-state emission properties (Figure 3.14). The absorption spectra for Ptl_SbF6

and Pt2_SbF6 are identical, yet Pt3_ONTf shows slightly higher extinction coefficient.

The solid-state emission is measured with samples obtained from CH 2Cl 2 for Ptl_SbF6

and Pt2_SbF6 , and acetone for Pt3_ONTf. The emission of Pt2_SbF6 is similar to that

of Morph-C of PtlSbF6 , with a small dip at the emission maximum. The emission color

of Pt3_ONTf is different from all the cationic Pt(II) complexes studied in this chapter,

with the emission maximum at 611 nm. The heavily fluorinated side chain is more rigid

comparing with the alkyl groups, and the strong affinity between the fluorous tails, in

turn, alter the packing patterns in the solid states.24
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Figure 3.14. Photophysical properties of Ptl_SbF6 , Pt2_SbF6 and Pt3 _ONTf: (a) UV-vis absorption
spectra in acetone solution (~10~6 M); (b) solid-state emission spectra of solid samples (e,, = 400 nm).

3.2.8 Liquid crystalline properties

In fact, the transformation from Morph-A to Morph-C of PtlSbF6 can also be achieved

by heating. The yellow solid of PtlSbF6 undergoes three heating/cooling cycles from

25 *C to 250 'C with the rate of 10 'C/min, and the DSC trace is plotted in Figure 3.15.

The trace for the third cycle is identical to that of the second cycle, indicating good

thermal stability of PtlSbF6 . At the end of the third cycle, the sample is retrieved and

subjected to PL study. The emission spectrum of the resulted dark red crystals resembles

that of Morph-C and the ground sample. Therefore, heating and mechanical force can

both drive the molecular reorganization in the solid states.
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Figure 3.15. DSC trace of Ptl_SbF6.

The absence of the over cooling effect based on the DSC study of PtlSbF6 led

us to study the possible formation of liquid crystal phases. The small temperature

difference between the last endothermic transition (219 'C) during the heating cycle and

the first exothermic transition (214 'C) during the consecutive cooling cycle indicates

that this transition is not the crystallization process. Microcrystals of PtlSbF6 are heated

to the isotropic phase between two glass cover slips, and the cooling process (2 'C/min)

is examined by polarized optical microscope (POM). The formation of dendritic optical

textures with rectilinear defects (Figure 3.16) confirms that a hexagonal columnar (Colh)

mesophase is formed. The liquid-crystallinity of Pt1_SbF6 is surprising since it usually

takes six to eight long alkyl groups for the ppy-based Pt(II) compounds to form columnar

25-27phases. Moreover, this is the first thermotropic Colh liquid crystal with only one side

chain to the best of our knowledge.
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Figure 3.16. POM images of the Colh phase of PtlSbF6 : (a) the chemical structure of Pt2_SbF6 ; (b)
900 polarized at 218 'C; (c) rotated by 450 polarized at 218 'C; (d) 900 polarized at 216 'C; (e) 900
polarized at 203 'C; (f) non-polarized at 203 'C.

Counterions play an important role in determining the liquid crystalline

properties. The clearing temperatures decrease in the order of Ptl_SbF6 (219 0C) > Pt1_

PF6 (203 OC) > Ptl BF 4 (164 0C) = PtlOTf (164 'C). The trend of clearing

temperatures corresponds well with the solubilities of the compounds, both controlled by

the strength of the intermolecular interactions.

The mesogen textures observed with Ptl_ PF6 are remarkably different from

those of PtlSbF6 . The domain sizes are much smaller (Figure 3.17), and diversified

textures are observed in different regions of the sample (Figure 3.18). Moreover, all

attempted shearing in the isotropic phase, in the hope of facilitating the alignment,

triggers rapid crystallization. Significant overcooling is observed for Ptl_ PF6, together

with a cold crystallization transition at 115 'C during the heating cycles of the second and

third run. Therefore, any external stimuli would favor crystallization from the overcooled

isotropic phase.
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Figure 3.17. POM images of the Coib phase of Ptl PF6 : (a) the chemical structure of Pt2_PF6 ;
mesogen development (b) at 192 'C; (c) at 191 'C; (d) at 186 'C; (e-f) textures at 180 'C. All the
images were captured with 900 polarization.

Figure 3.18. POM images of the Colh phase of Pt1_PF6 : (a-b) textures of different regions at 180 'C;
(c) textures at room temperature. All the images were captured with 90' polarization.

Only very small mesogenic textures are observed for Ptl_ BF4 (Figure 3.19).

Meanwhile, the crystallization process is competing with the formation of the liquid

crystal phase. Uniform needle-like crystals, instead of the mesogens, would form when

the cooling rate is faster than 1 'C/min from the isotropic phase. Once formed, the

crystals exhibit remarkably high thermal stability. The sample has to be heated up to 230

*C to melt the crystals completely, which is 52 *C higher than the regular clearing
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temperature under the same experimental conditions. The competition between mesogen

formation and crystallization can be attributed to the similarity between the transition

temperatures for these two processes.

d

IBF4-
NN

Pt

.N-N

Figure 3.19. POM images of PtI_BF4: (a-c) mesogen development at 149 *C; (d) the chemical
structure of PtIBF4; (e) textures at 149 IC; (f) the competing crystallization process. All the images
were captured with 900 polarization.

Pt1_OTf exhibits similar liquid crystalline behavior to that of PtlSbF6 . The

characteristic Colh textures are formed upon cooling (Figure 3.20), and retained even

when cooled to room temperature. This is in agreement with the DSC data, which show

no transitions for crystallization or cold crystallization. Although PtlOTf is similar to

Ptl_ BF 4 in many aspects, subtle changes in the shapes and electronic properties of the

anions have strong influence on the liquid crystal behavior.
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Figure 3.20. POM images of the Coll phase of Pt1_OTf: mesogen development (a) at 164 'C; (b) at
162 'C; (c) at 161 'C; (d) the chemical structure of PtlOT f; (e) textures at 60 'C; (f) textures at room
temperature. All the imaged are captured with 900 polarization.

Although longer alkyl groups usually help to stabilize the mesophases, Pt2_PF6

proves to be inferior to PtlSbF6 . The transitions for mesogen formation and

crystallization overlap with each other. Therefore, no mesophase is observed with POM

(Figure 3.21). The clearing temperature (219 C) is identical to that of PtlPF6 , a

compromise between the increase in both molecular weight and entropy by introducing

the dodecyl group.
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Figure 3.21. POM images of Pt2_SbF6 : (a) the chemical structure of Pt2 SbF6 ; (b-c) the
crystallization process at 208 IC. All the imaged were captured with 90* polarization.
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In short, Pt1_X (X = SbF6j, PF6~, BF4J, OTf[) represent the first thermotropic

Col(h) liquid crystals with only one side chain. Furthermore, the combined liquid

crystalline and mechanochromic properties make this family of compounds, especially

Ptl_SbF6 , very attractive functional materials.2 2 Detailed XRD study is in progress.

3.3 Experimental Section

General Methods and Instrumentation.

All reactions were performed under an argon atmosphere despite of the stability of the

product toward air and moisture, using oven-dried glassware and standard Schlenk

techniques. 'H, gCOSY, TOCSY, ROESY and 13C{'H}NMR spectra were recorded on

either a Bruker 400 MHz or Varian 500 MHz spectrometer and referenced to the residual

proton or carbon resonance of the deuterated solvent. 19F NMR spectra were recorded on

a Varian 300 MHz spectrometer and referenced to an external standard CFCl3 (0 ppm).

Electrospray ionization (ESI) high-resolution mass spectrometry (HRMS) was measured

on a Bruker Daltonics APEXIV 4.7 Tesla Fourier Transform Ion Cyclotron Resonance

Mass Spectrometer and the most abundant masses are reported.

UV/Vis spectra were recorded on an Agilent 8453 diode-array spectrophotometer.

Emission spectra were acquired on a SPEX Fluorolog fluorometer (model FL-321, 450

W xenon lamp) using either right-angle detection (solution measurements) or front-face

detection (thin film measurements). All room temperature solution samples for emission

spectra were degassed with Ar in an anaerobic cuvette. Samples for the solid-state

emission spectra were prepared by drop-casting a suspension of the target compound in
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mixed dichloromethane and hexane onto glass substrates. The solid-state

photoluminescence quantum yield (PLQY) was measured with an integrating sphere.

Materials and Synthesis. Potassium tetrachloroplatinate(II) (K2PtCl 4 ) and copper(II)

sulfate (CuSO 4 ) were purchased from Strem Chemicals. 2-Ethynylpyridine, 2-

phenylpyridine, and all other reagents were obtained from Aldrich Chemicals and used as

received. Anhydrous CH 2Cl2 was obtained from a solvent purification system (Innovative

Technologies), and stored under argon.

The Pt(II) precursor Pt(ppy)(SEt 2)Cl (Pt-B) were synthesized from K2PtCl 4 and 2-

phenylpyridine over two steps. 28 1 -azidohexane, 29 1 -azido-2-(perfluorooctyl)ethane, 30 2-

(1 -hexyl- 1 H-1,2,3-triazol-4-yl)-pyridine and 2-(1 -dodecyl- 1 H- 1,2,3 -triazol-4-yl)-

pyridine31 were prepared according to modified literature methods.

CAUTION: There have been safety concerns about handling organoazides,

especially the ones with short alkyl groups. Therefore, all the organoazides used in this

report were synthesized on small scales and handled with great care.

Preparation of [Pt(ppy)(trpy-C6 H13)SbF 6 (PtlSbF6). Pt(ppy)(SEt 2)C1 (Pt-B, 47.2

mg, 0.1 mmol) and trpy-C 6H1 3 (Li, 23.0 mg, 0.1 mmol) were dissolved in dry CH2Cl2 (6

ml) under Ar. To the yellow solution, a CH 2Cl2 solution of AgSbF6 (34.4 mg, 0.1 mmol)

was added while protected from light. The mixture was stirred rapidly at room

temperature in the dark. After 3 h, the bright yellow suspension was diluted with CH 2Cl2,

and filtered to remove the AgCl precipitate. The filtrate was concentrated and added

toluene, and the resulted bright yellow solid was washed extensively with toluene. After
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recrystallization from hot CH2Cl 2 , Pt1_SbF6 was isolated as bright yellow crystals (75

mg, 92%). HRMS (ESI): 579.1837 [calcd for (M-SbF6 )*: 579.1828].

Major:

'H NMR (500 MHz, DMSO-d 6, ppm): 9.36 (d, J = 5.8 Hz, 1 H), 9.24 (s, 1 H), 9.06 (d, J =

5.8 Hz, 1 H), 8.41 - 8.36 (m, 1 H), 8.19 - 8.15 (m, 1 H), 8.11 (t, J= 7.6 Hz, 1 H), 8.02 (d,

J = 8.2 Hz, 1 H), 7.72 - 7.65 (m, I H), 7.39 (t, J = 6.6 Hz, 1 H), 7.26 - 7.17 (m, 3 H), 4.61

(t, J = 7.3 Hz, 2 H), 2.03 - 1.94 (m, 2 H), 1.46 - 1.27 (m, 6 H), 0.89 (t, J = 6.9 Hz, 3 H).

13 C NMR (126 MHz, Acetone-d6, ppm): 14.4, 23.2, 26.8, 30.2, 31.9, 53.6, 120.2, 123.4,

124.1, 125.0, 126.0, 126.3, 127.3, 130.5, 133.3, 141.3, 141.8, 147.0, 148.6, 150.3, 150.5,

151.9, 167.3.

Minor:

H NMR (500 MHz, DMSO-d 6, ppm): 9.22 (s, 1 H), 8.86 (d, J = 5.5 Hz, 1 H), 8.69 (d, J

= 5.8 Hz, 1 H), 8.37 - 8.34 (m, 1 H), 8.22 - 8.19 (m, 1 H), 8.13 (d, J = 4.0 Hz, 1 H), 8.05

(d, J = 8.2 Hz, 1 H), 7.76 (t, J = 6.4 Hz, 1 H), 7.67 - 7.65 (m, 1 H), 7.44 (t, J = 6.6 Hz, 1

H), 7.19 (m, 1 H), 7.16 (t, J = 7.5 Hz, 2 H), 7.10 (t, J = 7.9 Hz, 1 H), 4.61 (t, J = 7.3 Hz, 2

H), 2.03 - 1.94 (m, 2 H), 1.46 - 1.27 (m, 6 H), 0.89 (t, J = 6.9 Hz, 3 H). 13C NMR (126

MHz, Acetone-d6 , ppm): 14.4, 23.2, 26.8, 30.2, 31.9, 53.8, 120.6, 123.1, 124.2, 124.4,

125.8, 127.2, 130.2, 135.1, 137.9, 140.9, 141.5, 145.4, 148.5, 149.8, 150.7, 152.7, 167.8.

Preparation of [Pt(ppy)(trpy-C6 H3)]PF6 (PtlPF6 ). Pt(ppy)(SEt 2)Cl (Pt-B, 47.5 mg,

0.1 mmol) and trpy-C 6H, 3(Li, 23.0 mg, 0.1 mmol) were dissolved in dry CH 2Cl 2 (6 ml).

The solution was treated with AgPF6 (25.3 mg, 0.1 mmol) following the procedure

detailed for the synthesis of Pt1_SbF6 above. Compound Pt1_PF6 was isolated as a

yellow orange solid (70 mg, 96%), after recrystallization from CH2Cl2/hexane. HRMS
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(ESI): 579.1817 [calcd for (M-PF 6)': 579.1828]. '9F NMR (282 MHz, CD 2Cl 2 , ppm): -

72.66 (JP-F= 717.2 Hz).

Major:

'H NMR (500 MHz, CD 2Cl2 , ppm): 9.22 (d, J = 5.5 Hz, 1 H), 8.86 (d, J = 5.5 Hz, 1 H),

8.48 (s, 1 H), 8.06 (t, J = 7.6 Hz, 1 H), 7.87 - 7.82 (m, 1 H), 7.53 (d, J = 7.9 Hz, 1 H),

7.38 (t, J = 6.6 Hz, 1 H), 7.35 - 7.30 (m, 1 H), 7.15 - 7.08 (m, 3 H), 7.02 - 6.99 (m, 1 H),

4.46 (t, J = 7.5 Hz, 2 H), 2.05 - 1.97 (m, 2 H), 1.44 - 1.33 (m, 6 H), 0.91 (t, J = 7.9 Hz, 3

H). 3C NMR (126 MHz, Acetone-d6, ppm): 14.4, 23.3, 26.8, 30.1, 31.9, 53.4, 120.1,

123.3, 124.0, 124.9, 125.8, 126.1, 127.1, 130.3, 133.0, 141.1, 141.6, 146.8, 148.3, 150.0,

151.8, 152.4, 167.0.

Minor:

1H NMR (500 MHz, CD 2Cl2, ppm): 8.41 (d, J = 5.2 Hz, 1 H), 8.34 (s, 1 H), 8.19 (d, J =

5.5 Hz, 1 H), 7.99 (t, J = 9.2 Hz, 1 H), 7.95 (d, J = 7.6 Hz, 1 H), 7.83 - 7.77 (m, 2 H),

7.51 - 7.48 (m, 2 H), 7.23 (d, J = 7.6 Hz, 1 H), 7.08 - 7.06 (m, 1 H), 7.00 - 6.97 (m, 2 H),

4.46 (t, J = 7.5 Hz, 2 H), 2.05 - 1.97 (m, 2 H), 1.44 - 1.33 (m, 6 H), 0.91 (t, J = 7.9 Hz, 3

H). 3C NMR (126 MHz, Acetone-d6 , ppm): 14.4, 23.3, 26.8, 30.1, 31.9, 53.4, 120.4,

122.9, 124.2, 125.6, 127.1, 130.1, 137.8, 140.8, 141.3, 145.1, 148.2, 149.5, 149.6, 150.2,

150.5, 167.5.

Preparation of [Pt(ppy)(trpy-C6 H 3)JBF 4 (PtlBF4). Pt(ppy)(SEt 2)Cl (Pt-B, 47.5 mg,

0.1 mmol) and trpy-C6H 3 (L1, 23.0 mg, 0.1 mmol) were dissolved in dry CH 2Cl2 (6 ml).

The solution was treated with AgBF 4 (19.5 mg, 0.1 mmol) following the procedure

detailed for the synthesis of Pt1_SbF6 above. Compound Pt1_BF4 was isolated as an
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orange-red solid (63 mg, 94%), after recrystallization from CH 2Cl 2/hexane. HRMS (ESI):

579.1838 [calcd for (M-BF 4)*: 579.1828]. '9F NMR (282 MHz, CD 2 Cl2, ppm): -151.30.

Major:

'H NMR (500 MHz, CD 2Cl 2, ppm): 10.09 (d, J = 5.5 Hz, 1 H), 9.70 (d, J = 5.8 Hz, 1 H),

9.63 (s, 1 H), 8.97 (t, J = 7.5 Hz, 1 H), 8.88 (d, J = 7.3 Hz, 1 H), 8.78 - 8.73 (m, 1 H),

8.42 (d, J = 7.9 Hz, 1 H), 8.28 (t, J 6.3 Hz, 1 H), 8.20 - 8.16 (m, 1 H), 8.03 - 7.95 (m, 3

H), 7.93 - 7.88 (m, 1 H), 5.41 (t, J 7.5 Hz, 2 H), 2.99 - 2.90 (m, 2 H), 2.40 - 2.25 (m, 6

H), 1.86 (t, J = 6.7 Hz, 3 H). 13 C NMR (126 MHz, CD 2 CI2, ppm): 14.3, 23.0, 26.6, 30.3,

31.6, 53.5, 119.9, 123.4, 123.6, 124.9, 126.4, 126.6, 130.4, 132.7, 140.8, 141.2, 146.9,

148.1, 150.0, 151.7, 152.0, 166.8.

Minor:

H NMR (500 MHz, CD 2Cl2 , ppm): 9.47 (s, 1 H), 9.38 (d, J = 5.5 Hz, 1 H), 9.14 (d, J

5.5 Hz, 1 H), 8.92 (td, J = 1.0, 7.9 Hz, 1 H), 8.82 (td, J = 1.0, 6.1 Hz, 1 H), 8.73 - 8.69 (m,

1 H), 8.61 - 8.55 (m, 1 H), 8.50 (t, J= 6.3 Hz, 1 H), 8.40 (d, J = 8.2 Hz, 1 H), 8.11 (t, J =

6.3 Hz, 1 H), 8.07 (d, J = 7.0 Hz, 1 H), 7.90 - 7.86 (m, 2 H), 5.29 (t, J = 7.5 Hz, 2 H),

2.92 - 2.85 (m, 2 H), 2.40 - 2.25 (m, 6 H), 1.86 (t, J = 6.7 Hz, 3 H). 13C NMR (126 MHz,

CD 2Cl2 , ppm): 14.3, 23.1, 26.8, 30.3, 31.7, 53.7, 120.2, 123.0, 124.0, 124.2, 126.1, 127.1,

130.1, 134.7, 138.5, 141.0, 141.0, 147.9, 149.3, 149.8, 150.1, 167.0.

Preparation of [Pt(ppy)(trpy-C 6H13)JOTf (PtlOTf). Pt(ppy)(SEt 2)C1 (Pt-B, 23.8 mg,

0.05 mmol) and trpy-C 6H 3 (L1, 11.5 mg, 0.1 mmol) were dissolved in dry CH 2Cl2 (6

ml). The solution was treated with a THF solution of AgOTf (12.8 mg, 0.05 mmol),

following the procedure detailed for the synthesis of PtlSbF82%6 above. Compound

Pt1_OTf was isolated as an orange solid (33 mg, 91%), after recrystallization from
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CH 2Cl 2/hexane. HRMS (ESI): 579.1834 [caled for (M-OTf)*: 579.1828]. "F NMR (282

MHz, CD 2Cl 2, ppm): -79.06.

Major:

'H NMR (500 MHz, CD 2Cl2 , ppm): 9.26 (d, J = 5.2 Hz, I H), 9.00 (d, J = 1.8 Hz, 1 H),

8.89 (d, J= 5.5 Hz, 1 H), 8.14 - 8.04 (in, 1 H), 7.97 (d, J = 5.2 Hz, 1 H), 7.90 - 7.82 (m, 2

H), 7.60 (d, J = 7.9 Hz, I H), 7.44 - 7.34 (in, 2 H), 7.20 - 6.97 (in, 3 H), 4.48 (t, J = 7.3

Hz, 2 H), 2.07 - 1.94 (in, 2 H), 1.50 - 1.28 (in, 6 H), 0.91 (t, J = 7.0 Hz, 3 H). 13C NMR

(126 MHz, CD 2Cl 2, ppm): 14.3, 23.0, 26.5, 30.3, 31.6, 53.4, 119.8, 120.3 (CF 3SOj),

123.4, 123.6, 124.7, 125.9, 126.4, 126.7, 130.4, 133.0, 140.6, 141.1, 146.6, 148.2, 149.7,

150.2, 151.7, 167.2.

Minor:

'H NMR (500 MHz, CD 2 Cl 2 , ppm): 8.80 (s, 1 H), 8.50 (d, J = 4.9 Hz, 1 H), 8.27 (d, J =

5.5 Hz, 1 H), 8.08 - 8.03 (in, 2 H), 7.82 (t, J = 8.5 Hz, 1 H), 7.57 (d, J = 8.2 Hz, 1 H),

7.54 - 7.50 (m, 1 H), 7.27 (d, J = 7.6 Hz, 1 H), 7.17 - 6.98 (m, 4 H), 4.40 (t, J = 7.5 Hz, 2

H), 2.08 - 1.94 (m, 2 H), 1.49 - 1.27 (in, 6 H), 0.93 (t, J = 7.3 Hz, 3 H). 13C NMR (126

MHz, CD 2Cl 2, ppm): 14.3, 23.0, 26.5, 30.3, 31.6, 53.4, 120.1, 120.3 (CF 3SOI), 122.9,

123.1, 124.0, 125.6, 126.8, 130.1, 134.8, 137.4, 140.7, 140.8, 144.8, 148.2, 149.1, 150.2,

152.0, 167.5.

Preparation of trpy-C12H25 (L2). A mixture of 2-ethynylpyridine (309 mg, 3 mmol), 1-

azidododecane 2 9 (634 mg, 3 mmol), CuSO 4 (150 mg, 0.6 mmol), and sodium ascorbate

(238 mg, 1.2 mmol) in THF (20 ml, with 5% H20) was stirred rapidly for 20 h at room

temperature. The solvent was evaporated and the brown residue was extracted between

CH 2Cl 2 and aqueous NH40H. The organic layer was dried over MgSO 4, filtered and

150



volatiles removed via rotary evaporation to give an off-white solid. The crude product

was flash chromatographed on silica gel, using hexane/ethyl acetate (2:1) as the eluent.

After recrystallization from CH2Cl2/hexane, L2 was isolated as white crystals (880 mg,

93%). HRMS (ESI): 315.2547 [calcd for (M+H)*: 315.2543]. 1H NMR (400 MHz,

CD 2Cl 2, ppm): 9.48 (d, J = 4.6 Hz, 1 H), 9.08 (s, 1 H), 9.06 (d, J = 7.9 Hz, 1 H), 8.70 (dt,

J = 1.5, 7.8 Hz, 1 H), 8.14 (dd, J = 5.3, 7.2 Hz, 1 H), 2.86 (t, J = 7.0 Hz, 2 H), 2.31 - 2.24

(m, 2 H), 2.24 - 2.12 (m, 10 H), 1.81 (t, J = 6.9 Hz, 3 H). "C NMR (126 MHz, CD 2Cl2 ,

ppm): 14.5, 23.3, 27.0, 29.6, 29.9, 30.0, 30.1, 30.2, 30.8, 32.5, 51.0, 120.3, 122.5, 123.2,

137.2, 148.8, 150.0, 151.2.

Preparation of [Pt(ppy)(trpy-C 12H25)]SbF6 (Pt2_SbF6 ). Pt(ppy)(SEt 2)C1 (Pt-B, 23.7

mg, 0.05 mmol) and trpy-C1 2H25 (L2, 15.7 mg, 0.05 mmol) were dissolved in dry CH 2Cl 2

(6 ml). The solution was treated with a THF solution of AgSbF6 (17.2 mg, 0.05 mmol),

following the procedure detailed for the synthesis of Pt1_SbF6 above. Compound

Pt2_SbF6 was isolated as an orange-red solid (37 mg, 82%), after recrystallization from

CH 2Cl 2/hexane. HRMS (ESI): 663.2751 [calcd for (M-SbF 6)*: 663.2768].

Major:

1H NMR (400 MHz, CD 2 Cl2 (10% v/v Acetone-d6), ppm): 9.12 (d, J 5.5 Hz, 1 H), 8.77

(d, J = 5.8 Hz, 1 H), 8.43 (s, 1 H), 8.02 (t, J= 7.3 Hz, 1 H), 7.88 (d, J= 7.6 Hz, 1 H), 7.81

- 7.75 (m, 2 H), 7.46 - 7.42 (m, 1 H), 7.33 (t, J= 6.1 Hz, 1 H), 7.25 - 7.20 (m, 1 H), 7.06 -

6.97 (m, 3 H), 4.44 (t, J = 7.6 Hz, 2 H), 2.01 - 1.91 (quin, J = 7.2 Hz, 2 H), 1.37 (br. s., 4

H), 1.31 - 1.18 (m, 14 H), 0.81 (t, J = 4.6 Hz, 3 H). "C NMR (126 MHz, CD 2Cl2 (10%

v/v Acetone-d6), ppm): 14.3, 23.2, 26.8, 30.0, 32.4, 53.4, 119.7, 122.9, 123.5, 124.6,
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125.4, 126.0, 126.7, 130.3, 132.7, 134.7, 140.7, 141.1, 146.6, 148.1, 149.5, 149.8, 151.6,

166.8.

Minor:

'H NMR (400 MHz, CD 2C 2 (10% v/v Acetone-d6 ), ppm): 8.36 (d, J = 5.5 Hz, 1 H), 8.31

(s, 1 H), 8.16 (d, J= 5.5 Hz, 1 H), 7.98 (t, J = 7.3 Hz, 1 H), 7.77 - 7.72 (m, 1 H), 7.48 (m,

1 H), 7.25 - 7.21 (m, 1 H), 7.18 (d, J= 7.3 Hz, 1 H), 7.09 (t, J = 6.3 Hz, 1 H), 7.04 (t, J

6.7 Hz, 2 H), 6.96 - 6.88 (m, 2 H), 4.40 (t, J = 7.6 Hz, 2 H), 2.01 - 1.91 (quin, J = 7.2 Hz,

2 H), 1.37 (br. s., 4 H), 1.31 - 1.18 (m, 14 H), 0.81 (t, J = 4.6 Hz, 3 H). 3C NMR (126

MHz, CD 2Cl 2 (10% v/v Acetone-d6), ppm): 14.3, 23.2, 26.8, 30.0, 32.4, 53.7, 120.1,

122.7, 123.6, 124.0, 125.3, 125.8, 126.9, 130.1, 136.0, 139.6, 140.9, 141.0, 145.0, 147.9,

149.0, 150.1, 152.2, 167.2.

Preparation of trpy-C2H4C8H 7 (L3). A mixture of 2-ethynylpyridine (309 mg, 3

mmol), 1-azido-2-(perfluorooctyl)ethane (1.46 g, 3 mmol), CuSO4 (150 mg, 0.6 mmol),

and sodium ascorbate (238 mg, 1.2 mmol) in THF (20 ml, with 5% H20) was stirred

rapidly for 20 h at room temperature. The solvent was evaporated and the brown residue

was extracted between ethyl acetate and aqueous NH 40H. The organic layer was dried

over MgSO 4, filtered and volatiles removed via rotary evaporation to give an off-white

solid. The crude product was flash chromatographed on silica gel, using CH 2Cl2/ethyl

acetate (4:1) as the eluent. After recrystallization from CH 2Cl2/hexane, L3 was isolated as

white crystals (1.3 g, 73%). HRMS (ESI): 593.0602 [calcd for (M+H)*: 593.0629]. I'F

NMR (282 MHz, CD 2Cl2, ppm): -126.60 (CF 2), -123.94 (CF 2), -123.19 (CF 2 ), -122.36

(CF 2), -122.13 (2CF2 ), -114.67 (CF 2), -81.36 (t, J = 9.2 Hz, CF3 ). 'H NMR (400 MHz,

CD 2Cl 2, ppm): 8.57 (d, J = 4.3 Hz, I H), 8.21 (s, 1 H), 8.13 (d, J= 7.8 Hz, 1 H), 7.79 (dt,
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J = 1.5, 7.8 Hz, 1 H), 7.25 (dd, J = 5.1, 6.8 Hz, 1 H), 4.76 (t, J = 7.3 Hz, 2 H), 2.99 - 2.79

(m, 2 H). 13 C NMR (126 MHz, THF-d4, ppm): 32.1 (t, JC-F= 23.0 Hz), 42.9, 120.4, 123.4,

123.8, 137.5, 149.5, 150.5, 152.0.

Preparation of [Pt(ppy)(trpy-C 2H4C8H17)]C4F9SO 3 (Pt3_ONTf). Pt(ppy)(SEt 2)Cl (Pt-

B, 23.7 mg, 0.05 mmol) and trpy-C2H4 C8 HI 7 (L3, 59.0 mg, 0.1 mmol) were dissolved in

dry CH2Cl2/THF (6 ml/2 ml). The solution was treated with a THF solution of AgSbF 6

(40.7 mg, 0.1 mmol), following the procedure detailed for the synthesis of Pt1_SbF6

above. Compound Pt3_ONTf was isolated as an orange-red solid (117 mg, 90%), after

recrystallization from acetone. HRMS (ESI): 941.0874 [caled for (M-ONTf)*: 941.0860].

19F NMR (282 MHz, CD 2Cl2, ppm): -125.86 (2CF2), 123.13 (CF 2 ), -122.50 (CF 2), -

121.66 (CF 2), -121.27 (3CF2), -114.72 (CF 2), -113.41 (CF 2), -81.09 (CF 3), -80.87 (CF3).

Major:

'H NMR (500 MHz, Acetone-d6 , ppm): 9.21 (d, J= 5.5 Hz, 1 H), 9.08 (s, 1 H), 8.93 (d, J

= 5.5 Hz, 1 H), 8.19 (t, J = 7.6 Hz, 1 H), 8.01 - 7.96 (m, 2 H), 7.94 - 7.90 (m, 1 H), 7.69

(d, J = 7.9 Hz, 1 H), 7.53 (q, J = 5.9 Hz, 1 H), 7.40 (dd, J = 3.2, 6.0 Hz, 1 H), 7.16 (t, J

6.1 Hz, 1 H), 7.08 - 7.01 (m, 3 H), 5.04 (t, J = 7.3 Hz, 2 H), 3.27 - 3.17 (m, 2 H).

Minor:

'H NMR (500 MHz, Acetone-d6 , ppm): 9.01 (s, I H), 8.62 (d, J = 5.2 Hz, 1 H), 8.45 (d, J

= 5.5 Hz, 1 H), 8.12 (t, J = 7.6 Hz, 1 H), 7.97 (s, 1 H), 7.91 - 7.88 (m, 1 H), 7.69 - 7.67

(m, 1 H), 7.51 (br. s., 1 H), 7.34 (d, J = 7.3 Hz, 1 H), 7.22 (t, J= 6.1 Hz, 1 H), 7.05 - 7.02

(m, 2 H), 6.99 - 6.94 (m, 1 H), 5.04 (t, J = 7.3 Hz, 2 H), 3.27 - 3.17 (m, 2 H).
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Characterization of liquid crystalline materials.

Optical microscopy was carried out using standard glass microscope slides on a Leica

DM RXP Optical Microscope equipped with a Mettler FP82HT hot stage controlled by

Linkham TMS 94 Temperature Controller. Differential scanning calorimetry (DSC)

experiments were performed on a TA Instruments Q10 DSC. Each sample (3-5 mg),

sealed in aluminum pans, was underwent three heating/cooling cycles from 25 'C to 250

'C with the rate of 10 'C/min.

Powder X-ray diffraction (XRD) data were collected using an Inel CPS 120 position

sensitive detector using an XRG 3000 generator (Cu Ka). Crushed powder samples were

loaded onto aluminium sample substrate. XRD data is shown as the intensity as a

function of the length of the scattering wave vector q, defined as q = Iql = 4R sinO / nA,

where 0 is the scattering angle, n is an integer and k is the wavelength (kCu Ka = 1.54

A). The layer spacing at a particular temperature is determined as the maximum of a fit of

a Gaussian distribution to the fundamental reflection in inverse space q. Then, the (layer)

spacing d was calculated by d001 = 2n / qFIT, where qFIT is the peak position of the

fitted curve.

Thin films for luminescence study.

Samples for the solid-state emission spectra were prepared by drop-casting a suspension

of the target compound in mixed dichloromethane and hexane onto glass substrates.

Polymer-based thin films were prepared by spin-coating at the rate of 100 rpm, from a

solution of the respective polymer and [Pt(ppy)(trpy-C 6H 3)]SbF 6 (PtlSbF6, 6-8 % w/w

relative to the polymer). Different solvents were used to accommodate the solubility of
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the polymers. MeOH is used for polyethylene oxide (PEO, M, = 20,000) and poly(4-

vinylpyridine) (P4VP, Mw = 60,000), while THF(with 5% v/v acetone) for polystyrene

(PS, M, = 220,000) and poly(methyl methacrylate) (PMMA, Mw = 120,000). All the

solutions were filtered through a PTFE syringe filter (0.2 pm) before use.
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Appendix for Chapter 3

Frontier orbitals
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mechanochromic effect study

DSC data
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Experimental Setup

Tension Compression

x

I I I

~Etive

Liri

- Spin-cast film of the neat compound from
acetone, annealed with DCM for 30 min

- Pressure is applied through a pin

Courtesy from Wendi Chang and Gleb Akselrod in the Bulovic group@MIT

Experimental setup for the mechanochromic effect study

160

Motorized
micrometer

17 N/mm



'SbF, DSC(
N,

Pt
/)N N-

yN

C&Ml13
Pti_SbF
Yellow, from DCM
10 *C/min h

0.5

Cycle 1)

206.21-c

eating and cooling

219.05c

214.83c
190.74*c t 4.772J/g
24&U

0.0-i

21
> 25.53tC

5.430jig

214.16c

200100 150
Temperature (C)

250
Uniwera. V4 1 TA Innmwrnu

219.49C

172.5'C

137.05'C
0.596"De 216.10-c

162.61.C 5.159
145.73C 9.360J9

215.61-T

213.82C

100 10

TempefatUre (*C)
200 250

UivSaal V4 ID TA Ifegumnts

161

T>

0
Ex Oown

109.83c
101.s8-c 3.74J

50

DSC (Cycle 2)

0.6

0.4 1

02

0.0

0.2

-0A

.2

110.24c
3.858J9

101.11-c

-0-6

EXO own
0



DSC (Cycle 1)

Pt
N N

N
COH13
Orange yellow solid, from DCM

10 10 *C/min heating and cooling

0,5

00-

05

1 0

018

160

DSC (Cycle 2, 3)

04

0,2

0,0-

-04 t

162

211.67'C

207A3*C
40.15JIg

175,8rC
4,307J/Q

172orc

150 200 250



1 F,7-

Pt

N.N N
C6H13

Orange solid, from DCM
10 *C/min heating and cooling

0-0

1 0
0 50 100

DSC (Cycle 2)

.164.01*C

ISBA00C
19 OGjig

137.1*C 157.29*C
5.244JIg 6.154JIg -T

131 86*C

155,30*C

150 200 250

163



DSC (Cyc

& '9 105.72C

95,02'C
70.44-C 2.267J/g
3.349"/g

le 1)

169.37'C

159 esc
207OJ/g

Orange solid, from DCM
10 *C/min heating and cooling

0.6 f--
0 50 i0

163A9'C

153.43C
2.414J/g

155.84'C
3 088JIg

e snlii frnm DlCM
S, 

10 *C/min heating and cooling

100

1MA3c

150

164

N,

'N N
N-N

C H1

0.2

0,0

0.2

0 A

157.26'C
3.243J/g

168.64c

150 200

DSC (Cycle 2)

250

N''
c69,3

0.2 -

00

0.2-

-0,6
0 200 260

+

0.6 k~ N,
P Pt

/N N'

Oran



+ SbF6-

N, e N
TPt'

N

C12H25 Red solid, fro
10 *C/min he

a0s

Sample 2: DSC (Cycle 2)

218.56"C

m acetone
ating and cooling

18233ug

1595J/g

199 27*C

0 50 100 150 200

165

j

250 30

-10 .5



89.1%

200 400

TerrPeaWr (1c)
Soo

TGA data of PtlSbF6

8
S40

4an
Wavelength [nm]

800
Uvea V4 l1r TA PIi.verf

Calculations of the quantum efficiency of Ptl_SbF6 obtained with Integrating Sphere

166

6



8.5 80 7.5 70
Chemical Shift (ppm)

Chemical Shift (ppm)

60 OC

9.5 9.0 80 75 7.0
Chemical Shift (ppm)

80 OC

A
9.5

100 0

A
9.0

C

9.5
9A
9.0

A
8.5 8.0

Chemical Shift (ppm)

8.5 8.0

7.5

7.5 7.0
Chemical Shift (ppm)

VT NMR spectra of Pt1_SbF6 measured in DMSO-d6

167

22 OC

A
9.5

A
9.0

7.0

A

A

I I I



F2

7.4-l

7.8

8.0 e

8.2

8.4

9.6--

8.9 -

9.0-

9.2

9.4-

9.6

9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4

F1 (ppm)

gCOSY of PtlSbF6 in CD 2 Cl 2

7.4 *

7.6:

7.8 e

8.4

8.68.84

9.0

9.2
S a a

9.4

9.6 
:

9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4

F1 (ppm)

TOCSY of PtlSbF6 in CD 2 Cl 2

168



)-,, --- - ,- A --- -- l

F2

(PPm)

7.2

7.4:-g

7. 6
7.81 

om

8.0

8.2-

8.4

8.6~

8.8-7-

0 a
9.01

9.2-

9.4

9 .6 ...........ge ico on 'ao g n s s o p m ..m.I ....... .. p. i ... ' I I .-on
9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2

F1 (ppm)

gCOSY of PtlSbF6 in DMSO-d6

F2

(ppmi

7.2

7.41

7.6

7.8-*

8.0

8.2-a

8.6

8.8

9.0
a v

9.2

9.6-

9.4 9.0 8.6 8.2 7.8 7.4 7.0

F1 (ppm)

TOCSY of PtlSbF6 in DMSO-d

169

-,6A, -)4,4



435_VT_22DEGMAJOR. ESP0.20

0.15-

0.10-

0.05-

9 8 7

1H NMR of PtlSbF6 in DMSO-d6

435_SE F6-13CACETONEMAJOR.ES

0.025

0.020

0.015-

0.010

0.005-

0
Chemical Shift (ppm)

0140 120 100
Chemical Shift (ppm)

"C NMR of PtlSbF6 in acetone-d6

170

/ULJLUULJ ' L.J L'l/ 'l / k / k .k J - L / \-- 1

cc

P



H_DCM_MAJOR.ESP

0.15-

0.10

'H NMR of PtlSbF6 in CD 2Cl2

0.025 -

0.020-

0.015-

0.010 -

0.005-

Chemical Shift (ppm)

439 PFt 13C ACETONE MAJOR.ESP

I Ill1. 1 11I
--- 7 - - .- - -u I~ -- --- --- ---- -- --- --

200 180 160 140 1 .
Chemical Shift (ppm)

13C NMR of PtlPF6 in acetone-d6

171

40 20 0

0.20-.

1||

I



PF6_19FDCM. ESP

0.15-

0.10-

0.05

80 60 40 20

19F NMR of Pt1_SbF, in CD 2CL2

0.20

0.15

0.10

6 -~o -~0
O -20ma -40 -60m

Chemical Shift (ppm)
-80 -100 -120 -140 -160

Chemical Shift (ppm)

'H NMR of PtlBF4 in CD 2Cl2

172

6



507_BF4_13CDCMMINOR PEAKS.ESP

0.11-

0.10

0.09-

0.0a -

0.07 -

0.04-

0.053-

0.02-

0.01-

0
ii ~ II 1.~

0 00

200 180 160 140 120 100
Chemical Shift (ppm)

3C NMR of PtBF4iin CD2C12

'1507_BF4_19F_DCMconc 1.esp

0.15 -

0.10 -

0.05-

.... g. .. ....... ... . .m. .... .. s g..Ie s = g = . =wg - |- -g--- - - - -- g -

80 60 40 20 0 -20 -40 -60
Chemi cal Shift (ppm)

19F NMR of Pt1_BF4 in CD2Cl2

- g -- - - - - - - - Y g - - - --- -- - -- - - - -

-80 -100 -120 -140 -160

173

--=--.- -

lIII,. I. .

E

OO

80 60 40 20 0



PEAKS.ESP

0.15

0.10

0.05

9 8

'H NMR of PtlOTf in CD 2 Cl 2

0.09

0.08

0.07"7

0 06

0.05

0.04

0.03

0.02

0.01

0

(ppm)

447 OTF 13C DCMMAJOR PEAKS.ESP

I I
1 ~ I ~ ~ Elm minni ............................... 2

200 180 160 140 120 100 80 60 40 20
Chemical Shift (ppm)

"C NMR of PtlOTf in CD2 Cl2

174

0

0.20

I lill



.2 0 -1447_OTf_19FDCM

I I_________-50 -100 -150
150 100 50 0

Chemical Shift (ppm)

'9F NMR of PtlOTf in CD 2Cl2

0.201503_TRPYC12_1H.ESP

9 Ch 5
Chemical Shift (ppm)

'H NMR of L2 in CD 2Cl2

0.15-

'U 0.10-

0.05-

0.15-

0.10-

0.05-

Ii I A
.~~~~~ ~ ~ ~ . .

175

j

... ..... . . . . . . . . . . . . .- . . . . . M 9 . . . . . . . . . . . . . . . .

i
I I

-50 -100 -150

4 3 2 1 0



0 20-

0.157

503_TRPYCI2_13CDCM.ESP

0.10-

0.05

-I ... .....
Chemical Shift (ppm)

"C NMR of L2 in CD 2Cl2

0. 20 505_C12_1H_DCMAce

0.15-

0.10

0.05 I

so 60 40 20 0

'H NMR of Pt2_SbF6 in CD 2CL2

176

I



0.16{

0.15-

0.14-

0.13

0.12

0.11

0.10

g 0.09

0.08

0.07

0.06

0.05

0.04-

0 03-

0.02-

0.01

200 180 160 140 120 100
Chemical Shift-(ppm)

0.20 -SL3O1_D_RECRY.002. ESP

7 6 5
Chemical Shift (ppm)

80 60

'H NMR of L3 in THF-d8

177

505_C12_13CDCMACEMAJOR.ESP

"C NMR of Pt2_SbF6 in CD 2Cl2

40 20 0

0.15-

0.10 -

0.05-

4 0

------ ---------- --------------

h
I. . . . . . . . . . . . I . . . . . . .

CO
FEC)2-1

3 2 1



0.11

0.10 

0.09

0.08-

007

g 0.06-

0.05

0.04-

0.03-

002-

001-

0

301_TRIAZOLE_13CTHFESP

.................................. J~r~
200 180 160 140 120 100

Chemical Shift (ppm)

"C NMR of L3 in THF-d8

' 301_D_19F.ESP

0.15-

0.10-

0.05-

80 60 40 20 0 -2o -40 -60 -60
Chemical Shift (ppm)

19F NMR of L3 in THF-d8

178

I I-
20 0

. -100 -12 0 -140 -160
---------------

III

80 60 40



17_ONTF_lH_ACE_MAJOR.ESP

0.15-

0.10-

0.05-

98 7 6 5 4 3
Chemical Shift (ppm)

'H NMR of Pt3_ONTf in Acetone-d6

-60 -00 -100 -120 -140

19F NMR of Pt3_ONTf in Acetone-d6

179

O.20.-



180



Shuang Liu
77 Massachusetts Avenue 18-034, Cambridge, MA 02139

shliu@mit.edu

EDUCATION

Massachusetts Institute of Technology (MIT), Cambridge, MA

- Ph.D. Candidate in Chemistry

Advisor: Professor Timothy M. Swager

Thesis: Design and Synthesis of Cyclometalated Transition Metal Complexes as Functional

Phosphorescent Materials

Fudan University, Shanghai, China

" M.S. in Chemistry, Graduated with Honors

Advisor: Professor Guo-Xin Jin

Thesis: Synthesis and characterization of multinuclear complexes with dichalcogenolate

carboranyl ligands

* B.S. in Chemistry, Graduated with Honors

Advisor: Professor Guo-Xin Jin

Thesis: Late-transition metals carbene complexes as efficient ethylene polymerization

catalysts

2007-2012

2004-2007

2000-2004

RESEARCH EXPERIENCE

Massachusetts Institute of Technology, Cambridge, MA

Graduate Research Assistant 2007-present

- Established a novel synthetic method for cyclometalated platinum and iridium compounds, the most

promising candidates in phosphorescence-based organic light emitting diodes (OLEDs)

- Designed platinum complexes and conjugated polymers that change color and luminescence in response

to external mechanical forces and chemical environments

e Built the first thermotropic Col(h) liquid crystals with only one side-chain based on cyclometalated Pt(ll)

complexes with N, N-chelating "click" ligands

Fudan University, Shanghai, China

Graduate and Undergraduate Research Assistant 2002-2007

- Examined the reactivity of half-sandwiched dichalcogenolate carborane metal complexes systematically

181



- Evaluated late-transition metal carbene and carborane complexes with hemilabile functional groups as

efficient catalysts for olefin polymerization

" Awarded funds from Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment

SELECTED PUBLICATIONS

- Shuang Liu, Peter Muller, Michael K. Takase, Timothy M. Swager*. ""Click" Synthesis of Heteroleptic

Tris-Cyclometalated Iridium(Ill) Complexes: Cu(I) Triazolide Intermediates as Transmetalating Reagents".

Inorganic Chemistry, 2011, 7598

- Shuang Liu, Guo-liang Wang, Guo-Xin Jin*. "Multinuclear self-assembly via half-sandwich complexes

Cp*M[S2C2(B1OH10)] and pyridine-based ligands". Dalton Transactions, 2008, 425

- Shuang Liu, Ying-Feng Han, Guo-Xin Jin*. "Formation of direct metal-metal bonds from 16-electron

"pseudo-aromatic" half-sandwich complexes Cp"M[E2C2(B1 0 H1O)]". Chemistry Society Review, 2007, 36,
1543 (Cover Art)

- Shuang Liu, Jian-qiang Wang, Guo-Xin Jin*. "Construction of trinuclear iridium clusters through ancillary

ortho-carborane-1,2-diselenolato ligands, with simultaneous iridium-induced B-H activation". Dalton

Transactions, 2007, 3792

- Shuang Liu, Guo-Xin Jin*. "A facile and general approach to the Rh-M (M = Co, Rh) single bond

supported by ortho-carborane-1,2-dichalcogenolato ligands". Dalton Transactions, 2007, 949 (Cover

Art)

- Shuang Liu, Jiasheng Zhang, Xin Wang, Guo-Xin Jin*. "Synthesis and characterization of binuclear

half-sandwich metal (Co, Ir and Ru) complexes containing ancillary ortho-carborane-1,2-dithiolato ligands".

Dalton Transactions, 2006, 5225

- Shuang Liu, Xin Wang, Guo-Xin Jin*. "Synthesis of heteronuclear (MoRu2) clusters from 16-electron

half-sandwich complexes (p-cymene)Ru[E2C2(B1 oH1o)] (E = S, Se)". Journal of Organometallic

Chemistry, 2006, 691(1-2), 261

- Xin Wang, Guo-Liang Wang, Shuang Liu, Shuyi Cai, Guo-Xin Jin*. "Half-sandwich binuclear carbaborane

compounds: Closo-carbaboranes as good o-donar ligands". Journal of Organometallic Chemistry,
2008, 693, 3057

- Xin Wang, Shuang Liu, Lin-Hong Weng, and Guo-Xin Jin*. "A trinuclear silver(l) functionalized

N-heterocyclic carbene complex and its use in transmetalation: structure and catalytic activity for olefin

polymerizations". Organometallics, 2006, 25, 3565

- Xin Wang, Shuang Liu, Lin-Hong Weng, and Guo-Xin Jin*. "Preparation and structure of mono- and

binuclear half-sandwich iridium, ruthenium, and rhodium carbene complexes containing

1,2-dichalcogenolao 1,2-dicarba-closo-dodecaboranes". Chemistry--A European Journal, 2006, 13(1),

188

e Xin Wang, Shuang Liu, Guo-Xin Jin*. "Preparation, structure and ethylene polymerization behavior of

mixed-halide nickel(ll) complexes and cobalt(II) complex containing imidazolium". Journal of

182



Organometallic Chemistry, 2005, 690(12), 2934

- Xin Wang, Shuang Liu, Guo-Xin Jin*. "Preparation, Structure, and Olefin Polymerization Behavior of

Functionalized Nickel(II) N-Heterocyclic Carbene Complexes". Organometallics, 2004, 23, 6002

CONFERENCE PRESENTATION

- Shuang Liu, Timothy M. Swager*. 243th American Chemical Society (ACS) National Meeting, Boston, CA,

United States, March 25-29, 2012

- Shuang Liu, Timothy M. Swager*. 240th American Chemical Society (ACS) National Meeting, San Diego,

MA, United States, August 22-26, 2010

AWARDS

* 2008-2009 Graduate Student Teaching Assistant Award from the Chemistry Department at MIT

* Distinguished Master's Thesis Award (2008) and Distinguished Graduate of Shanghai (2007 and

2004) for outstanding academic achievements

* Unilever Scholarship (2002) and ExxonMobil Scholarship (2001) for outstanding performance

183



Acknowledgement

There are so many people who have helped me throughout my time at MIT that it is
almost impossible to acknowledge everyone in such a short chapter. I cannot help
thinking of the time when I was admitted to MIT. I was happily sending out emails to
withdraw my applications to other universities. Moments later, I received a short note
form one of the recruiting professors, saying, "It could be tough there so make sure you
are well prepared. I got my Ph.D. there". Although it is something to joke about at the
very end of my PhD education, that email was absolutely nerve-racking at that time.. It
made me constantly wonder what I should expect next. Looking back, the five years at
MIT actually turns out to be so memorable because of the people I've met and worked
with.

First and foremost, I would like to thank my advisor, Prof. Timothy Swager, for
his guidance, support and continuous encouragement. Tim has been an incredible advisor
in every aspect. He never lacks imagination and creativity proposing new projects; his
sharp intuition guided me through some difficult times; his deep understanding in a broad
spectrum of research fields greatly broadened my vision. Although he is an adamant
believer in training independent research ability as an indispensible part of graduate
education, I never felt that I was left alone to face all the challenges. Whenever I
introduce myself as Tim's student at conferences or even during interviews, people
would say that I am lucky to work for him. They couldn't be more right about it.

I would also like to thank my thesis committee, Prof. Richard Schrock and Prof.
Stephen Buchwald. I really appreciate them taking the time to discuss my research
progress with me and offer insightful comments.

As the only inorganic chemist working on organometallic compounds in the
Swager lab, I would have had a very difficult start without the generous help from the
senior members in the group. Dr. Koushik Venkatesan, from whom I took over the Pt(II)
theme, left the group for his independent career before I officially started. But he is
always one email away. I always feel embarrassed when I read the silly questions I sent
him in the early days, and extremely grateful for his timely responses. Dr. Fei Wang has
been a role model and a great friend to me. Tim was not alone when he said that we
looked like twins, as we were mistaken to each other quite a few times. Dr. Julian Chan
was always a great resource for organic chemistry-related questions. Dr. Trisha Andrew
taught me everything I know about photophysical measurements. Life in the lab is so
much easily when she is around.

The Swager group has always been an amazing family to me. It is a lot of fun
working with people from all over the world and with different backgrounds. I would like
to thank, especially, Kathy Sweeny and Caitlin McDowell for their administrative help. I
am very lucky to be among the biggest class, with Rebecca Parkhurst, Olesya Haze,
Stefanie Sydlik, Jose Lobez, Jan Schnorr, and Jason Cox. They have shared with me
every important moments of graduate school, from orals to thesis defenses. I wish them

184



all the best for their future endeavors. Dr. Eric Dane, Dr. Jeewoo Lim, Dr. Brett Van, Dr.
Mindy Levine and Dr. Matt Kiesewetter have been inspiring through many in-depth
discussions. Special thanks go to my wonderful office mates, Rebecca Parkhurst, Grace
Han, Dr. Katherine Mirica and Dr. Baltasar Bonillo. Thanks Becca for sharing my
concerns and helping me adapt to the American cultures. Grace for being such a sweet
friend and reinforcing our Swager inorganic community; Kat for offering new
perspectives on my research and improving my writing skills; Balta for his humorous
complaints about everything and being a good company.

I was very fortunate to work with people with different expertise outside the
Swager group as well. Thanks Dr. Peter Muller and Dr. Michael Takase for nailing down
the problematic crystal structures; Jeff Simpson, Li Li, and Anne Gorham for the
valuable trainings and advices; Gleb Akselrod and Wendi Chang from the Bulovic group
for their help with the mechanochromism measurements; Phil Reusswig from the Baldo
group for working on the integrating sphere setup with me; Dr. Lee-Ping Wang for
breaking down the black box of DFT calculations; Dr. Smaranda Marinescu and Dr.
Natalia Shustova for delightful conversations.

My final and deepest gratitude goes to my beloved family. It wasn't easy for my
parents to let their only daughter to be so far away from them. But all that they've given
me was their unconditional love and support through all these years. As for my dear
husband, who is also my longtime classmate and best friend, thank you for cheering me
up during the dark times and sharing the every little exciting moments of my life. I would
have taken a completely different career path without you. I am who I am because of you,
and I will never regret it.

185


