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Abstract

Consider the wrapped Fukaya category W of a collection of exact Lagrangians in a Li-
ouville manifold. Under a non-degeneracy condition implying the existence of enough
Lagrangians, we show that natural geometric maps from the Hochschild homology
of W to symplectic cohomology and from symplectic cohomology to the Hochschild
cohomology of W are isomorphisms, in a manner compatible with ring and module
structures. This is a consequence of a more general duality for the wrapped Fukaya
category, which should be thought of as a non-compact version of a Calabi-Yau struc-
ture. The new ingredients are: (1) Fourier-Mukai theory for W via a wrapped version
of holomorphic quilts, (2) new geometric operations, coming from discs with two neg-
ative punctures and arbitrary many positive punctures, (3) a generalization of the
Cardy condition, and (4) the use of homotopy units and A-infinity shuffle products
to relate non-degeneracy to a resolution of the diagonal.
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Chapter 1

Introduction

It is a conjecture of Kontsevich [K] (inspired by mirror symmetry) that the quantum

cohomology ring of a compact symplectic manifold M should be isomorphic to the

Hochschild cohomology

H H*(7T(M))(1)

of the Fukaya category T(M). There are at least two strong motivations for under-

standing this conjecture. For one, such an isomorphism would allow one to alge-

braically recover quantum cohomology along with its ring structure from computa-

tions of the Fukaya category. In another direction, Hochschild cohomology measures

deformations of a category, so the conjecture has implications for the deformation

theory of Pukaya categories; see e.g. [Si].

We address a non-compact version of Kontsevich's conjecture, in the setting of

exact (non-compact) symplectic manifolds. The relevant symplectic objects are Li-

ouville manifolds, exact symplectic manifolds with a convexity condition at infinity.

Examples include cotangent bundles, affine complex varieties, and more general Stein

manifolds. In this setting, there is an enlargement of the Fukaya category called the

wrapped Fukaya category

W := W(M), (1.2)

which includes as objects non-compact Lagrangians, and whose morphism spaces

include intersection points as well as Reeb chords between Lagrangians at infinity. The
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wrapped Fukaya category is expected to be the correct mirror category to coherent

sheaves on non-proper varieties, see e.g. [AS] [AAE+1]. Moreover, it is the open-

string, or Lagrangian, counterpart to a relatively classical invariant of non-compact

symplectic manifolds, symplectic cohomology

SH*(M), (1.3)

first defined by Cieliebak, Floer, and Hofer [FH2] [CFH].

There are also existing geometric maps from the Hochschild homology

HH,(W(M)) (1.4)

to symplectic cohomology [A3] and from symplectic cohomology to the Hochschild

cohomology [Sil

HH* (W(M)). (1.5)

Thus, one can posit that a version of Kontsevich's conjecture holds in this setting.

In Theorem 1.1 below, we prove a version of Kontsevich's conjecture for a Liou-

ville manifold M of dimension 2n, assuming a non-degeneracy condition for M first

introduced by Abouzaid [A3}. The reason for the non-degeneracy assumption is es-

sentially this: to have any hope that symplectic cohomology be recoverable from the

wrapped Fukaya category, it is important that the target manifold contain "enough

Lagrangians."

Definition 1.1. A finite collection of Lagrangians {Li} is said to be essential if the

natural map from Hochschild homology of the wrapped Fukaya category generated by

{Li} to symplectic cohomology hits the identity element. Call M non-degenerate

if it admits any essential collection of Lagrangians.

The non-degeneracy condition is explicitly known for cotangent bundles [A2] and

some punctured Riemann surfaces [AAE+2]. In general, it is expected by work of

Bourgeois, Ekholm, and Eliashberg [BEE] that every Stein manifold is non-degenerate,

with essential Lagrangians given by the ascending co-cores of a plurisubharmonic

16



Morse function.

Theorem 1.1. If M is non-degenerate, then the natural geometric maps

HH,_n(W(M)) - SH*(M) -+ HH*(W(M)) (1.6)

are all isomorphisms, compatible with Hochschild ring and module structures.

A key step in proving Theorem 1.1 involves giving a direct geometric Poincar6

duality isomorphism

HH,_n(W(M)) - HH*(W(M)), (1.7)

that does not pass through SH*(M) and is an instance of a more far-reaching du-

ality stated in Theorem 1.3. Such dualities have appeared before in the context of

the algebraic geometry of smooth (not necessarily proper) varieties. Van den Bergh

[vdBl] [vdB2] was the first to observe a duality between Hochschild homology and co-

homology for the coordinate ring of a smooth Calabi- Yau affine variety; see also [Kr].

The relevant notion for us is a purely categorical version of smooth and Calabi- Yau,

generalizing a smooth (not necessarily proper) Calabi-Yau variety. As in the algebro-

geometric setting, smoothness is the prerequesite property that must be defined first.

Definition 1.2 (Kontsevich-Soibelman [KS]). An A, category C is homologically

smooth if its diagonal bimodule is perfect, that is, built out of simple split Yoneda

bimodules via taking a finite number of mapping cones and summands.

One of the first ingredients in our proof is relating homological smoothness to the

non-degeneracy condition on M.

Theorem 1.2. If M is non-degenerate, then W is homologically smooth.

Definition 1.3. An A, category C is a non-compact Calabi-Yau category if it

is homologically smooth and there is a Poincari duality-type natural transformation

HH,_n(C7,'B) ~+-- HH*(C!,'B) (1.8)

17



of functors from bimodules to chain complexes, inducing isomorphisms on homology.

Such a natural transformation should be induced by the existence of a perfect bimodule

C! (1.9)

representing, via tensoring, Hochschild cohomology, and an equivalence

C -+ C![n]. (1.10)

The bimodule C', defined in Chapter 2.13, is known as the inverse dualizing

bimodule. The non-compact Calabi- Yau terminology was introduced by Kontsevich

and Soibelman [KS] as a categorical abstraction of perfect complexes on a smooth,

not necessarily proper Calabi-Yau variety.

Theorem 1.3 (Duality for the wrapped Fukaya category). Suppose M is non-degenerate.

Then, W is homologically smooth and there is a geometric map

C : W ~ + W![n] (.1

giving W the structure of a non-compact Calabi-Yau category.

As part of the theorem, we give a construction of W! and the relevant geometric

map (1.11). In the special case that the space of study is a cotangent bundle T*X, we

know by work of Abouzaid [Al] that the wrapped Fukaya category is quasi-isomorphic

to the string topology category, and these duality statements recover string topology

duality results of Eric Malm [M]. Now, we give a broad overview of the contents of

this paper.

In Chapter 2, we collect necessary facts about Ao categories, modules and bimod-

ules. These include definitions of these objects, constructions of differential graded

categories associated to modules and bimodules, and a discussion of various tensor

products associated to modules and bimodules. We recall definitions of the Hochschild

co-chain and chain complexes, along with the ring and module structures on these
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complexes. In fact, we give two different chain-level models for each complex, one that

seems to have appeared more in the symplectic literature, and a quasi-isomorphic one

coming from categories of bimodules. We discuss canonical modules and bimodules

coming from the Yoneda embedding, and the notion of homological smoothness.

We discuss the notion of split-generation by a subcategory and recall a criterion

for split-generation. Finally, we introduce operations of duality for modules and bi-

modules, in order to define a dual bimodule

3! (1.12)

associated to any bimodule 3. Specializing to the diagonal bimodule CA over an A.

category C, we obtain the so-called inverse dualizing bimodule

0 := (CA)!. (1.13)

We prove that, assuming e is homologically smooth, tensoring a bimodule with C!

amounts to taking the Hochschild cohomology of the bimodule

C! ®e-e 3 ~ HH*(C, 3), (1.14)

an A,-categorical generalization of a result due to Van den Bergh [vdBl] [vdB2].

In Chapters 3, 4, 5, and 6 we construct and prove various facts about the main

geometric players in Theorem 1.1. First, in Chapter 3, we present our geometric

setup, recalling the notions of Liouville manifolds, symplectic cohomology, and

wrapped Floer cohomology. In Chapter 4, we introduce the moduli space of

genus 0 open-closed strings, which are genus 0 bordered surfaces with signed

boundary and interior marked points equipped with an additional framing around

each interior point, restricting to at most one interior output or two boundary outputs.

We define Floer data for such moduli spaces, and construct Floer-theoretic operations

for submanifolds of these moduli spaces. In Chapter 5, we consider operations induced

by various families of submanifolds. For spheres with two inputs, we obtain the
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product on symplectic cohomology and from discs with arbitrarily many inputs and

one output, we construct A,, structure maps for the wrapped Fukaya category.

Then, using families of discs with boundary and interior marked points, we define the

open-closed maps

0 C : HH,_n (W, W) -+ SH* (M) (.5

from Hochschild homology to symplectic cohomology and

CO : SH*(M) -+ HH*(W, W) (1.16)

from symplectic cohomology to Hochschild cohomology. Actually we define two vari-

ants each of these open-closed maps, coming from our two different explicit chain-level

models for Hochschild invariants in Chapter 2, and prove that they are homotopic.

Finally, we prove some basic facts about the open-closed maps: the map (0 is a

morphism of rings, giving HH,.-(W, W) the structure of a module over SH*(M)

via the existing module structure of HH, (W, W) over HH* (W, W). With respect to

this induced module structure, we show that the map M9 is a morphism of SH*(M)

modules. This will immediately imply that

Proposition 1.1. If M is non-degenerate, then (C is surjective and C0 is injective.

Finally, in Chapter 6, we recall operations arising from unstable surfaces, the identity

morphism and homology unit.

In Chapter 7, we introduce new abstract moduli spaces of pairs of discs modulo

simultaneous automorphisms. This space is not identical to the product of the moduli

space of discs, which arises as a further quotient by relative automorphisms of factors.

We construct a model for the compactification of these spaces, and discuss natural

subspaces where various boundary points are identified. We define a partial gluing

operation, on loci where various boundary components between factors coincide,

from pairs of discs to the genus 0 open-closed strings. Finally, we define Floer data and

operations for such partially glued pairs of discs. This is a core technical construction

which allows us in subsequent chapters to rapidly construct models for Floer theory

20



on the product and quilts using operations in M.

In Chapter 8, we move to the product manifold

M- x M, (1.17)

a symplectic manifold which contains two natural classes of Lagrangians, split La-

grangians of the form Li x Lj and the diagonal A. In general, there are technical

issues defining wrapped Floer theory and symplectic cohomology of products, com-

ing from the fact that in defining invariants so far, we have fixed a choice of contact

boundary at infinity, and given such a choice, there is not a canonical choice of contact

boundary on the product. See for example [01] for a solution in the case of symplectic

cohomology. Instead of solving these issues, in Chapter 8 we use split Hamiltonians

to reduce the moduli spaces (when the Lagrangians in question are split or the di-

agonal) to glued pairs of discs. The reason we needed glued pairs of discs and not

disjoint pairs of discs comes of course from the presence of the diagonal, beginning

with a classical observation that the Floer cohomology of the diagonal is the same as

the ordinary Floer cohomology of the target space. Using this reduction procedure,

we obtain a model

2 (1.18)

for the wrapped Fukaya category of M- x M.

In Chapter 9, we study spaces of quilted strips, first introduced by Ma'u [Ma]

as a variant of quilted surfaces introduced and studied by Wehrheim-Woodward and

Ma'u-Wehrheim-Woodward [WW] [MW]. Using an embedding from quilted strips

labeled by split Lagrangians and diagonals into glued pairs of discs, we obtain Floer-

theoretic operations, which we show give an A,, functor

M: W2 + W-mod-W (1.19)

where W-mod-W is the category of bimodules over W (Proposition 9.3). This is a

bimodule variant of a functoriality result for quilts ([WW], variant due to [Ma]). The
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relation to open-closed operations is this: we see that the diagonal A is sent to the

diagonal bimodule WA, and the first order term

M :SH*(M) = HW*(,A,A) -+ homw-mo-w(WA, WA) ~ HH*(W,W) (1.20)

is exactly a version of the closed-open map CO (Proposition 9.7). We verify that

M sends split Lagrangians to tensor products of Yoneda modules, and hence, by a

version of the Yoneda lemma for bimodules, M is always full on split Lagrangians. A

variant of these observations was first noticed by Abouzaid-Smith [AbSm].

In Chapter 10, we introduce the technical tool of homotopy units, first con-

structed geometrically by Fukaya, Oh, Ohta, and Ono [F0002]. Homotopy units

allow one to geometrically strictify units in an A.. category, which otherwise only ex-

ist on the homology level. A basic consequence of homotopy units is that one can talk

about Floer operations induced by forgetting boundary marked points in the Fukaya

category. Thus, we first explore and construct Floer theoretic operations with for-

gotten boundary points (Section 10.1). Then, we develop homotopies between such

Floer theoretic operations and ones in which we had glued in geometric units instead

of forgetting. In order to obtain a quasi-isomorphic category, we must, as in [FOO02],

construct operations corresponding to all possible higher homotopies. When done for

glued pairs of discs, (only allowing ourselves to forget intersection points between split

Lagrangians), we obtain a category quasi-isomorphic to W 2 . This category, called

9V2 (1.21)

is identical to W 2 , except that its morphism spaces contain additional formal elements

of the form e+ 9 x, x 9 e+, which we term one-sided homotopy units, (there

are also formal elements f 0 x, x 9 f, corresponding to the homotopy between the

homology unit and e+). Crucially, we see in Proposition 10.11 that A.o operations

on *2 satisfy nice identities involving operations on W when some of the inputs are

one-sided homotopy units.

In Chapter 11, we use the tools developed in the previous chapter to prove that
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W is homologically smooth, the contents of Theorem 1.2. We do this by proving that

in W 2, A is split-generated by split Lagrangians, and thus by the existence of the

functor (1.19), M must be full on A. As an immediate consequence, the map from

SH*(M) -+ HH*(W(M), W(M)), which we have shown is a part of the data of M,

is an isomorphism, proving part of Theorem 1.1. To prove that A is split-generated

by product Lagrangians, we give an explicit comparison map between the Hochschild

homology of W and a bar complex appearing in an algebraic split-generation criterion

for A in i 2 , discussed in Chapter 2. This explicit comparison map, an A,, version of

the shuffle product, uses the formal elements e+9x and x 9e+ in an essential way, and

by the identities in Proposition 10.11 is a chain map intertwining the natural maps

in the non-degeneracy and the split-generation criteria. As a consequence, we

deduce that product Lagrangians split generate A, whenever M is non-degenerate.

Since W is homologically smooth, by Chapter 2, the bimodule W is perfect and

represents Hochschild cohomology. In Chapter 12, we construct a geometric morphism

of bimodules

C : Wa -- + W1 [n] , (1.22)

coming from new operations controlled by discs with two negative punctures and

arbitrary positive punctures. To first order, we show this map agrees with part of

the first term of the quilt functor M 1 constructed in Chapter 9 (Proposition 12.2),

implying that e! is a quasi-isomorphism. This implies Theorem 1.3.

In Chapter 13, we analyze operations coming from spaces of annuli with many

positive boundary marked points on both boundaries and one negative boundary

marked point on the outer boundary. In Thorem 13.1, we show that degenerations

of a codimension 1 family of these annuli give a relation between e and standard

open-closed maps

Theorem 1.4 (Generalized Cardy Condition). There is a (homotopy)-commutative
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diagram

HH,_n(W, W) > HH,(W, W) (1.23)

1oe I A

SH* (M) 0 > HH* (W, W)

In Chapter 2, we show that if W is homologically smooth, then the vertical map p

is always a quasi-isomorphism. Moreover, we have shown in previous chapters that CO

and C'g are quasi-isomorphisms. This implies that (C is also a quasi-isomorphism,

completing the proof of Theorem 1.1.

Finally, in Chapter 14, we explore a few basic consequences of this work. For one,

we establish in Section 14.1 a converse result that if A is split-generated by product

Lagrangians, then M is non-degenerate, so Theorem 1.1 continues to apply. Then,

furthering the relation between Theorem 1.3 and Poincar6 duality, we demonstrate

in Section 14.2 that any pre-image - E HH,(W, W) of 1 E SH*(M), which we call a

fundamental class, satisfies

n o-: HH*(W, W) ~-+ HH*,(W, W). (1.24)

As an application of this circle of ideas, in Section 14.3 we give an explicit formula

for the SH*(M) product on Hochschild homology, using only the map 6! and the

A, structure on W.

In Appendix A, we prove a compactness result for for the moduli spaces control-

ling our Floer-theoretic operations. Such a result is necessary as we are considering

operations with non-compact target M. Thus, in order to apply standard Gromov

compactness results, one first must show that spaces of maps with fixed asymptotics

are a priori bounded in the target. Such results for the wrapped category have gen-

erally used a convexity argument [AS] [A3] or maximum principles [S6], which rely

in a strong way on the Hamiltonian flow used having a rigid form at oo. However,

to construct higher operations on symplectic cohomology, we have found it necessary

to introduce small time and surface dependent perturbations that are not of this

rigid form. Our solution fuses standard maximum principle and convexity arguments
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with a slight strengthening of the maximum principle for cylindrical regions of the

source surface, dating back to work of Floer-Hofer [FH2] and Cieliebak [C] (also used

successfully by Oancea [02]).

Lastly, in Appendix B, we discuss ingredients necessary to construct all of our

operations with appropriate signs over Z (or alternatively a field of characteristic

other than 2). We begin the appendix with a discussion of orientation lines, recall

relevant results that orient moduli spaces of maps, give orientations for the abstract

moduli spaces we use, and demonstrate the theory with a complete calculation of

signs in an example.
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Chapter 2

Algebraic preliminaries

We give an overview of the algebraic technology appearing in this paper: AO cat-

egories, functors, modules, bimodules, and Hochschild homology and cohomology.

We also recall some useful but slightly more involved algebraic details: the Yoneda

embedding, the Kiinneth formula for split bimodules, pullbacks of modules and bi-

modules along functors, and ring/module structures on Hochschild groups. We also

introduce the notion of module and bimodule duality, in order to ultimately de-

fine a natural bimodule C' associated to any A. category C. None of the material is

completely new, although some of it does not seem to have appeared in the A, or

symplectic context.

2.1 A,, algebras and categories

Definition 2.1. An A, algebra A is a graded vector space A together with maps

4 : A** -+ A, s > 1 (2.1)

of degree 2-s such that the following quadratic relation holds, for each k:

(- p 1 -- , ++1, (i+L, -.. , i+) i ,' 1 ) = 0. (2.2)
i,l
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where the sign is determined by

OD4 :=xil + ---+|xI - i. (2.3)

Remark 2.1. The parity of 'I4 is the same as the sum of the reduced degrees

z=1 || Ix||. Here ||xj|\ = |xj| - 1 is the degree of xj thought of as an element of the

shifted vector space A[1]. Thus, P4 can be thought of as a Koszul-type sign arising as

p acts from the right.

The first few A. relations are, up to sign:

pl(pl(x)) = 0 (2.4)

p'(p2(o, x1)) = ±i 2 (pii(xo), x1) ± 2 (xo, L(xi)) (2.5)

ty2 (2 (Xo, Xi), X2)- p 2 (Xo, p 2 (x1, x 2 )) = p 1 (p 3 (X0 , x 1 , x 2 )) ±ip3 (i(X 0 ), x 1 , x 2 )

i p(X0, 1i1(X1), X2) i p30 X1 l(X2))

(2.6)

In particular, the first few equations above imply that L is a differential, (up to a

sign change) p2 descends to a product on H*(A, pl), and the resulting homology-level

product H*(p2) is associative. p3 can be thought of as the associator, and the other

pk are higher homotopies for associativity.

One can also recast the notion of an A,, algebra in the following way: Let

TA[1] = (DA[1]*& (2.7)
i>O

be the tensor co-algebra of the shifted A[1]. Given any map # : TA[1] -+ A[1], there

is a unique so-called hat extension

S: TA[1] -+ TA[1] (2.8)
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specified as follows:

(X - -.. -9X1) : = E (- 1)I@- -i - 1 Xi+, ... ,i+1)(xi&- - -x1. (2.9)
i~j

The (shifted) A, operations p fit together to form a map

i : TA[1] -+ A[1] (2.10)

of total degree 1. Then the AO equations, which can be re-expressed as one equation

y 0 A = 0, (2.11)

are equivalent to the requirement that A is a differential on TA[1]

A2 = 0. (2.12)

Remark 2.2. Actually, the hat extension & defined above is the unique extension sat-

isfying the graded co-Leibniz rule with respect to the natural co-product A : TA[1] -+

TA[1] 0 TA[1], given by

(2.13)

In this way, the association of (TA, A) to the A. algebra (A, p) gives an embedding

of A, algebra structures on a vector space to differential-graded co-algebra structures

on the tensor algebra over that vector space. The chain complex (TA, A) is called the

bar complex of A.

The discussion so far generalizes in a straightforward manner to the categorical

setting.

Definition 2.2. An A, category C consists of the following data:

* a collection of objects ob C
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" for each pair of objects X, X', a graded vector space home(X, X')

" for any set of d + 1 objects X 0 ,. .. X, higher composition maps

Yd : home(Xd_1, Xd) x - - x home(Xo, X 1) -+ home(Xo, Xd) (2.14)

of degree 2 - d, satisfying the same quadratic relations as equation (2.2).

In this paper, we will work with some A, categories C with finitely many objects

X 1 , ... , Xk. As observed in [S51 and [S3], any such category C is equivalent to an A,

algebra over the semi-simple ring

R = Kei D - - -( Kek,

which we also call C. The correspondence is as follows: as a graded vector space this

algebra is

(2.15)C := 0Dhom(Xi, Xj)
1,)

with the idempotents ei of R acting by

e. -C -et = hom(Xt,X.,). (2.16)

Tensor products are now interpreted as being over R

morphisms), i.e.

(with respect to composable

Cr := C*r = g@ hom(V,_, V,) 0
Vo,...,VEob e

- -0 hom(V, V).

In this picture, the A, structure on the category C is equivalent to the data of an

A, structure over R on the graded vector space C. Namely, maps

pd : C6*d -_+ C (2.18)

are by definition the same data as the higher composition maps (2.14).
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Definition 2.3. Given an A, category C, the opposite category

(2.19)

is defined as follows:

e objects of "* are the same as objects of C,

* as graded vector spaces, horns of Cev are reversed homs of C:

homeo,(X, Y) = home (Y, X) (2.20)

* A, operations are, up to a sign, the reversed A. operations of C:

Peop (X1,...,Xd) = (--1) pe(d(, ... , XI) (2.21)

where kd = I Ixi is the usual sign.

The opposite category C' can be thought of as an algebra over the semi-simple

ring RP.

2.2 Morphisms and functors

Definition 2.4. A morphism of A, algebras

F : (A, pa) -+ ('3 , pB) (2.22)

is the data of, for each d > 1, maps of graded vector spaces

Fd : A d _ '3 (2.23)
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of degree 1 - d, satisfying the following equation, for each k:

pi (FZ(xk,.. .XXk-ij+1) -.. F1(xi,.. ., x1 )) -

j~il...+j~k(2.24)

(-1)* Fk-_9+1 (Xk, - - t+s+1, 7PAS t+s, -.-.-, It+1),7 t, -.. -7-, 1-

s<k,t

Here,

4=Z ||lxiii (2.25)
i=1

is the same (Koszul) sign as before.

Suppose A and '3 are algebras over semi-simple rings, or equivalently A. cate-

gories. Then, unwinding the definition above leads to the following categorical notion

of functor:

Definition 2.5. An A, functor

F : E -+ (2.26)

consists of the following data:

" For each object X in C, an object F(X) in C',

" for any set of d + 1 objects XO,... ,Xd, higher maps

Fd : home(X_1, Xd) x ... x home(Xo, X 1) -+ home(F(Xo), F(Xd)) (2.27)

of degree 1 - d, satisfying the same relations as equation (2.24).

The equations (2.24) imply that the first-order term of any morphism or functor

descends to a cohomology level functor [F1 ]. We say that a morphism F is a quasi-

isomorphism if [F1 ] is an isomorphism. Call a functor F is quasi-full if [F 1] is an

isomorphism onto a full subcategory of the cohomology of the image, and call it a

quasi-equivalence if it F is also essentially surjective.
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2.3 Unitality

There are three a posteriori equivalent definitions of units in the A, setting. We will

make definitions for A. algebras.

Definition 2.6. An A, algebra A

such that

pu1(e+)

p 2 (e+, x)

Ik(.. , e+, -.. )

=0,

= (-1) I 2(x, e+) = x, and

= 0, k >3.

A weaker version, following [S4], is the notion of a homology-level unit.

Definition 2.7. A is said to be homologically unital if there is an element e E A

of degree 0 that decends to a unit on level of homology; i.e. (H*(A), H*(1 
2), [e]) is an

associative unital algebra. Any such element e is called a homology unit of A.

Although strict unitality is algebraically a desireable property, most often one

can only geometrically construct a homological unit. Fukaya-Oh-Ohta-Ono [FOOO1]

observed that there is a richer structure which can be constructed geometrically, that

interpolates between these two notions.

Definition 2.8. Let A be an A, algebra with homological unit e. A homotopy unit

for (A, e) is an A, structure pzA, on the graded vector space

A':= A D Kf[1] D Ke+ (2.29)

restricting to the original A, structure on A, satisfying

(2.30)

with e+ is a strict unit for (A', IA').
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As a sanity check, we note that in the definition above, the inclusion

A "-+A' (2.31)

is a quasi-isomorphism. Moreover, the condition that e+ be a strict unit determines

all A, structure maps MA' involving occurences of e+. Thus, additional data involved

in constructing the required Ac structure on A' is exactly contained in operations

with occurences of of f. Thus, the data of a homotopy unit translates into the data

of maps

k:(TA)Ok -4A (2.32)

such that the operations

1kt Z27 L (2.33)

satisfy the Ac relations. The A, relations can then also be translated into equations

for the he, which we will omit for the time being; see [FOOO1, §3.3] for greater detail.

These definitions all admit fairly straightforward categorical generalizations. For

homological unitality, one mandates that each object X contain a homology level

identity morphism [ex] E H*(home(X, X)). For strict unitality, one requires the

existence of morphisms ex E home(X, X) satisfying (2.28). Finally, a homotopy

unital structure on C is the structure of an A, category on e', defined to be E with

additional morphisms generated by formal elements fx, ex E home(X, X), satisfying

the same conditions as Definition 2.8.

By definition any A, algebra with a homotopy unit is quasi-equivalent to a strictly

unital one (namly A') and is homologically unital (with homological unit e). Con-

versely, it is shown in [S4] that any homologically unital A, algebra is quasi-equivalent

to a strictly unital or homotopy unital A, algebra. The same holds for A, categories.
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2.4 Categories of modules and bimodules

To an A, algebra or category e one can associate categories of left A. modules and

right modules over C. These categories are dg categories, with explicitly describable

morphism spaces and differentials. Similarly, to a pair of A, algebras/categories

(C, D), one can associate a dg category of A, C-'D bimodules. These dg categories

can be thought of as 1-morphisms in a two-category whose objects are A, categories.

Remark 2.3. The fact that module categories over C are dg categories comes from an

interpretation of left/right module categories over C as categories of (covariant/contravariant)

A. functors from C into chain complexes. The dg structure is then inherited from

the dg structure on chain complexes. Similarly, C- D bimodules can be thought of as

A, bifunctors from the A, bi-category CP x D into chain complexes. We will

not pursue this viewpoint further, and instead refer the reader to [S4, §(1j)].

Definition 2.9. A left C-module X consists of the following data:

" For X E ob C, a graded vector space N(X).

" For r > 0, and objects X 0 ,... X,. E ob C, module structure maps

p'4 : home(X,-1, X,) .. home(Xo, Xi) @ N(XO) -- + N(X,) (2.34)

of degree 1 - r, satisfying the following analogue of the A, equations, for each

k:

(-1)i~ p j+ll(X,,7 ... ., xs+j+ 1, I p(x.+i,..., X,+1), x,, ... , xi, n)
PN 81 e sli(2.35)

+Ep (x1,..,x p"(Xs+1, - - - ,Xkn)) = 0.

Here, the sign

I:=nI+ |Ixi| (2.36)
i=1

is given by the sum of the degree of n plus the reduced degrees of x 1,... ,x.
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The first two equations

(pL01)2 =0

ill (a, x )(2.37)
pL, (a, p-f (m)) i p (pe(a), m) - (pl (m

imply that Oll is a differential and that the first module multiplication ypi4 descends

to homology. Right modules have an essentially identical definition, with a direction

reversal and slightly different signs.

Definition 2.10. A right C-module M consists of the following data:

" For X E ob C, a graded vector space M(X).

" For r > 0, and objects X 0 ,..., X, E ob C, module structure maps

p : M(Xo) & home(X1, Xo) ®9 . home(Xr-1, Xr) -+ M(Xr) (2.38)

of degree 1 - r, satisfying the following analogue of the Ao equations, for each

k:

Ik-j+1,
(-1 P -h 1(m x1,rI . .. x,, pexs+1, - - -, 7xs+j), s+j+1, -. - - Xk)

+ (-1) y ( ~(M, X1,..., za), 7 s+1, - -. -, k) = 0.

(2.39)

Here, the signs as usual denote the sum of the reduced degrees of elements to the right:

k

- := |x|. (2.40)
i=a

Again, the first two equations imply that p,' is a differential and that the first module

multiplication yMl descends to homology. Thus, for right or left modules, one can

talk about unitality.

Definition 2.11 (Compare [S4, §(2f)]). A left (right) module is homologically-

unital if the underlying cohomology left (right) modules are unital; that is, for any
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X E ob C with homology unit ex, the cohomology level module multiplication by [ex]

is the identity.

Now, let C and D be A, categories.

Definition 2.12. An A. C-D bimodule B consists of the following data:

" for V E ob C, V' E ob D, a graded vector space 3(V, V')

" for r, s > 0, and objects V 0,...,V, E ob C, Wo,...,W, e ob C', bimodule

structure maps

p'lls :home(V,, Vr) x ... home(Vo, V1 ) x 3(Vo, Wo) x
B (2.41)

x homD (W1, WO) x ... x homv(Ws, W,_ 1) -+ (V,., Ws)

of degree 1 - r -s,

such that the following equations are satisfied, for each r > 0, s > 0:

3(-1)* '-Osi(vr, ... , vi+1, p4  (vi,.. .,vi, b, wi, ... ,w1 ), w +1 - , wS)

+ E(1) p,- ~mi(o,.,..., Iok+i+1p-ie(k+i, - .. Vk+1), ok, ... ,01,b, wi, . .. , 7W,)

+ E(1*- p-1, 1v. .,vb, wi, ...., IW1, poLD(Wl+ 1, - - ,1+A) wl+j+1 -.. -- ,W.S)

=0.

(2.42)

The signs above are given by the sum of the degrees of elements to the right of the

inner operation, with the convention that we use reduced degree for elements of C

or D and full degree for elements of 3. Thus,

S

- = will, (2.43)
i=j+1

k

_k S:= ||wi|| +|bl + E ||vj||. (2.44)
i=1 j=1

Once more, the first few equations imply that pOlI10 is a differential, and the left and

right multiplications pillio and p"Illi descend to homology.
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Definition 2.13. Let C and D be homologically-unital A, categories, and 3 a C-D

bimodule. 3 is homologically-unital if the homology level multiplications [pu1I110]

and [poi1|1| are unital, i.e. homology units in C and D act as the identity.

We will frequently refer to C-C bimodules as simply C-bimodules, or bimodules over

C.

Now, we define the dg-category structure on various categories of modules and

bimodules. For the sake of brevity, we assume that A0 categories e and D have

finitely many objects, and can thus be thought of as algebras over semi-simple rings

R and R' respectively. In this language, a left (right) C-module N (M) is the data of

an R (RP) vector space N (M) together with maps

p ~.: CR RN -+N, r>O
XS :M ® C R > 0(2.45)

yP M OR * _

satisfying equations (2.35) and (2.39) respectively. Similarly, a C-D bimodule 3 is

an R & R'OP vector space 3 together with maps

r Ills :C~
C ®:*OR 3 OR'' *R's -* 3 (2.46)

satisfying (2.42). We can combine the structure maps p'", P", A. for all r, s to

form total (bi)-module structure maps

p:=pB: TC O' B T - 3

pix:=pf: TC N N (2.47)

px := I"m :M TIC -+M.

The hat extensions of these maps

pB : TC & 2 & TD -TC 9 13® TD

Ax : TC N -+ TC & N (2.48)

A M & TC-+ M @ TC.
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sum over all ways to collapse subsequences with either module/bimodule or A. struc-

ture maps, as follows:

2(ck, ,c1, b,d ,... , di) := (2.49)

Z(-1) ck 0 -9 0 cs+1 0 AS (c37,. . ., cb, d0 . ... dt) dt+ di

+ (-1)*Sck 0 . 0 cs+i+1 0 p1(Cs+i, . .. , cs+1) @ c, 0 c1 0n

b @di @ --9 di

)B-(j+t+1)+ (-1*- c9 .. - - 1 - c b @ di @ -. - -9 dj@&

Dp d j+1,.. - -j+t) d j+t+1 -9 -. -& d

AN(ck,.. . ci, n) := (2.50)

ck @9 -. - -@cs+1 @9 ydtN(cs, ... , ci, n)

+ (-1)*c @k -9 -. -9 @cs+i+1 @ p-e(cs+i, .. ., c8+1) @ c, @ - -- 9 ci 0 n

A(m,d1, ... , di) := (2.51)

E(-1)*r p (t1A1(mdi, ... ,7 dt) 9 dt+1 (9 '. -'9 d,

± Z(-1)*- 9m 0 di 0 ... dt 0 pi2(dt+, ... ,d t+j) 0 dt+,+ 1 0 ... 0 d1,

with signs as specified in Definitions 2.12, 2.9, 2.10. Then the A. bimodule and

module equations, which can be concisely written as

ps 0 AS = 0,

pN oAY = 0, (2.52)

p0 o Am = 0,

are equivalent to requiring that the hat extensions (2.48) are differentials.

Remark 2.4. Actually, the hat extensions of the maps pN, pM, yS are the unique

extensions of those maps which are a bicomodule co-derivation with respect to the

structure of TC0MOTD as a bicomodule over differential graded co-algebras (TC, ^e),

(T'D, #ps). A good reference for this perspective, which we will not spell out more, is

[T].
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Definition 2.14. A pre-morphism of left C modules of degree k

(2.53)

is the data of maps

Xj' : Cr ( X -_4 N', r>O (2.54)

of degree k - r. These can be packaged together into a total pre-morphism map

X = rl : TC 0 N -+ N'. (2.55)

Definition 2.15. A pre-morphism of right C modules of degree k

9: M -- + M' (2.56)

911s: M & e**® M', s > 0 (2.57)

of degree k - s. These can be packaged together into a total pre-morphism map

9 = $9'I : M 9 TC -+ NM'. (2.58)

Definition 2.16. A pre-morphism of C-D bimodules of degree k

(2.59)

is the data of maps

7111-" : -*'' + B 'D* 3 B', r,s >0. (2.60

of degree k - r - s. These can be packaged together into a total pre-morphism map

T:= eTRI" : TC & S o T'D - 1'. (2.61

I)
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Remark 2.5. Such morphisms are said to be degree k because the induced map

TY: TC[1] S @9 T'D[1] - '(2.62)

has graded degree k.

Now, any collapsing maps of the form

: TC 9 0 TD -+3'

0 : TC 9 N V-N' (2.63)

p: M 9 TC - M'

admit, in the style of (2.9), hat extensions

:TC 9 B 9 T'D -- TC 9' TD

:TC ON - TC N' (2.64)

A : e -+ M' TC

which sum over all ways (with signs) to collapse a subsequence with 4, V, and p

respectively:

O(ck, ... ., ci, b, di, ...,I d ) :

(-1) C c0 .. - -- @cs+10 O (c,, ..., 1ci, b, di, ...,7 dt) @ dt+1 0 -9 - 4 @d.

)(c , . ... , ci, n)

cE C - -. - @cs+1 @9 O(cs, ... ,7 ci, n).

p(mci ... ., cI) :=

(-)* p(m, ci,.. ., ct) 0 ct+1 0 ... 0 c1.

(2.65)

Remark 2.6. Once more, the hat extensions are uniquely specified by the require-

ments that 4 and , be (left and right) co-module homomorphisms over the co-algebra

(TC, Ae), and that be a bi-co-module homomorphism over the co-algebras (TC, Ae)
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and (T'D, Ai). In this manner, categories of modules and bimodules over A, algebras

give categories of dg comodules and dg bicomodules over the associated dg co-algebras.

See [T].

It is now easy to define composition of pre-morphisms:

Definition 2.17. If 7 1 is a pre-morphism of A, left modules/right modules/bimodules

from Mo to M 1 and Y2 is a pre-morphism of A, left modules/right modules/bimodules

from M 1 to M 2 , define the composition T2 " o"Y1 as:

T2" " 71: 2 0 1 (2.66)

Remark 2.7. Observe the hat extension of the composition agrees with the composi-

tion of the hat extensions, e.g. T2 c 1 "T1 = 2 0 : 1 . i.e. this notion agrees with usual

composition of homomorphisms of comodules/bi-comodules.

Similarly, there is a differential on pre-morphisms.

Definition 2.18. If F is a pre-morphism of left modules/right modules/bimodules

from M to N with associated bimodule structure maps M and p, define the differ-

ential 6T to be:

6 (T) := puo -(1)|$7 oT AM. (2.67)

The fact that 62 = 0 is a consequence of the A, module or bimodule equations

for M and N. As one consequence of 6(Y) = 0, the first order term F
0 |1 , 110 or

_"11I0 descends to a cohomology level module or bimodule morphism. Call any pre-

morphism T of bimodules or modules a quasi-isomorphism if 6(Y) = 0, and the

resulting cohomology level morphism [9] is an isomorphism.

Remark 2.8. We have developed modules and bimodules in parallel, but note now

that modules are a special case of bimodules in the following sense: a left A, module

(right A, module) over C is a E-K (K-C) bimodule M with structure maps p'1 11" -

0 for s > 0 (r > 0). Thus we abbreviate plr1 \10 by prll (and correspondingly, pOI1lIl by

pI*).
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Thus, we have seen that C-'D bimodules, as well as left and right C modules form

dg categories which will be denoted

C-mod-'D

C-mod (2.68)

mod-C

respectively.

2.5 Tensor products

There are several relevant notions of tensor product for modules and bimodules.

The first notion, that of tensoring two bimodules over a single common side, can be

thought of as composition of 1-morphisms in the 2-category of Ao categories.

Definition 2.19. Given a C-'D bimodule M and an D-E bimodule , the (convo-

lution) tensor product over D

M 0,) N (2.69)

is the C - E bimodule given by

* underlying graded vector space

M T 'D o N;

e differential

pQ 0,x : M & T'D o N -+ M 9 T'D D N (2.71)
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given by

P01110(m, di,... , dk,n) =

(-1)*-(+)p)1t(m, di,... , dt) D dt+1 09 0 -- dk 0 n

± m 0 di 0 ..... 0 - dk- 0 I (dks+1,. .. , pd8, n) (2.72)

d(d1+10*. ....7 n.+ (-)*--*+1)ni @di 0 dj (9 pz(dj+ 1, - -. dj+j) (

dj+i+1 0 -- 9 dk 0 n.

* for r or s > 0, higher bimodule maps

pj2"s : 0 M 0 T'D @9 X @E * -+ M 0 T'D @9N (2.73)

given by:

PlIO(c, . . , cr,m,di,... ,dk,n) =

-(j)i (t+1) rItC'. (2.74)
(-1) -(k+)p~Il(c,... , cr, M, di,..., dt) 0 dt+1 0 ... 09) dk O(2 n

t

p0lI'(m, di, ... , dk, n, ei, ... , e,) =

Emoed1o .. --- 9 dk-j @ p j1"(dk-j+1, ... , dk, n, ei, ... , e,) (2.75)

and

p'0ll'= if r > 0 and s > 0. (2.76)

In all equations above, the sign is the sum of degrees of all elements to the right, using

reduced degree for elements of A and full degree for elements of N:

k

~-(k+1) :=I + E I Id I 1. (2.77)
i=t

One can check that these maps indeed give M0&N the structure of an C-E bimodule.

As one would expect from a two-categorical perspective, convolution with N gives a
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dg functor

- ODN: &-rnod-'D -- + C-mod-E. (2.78)

Namely, there is an induced map on morphisms, which we will omit for the time

being.

As a special case, suppose M' is a right A module and N' is a left A module.

Then, thinking of M and X as K - A and A - K modules respectively, there two

possible one-sided tensor products. The tensor product over A

M' O. N' (2.79)

is by definition the graded vector space

M'r ( TA @& NI (2.80)

with differential

dMA : Mr g TA & NI -+ Mr & TA ®& N1 (2.81)

given by

d(m, a, ... , ak,n)-
-(r+ 1) r(

(-1)-(k+ n1,ai, .. .,ar) 9 ar+l -... - ak 9 n

+ m @ai .-.-.--.- akI-s 4((ak-s+1, ... ,an)

-(a+j+1)

+ (-1) -( m,+1) n @ ai @ -- as+, - - -, 43+5) @ as+j+1 0 -- ak@ n.

(2.82)

In the opposite direction, tensoring over K, we obtain the product A-'B bimodule

N OK M'', (2.83)
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which equals NI OK M' on the level of graded vector spaces and has

rIlls
p (ai,.... , ar, n @9 m, bi,7. .. , b,) :

(-1)l"'Ipl (a1,..., ar, n) 0 m

n 0 yi "(m, bi,..., bs)

(-1)|m,|p (n) @ m + n O (m)

0

s = 0, r > 0

r= 0,s > 0

r = s = 0

otherwise

The A, bimodule equations follow from the A, module equations for M and N.

Finally, given an A-3 bimodule M and a B-A bimodule N, we can simultaneously

tensor over the A and B module structures to obtain a chain complex.

Definition 2.20. The bimodule tensor product of M and N as above, denoted

M e&-1 N (2.85)

is a chain complex defined as follows: As a vector space,

M OA-s N:= (M @ TB @ N @ TA)'a, (2.86)

where the diag superscript means to restrict to cyclically composable elements. The
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differential on M OA3_ N is

dmoA, : m bk 0 .. b1 0 n (90a 0 . -0 a, --

Z(-1)#py~'r'*~(ar+1i,-- , al, m, bk, ... , bs+1 ) 0 bs 0 ... 0 bi
r,S

nOal 9- --gar

+ Z(-1)*it m 0 bk 0 ... bi+r+1 0 1 ' (bi+r,, ... , bi+1 ) 0 bi 0 ... 09) biO
i,r

n 0 ai (9 - a,

+ ( I m 9 b 0 --.- b1 On(& a1 -. -0- aj

p"s(aj+1,. .. , aj+,) (9 aj+.,+1 (8 -. -o at

-1 m(b,, ... , bin,, ... , as)o
r,s

a,+1 @ -- a,

(2.87)

with signs given by:

- : an|| (2.88)
n=t

: an|| + In| + ||bm|| (2.89)
n=1 m=1

1 k r

#i,r :lan - m|+ | lbm|l+n|+ lan|| I +I"r. (2.90)
n=r+l m=1 n=1

The sign (2.90) should be thought of as the Koszul sign coming from moving ar+1,... , a,

past all the other elements, applying py (which acts from the right), and then moving

the result to the left.

The bimodule tensor product is functorial in the following sense. If

3~: x -- + N' (2.91)
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is a morphism of 3-A bimodules, then there is an induced morphism

M ®A-B N T M ®A-3 N' (2.92)

given by summing with signs over all ways to collapse some of the terms around the

element of N by the various 7i111, which can be concisely written as

T#(m 0 bi l - - -9 bk@ n 9 a 9 . -- al) := m (bi,...,bkn, ai, ... , al). (2.93)

One can then see that

Proposition 2.1. Via (2.93), quasi-isomorphisms of bimodules induce quasi-isomorphisms

of complexes.

Remark 2.9. There are identically induced morphisms 9# : M A- N -+ M' e_ N

from morphisms 9 : M -+ M'. One simply needs to add additional Koszul signs

coming from moving elements of 3 to the beginning in order to apply 9.

Remark 2.10. Suppose for a moment that the categories A and B have one object

each and no higher products; e.g. A := A and B := 3 can be thought of as ordinary

unital associative algebras over K. Similarly, let M and N be ordinary A - B and

B-A bimodules respectively. Then, the explicit chain level description we have given

above for M 0 A-B N is a bar-complex model computing the derived tensor product or

bimodule Tor

TorA-B( M, N) := M LAB N. (2.94)

Now, note that M can be thought of as a right AP 0 B module and N can be thought

of as a left AP 0 B module. Thus, using (2.79) we can write down an explicit chain

complex computing the tensor product M &Lo P N as

MOT(A0P®B)ON. (2.95)

plus a standard differential. This is a second canonical bar complex that computes

the same Tor group ToranB(M, N) = ToroApB(M, N); in particular these two com-
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plexes have the same homology. There are natural intertwining chain maps explicitly

realizing this quasi-isomorphism, which we would like to emulate in the Aoo-category

setting. However, we stumble into a substantial initial roadblock: there is not a clean

notion of the tensor product of Ao algebras or categories A*P ' 3. We defer further

discussion of these issues to a later point in the paper.

2.6 The diagonal bimodule

For any A.. category A, there is a natural A -A bimodule quasi-representing the

identity convolution endofunctor.

Definition 2.21. The diagonal bimodule AA is specified by the following data:

AA(X, Y) homA(Y, X) (2.96)

rIls ., c',):= 4-1+1 +1+S(c ' (2.97)

with

C1:= |c';||. (2.98)
i=1

One of the standard complications in theory of bimodules is that tensor product

with the diagonal is only quasi-isomorphic to the identity. However, these quasi-

isomorphisms are explicit, at least in one direction.

Proposition 2.2. Let M be a homologically unital right Ao module M over A. Then,

there is a quasi-isomorphism of modules

TA,right : M (A AA -+ M (2.99)

given by the following data:

il : M 9 TA 9 AA @9 AA J M

(M, a, ... , aia,a, , a) -pk++1(1, a, ... ., ai, a, a'... a'1)

(2.100)
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I k

oki= ||all +|lal - 1 + E||am||.
n=1

There are similar quasi-isomorphisms of homologically unital left-modules

TA,eft : AA OA N - N

(al, ... , al, a, ak, ... a1, n) 0 (1)k++11(ai, ... , al , a, ak, ... , a1, n).

(2.102)

and quasi-isomorphisms of homologically unital bimodules

T A,right : 3 0AAA - 3

,nriht:A '' 9 J39 TAOA (9 A** -- 3

(a1,...,ar, b, al,... ,a, a,a2,. .. ,a2) F-

(-1)*-p ;+3+1(1,s+la..., ar, b, at,. .. ,a, a,a , . .. , a2)

(2.103)

A,eft : AAAJ3 -+ S

S g:A*' (9 A,, 0 T A'B 9 A** -- *'B
Ajleft :®OATO®® *

(ai, . . 7., a,., a, all,...,I al , b a2, .. . , a2)1

( 1 * B +rM (ai, ... a,, a, a ,, ., a1, b, a (2 .. 0., a2)

(2.104)

with signs

k

kn:= Inl - 1 + ||aill
i=1

o, S:= ||al +|al - 1 +
n=1

*l, :=1 | |+ b| - 1
n=1

||aI|
m=1

+ ||Ia,11.
m=1
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Proof. We will just establish that (2.103) is a quasi-isomorphism; the other bimodule

case (2.104) is analogous and the module cases (2.102) and (2.100) are special cases.

Also, we omit signs from the proof, leaving them as an exercise. First, suppose that A,

C are ordinary unital associative algebras A, C over semi-simple rings R, R' (the case

p1 = 0, Yk = 0 for k > 2). Similarly, suppose ' is an ordinary unital C-A-bimodule

B (p 110 = 0, so p1i 111 is multiplication by elements from A, p1|1l is multiplication by

C, and p'N' = 0 for r + s $ 1). In this special case, the bimodule

B OA AA (2.108)

has internal differential given by

dBOAAA : BAAA b @ ai - -0 ak(a9 a

(b - ai) 0 ... OakOa

+ b@alo ... (a - ai+1)- aa a (2.109)

i

+b @ ai ... ak_1 @ (ak a),

where we are not allowed to multiply b with a, e.g. d(b 0 a) = 0. The morphism of

bimodules

T A,righ = ykI1I'l : B OA AA -+ M (2.110)

has first order term 31l1l given by {b-a k=0
J"o1i1o : b 0 a1 0 --- 9@ ak 0 a b--+ k(2.111)

0 otherwise.

The cone of this morphism is

Cone('I'il0) := (M @ TA 0 AA) D M[1] (2.112)
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with differential given by the following matrix

dBOAAA 0 ) (2.113)

_"|110 0, 213

This cone complex is visibly identical to the classical right-sided bar complex for B

over A, i.e. the chain complex

B ®TA (2.114)

with differential

d(b8a10- . -ak) = (b-ai)0a 2 -..- ak+ boDa.-. (ai-ai+i)®.1 - ak. (2.115)
i

But for B and A unital, the bar complex is known to be acylic, with contracting

homotopy

:b & ai 0 - - - ak b 0 a ... 0 ak e, (2.116)

where e is the unit of A.

In the general case where 3 and A may have differentials and higher products,

the cone of 3yOI'1l is the complex

(3 0 TA ® AA) D 3[1] (2.117)

with differential

desAAA 0 .(2.118)

Here dBOsAAA is the internal bimodule differential. This differential respects the length

filtration of the complex, and thus we can look at the associated spectral sequence.

The only terms that preserve length involve the differentials p010 and I and thus

the first page of the spectral sequence is the complex

(H*(3) ® T(H*(A)) 0 H*(AA)) e H*(3) (2.119)
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with first page differential given by all of the homology-level terms involving pL and

p0. This is exactly the cone complex considered in (2.112) for the homology level

morphism

H7,t) : H*(B) 9 T(H*(A)) ® H* (AA) - H*(3); (2.120)

hence the first page differential is acylic. E

The case of Proposition 2.2 in which A is strictly unital also appears in [S3, §2].

Now, finally suppose we took the tensor product with respect to the diagonal bimodule

on the right and left of a bimodule 3. Then, as one might expect, one can compose

two of the above quasi-isomorphisms to obtain a direct

TA,left,right Tiet" 0 " A,right : AA 0 3 OA AA ... 2 3, (2.121)

which, explicitly, is given by

|1|s.
A,Left,right

a1@---.. a,@0a 0a' (9---@(9a'o bo(9a'"'@---@a' ('a'(9a'1"@---@9a',®.0r+1+i|1|sjaZli||++ 001k' (2.122)

J:_, p ils - (a1, ... ar, a, ai,.. a'/i, k (ja/g .. at,

b, a", ..., a', a ,ai .. a,) age,. a, ).

up to signs that have already been discussed. There is an analogous morphism

YTA,right,left given by collapsing on the left first before collapsing to the right.

2.7 The Yoneda embedding

Objects in e provide a natural source for left and right e-modules.

Definition 2.22. Given an object X E ob C, the left Yoneda-module W' over e

is defined by the following data:

X(Y) home (X, Y) for any Y E ob e (2.123)
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rl : home(Yr_ 1 , Y) x home(Yr- 2 , Yr-1)x ... x home(Yo, Y) x -±(YO) -+ (Y)

(yr, .Y1, X) 0 (-1)* Y1p,+12

(2.124)

with sign

(2.125)= |x|+ b||yill.-

Similarly, the right Yoneda-module 71 over C is defined by the following data:

(Y) :=home(YX) for any Y E ob C (2.126)

pi":f(Y ) x home (Y,,_1, Y) x home(Y,-2, Y-1) X -.-. x home (Y, Y) -+f 0Y)

(x, y.,, ..., 7y1) F- ps+1 7Y . ..I i)

(2.127)

These modules are associated respectively to the left and right Yoneda embed-

dings, A. functors which we will now describe.

Definition 2.23. The left Yoneda embedding is a contravariant A, functor

YL : CP - e-mod

YL(X):= YX

yd : hom(Xd-_1, Xd) x ---

(2.128)

(2.129)

x hom(Xo, X1) - home-md (WXd 1 X)

(Xd, . 1 ,z) ' (..,)

(2.130)

where #01:= $.,,...,T, is the morphism given by

hom(Y _1, Y) x ... x hom(Yo,Y)xW (Y) -+ f 0 (Yf)

(y, ) (-1)*-df+d+1(yf...,.11)

(2.131)
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with sign
d f

J 14 =Z1xIIImII±ZL 1y3II. (2.132)
i=1 j=1

Definition 2.24. The right Yoneda embedding is a (covariant) Ao functor

YR : C -+ mod-C (2.133)

defined as follows: On objects,

YR(X) :=f.(2.134)

On morphisms

yd : hom(Xdl, Xd) x -. x hom(Xo, Xi) -- + hommod-e ( ro, ) X1
R XO Xd (2.135)

(Xd, ... ,x 1) ' $( ,...,Xd)

where pbg := $I11,...,..d is the morphism given by

X0(Y) x hom(Yf_1.,Yf) x - x hom(Yo, Y) Xd W9(Yo)

(m, yf, . .. ,7 y1) -- pef+d+1(l . 1 i g .,y)

(2.136)

An important feature of these modules, justifying the use of module categories,

is that the Ao Yoneda embedding is full. In fact, a slightly stronger result is true,

which we will need.

Proposition 2.3 (Seidel [S4, Lem. 2.12]). Let C be a homologically unital, and let

M and N be homologically unital left and right C modules respectively. Then, for any

object X of C there are quasi-isomorphisms of chain complexes

Am,x (X) -+ homemod ( ,M) (2.138)

AN,x :N(X) ~+hommoa-e ( x, N). (2.138)
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When M = Yz or X = z, the quasi-isomorphisms defined above

home (X, Z) -+-4 home-mod (z, 3)

home(X, Z) ~ + home-od(,z)

(2.139)

(2.140)

are exactly the first order terms of the Yoneda embeddings Y' and Y', implying

that

Corollary 2.1 ([S4, Cor. 2.131). The Yoneda embeddings YL and YR are full.

In Section 2.13, we will prove analogous results for bimodules.

2.8 Pullbacks of modules and bimodules

Given an A,, functor

(2.141)

there is an associated pull-back functor on modules

3-* : 'lmod -- + A-mod, (2.142)

defined as follows:

Definition 2.25. Given a right ' module M with structure maps p, and an A..

functor a : A - '3, define the pullback of M along a to be the right A module

a*M(Y) := M(a(Y)), Y E ob A

with module structure maps

.r

(2.143)

(2.144)

Here on the right side, a is simply a thought of as living in some M(5(Y)) instead of

a*M(Y).
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Example 2.1. Given an A, category C and a collection of objects {Xi} in C, let X

be the full subcategory of C with objects {XiJ. Then the naive inclusion functor

1 X I: C, (2.145)

induces a pullback on modules

t C-mod - X X-mod
(2.146)

t* mod-C -- mod-X

which is the ordinary restriction. Namely, a C module such as

9'; Z E ob C (2.147)

induces a module

*z (2.148)

over X, in which one pairs Z only with objects in X. We will often refer to this

module simply as % when the category X is explicit.

We can repeat these definitions for contravariant functors, which we will need.

Namely, let

a: AP -+ 'B (2.149)

be a contravariant Ao functor, which consists of maps

1 : A(X, Y) -+ 'B((Y), (X))

and higher order maps

d : A(X_1,) Xd) @ A(Xd-2, Xa_1) A - (Xo, X1) ---+ B ((Xd), a(Xo)) (2.151)
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satisfying the following equations

(2.152)

(notice the order reversal in the ai). In this case, pull-back changes the direction of

the module action

3*: 'B-mod - mod-A (2.153)

Definition 2.26. Given a left 3 module W1, and a contravariant functor a : A'P -' 3

as above, the pulled-back right module a*M is defined by

5*M(X) = M(a(X)), X E ob A

r(, a1 , ... , a,) ar - - - (1,,..., ail), m)
k,41+- -+ik=-r

(2.154)

This entire process can be repeated for bimodules, with contravariant or covariant

functors. Given A,, categories A 1 , A 2 , 13, 32 and functors

j :A 1 -+A 2

S '1 --+32

(2.155)

there is an associated pull-back functor

(0 6)* : A 2-mod-3 2 -+ Ar-mod-'31 (2.156)

defined as follows: If M E ob A 2-mod-3 2, then

(a @ 6)*M(A, B) := M(a(A), 6(B)), A E ob A 1, B E ob 1 (2.157)
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with structure maps

hp 0)*) (ar, ... , a,m , bi,... ,b.)

11 (a .. .7- - , a,...0 ), (2.158)
k,il+---+ik=r ljt+...ji=s

m, 1 63(bi, ... ),---,.'. bs)).

Once more, m is simply the element m thought of as living in M(a(A), S(B)) for

some A, B. Finally, abbreviate the pull-back (a 9 a3)* by simply a*.

The Yoneda embeddings YL and YR behave compatibly with pullback, in the

sense that for any functor F : C -+ D there are natural transformation of functors

T (YL)e -> F* o (YL)) o F (2.159)

T : (YR)e F* o (YR) o F.

We will not need the full data of this natural transformation (the interested reader is

referred to [S4, eq. (1.23)]), but to first order, we obtain morphisms of modules

(TFL)x : Sx F*%gyx F) (2.160)
(TF X : 7r -_+ F*%(.

given by

(TI)I 1 (ai, ... , ar, x) Fr+l(a1,.. .,arx).(
L X (2.161)

(TIF)l1(x,al1,...,,a,) :=F"+1(x,a.. a,)

Finally, tensoring (TF)x and (I)z, we obtain associated morphisms of Yoneda bi-

modules

(T R)x,z := (TI)x 0 (TI)z : 0 z -+ F*Scx) 0 F*%(z). (2.162)

These maps are quasi-isomorphisms if F is. There are also analogous versions of these

natural transformations for contravariant functors G, in which naturally, Yoneda lefts
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and rights get reversed:

('IG)x : Y -+ G*G(X)-
L X G (( 2 .1 6 3 )

('IG)x : x -+_ G* lxy

2.9 Hochschild invariants

In what follows, let A be an A, algebra or category, and 3 an A -A bimodule, fre-

quently referred to as simply an A-bimodule. To such a pair (A,3), one can associate

invariants known as Hochschild cohomology and Hochschild homology. We

momentarily bypass the more conceptual route of defining these as bimodule Ext or

Tor groups, and give explicit co-chain level models, using the A. bar complex.

Definition 2.27. The (ordinary) Hochschild co-chain complex of A with coef-

ficients in 3 is

CC*(A, 3) := homve(TA, 3), (2.164)

with grading

CCr(A, 3) := homgved(DAj, 3[r + j]). (2.165)

Given a Hochschild co-chain E C CC'(A,'B), one can consider the extension

S:TA -M TA & 3 & TA. (2.166)

given by

q5(xk, .. . , xi) := Z(-1)~x 0 - -@xs+1 @ (xj, -. -. ,xzi+1) @ x1 ®** -0 x1.
r,8

(2.167)

with sign given by the degree 1 of # times

0x,41 (2.168)
s=1
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Then the differential is given by:

(2.169)

With respect to the grading, the differential clearly has degree 1.

In an analogous fashion, we give an explicit chain-level model for the Hochschild

homology complex (CC,(A, 3), dcc.).

Definition 2.28. Let A be an A, algebra and 3 an A( bimodule. The (ordinary)

Hochschild homology chain complex CC, (A, 3) is defined to be

CC.(A, 3) := (P OR TA)dias,

where the diag superscript means we restrict to cyclically composable elements of

(93 R TA). Explicitly this complex is the direct sum of, for any k and any k + 1-tuple

of objects Xo, ... , Xk E ob A, the vector spaces

B(Xk, Xo) x hom(Xk_1, Xk) x -.. x homA(Xo, X1). (2.170)

The differential dcc. acts on Hochschild chains as follows:

dcc.(bOx1 0 - -X) =

( -1 y (Xk-j+1, - - ; -, 7,b, 1, .. , b i) 0 (+1 (S-) -.. 9 zXkj

+ (--k b@x, @ -- p(X.I+1 @ - s+j) 0 Xs+5 @ Xk-@z

(2.171)

with signs

k

ip-t :=
i=t

k k-j

0i := ||z, -~.1 |b|+ ||23||+ + .
s=k-j+1 t=1

(2.172)

(2.173)
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In this complex, Hochschild chains are graded as follows:

deg(b x1 -l-- X ):= deg(b) + deg(xi) - k + 1. (2.174)

Example 2.2. Let M be a right C module and N a left C module, and form the

product bimodule N OK M. Then the Hochschild chain complex

CC.(C, N OK M) (2.175)

is exactly the bar complex

MoeN (2.176)

defined in (2.79), up to reordering a term (along with the accompanying Koszul sign

change).

Hochschild homology and cohomology are both functorial with respect to bimodule

morphisms. For example, for a morphism of A bimodules

7T: S -+ S' (2.177)

of degree |7T, the induced map on Hochschild chain complexes sums over all ways to

apply the various 71'Ll" to the element of S along with some nearby terms:

7T : CC,(A, 3) -+ CC,(A, 3')

b ® ai 9 .-.. -S ak Z(-01)T7I1li(ak-j+1, -- ,ak,b, ai,. .. , aj) 0 aj+1 0 --. -akj.
i( 1

(2.178)

where

(2.179)
k-j

E lx,||) - bl + ||X || +|7|J - _ .+'
s=k-j+1 t=1

Moreover, (as one might expect) the induced morphisms T# are quasi-isomorphisms

if Y are.
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There is also a form of functoriality with respect to morphisms of underlying A,

algebras. If

F: A -- + A (2.180)

is an A. morphism (functor), then for any A bimodule 3, there is an induced map

CC.(A, F* (3)) -% CC,(A, s) (2.181)

defined as follows:

b0a1 . - - ak

"b F1 (ai,. . , ail) (9 -- - (ak-i.+1,.. ., ak).
s ii+..-+i,=k

(2.182)

Here as usual b is b thought of as living in 3 instead of F*3. This is functorial and

respects quasi-isomorphisms.

2.10 Module and ring structures

The Hochschild co-chain complex of the bimodule A has a product, giving it the

structure of a dg algebra.

Definition 2.29. The Yoneda product on CC* (A, A) is given by

4 *#(i, .. (1, Xk) :=

E (-1)*pk(x1, ... ,7 i,j 4(Xi41, .. r - - -X(is+1 ... V)X~, z j+1), Xj+1+1, - -. - k)

(2.183)

with sign

k

* :=|4|-(
s=j+L+1

||xs||+
t=i+r+1

Remark 2.11. In categorical language, CC*(A,A) is the direct sum of, for any k
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and objects X... Xk

homA(Xk-1, Xk) x - homA(Xo, X1) - homA(Xo, Xk). (2.185)

Remark 2.12. One can check using the A, relations and the definition of the

Hochschild differential that the Yoneda product is commutative on the level of ho-

mology.

Remark 2.13. Actually, one can define two (almost) commuting products on the

Hochschild co-chain complex CC*(A,A), giving it the structure of an E2 algebra.

The other product comes more directly from the 2-categorical perspective. Namely,

Hochschild cohomology should be thought of as endomorphisms of the diagonal bimod-

ule. Then another product structure arises from composition of endomorphisms.

We will not further develop the E2 structure here.

If A is (homologically) unital, then HH*(A, A) is also (homologically) unital.

There is a cap-product map

n: CC*(A, A) x CC,(A,'3) -+ CC,(A,'B) (2.186)

given by

a n (bezi (9 -. --@Xn) :

(- 1)*pB j+1, - -- ,n, 1, -.. - -,i, (2.187)

a (Xi+1, - - -, 7 i+k), Xi+k+1 -. - .,sz) @9 X,+1 @9 -. -9 - @J

where the sign is

o := |al - |n3| + |il l) - |Jbl +Ja|+ || 1| + ~ + .(2.188)
s~ik+1S=j+1 t=1

Proposition 2.4. The cap product gives HH. (A, 3) the structure of a module over

HH*(A, A).
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Proof. We need to check that

e cap product is a chain map, which follows from verifying

d(a n b) =a n b+ a n db. (2.189)

e cap product is natural with respect to the product structure, namely

(a *#) nb ~ a n (# n b) (2.190)

for Hochschild cocycles a, # and a Hochschild cycle b.

This is an exercise up to sign, involving an application of the A, bimodule relations

for 3 and the definitions of Hochschild cycle and cocycle.

2.11 Hochschild invariants from bimodules

There are alternate chain level descriptions of Hochschild invariants that align more

closely with our viewpoint of using A, bimodules.

Definition 2.30. The two-pointed complex for Hochschild homology

2CC.(A, 3) (2.191)

is the chain complex computing the bimodule tensor product with the diagonal bimod-

ule:

2 CC.(A, 3) := AA o&A-A 3. (2.192)

Observe that the complex 2CC.(A, 3) can be alternatively described as the ordinary

Hochschild complex

CC*(AAa 0A 3). (2.193)

Thus, the quasi-isomorphism of bimodules

Aa 0A 93 -+ 3 (2.194)
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functorially induces a quasi-isomorphism of complexes

(2.195)

explicitly given by

4)(a,aI ... , aa, b, ,1,+..). di)j

E(-1)Mtp+k+1j11| (d1-j+1,- , di, a, ai,., ak, b, 1 . dj) 0 dj+1 @9 -. -0 di-i.

(2.196)

with sign

M:= E( =1 -i+1

k k-i 1-i

|5,i| abI + |IatI+ E II|sI) + | iim. (2.197)
t=1 s=1 m=j+1

Definition 2.31. The two-pointed complex for Hochschild cohomology

2CC*(A, 3) (2.198)

is the chain complex computing the bimodule hom:

2 CC*(A, B) := homA-A(AA, S). (2.199)

Similarly, as one natural interpretation of Hochschild cohomology is as endomor-

phisms of the identity functor or the (derived) self-ext of the diagonal bimodule, one

expects a quasi-isomorphism of complexes

T : CC*(A, 3) ^; homA-A(AA, 3) (2.200)
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Explicitly, if 4 E CC* (A, B) is a Hochschild co-chain then one such map is given by:

TI(4)(x1,. .. , Xk, a, y1,. .. , yI)

1 pI++ (X , ... , Xk, a, 1,. .,yi,4(yi+1, - -- ,y-S),y-S+1, --. -,i)

(2.201)

with sign

(2.202)
j=l-s+1

Proposition 2.5. T is a quasi-isomorphism when A is homologically unital.

Proof. As with previous arguments, we will simply exhibit the result for A = A

without differentials and higher products pk = 0, and similarly for the bimodule

structure (also disregarding signs). In this case,

CC*(A, A) = homvect(TA, A) (2.203)

with differential

id4(x1, .. ., Xk) = 1 - 4(x2, .. ., Xk)

+ 4(X1, .. , Xk-1) - zX

+ E (X1, . .. , 7Xi-Xi+1, . .. , zk).

(2.204)

The two pointed complex is

2 CC*(A, A) := homvect(TA 9 A 9 TA, A) (2.205)
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with differential given by

2d(@)(yi,..., y,,a, xi,... ,x,) = Y1 -$(Y2, .. , y, a,x,.. ., x)

+ O(yi, . .. , y,., ax1, ...., z,_1) - z8

+ Z 1, --. .. , yi -yi+, ... , yr, a, xi,..,xs) (2.206)

+ )(Y1, . .. , y,., a, xi, ... , xj - xj+1,--, x.)

+ 0(yi, . .. , y,--1, y, -r a, x1, ... , x.)

+ 0(yi,..., 7y,., a -X1, X2 ..., 7Xs).

Here we have underlined the bimodule A and boldfaced the bimodule element a for

ease of reading; the main difference from the ordinary Hochschild complex is that one

input, the element a must always be specified, and moreover this element cannot come

outside the Hochschild cochain in the differential 2 d. In contrast A := hom(A®0 , A)

is naturally a subcomplex of the ordinary Hochschild complex CC*(A, A).

Split the 2CC(A, A) differential above into the sum of two types of terms. The

first only involves terms on the left of a

dleft(@l/)(yi,... ,yr,a,z1,...,x,) = Y1- $(y2,...,y,.,a,x,...,x,)

+ E (yi, ... ,yi yi+1, - - -, y, a, x,..., x) (2.207)

+ 0(yi, ... , y,..1, y, -a, x1, ... , x.)

and the second only involves terms on the right

diht (0) (Yi, . .. , yA, X1, . .. , X,) = (yi, ..., y,, a, X1, ...., x,_1) -. X,

+ E (yi, ..,7yr, a, x,..., X- *xj+1 ..., xS) (2.208)

+'(y1, . . , yr, a X1, X 2. ..

The map F : CC,(A, A) - 2CC,(A, A) is given by:

0 r > 0
9()(1,- - y,-, a,71 ... ., -Ts) = (2.209)

a-#(zi,...,x,) r=0
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It is an easy verification that this is a chain map. Let us show explicitly that it

induces a quasi-isomorphism. The Cone of W is the complex

Cone(xI) := CC* (A, A) E 2 CC* (A, A) [1] (2.210)

with differential given by

dCone(qJ) = (2.211)

The second Hochschild complex admits a filtration by "length on the right," i.e.

Fp2 CC(A, A) = ® hom(TA ( A & A0 1, A). (2.212)
Lp

This is compatible under IF with the length filtration on CC(A, A)

F'CC (A, A) = QDhom(A*', A) (2.213)

so we obtain an overall filtration 9 on the complex Cone(I). The zeroth page of the

associated spectral sequence i.e. the associated graded of the filtration is

Gr(9) : homved(A"', A) D 0 homvt(A*k 9 A 0 A®", A). (2.214)
k>O

where the first piece comes from CC* (A, A) and the remainder come from 2 CC* (A, A).

The differential on this page of the spectral sequence acts as follows:

0 E homved(A®', A)

d4 = I(#) 4 e homved(A ® A01, A) (2.215)

diet(#) 4 E homved(A*Ok 0 A 0 A®', A)
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We can view this as a single complex, for each 1, of

homvect(A *"' 0 A®", A) (2.216)
k'>0

with differential

d#(yi, ... , y x1, ... , z. ) = Y1 - 4(y2,. , Yk', xi, ... , XI)

+ #(Y1, . M . *.,y yi+1, - -- ,y', 1, -.. - -, I)- (2.217)

This is visibly a bar complex, admitting for unital A the contracting homotopy

)(#)(y1, .. . , iYk', Xi 7 .. ., zi) = #(yi, ... , y, e, X1, ... ,x,). (2.218)

Hence, the first page of the spectral sequence vanishes and we see that Cone(') is

acyclic.

The general case follows from analyzing the associated length filtration on the

complex computing Cone('I), as in Proposition 2.2 below. Namely, the first page

of the associated spectral sequence gives exactly the homology-level complex (2.210),

which we have just shown to be acyclic. 0

Remark 2.14. Our emphasis on multiple chain-level models for Hochschild invari-

ants, with explicit quasi-isomorphisms between them, may seem contrary to the "de-

rived" or "Morita-theoretic" perspective that the resulting invariants are abstractly

independent of choices. One reason for this exposition is that the open-closed geomet-

ric maps, constructed in Section 5, depend explicitly on a choice of chain complex.

As one consequence of the discussion here, we will obtain the (unsurprising) result

that variants of the geometric open-closed maps with that use alternate (two-pointed)

choices of Hochschild chain complexes are quasi-isomorphic in an explicit fashion.

This is expected but not a priori obvious from the definitions.
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2.12 Split-generation

Let X C C be a full subcategory of a triangulated category. We say that X split-

generates C if every element of C is isomorphic to a aummand of a finite iterated

cone of elements in X. We say a triangulated category is split-closed if any idem-

potent endomorphism of an object Z leads to a splitting of that object as a direct

sum X E Y.

Now recall that, for an A, category C, the category of modules mod-C is nat-

urally pre-triangulated (meaning the cohomology level category H0 (mod-C) is

triangulated)-we can take sums, shifts, and mapping cones of modules, and hence

complexes of modules.

There is a notion of an idempotent up to homotopy [S4, (4b)] which would

allow us to properly extend discussion of split-generation to the chain level. However,

it is also known that a cohomology level idempotent endomorphism can always be

lifted, essentially uniquely, to an idempotent up to homotopy [S4, Lemma 4.2]. Thus,

for our purposes, it is sufficient to make the following definition:

Definition 2.32. Let C be an A, category, and X C C a full subcategory. We say

that X split-generates C if any Yoneda module in mod-e admits a homologically

left-invertible morphism into a (finite) complex of Yoneda modules of objects of X.

If i is the (homology-level) morphism and p is the (homology) left inverse, then

the reverse composition i o p is the idempotent that exhibits the target module as a

homological summand of the larger complex.

Definition 2.33. Call a right module M over X perfect if it admits a homologically

left-invertible morphism into a finite complex of Yoneda modules of objects of X.

Given a collection of objects {Xi} in an A, category C, it is then natural to ask

when they split-generate another object Z. There is a criterion for split-generation,

known to category theorists and first introduced in the symplectic/Ao, setting by

Abouzaid [A3], as follows. Denote by

X (2.219)
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the full sub-category of C with objects {Xi}. Then, one can form the chain complex

r (xg I (2.220)

where the above notation indicates that the Yoneda modules 95, ' are thought of

as modules over X via the inclusion X c e as in Example 2.1. Concretely, this bar

complex is given as

0 0 home(Xik, Z)@homx(Xi,_, , Xi)O. --0homx(Xil, Xi2 )0home(Z, Xil)
k>1 X'1,...,X'k Eob X

(2.221)

with differential given by summing over all ways to collapse some (but not all) of the

terms with a pL:

d(a Xk -- x1 9 b) = (1) *i(a, x,... , i+1) 0 i 0 Xk 9 b

+ Z(-1)*a @9 - (x,+j, 0 ,+1) X, 0 . - -X1 0 b

+ (-1)*, @9p+1( - - - 7 z+ p+1.,..,x1, b),7

(2.222)

where the sign is the usual

i:= bl + E ||xjI|.
j=1

There is a collapsing morphism

SOx z - t home(Z, Z)

a 0 zk -. - - 1 @ i& b -- (-1)*0p~k+2(a, zk, ... , X1,7 b).

which is a chain map, inducing a homology level morphism

[p]:H*(S OxW ) -+ H*(home(ZZ)).
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This map can be thought of as the first piece of information involving Z from the

category C that is not already contained in the X modules z and Wz. The following

proposition relates a checkable criterion involving the map [p] to the split-generation

of Z.

Proposition 2.6 ([A3, Lemma 1.4]). The following two statements are equivalent:

The identity element [ez] E H* (home(Z, Z)) is in the image of [i]. (2.226)

The object Z is split generated by the {Xi}. (2.227)

In fact, the criterion (2.226) in turn implies that we completely understand the

map [p].

Proposition 2.7. If the identity element [ez] is in the image of [p], then the map [p]

is an isomorphism.

Proof. We will show this up to checking signs. First, assume that there is are no dif-

ferentials pi = 0 or higher products p k = 0, k > 2. Denote the ordinary composition

p 2 by -. Then, the map (2.224) is given by

a-b k=0
p:a(xi---xk0b- { (2.228)

S0 otherwise.

Thus, we may suppose that there exists elements ak E hom(Xk,, X) bk E hom(Z, Xik)

such that

ak - bk = ez. (2.229)

Now, the cone of the morphism p is a version of the bar complex where the outermost

elements are both Z and the inner elements range over X:

Cone(p) := hom(Z, Z)[1] z z (2.230)

with differential given by the usual bar differential on 0z 0x z along with the col-
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lapsing multiplication a 0 b h-4 a - b:

a- b k=0
d(a @9 xi -. -k - 9 b) := (2.231)

dyr ( (a xi ... Xk b) otherwise

This admits the following contracting homotopy:

.) : Cone(p) -+ Cone(p)

z - Z(z -ak) bk, z E hom(Z, Z) (2.232)

a 0 x1 9 . 0 X @ 9 b E ak @ (bk -a) 9 x1 9 ... -@ 9 b.

One can check that, as (2.229) holds, .) satisfies

db. - SJd = id (2.233)

as desired.

Now, suppose there are non-trivial differentials. Then the map (2.224) is still

given by

a-b k=0
I:a(x-...--@xk&b (2.234)

10 otherwise.

The condition that [ez] is in the image implies that for some representative ez, there

exists ak E hom(Z, Xi.) bk E hom(Xi., Z) such that

d(Z ak o bk) =0 (2.235)

E ak -bk = ez.

But the differential on the length two words in the bar complex z gx z only

involves p 's, so the element E ak 0 bk descends to the homology level bar complex

H*(z) @H*(x) H*(Z). Thus taking the Cone of t, and looking at the first page of the

spectral sequence associated to the length filtration, we conclude by reduction to the

previous case.
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Now, we reduce the general case to the dg case described above as follows. Let

( (2.236)

denote the image of the subcategory X under a given full and faithful functor

:e (2.237)

into a dg category D (for example, we could take F to be the right Yoneda embedding

YR). Denote by

Z:= F(Z) (2.238)

the image of the object Z under F. We claim that F functorially induces the following

homotopy commutative diagram:

Sx >i r (2.239)

Ile (F)l
home(Z, Z) homD(Z, Z)

Here (F), is defined as the sum over all ways to apply terms of the functor F to

portions of the bar complex % O ' except for collapsing maximally

(F)!(ax1 0 ... xk b) :=

E Fi' (a, x1 ,.. , xi- 1) 9 ... - Fi" (xk-i.+2, - -, Xk, b). (2.240)

s>2 ii+...+i,=k+2

If (2.239) held along with the equivalences, then we would be done by reduction to

the dg case, as D is a dg category. Now, the commutativity of the diagram follows

from the Ao functor equations for the functor F, which take the following form (as
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'D is dg):

pitD(Fk+ 2(a,x1,. .. Xk, b)) + A p2 (Fi(a, x, ... , xi1 ), Fi2(xii, - - ,xkb))
ii+i 2 =k+2

= F1 (pi_+2(a, x 1,... ., X, b)) + F(dyrz ®z (a, x 1 ,... , Xz, b)).

(2.241)

where F above is thought of as the total functor

F = EDFd : TC -+D (2.242)

In other words, (2.241) tells us that

F1 o Ie- o (F)! o F ± F o 4r , (2.243)

so the total functor F implements the homotopy between the two composites in the

diagram (2.239).

Finally, it remains the check the equivalences in (2.239). We already know F 1

induces a quasi-isomorphism by assumption, so we just need to check (F)!. This could

be done by hand, but we will present an alternate naturality/functoriality argument.

First, note that the bar complexes in (2.239) can be re-expressed by Example 2.2 as

Hochschild homology complexes

CC* (X, 4 OK ~(2.244)

CC,(X, X K AO ).

by reordering the positions of 1z and 14 (with the Koszul sign change given by the

gradings) Now, we note by (2.162) that there is a natural morphism of bimodules

TLR: Oz 0K S - F*14 Ox F* 7. (2.245)

By functoriality with respect to bimodules (2.178), we obtain a map on Hochschild
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complexes

(TFR)# : CC.(Xz 0 OK -+ CC(3, F*( LKb)). (2.246)

Now, by (2.182) the functor F also gives a functorial map on Hochschild complexes

F#:CC* (X, F* (WL OK ~) +CC* (X, L OK W:0 (2.247)

We now observe that the composition

F# o (' ) (2.248)

is exactly the map (F)!. Thus, the fact that (F)! is a quasi-isomorphism follows from

the fact that F is full, hence the individual maps in (2.248) are quasi-isomorphisms.

5

Remark 2.15. Actually, the commutative diagram (2.239) holds whether or not the

target category 'D was a dg category.

Since the converse of the Proposition 2.7 is trivially true, we see that

Corollary 2.2. The following three statements are equivalent:

The identity element [ez] E H* (home(Z, Z)) is in the image of [[p]. (2.249)

The object Z is split generated by the {Xi}. (2.250)

The map [p] is an isomorphism. (2.251)

Proposition 2.8. Let Y : E -+ 'D be an Ao functor, such that for a full subcategory

X C C, T is quasi-full. Then, if X split generates E, T is quasi-full on (.

Proof. This result does not have a clean proof in the literature. The case that I

(non-split)-generates C can be found in [S4, Lemma 3.25]. Parts of the argument for

the split-closed case are in [S2, Lemma 2.5]. 5
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There are some final definitions we will need in the next section.

Definition 2.34. A C-'D bimodule 3 is said to be perfect if it is split-generated by

a finite collection of Yoneda bimodules

Yx OK y, (2.252)

Definition 2.35 (homological smoothness, compare [KS, §8]). An A(o category C is

said to be homologically smooth if the diagonal bimodule CA is a perfect C - C

bimodule.

Remark 2.16. It is known that the d9 category of coherent sheaves on a variety

X is homologically smooth if and only if X itself is smooth in the ordinary sense.

This provides some justification for the usage of the term "smooth." See for example

[Kr, Thm. 3.8] for an exposition of this result in the case of affine varieties.

2.13 Module and bimodule duality

We have seen that the convolution tensor product with an C-D bimodule 3 induces

dg functors of the form

-®e 3 : mod-C - mod-'D
(2.253)

3 O - : 'D-mod -+ C-mod

We can also define dual, or adjoint functors

home-oa(-, 3): C-mod -- mod-'D (2.254)

hommoad(-,B) : mod-'D -+ C-mod. (2.255)

Definition 2.36. Let M be an A, left module over a category C, and 3 a C -'D

bimodule. The right 'D module

homemoA (M, 3) (2.256)
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is specified by the following data:

* For each object Y of D, a graded vector space

home-mo(M, 3)(Y) := home-md(M, 3(-, Y)) (2.257)

which is the data of maps

= ,11 : Dx,...,x, home(X,_1, X,)x -. home(Xo, Xi) x M(X) --+ 9(X,, Y).

(2.258)

* A differential

p11me-m0a(M, : homemo (M, 3)(Y) -- + home-mdo(M, 3)(Y)

given by the differential in the dg category of left C modules

dY = T o Am - IpB o3 .

(2.259)

(2.260)

Above, yB is the total left-sided bimodule structure map op .

Higher right multiplications:

p'I : home-od(M, 3)(Yo)x homD (Y, Yo) x - x homD(Y, Y,) -+

home-mod (M, B)(Y 8)

given by

whr p.i the y.,) := specifiE home-m (M, (-, Y,))

where 7,,.,,is the morphism specified by the following data

(2.261)

(2.262)

1y1.. (X1 , - - - , Xk, m) = y "(X1,. .. ,7 XiT-lxi+1, - - - , Mk, m), y1,.. ., ys,

(2.263)
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Remark 2.17. Note that for any C -D bimodule 3, 3(-, Y) is a left C module with

structure maps y , for any object Y E ob D. This is implicit in our construction

above. Similarly, 3(X, -) is a right D module with structure maps po[L\".

Definition 2.37. Let X be an Ao right module over a category D, and 3 a C -'D

bimodule. The left C module

hommo -I(N, 3) (2.264)

is specified by the following data:

" For each object X of C, a graded vector space

hommo-& (N, 3) (X) hommo - (N, 3(X,-)) (2.265)

which is the data of maps

s 9': eo,...yN(Y) x hom (Y1, Yo) x ... homv(Y.,, Y 1 ) -+ 3(X, Y).

(2.266)

" A differential

P m (NB) hommoa-(N, )(Y) -+ hommoa-(N, )(Y) (2.267)

given by the differential in the dg category of right D modules

d9=9ojp - pjo. (2.268)

01118

Above, y.ts is the total right-sided bimodule structure map epo

" Higher left multiplications:

pr1 : home(Xr,,X,) x - x home(Xo,Xi) x hommo& 1D(N, 3)(Xo) -

hommod-i (N, 3)(Xr)

(2.269)
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given by

p'I(x,. ... ., x 1 , 9) := 9,....,x1 E hommoa-D(N, B(Xr, -)) (2.270)

where 9x.,.. is the morphism specified by the following data

9,...,1 (nyi, .. , y1) =

(- )* (x,., ... , zi, 9"'-j(n, yl, ... , Iyj+1), us, - y1) (2 71

with sign

* = |S(I -( y;). (2.272)
i=1

Definition 2.38. When the bimodule in question above is the diagonal bimodule CA,

we call the resulting left or right module home-maa(M, CA) or hommod.e(N, CA) the

module dual of M or N respectively.

Remark 2.18. The terminology module dual is in contrast to linear dual, another

operation that can frequently performed on modules and bimodules that are finite rank

over K (see e.g. [S3]).

Now suppose our target bimodule splits as a tensor product of a left module with

a right module

' = M K N. (2.273)

Then, given another left module 'P, the definitions imply that there is a natural

inclusion

home-mod (, M) OK '- home-md (P, M OK N) (2.274)

Lemma 2.1. When P and N are Yoneda modules (or perfect modules), the inclusion

(2.274) is a quasi-equivalence.

Proof. We suppose that ' and N are Yoneda modules Wx, z, and compute the
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underlying chain complexes, for an object B:

home-mod(x, M OK ' (B) := home-o(x, M O home(B, Z)) (2.275)

~ M(X) OK home(B, Z) (by Prop. 2.3). (2.276)

and

home-mo( x, M) OK 1 z(B) ~ M(X) OK hom(B, Z) (by Prop. 2.3). (2.277)

The inclusion (2.274) commutes with the quasi-isomorphisms used in Proposition 2.3.

We deduce the result for more general perfect modules by noting that as we vary '

and N in (2.274) we obtain natural transformations that commute with finite colimits,

hence they remain isomorphisms for perfect objects.

Similarly, given a right module Q, there are natural inclusions

M 0 hommoa-D(Q, N) " hommo-D(Q, M OK N)- (2.278)

Lemma 2.2. When Q and M are Yoneda modules or (perfect modules), the inclusion

(2.278) is a quasi-equivalence.

Remark 2.19. There are also analogously defined functors on modules given by Hom

from a bimodule:

home-o('B,-) C-mod - 'D-mod (2.279)

hommo-(B,-) : mod-'D -+ mod-e. (2.280)

We will not need them here.

The following proposition in some sense verifes that module duality is a sane

operation for homologically unital Ao categories.

Proposition 2.9. Let X be an object of a homologically unital A(, category C and Wx,
x the corresponding Yoneda modules. Then, there is a quasi-isomorphism between
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the module dual of '; and Y , and vice versa:

home-mod( x, CA) ~

hommoa-e(x, CA) ~ WX.

Proof. We verify first that the module dual

home-mod (x, CA)

is identical in definition to the pulled back right module

x:= Y*Vf(X),

using the definition of pullback in Section 2.8. By the definitions in that section,

(2.284) is the right module is given by the following data:

" a graded vector space

N(Y) := home-moa(YL(X), YL(Y)) = home-mo (YL(X), CA(., Y)) (2.1

" differential
p10 (2.

given by the standard differential in the dg category of modules in (2.285).

285)

286)

* bimodule structure maps given by

p1" : N(Yo)x home(Y1, Yo) x . . . home(Y, Y,- 1) - N(Y,)

p11"(N, y1, ...,I y,):= p ( "( -s+ ,---,y)---,Y$ 1---,yi, )
k YL(

= p 9 ( .( , y,), N).

(2.287)
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The last equality in (2.287) used the fact that since C-mod is a dg category, pilr
YL(X)

is p' in the category of modules when k = 0, p 2 when k = 1, and 0 otherwise. Now,

recall from (2.130)-(2.131) that

Yy,..., y,) :=# 1,. Ehome-A(Y(Yo), Y(Y,)) (2.288)

is the morphism given by the data

(.1 .. , x,, a)= p, 1+(x1. .. , x, a, y1, ... ,yS) (2.289)

so by definition the composition

pl-mod(dki.,.,N) E N(Y) = home-mo(, ,) (2.290)

is o. o N, i.e.

I-mody,...,y,N)rl(x,.,xn) =

k

(2.291)

This is evidently the same as the definition of home-mod(VX, CA).

Thus, the first order term of the contravariant natural transformation

(TIIY)x : fx -_+ YL Y()-2-292)

defined by an order reversal of (2.160) provides the desired quasi-isomorphism when

C is homologically unital.

An analogous check verifies that hommo-e(.x, CA) is exactly YR* n(X) a

similar fashion, the first order term of the natural transformation defined in (2.160)

(TYR)X : -- YR Y(X) (2.293)
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gives the desired quasi-isomorphism.

Proposition 2.10 (Hom-tensor adjunction). Let M and N be left and right C mod-

ules, and 3 a C bimodule. Then there are natural adjunction isomorphisms, as chain

complexes

home-e(M OK N, 3) = home-mod(M, hommod-.e(N, 3)) (2.294)

home-e(M OK N, 3) = hommod-e(N, home-md(M, 3)). (2.295)

Proof. Up to a sign check, we will show that the two expressions in (2.294) contain

manifestly the same amount of data as chain complexes; the case (2.295) is the same.

A premorphism

,T: M -+ homm-e (N, 3) (2.296)

is the data of morphisms

711 : home(X,_1, X,) x - x M(Xo) -+ hommoNd-e 3) (2.297)

sending

c1 0 ... 0 ck x -+ 71 1 (ci, ... ,ck, x) E hommod-e(N, 3(X, )). (2.298)

Associate to this the morphism

_T E home-e(M @K N, 3) (2.299)

specified by

Z11|s(a1, ... ar, (x 0 y), bi, ... b) : )(,...,a,,x) (y,bi,..., b.). (2.300)

This identification is clearly reversible, so it will suffice to quickly check that the
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differential agrees. We compute that

6-' = ST AM - phom(X,2) 0 -. (2.301)

By the correspondence given above, T o j is the morphism whose I s terms corre-

spond to

- 1(ai,.., ar', p'm '(a,'+1, . .,a,. X) @9 y, bi, ... b,)

+ j:ry-'+1"~(a1, ... ., aj, pek(ai+1 , ... ., ai+k), ai+k+1, .. ., ar, x (9 y, b1, .. ., bs).

(2.302)

In the second term of (2.301), there are two cases. First, i ((1, ... ar, x))

is the differential

Y(ai,..., ar, x) oApx - p7 o(a 1,...,a,, x), (2.303)

a morphism whose 1| s terms correspond to

-± Z '(1, . .. . , a,., X 0 "'(y, bi, 7 . .. , b, b+.. , b))

+ E rl+(a1, ... ., a,.,x @ y, bi,...,7 bj, pet(bj+1, ... bj+1), bj+,+1, .

and

pB (r"(1,. , X,. x9 y, bi, ... by), b.9+1, -. -7. bs)

respectively. Finally, there are higher terms

p'ho'q,B)(ai,. . a',, -''(a,'+1, -. a,, X))

whose I|s terms correspond exactly to

p (1, ... , a', - (a,'+1, .. ,a,, x y,bi, . .. , b'), bg+1, -. . b,).

, b,)

(2.304)

(2.305)

(2.306)

(2.307)
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Thus, the differentials agree.

Using adjunction, we can rapidly prove a few facts about bimodules.

Proposition 2.11. There is a quasi-isomorphism of chain complexes

home&e(V 0 ', CA) ~ home(Z, X).

Proof. By adjunction and module duality, we have that

home-e('9 0 %, CA)

(2.308)

(2.309)

(2.310)

(2.311)

~ home-moa(Z', homX).-(, )

~hom e-moa( I, 1)

~home (Z, X).

5

Strictly speaking, the next fact is not about bimodules, but it will be useful for

what follows.

Proposition 2.12. Let A and B be objects of a homologically unital category C.

Then, the collapse map

(2.312)

defined by

a & cl 9 -9 -ck 9 b-4 1&2 (a, ci, ... ckb). (2.313)

is a quasi-isomorphism.

Proof. One can see this result as a consequence of Corollary 2.2, as e split-generates

itself. More, one could examine the cone of p and note that it is exactly the usual

A,, bar complex for C. Alternatively, here is a conceptual computation using module
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duality that the chain complexes compute the same homology:

G' ge ' ~ home-mod(Y, (A) C Ys (2.314)

Shome-mod %(, CA Ge WB) (2.315)

home-md(WI, B) (2.316)

home(B, A). (2.317)

Here, the justification for our ability to bring in ' in (2.315) is analogous to Lemma

2.1. 0

Proposition 2.13 (Kiinneth Formula for Bimodules). There are quasi-isomorphisms

home(X', X) 9 homv(Z, Z') ~ homemod(x, Wx,) GK hommod-( , ,)

~~~ ~ hmofx9 , (&, @r 9).

Proof. Using adjunction and the Yoneda lemma, we compute

home1(V G / , ) = home-od(Wx hommo(d- , 'x, G 15,))

(2.318)

(2.319)

~home-o(x, x hommo-(, r,)) (Lemma 2.2)

(2.320)

home (X', X) & hommo-(& , ,)

~ home(X', X) 9 homD(Z, Z').

(2.321)

(2.322)

One can check that the maps in this computation are compatible with the natural

inclusions

home-mod (Yx, x,) OKhommoa-o( ', Y,) - home-D( x , G, ). (2.323)

given by sending a pair of morphisms T, S to the morphism

(y @ 9)'Ili" := T1 @& 911G s (2.324)
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5

We can now attempt to replicate the duality procedure for bimodules. Suppose

first we were in the setting of an ordinary bimodule B over an associative algebra

A. An A bimodule structure on B is equivalent to a right Ae := A 0 A'P module

structure, meaning that one can emulate the above process and define the dual of B

to arise as Hom into some Ae bimodule M. The basic example is the case M = the

diagonal A* bimodule, A OK A as a graded vector space.

Rephrasing everything in the language of bimodules over A, an Ae-bimodule struc-

ture on the graded vector space

A OK A (2.325)

is the datum of a left and right A' module structure, i.e. the data of two A bimod-

ule structures, an outer structure and an inner structure. We naturally arrive at a

definition that seems to have been first studied by Van Den Bergh [vdBl].

Definition 2.39 (Van Den Bergh [vdBl], Kontsevich-Soibelman [KS], Ginzburg [G]).

The inverse dualizing bimodule of A is, as a graded vector space

A' := Ext' (A, A OK A)- (2.326)

where Ext is taken with respect to the outer bimodule structure on A 0 A. The inner

bimodule structure of A 0 A survives and gives the bimodule structure on A!.

More generally, one can define the dual bimodule to B to be

B := 0Ext.(B, A OK A)[i], (2.327)

with the same bimodule structure as in the definition.

We would like to emulate the definition of B in the A, setting and define, for a

bimodule B over an Ao category C, a bimodule dual

'3 " =" home-e('B, CA OK CA). (2.328)
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Remark 2.20. The reason we have put the above equality in quotes is that "CA OK C'A

is not a bimodule or even a space with commuting outer and inner bimodule structures,

unlike the associative case. It can, however, be thought of as a 4-module, a special

case of a theory of A. n-modules recently introduced by Ma'u [Ma]. A 4-module

associates to any four-tuple of objects (X, Y, Z, W) a chain complex, and to any four-

tuples of composable sequences of objects

X(Xo,.., Xk), (Y 7 . .. , Yi), (ZO7... , Z,), (Wo, ... , Wt)) (2.329)

operations pk*s\tIl satisfying a generalization of the A, bimodule equations. In the

same way that one can tensor/hom modules with bimodules to obtain new modules,

one can tensor/hom bimodules with 4-modules to obtain new bimodules. The process

we are about to describe is a special case of a general such theory, which has not been

completely described.

Definition 2.40. Let B be an A, bimodule over an A, category C. The bimodule

dual of 3 is the bimodule

3: bome..e(S, CA OK CA) (2.330)

over C defined by the following data:

e For pairs of objects, (X, Y), 3!(X, Y) is the chain complex

231(X, Y) home.e(B, W' OK S) (2.331)

which we recall is the data of, for k,l ;> 0 and objects A0,... , Ak, B0 , ... ,Bi,

maps

Tk11|' : home(Ak_1, Ak) ® - - home(Ao, A 1 ) @ 3(AO, BO)

9 home(B 1 , Bo) - - - 0 home(Bi, Bi_ 1 ) (2.332)

-+ Si(A) OK % (BI).
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T: Te 0B 9 TC -+ x Ok'y.

Then, the differential is given by the usual bimodule hom differential

010
pti_(Y) = -T o) ±a t0y o9.

for collections of objects (XO,..., X,,Yo,...,Y), maps

p/iS : homB(X,., Xr) 09 .® home (Xo, Xi) ®'B!(Xo, YO)

@ home (Y, Y) @ -.. home(Y, Y,_1 )

-* 'B(Xr, Y).

defined as follows:

pAB!" = 0 if both r, s > 0.

p_' 0 (x,.. ,x1, #7) = ( .1,4) E 'B!(X,. Y)

where 'I((r. is the bimodule map whose k|ll term is:

4)Ds .. .1ai b, b,..,b):

( 1* (e ., .. 7i ,b' ...,7 bi) @9 id)

o kI1.-l'a b, ... ,a1, b, b, ... , b'+1)-

with sign

: |bil I.
i=1

PD!"(#,y1 . ,YS) = '(,y 1 ,...,y,) E '(X, Y)

(2.333)

(2.334)

(2.335)

(2.336)

(2.337)

(2.338)

(2.339)

(2.340)
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where ( . is the bimodule map whose k|ll term is:

<D (a11, .. . , b b 31 , i.. ., bi) :(0kIIi.,. (a bb

(id k & p l (ak, ... , ak'+1, -,1,
k'<k

(2.341)

o <Ok-k'I1I (ak,, ... , a1, b, bi,..., bl).

There is a more intrinsic definition of 'B, analogous to the relationship described

in (2.283)-(2.284) in terms of Yoneda pullbacks. Let '3 E ob C-mod-C be a specified

bimodule. Take the right Yoneda module over this bimodule

' E ob mod-(C-mod-C). (2.342)

This is a right module over bimodules. By restricting via the natural embedding

C-mod 9 mod-C - C-mod-C (2.343)

we think of 6 as a right dg module over the category of split bimodules, e.g. the

tensor product

C-mod 0 mod--C. (2.344)

Since a right dg module M over a tensor product of dg categories C'D is tautologically

a C'P - D bimodule,

E ob (C-mod)*-mod-(mod--). (2.345)

Now, recall in Section 2.8 that for functors

(2.346)

(2.347)
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we defined a pullback functor

(a 0 &6)* : CP-mod-'D -- A-mod-93. (2.348)

We can now apply this construction to (2.345), using the left and right Yoneda em-

beddings

YL: C -+ (G-mod)*

YR: C -+ (mod-C)
(2.349)

Proposition 2.14. The bimodule dual of 3 is equivalent to the C-C bimodule

(2.350)

Proof. We omit a proof of this fact for the time being, which essentially follows by

comparing definitions as in Proposition 2.9.

As a first step, we can take the bimodule dual of a Yoneda bimodule.

Proposition 2.15. If 3 is the Yoneda bimodule

YX OK SZr (2.351)

then 3! is quasi-isomorphic to the Yoneda bimodule

(2.352)Yz (9K Yx.

Proof. By definitions, there is a natural inclusion

hommo-e( z, CA)0Khome-mod(x, CA) e-+ home-mo-e(x0' , CAKCA)- (2.353)

inducing a quasi-isomorphism by Proposition 2.13. It follows immediately from in-

spection of Definition 2.40 that this inclusion can be extended to a morphism of Aoo

bimodules. Thus, by Proposition 2.9, we conclude. 0
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If a vector space V is finite dimensional, the linear dual Vv satisfies the property

that

Vv 9 W - homvect(V, W). (2.354)

One expects, under suitable finiteness conditions, a similar fact involving the bimodule

dual. The precise statement is

Proposition 2.16. If Q is a perfect C -C bimodule, then Q1 is also perfect and for

perfect B there is a natural quasi-isomorphism

Q! ®e-e 'B ~-home.e(Q,'3). (2.355)

Proof. The perfectness of Q! follows from the fact (Proposition 2.15) that duals of

Yoneda bimodules are Yoneda bimodules; hence we see that if Q is a summand of a

complex of Yoneda bimodules, Q1 is too. (Implicitly, we are using the fact that the

duality functor commutes with finite cones and summands.)

Now, there is a natural transformation of functors

E": home-e(-, CA OK CA) Oe-e ' -+ home-e(-, CA oe '3 oe CA) (2.356)

given by, for a bimodule Q, the natural inclusion of chain complexes,

home-e(Q, CA OK CA) e-e '3 - home-e(Q, CA ®e 'B e CA). (2.357)

Concretely, this is the map

o:b i x .. 9 @ 9 b 9 y1 9 -- yl..®yo-+q 1 . ,xkb,yl...,y, (2.358)

where 2j,...,kb,,,1,..., , E home-e(Q, CA ®e 'B ®e CA) is specified by the following data:

....,2k,b,yi,...,y,(ai, . .. , ar,q, b1, ... , b,)

#(a1, ... ,7 a,., q, bi,7..., b.,))(x1 @ -.. - - 0x b 9 y1 9 -.. -- D y2).

(2.359)
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Here the operation 9 is the reversed tensor product

(a & b)5(ci 9 - -. @ ck) := b 9 ci .. - -ck O a, (2.360)

extended linearly. For Q and 3 both Yoneda bimodules of the form lxz :' x @z

and , 0 z, we claim the natural transformation C is a quasi-isomorphism. This

follows from the computations

homee( x ® Tz, e OK eA) Oe-e ( -(2.361)

('s ® Wz) Oe-e (c x KZ (2.362)

(1x Oe x) OK (%' Oe ) (2.363)

~ hom(X', X) OK hom(Z, Z') (Proposition 2.12). (2.364)

and

home.e(x 0 'z, O Oe (WxI 0 1 z,) Oe CA) (2.365)

~ home-mo (Yx, CA Oe WxI) OK hommo-e(z, z s'e CA)

(2.366)

home-mod(x, x OK hommod-e(, Z') (2-367)

hom(X', X) OK hom(Z, Z'), (2.368)

which are compatible with the morphism L.

Since the natural transformation E commutes with finite cones and summands,

we see that for perfect Q and 3, there must be a quasi-isomorphism

co : home-e(Q, CA OK CA) Oe-e B -+ ome.-e(Q, CA ge 3 Oe CA). (2.369)

Now, postcomposing with, e.g. the quasi-isomorphism

TA,left,right : A e B Oe CA -- 3 (2-370)
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defined in (2.121) gives the desired quasi-isomorphism.

We now specialize to the case 3 = CA.

Definition 2.41. The inverse dualizing bimodule

C! (2.371)

is by definition the bimodule dual of the diagonal bimodule CA.

As an immediate corollary of Proposition 2.16,

Corollary 2.3 (Cl represents Hochschild cohomology). If C is homologically smooth,

then the complex

C! ge--e S (2.372)

computes the Hochschild cohomology HH*(C, 3).

As described above, an explicit quasi-isomorphism between this complex and the

complex 2 CC,(C, 3) is given by

A : C! 0e.e 3 -+ 2 CC*(C, )

fp :9 x1 l .. -xk e b 9 y10 9 --- yz F,,1,...,xkbj,...,,y E home-e (CA, 3)

(2.373)

where F := 4,,. is the morphism given by

(4,r~'IlI~s'(a+ 'Ils',) al...®kby ,"®a/)
IF(a,1, .. . , ar, c~bi, ...,7 b,) := AZef , i .. , ',

(o -r I-8 (a,-'+1, - - - , a,. c iA ... b,,)g(x1 Xk - 9z b @ y1 @ --9 yj)),7

bs'+17, .. b.).

(2.374)

Here 9 is the reverse tensor product defined in (2.360), and TA,eftright is the bimodule

morphism given in (2.121).
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Chapter 3

Symplectic cohomology and

wrapped Floer cohomology

3.1 Liouville manifolds

Our basic object of study will be a Liouville manifold, a manifold M 2" equipped

with a one form 9 called the Liouville form, such that

dG = w is a symplectic form. (3.1)

The Liouville vector field Z is defined to be the symplectic dual to 0

(3.2)izw = 6.

We further require M to have a cylindrical (or conical) end. That is, away from

a compact region R, M has the structure of the semi-infinite symplectization of a

contact manifold

M = f Uas1 8M x [1,+oo),
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such that the flow Z is transverse to &M x {1} and acts on the cylindrical region by

translation proportional to r, the symplectization coordinate:

Z = r9r. (3.4)

The flow of the vector field Z is called the Liouville flow and denoted

, I (3.5)

where the time flowed is log(p). We henceforth fix a representation of M of the form

(3.3).

Remark 3.1. One could have instead begun with a Liouville domain, an exact

compact symplectic manifold M with contact boundary &M, such that the Liouville

vector field Z is outward pointing along 8M. One then integrates the flow of Z in a

small neighborhood of the boundary to obtain a collar neighborhood am x (1 - c, 1]

and then attaches the infinite cone (3.3) to get a Liouville manifold. This process is

known as completion.

On the boundary of the compact region A

am:= 4 x {1}, ((3.6)

(3.7)0 := 01a9R is a contact form.

am x [1,+00), (3.8)

the Liouville form is given by rescaling the contact form

0 = r6. (3.9)
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Figure 3-1: A Liouville manifold with cylindrical end.

Moreover, there is an associated Reeb vector field on OM

R

defined in the usual fashion by the requirements that

d5(R,.) = 0.

6(R) = 1.

(3.10)

(3.11)

Via the product identification (3.3), we view R as a vector field defined on the entire

conical end.

Now, we consider a finite collection ob W of exact properly embedded Lagrangian

submanifolds in M, such that for each L E ob W,

0 vanishes on Ln WM x [1, +o). (3.12)

Namely, the intersection OL of L with OM is Legendrian, and L is obtained by

attaching an infinite cylindrical end &L x [1, +oo) to Li" = L n M. In addition, for

each L E ob W,

choose and fix a primitive fL : L -+ R for OL.L (3.13)
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By the above condition, fL is locally constant on the cylindrical end of L.

To fix an integer grading on symplectic cohomology and W, we require each L E

ob W to be spin, and have vanishing relative first Chern class 2c 1 (M, L) E H 2 (M, L).

We additionally need to

Fix a spin structure (and orientation) on each L. (3.14)

Fix a trivialization of (AeT*M)0 2 , and a grading on each L. (3.15)

We will implicitly fix all of this data whenever referring to a given Lagrangian.

We restrict to a class of Hamiltonians

X(M) c C* (M, R), (3.16)

functions H that, away from some compact subset of M satisfy

H(r, y) = r2 . (3.17)

Consider a class of almost-complex structures 01 (M) that are rescaled contact type

on the conical end, meaning that

1
-0 o J = dr. (3.18)

r

This implies in particular that J intertwines the Reeb and r directions:

J(R)=Or 
(3.19)

J(r) = -R.

Remark 3.2. Our class of complex structures differs from those used by Abouzaid [A3]

and Abouzaid-Seidel [AS], who consider almost complex structures satisfying 0 o J =

dr. The difference will allow us to prove compactness for operations that involve a

general class of perturbations that differ from functions of r by a bounded term.
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We assume that 0 has been chosen generically so that

all Reeb orbits of 0 are non-degenerate, and

all Reeb chords between Lagrangians in ob W are non-degenerate.
(3.20)

3.2 Wrapped Floer cohomology

Fixing a choice of H E 'J(M) define

X(Lo, L 1 )

to be the set of time 1 Hamiltonian flows of H between LO and L 1 . Given the data

specified in the previous section, the Maslov index defines an absolute grading on

X(Lo, L 1 ), which we will denote by

deg: X(Lo, Li) -+ Z. (3.21)

Then, given a family Jt E d1 (M) parametrized by t E [0,1], define the wrapped

Floer co-chain complex over K to be, as a graded vector space,

CW (Lo, L1, H,J) = loX K- (3.22)(D
xEX(Lo,L1),deg(x;)=i

Here |02|K, henceforth abbreviated lox , is the one-dimensional K-vector space asso-

ciated to the one-dimensional real orientation line ox of x. The definition of o. as

the determinant line of a linearization of Floer's equation is given in Appendix B.

Now, consider maps

U : (-oo, oo) x [0, 1] -+ M (3.23)

converging exponentially at each end to time-i chords of H, satisfying boundary
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conditions

u(s, 0) E Lo

u(s, 1) E L1

and satisfying Floer's equation

(du - X 0 dt)0 '1 = 0. (3.24)

Above, X is the Hamiltonian vector field of H and we think of the strip

Z = (-oo, oo) x [0,1] (3.25)

as equipped with coordinates s, t and the canonical complex structure j ( j( 8,) = at).

With this prescription one can rewrite the above equation in coordinates in the more

familiar form

(98u = -Jit(tu - X). (3.26)

Given time 1 chords xO, x1 E X(Lo, L1), denote by

!J(XO; x1) (3.27)

the set of maps u converging to xO when s -+ -oo and x1 when s -* +oo. As a

component of the zero-locus of an elliptic operator on the space of smooth functions

from Z into M, this set carries a natural topology. Moreover, the natural R action

on :i (xo; x 1 ), coming from translation in the s direction, is continuous with respect

to this topology. Following standard arguments, we conclude:

Lemma 3.1. For generic. J, the moduli space 9i(xo; xi) is a compact manifold of of

dimension deg(xo) - deg(xi). The action of R is smooth and free unless deg(xo) =

deg(xi).

Proof. See [A3, Lemma 2.3]. 0
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Definition 3.1. Define

'R(xo; x 1 ) (3.28)

to be the quotient of '1 (xo; x 1 ) by the R action whenever it is free, and the empty set

when the R action is not free.

Also following now-standard arguments, one may construct a bordification 9(xo; x1)

by adding broken strips

9R(Xo; x1) = JR(Xo; y1) x 'R(y1; y2 ) x - x 'R(yk; x1) (3.29)

Lemma 3.2. For generic J, the moduli space JZ(xo, x 1 ) is a compact manifold with

boundary of dimension deg(xo) - deg(x1) - 1. The boundary is covered by the closure

of the images of natural inclusions

'R(xo; y) x 'R(y; x1) -+ N(zo; x1). (3.30)

Proof. See [A3, Lemma 2.4]. 0

Lemma 3.3. Moreover, for each x1 , the J(xo; x1) is empty for all but finitely many

xo.

Proof. A proof of this is given in [A3, Lemma 2.5] but it is not quite applicable as it

involves a general compactness result proven for complex structures J satisfying 0 o

J = dr, see [A3, Lemma B.1-2]. In fact, the arguments from this general compactness

result directly carry over for our J but we can alternately apply Theorem A.1. 0

Now, for regular u E 'R(xo; xi), if deg(xo) = deg(xi) + 1, the orientation on

'R(xo; xi) gives, by Lemma B.1 and Remark B.2, an isomorphism

psL : ox, -- + ozo. (3.31)
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Thus we can define a differential

d : CW*(Lo, L1; H, Jt) -- CW*(Lo, L1; H, Jt)

d([xi]) = E _ (3.32)

xo;deg(xo)=deg(xi)+1 uE'R(xo;xi)

Lemma 3.4.

d2 = 0.

Call the resulting group HW*(Lo, L1 ).

3.3 Symplectic cohomology

To define symplectic cohomology, we break the S1 symmetry that occurs for non-

trivial time 1 orbits of our autonomous Hamiltonian H. Choose F : S x E -+ R a

smooth non-negative function, with

" F and 9(XF) uniformly bounded in absolute value, and

" all time-1 periodic orbits of XSi, the (time-dependent) Hamiltonian vector field

corresponding to Hs (t, m) = H(m) + F(t, m), are non-degenerate. This is

possible for generic choices of F [A3].

Fixing such a choice, define

(

to be the set of (time-1) periodic orbits of Hsi. Given an element y E 0, define the

degree of y to be

deg(y) := n - CZ(y) (3.33)

where CZ is the Conley-Zehnder index of y. Now, define the symplectic co-chain

complex over K to be

CH(M; H, F, Jt)= IOyK, (3-34)
yEO,deg(y)=i
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where the orientation line o. is again defined using the determinant line of a lin-

earization of Floer's equation in Appendix B.

Given an S' dependent family Jt E 3 1(M), consider maps

U : (-oo, oo) x S -+ M (3.35)

converging exponentially at each end to a time-1 periodic orbit of Hsi and satisfying

Floer's equation

(du - XSi 9 dt)'1 = 0. (3.36)

Here, as above the cylinder A = (-oo, oo) x [0, 1] is equipped with coordinates s, t

and a complex structure j with j((9s) = Ot. As before, this means the above equation

in coordinates is the usual

8 u = -Jt(Btu - X). (3.37)

Given time 1 orbits yo, yi E 0, denote by M(yo; yi) the set of maps u converging to

yo when s -+ -oo and y1 when s -+ +oo. In analogy with the maps defining wrapped

Floer cohomology, this set is equipped with a topology and a natural R action coming

from translation in the s direction. We can similarly conclude that for generic J, the

moduli space is smooth of dimension deg(yo) - deg(y1) with free R action unless it is

of dimension = 0.

Definition 3.2. Define

M(yo; yi) (3.38)

to be the quotient of M(yo; yi) by the R action whenever it is free, and the empty set

when the R action is not free.

Construct the analogous bordification J((yo; yi) by adding broken cylinders

M(yo; y1) = I M(yo; X1) x M(x1 ; x 2) x ... x M(Xk; y1) (3.39)

Lemma 3.5. For generic Jt, the moduli space M(yo, y1) is a compact manifold with

boundary of dimension deg(yo) - deg(y 1) - 1. The boundary is covered by the closure
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of the images of natural inclusions

M(yo; y) x M(y;yi) - M(yo; yi). (3.40)

Moreover, for each y1, M(yo; yi) is empty for all but finitely many choices of yo.

Proof. Perturbed hamiltonians of the form H + Ft cease to satisfy a maximum prin-

ciple, by some bounded error term. For rescaled contact-type complex structures,

we show in Theorem A.1 that it is still possible to ensure that solutions with fixed

asymptotics stay within a compact set, and a corresponding finiteness result. 0

For a regular u E M(yo; y1 ) with deg(yo) = deg(y1) + 1, Lemma B.1 and Remark

B.2 give us an isomorphism of orientation lines

yU : ol -oyo. (3.41)

Thus we can define a differential

d: CH* (M; H, Ft, Jt) CH*(M; H, Ft, Jt) (3.42)

d([yi]) = ( )deg(y(3.43)
yo;deg(yo)=deg(yi)+1 uEM(yo;yi)

Lemma 3.6.

d2 = 0.

Call the resulting group SH*(M).

Remark 3.3. Our grading conventions for symplectic cohomology follow Seidel [S6],

Abouzaid [A3], and Ritter [R]. These conventions are essentially determined by the

fact that the identity element lives in degree zero, and the product map is also a degree

zero operation, making SH* (M) a graded ring. See the sections that follow for more

details.
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Chapter 4

Open-closed moduli spaces and

Floer data

We recall several definitions of abstract moduli spaces of genus 0 bordered Riemann

surfaces with interior and boundary marked points, which we will call genus-0 open-

closed strings. Then, we define Floer data for such spaces, and use these Floer data

to construct chain-level open-closed operations in the wrapped setting. In the next

chapter, we will specialize to examples such as discs, spheres, and discs with interior

and boundary punctures to obtain A,, structure maps, TFT operations, and various

open-closed operations.

Definition 4.1. A genus-0 open-closed string of type h with n, i = (mi, ... ,mh)

marked points E is a sphere with h disjoint discs removed, with n interior marked

points and mi boundary marked points on the ith boundary component &E. Fix

some subset I C {1, ... , n} and a vector of subsets K = (K 1 ,... , K h) with K" c

{1, ... , inM}. E has sign-type (I, N) if

" interior marked points pi, with i E I are negative,

" boundary marked points Zj,kE &E, k E Ki are negative, and

" all other marked points are positive.

Also, a genus-0 open-closed string comes equipped with the data of
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* a choice of normal vector or asymptotic marker at each interior marked

point.

For our applications, we explicitly restrict to considering at most one negative

interior marked point or at most two negative boundary marked points, i.e. the cases

III =land EIKI=0 (4.1)

|Il =Oand EIKIl =1 or2.

Definition 4.2. The (non-compactified) moduli space of genus-0 open-closed

strings of type h with n, M' marked points and sign-type (I, K) is denoted X4.

Denote by the Deligne-Mumford compactification of this space, a real blow-

up of the space as described by Liu [L1]. Note that for I and K as in (4.1), the lower-

dimensional strata of consist of nodal bordered surfaces, with each component

genus 0 and also satisfying (4.1).

Fix a collection of strip-like and cylindrical ends near every marked boundary and

interior point of a stable open-closed string, with the cylindrical ends chosen to have

1 E S asymptotic to our chosen marker. Then, at a nodal surface consisting of k

interior nodes and 1 boundary nodes, there is a chart

[0, 1) k+1 -+ N',I(42

given by assigning to the coordinate (pi, ... , Pk, 1, ... 7qj) the glued surface where the

ith interior node and jth boundary nodes have been glued with gluing parameters

pi and qj respectively, in a manner so that asymptotic markers line up for interior

gluings. We refer the reader to Chapter 10 for more details on gluing in the case of

strip-like ends. We see in this way that ' inherits the structure of a manifold

with corners. Moreover, from the corner charts described above every open-string

S E ' inherits a thick-thin decomposition, where the thin parts of the surface

S are by definition the finite cylinders and strips in S that are inherited from the

gluing parameters if S lies in one of the above such charts. If S does not lie in such
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a chart, then S has no thin parts.

Remark 4.1. In all the moduli spaces we will actually consider, the marked direction

is always determined uniquely (and somewhat arbitrarily) by requiring it to point

towards one particular distinguished boundary point. This works because

" it is consistent with Deligne-Mumford compactifications: when disc components

break off and separate the interior puncture from the preferred boundary punc-

ture, the new preferred boundary puncture is the node connecting the compo-

nents;

" it is consistent with the choices of cylindrical ends made at interior punctures

created when later we glue pairs of discs across A labels.

Given this, we will always omit these asymptotic markers from the discussion.

Remark 4.2. By considering moduli spaces where these asymptotic markers vary in

S' families, one can endow symplectic cohomology and open-closed maps with a larger

set of operations, e.g. the BV operator. We will not do so here. For some additional

details on such operations, see [S6] or [SS].

4.1 Floer data

First, we note that pullback of solutions to (3.24) by the Liouville flow for time log(p)

defines a canonical isomorphism

CW*(Lo, L1; H, Jt) ~ CW* (p'Lo, 'IL 1; -oP p, (0$P)* J) (4.3)

We have two main observations which will help us define operations on the complexes

CW*(Lo, L1 ) and SH*(M):

Lemma 4.1. The function 7 o $P lies in X(M).

Proof. The Liouville flow is given on the collar by

1(r, y) = (p - r, y) (4.4)
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222sor o7P-p 2 r2

Note however that (V)P)*Jt V J1(M). In fact, a computation shows that

69 o ($P)*Jt - dr. (4.5)

Motivated by this,

Definition 4.3. Define 0e(M) to be the space of almost-complex structures J that

are c-rescaled contact type, i.e.

- o J = dr. (4.6)
r

Also, define 3(M) to be the space of almost-complex structures J that are c-rescaled

contact type for some c.

To simplify terminology later, we will introduce some new notation for Floer data.

Definition 4.4. A collection of strip and cylinder data for a surface S with

some boundary and interior marked pointed removed is a choice of

" strip-like ends c : Za -+ 5,

" finite strips cl : [al, b'] x [0, 1] - S,

" cylindrical ends o1 : Ai x S' -+ S, and

" finite cylinders 6r : [a,, b,. x S', -+ S

all with disjoint image in S. Such a collection is said to be weighted if each cylinder

and strip above comes equipped with a choice of positive real number, called a weight.

Label these weights as follows:

e Ws is the weight associated to the strip-like end E ,

" ws,L is associated to the finite strip e,

" vsj is associated to the cylindrical end 6, and
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e vs,, is associated to the finite cylinder 6r.

Finally, such a collection is said to be 6-bounded if

e the length of each finite cylinder (br - ar) is larger than 36.

Definition 4.5. Let E be a 6-bounded collection of strip and cylinder data for S.

The associated 6-collar of S is the following collection of finite cylinders:

" the restriction M+ of each positive cylindrical end 6 [0, oo) x S1 
- S to the

domain [0, J] x S',

" the restriction J of each negative cylindrical end 6 (-oc, 0 x S' -+ S to the

domain [-6,01 x S', and

" the restrictions 6& and 6, of each finite cylinder 6': [a, b,] x S ' S to the

domains [a,,a,. +6] x S' and [b, - 6, br] x S respectively.

We will often refer to this as the associated collar if 6 is implicit.

Let (S, 6) be a surface S with a 6-bounded collection of weighted strip and cylinder

data 6.

Definition 4.6. A one-form as on S is said to be compatible with the weighted

strip and cylinder data 6 if, for each finite or semi-infinite cylinder or strip n of

S, with associated weight vK,

K *as = vndt. (4.7)

Above, t is the coordinate of the second component of the associated strip or cylinder.

Definition 4.7. Fix a Hamiltonian H E X(M). An S-dependent Hamiltonian Hs :

S -+ X(M) is said to be H-compatible with the weighted strip and cylinder

data 6 if, for each cylinder or strip n with associated weight v,

r *Hs O . (4.8)
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Definition 4.8. An 6-adapted rescaling function is a map as : S -+ [1, oo) that

is constant on each cylinder and strip of 6, equal to the associated weight of that

cylinder or strip.

Definition 4.9. Fix a time-dependent almost-complex structure Jt : S' -+E 01(M),

and an adapted rescaling function as. An (6, as, Jt)-adapted complex structure

is a map Js : S -+ 3(M) such that

* at each point p E S, J, E 3ascp)(M),

* at each cylinder or strip n with associated weight vK,

Kn* Js = (P".) * Jt. (4.9)

Here, if r. is a strip, we mean the [0, 11 dependent complex structure given by

pulling back J by the projection map [0,1] -+ S1 = R/Z.

We will need to introduce Hamiltonian perturbation terms supported on the cylin-

ders of (S, 6), in order to break the S1 symmetry of orbits. Since we will be gluing

nodal cylindrical punctures together, these perturbation terms need to possibly have

support on the thin-parts of our gluing as well. The next definition will give us

very explicit control over these perturbation terms. Let FT : S1 -+ C' (E) be a

time-dependent function that is absolutely bounded, with all derivatives absolutely

bounded. Also, let Es) : [0,1] -+ [0,11 be a smooth function that is 0 in an e-

neighborhood of 0, 1 in an E-neighborhood of 1, with all derivatives bounded.

Definition 4.10. For (S, 6) as above, an Sl-perturbation adapted to (FT, #,) is

a function Fs : S -+ C ( (E) satisfying the following properties:

" Fs is locally constant on the complement of the images of all cylinders,

" on each cylindrical end n* with associated weight uv, outside the associated

collar,

(Ki)*Fs = 2 + C., (4.10)

where C. is a constant depending on the cylinder nk.
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" on each finite cylinder ,', outside the associated collar,

(K')*Fs = mr 2 +CK, (4.11)

where Cr and mA, are constants depending on the cylinder ,''.

" On each associated 6-collar, r : [0, 6] x S' -+ S,

t*Fs = (r,,*Fs)|oxsi + #f(s/6)((r,*Fs) 5xsi - (r,*Fs)loxsi) (4.12)

" Fs is weakly monotonic on each cylinder r., i.e.

.,r*Fs < 0. (4.13)

Putting all of these together, we can make the following definition:

Definition 4.11. A Floer datum Fs on a stable genus zero open-closed string string

S consists of the following choices on each component:

1. A collection of weighted strip and cylinder data 6 that is 6-bounded;

2. sub-closed 1-form: a one-form as with

das < 0,

compatible with the weighted strip and cylinder data;

3. A primary Hamiltonian Hs : S -+ '(M) that is H-compatible with the

weighted strip and cylinder data 6 for some fixed H;

4. An 6-adapted rescaling function as;

5. An almost-complex structure Js that is (6, as, Jt)-adapted for some Jt.

6. An S'-perturbation Fs adapted to (FT, #) for some FT, #, as above.
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There is a notion of equivalence of Floer data, weaker than strict equality, which

will imply by the rescaling correspondence (4.3) that the resulting operations are

identical.

Definition 4.12. Say that Floer data D' and D2 are conformally equivalent if

there exist constants C, K, K' such that

a2= C -a

a 2=C-as,
cA C T1

s= ( )*js (4.14)

T2 Hs' o p)CHiS = C2 + K, and

F2 -FS' oo $cFs - ±K'.C2

In other words, the Floer D 2is a rescaling by Liouville flow of the Floer data D', up

to a constant ambiguity in the Hamiltonian terms.

Definition 4.13. A universal and consistent choice of Floer data for genus

o open-closed strings is a choice Ds of Floer data for every h, n, 6', I, K and

every representative S of h', varying smoothly over X4 ,K whose restriction to a

boundary stratum is conformally equivalent ot the product of Floer data coming from

lower dimensional moduli spaces. Moreover, with regards to the coordinates, Floer

data agree to infinite order at the boundary stratum with the Floer data obtained by

gluing.

Remark 4.3. By varying smoothly, we mean that the data of Hs, Fs, as, as, and

Js, along with the cylindrical and strip-like ends vary smoothly. Over given charts

of our moduli space, finite cylinders and strips need to vary smoothly as well, but

they may be different across charts (for example, some charts that stay away from

lower-dimensional strata may have no finite cylinder or strip-like regions).

All of the choices involved in the definition of a Floer datum above are contractible,

so one can inductively over strata prove that
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Lemma 4.2. The restriction map from the space of universal and consistent Floer

data to the space of Floer data for a fixed surface S is surjective.

Definition 4.14. Let L be a set of Lagrangians. A Lagrangian labeling from L

for a genus-0 open-closed string S E I',_ is a choice, for each j = 1, ... , h and

for each connected component 'i S of the jth boundary disc, of a Lagrangian Lj E L.

The space of genus-0 open-closed strings with a fixed labeling L = {{Lj};}

is denoted ( The space of all labeled open-closed strings is denoted

(2'4,)L-

Clearly, ( A)L is a disconnected cover of . There is a notion of a labeled

Floer datum, namely a Floer datum for the space of open-closed strings equipped

with labels (N ,A)L. This is simply a choice of Floer data as above in a manner also

depending coherently on the particular Lagrangian labels. We will use this notion in

later chapters, along with the following definition.

Definition 4.15. Let Ds be a Floer datum on a surface S. The induced labeled

Floer datum on a labeled surface SL is the Floer datum Ds coming from forgetting

the labels.

4.2 Floer-theoretic operations

Now, fix a compact oriented submanifold with corners of dimension d,

Ud K- , (4.15)

Fix a Lagrangian labeling

{{L1, ..., 7Lm},{L , ... , 7L 7},21 ... , {LO,.., Li}}. (4.16)

Also, fix chords

~= {{ 1,..., I , ... ,f { i,..., z (4.17)
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and orbits J'= {y1,. .. ,yn} with

- X(LX+1,L) iEK 3  
(4.18)

X(Lq, L3 1 ) otherwise.

Above, the index i in Li is counted mod m. The outputs 4't, ' t are by definition

those xi and y, for which i E Ki and s E I, corresponding to negative marked points.

The inputs Yin, gin are the remaining chords and orbits from ', . Fixing a chosen

universal and consistent Floer datum, denote c± and J± the strip-like and cylindrical

ends corresponding to xi and yj respectively.

Define

ut, Y; zu , )in (4.19)

to be the space of maps

{u:S--+M: SE'I} (4.20)

satisfying the inhomogenous Cauchy-Riemann equation with respect to the complex

structure Js:

(du - Xs as)' = 0 (4.21)

and asymptotic and boundary conditions:

lim 8s-+± o e'(s,-) = f

l u o 6i(s,-) = yj, (4.22)

u(z) E pas(z)L , z E 61S.

Above, Xs is the (surface-dependent) Hamiltonian vector field corresponding to Hs +

Fs.

Lemma 4.3. The moduli spaces G , yot ; Sin, in) are compact and there are only

finitely many collections zot, KJg for which they are non-empty given input z , .

For a generic universal and conformally consistent Floer data they form manifolds of
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dimension

dim Qd(- t, ; in):= Y deg(x-) + 1 deg(y-)+
2_Esout Y-Ego" (4.23)

(2 - h - IsOt| - 21 ' t|)n + d - 1:deg(x+) - E deg(y+)-
x+ EginY+Eliin

Proof. The dimension calculation follows from a computation of the index of the

associated linearized Fredholm operator. Via a gluing theorem for indices [S4, (11c)]

[Sc, Thm. 3.2.12], there is a contribution coming from the index of the linearized

Cauchy Riemann operator on the compactified surface S, equal to nx(S), where

x(S) = (2 - h) is the Euler characteristic of a genus-0 open-closed string of type

h. The other contributions come from the tangent space of Q (contributing d), and

spectral-flow type calculations on the striplike and cylindrical ends. This calculation

is essentially a fusion of [S4, Proposition 11.13] and [R, Lemma 10].

The proof of transversality for generic perturbation data is a standard application

of Sard-Smale, following identical arguments in [S4, (9k)] or alternatively [FHS]. The

usual proof Gromov compactness also applies, assuming that solutions to Floer's

equation with given asymptotic boundary conditions are a priori bounded in the

non-compact target M. This is the content of Theorem A.1. 0

When Qd(z t, g t; i, gi) has dimension zero, we conclude that its elements are

rigid. For any such element u E Qd(4ot, gat; Xin, Yin), we obtain an isomorphism of

orientation lines, by Lemma B.1

Q: 0 ox ov,-+ o 9 9 . (4.24)
XEzFin yEin EE~ xEt yEYot

Thus, we can define a map

F0 CW*(L, L +1) 0 0 CH*(M) -+
(ij);1<i<my;if Kj 1<ksn;kf 1 (4.25)

CW*(L +1 ,Lq)® 0 CH*(M)
(ij);1 ism,;iEKj 1<k<n;kEl
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given by:

F ([yt], .E..,[y1], [x(], .. {, [x1]) :=

dim Od(zout':V;x,..x}{i,.,t) UE Od(zout,#out;{XI,._..x,},yi, ... , yt})

(4.26)

This construction naturally associates, to any submanifold Qd E Ni' a chain-

level map FQd, depending on a sufficiently generic choice of Floer data for open-closed

strings. We need to modify this construction by signs depending on the relative

positions and degrees of the inputs.

Definition 4.16. Given such a submanifold Q, a sign twisting datum rfor Q is a

vector of integers, one for each input boundary or interior marked point on an element

of Q.

To a pair (Q, t) one can associate a twisted operation

(-1~F~, (4.27)

defined as follows. If {sy7} = {X1,... , x., Y1, ... ,yt} is a set of asymptotic inputs,

the vector of degrees is denoted

(4.28)

The corresponding sign twisting datum Fis of the form

(4.29)

Then, the operation (4.27) is defined to be

(1) rF-6([yt], ... [y1], [x,], . ..- , [1])D :=

(--1)5 de(,) 1 ... , [x,], [y1], ... , [ytl). (4.30)

dim Od (z=t ,out;z,9)=0 UE~d(zout,Eout; ,:,y)
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The zero vector t= (0,..., 0) recovers the original operation Fd.

Now, suppose instead that we are given a submanifold Q. of the labeled spaceL

( Then, we obtain a chain-level operation

(-1)Fod (4.31)
L

that is only defined for the fixed labeling L. In the chapters that follow, we will use

this definition to construct associated chain-level map for specific families {Q }d.

Remark 4.4. Strictly speaking, when there are two boundary outputs on the same

component, one only obtains the isomorphism of orientation lines (4.24) after choos-

ing orientations of Lagrangians along that boundary component. Since we are working

with oriented Lagrangians, we are implicitly making such choices. See Appendix B

for more details.

In a different direction, we will make repeated use of the following standard

codimension 1 boundary principle for Floer-theoretic operations: suppose that the

boundary 80 is covered by the images of natural inclusions of (d - 1)-dimensional

(potentially nodal) orientable submanifolds

-d
Ti + 9Q, i = 1,... , k. (4.32)

Then, standard results tell us that

Lemma 4.4. In the situation above, the Gromov bordification of the moduli space

of maps Q (z4L iot; A n,in) has codimension 1 boundary covered by the images of
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natural inclusions of the following spaces:

TiV ot, y t; signi=1, ... ,k (.33)

-d (
T (stt, y4(3; rAn, Y in) X s' ; c (4.

U (zout, 7 Yau; sin, Yin) X M (Yd; ).(4.37)

Here,

ein (4.34), Xa E z'in and Xin is ztn with the element xa replaced by Jr;

in (4.35), yA E Yin and i s nwith the element yb replaced by D

" in (4.36), xe E X'out and Sout is zout with the element xc replaced by z; and

ein (4.37), yd E 'o t and Sout is fotwith the element Yd replaced by 9

The strata (4.34) - (4.37) range over all ;i, 9 and all possible choices Of xa, Yb, Xe, Xa-

In words, this Lemma says that the boundary of space of maps from Q is covered

by maps from the various Ti plus all possible semi-stable strip or cylinder breakings.

The manifolds Ti, which may live on the boundary strata of ' K, inherit orien-

tations and Floer data from the choice of Qd, via the convention of orienting relative to

the normal vector pointing towards the boundary. Thus, there are associated signed

operations

(-1)Fa~. (4.38)

By looking at the boundary of one-dimensional elements of the moduli space

od(t, ou; in, fin), one concludes that
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Corollary 4.1. In the situation described above, for any ,

k s+t

(1) Fu- + (1)*(1) rFU, o (id -- 0 . 9id (p 12(9id @9 -. -id)

(4.39)

+ (-1)t(id 9 ... id 9 pl 0 id .. --id) o (-1)F-) =0,

where we have used pl to indicate the both the differential on wrapped Floer homology

or symplectic cohomology depending on the input. The signs (-1)* and (-1)t will be

calculated in Appendix B.

In order to obtain equations such as the A,, equations, bimodule equations, various

morphisms are chain homotopies, etc. with the correct signs, one needs to compare

signs between the operators (-1)tFy and the composition of operators arising from

'T viewed of as a (potentially nodal) surface using the consistency condition imposed

on our Floer data. This, plus appropriate choices of sign twisting data for these

strata, will yield all of the relevant signs. The relevant calculations are performed in

Appendix B.
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Chapter 5

Open-closed maps

5.1 The product in symplectic cohomology

Symplectic cohomology is known to admit a range of TQFT-like operations, parametrized

by surfaces with I incoming and J outgoing ends, for J > 0, see e.g. [R]. In this sec-

tion, we will focus on surfaces with one outgoing end J = 1 (the product is the case

I = 2, J = 1), but one can imagine the following construction applies more generally

to other surfaces and families of surfaces.

Denote by 8 2 the configuration space of spheres with two positive and one negative

punctures, with asympotic markers pointing in the tangent direction to the unique

great circle containing all three points.

Definition 5.1. A Floer datum DT on a stable sphere T E 82,1 consists of a Floer

datum of T thought of as an open-closed string.

From the previous chapter, considering the space S2 as a maximal submanifold of

itself defines an operation of degree zero

T2 : CH*(M)*2 -+ CH*(M). (5.1)

This is known as the pair of pants product.

Remark 5.1. For families of spheres with more than two inputs, there ceases to
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Figure 5-1: A representative of the one-point space 8 2,1 giving the pair of pants

product.

be a preferred direction in which to point the asymptotic markers, a situation not

considered in our work. However, if one mandates that all marked points lie on a

single great circle, then one recovers the required preferred direction. The end result,

the Massey products on SH* (M), will be constructed as a special case of the discussion

in Chapters 7 and 8.

5.2 Ao, structure maps and the wrapped Fukaya

category

Here we define the higher structure maps pi on W (including the product p2). We

will recall and apply with some detail our construction of Floer-theoretic operations

from Section 4.2, though the reader is warned that subsequent constructions will be

more terse.

Define

(5.2)

to be the (Stasheff) moduli space of discs with one negative marked point zO and

d positive marked points z,..., z+ removed from the boundary, labeled in counter-

clockwise order from zo. qkd is a special case of our general construction of open-closed

strings. Denote by 2 its natural (Deligne-Mumford) compactification, consisting of

trees of stable discs with a a total of d exterior positive marked points and 1 exterior

negative marked point, modulo compatible reparametrization of each disc in the tree.

Recall from the discussion in Chapter 4 that N inherits the structure of a manifold

124



with corners, coming from standard gluing charts

(0,+oo] x c -+ N. (5.3)

near (nodal) strata of codimension k.

Figure 5-2: Two drawings of a representative of an element of the moduli space 2 5.
The drawing on the right emphasizes the choices of strip-like ends.

z;i zi

Now, in the terminology of Definition 4.11, pick a universal and consistent choice

of Floer data D, for the spaces Vd, d > 2. Also, fix an orientation of the space VR,

discussed in Appendix B.3.1.

Definition 5.2. The dth order A,, operation is by definition the operation

:= (-1)tF , (5.4)

in the sense of (4.27), where I is the sign twisting datum given by (1, 2,..., k).

We step through this construction for clarity. Let LO, ... , Ld be objects of W,

and consider a sequence of chords 55 = {Xk E x(Lk_1, Lk)} as well as another chord

xo E X(Lo, Ld). Given a fixed universal and consistent Floer data D,, write 9d(xo; Y)

for the space of maps

U:S-+M

with source an arbitrary element S E Rd, with marked points (z , ... , A) satisfying
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the boundary asymptotic conditions

u(z) E ?as(z)Lk if z E 8S lies between z k and zk+1
(5.5)

lim 8 .± o o 6 k(S,.) - pas(z)Xk

and differential equation

(du - Xs 0 as)"'1 = 0 (5.6)

with respect to the complex structure Js and total Hamiltonian Hs + Fs. Using

the consistency of our Floer data and the codimension one boundary of the abstract

moduli spaces 'R , Lemma 4.4 implies that the Gromov bordification 'R(xo; Y) is

obtained by adding the images of the natural inclusions

5Zl(Xo;X1 ) X d2 (Y; X2) -- V(Xo; ) (5.7)

where y agrees with one of the elements of Y1 and z is obtained by removing y from

x1 and replacing it with the sequence i 2 . Here, we let di range from 1 to d, with

d2 = d - di + 1, with the stipulation that di = or d2 = 1 is the semistable case:

V(xo; xi) := N(Xo; x1) (5.8)

Thanks to Lemma 4.3, for generically chosen Floer data D,

Corollary 5.1. The moduli spaces 'R (xo; ) are smooth compact manifolds of dimen-

sion

deg(xo)+d -2- E deg(xk).
1<k<d

In particular, if deg(xo) = 2 - d + 1 deg(xk), then the elements of N(xo; Y) are

rigid, and for any such rigid u E 'd (Xo; 9), we obtain by Lemma B.1, an isomorphism

jZ : od0. O - - X + OXO. (5.9)
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Thus, taking into account the sign twisting t we define the operation

A : CW*(Ld_1, Ld) .- CW*(Lo, L1) -+ CW*(Lo, Ld) (5.10)

as a sum

p([xd], ... , [X1]) := (-1)*dd ([xd], ... , [X1]) (5.11)
deg(xo)=2-d+E deg(Xk) Ue '(Xo;X)

where
d

*d= t -deg(x) i - deg(xi). (5.12)

By looking at the codimension 1 boundary of 1-dimensional families of such maps,

and performing a tedious sign comparison analogous to those Appendix B (discussed

in [S4, Prop. 12.3]), we conclude that

Lemma 5.1. The maps t d satisfy the Ao relations.

The sign twisting datum used here will reappear with variations later, so it is conve-

nient to fix notation.

Definition 5.3. The incremental sign twisting datum of length d, denoted td,

is the vector (1, 2,. .. , d- 1, d).

5.3 From the open sector to the closed sector

As in [A3], define 9Rd to be the abstract moduli space of discs with d boundary positive

punctures zi, ... , zd labeled in counterclockwise order and 1 interior negative puncture

zut, with the last positive puncture Xd marked as distinguished. Its Deligne-Mumford

compactification inherits the structure of a manifold with corners via the inclusion

. '.W, , where h = 1, n = 1, i = (d), I = {1}, K = ({}).

In the manner of (4.19), using our fixed generic universal and consistent Floer data

and an orientation for 2JZ fixed in Appendix B.3.2, we obtain, for every Lagrangian
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Figure 5-3: Two drawings of representative of an element of the moduli space 'R4.
The drawing on the left emphasizes the choices of strip-like and cylindrical ends. The
distinguished boundary marked point is the one set at -i on the right.

X2
X3 Z4 1

X3

Yi

X1

X4

labeling L 1 ,..., Ld, and asymptotic conditions {x 1 , ... ,Xd, you} moduli spaces

'Rd(yOut; {x}) (5.13)

which are compact smooth manifolds of dimension

d-1

deg(yout) - n + d - 1 - E deg(Xk).
k--O

Then, fixing sign twisting datum

tOe, := (1, 2,..., d- 1, d+ 1) =I±+ (0,...,0,1), (5.15)

we obtain associated operations

063 :=(-1)tOead Fa:

homw(Ld, Lo) 9 homw(Ld_1, Ld) @ ... - homw(Lo, L1) -+ CH*(M);

128 (5.16)
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in other words, operations

0O3 : (W' 0 W~d-1)di"g -_+ CH* (M) (5.17)

of degree n - d + 1. The composite map

(9(:=ZEOed (5.18)
d

therefore gives a map

0 e: CC,(W, W) -+ CH* (M) (5.19)

of degree n (using the grading conventions for Hochschild homology (2.174). Recall

that the codimension-1 boundary of the Deligne-Mumford compactification 1 is

covered by the following strata:

JRxijaZ-m+1 1<i<d-m+1 (5.20)

-1
J' Xd-m+1Rd '-m+1 1< j < m (5.21)

where the notation x3 means that the output of the first component is identified with

the jth boundary input of the second. In the second type of stratum (5.21), the jth

copy correspond to the stratum in which the jth input point on 'm becomes the

distinguished boundary marked point on 'RT after gluing.

The consistency condition imposed on Floer data implies that the Gromov bor-

dification R(yo, i) is obtained by adding the images of natural inclusions of moduli

spaces of maps coming from the boundary strata (5.20)-(5.21) along with the following

semi-stable breakings

'Rdi(yi, Y) X MI(y-t; Y1) a Bgz et (5.22)

(x1; x) x Nym;5) -+ Ji(ym±; z) (5.23)

where in the second type of stratum, x is one of the elements of z and x is the sequence
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obtained by replacing x in F by x1 . Thus, modulo a tedious sign verification whose

details are discussed in Appendix B, we obtain that

Proposition 5.1. (C is a chain map.

5.4 From the closed sector to the open sector

In a similar fashion, define 'R' to be the moduli space of discs with

* d + 1 boundary marked points removed, 1 of which is negative and labeled z ,

and d of which are positive and labeled (zi,... , zd) in counterclockwise order

from zo ; and

* one interior positive marked point yin removed.

Its Deligne-Mumford compactification inherits the structure of a manifold with cor-
-11 -d + )

ners via the inclusion 3z 1-+ ' where h = 1, n = 1, I = (d ± 1), I =

K = ({1}). Thus, let us fix a universal and conformally consistent choice of Floer

datum Deo on 'R"' for every d > 1. Given a Lagrangian labeling and a set of compat-

ible asymptotic conditions, along with an orientation of 'R'1 discussed in Appendix

B.3.3, we obtain the moduli space 'RdI'l (xot; Yin, Y) as in (4.19), which are compact

smooth manifolds of dimension

d

deg(x.t) + d - deg(yin) - E deg(xk). (5.24)
k=1

Fix sign twisting datum

teo,d = (0, 1,2, ... , d) (5.25)

with respect to the ordering of inputs (yin , x 1 ,... Xd). Then, define

e09: CH*(M) - homvect(Wd, W) (5.26)

as

C0a(yin)(Xd, .. ., X1) t -l eO~d- 11 (yin, Xd, ..., 7X1) (5.27)
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The composite map

Wo = Z 3d (5.28)
d

gives a map CH*(M) -+ CC*(W, W).

The codimension-1 boundary of the Deligne-Mumford compactification 'RJ' is

covered by the natural images of the following products:

xi + 1< m<d-1, 1<i<d-m+1 (5.29)

'-(k++1)+1 X k+1'R 0 < k + 1 < d - 1. (5.30)

using the notation xj as in the last section to indicate gluing the distinguished output

of the first component to the jth (boundary) input of the second component.

Figure 5-4: Two drawings of representative of an element of the moduli space 'Ri'i.
The drawing on the right emphasizes the choices of strip-like and cylindrical ends.

Z+ z+ y+

. 4UUUU~

zr;-

The consistency condition implies that the Gromov bordification RNL''(z~t; yin, i)

is obtained by adding images of the natural inclusions

-1,

M(y1 ; yin) x '(xzt; y1, ) - 'R ( Xu; yin,) (5.31)

'R'(X"; Yin, 2 ) x 'RJ(Xzot Yi) -+ 19'(xmt; yin, Y) (5.32)

'Rd2(Xa; 92) 1 1 (Xot;Yin,i 1 ) -+ B' (Xut; yin, ) (5.33)
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where d1 + d2 - 1 = d, P is any consecutive sub-vector of size d2 and 1 is obtained

by replacing Y in S by xa. By the above result about Gromov bordification, and a

sign verification discussed in Appendix B, we see that:

Proposition 5.2. CO is a chain map.

5.5 Ring and module structure compatibility

We will make two assertions about the maps CO and 0C, both of which follow from

an analysis of similar-looking moduli spaces.

Proposition 5.3. H*(CO) is a ring homomorphism.

Via its module structure over Hochschild cohomology and the ring homomor-

phism C(, Hochschild homology HH,(W,W) obtains the structure of a module over

SH*(M). With respect to this structure, using a similar argument, we can prove the

following:

Proposition 5.4. H*(OC) is a map of SH*(M)-modules.

The chain-level statement is that the following diagram homotopy commutes:

CC.(W) x CH*(M) (Oe~id)CH*(M) x CH*(M), (5.34)

(id,eO) 
1*

CC,(W) x CC*(W) m" CH*(M)

To prove Proposition 5.34, for r E (0,1), define the auxiliary moduli space

'(r) (5.35)

to consist of the unit disc in C with the following data:

" d + 1 positive boundary marked points (zo,..., zd), with zd marked as distin-

guished, and

" two interior marked points (n,+, n_), one positive and one negative
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such that,

after automorphism, the points zd, K+, ,- lie at -i, -r, and r respectively. (5.36)

These spaces vary smoothly with r and their union

(5.37)'2:= U j
rE(0,1)

is naturally a codimension 1 submanifold of genus 0 open-closed strings consisting

of a single disc with d positive boundary punctures and two interior punctures, one

positive and one negative. Compactifying, we obtain a family that submerses over

of-2r E [0, 1] and see that with codimension-1 boundary of is covered by the images

of the natural inclusions of the following products (some living over the endpoints

r E {0, 1} and some living over the entire interval):

-1
Xm 9Z+1-d 3 d-2-k,

x 2 82  (r = 0)

-2
xn 'P-m+1

-2Xd-m+l 2d-M+1-

d 1 + d2 +d 3 -2=d (r=1)

Fix a universal and consistent Floer data for all P . Given a set of Lagrangiann

labels

Lo, ... , Ld, Ld+1 = Lo (5.42)

and compatible asymptotic conditions X = {X E X(Lk, Lk+1)I= 0 and _,, we

obtain a moduli space of maps

(5.43)'d(Y_;Y+,X)
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which are smooth compact manifolds of dimension

deg(-y_) - n + d + 1 - deg(7+) - E deg(Xk)
k=o

(5.44)

Consistency of our Floer data implies that the Gromov bordification Y-(7_;7+, z) is

obtained by adding the images of the natural inclusions

M(70;7+) X -2(7-;70, z)

S(71; Y) X2(7-;7+,71)

32Xb;-Y+, x) X T-d2 (Xa;Y) X 91(7;)

-4-+d (-Y_; 7Y+, Y)

-4

-4
-+ 8(7_-; 7Y+, 9)

-4
-4 d(7-;7+, 9)

S8d (7Y-;7-+, Y)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

where

" in (5.47), 2 is a subvector of , and Y1 is obtained from i by replacing P2 by

Xa

* in (5.49), Y3 is a subvector of X, not including the distinguished input x0 . x is

obtained from i by replacing 3 by Xb, and then performing a cyclic permutation

that brings the distinguished output x0 to the right of Xb. 2 is a subvector of
-2

x that includes both Xb and x0 , and Y1 is obtained from i by replacing i2

with xa-

Now, define the map

Jd : CH* (M) 0 (WA g Wod)dag -4 CH* (M)

as

(5.51)
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where we use sign twisting datum

t2 :=(-1,0,1,..., d) (5.52)
d

corresponding to the ordering of inputs (K+, zo,..., za). The composite map X =

Ed Hd gives a map

X : CH*(M) x CC,(W, W) - CH* (M). (5.53)

By the above result about Gromov bordifications and a sign verification discussed in

Appendix B we conclude that

Proposition 5.5. For any a, s E CC,(W), CH*(M),

dSH o J(a, s) ± J(6(a), s) ± g(a, dSH(s)) = JC(a) * s - OC(CO(s) n a). (5.54)

Thus, X is the desired chain homotopy for (5.34), concluding the proof of Propo-

sition 5.4. We briefly indicate how to change this argument to prove Proposition 5.3.

One considers operation associated to the same abstract moduli space as 'Pd, where

both interior punctures are marked as positive points and the distinguished boundary

input is now marked as an output. The associated Floer theoretic operation with a

similar sign twist gives a homotopy between the Yoneda product applied to elements

of WO (the degenerate limit r -+ 1) and the pair of pants product applied before

applying CO (the limit r -+ 0).

Proof of Proposition 1.1. Suppose M is non-degenerate, and let o- be any homology

level pre-image of 1 E SH*(M) via the map M6. Then, if s is another element of

SH*(M), we see that by Proposition 5.4, on homology

OC(C0(s) n o = s - 0(0-) = s - 1 = 1. (5.55)

In particular this implies that co(s) n o- is a preimage of s, and CO(s) cannot be zero

unless s is. 0
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5.6 Two-pointed open-closed maps

Since the two-pointed complexes

2CC,(W,W), 2CC*(W,W)

arise naturally from a bimodule perspective, we will define variants of the chain-level

map 0C and CO between SH*(M) and the respective two-pointed complexes:

20C : 2 CC,(W,W) -+ SH*(M) (5.56)

2 eO : SH*(M) a 2 CC*(W, W) (5.57)

To ensure consistency with existing arguments, we prove that the resulting maps are

in fact quasi-isomorphic to 06 and CO.

Definition 5.4. The two-pointed open-closed moduli space with (k, 1) marked

points

'R, (5.58)

is the space of discs with one interior negative puncture labeled y.1, and k + 1 + 2

boundary punctures, labeled in counterclockwise order zo, z 1,.... , Zk, z0, z', .... , z', such

that:

up to automorphism, zo, z0, and y.t are constrained to lie at -i, i and 0 respectively.

(5.59)

Call zo and zb the special inputs of any such disc.

Remark 5.2. The moduli space 'Z, is a codimension one submanifold of 'Z+

and thus has dimension k + 1.

The boundary strata of Deligne-Mumford compactification 'Rkl is covered by the
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images of the natural inclusions of the following products:

-1l
SXn1 T-k'+1,, 0 n n < k - k' + 1 (5.60)

X (n+1) k0 <n' <-l'1 (5.61)
-k'+'1 -+ 1
-k'+'+1 -1 (5.62)

'R x0, 'R ,. (5.63)

Here the notation xj indicates that one glues the distinguished output of the first

factor to the input zj, and the notation xy indicates that one glues the distinguished

output of the first factor to the input z . Moreover, in (5.62), after gluing the out-

put of the first disc to to the first special point zo, the k' + 1st input becomes the

new special point zo. Similarly in (5.63), after gluing the output of the first sta-

ble disc to the second special point z, the 1' + 1st input becomes the new special

point z. Thinking of 'R, as a submanifold of open-closed strings, we obtain, given

a compatible Lagrangian labeling {Lo, ... , Lk, L',... , L'} asymptotic input chords

{xo, X1 , ... , Xk, X', X1, . .. , x'} and output orbit y, Floer theoretic moduli spaces

X ,,( 0 , x1,..., XkX , X'1 , .... , ') (5.64)

of dimension

k

k + 1 - n + deg(y) - deg(xo) - deg(x') - Edeg(xi) - Edeg(x ). (5.65)
i=1 j=1

Here, Lk, L' are adjacent to the second special point z and L', Lo are adjacent to zo

(with corresponding inputs x', xo). Using the sign twisting datum

w roe,, i of 2, (... , k 4, ... , k +2+1 ) (5.66)

with respect to the ordering of inputs (zo,7. .. , z) zk , ... , z'), define associated Floer-
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theoretic operations

20Ck,i:= (-1)t 20eF1 : (WA o W 1 @ WA g W k)dri" -+ CH*(M).
k ,L

(5.67)

The two-pointed open-closed map is defined to be the sum of these operations:

20C = Z 2 0Ck,l : (WA o TW 0 WA 0 TW)dia - CH*(M).
k,l

(5.68)

With respect to the grading on the 2-pointed Hochschild complex, 20e is once more

a map of degree n. By analyzing the boundary of the one-dimensional components

of N4,, seeing that the relevant boundary behavior is governed by the codimension-1

boundary of the abstract moduli space 9IR described from (5.60)-(5.63) and strip-

breaking, and performing a sign verification in Appendix B, we conclude that

Corollary 5.2. The map 2 0C9: 2 CC.(W,W) -+ CH*(M) is a chain map.

Definition 5.5. The two-pointed closed-open moduli space with (r, s) marked

points

, (5.69)

is the space of discs with one interior positive puncture labeled yin, one negative bound-

ary puncture zut, and r + s+1 positive boundary punctures, labeled in clockwise order

from zot as z 1 ,..., zr, zfixed, z, ... , z', subject to the following constraint:

up to automorphism, zit, Zfixed, and Yin lie at - i, i and 0 respectively. (5.70)

The boundary strata of the Deligne-Mumford compactification 9Z., is covered by
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the natural inclusions of the following products:

xn+1 -1 0 < n Kr - r'+1 (5.71)

+x)T r,s-s +1, 0 < M < s - s' + 1 (5.72)

-r+s+1 -1 1
'' x O _~rI,,s' (5.73)

-1,1 --a'+b'+1(54
.r-a,sb' Xa'+1 JZ (5.74)

Here in (5.73), the output of the stable disc is glued to the special input Zfixed with

the r' + 1st point becoming the new distinguished Zfi2ed. Similarly, in (5.74), the

output of the two-pointed closed-open disc z±t is glued to the a + 1st input of the

stable disc.

Thinking of JZ1'1 as a submanifold of open-closed strings, we obtain, given a com-

patible Lagrangian labeling

{Lo, ...,7 L,, L', ... L'} (5.75)

and input chords {x 1,... , Xr,, Xfixed, X', ... , x'} input orbit y, and output chord xzt,

a moduli space

(Xat; y, x1, .. ., Xfixed,2', ... , x') (5.76)

of dimension

r 8

r + s + deg(xt) - deg(y) - deg(xfi.ed) - deg(xi) - E deg(x). (5.77)
i=1 j=1

Here, Lr, L' are adjacent to the second special output zut and L', LO are adjacent to

Zfixed (with corresponding asymptotic conditions xau, Xfixed). We also obtain associ-

ated Floer-theoretic operations

F1, : CH*(M) 9 (W*8 0 WA 0 W*r) - WA. (5.78)
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Now, define

2 Cr,s : CH*(M) - homvect(W*s 0 WA & W ', WA) (5.79)

as

2 ,.,(Y) (Ys..., Y1, b, XS, ... , x1 ) (-1)t2eor,-sF-,, (y, y., . .. , xi, b, Xr, ... , x1)T;,.

(5.80)

where Eieo,,, is the sign twisting datum

teor : (-1,0, ... , r - r + 1, r + 2, ...,rs1) (5.81)

with respect to the input ordering (yin, zi, ... , z,, Zf ed, z1, ... , z'). Define the two-

pointed closed-open map to be the sum of these operations

20= E20, : CH*(M) -+ homw-w( WA, WA) (5.82)
r,s

With respect to the grading on the 2-pointed Hochschild co-chain complex, 2 (0 is

once more a map of degree 0. An analysis of the boundary of the one-dimensional

components of 9J', coming from strip-breaking and the codimension-1 boundary of

the abstract moduli space 9Z', described in (5.71)-(5.74), along with a sign verification

discussed in Appendix B, we conclude that

Corollary 5.3. The map 2 eO : CH*(M) -- 2 CC*(W, W) is a chain map.

We remark that the quasi-isomorphisms of chain complexes

<D: 2CC.(W,W) -~+ CC,(WW)

' : CC*(W,W) ~ 2CC*(W,W)

defined in (2.196) and (2.201) induce identifications of the two-pointed open-closed

maps with the usual open-closed maps. The precise statement is:
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Proposition 5.6. There are homotopy-commutative diagrams

2CC,(W, W)

CC(W, W) SH*(M)

and

SH* (M)

eo

CC*(W, W) '12CC*(W, W)

(5.83)

(5.84)

Corollary 5.4. The maps ( 20C, 2 0) are equal in homology to the maps ((C, e).

The homotopies (5.83) and (5.84) are controlled by the following moduli spaces.

Definition 5.6. The moduli space

S (5.85)

is the space of discs with one interior negative puncture labeled yt and k+l+2 positive

boundary punctures, labeled in clockwise order zO, z 1, ... ,Zk, , z1 ... ,zI, such that:

up to automorphism, zo, z0 , and yt are constrained to lie at - i, ei(12t) and 0

respectively, for some t E (0, 1).

(5.86)

The space S1, fibers over the open interval (0, 1), by the value of t above. Com-

pactifying, we see that SkI submerses over [0, 1] and its codimension 1 boundary strata

are covered by the images of the natural inclusions of the following products (some
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corresponding to the limits t = 0, 1 and some occuring over the entire interval):

-k+2+1'+l" -1
9 xt-l'-1"+1 OI-1'-l"1+11

-1
9Zk,I

-1-k

-' -1
3Z x(m+1yl 9k,1-1'+1

-k'+'+1 -1

-0'+ '+1 -L
9Z xO kkI,,1I,

(t =0)

(t =1)

0 < n< k - k' + 1

0 <M < l-l'+1

" in (5.87), the k + 1st and k + 1' + 2nd marked points of the stable disc become

the special points zo and z$ after gluing; and

" the products (5.89)-(5.89) are as in (5.60)-(5.63).

Fixing sign twisting datum

(5.93)

we obtain an associated operation

(5.94):)k20e-oe,kl F : 2CC.(W,W) -+ CH*(M)
k,l

of degree n -1. By analyzing the boundary of the 1-dimensional Floer moduli spaces

associated to Sk, coming from (5.87)-(5.92) and strip-breaking, as well as verifying

signs (see Appendix B), we see that

dCH C ± Xo d2CC = OC o'( - 2M, (5.95)

verifying the first homotopy commutative diagram.
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Definition 5.7. The moduli space

S51,1r,s (5.96)

is the space of discs with one interior positive puncture labeled yin, one negative bound-

ary puncture zut, and r + s+1 positive boundary punctures, labeled in clockwise order

from zat as z 1 ,... , zr, zfixed, z(, ... , z', subject to the following constraint:

up to automorphism, zot, Zfixed, and yin lie at - i, ei(-7/2+,.t) and 0 respectively,

for some t E (0,1).

(5.97)

The space 8'1 again fibers over the open interval (0, 1), by the value of t above.

-1,1Compactifying, we see that the codimension 1 boundary strata of the space 8,

submerses over [0, 1] and is covered by the images of the natural inclusions of the

following products (some corresponding to the limits t = 0,1 and some occuring over

the entire interval):

-1,1 -r+2+s'+W"
RS_,_S'"+1 X r+2+s' 'R (t = 0)

-1 1

r' -1,1

-s -1,1

X (m+ 1)' Cr,s-s'+1

-r'+s'+1 -1,1

-11 -1a'+b'+1
,._a',s-b' Xa'+1 'R

(t = 1)

0 < n < r - r' + 1

0 m < S - S'+ 1

Using sign twisting datum

t2 eo-+eo,r,s = (-1, 0, ... , r - 1, r + 1,r + 2, ... , r + s +1),

the associated operation

9 := @(-1)2eO-+eo,r,-F, : CH*(M) -- + 2 CC*(W, W)
r,8
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has degree -1. By analyzing the boundary of the 1-dimensional Floer moduli spaces

associated to 81, coming from (5.87)-(5.92) and strip-breaking, and verifying signs

(Appendix B), we see that

9 o dcH ± d2CC* 9 =F 0 CO - 2eO, (5.106)

verifying the second homotopy comrnutative diagram.
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Figure 5-5: The space 'P' and its r -+ {0, 1} degenerations. Not shown in the de-
generation: the special input point is constrained to reimain on the middle p bubble.

+

+ +

+
+

+ +

-t

72

145

r -+ 0

,*4"



Figure 5-6: A representative of an element of the moduli space 'R3, 2 with special points

at 0 (output), -i, and i.
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Figure 5-7: A schematic of S" and its t = 07 1 degenerations.
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Chapter 6

Unstable operations

Some of the operations we would like to consider are parametrized not by underlying

moduli spaces but instead a single surface.

6.1 Strips

Let E1 denote a disc with two boundary punctures removed, thought of as a strip

(oo, oo) x [0, 1]. We have already defined a Floer-theoretic operation using E1, namely

the differential pL'. Let us recast this operation in terms of Floer data.

Definition 6.1. A Floer datum for E1 can be thought of a Floer datum in the sense

of Definition 4.11 with the following additional constraints:

" The strip-like ends c+ and c- are given by inclusion of the positive and negative

semi-infinite strips respectively.

" The incoming and outgoing weights are both equal to a single number w.

" the one-form a is w - dt everywhere, as is the rescaling map as.

" the Hamiltonian HE, is equal everywhere to H=

" the almost complex structure JE, is equal everywhere to (V|W)*J.

147



Remark 6.1. Upon fixing H and Jt, the Floer datum above only depends on w.

Moreover, the data defined by any two different weights w and w' are conformally

equivalent.

Fix the Floer datum for E1 with

ob W, and chords xO, x1 E X(Lo, L1),

w = 1. This induces, for Lagrangians LO, Li E

a space of maps

Ei(xo; x1 )

satisfying the usual asymptotic and boundary conditions, and solving the relevant

version of Floer's equation for the Floer datum. Instead of dividing by R-translation,

we can also consider the operation induced by the space E1(xo; x 1 ) itself, which has

dimension

deg(xo) - deg(xi)

We get a map

I: CW*(Lo, L1) -+ CW*(Lo, L1) (6.1)

defined by

(6.2)
I([o] := (-1)degzo)( 1eg( )ol
zi:deg(zi)=deg(xo) uEE1(zo;zi)

where (E1)u : o, -+ ozi is the induced map on orientation lines (using Lemma B.1).

Proposition 6.1. I is the identity map.

Proof. If u is any non-constant strip mapping into M, composing with the R action

on E1 gives other maps into M solving the same equation by R-invariance of our

Floer data; hence u is not rigid. Therefore, dimension 0 strips must all be constant,

concluding the proof. 0
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6.2 The unit

Let Eo denote a once-punctured disc thought of as the upper half plane H c C with

puncture at oo, thought of as a negative puncture.

Definition 6.2. A Floer datum for Eo is a Floer datum in the sense of Definition

4.11. Concretely, this consists of

" A strip-like end E : (-oo, 01 x [0, 1] -+ Eo around the puncture

" A choice of weight w E [1, 00)

" A rescaling map ag0 : Eo -+ [1, +oo) equal to w on the strip-like end

" Hamiltonian perturbation: A map HF, : Eo -+' (M) such that e*HrO =

" basic 1-form: a sub-closed 1-form ayo, whose restriction to OEO vanishes, such

that E*aro = w - dt.

" Almost complex structure: A map Jr :o : - d(M) such that JFO E 0a;

and E*Jro = ( p")*Jt.

Remark 6.2. Note by Stokes' theorem that in the definition above, the one form aO

cannot be closed everywhere, i.e. there are points with dac, < 0.

Remark 6.3. Up to conformal equivalence, it suffices to take a Floer datum for E0

with weight w = 1.

Let L be an object of W, and consider a chord xo E X(L, L). Fixing a Floer datum

for Eo, write

Eo(Xo;) (6.3)

for the space of maps u: EO -+ E satisfying boundary and asymptotic conditions

u(z) E O*s()L z E aEO
(6.4)

lim.o u o e(s,-) = x
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and differential equation

(du - Xro 9 are)"a = 0 (6.5)

with respect to JF0 .

Lemma 6.1. The space of maps o (xo; ) is compact and forms a manifold of dimen-

sion deg(xo).

Thus, we can define the element eL E CW*(L, L) to be the sum

eL = E I:(O)U (1) (6-6)
deg(xo)=O uEYEo(xo;)

where (Eo)u : R -+ oxo is the induced map on orientation lines (using Lemma B.1)

Proposition 6.2. The resulting elements eL1 E CW* (Li, Lj) give the identity element

on homology.

Proof. This is a classical result, but we briefly sketch a proof for completeness; see

e.g. [R] for more details. One first checks via analyzing the boundary of the one

dimensional moduli space of Eo(xo;) that d(eL) = 0, so eL descends to homology.

Then, one needs to check that, up to sign

p 2 ([x], [eL,]) = [x] (6.7)

p 2([eL][x]) = [x], (6-8)

where the brackets denote homology classes. Since the arguments to establish (6.7)

and (6.8) are identical, it suffices to construct a geometric chain homotopy between

the maps

p 2 (-, et) (6.9)

and

1(-) (6.10)

where I is as in (6.1), which can be described as follows. Let E2 be a disc with

two incoming boundary marked points xi, x 2 , and one outgoing point xzot, with x1
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marked as "forgotten" (see Section 10 for how to do this). Fix a strip-like end around

x1 and consider a one parameter family of Floer data on E 2 with X2 and xt removed,

over the interval [0, 1)t, such that

" at t = 0, the Floer data agrees with the translation-invariant one on the E1

arising by forgetting xi,

" for general t, the Floer data is modeled on the connect sum of the Floer data

for P2 with the Floer data for eLi over the strip-like ends at the output of Eo

with the one around xi, with connect sum length approaching oo as t -+ 1.

Compactifying and looking at the associated Floer operation, one obtains a chain

homotopy between the degenerate curve corresponding to pi(-, eLi) and the operation

I(-). Finally, one performs a sign verification analogous to those in Appendix B. O
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Chapter 7

Operations from glued pairs of

discs

In this chapter, we define a broad class of abstract moduli spaces and their associated

Floer theoretic operations, corresponding to a pair of discs glued together along some

boundary components. This class will arise when defining operations in the product

M- x M, and in setting up the theory of quilts.

7.1 Connect sums

We give a short aside on the notation we use for connect sums. Recall first the notion

of a boundary connect sum between two Riemann surfaces with boundary, a notion

already implicit in our constructions of Deligne-Mumford compactifications of moduli

spaces.

Definition 7.1. Let E1, E2 be two Riemann surfaces with boundary, with marked

points z1 E OE1, z2 E aE2 removed. Let e1 : Z+ -+ E1 be a positive strip-like end

for z 1 and 62 : Z_ :-+ E2 a negative strip-like end for z 2 and let A = " (0,1)1 +log P (01

(correspondingly p E [1, 0o)). The A-connect sum

15f3,zi)2,Z2)E2 (7.1)
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is

1- i([p, Co) x [0, 1])) Up (E2 - E2 ((-00, -p] x [0, 1])) (7.2)

where

p : e1((0, p) x [0, 1]) -+ E2 ((-p, 0) x [0, 1]). (7.3)

is the composition

E1((0, p) x [0, 1]) + (0, p) x [0,1] 4 (-p, 0) x [0,1] E2((-p, 0) x [0, 1]). (7.4)

We will often write E1#\1,z2 E2 when the choice of strip-like ends is implicit.

Definition 7.2. In the notation of above, the associated thin part of a A-connect

sum E1#-\,z2 E2 is the finite strip parametrization

6i : [0, p] X [0, 1] -+ E1,222 (7.5)

The associated thick parts of this connect sum are the regions El - E1([0, oo) x

[0, 1]), E2 - E2([-00, 01 x [0, 1]) respectively, thought of as living in the connect sum.

The notion of A connect sum extends continuously to the nodal case A = 1.

7.2 Pairs of discs

Definition 7.3. The moduli space of pairs of discs with (k, 1) marked points,

denoted

gRk,l (7.6)

is the moduli space of pairs of discs with k and 1 positive marked points and one neg-

ative marked point each in the same position, modulo simultaneous automorphisms.

Remark 7.1. This definition is not identical to the product of associahedra 'Rk x JZ1.

The latter space is a further quotient of the former space by automorphisms of the

right or left disc, at least when both k and 1 are in the stable range. Operations at the

level of the moduli space 'Rk,z will arise via quilted strips and homotopy units.
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Remark 7.2. To construct moduli spaces, we require a pair of discs with (k, 1) marked

points to be stable: one of k or 1 must be at least two.

The Stasheff associahedron embeds in 'R4,1 in several ways. There is the diagonal

embedding

'Rd Rd,. (7.7)

which is self-explanatory. When 1 = 1 and k > 2, there is a one-sided embedding

j~k e k)Pkl7(7.8)

'R Rk,1,(78

where Jk = (id, Fork_1) is the pair of maps corresponding to inclusion and forgetting

the first k -I boundary marked points respectively. Since the right factor in the image

has only one incoming marked point, we call Jk the right semi-stable embedding.

Similarly when k = 1 and 1 > 2, forgetting 1 - 1 marked points and inclusion gives

us the left semi-stable embedding

'R I 1,k. (7.9)

When 1 = 0 or k = 0, there are also equivalences

a k C 9 4 ,0(7 .1 0 )
3Z 0,1,

which we call the right and left ghost embeddings respectively, corresponding to

the fact that the right or left component of 'R4,1 is a ghost disc. In fact, we will

never consider operations with either k or I equal to zero, but these equivalences

help us explain appearances of ordinary associahedra in the compactification 9Rk,l.

Henceforth, let us restrict to k 1> 1 and one of k, 1 > 2.

The open moduli space 'Rk,z admits a stratification by coincident points between

factors, which we will find useful to explicitly describe.
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Definition 7.4. A (k, l)-point identification T is a sequence of tuples

{(i 1, ji),. . ., (is, j)} C {1,. .. ,k} x {1,... ,l} (7.11)

which are strictly increasing, i.e.

ir < ir+1
(7.12)

jr < jr+1

The number of coincidences of T is the size |13 .

Definition 7.5. Take a representative (Si, S2 ) of a point in 9RJ. A boundary input

marked point p1 on S1 is said to coincide with a boundary marked input marked

point P2 on S2 if they are at the same position when S1 is superimposed upon S2.

This notion is independent of the representative (S 1 , S 2), as we act by simultaneous

automorphism.

Definition 7.6. The space of q3-coincident pairs of discs with (k, 1) marked

points

q3-k,l (7.13)

is the subspace of R,l where pairs of input marked points on each factor specified by

T are required to coincide, and no other input marked points are allowed to coin-

cide. Here the indices in q3 coincide with the counter-clockwise ordering of input

marked points on each factor.

Example 7.1. When IP = 0, Tak,j is the space of pairs of discs where none of the

inputs are allowed to coincide. This is a disconnected space, with connected compo-

nents determined by the relative ordering of the k inputs on the first disc with the l

inputs on the second disc. The number of connected components is exactly the number

of (k, l) shuffles, i.e. re-orderings of the sequence

{al, .. ., a, bi,..., b} (7.14)
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that preserve relative ordering of the ai, and the relative ordering of the bj. Given a

fixed (k, 1) shuffle, the subspace of pairs of discs with appropriate relatively ordered

inputs is a copy of the k + 1 associahedron 'Rk+. Equivalently, there is one copy of

9k+' for each (k, 1) two-coloring of the combined set of points, that is a collection

of subsets

I,Jc [k+l], III = k,I JI =l, IUJ= [k+l]. (7.15)

where [k + 1] :={1,... ,k + l}.

Example 7.2. When k = 1 and |q3I = k is maximal, the associated space T >k,1 is

just the diagonal associahedron. Ak('Rq).

We often group these spaces lp'Rk,l by the number of coincident points.

Definition 7.7. The space of pairs of discs with (k, 1) marked points and i

coincident points is defined to be

i9Zk,l L k,l- (7.16)
II=i

The closure of a stratum iRk,i in -Ik,l is UJjii9k,i. Moreover, each stratum i'4 ,L

can be explicitly described as a union of associahedra.

Definition 7.8. Fix disjoint subsets I,J,K of [d] = {1, ... ,d} such that

I U J U K = [d]. (7.17)

The space of (I, J, K) tricolored discs with d inputs

I,J,K Td (7.8

is exactly the ordinary associahedron, with inputs labeled by the elements {L, R, LR}

according to whether they are in the set IJ,or K. The space of (ij, k) tricolored

discs with d inputs, where i + j + k = d, is the disjoint union over all possible
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tricolorings of cardinality i, j, k:

i,j,kq d _ (7.19)LI I,J,K ld

III=i,IJI=j,IKI=k

There is a canonical identification

(7.20)

given as follows: To a pair of discs (Si, S2) with i coincidences, consider the overlay

(superimposition) of Si and S 2 along with their marked points. This is a disc with

k + 1 - i input marked points and one output. Color a marked point L if the marked

point came only from S1, R if the marked point came only from S2, and LR if the

marked point came from both factors. Similarly, given a tricolored disc, one can

reconstruct a pair of discs with i coincidences by reversing the above procedure.

Figure 7-1: An example of the correspondence between pairs of discs and tricolored

discs.

S1

S2

LR

L

The disjoint union of spaces

(7.21)k-i,iii 
k+l-i
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is set theoretically the same as 'R,1, but has forgotten some of the topology. Namely,

points colored L and R are not allowed to coincide, and coincident points (those

colored LR) are not allowed to separate arbitrarily.

We now construct a model for the Deligne-Mumford compactification

(7.22)

The main idea in our construction is to recover this compactification from the Deligne-
-k+1-i

Mumford compactifications of the spaces k-i,1ii by reconstructing the topology

with which points colored L and R are allowed to coincide, and points colored LR

are allowed to separate. Note that the compactification of tricolored spaces

I,J,K3R (7.23)

is exactly the usual Deligne-Mumford compactification, where boundary marked points

on components of nodal discs are colored in a manner induced by the gluing charts

(5.3). Internal positive marked points are colored in the following induced fashion: If

the subtree of nodal discs lying above a given positive marked point is a tree of discs

with all L or all R labels, then color this marked point L or R respectively. If the

subtree contains two out of the three colors (R, L, RL) then color the input LR.

Let

D+I (7.24)

be a representative of the one-point moduli space {1l,{ 21,'R 2 , i.e. a disc with inputs

labeled L, R in clockwise order. Similarly, let

D-1 (7.25)

be a representative of {21,{11,09
2 , i.e. a disc with inputs labeled R, L in clockwise

order. Fix a choice of strip-like ends on D"', and let ZLR denote the output of each

of these discs. Also, suppose we have fixed a universal and consistent choice of strip
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-- k+l -i
like ends on the various kki,1i,i .

Now, take a (potentially nodal) representative S of a point of k~i,l~ii:R -. Let

P~= P* ,. ..-P3 ., s <i (7.26)

De a subset of Iei points uiulu Lld fle sj0, ... ,, the ascbbuiaLU btip-like es.

Given a vector

V = (.. . ,vj,) E [(-c, c)*]i, (7.27)

where the * means none of the v, are allowed to be zero, define an element

fl'(S) E -k+l-i+s (7.28)

by the iterated connect sum

Hw(S) := S#,-'I D i(v) # -.. -- " Dsign(vj) (7.29)V PjlLR LRPjA:,ZLR LR

Here #111, is the operation of connect sum with gluing parameter 1 - Iv,.| in the

notation of Section 7.1, which as IvRI approaches zero is very close to nodal. Also,

sign(v,) is +1 if v, is positive and -1 if v, is negative. In other words, at input point

pj, on S, we are taking a connect sum with the disc Di(v,) at the point ZLR, i.e.

gluing in two points labeled L and R in clockwise or counterclockwise order depending

on the sign of v,.

Example 7.3. It is useful before proceeding to describe the map UM(S) in a simple

example. Suppose we are in 1,1,1'?, the moduli space of discs with three inputs, one

with each color. Pick a non-nodal representative of an element of this space, without

loss of generality one in which the points are colored L, LR and R in clockwise order

from the output. Let P2 be the point colored LR with associated vector V' = (v), and

let us examine the representative of Ul' (S) for different values of v E (-E, 0) U (0, e).

For v positive, Uv) (S) corresponds to resolving the LR point by two points, one la-

beled L and one labeled R, with the L point to the left of the R point, which lives in

160



{1,2},{3,4},094. For v negative, we UT"M(S) resolves the LR point in the opposite direc-

tion, giving an element of a different associahedron {1,3 },{ 2,4}, 0 
4 . As v approaches

zero from either direction, the newly created L and R points come together and bub-

ble off, giving a nodal element in each of these respective associahedra 0+) (S) and

fU&_)(S) with bubble component a D+A or D-1 respectively. To partially recover the

topology of JR2,2 , we would like to identify the points Ul2(S) and U+(S), in a manner

preserving the manifold structure near the identification. See Figure 7-2.

Figure 7-2: The strata we would like to identify.
L ft BL

LB

LL 
LA

The above example illustrates the following properties: Uil varies smoothly in S

and the parameters i' E [(-C, )*]i, and there are well defined, but different, nodal

limits of the curve Ugy(S) as components v,. approach 0 from the left or right, corre-

sponding to gluing on a nodal D11 respectively at input p,. Indicate these different

limits by values 0+ and 0- respectively. Then 11(S) extends to a map

n., (7.30)

defined over domain

v E [(-f, 0-) U [0+, )i. (7.31)

Define

-il7-32)

-kc+L-i

to be the locus of the compactifications I,J,KR with Il = k - i, |J| = I - i,

IKI = i where there are no leaf bubbles with one L and one R. Put another way,
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remove the images of F., .. ) for all relevant domains of definition of T.

Now, define the manifold structure on as follows. To simplify notation, denote

:(-c,). (7.33)

U x f, U C k-i,li,i(Z (7.34)

where E may depend on U.

For every such U above take any subset of indices j = {ji,., j,} of the i points

colored LR, indexed for now from 1 to i. Let ji= {pj,..., p} be the associated

points. Given any such subset j of {1, ... , i}, define

'P; :[( -+ K l (7.35)

to be the projection onto the coordinates with indices in 3 and

'P7c : - - (7.36)

to be the projection onto the complementary coordinates.

Then shrinking U and E if necessary, perform a smooth identification of the restric-

tion of the basic chart (7.34), where the coordinates for indices in 3 are all non-zero

U x IfIT7 (6)11 (7.37)
' .7

onto its image under the smooth map

(S,U) - (II f((S),'P ('6)). (7.38)

All such identifications are manifestly compatible with each other, and along with the

identifications of charts within each k-i,Ii,iIqk+l-i, give 1k,I the structure of a smooth

manifold with corners of dimension k + 1 - 2. The result is moreover compact, as
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topologically it is the quotient of the compact space k,1,0l, by identifications between

otherwise identical nodal surfaces containing D'-R components.

Example 7.4. Let us examine the resulting manifold structure on :R2,2 , in a neigh-

borhood of the one point coincidence discussed in Example 7.3. Consider once more

the element q of 1,1,123 we discussed there, which is represented by some disc with

inputs colored L, LR, and R in clockwise order. Then, in a neighborhood Uq of q, we

have a chart

Uq X (-E, E) (7.39)

for some small value of E. There are two distinguished smooth identifications of subsets

of (7.39). In the first, one resolves the LR point P2 by an L followed by R

Uq X (0, E) - 2,2,04(7.40)

(S, V) IP2(V (S) := S#,-"DT)+

and in the second, one resolves p2 by an R followed by an L

Uq x (-E, 0) - 2,2,0(7.41)

(S, v) Il Ig(S) := S#,;-~)D-1.

These identifications, along with the existing manifold structure on (2,2,oZ)* deter-

mine the manifold structure in a neighborhood of P2. See Figure 7-3 for an illustration

of the manifold structure near P2.

Figure 7-3: The manifold structure near a coincident point on 92,2-

'Li

p I -

-E 0
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This definition of the compactifiction :k,l remembers the structure of the left and

right components. Namely, a (potentially nodal) element S in kL can be thought of as

an element of k-i,l-iYi5k+-i for some i, with no D'R leaf bubbles. Define the associated

unreduced left disc 51 to be obtained from S by deleting all points colored R, and

forgetting the L, LR colorings. Similarly, define the associated unreduced right

disc 52 to be obtained by deleting all points colored L and forgetting the R, RL

colorings. The associated reduced discs (S1 , S2 ) are given by stabilizing 51 and 52,
and there are well defined inputs on these stabilizations corresponding to the inputs

colored (L, LR) and (LR, R) on S respectively.

In this way, we obtain a projection map

Vreduce J k,l _ jkk X (7.42)

Since the manifolds k-i-i,i' Rk+L-i are codimension i in the space 'k,I, we see that

the codimension one boundary of the compactification -Xk,l is contained in the image
-k+l

of the codimension 1 boundary of the top stratum k,I,OR . The chart identifications

(7.38) show that points where an L and R would have bubbled off in codimension

1 now cease to be boundary points; thus any codimension 1 bubble must contain at

least two L/LR points or two R/LR points.

The result of this discussion is as follows: we see that the codimension one bound-

ary of the Deligne-Mumford compactification (7.22) is covered by the images of the

natural inclusions of the following products:

94k,L' X 19Zk-k'+1,1-1'+1, k', 1', k - k'+ 1, 1 - 1' + 1 > 2 (7.43)

X,1 X 1Zk-k'+1,1, k', k - k' + 1, > 2 (7.44)

,'x 1k,L-L'+1, 1', 1 - 1' + 1 > 2 (7.45)

k',0 X 'Rk-k'+1,L, k', k - k' + 1 > 2 (7.46)

oy X 94k,1-1'+1, ', 11 - 1' + 1 > 2 (7.47)
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The appearance of 1-coincident spaces 1'Rk-k'+1,l-1'+1 in (7.43)-(7.45) has a simple

explanation. For simultaneous bubbling of L and R's to occur, the bubble point must

be coincident, i.e. colored LR.

Strictly speaking, the compactification we have described is somewhat larger than

we would ideally like; the strata of most interest to us are (7.46) and (7.47). However,

we will be able to make arguments showing that operations coming from the other

strata must all be zero.

Remark 7.3. We could further reduce the compactification of 'Rk,l by collapsing strata

whose subtrees are monochromatic L or R except for a single off-color point. The

construction would make points colored R point view entire subtrees colored L as

invisible and vice versa. Having made this construction, one can then check that the

resulting operations we construct will not change. We have thus opted for a simpler

construction at the expense of having a larger compactification.

7.3 Sequential point identifications

We study a particular classes of submanifolds of pairs of discs, and examine its com-

pactifications carefully. This compactification is the one that will arise when defining

quilts and Floer theoretic operations in the product.

Definition 7.9. A point identification P is said to be sequential if it is of the form

6 = {(1,ji), (i1 + 1, ji +1..., (ii + sji + s)}. (7.48)

It is further said to be initial if (ii, ji) = (1, 1).

Definition 7.10. A cyclic sequential point identification of type (r, s) is one of

the form

6 ={(1 1) (2 2) .., (, r, ( - , l- s, ( - + 1 l s 1) .. , (, l}. (7.49)
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In other words, it is a sequential point identification where we need to take indices

mod (k, l).

Proposition 7.1. Let I3 be a (k, 1) initial sequential point identification of length

s. Then the codimension-1 boundary of the compactification of 9-identified pairs of

discs

TJik,l (7.50)

is covered by the natural inclusions of the following products:

Tma2ld,d X q3'-k-d+1,L-d+1 (7.51)

V'la',j' X T/u9k-k'+1,1-1'+1 (7.52)

'Rk',l X q3u(s,t)9Zk-k'+1,l-1 (7.53)

'Z1,r X qu(S,t)'R4-1'+1 (7.55)

'Ror x V'Rk,1-1+1 (7.56)

'Rk',o X Pk-k'+1,1- (7.57)

Proof. We will only say a few words about the Proposition. Note that under the

point-coincidence stratification, the top stratum of the non-compactified space 'Rk,,

in which there are no other coincidences, correspond to all tricolorings of discs with

k + - i marked points with LR colorings specified by Ip and L, R colorings arbitrary

' == U 1,2,'k+- i. (7.58)
IUJuP=[k+l-i|

Thus, we can determine the codimension-one boundary of the compactification by

looking at the boundary components of the compactifications I,qJZc,i which survive

our chart maps (7.38).

The possible strata that arise fall into three different cases: bubbling occurs en-

tirely within the coincident points (7.51), bubbling overlaps somewhat with the co-

incident points (7.52), and bubbling stays entirely away from the coincident points
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(7.53) - (7.57). Note once more that when L and R points simultaneously bubble,

there is an additioni coincident point created, hence the need to add various (s, t) to

the coincident set in (7.53)-(7.55). O

7.4 Gluing discs

We now make precise the notion of gluing pairs of discs along some identified boundary

components, a construction that will arise from incorporating the diagonal Lagrangian

A as an admissible Lagrangian in the product M- x M. We begin by discussing the

combinatorial type of a boundary identifications of a pair of discs.

Definition 7.11. A (k, 1) boundary identification is a subset 6 of the set of pairs

{, ... , k} x {0,..., l} satisfying the following conditions:

* (0,0) and (k, 1) are the only admissible pairs in 6 containing extrema.

* (monotonicity) 6 can be written as {(i 1 , ji), ... , (i, 7 j,)} with i, < ir+1 and

Jr < j+1-

Definition 7.12. Let S and T be unit discs in C with k and 1 incoming boundary

marked points respectively, and one outgoing boundary point each. Assume further

that the outgoing boundary points of S and T are in the same position. Label the

boundary components of S

{93, ... ,S (7.59)

in counterclockwise order from the outgoing point, and label the components of T

{ 0 T,..., 7 T} (7.60)

in counterclockwise order from the outgoing point. Let 6 be a (k, 1) boundary

identification. S and T are said to be 6-compatible if

a the outgoing points of S and T are at the same position.
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* The identity map induces a one-to-one identification of &xS with &IT for each

(x,y) E 6.

The notion of 6-compatibility is manifestly invariant under simultaneous automor-

phism of the pair (S, T). 6-compatibility of a pair (S, T) also implies certain point

coincidences, in the sense of the previous section.

Definition 7.13. Let 6 be a (k, 1) boundary identification. The associated (k, 1)

point identification

p(6) (7.61)

is defined as follows:

p(6) := {(i,j)|(ij) E 6 or (i - 1,j - 1) E 6}. (7.62)

Moreover, if S and T have coincident points consistent with the induced point-

identification p(6), then S and T are also 6 compatible. Hence, we can make the

following definition:

Definition 7.14. A (k, 1) boundary identification 6 is said to be compatible with

a (k, 1) point identification T if

p(6) C T (7.63)

where p(() is the associated point identification.

Now, let 6 be a (k, 1) boundary identification with compatible point identification

T. Given any pair of discs with E point coincidences, there is an associated tricol-

ored disc in the manner described in the previous section. We see that a boundary

identification can be thought of as a binary { "identified", "not identified" } label-

ing of the boundary components between T-coincident points, which were colored

LR. Thought of in this manner, we see that a boundary identification 6 induces a

boundary identification on nodal elements in the compactification

Tik,1; (7.64)
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We can see this as follows. On any nodal component of this space, there are induced

point coincidences coming from gluing maps. Label a boundary component between

two coincident points as "identified," if, after gluing, the boundary component corre-

sponds to one labeled "identified."

Thus, in the same manner that we have already spoken about boundary-labeled

moduli spaces, we can define the moduli space of 6 identified pairs of discs

with ' point identifications and (k, 1) marked points

x,6i'Rkl (7.65)

to be exactly 04k,1 with the additional boundary labelings that we described above.

Our reason for defining boundary identification is so that we can speak more easily

about gluings.

Definition 7.15. Let S and T be compatible with a (k, 1) boundary identification

datum 6. The 6-gluing

re := S J T (7.66)

is the genus 0 open-closed string defined as follows: view -S, i.e. S with the opposite

complex structure as being the south half of a sphere bounding the equator via the

complex doubling procedure, one of the methods of constructing the moduli of bordered

surfaces [L1, §3.1]. Similarly, view T as the north half of the sphere. Then

(S JT) := (-S) J T/~ (7.67)

where ~ identifies 6F(-S) to MuT (&(-S) is the same boundary component of S

as before, now with the reverse orientation) under the identification coming from

inclusion into the sphere if and only if (x, y) E 6. Boundary marked points are

identified as follows: Let zi s be the boundary marked point between i-1 (-S) and

i(-S), zs the outgoing marked point, and z similar. Then:

* if (x - 1, y - 1), (x, y) E 6, then zg ~- z- becomes a single interior marked
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point.

* if (x - 1, y - 1) E 6 but (x, y) is not, then z'g ~ z becomes a single boundary

marked point, between &YT and O"(-S)

e if (x, y) E E but (x - 1, y - 1) is not, then z's ~ z becomes a single boundary

marked point, between &"(-S) and 89T

* otherwise, zfg and zy are kept distinct, becoming two boundary marked points.

By 6-compatibility, S and T can be viewed as the south and north halves of a

sphere in a manner preserving the alignment of outgoing marked points and boundary

components specified by E5, so the above definition is sensible.

One can read off the characteristics of the resulting bordered surface from k, 1,

and 6, which we leave as an exercise. Denote the resulting number of boundary

components of the open-closed string

h(k, 1, 6). (7.68)

Figure 7-4: An example of the gluing ire associated to a {(1, 1), (k, l)} boundary

identification.

Proposition 7.2. Let 6 be a boundary identification, with compatible point identifi-

cation '. Then, the gluing operation S {1e T extends to an operation on the Deligne-

Mumford compactifications ,Nk,l .

170



Proof. Nodal components of an element P in the Deligne-Mumford compactification

3jk,l can be thought of as nodal tri-colored discs, with induced boundary identifi-

cations in a manner we have already described. As we have earlier indicated, the

L/R forgetful maps applied to P give us unreduced left and right disc trees

(5, T). Boundary identifications descend to these trees, because by definition they

were labelings between points colored LR. We now perform the above procedure

component-wise on this pair to obtain a nodal open-closed string S H6s(T), which

potentially has semi-stable/unstable components. Finally, define

7re (P) := S T (7.69)

to be the nodal open-closed string obtained by stabilizing 5 IJJ T. 0

In the case when the boundary identification 6 is empty, the gluing operation ire

reduces to the projection we defined earlier, where we conjugate the first factor:

7r e : greduce 0 (-1 x id). (7.70)

7.5 Floer data and operations

Definition 7.16. A Floer datum for a glued pair of discs (P, 6) is a Floer datum

for the resulting open-closed string ire(P), in the sense of Definition 4.11.

Now, let us assume that our point identification T was sequential or cyclic sequen-

tial.

Definition 7.17. A universal and consistent choice of Floer data for glued

pairs of discs Dglued is a choice Dpe of Floer data in the sense of Definition 7.16

for every k, 1, (k, 1) boundary identification 6 and compatible sequential point iden-

tification T, and every representative , varying smoothly over T,e3kk,l, whose

restriction to a boundary stratum is conformally equivalent to the product of Floer

data coming from lower dimensional moduli spaces. Moreover, with regards to the
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coordinates, Floer data agree to infinite order at the boundary stratum with the Floer

data obtained by gluing. Finally, we require that this choice of Floer datum satisfy

the following conditions:

The Floer datum only depends on the open-closed string 7re(P); and

The Floer datum agrees with our previously chosen Floer datum on ,r (P).

(7.71)

(7.72)

Definition 7.18. A Lagrangian labeling from L for a glued pair of discs (P, 5) is

a Lagrangian labeling from L for the gluing irs (P) = S H6S T, thought of as a (possibly

disconnected) open-closed string. Given a fixed labeling L, denote by

(1,65,1);(7.73)

the space of labeled e-identified pairs of discs with T point coincidences.

Now, fix a compact oriented submanifold with corners of dimension d,

-d -,5X~

Fix a Lagrangian labeling

(7.75)

Also, fix chords

(7.76)

and orbits y' = {y1,... , yn} with

xj E
i E Kj

(7.77)
otherwise.

Above, the index i in L is counted mod m. Collectively, the ', y~ are called

asymptotic conditions for the labeled moduli space 'L . The outputs OUt,L
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by definition those xj and y, for which i E Ki and s E I, corresponding to negative

marked points. The inputs in, gi, are the remaining chords and orbits from X, y.

Fixing a chosen universal and consistent Floer datum, denote e and 61 the strip-like

and cylindrical ends corresponding to xj and yj respectively.

Finally, define

L (sot, Mot; An, in) (7.78)

to be the space of maps

{u: 7r(P) -- + M : P E } (7.79)

satisfying, at each element P, Floer's equation for (Ds)p with boundary and asymp-

totic conditions

lim.,±o u o C(s,-) = ,

lim8 ±00 u o o (s,-) = yi, (7.80)

u(z) E ?pas(z)Li, z E I S.

We have the usual transversality and compactness results:

Lemma 7.1. The moduli spaces L (z t, zi, ) are compact and there are only

finitely many collections 4't, g t for which they are non-emtpy given input , y .

For a generic universal and conformally consistent Floer data they form manifolds of

dimension

dim (zt, t; Z, n) := deg(x_) + E deg(y_)
" ""* V(7.81)

+(2 - h(k, l, 6) - I|4t| - 2 It)n + d - E deg(x+) - Z deg(y+)-

Proof. The index computation follows from the arguments outlined in the proof of

Lemma 4.3. The proof of transversality for generic perturbation data is once more an

application of Sard-Smale, following arguments in [S4, (9k)] or alternatively [FHS].

These arguments show that the extended linearized operator for Floer's equation,

in which one allows deformations of the almost complex structure and one-form, is
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surjective. As their arguments are on the level of stabilized moduli spaces, they imply

that transversality can be achieved in our situation by taking perturbations of Floer

data that are constant along the fibers of the projection map r,5. In other words, the

class of Floer data satisfying (7.71) is large enough to achieve transversality.

The usual Gromov compactness applies once Theorem A.1 is applied to obtain a

priori bounds on maps satisfying Floer's equation with fixed asymptotics. 0

When the dimension of d(zt, a; zin, Yin) is 0, we conclude that its elements

are rigid. In particular, any such element u E Ld(4at, fo t; f , ) gives (by Lemma

B.1) an isomorphism of orientation lines

£U: 02 O oV -+ 02 x o .

xEzin yEin xEZot yEY7out

(7.82)

Using this we define a map

Gr : CW*(Lj,Li+1) 0 CH*(M)
(i~J);1<ismy;iVKj l<kin;kVI

CW*(L V1 ,L) 0 CH*(M)
(ij);1i<m,;iEKj lkin;kEI

given by, as usual (abbreviating 4, = x1,...,x,}, fi, = yi , .. ., yt})

G ([y], . .. , [y1], [x8], .. ., [xi])

dim, d(~zont zut;An,fin)=0 UELd(zoUt,9out;An,in)

(7.83)

(7.84)

This construction naturally associates, to any submanifold £d E C,T k,l, a map Gd,

depending on a sufficiently generic choice of Floer data for glued pairs of discs. In a

similar fashion, this can be done for a submanifold of the labeled space

L -C (e,sRk,l)L, (7.85)
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in which case the result is an operation defined only for a specific labeling,

Gzt, (7.86)
L

This operation can also be constructed with a sign twisting datum to create an op-

eration

(1) tG-V (7.87)

in an identical fashion to (4.30).

7.6 Examples

As a first example, consider the case 6= 0 and L equal to the full NRl.

Proposition 7.3. The operation associated to Z = IZk,l with arbitrary Lagrangian

labeling is zero if both k and 1 are > 1 and one of (k, 1) is > 2.

Proof. Let u be a rigid element in the associated moduli space Rkl(zn; zEs±); since

we are in the transverse situation, we can assume the domain of u is a point in the

interior p E 9k,l. On the interior, the projection map

gO : 94,1 _ x JZL (7.88)

has fibers of dimension at least 1, parametrized by automorphisms of one factor

relative to the other. (when k = 1, we implicitly replace qRk by a point, and same for

i-stabilization in this case completely collapses the left or right component). Since

our Floer data was chosen to only depend on lro(p), we conclude that any map from

an element of the fiber 7r- 1 (7rg(p)) also satisfies Floer's equation; hence u cannot be

rigid. 0

Proposition 7.4. The operation associated to the compactification of the inclusion Jk

in (7.8) is (I4k)*P (9 id. Similarly the operation associated to 01 as in (7.9) is id 9 j.
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Proof. A rigid element u of the moduli space associated to im(Jk) has, without loss

of generality, domain in the interior im(Jk). We note that the projection map

7re : im(Jk) _+ gyk x {*} (7.89)

is an isomorphism up to conjugation. Since we have chosen Floer data compatibly,

we obtain an isomorphism

((2)(z, X'o;R1, . ..- , zk), X') Xk 2-xo -a .. , X1) X {*}, (7.90)

implying the result for Jk. The result for J, is analogous.

More generally, one can look at the submanifold 2' C 'R,1 of pairs of discs

where the negative marked points are required to coincide and the marked points

immediately counterclockwise are required to coincide.

Proposition 7.5. The associated operation is zero unless k = 1 or 1 = 1, in which

case the previous proposition applies.

Proof. In this case, the projection

_lre : Ol'J __ gk X 'R1 (7.91)

has one dimensional fibers, parametrized by automorphism of one factor relatve an-

other. We conclude in the manner of the previous two propositions that elements of

the associated moduli spaces can never be rigid. 0

We can also look at the submanifold

0,0R,1 (7.92)

of pairs of discs corresponding to the point identification

' = {(1, 1), (2, 2)}, (7.93)
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i.e. discs where the negative point, and first two positive points, are required to

coincide. This submanifold can be thought of as the image of an open embedding

from the pair of associahedra

'r x 'RsQ IZr,s (7.94)

which can be described as follows: Take the representative of each disc on the left

(-S1, S2) for which the negative marked point and the two marked points immediately

counterclockwise of (S 1 , S2) have been mapped to -i, 1, and i respectively. Define

Q([S1], [S2]) := [(Si, S2)]. (7.95)

In other words, associate to a pair of discs mod automorphism the pair mod simul-

taneous automorphism in which the output and the first two inputs are required to

coincide. The embedding Q not quite extend to an embedding of r x Ts because,

among other phenomena, the three chosen points on each disc will come together

simultaneously in codimension 1. We can still study the operation determined by the

compactification of the embedding.

Proposition 7.6. The operation associated to the compactification Q(JRr x 'Rs) is

(pr)OP 9 I".

Proof. The map Q is a left and right inverse to the projection map

7r0 :0,{(1,1),(2,2)} '94,1 ___ 'Rk X 9I (7.96)

so 7re is an isomorphism, up to direction reversal of first factor. We conclude that

there is an identification of dimension zero moduli spaces

im(Q)-.1 -.2 -L ,g _Ik( ;(i. XD X ;(.7

where the op superscript indicates an order reversal.

Now, consider the case of a single gluing adjacent to the outgoing marked points,

i.e. 6 = {(1, 1)} or 6 = {(k, l)} with the induced point identification.
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Proposition 7.7. The resulting operation in either case is yLk+i+1

Proof. We will without loss of generality do E = {(1, 1)}; the associated point iden-

tification is also p(E) = {(1, 1)}. The gluing morphism is of the form

7re :e,p(6) 'R4,1 _ 'Rk+l+1. (7.98)

if k or 1 is > 1, the unreduced gluing is automatically stable, implying that (7.98) is

an isomorphism. We obtain a corresponding identification of moduli spaces. O

Our next example is the case 6 = {(1, 1), (k, l)} with the induced point identifi-

cation.

Proposition 7.8. The resulting operation is exactly 20ek-2,1-2.

Proof. The surface obtained by gluing the (1,1) and (k,l) boundary components

together in 'Rk,l is stable, and has one interior output marked point. There are also

k + 1 boundary marked points, two of which are special. In cyclic order on the

boundary, there is the identified point p1 coming from the (1,1) boundary points,

the k - 2 non-identified points from the left disc, the identified point P2 coming from

the (k, 1) boundary points, and the 1 - 2 non-identified points from the right disc.

Moreover, the identified points pi, p2, and the interior boundary point are required

to, up to equivalence, lie at the points -i, 0, and i respectively. We conclude that

the projection is an isomorphism onto

7re : E5,p(6)9Zk,1 --- + -Tl2,1-2, (7-99)

the moduli space controlling 2 0Ck 2 ,1 2

See also Figure 7-4 for an image of this situation.

Our final example is the case 6 = {(1,1), (2,2)}, with the induced point identifi-

cation.

Proposition 7.9. The resulting operation is exactly 2 ((k-2,1-2.
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Proof. The surface obtained by gluing the (1, 1) and (2,2) boundary components

together in 'R4,L is stable, has one interior input marked point, and in counterclockwise

order on the boundary has one output boundary marked point (which was adjancent

to the (1, 1) gluing), 1 - 2 additional boundary inputs, one special boundary input

(which was adjacent to the (2,2) gluing), and k - 2 additional boundary inputs.

Moreover, the output boundary marked point, the interior input, and the special

boundary input are required to, up to equivalence, lie at the points -i, 0, and i

respectively. We conclude that the projection is an isomorphism onto

rE : c,p(Ee)ck,n l'2,n-2 (7.100)

the moduli space controlling 260~k-2,1-2.E
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Chapter 8

Floer theory in the product

The Liouville manifold M 2 := M- x M carries a natural symplectic form, (-WM, WM)

for which the diagonal is a Lagrangian submanifold. Let

7r,: M 2 _+ M, i = 1,2

be the projection to the ith component. As observed by Oancea [01], there is a

natural cylindrical end on M- x M, with coordinate given by r1 + r 2, where r = 7rir

is the coordinate on the i-th factor. Thus one could define symplectic homology and

wrapped Floer theory by considering Hamiltonians of the form (r1 + r 2)2 at infinity.

To obtain the comparisons that we desire, we must consider Floer theory for split

Hamiltonians of the form 7r*H + irH, for H E '-(M). There are immediately some

technical difficulties: split Hamiltonians are not admissible in the above sense, and

in general will admit some additional chords near infinity. Using methods similar to

[01], one could prove that these orbits and chords have sufficiently negative action,

do not contribute to the homology, and thus such split Hamiltonians are a posteriori

admissible (thereby proving a Kiinneth theorem for wrapped Floer homology).

We bypass this issue and instead define all Floer-theoretic operations on the prod-

uct for split Hamiltonians and almost complex structures. In this case, with suitably

chosen Floer data, compactness and transversality follow, via unfolding, from com-

pactness and transversality of certain open-closed moduli spaces of maps into M
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constructed from glued pairs of discs. The end result will be a model

W2 (8.1)

for the wrapped Fukaya category of split Lagrangians and the diagonal in M 2 , using

only maps and morphisms in M.

Remark 8.1. There is another technical difficulty with considering Hamiltonians of

the form (r1 + r2)2 at infinity: Products of admissible Lagrangians Li x Lj are no

longer a priori admissible in the product. Namely, it is not guaranteed (and highly

unlikely) that the primitive *fL, + r*fL, is constant as (r1 + r 2 ) -+ oo. The usual

method of proving that the relevant moduli spaces are compact does not work in this

situation, and a more refined argument is needed.

8.1 Floer homology with split Hamiltonians

First, let us examine Floer homology groups in M 2 for a class of split Hamiltonians

'if(M x M) of the form

r*H + 7*H, H E '(M). (8.2)

For Floer homology between split Lagrangians we immediately obtain a Kunneth

decomposition.

Lemma 8.1. For H and J generic, there is an identification of complexes

CW*(L1 x L 2 , L' x L'; 7r*H+7r*H, (-J, J)) = CW*(L', L 1, H, J)9CW*(L2 , L'; H, J)

(8.3)

where the differential on the right hand side is 6JL,Ll 0 1 + 1 0 6L 2 ,L'

Proof. If X is the Hamiltonian vector field corresponding to H, note that the complex

on the left-hand side of 8.3 is generated by time 1 flows of the vector field (-X, X),

so there is a one-to-one correspondence of generators. By examining equations we see
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that there is a one-to-one correspondence of strips

:Z((x 0, X'), (xi, ')) = (Xoi ) x 9R1(x'; x') (8.4)

In particular, the dimension of 9Z1((xo, x'), (x 1 , x')) is

deg xo - deg x1 + deg x' - deg x' = dim 2 1(xo; x1) + dim 1 (x'; x')

This implies that the one-dimensional component of the moduli space is the union of

" the one-dimensional component of JR1(xo; x1 ) times the zero-dimensional com-

ponent of 9R1(x'; x').

* the one-dimensional component of 9Z'(x'; x') times the zero-dimensional com-

ponent of 9 1 (xo; xi).

But by Proposition 6.1, the zero-dimensional component of the above moduli spaces

must be constant maps, thereby implying the Lemma. l

Floer trajectories with the diagonal Lagrangian A unfold and can be compared

to symplectic cohomology trajectories, for appropriate Hamiltonians.

Lemma 8.2. For Ht and J generic,

11
CW*(A, A, r H1-t/2 + 7* H/2, (- J, J)) = CH*(M, Ht, J) (8.5)222

as relatively graded chain complexes.

Proof. Denote Ht = riH 1 i-t/2 + 7r }H/2. The correspondence between generators is

as follows: Given a time 1 orbit x of Ht, we construct a time 1 chord from A to A of

Hit

^(t) = (x(1 - t/2),x(t/2)). (8.6)

Conversely, given a time 1 chord & = (X 1 , x 2) of Ht , the corresponding orbit of

Ht is given by:
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x(t) = x2 (2t)

xi(2(1 - t))

t < 1/2

1/2 < t < 1

Let us now identify the moduli spaces counted by either differential. First, suppose

we have a map u: R x R/2Z -+ M satisfying:

Ou + JM(tu - Xt) = 0

lim u(s,-) = X-
8- -00

lim u(s,) = X+
8-+00

where Xt is the Hamiltonian vector field corresponding to Ht. Then, note that

the map

fi(s, t) := (u1 (s, 1 - t/2), u2 (s, t/2))

satisfies the equation

.,n = -(-J1-t/2, J1-t/2) (.9tfi - (-Xi-t/2 , Xt/ 2 ))

with limits

lim '(s,-) =i,
8-4-00

lim fi(s,-) =
8-00

Conversely, suppose we have a map i^ : R x [0,11 -* M- x M satisfying

O.u + (-Ji-t/2, J-t/ 2 )(DCu - (-Xi-t/2, Xt/2)) = 0

lim u(s,-) = i_
8-4-00

lim u(s,-) = X+-
8-00

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)
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Let ui = i o 7, and define

u(s, t) = u2 (s, 2t) 0 < t < 1/2 (8.15)
u1(s, 2(1 - t)) 1/2 < t < 1.

Because fi(s, 0) and fi(s, 1) lie on A, u(s, t) is continuous across the seams t = 0, 1/2.

It is clear that 8,u is continuous along t = 0, 1/2. Thus, as u solves au + Jt(Oru -

Xt) = 0 on both sides of t = 0 and t = 1, we see that e9u = Jt( 8,u)+Xt is continuous,

so u is at least C1 across the seams. Now inductively use the fact that B5 is continuous

for all k along with applications of c, and at to Floer's equation, to conclude that all

other mixed partials are continuous. Therefore u is Co across the seams. 0

The cases of HW*(A, Li x Lj) and HW* (Li x Lj, A) are analogous, so we simply

state them.

Proposition 8.1. As relatively graded chain complexes,

CW*(Li x Lj, A, 1(7r*H + *H), (- J, J)) = CW*(Lj, Li, H, J) (8.16)

Proposition 8.2. As relatively graded chain complexes,

CW*(A, Li x Lj, I(r*H + 7*H), (- J, J)) = CW*(Li, L, H, J). (8.17)

In the setting of the ordinary Fukaya category, the analogue of Lemma 8.2 is the

well-known correspondence between HF*(A, A) with the ordinary Hamiltonian Floer

homology, or quantum cohomology, of the target manifold. Instead of continuing this

correspondence for higher operations and, e.g. unfolding Floer data for discs mapping

into M 2 , we will take the above correspondence as a starting point for a definition of

the category W 2 using operations and Floer data in M. Define the objects of W 2 as

ob W 2 := {Li x Lj|Li, L, E ob W} U {A}. (8.18)
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For objects Xk, XI, define the generators of the hom complexes

XM2(Xk, X) :=

X(Lj, Li, H) x X(L, L, H) Xk=Li xL, X 1=LjxL

X (, Li) Xk=LixLj, XI=A

X(Li, Lj) Xk=A, XI=Li xL

( Xk=XL=A

Also, define the differential p4W2 to be the differentials coming from the correspon-

dences in the Lemmas above. It remains to define gradings and construct A,, opera-

tions, which we do in reverse order.

8.2 The A.. category

To complete the construction of W 2, we construct higher A, operations p'W, d > 2.

First, suppose we have fixed a universal and conformally consistent Floer datum for

pairs of glued discs and genus-0 open closed strings. Now, consider the space of

labeled associahedra

RL2 (8.20)

with label set the relevant Lagrangians in M 2:

L2 = {A} U {Li x LILi, Lj E ob W}. (8.21)

Consider first the case where all Lagrangians are split. Discs in M- x M solving

the inhomogenous Cauchy-Riemann equation with respect to a split Hamiltonian in

'f(M- x M) split almost complex structure (-J, J) and split Lagrangian boundary

conditions are exactly pairs of discs ui, U2 with the same conformal structure (up

to conjugation) solving the inhomogenous Cauchy-Riemann equation with respect to

w, J and respective Lagrangian boundary conditions. The relevant moduli space of
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abstract discs is the diagonal associahedron

-d A, (8.22)

For labeling sequences L2 from L2 not containing A, we can think of Ad as an em-

bedding of labeled moduli spaces

(Ad) E2 : (2d) j2 -- (gla,d)L (8-23)

in the obvious manner: if a boundary component of S e 2 was labeled Li x Lj,

applying Ad, label the respective component of the first factor Li and the second

component Lj.

Definition 8.1. Define the operation p4,2, for sequences of Lagrangians L 2 in L 2 not

containing A, to be the operation controlled by the image of (Ad) j2 as in Equation

(7.86), with sign twisting datum given by the image of the sequential sign twisting

datum

td = (1, ..., d) (8.24)

in the following sense: twist inputs in the image of (Ad) 1 2 of a boundary point z, by

weight j.

Now, let us give a more general construction of the operations, for cases including

A. Let S be a disc in Va with labels L2 from L 2 , with at least one label equal to A.

Let

D(L2 ) (8.25)

be the set of indices of boundary components of S labeled A. Then, let

'Ia. = {(1, 1), (2, 2), ... ,7 (d, d)} (8.26)

be the maximal boundary identification data and let

(L = {(ii)fi E D(L 2 )} (8.27)
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be the set of boundary components determined by the positions of A. Finally, define

(j2 ('d) :=6(L
2 ),Tmax &d,d (8.28)

Label the boundary components of the resulting pair of discs as follows: if akS was

labeled Li x Lj, then in hr(S), the left image of akS will be labeled Li and the right of

akS will be labeled Lj. If akS was labeled A, then it will become part of a boundary

identification and disappear under gluing so there is nothing to label.

Definition 8.2. Define the operation

pW2, (8.29)

for sequences of Lagrangians L 2 in L2 , to be the operation controlled by the image of

*j2 as in Equation (7.86).

Figure 8-1: An example of the labeled gluing 4PL2.
A

L2 x L's

LLa

L 13 x L
La xL'3

Because the unfolding maps 4r2 are embeddings of associahedra,

Proposition 8.3. The operations y42 as constructed satisfy the Ao equations.
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8.3 Gradings

The identifications of chain complexes in Section 8.1 give us an identification of com-

plexes with relative grading. In this section, we would like to make the subtle obser-

vation that naively attempting to inherit the absolute grading from M under these

identifications will result in the A. operations having the wrong degree.

Proposition 8.4. Fix a choice of gradings in M. Then, choose gradings for M 2 in

the following manner: given correspondences of hom generators,

Xu2 (O x L1, L' x L ()+- X(L', LO) x X(L1, L")
0 1 0 1(8.30)

x +-+ = (x 1 , x 2)

XM2(LO x L 1 ,A) - X(L1,Lo) (8.31)

z <- i

XM2(A, LO x L1 ) X(Lo, L1) (832)

XM2 (AA) 0(8.33)

y &- Q

assign gradings as follows:

deg x = deg 2 = deg xi + deg x 2  (8.34)

deg z = deg (8.35)

deg w = deg i+ n (8.36)

deg y = deg Y. (8.37)

For this choice, the operations 42 constructed in the previous section are of degree

2 - d, thus forming an A. structure.

Proof. There are two proofs of this fact. In the first, we can treat the numbers deg(x),

deg(y) as black boxes and verify that the degree assignment given above makes the
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Ac operations W 2 have correct degree 2 - d for any sequence of labeled Lagrangians.

This could be done as follows: Take an arbitrary labeling L2 of Lagrangians, some of

which are A and some of which are Li x L.'s, and calculate the number of bound-

ary components, number of boundary outputs, and number of interior outputs of the

resulting open-closed string wr(4L(S)), thus arriving at the dimension (and there-

fore degree) of the operation controlled by 4OL2. The main observation here is that,

inductively, any sequence of consecutive labels of A that do not appear at the end

of the sequence shift the index by n, either by gluing a pair of discs together for the

first time, by adding an additional boundary component or or by turning a boundary

output into an interior output (note that interior outputs are only formed if there are

A labels on both ends, an edge case). Correspondingly, any such sequence contributes

a term of the form hom(A, Li x Lj). Thus in terms of the grading given above, the

operation continues to have degree 2 - d.

Alternatively, we give a conceptual argument, assuming that M is a compact

manifold. Suppose we had chosen a grading for A such that hom(L1 x L 2 , A) ~

hom(L 1 , L 2 ) as graded complexes. Then, by Poincar6 duality on M 2 then on M, we

must have that

hom(A, L1 x L 2 ) ~ hom(Li x L 2, A)v[2n} ~ hom(L2, L1)v[2n] ~ hom(Li, L 2)[n].

(8.38)

Of course, Poincare duality fails in our situation, but this argument gives a reasonable

sanity check regarding gradings. 0
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Chapter 9

From the product to bimodules

9.1 Moduli spaces of quilted strips

The next three definitions are due to Ma'u [Ma]:

Definition 9.1. Fix -oo < xi < x 2 < X 3 < oo. A 3-quilted line consists of the

three parallel lines 11,12,13, each of which is a vertical line {xj + iR} considered as a

subset of [x 1, x 3] x (-oo, oo) C C.

Definition 9.2. Let r = (ri, r2 ,r 3 ) E Z3%. A 3-quilted line with r markings

consists of the data (Q, z1, z2,z 3), where Q is a 3-quilted line, and each vector zi =

(zI,... , z) is an upwardly ordered configuration of points in li, i.e. Re(z ) = li and

-00 < Im(zi) < Im(zi) < ... < Im(zi') < 00.

There is a free and proper R action on such quilted lines with markings, given by

simultaneous translation in the R direction.

Definition 9.3. The moduli space of 3-quilted, r-marked strips Q(3, r) is the

set of such 3-quilted lines with r markings, modulo translation.

Ma'u also gives a description of the Deligne-Mumford compactification

Q(3,r)
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Figure 9-1: A quilted strip with (3,5,2) markings.

of the above moduli space, the moduli space of stable, nodal 3-quilted lines

with r markings. Strata consist of multi-level broken 3-quilted lines with stable

discs glued to marked points on each of the three lines at any level. The manifold

with corners structure near these strata comes from gluing charts, which are similar

to ones we have already written down. We refer the reader to [Ma, §2] for more details

on this moduli space, but in codimension 1

Proposition 9.1. The boundary OQ(3, r = (ri, r 2 , r 3 )) is covered by the images of the

codimension 1 inclusions

Q(3, (a, b, c)) x Q(3, (r1 - a, r 2 - b,r 3 - c)) a 8Q(3, r)

Q(3, (a + 1, r2 , ra)) x 'Re-a BQ(3, r)

Q(3, (ri, b+ 1, r3 )) x 'r2- -+ (9Q(3, r)

Q(3, (ri, r2 , C + 1)) x 'r3-c -+ 9Q(3, r).

We will use the open space Q(3, r) to construct operations controlled by various

glued pairs of discs. The codimension 1 compactification of the resulting moduli

spaces we consider will not quite be (9.1), but will only differ by some strata whose

associated operations are zero.

Definition 9.4. Let L 1, L2 , L3 be sets of Lagrangians in M, M 2 , and M respec-

tively. A Lagrangian labeling from (L1, L 2 , L3 ) for a 3-quilted line uith r mark-

ings (Q, z1 , z2 , z3 ) consists of, for each i, an assignment of a label in Li to each of the
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ri + 1 components of the punctured line li - zi. The space of 3-quilted lines with

r-markings and (L1, L2 , L 3 ) labels is denoted Q(3, r)(L,L 2 ,L3 ).

9.2 Unfolding labeled quilted strips

Fix the label set L = (L, L2 , L). Let S be a stable labeled, 3-quilted strip with

r-markings, S E Q(3, r)L, labeled by L = (Lo, L2, L 1 ). We associate to S a pair of

glued discs

IF=(S). (9.2)

in a manner analogous to the construction of I in Section 8.2. From a 3-quilted line

with marked points S, consider the substrips -Si and S 2 , where Si is (i = 1, 2) given

by the regions in between and including lines li and lj+1 (-S 1 denotes the reflection

of S1 across a vertical axis).

-Si and S 2 are conformally discs with boundary marked points zi U zi+1 U {a},

where af are the marked points corresponding in the strip-picture to too. Denote

the connected components of the line 12 - z 2 by B9S, j = 1, ... , r2 +1, and the images

of these boundary components in Si by 6-Si. Pick some conformal map < from the

strip to a disc with marked points at too sent to ±1. Apply this same conformal

map to -Si and S2 and call the results -51, S2 . By construction 51 and 52 have

r 2 + 1 coincident points

I = {(1, 1), ... , (r2 + 1,r2 + 1)} (9.3)

coming from the marked points on the strip 12 and the point at +oo.

Now, define the boundary identification

6(L) := {(i, i)I1 < i < r 2 +1, ~jS is labeled A}. (9.4)
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Thus, we can define

(9.5)(Q (3, (ri, r2, r3))) := r2+rl+1,r2+r3+1

The resulting space is labeled as follows: The connected components of 1 - zi

for i = 1, 3 in the image of %P retain the same labeling. If BjS was labeled by some

L, x Lt, then label the image of aS 1 by L, and the image of aS 2 by Lt.

M2

Figure 9-2:

X1 XY1

A

XY

An example of the quilt unfolding z.

MoAN

Ml2

Al3, L2

9.3 The Ae, functor

Using the above embeddings of labeled moduli spaces, we construct an A,, functor

M : W2 + W-mod-W. (9.6)

On an object X E W2 , the bimodule M(X) is specified by the following data:

* for pairs of objects A, B E ob W, M(X)(A, B) is generated as a graded vector
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space by XM2(A x B, X), which we recall to be:

x(L1,A) x x(B,L2)

X (B, A)

X=L1 xL 2

X = A
(9.7)

* differential

pm :M(X)(L,L') - M(X)(L,L') (9.8)

which is exactly the differential p2 on homw2 (L x L', X), counting pairs of

strips modulo simultaneous automorphisms.

. for objects (AO,... , Ar, Bo,... , B.), higher bimodule structure maps

p'll, :homw(A,_ 1 ,A,) x . homw(Ao, A1 ) x M(X)(Ao, Bo) x

x homw(B1, Bo) x - x homw(B,, B,_1) -- M(X)(A,, B.).

These maps are the ones determined by the moduli space

'@.(Q(3, (r, 0, s)):)

(9.9)

(9.10)

in the sense of equations (4.31) and (7.86), where

L = ((Ao, ... , Ar), (X), (Bo7.. ., Bs)), (9.11)

using existing choices of Floer data and sign twisting datum

= (1,2, .. ., s, s, S + 1,7. .. , s + r) (9.12)

with respect to the reverse ordering of inputs in (9.9) (considering M(X) (Ao, Bo)

as a single input).

The consistency condition imposed on the choice of Floer data pairs of glued discs

and the codimension-1 strata (9.1) imply that
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Proposition 9.2. M(X) is an A, bimodule.

Proof. We look at the boundary of the associated one-dimensional moduli spaces. The

resulting pair of glued discs has a sequential point identification ' = {(1, 1), (2,2)}.

We have already examined the boundary strata of t.+1+1,,3+1 in Proposition

7.1. The composed operations corresponding to stratas (7.53) - (7.55) vanish by

Proposition 7.3. The strata (7.52), (7.56), and (7.57) correspond exactly to equations

of the form

pM(X)'' pm(X)(- - - ,b ,---)

pM(X)( -. -7 b, ---pw(--),---, (9.13)

pM(x)(- -- , pw(- -),--- ,b, -.-...--.-.

respectively, which together comprise the terms of the A, bimodule relations. There

are final terms coming from strip-breaking, corresponding to allowing ourselves to

apply pl or pI1lO before or after applying pm(x). Verification of signs is as in Appendix

B.

Given objects X0 , ... , Xd E W 2 , the higher terms of the functor are maps

Md : homw(Xd1, Xd) ... homw(Xo, X 1 ) -+ homw-mo-w(M(Xo), M(Xd)) (9.14)

sending

Xd X - -- xi m(xd,...,) E homw-mod-w(M(Xo), M(Xd)). (9.15)

The bimodule homomorphism m(Xd ,...,x1) consists of, for objects (Ao,. . ., Ar, B0, .. , B.)

in W, maps:

n r homw(Ar_ 1 , Ar) x - -homw(Ao, A1) x M(Xo)(AO, BO) x
(Xd,---,) M ) B(9.16)

x homw(B1, Bo) x x homw(B,, B,_1) -+ M(Xd)(Ar, B.)

Letting L = ((AO, ... , Ar), (Xo, ... , Xd), (BO,..., B.)), we define the above operation

to be the one controlled in the sense of Equations (4.31) and (7.86) by the unfolded
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image

T (Q(3, (r, d, s)) (9.17)

with sign twisting datum

= (1,..., d,1,..., r, r, r + 1, ... ,7r + s) (9.18)

with respect to the ordering of inputs given by X1 ,..., xd followed by the reverse of

the order of inputs in (9.16) (as before, this means that we twist the image of the

inputs after unfolding by these quantities). The consistency condition for Floer data

for open-closed strings and pairs of discs, along with the codimension 1 boundary of

quilted strips (9.1) imply

Proposition 9.3. The data Md as defined above gives an A,, functor

M: W 2 -+ W-mod-W. (9.19)

Proof. We need to verify the A,, functor equation, which (as W-mod-W is a dg

category), takes the form:

I-wOM + E (Mi1C"o "Mi2 ) =M ow. (9.20)
it+i 2 =d

We examine the boundary strata 'Zr++1,d+r 3+1 computed in Proposition 7.1,

for ' = {(1, 1), ... , (d + 1, d + 1)}. The first term, y oa-w(Md) = pM(Xd) 0 4d T

Md 0 AM(xo), matches up exactly with the strata (7.56), (7.57), and (7.52) (in the

case that one of Y' or '" has size d + 1). The cases of (7.52) in which neither 'P' or

'" are maximal give exactly (Mil" 0 "Mi2), and M o iw is given by (7.51). Finally,

there is strip-breaking of the geometric moduli spaces, giving the pI portions of the

equations, and the remaining boundary strata (7.53) - (7.55) vanish by Proposition

7.3. Once more, details on how to fill in the sign verification are discussed in Appendix

B. 0
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9.4 Relation to existing maps

We observe that the functor M geometrically packages together a number of existing

algebraic and geometric maps that have been discussed. This is a bimodule variant

of observations made by Abouzaid-Smith [AbSm].

First, examine the functor M on split Lagrangians.

Proposition 9.4. The bimodule M(Li x Lj) is exactly the tensor product of Yoneda

modules

i Ok Lj, (9.21)

Proof. For objects (A, B) in W, M(Li x Ly)(A, B) and W', (A) 0 %. (B) are identical

as chain complexes. The bimodule maps p1JS1  are zero if r, s > 0, by Proposition

7.3. If r = 0 or s = 0, by Proposition 7.4, the operations are:

i'M(LixLt) = id 01p" (9.22)
ru1| r
r11M(1x0 pr 0D id,p-M{Lix Lj)

concluding the proof. 0

Proposition 9.5. M is full and faithful on the subcategory generated by objects of

the form Li x Lj.

Proof. The first-order map

M1 : homw2(Li x Ly, L' x L) -+ homw-od-w(M(Li x Lj), M(L' x L',)). (9.23)

is the operation (M 1 (a 0#))rill' controlled by the embeddings

T(LlL2,L3)(Q(
3 , (r, 1, s))) C ('Rr+2,s+2)L, (9.24)

where L2 = (Li x Lj, L' x L,). On the level of unlabeled surfaces, this map takes

a 3-quilted line with one marked point on the interior line and associates a pair of

discs S1, S2, with r + 2 and s + 2 positive marked points respectively, such that
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3 of the marked points of S1 (corresponding to ±oo and the marked point on the

interior line) are coincident with 3 of the marked points of S 2 . By Proposition 7.6,

the corresponding operation is p.tr+2 s ps+2.

This implies that M 1 is exactly the first order Yoneda map, followed by the

inclusion in Proposition 2.13:

CW*(Li, L') 0 CW*(L', Lj) ( ) homw-mod(W , Wk) 0 hommod-w('i., )

- homw-md-w (Y 00

(9.25)

Fullness follows immediately from the fullness of the Yoneda embedding and Propo-

sition 2.13. E

Proposition 9.5 may be regarded as an A,, version of the Kiinneth decomposition

for Floer homology. Now, we examine M and M1 for the remaining object of W 2: A.

Proposition 9.6. M(A) is the diagonal bimodule WA.

Proof. Consider the unfolding map %F when the middle strip is labeled A. The space of

quilted strips Q(3, (ri, 0, r 2 )) is sent to the associahedron 9rl+1+-2 with a distinguished

input marked point corresponding to the intersection point at +00 in the quilt. These

are exactly the structure maps corresponding to the diagonal bimodule. E

Proposition 9.7. There is an identification on the level of maps between chain com-

plexes between

M1 :homw2(A, A) -+ homw-mod-w(M(A), M(A)) (9.26)

and

26C : SH*(M) -+ homw-mod-w(WA, WA) (9.27)

Proof. In this case, the relevant space of quilted strips is Q(3, (ri, 1, r 2 )) with middle

strip Lagrangian labels both A. The relevant boundary identification datum is 6 =

{(1, 1), (2, 2)}. Proposition 7.9 shows that the operation corresponding to the moduli

space 5,p(E)5k, is exactly 2 ( 0 1,-2. See also Figure 9-3. E
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Figure 9-3: The unfolding of M' : homw2 (A, A) to give the glued pair of discs
corresponding to 2 eO-

rx

2C

Thus, as Proposition 5.6 implies that 2 eO is homotopic to CO, we see that an

isomorphism

SH*(M) - HH*(W, W) (9.28)

is implied by the statement that M is full on A. In turn, this statement may be

reduced by the following proposition to showing that in the category W 2, A is split-

generated by objects of the form Li x Lj.
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Chapter 10

Forgotten points and homotopy

units

In this chapter, we introduce an important technical tool used in our result: homotopy

units for glued pairs of discs. We can motivate the need and/or application of such a

tool as follows:

Suppose for a moment that we are in an idealized setting of Lagrangian Floer

theory for a single Lagrangian L C M, in which we may ignore all issues of perturba-

tions, transversality of moduli spaces, and obstructedness of Floer groups. Let us also

for a moment reason using the conceptually intuitive singular chain variant of Floer

theory as developed by [FOO01]. In this framework, generators of the Floer chain

complex CF(L, L) are given by equivalence classes of geometric (singular) cycles in

L. Given cycles b1,..., bk, we define the A,, structure map pk to be:

pk(bk, ... , bi) := (evo),[Mk(bk, ... , b1 )] (10.1)

Here [Mk(bk, ... , bi)] is a "virtual fundamental chain" for the moduli space of holo-

morphic maps
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with positive boundary marked points z constrained to lie on the cycles bi, and

negative boundary marked point zo unconstrained. The notation from (10.1) simply

means that we take as result the cycle "swept out" by the marked point zO in this

moduli space.

In this (unfortunately imaginary) setting, there is a canonical choice of strict unit

for the A,, algebra CF(L, L): the fundamental class [L]. This cycle satisfies the

fundamental property that for u : (D, &D) -+ (M, L), the condition that zi E OD lies

on the cycle [L] is an empty constraint.

Let us very informally show that this property gives [L] the structure of a strict

unit. First, work in the stable range d > 3. There is a projection map

7rj : j -+ 1d-, (10.2)

forgetting the jth marked point. In the above setting, 7rj extends to a map between

moduli spaces of stable maps:

(rj), : Md(b 1, ... , bk) _+ Md-l(bi, ... , bj_ 1, bj+1 ,... , bk) (10.3)

Suppose by = [L], an empty constraint on the marked point z3 . This implies that

(7ry), is a submersion with one-dimensional fibers, corresponding to the location of

the jth marked point. In particular,

dim Md(bi, ... , bk) = dim Md(bi, ... b. 1 , .. ., bj+1 , .. . , bk) ± 1,

which implies that (evo)Md(bi, ... , bk) is a degenerate chain and thus zero on ho-

mology. Hence

d , [L],...)= 0. (10.4)

When d = 2, we leave it as a pictorial exercise to the interested reader to "prove"

that

p2([L], x) = ±y(x,[L]) = tx.
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Even in this setting, there are a number of issues:

" in order to obtain transversality, one needs to coherently perturb the holomor-

phic curve equations in a domain-dependent manner and there is no known way

to make the forgetful map compatible with these perturbations. These per-

turbations occur in the setting of Kuranishi structures, making them even less

likely to be compatible with the forgetful map.

" strictly speaking, this moral argument only proved the equality (10.4) modulo

degenerate chains. To move to an A, structure on H*(L), a host of additional

arguments are required, including homological perturbation theory. The pay-

off is that after some additional work one obtains a strictly unital structure on

H*(L).

The reader is referred to [F0002, Ch. 7, §31] for details on Fukaya-Oh-Ohta-Ono's

approach to these problems.

In our setting, generators are time-1 Hamiltonian chords, so we have an additional

issue:

* even if transversality were not an issue, we have no time-1 chord(s) x with the

property that imposing an asymptotic condition to x is a forgetful map.

The remedy that seems to have been used in the literature most is this: construct a

homology level unit geometrically, and then apply algebraic results of Seidel to obtain

a quasi-isomorphic A, algebra that is strictly unital.

However, we are in a setting where we do not just care about algebraic properties

of strictly unital A. categories. We would like to carefully analyze certain operations

on W 2 controlled by forgetful maps applied to submanifolds of moduli spaces of open-

closed surfaces and pairs of discs. To be able to use such operations in W 2 , we will

need them to be homotopic to existing operations.

If the reader wished to skip most of this section, the eventual punchline is this:

Given some operations controlled by a submanifold Q of open-closed strings, the con-

struction of homotopy units gives us a quasi-isomorphic category with additional el-
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ements et E x(Lj, Lj) such that the operation Q(... et---) is controlled by the sub-

manifold 1rj (Q).

10.1 Forgotten marked points

We begin with a notion of what it means to have forgotten a boundary marked

point in Floer-theoretic operations. Since the construction is identical for discs and

pairs of glued discs, we initiate them in parallel. Strictly speaking, we do not need

the single-disc construction in our paper, but it is no additional work and may be

foundationally useful. Also, we only consider forgotten points on pairs of identical

discs modulo simultaenous automorphism, the only case that arises for us.

Definition 10.1. The moduli space of discs with d marked points and F C

{1, ... ,d} forgotten marked points, denoted

gd,F (10.5)

is exactly the moduli space of discs Td with marked points labeled as belonging to F.

Definition 10.2. The moduli space of 6-glued pairs of discs ith (k, 1) marked

points, T point identifications, and

(F1, F2 ) c ({1, ... , k},{1, ... , 1}), (10.6)

forgotten points, denoted

6 1qiF,F2 ) (10.7)

is the image of the

Rkk,e with positive

forgotten points.

diagonal associahedron in the moduli space of glued pairs of discs

marked points on each disc corresponding to F1 and F2 labeled as

Crucially, F1 and F2 must satisfy the following conditions:

e F1 and F2 are subsets of the left and right identified points respectively. Namely,

Fi C iri(T), (10.8)
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where ,rw is projection onto the ith component.

" F1 and F 2 are not associated to a boundary identification, i.e.

Fi n ri(p(e)) = 0 (10.9)

" F1 and F2 do not contain both the left and right points of any identification, i.e.

(F1 x F2 ) n ' = 0 (10.10)

Remark 10.1. Put another way, the conditions F1 and F2 must satisfy correspond

to the following from the viewpoint of tricolored discs developed in Section 7: F1 and

F2 correspond to disjoint subsets of the points colored LR, such that neither F1 or F2

is adjacent to a boundary component labeled as identified.

For the purpose of solving Floer's equations, we will be putting the marked points

labeled by F, F back in. Such points should be thought of as markers rather than

punctures.

Definition 10.3. Let I C F. The I-forgetful map

'T, : gid,F __ Td-|I|,F'(1.)

associates to any S the surface obtained by putting the points of I back in and for-

getting them. F' in the equation above is the set of forgetful points F - I, re-indexed

appropriately.

There is a similar forgetful map for pairs of glued discs,

,2:6, ' ,,F2 Fl, -| | (10.12)

We need a notion that corresponds to stability of the underlying disc once we have

forgotten points.
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Definition 10.4. A disc with d marked points and F forgotten points is f-stable or

f-semistable if d - F| ;> 2 or d - IF| = 1 respectively. A pair of discs with (k, 1)

marked points and F1 , F2 forgotten points is f-stable if k - F1 , , 1 - IF2 | are both

greater than or equal to 1 and one is greater than or equal to 2. It is f-semistable if

both of these quantities are equal to 1.

In the f-stable range, there are maximally forgetful maps, collectively denoted

9Y.x2 = F d,F , jd-IF| (10.13)

~~max = 9F1,F2 R -e' T Jk-jF1 j,,ljF (10.14)
Tm.2 = TFi,F2 k ,1,2 6, k-Fl-F2|

The (Deligne-Mumford) compactifications

,F (10.15)

-Fi,F2
-F,'T,1  (10.16)

are exactly the usual Deligne-Mumford compactifications, along with the data of

forgotten labels for the relevant boundary marked points. Interior positive nodes

inherit the label of forgotten in the following fashion:

Definition 10.5. An interior positive node of a stable representative S of a disc or

pair of glued discs is said to be a forgotten node if and only if every boundary

marked point in every component above p is a forgotten marked point and there are

no interior marked points in any component above p.

In the f-stable range, stable discs with forgotten marked points have underlying

stable representatives with forgotten points removed.

Definition 10.6. A component of a stable representative S of a disc or a pair of glued

discs is said to be forgettable if all of its positive boundary marked points (including

nodal ones) are forgotten points and it has no interior marked points.
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Using the above definitions, one can extend the maximally forgetful map to com-

pactifications.

Definition 10.7. Let S be a nodal bordered f-stable surface with forgotten marked

points. The associated reduced surface S is the nodal surface obtained by

" eliminating all forgettable components

" putting back in all forgotten boundary points and forgetting them

" if in the f-stable range, eliminating any non-main component with only one

non-forgotten marked point p, and labeling the positive marked point below this

component by p.

Define the induced marked points of $ to be the boundary marked points that

survive this procedure.

In other words, the nodal surface S is obtained from the nodal surface S by

forgetting the points with an F label and then stabilizing the resulting bubble tree.

Definition 10.8. The maximally forgetful map ma, defined for any nodal f-

semistable disc or pair of glued discs is defined to be the map that associate to a nodal

surface with forgotten marked points S the associated reduced surface S.

Definition 10.9. A Floer datum for a stable, f-semistable disc or pair of glued

discs with forgotten marked points consists of a Floer datum for the associated reduced

surface S = Y..,(S), in the sense of Definition 4.11 or Definition 7.16, satisfying

the following conditions:

" in the f-stable range, it is identical to our previously chosen Floer datum for

$ thought of as an open-closed string.

" in the f-semistable range, it is given by the unique translation-invariant Floer

datum on the strip S.

This implies in particular that the Floer datum only depends on the point &,a.(S).
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Figure 10-1: Two drawings of a disc with forgotten points (denoted by hollow points).
The drawing on the right emphasizes the choice of strip-like ends.

Remark 10.2. By the above definition, a Floer datum for a pair of discs P with 6

boundary identifications, ' point identifications, and F 1, F2 forgotten points is a Floer

datum for the open-closed string obtained by forgetting the marked points correspond-

ing to F1 and F2 , stabilizing, and gluing the resulting pairs of discs via ,r 6 .

Because we have chosen our Floer data to be the one we have already chosen for

the underlying reduced open-closed string, we immediately obtain:

Proposition 10.1. There exists a universal and consistent choice of Floer data for

discs or pairs of glued discs with forgotten marked points.

Definition 10.10. An admissible Lagrangian labeling for a surface S with for-

gotten marked points is a choice of Lagrangian labeling that descends to a well-defined

labeling on the associated reduced surface Jax(S). Namely, if p is any forgotten

boundary marked point of S, then the labels before and after p must coincide. The

reduced labeling is the corresponding labeling on the underlying reduced surface.

Now, suppose we have fixed a universal and consistent choice of Floer data for

discs. Consider a compact submanifold with corners of dimension d

with an admissible Lagrangian labeling L. In the usual fashion, fix input and out-

put chords *in, 4t and orbits i, ' t for the induced marked points of the gluing
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ire (YaV2()), which forgets all points labeled as forgotten and glues along the bound-

ary components 6. Define

Z ou ( 7i got; 7 in, Yin) (10.18)

to be the space of maps

{u : re(9,s.2(S)) -+ M : S (10.19)

satisfying Floer's equation with respect to the Floer datum and asymptotic and

boundary conditions specified by the Lagrangian labeling L and asymptotic con-

ditions (' t, ' t, 'i, fun).

As before, h(6, k, 1) denote the number of boundary components of any resulting

surface obtained from the gluing.

Lemma 10.1. The moduli spaces ( t ;, t ) are compact, and empty for

all but finitely many (zut~ Pt) given fixed inputs (An4, in). For generically chosen

Floer data, they form smooth manifolds of dimension

dim V(Xzot, Y'ot; zin, Yin) := deg(x_)+ E deg(y_)
x - E Zout y- E gont

+(2 - h(6, k, 1) - Is-atl - 21Iatl)n + d - Z deg(x+) - Z deg(y+).

(10.20)

In the usual fashion, when the dimension of the spaces V(sot, Yot; 4, in) are

zero, we can use natural isomorphisms of orientation lines to count (with signs) the

number of points in such spaces, and associate operations

(-1)tHV (10.21)

from the tensor product of wrapped Floer complexes and symplectic cochain com-

plexes where 4, ' reside to the tensor product of the complexes where ' t, y'

reside.
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We can specify certain submanifolds of the space of forgotten marked points by

applying forgotten labels to various boundary points on spaces of open-closed strings.

Definition 10.11. The forget map

fF : ~d gd,F (10.22)

fFi.,F2 : 6,TJk,l (1,F2

simply marks boundary points with indices in F (or (F1 , F2 )) as forgotten.

10.2 Operations with forgotten points

Our main application is of course to think of forgotten points as formal units, either

for a disc or pair of discs. It is thus illustrative to see how operations with forgotten

marked points either vanish or reduce to other known operations.

Proposition 10.2. Let F C {1, ... ,d} be a non-empty subset of size 0 < |F| < d.

Then the operation associated to R,F is zero if d > 2 and the identity operation I(-)

(up to a sign) when d = 2.

Proof. Suppose first that d > 2, and let u be any solution to Floer's equation over the

space 9Jd,F with domain S. Let p E F be the last element of F. Since the Floer data

on S only depends on Y,(S), we see that maps from S' with S' E T7'(,p(S)) also

give solutions to Floer's equation with the same asymptotics. Moreover, the fibers

of the map T, are one-dimensional, implying that u cannot be rigid, and thus the

associated operation is zero.

Now suppose that d = 2, and without loss of generality F = {1}. Then the

forgetful map associates to the single point [S] E 22,F the unstable strip with its

translation invariant Floer datum. We conclude, based on Section 6.1, that the

resulting operation is the identity. 0

Remark 10.3. Actually, one would like this operation to be zero when |F = d as

well. However, we have not defined an operation with |F| = d, due to the unstability
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of the underlying reduced surface. Our solution will be to declare this operation to be

zero, and check that our declaration is compatible with the behavior of boundaries of

one dimensional moduli spaces.

Proposition 10.3. Let Ad C JZd,d be the diagonal associahedron. Let [d] denote the

set {1, ... , d}, and (k, 1) such that pairs of discs with kl marked points are stable.

Then, the operation given by the disjoint union

H (fI,[k+l-I)(Ak+l) (10.24)
IC[k+l]IIII=k

with appropriate orientations is identical to the operation given by R, . In other

words, it is equal to zero when k, 1 > 1 and one is > 2.

Proof. On the open locus 0k,1 where none of the k points on the first disc and the

1 points on the second disc are in identical positions, we can consider the overlay

map:

0k,l - L (fI,[k+L]-I)(Ak+l(gk+l)) (10.25)
Ic [k+il |I|=k

given by marking the 1 positive marked points on S 2 as extra forgotten points on Si

and vice versa. On the level of tri-colored discs, the overlay makes L points LR points

with the R component marked as forgotten, and makes R points LR points with the L

component marked as forgotten. By construction, this map is compatible with Floer

data, and covers the entire interior of the target. Since after a perturbation zero-

dimensional solutions to Floer's equation come from a representative on the interior

of any source abstract moduli space, we conclude that the two operations in the

Proposition are identical, modulo sign. See Figure 10-2 for an example of this overlay

map. 0

Proposition 10.4. Take boundary identification 6 = {(1, 1)} and maximal point

identification 'Imax = {(1, 1), . . . , (k + 1, k + l)}. Then, letting S = {2, ... , k + 1 - 2},
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Figure 10-2: An example of the overlay map from o'R 3,2 to ,

S T S T

the operation corresponding to

fI,S-I(6,Tm.)Zk,l) (10.26)
ICSIIII=k-1

is pk+l-1 (with suitable sign twisting datum).

Proof. On the open locus of (1,1),(1,1)2k,l where the only coincident points are (1, 1)

and no other points coincide, denoted

(1,1),(1,1) kl (10.27)

there is once more an overlay map

(,1),(,)k,l Jl fI,S-I (e,Tma.9k,) (10.28)
ICSIIII=k-1

given by superimposing left and right discs, and marking points from the right as

forgotten points on the left and vice versa. This gives an isomorphism of spaces with

Floer data on the open locus, so we conclude by applying Proposition 7.7 to calculate

the operation associated to (1,1),(1,1)9Rk,I- 0

Proposition 10.5. Take boundary identification 6 = {(k +1, k + l)} and maximal

point identification ',a. = {(1, 1), ... , (k + 1, k + l)}. Then, letting S = {1,..., k +

1 - 1}, the operation corresponding to

I fI,S-I(e,ma.9k,L) (10.29)
ICSI|tJ=k-1
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is yk+ 1 1 (with suitable sign twisting datum).

Proof. The proof is identical to the above case, using an overlay map and reducing

to Proposition 7.7. 5

Proposition 10.6. Take boundary identification 6 = {(1, 1), (k + 1, k + l)} and

maximal point identification ., = {(1,1),..., (k + 1, k + l}. Then, letting S =

{2,... , k + 1 - 1}, the operation corresponding to

U1 f,s-I(e,Tx9k,1) (10.30)
ICS|I|=k-2

is 2 0ek-2,1-2 (with suitable sign twisting datum).

Figure 10-3: The overlay map from e,,(e)95,4 to E') 1 51,{2,4,61, where 6 =

{(1, 1), (5,4)} and 6' = {(1, 1), (7,7)}. Forgotten points are marked with rings.

Proof. The same arguments using overlay maps as before apply, only now we compare

to {(1,1),(k,l)},{(1,1),(k,l)}2k,1. The associated operation is, by Proposition 7.8, 20C 2

See Figure 10-3 for an example of this particular overlay map. 0

10.3 A local model

Our definition of forgetful operations and homotopy units is based upon the following

local model. Let H denote the upper half plane and H* the upper half plane with the

origin removed. Viewing H as a disc with a point removed, and H* as a disc with two

points removed, there is the natural "forgetful" map

F : H* - H (10.31)
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which forgets the special point 0. Consider the following negative strip-like end around

oo:

eH: (--o, 0] x [0, 1] -+ H (10.32)

(s, t) -4 exp(-7r(s + it)) (10.33)

which has image {(r,0)|r > 1} C H. For Ho, define the following basic positive

strip-like end around 0:

EHo : [0, oo) x [0,11 -> H (10.34)

(s, t) - 2 -exp(-7r(s + it)). (10.35)

This end has image {(r, )I0 < r < 2} C Ho. With these special choices of strip-like

ends, we observe that 0-connect sum is exactly the forgetful map F. The precise

statement is this:

Proposition 10.7. Let T be the associated thick part in H0 of the 0 connect sum

C := H*#1,o(H, H

and let CO denote the complement of 0 E H in the connect sum C. Then, there is a

commutative diagram

Co > C (10.36)

Proof. This is obvious via viewing each of these regions and the connect sum itself

as subsets of H.

10.4 Revisiting the unit

We revisit our choice of Floer datum for the explicit geometric unit map, defined in

Section 6.2. Let Eo = H once more denote the upper half plane, and fix an outgoing
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striplike end at oo given by CH, defined in (10.32).

Let 0 : [0, oo) -- [0,1] be a smooth function equaling 0 in a neighborhood of 0

and 1 in a neighborhood of [1, oo).

Given a weight w = 1, and a Hamiltonian H, fix the following Floer datum on H:

" one form a given by - - (r)dO

" rescaling function aH equal to 1.

" any primary Hamiltonian, HE that is compatible with the strip-like end C

" any almost complex structure that is compatible with 'E.

" some constant perturbation term FH.

Define the Floer datum for arbitrary weight w to be the w conformal rescaling of the

above Floer datum. It has the following properties:

" one form a' given by - -wo(r)d9

* rescaling function ao equal to w.

" primary Hamiltonian Hgw given by H",5"

" almost complex structure J; given by (0")*JH

" perturbation term FH' given by w - FH, another constant.

Call the above datum a standard unit datum of type w. By design, Eg(ag) = wdt.

10.5 Damped connect sums

We describe a local model, depending on a time parameter

T E [0, 1], (10.37)
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that gives a homotopy relating a "formal unit," or forgotten marked point, to the

geometric unit described in Chapter 6 and again above. We would like such a homo-

topy, which we call a T-damped connect sum, to have the following properties in

a neighborhood of a given forgotten point p on a surface S.

" at time T = 0, the Floer datum is essentially unconstrained in a neighborhood

of p, agreeing with whatever Floer datum we obtained by forgetting p and

compactifying.

" at intermediate time T, the Floer datum is modeled on a growing connect sum

of a neighborhood of p with a disc with one output, thought of as H with output

at oo.

" the T = 1 limit is the nodal connect sum H#,S. The Floer datum on the H

component should agree with the Floer datum on the geometric unit, and the

Floer data on the p side should agree with a standard, previously chosen Floer

datum.

Readers who wish to skip this section should treat the r-damped connect sum along

a boundary point p as a formal operation on surfaces with Floer data, satisfying the

property that at T = 0, one has the forgetful map, and at T = 1, one has nodally

glued on an H.

In reality, we will need to construct such an operation in two steps:

" for r E (0, I), the Floer datum on S goes from arbitrary with respect to p to

(partially) compatible with respect to a strip-like end around p.

" for -r E (., 1), the datum is modeled as a growing connect sum as before.

The basic setup is as follows: Let S be a Riemann surface with boundary, with

some boundary marked points removed. Fix one such positive boundary marked point

z, with strip-like end around z

cz : [0, oo) x [0, 1] -+ S. (10.38)
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Figure 10-4: A schematic of a damped connect sum (though in reality, the conformal

structure of S will stay the same).

t : 0 -: deform data t: -+1: connect sum t = 1: nodal

Definition 10.12. Let S, be S with the point z filled back in. Call the strip-like end

cz rational if it extends to a holomorphic map iz : ([0, 1] x [0, oo)) U {oo} -+ $2.

Remark 10.4. Working with rational strip-like ends does not impose any additional

trouble in choosing Floer data. We can implicitly choose all of our strip-like ends

c : Z+ -+ S to be rational. See e.g. [AS, Addendum 2.3].

Now, let c,z be any rational striplike end. Let DO denote the punctured upper half

radius two disc {0 < IzI < 2} c C and D2 the domain arising from Do by filling in

the origin, i.e. D2 = {0 < Izi < 2}. By precomposing with the standard map

e1 : Do-+ [0, oo) x [0, 1]

z -(lan(2 arg(z) (10.39)

we may equivalently suppose cz is a map Fz from Do to S that extends to a map from

D2 to S. Call z the associated disc-like end of cz, and let Z be the associated map

from D2 to S$2-

Now, fix a time-parameter T E [0, 1]. In a manner depending on r, we weaken the

notion of compatibility with respect to the strip-like end c,.

Definition 10.13. A Floer datum (as, as, Js, HS, Fs) is said to be r-partially

compatible with a strip-like end (z, c), for T E [0, 1], if the datum extends to one on
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the compactiication S for T E [0, {1] and the conditions

e* as = w1(Tr)

C* Cs = W2 (T)dt (10.40)

=*H =op2T
W2(r)

2

only hold for - ;> .1. Furthermore, we require that at r = 1, r-compatibility is genuine

compatibility; in other words,

wi(1) = W2 (1). (10.41)

Remark 10.5. In the limit r = 0, r-partial compatibility is an empty condition for

the Floer data on S. Note that in contrast to normal Floer data, we are using two

potentially different functions w1 (-r) and W2(). In other words, we are not requiring

the value of the one-form as or the amount flowed by the Hamiltonian to always be

the same as the amount of rescaling or time-shifting performed by the almost complex

structure or Lagrangian boundary. This is sensible-on a boundary point that is not a

priori a striplike end, the one form as is asymptotically 0, but as is always non-zero.

Definition 10.14. Let S have rational strip-like end 4E around z with associated

disc-like end z, and suppose we have chosen a Floer datum Dr that is T-compatible

with Fz An associated r-structure on H, denoted DT(z) consists of the following

Floer datum on H, depending on T:

" for - E [0, {|, the Floer datum D extends to the compactification Sz. The

pullback (ez)*D gives some Floer datum on D2. Define the Floer datum on H

to be any datum extending this one to all of H.

" For -r E [1, 1], the Floer datum is defined as follows:

- one-form ar (D) given by -{w 2(Tr) . $(r)dO.

- any primary Hamiltonian H'(D) equal to Hw) 2  on the striplike end 'E.

- any rescaling function as(D) equal to wi(T) when restricted to EH.
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- any complex structure equal to (N;p on)* J n .

Furthermore, we mandate that when r = 1, the Floer datum on H must be the stan-

dard unit datum of type wi(1) = w2 (1).

Pick a smooth non-decreasing function r : [0, 1] -+ [0, 1] that is 0 in a neighbor-

hood of [0, .] and 1 exactly at 1.

Definition 10.15. Let S have rational strip-like end Ez around z with associated disc-

like end F, and suppose we have chosen a Floer datum D' that is T-compatible with

Z, and an associated r-structure on H, DT(z). Define the T-damped connect

sum

S4. H, (10.42)

to be the surface

S#JH (10.43)

equipped with the Floer datum D' on

on H elsewhere.

By construction, this is a smooth

properties:

S-cz([0,oo) x [0, 11) and the Floer datum D'(z)

Floer datum on SgH, and satisfies the following

" For T E [0, 1] it agrees with the compactified Floer datum D& on 52-

" For r = 1, it is the nodal connect sum

S# 1H

where H is equipped with the standard unit datum of type wi(T) = W2(T),

and S has some Floer datum D' that is genuinely compatible with S, z, ez in

the usual sense.

Remark 10.6. We should note that any intermediate damped connect sum with a

copy of H for our choices of standard strip-like ends (10.32) is conformally equivalent
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to the forgetful map. All that changes as the damped connect sum parameter ap-

proaches 1 is that the standard unit Floer datum is rescaled and shrunk into a smaller

and smaller neighborhood of the marked point, until eventually at time 1 it is forced to

break off. Despite this, it is useful sometimes to visualize the process as a topological

connect sum.

10.6 Abstract moduli spaces and operations

Definition 10.16. The moduli space of discs with d marked points, F c [d]

forgotten points, and H c [d] - F hornotopy units

f)d,F,H (10.45)

is exactly the moduli space of discs 'Rd, with points in F or H labeled as belonging to

F or H times a copy of [0,1] for each element of H:

fjyd,F,Hf , d X [0, 1 |Hi. 1.6

When H = 0, we define jdF,0 - yd,F

We think of a point in this moduli space as a pair (S,i = (v1, ... ,viHi)). We

associate the ith copy of the interval to the ith ordered point in H in the following

sense: Suppose H is ordered {p 7, ... , p,, } Then, for each element of H, there are

endpoint maps

1 :d,FHl jdFHpi (10.47)

0 : f~d,FHlv =0 s -d,F+{Pni},H-{pn }7r- (10.48)

defined as follows: given an element (S, it) k removes the label H from the point

pni in S, and projects V' away from the ith component (which is 1). 0 removes

the label of H but assigns the label of F to pn , and projects V' away from the ith

component (which is 0).

220



Definition 10.17. The moduli space of (-glued pairs of discs with (k, 1) marked

points, T point identifications, F1 , F 2 c ([k], [1]) forgotten points, and H 1 , H 2 C

([k], [1]) homotopy units, denoted

C5,bF1,,F2,Hi,H2 (10.49)

is exactly the moduli space E,'RJ with points in F 1, F2 , H 1 , H 2 labeled accordingly,

times a copy of [0, 1] for each element of H 1 or H 2 :

(10.50)

As with forgotten marked points, we have the following constraints:

e F1 , H 1 and F2 , H 2 are disjoint subsets of the left and right identified points re-

spectively. Namely,

Fi H, C -ri(E) Fi nHi = 0 (10.51)

where ri is projection onto the ith component.

. F1 , H1 and F2 , H 2 are not associated to a boundary identification, i.e.

(Fi U Hi) n ri(p(e)) = 0 (10.52)

e F1, H1 and F2, H2 do not contain both the left and right points of any identifi-

cation, i.e.

((F1 U H1) x (F2 U H2)) nT =0 (10.53)

We think of a point of ,> aF2,Hs,H2 s a tuple

(P,, +). (10.54)

Suppose H 1, H 2 = {Pni, - --,Pni HII}, {Pm, ... , PmIH 2 |}. For any point pni E H1 or
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Pmi E H 2 , there are analogously defined endpoint maps

Ip , FI,,F2,HiH2 F1,F 2 ,Hi-{png},H2  (10.55)

0i~p :GS )F1 ,F 2 ,Hi,H2  Fi+{pn },F 2 ,Hi-{pni},H2  (10.56)

1 S,- Fi,F2 ,Hi,H2  Fi,F2+{pmj},Hi,H2 -{pmj} (10.57)
WR'pm G,'I kJ _ 4 6,'T bk,l 1.7

0RPm , -BF1 ,F 2 ,H1 ,H2  F1,F2 ,Hi,H2-{pm} (10.58)

which change the labelings of P, and apply a projection map to (, W') in the following

way: for ?i, : given a point (P, if, i), remove the point pn from the set H 1, and

add it to F1 if b = 0. Also, project if away from the ith factor and do nothing to W'.

For : given a point (P,if, z1), remove the point pm from the set H 2 , and add it

to F 2 if b = 0. Also, project W' away from the jth factor and do nothing to if.

As before, there are forgetful maps

S1: d,FH __)d-|I|,F',H' (10.59)

S),1 F, h1,F2,Hi,H2 6',T'10-00

for I C F or I1,12 C F, F2 . Fj and F2 are F1 and F2 sans I1 and 12, reindexed appro-

priately, and H' and H2 are just H1 and H2 reindexed. On the [0, 1]IIHi components,

the forgetful maps are the identity.

Definition 10.18. Fix some very small number E < 1. let (S, 0) denote an element

of the moduli space S.d,FH. This element is said to be h(c)-semistable if

d - |F - |HI + #{ijlv > E} = 1. (10.61)

It is said to be h(E)-stable if the equality above is replaced by the strict inequality >.

Similarly, let (P, V', ) denote an element of the moduli space ,)F2 ,H1, This
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element is said to be h(e)-semistable if

k - IF11 - Hit + #{jlov > e} = 1 (10.62)

1 - F2- H21 + #{kwk > E = 1,

and h(E)-stable if the equalities above are replaced by inequalities >, with one of the

inequalities being strict.

The Deligne-Mumford compactifications

e-F ,F2,Hi,H2-F 1 ,F2  (10.64)

exist, equal as abstract spaces to the product of the compactifications

,F X [0, 1( 10.65)

e+1Hl X [0, 1]|H0+H266)

respectively. The codimension 1 boundaries of these spaces are given by the codi-

mension 1 boundary of the various underlying spaces of discs, along with restrictions

to various endpoints.

aBidFH 1 ,-d F) X [0, 1]H U 1 1 ~,F X [0, 1], X {0, 11 X [0, 1 )I-i~1

(10.67)

l I,F2,Hi,H2 1 FF2) X [0, 1 Hl+1H2| (10.68)

U JJ(e,siklF) X [0, 1)1 X {0, 1) X [0, 1]|H1I+H2|i1

In a manner identical to the previous section, in the f-stable range (which is

independent of H or H 1 , H 2 ), the maximal forgetful map extends to a map on com-
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pactifications:

amax : ,F,'H d-|F|,0,' 0(.69)

F1 ,F2 ,H,H 2  
- ,,H,H'1Trmax :e5,T F>k,1 be~s k-|Fil,1-IF2| 1'U

In what follows, we will only construct Floer data for glued pairs of discs-though

the case for a single disc is identical (and in fact simpler).

Definition 10.19. A Floer datum for a pair of glued discs with homotopy units and

forgotten points (P, 6, ') is a Floer datum for the reduced gluing ,r (,Tmax (P, i , i-)) in

the usual sense, with the following exceptions:

" For boundary point Pni E H 1 , thought of as a point in ,re(P), the Floer datum

only needs to be vi-partially compatible with the associated strip-like end e.,,

in the sense of Definition 10.13.

" Similarly, for boundary point pm, E H 2 , thought of as a point in the gluing

we(P), the Floer datum only needs to be wj-partially compatible with the

striplike end epm.

We additionally fix, for each element of H1 and H 2 , a copy (H, EH). Call HP, and

Hpm the copies of H corresponding to points pni E H1 and pm, E H 2 respectively.

Then, a Floer datum also consists of a choice of associated vi and w structures

on Hn, and Hpm for pn2 and pm3 respectively, in the sense of Definition 10.14.

Definition 10.20. A universal and conformally consistent choice of Floer

data for glued pairs of discs with homotopy units is a choice D(p,Y,'V), for

every boundary identification 6 and compatible sequential point identification T, and
_F1,F2,H1 H2 ohyoethssawoe

every representative (P,i, '), e,TFbky2' ' Y', varying smoothly over this space, whose

restrication to a boundary stratum is conformally equivalent to a Floer datum coming

from lower dimensional moduli spaces. Moreover, Floer data agree to infinite order

at the boundary stratum with the Floer datum obtained by gluing. Finally, we require

that
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Figure 10-5: A single disc with forgotten points (marked with hollow circles) and
homotopy units (marked with stars and dotted connect sums). The connect sums
should be thought of simply as a schematic picture; really the conformal structure on
the disc stays the same.

Y1
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" (forgotten points are forgettable) In the h(E)-stable range, the choice of

Floer datum only depends on the reduced surface T'.(P,iV ig). In the h(e)-

senistable range, the Floer datum agrees with the translation-invariant Floer

datum on the strip.

" (0 endpoint is forgetting) In the h(c)-stable range, if vi = 0 or wj = 0,

then after forgetting the copy of H corresponding to p& or pm, respectively,

the Floer datum should be isomorphic to the Floer datum on w0,o (S, 6, t9) or

r0,Pm, (S, V', ig) respectively. In the h(f)-semistable case, the Floer datum should

be isomorphic to the translation invariant Floer datum on the respective surface.

" (1 endpoint is gluing in a unit) if vi = 1 or wj = 1, then H,, or H,

should have the standard unit datum Floer data, and the Floer datum on the

main component should be isomorphic to a Floer datum on x4,, (P,6, t) or

1RPm, (P, 6, i) respectively.

Proposition 10.8. There exists a universal and conformally consistent choice of

Floer data for glued pairs of discs with homotopy units.

Proof. One proceeds inductively on the number of homotopy units. Suppose that
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we have universally and conformally consistenly chosen Floer data for I H1 I + I H 2 | <

k and Floer data for glued pairs of discs with at least r + s marked points, with

homotopy units such that IHI+IH 2 1 = k+1. Using the endpoint constraints described

above, we have already described constraints on our Floer data on the endpoints, and

codimension-1 boundary strata, so we pick some Floer datum extending these cases.

Recall that this is possible because all of the spaces of choices are contractible. 0

Remark 10.7. Notice that the notion of h(e)-stability depends in some cases on

the chosen point in the moduli space. For example, an element (S, 6) of yjd.{.,d}' is

only h(E)-stable if at least two of the components of if are greater than c. It will not

be possible to consistently inherit Floer data at zero-endpoints from the forgetful map

when all (or all but one) if equal to zero. Thus we are forced to turn off stability in a

neighborhood of this case.

Definition 10.21. Let (P, ', ') be a pair of glued discs with H 1, H 2 homotopy units,

and suppose we have fixed a Floer datum D for (P, ', '). Then the associated

homotopy-unit surface, denoted

4(P), (10.71)

is the iterated damped connect sum

4(P ) := re(a max(P ))C , H I ' ... - - 11" H , , 1, H .. --P- (10.72)

This is a (potentially nodal) surface with associated Floer data.

Definition 10.22. An admissible Lagrangian labeling for pairs of glued discs

with homotopy units and forgotten point is a labeling in the usual sense, satisfying

the conditions that labelings before and after H points and F points must coincide.

The admissibility condition implies that there is an induced labeling on the

associated homotopy-unit surface.

Now, suppose we have fixed a universal and consistent choice of Floer data for

226



homotopy units. Consider a compact submanifold with corners of dimension d

--d -- F1 F2 ,Hi,H 2
E e Gs'k, (10.73)

with an admissible Lagrangian labeling L. In the usual fashion, fix input and output

chords , zout and orbits 'n, got for the induced marked points of the associated

homotopy-unit surface j (P, V, W'). Define

EX~t (sou t; zin, 7 in) (10.74)

to be the space of maps

{u : (P,, V-1i)) -+ M : S E Z}(10.75)

satisfying Floer's equation with respect to the Floer datum and asymptotic and

boundary conditions specified by the Lagrangian labeling L and asymptotic con-

ditions (zout, gout, in, Yin)

As before, h(6, k, 1) denote the number of boundary components of any resulting

surface (P).

-d
Lemma 10.2. The moduli spaces (zou, You , Yin) are compact, and empty for

all but finitely many ( , t7 t ) given fixed inputs i For generically chosen

Floer data, they form smooth manifolds of dimension

dim~4E (zout, Yut; zin, Y&) := deg(x)+ deg(y_)
x-EZout y- Egiut

+(2 - h(6, k, 1) - Is-Outl -1 2|ot)n + d - 1:deg(x+) - 1:deg(y+)-
x+Elin y+Egin

(10.76)

Proof. The usual transversality arguments, dimension calculation, and compactness

results apply. o

In the usual fashion, when the dimension of the spaces (ut, out; zin , YAW are
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zero, we use orientation lines to count (with signs) the number of points in such

spaces, and associate operations

1) tie (10.77)

from the tensor product of wrapped Floer complexes and symplectic cochain com-

plexes where z, g,, reside to the tensor product of the complexes where s4 t, You

reside, where tis a chosen sign twisting datum.

An interesting source of submanifolds for operations comes from the entire moduli

spaces

-f~Fi,F2,Hi,H2

for an initial sequential point identification T.

10.7 New operations

Up until now, we have been somewhat imprecise when specifying correspondences

between inputs and asymptotic boundary conditions on moduli spaces associated

with operations. Let us fix some notation for a specific class of moduli spaces.

Let 6 be a boundary identification, and let T be an initial sequential boundary

identification that is compatible with E; say it is

T = {(1, 1), (2, 2), ... , (r, r)} (10.79)

We previously defined an operation GB,, corresponding to the entire moduli space

e,'TRk,. (10.80)

Let us be precise about inputs. Given boundary marked points zi, ... , Zk, z',....,

on each factor of our pair of discs, if i < r, define

ge'(zi, z ) (10.81)
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to be the image of the pair of identified points under the gluing 7re. The possibilities

are

" a pair of boundary input points (ii, i ) if zi, z were not adjacent to a

boundary identification;

" a single boundary input point ii if zi, z were adjacent to a single boundary

identification; or

" a single interior input point Qj,j, if zi, zj were adjacent to two boundary

identifications.

Denote by

ge (zj), ge (z') (10.82)

the images of non-identified points under the gluing -re. Then, the associated opera-

tion takes the form

Ge,,,((zi, .. ,), (xr+1, -.-. , k), (r+1, ... , ,x)), (10.83)

where ti is an asymptotic condition of the same basic type as ge (zi, zj), xj is a bound-

ary asymptotic condition corresponding to ge(zj), and x' is a boundary asymptotic

condition associated to ge(zj). This operation returns a sum of boundary asymptotic

condition of the same type as ge(zat, z the gluing of the outputs.

To be even a bit more precise, let us move now to the operations of the above

form arising in W2 . Given a tuple of Lagrangians X = X 1,... , Xd in ob W 2 , and

morphisms

xi E hom(Xi7 Xi+1), (10.84)

identified via the correspondence

xi ++ Xi (10.85)

with a boundary asymptotic condition, pair of boundary asymptotic conditions, or

interior asymptotic condition respectively, discussed in Proposition 8.4, yd(Xd,. .. , x 1)
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is by definition the labeled operation

( . , a) (10.86)

in the sense of above, where we are implicitly composing with the reverse identification

X +(10.87)

to obtain the correct output, and using the usual sequential sign twisting datum

td = (1,..., d). This is sensible because the boundary asymptotic type of the input

sii is compatible with the type of the glued marked point ge(k) (zi, zj) by construction.

With this notation in place, let us now incorporate homotopy units and forgotten

points. Define the Ao category

i2 (10.88)

to the have the same objects as W 2 . Its morphisms will be identical to W 2 as graded

vector spaces, except for each L, it also contains the following formal generators:

fL Ox, eO Ox E hom*2 (L x L, L x Lk) for all x E CW*(Lk, Lj) (10.89)

x @fL, x@eL E hom* 2(Lj x L, Lk x L) for all x E CW*(Lj, Lk). (10.90)

The degrees of these generators are

deg(fL @ x) = deg(x 9 fL) = deg(x) - 1. (10.91)

deg(e+ 0 x) = deg(x 0 ef) = deg(x), (10.92)

i.e. fL and et should be thought of as having degrees -1 and 0 respectively. Denote

the generators of the morphism space between X and X' in W 2 by (X, X'). The

operations on $2 are as follows: Fix a label-set X = Xo,..., Xd. As in Section 8.2,

there is an associated boundary identification

6(X) = {(i,i)|X; = A.} (10.93)
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Now, let X1 , ... , Xa be a sequence of asymptotic boundary conditions, i.e. xi E

f(Xi_1, Xi). Let

F1 , F2 , H 1 , H2 c {1,..., d} (10.94)

denote the subset of these of the form e+ 0 x , x ® e+, fL 0 x, and x 0 fL respectively.

By construction we have that

(F 1 u H 1 ) n (F2 u H 2 ) =0 (10.95)

Fz U Hz = 0.

Then, define

pd(Xd ., X1 ) (10.96)

to be the operation controlled by the moduli space

-F 1 ,F2 ,H1 ,H2

( -),dyd , (10.97)

with labeling induced by the labeling of X as in Section 8.2 as follows: If the kth

lagrangian Xk was labeled Li x Lj, then in the gluing re(P), the left image of OIS

will be labeled Li and the right image OkS will be labeled L3 . If i9kS was labeled

A, then it disappears under gluing so there is nothing to label. This induces a

labeling for the associated homotopy-unit surface (P, 7 ii): since our labeling was

by choice admissible, any boundary point which we forget or take damped connect

sum is adjacent to boundary components with the same label.

The asymptotic conditions in the gluing

r(P) (10.98)

are as follows: in the glued surface r5 (P), let gs (zi, zj) be the resulting inputs (or

pair of inputs) obtained by the gluing. Then if xi is not a formal element, one requires

these inputs to be asymptotic to the associated ii as before. If xi is a formal element

of any form, then g6 (zi, zj) is a pair of boundary marked points (4i, 14).
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" if x is of the form fL 0 x, then ii is marked as one of the H1 points, and

disappears under the damped connect sum operation. We require the other

point zj to be asymptotic to x.

" if x is of the form x 0 fL, then ij is marked as one of the H 2 points, and

disappears under the damped connect sum operation. We require the other

point ij to be asymptotic to x.

e if x is of the form e+ x, then zi is marked as one of the F1 points, and disappears

under the forgetful map. We require the other point i to be asymptotic to x.

e if x is of the form xge+, then zj is marked as one of the F2 points, and disappears

under the forgetful map. We require the other point ij to be asymptotic to x.

This gives rise to a well-defined operation

yd1'za, . X1. z) (10.99)

where x1,..., xd are allowed to be formal elements-implicitly again, we are taking

the output of this operation, and composing under the reverse association

z ++ X. (10.100)

In this case, we use sign twisting datum td = (1,..., d), including the degrees and

presence of formal elements.

One can check that degree of the associated operation is 2 - d, under the choice

of gradings of the formal elements (10.91) and (10.92), for the following reason: there

are no Maslov type contributions of the form deg(fL), but this is compensated for by

any additional factor of the interval [0,1] in the source abstract moduli space.

As we have constructed it, this operation is only well defined for (d, d, F1, F2 , H1, H 2)

in the f-semistable range. Hand-declare the following operations, corresponding to
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the f-unstable range:

p12(x1 0 eL - , Xk eL)

ik2(e+ 09 Xk, ---,eL @9 X1)

pLw2(x D efL

p'(e x)

42 (fL 0 x)

p22(x 0 fL)

:=/Iwp(x1, .. .,) eL

= (-1)*p(k, . .. , Xi) @ e'L

:= eI @ y(rk, . . ., Xi)

:= i(x) @9 e+L

(e+ -p() 0X±fL W(X)

:=( (e' - eL) ± l () 0fLA

Proposition 10.9. The resulting category W 2 is an A, category.

Proof. We need to verify the A, equations hold on sequences of morphisms that

include the formal elements x 0 e+, e+ 0&x, f ox, x 0 f. This is mostly a consequence

of the codimension-1 boundary of moduli spaces of homotopy-unit maps, although

some cases (corresponding to bubbling of f-unstable components) will need to be

checked by hand. Without loss of generality, we can assume that our original category

contained just one Lagrangian L, so ob W 2 = {L x L, A}; the multi-Lagrangians case

is identical but slightly more notationally complex. The codimension 1 boundary of

the abstract moduli space

-F 1 ,F2 ,H 1 ,H 2
6,Temax"'k'l (10.107)

is covered by the following strata:

* 0 and 1 endpoints

-F,F 2 ,Hi,H2  -Fi F2,H1 ,H2
6IVTmad,d ViE{O,1}, ETmax5 d,d ' ItjE{0,1},

* nodal degenerations:

-F' F', -F",F" H
E',TmaJd',d' X d-d'+1,d-d'+1
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-F' F' HI H'
Here, the boundary marked points in G',Tmje,',' ' consist of some subsequence

of length d' of (zi, z'), ... , (za, zd) along with inherited F/H labels, and the bound-
-F"F'' H"2

ary marked points of G",Tm...)df-d'+1,d-d'+1 consist of the sequence (zi, z1), ... , (za, z)

where the chosen subsequence is replaced by a single new point (znew, zs) (again

with inherited F/H labels).

This implies that the boundary of the one-dimensional space of maps will consist of

compositions of operations coming from these strata as well as various strip-breaking

operations, corresponding to pre and post-composing with il in all possible ways.

By the choices we have made in our Floer datum, the 0 endpoint for a point

pni E H1 correspond to the operation of forgetting the point pni, which changes the

formal asymptotic condition from fL to e+. The 1 end point corresponds to gluing in

a geometric unit to an existing Ao operation, i.e. the formal condition fL is replaced

by an actual asymptotic condition eL- In conjunction we see that the endpoint strata

account for the occurrences of p' for the fL as formally defined above.

The nodal degenerations strata ensure that the associated operation is a genuine

composition of the form p-d'+1(... Md'( ... ) .- - ) when both components of the strata

are f-semistable. Let us without loss of generality suppose an f-unstable compo-

nent bubbles off, consisting of a subsequence of the form (zi+ 1 , zl+ 1),..., (zi+d, z+d),

with all of the right factored pointed labeled as forgotten, with adjancent boundary

components labeled by L. By construction such a sequence corresponds to inputs

zi+1 0 e, --- , i+ 0e4. In the induced forgetful/gluing map, the right disc consists

entirely of points labeled forgotten and is thus deleted by f-stabilization. Moreover,

the right input of the lower disc z', is marked as forgotten. The left disc survives,

contributing a (pV)"P. We conclude that the operation associated to the top stra-

tum is (-1)*pd(Xi+1 ,,. .. , xi+d') @ e, which equals pd' (Xi+d' , + ef) as

desired.

We call the data that we have just constructed the structure of one-sided ho-

motopy units for the category W 2 .

Proposition 10.10. The modified category W 2 is quasi-equivalent to W 2 .

234



Proof. By construction, the inclusion

: W2 -Y (10.110)

is the desired quasi-isomorphism. If pl (x) = 0, the elements e+ Ox, x 0e+, which are

the only potentially new elements of cohomology, are homologous to eL @x, x&eL. El

In order to simplify notation, define the total homotopy unit

e+ := e, (10.111)
LEob W

thought of as an element in the semi-simple ring version of W. The corresponding

elements in W 2 are the total one-sided units

e+0x + ox
LEob W (10.112)

x e+:= x 0 e+
LEob W

10.8 Shuffle identities

The technology we have introduced, and the analyses of the previous section give

some morphisms involving the e+ desirable properties. To state them, we first recall

the combinatorial notion of a shuffle:

Definition 10.23. Let V be a graded vector space. The (k, 1) shuffle of an ordered

collections of elements {a1, ... , ak} and {b1,..., b} is defined to be following element

in the tensor algebra TV:

cSk,({aj}, {bj}) := E (-1)s(a)o(a1 9 - - - 0 ak o b1 0 . b1). (10.113)
aEshuff({aj},{bj})

Above, shuf f{ai}, {b3}) is the collection of permutations of the set {a, ... , ak, b1,... , bi}

that preserve the relative orderings of the a1 and by, - is the corresponding permuta-

tion on the tensor algebra, and the sign sgn(o) is the sign of the graded permutation,
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i.e. the ordinary sign of the permutation plus a sign of parity the sums of degrees of

elements that have been permuted past one another.

The following Proposition, essential for our forthcoming argument, is the main

consequence of the technology of one-sided homotopy units.

Proposition 10.11. We have the following identities in W2 :

p (Sk,l({xi ( el k; {e e Yj1))

pk+l+1l({xie =11

p +'+1(S (f,(i 9 e }; fe+ y ) , b)

p*+2(A S, (jXi @ eij ;{fe+ 1, O '=

= 0, for k, 1 > 0 (10.114)

+l+(x, -- ,Xk, a, y1, - -,yl)

(10.115)

= I4++1(y1,... y, b, x 1 ,..., Xk)

(10.116)

2 9((a, yl, ... , yL, b, X1, ... , Xk)

(10.117)

where b E hom(A, Li x Lj) and a E hom(Li x Lj, A) respectively.

Proof. This is the content of Propositions 10.3, 10.4, 10.5, and 10.6 except for the

case of (10.114) when k = 1 = 1. In that case, we have that

p (81,1({x 9 e+} {e+ y}) = p4 (x & e+, e+ y) - (e+ & y,x& e+)

=x0y-x.y

=-0.

(10.118)

0
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Chapter 11

Split-resolving the diagonal

In this chapter, we prove the following theorem.

Theorem 11.1. If M is non-degenerate, the product lagrangians {Li x Lj} split-

generate A in the category W 2 .

The proof uses a criterion for split generation discussed in Section 2.12, which

we now recall. Let W i be the full sub-category of W 2 with objects given by the

product Lagrangians {Li x Lj}. There is a natural bar complex

(W2 (1)
.plit

and collapse map

: &W2 -+ homw2(A, A). (11.2)
split

If H*(p) hits the unit element [e] E homw2 (A, A) = SH*(M), then we can conclude

that the product Lagrangians split-generate A.

Because split-generation is invariant under quasi-isomorphisms, it will suffice to

establish the above claim in the category

W_2 (11.3)

which is quasi-isomorphic to W.
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Define a map

F: 2CC,(W,W) -+ fA 0g YA (11.4)

as follows:

F: a 0 bi ... 9b (9 b 0 a1 -. -- & ak-

(-1)"i 0 Sk,((ak 0 e+, ... , ai 0 e+); (e+ 0 bi, ... , e+ 0 b1)) 0 b.

(11.5)

where Sl is the (k, 1) shuffle product defined in the previous chapter, and i refers

to a thought of as an element of hom(Li x Lj, A) instead of hom(L, Li), and similarly

for b under the usual correspondence from Proposition 8.4. The Koszul sign

1 1

S:= (iiaI| ( |j al IbI)) (11.6)
j=k i=j-1

can be thought of as arising from rearranging the substrings of the Hochschild chain

a, bi, ... , b, and b, a1, ... , ak so that they are superimposed, with the latter sequence

in reverse order.

Proposition 11.1. F is a chain map.

Proof. We verify this proposition up to sign. Using Proposition 10.11, we must show

that F intertwines the two-pointed Hochschild differential with the bar complex dif-

ferential on W2. Abbreviate the shuffle product

81,,({a 9 e+lr+ 8 e+ 09 bt}"+j+1) (11-7)

by

8(ar+i-r+1; bn+1-n+j) (11-8)

The bar differential applied to

F(a & b lO.& b, O b 9a 0 --... ak) (11.9)
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is the sum of the following terms (with Koszul signs described in (2.222) that are

omitted):

> pL. 2 (i, S(ak-+k-i+1; bi_+j)) 0 S(ak-i_,1; bj_,) o
i O,j O

i A S(ak-+k-i+1; bisj) 0 pIg2(S(ak-i_4 1; bj+1p4), b)
i O,j O

,

(collapse on left) (11.10)

(collapse on right)

(11.11)

i 0 S(ak-+k-io+1; bi+j 0) 0 pb2(.(ak-io-+k-io-ij+1; bio+1-+jo+ji)) (11.12)

0 S(ak-io-i,-+1; bjo+j 1+1p) 0 b (collapse in middle).

By Proposition 10.11,

pV 2 (A, S (ak-+k-i+1; bisj)) = ps+(ak-i+1,--. ak, a, bi, ... ., bj)

pIgi~2 (S(ak.i-+1; bj+1.z), b) = p~ki)+(-)+l(bj+1,--- , bi, b, ai, .. , aki)

and

pIL2( 3 (ak-io-+k-io-i1+1;bjo+1-jo+ji)) =

0I (akio-ii, ... 7 ak-io) o e+

e+ o /Ij1(bjo+1,7 .. ., bjo+ji)

i i > 1 and ji > 1

ji = 0

i1 = 0

Putting this all together, we see that the non-zero terms above comprise exactly the

terms in

' o d2 CC(a o ai -... Oak Obob1 0 ... b). (11.16)

0

The following Proposition completes the proof of Theorem 11.1.
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Proposition 11.2. There is a commutative diagram of chain complexes

2CC,(W, W) > r ((11.17)

120e 
IH*()

CH* (M) > hom, 2 (A, A)

where D is the identity map (by our definition of hom(A, A)).

Proof. This is also a corollary of Proposition 10.11. Namely, we showed there that

pi,8,1(a e+ ... , ai 0 e+) (e+ bi... e+ 9 bi),) =

(11.18)
20C(i, bi, ... , bl, b, a1, ... ., ak),

a restatement of (11.17).

Proof of Theorem 11.1. If the map W : CC.(W, W) -- + SH*(M) hits [e], we con-

clude first that the chain-homotopic map 260 : 2 CC.(W, W) -+ CH*(M) hits [e].

Thus by the existence of the diagram (11.17), H*(p) hits [e] E HW*(A, A). O

Corollary 11.1 (M is full on W 2 ). Assuming non-degeneracy, M is full on W 2 .

Proof. We have shown that if M is non-degenerate, then A is split-generated by the

product Lagrangians {Li x L3}. We have also constructed an A.o functor,

M: W 2 -+ W-mod-W (11.19)

and we have shown that M takes product Lagrangians {Li x Ly} to Yoneda bimodules

i @L , and is full on these objects This is the content of Propositions 9.3, 9.4, 9.5.

Thus, by Proposition 2.8, we conclude M is full on {A, {Li x Lj}}.

0

Proof of Theorem 1.2. We showed in Proposition 9.6 that M sends A to the diagonal

bimodule WA. Thus, by Corollary 11.1, we conclude that WA is split-generated by

Yoneda bimodules, the definition of homological smoothness. 0
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Corollary 11.2. The maps

W: SH*(M) - HH*(W, W) (11.20)

2 eO: SH*(M) 2HH*(W,W)

are isomorphisms.

Proof. By Proposition 9.7, the map 2 0 is exactly the first order map

M1 : HW*(A, A) -+ homw-w(WA, WA), (11.21)

and M is full on A.

Remark 11.1. In fact, there is also a commutative diagram of the form

CC, (W P, WOP) OK CC, (W, W) Spi > CC.p2it,) ,(11.22)

oeoe 
IOe2

CH*(M-) K CH*(M) ~ CH*(M- x M)

where 0C 2 is the open-closed map on the product. The map 9 is given by sending a

pair of Hochschild chains, the first in reverse order, to the shuffle of the chains:

(ao ... -ak) 9(b -... -- bo) Sk+1,1+1(ak 0 e+,..., ao @e+; e+ bi,...,e+ bo).

(11.23)

This diagram exists on M x M with the symplectic form (w, w) as well-one simply

stops reversing the order of the left sequence. The conjectural implication is that if M

is non-degenerate, then any product Mk x (M-) is also non-degenerate, with essential

Lagrangians given by products of the essential Lagrangians in M. The reason we have

not adopted this approach is that our current construction of W 2 is somewhat ad hoc,

only allowing the use of split Hamiltonians. As a result, most Lagrangians we might

like to consider are inadmissible. However, modulo this technical detail, which has

been solved for symplectic cohomology [01], our argument should work.

Remark 11.2. The map Q and I' that we have described are generalizations of a
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natural product structure on the Hochschild homology of associative algebras [L2, §4.2].

In the setting of unital associative algebras, a version of the Eilenberg-Zilberg theorem

says that shuffle product induces an isomorphism

sh, : HH,(A) 9 HH,(A') - HH,(A & A'). (11.24)

We have described an A. versions of the above morphism, which requires the stric-

tification of units to carry through. There is a well defined quasi-inverse that always

exists in the associative unital setting, and we conjecture that such quasi-inverses ex-

ist in the A. setting as well. Constructing them may involve deforming the diagonal

associahedron Ad C a x qRd onto various copies of products of strata in order to

obtain formulas for the tensor product of A, algebras-see e.g. [SU].
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Chapter 12

The non-compact Calabi-Yau

structure

Assuming M is non-degenerate, we have shown that W is homologically smooth.

Thus from the results in Section 2.13, the inverse dualizing bimodule,

W1 := homw-w(WA, WA GK WA) (12.1)

is a perfect bimodule that represents Hochschild cohomology

W! @w-w ' ~ HH*(W, 3). (12.2)

In this chapter, we describe a geometric morphism of bimodules.

C : WA -+ W!i[n]. (12.3)

The construction involves operations arising from discs with two negative punctures

and arbitrary numbers of positive punctures. We require that there be a distinguished

positive puncture on each component of the boundary of the disc minus negative

punctures; namely, we require there to be at least two inputs. Then, we interpret

one of the distinguished positive punctures as belonging to W and the remaining

distinguished input and two outputs as belonging to W'.
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Definition 12.1. The moduli space of discs with two negative punctures,

two positive punctures, and (k, l; s,t) positive marked points

'kl;st (12.4)

is the abstract moduli space of discs with

" two distinguished negative marked points z1, z ,

" two distinguished positive marked points zi, z, one removed from each bound-

ary component cut out by zi and z ,

" k positive marked points a1, ... , ak between z1 and zi

" 1 positive marked points b1 , ... , b, between zi and z 2

e s positive marked points c1,2...,c between z and z; and

e t positive marked points d1 , ... , c between z and z.

Moreover, the distinguished points zi, z2, z, and z are constrained to lie (after

automorphism) at 1, -1, i and -i respectively. Namely, we fix the cross-ratios of

these 4 points.

The boundary strata of the Deligne-Mumford compactification

(12.5)
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is covered by the images of natural inclusions of the following products:

-k'+1+i' -k-k' ,L-l';s,t

x-k + a ~k-k'+1,L;s,t
n+1 2 ' ,

xn+1 2-

x - k 7 Is-s'+1,t
n+1 2

--'l',-t'. -k'+1+t'e~

9Z2 X(2,k'+1) .

92 X (2,s'+1)a

0 < n

0 < n

0 < n
0 <n

<- k'+ 1

<l-l'+1

<s - s'+ 1

< t- t + 1

Above, the notation xj+ in (12.6) and (12.9) indicates that the output of the first

component is glued to the special input z of the second component, xq, x , x and

x indicate gluing to the input aj, by, c1, and d5 respectively, and x(ij) in (12.12)

and (12.13) indicate gluing the ith output of the first component to the jth input of

the second. Also, in (12.6) and (12.9), the k' + 1st and s' + 1st input points of the

first component become the special points zi and z2 after gluing respectively.

Figure 12-1: A schematic of the moduli space 9
2 ,3 ;3 ,2. All non-signed marked points

are inputs.

-1 1

-i

Definition 12.2. A Floer datum for a disc S with two positive, two negative, and
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(12.11)
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(k, 1; s, t) positive boundary marked points is a Floer datum of S thought of as an

open-closed string.

Fix a sequence of Lagrangians

Ao 7.. ., AkBO, ... , B1, Co ... , C, Do, .. ., D, (12.14)

corresponding to a labeling of the boundary of an element of '9Z'2''' by specifying that

a be the intersection point between Ai_ 1 and Ai, and so on for bi, ci, and di. In the

manner described in (4.27), the space I'' t", along with the sign twisting datum

kl~st:= (1, 2, ... ,k,kk + 1,..., k+l, 1, 2,..., s, s, s + 1 ... ,s +t) (12.15)

corresponding to inputs (a1, ... , ak, zi, bi7 ... , b, c1 , ... ,c, z,di,.. ., e), determines

an operation

CYl,k,t, : (hom(B_1, B)

9(hom(Dt_1 , D)

.- -hom(Bo, Bi)

O hom(Ak, BO) 0 hom(Ak_1, Ak) @9 0 -- hom(Ao, A1 ))

... ohom(Do, Di)

0 hom(C,, Do) 0 hom(C,_1 , C,) @9 0 -- hom(Co, C1))

-+ hom(Ao, Dt) 0 hom(Co, BI).

(12.16)

Definition 12.3. The Calabi-Yau morphism

69 : WA -+ W1[n]

is given by the following data:

* For objects (X, Y), a map

W10 : WA(X, Y) -+ homw-mod-w(WA, x 0 fr)

a i <a

(12.17)
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where pa is the morphism whose tills term is

tIl (dt .. ,d1, b , c ,... ,c ) (12.19)

(!%,o,t,s (a, d, ... , dlI, b, c8, . . . , ci)

* Higher morphisms

CeilIk : homw(Yk-1, Yk) ... homw(Yo, Y) ® WA(Xo, Yo)

0homw(Xi, Xo) 0 - homw(XI, X1 _1) -+ homw-m.-w(WA, Y & ® y,)

(b, . . ,bi, a,ak,. . . ,a 1) ' fbo,...,b1,a,ak,...,al

(12.20)

where O = $b,,...,,,ak,...,al is the morphism whose t| 1s term is

4tIl"(dt, ... , d1, b, c,,... , c1) :=(12.21)

M9,k,,,,(bl, ... , bi, a, a ,.. , ; dt, ... , i , b, c,,7.. ., c1)

Put another way, we can in a single breath say that

(0111kl (bi,7...,7 bi, a, ak, ... ,ai))tl1is(dt, ... , di, b, c,...,. ci)

:= 6% ,k,,,,(b1, -. .. ,bi, aak, ... l0 ; dt, ... ,I di, b, c,, ...,7 ci).

(12.22)

--k l-a t

The Gromov bordification '2 ' (in, ' t) has boundary covered by the images of

the Gromov bordifications of spaces of maps from the nodal domains (12.6) - (12.13),

along with standard strip breaking, which put together implies that:

Proposition 12.1. e is a closed morphism of Ao bimodules of degree n.

Proof. We will briefly indicate how to convert the strata (12.6)-(12.13) to the equation

= ojWA - Mwo = 0. (12.23)
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The strata (12.6) - (12.8) correspond to C6 composed with various A. bimodule

differentials for WA. The strata (12.9) - (12.11) all correspond to the internal differ-

ential pz10, which itself involves various pieces of the WA A. bimodule differentials

for the second string of inputs. Finally, the strata (12.12) - (12.13 ) for fixed k', 1', and

varying over all s', t' correspond to the terms of the form p V o C' and pl01 o' 69.

The ingredients to verify signs are discussed in Section B.

We now observe that to first order, the operation e is controlled by a moduli

space identical to one appearing in our definition of quilts:

Proposition 12.2. For any A, B E ob W, there is an equality

600 = M . (12.24)

AB A,AxB-

Proof. The maps

690110 :homw(A, B) -+ W(A, B) := homw-w(WA,W1 0 9)[n] (12.25)

and

M1 :homw2(A, A x B) := homw(A, B)[-n] -- + homw-w(WA, S 0 9J) (12.26)

have the same source and targets, so we need to verify that the spaces controlling

the Floer equations are the same. The unfolding map, '1@, defined in (9.5), when

applied to a quilted strip with (r, 1, s) marked points, with middle label sequence

(A, A x B), produces a surface with two output marked points, two distinguished

input marked points, a distinguished input marked point between them corresponding

to hom(A, B), and then r + I + s input marked points (the r + 1st of which is

distinguished) around the two outputs. This is exactly the definition of the operation

given by (N0,0;r,s, See also Figure 12-2 for a picture of this unfolding. 0

As an immediate corollary,
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Figure 12-2: The equality between the quilted strip controlling M',LiXL. and the

first-order map C L -

LxL,

Li Lj

Corollary 12.1 (The wrapped Fukaya category is Calabi-Yau). Assuming non-

degeneracy, E!j is a quasi-isomorphism.

Proof. We have shown that under the above hypothesis M is full (Corollary 11.1);

hence it induces isomorphisms on homology. Thus by Proposition 12.2 so does . 0

This completes the proof of Theorem 1.3.

Corollary 12.2. For any perfect bimodule B, there is a natural quasi-isomorphism

HH*,(W, 9) -+ HH*(W, B). (12.27)

Proof. The isomorphism is the composition of two maps, which are both quasi-

isomorphisms by Corollary 12.1 and Corollary 2.3. Using two-pointed complexes

for Hochschild homology and cohomology, these maps are:

WA w-w 3 W w-w B -+ homw-w(WA, 3). (12.28)

0

In the next section, we use Corollary 12.1 to deduce that 0C : HH,(W, W) -+

SH*(M) is an isomorphism.
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Chapter 13

The Cardy condition

13.1 A geometric bimodule quasi-isomorphism

In Chapter 2.6, we gave a construction of a quasi-isomorphism of bimodules

'TA,left,right : CA Oe 3 Ge eA 3. (13.1)

where C was an arbitrary A,, category, CA the diagonal bimodule, and 3 a C - C

bimodule. The morphism involved collapsing on the right followed by collapsing on

the left by the bimodule structure maps ps. The order of collapsing is of course

immaterial; we have just picked one.

Let us now suppose that C = W and 3 = WA. We would like to give a direct

geometric quasi-isomorphism

ILR : WA Ow WA Ow WA - WA, (13.2)

homotopic to YA,left,right, but not involving counts of degenerate surfaces.

Definition 13.1. The moduli space of discs with four special points of type

(r, k, l,(s)

is the abstract moduli space of discs with r + k + 1 + s + 3 positive boundary marked
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points and one negative boundary marked point labeled in counterclockwise order from

the negative point as (z- z1 . .z 2 )z, ... ,z2 zI, ... ,z such

that

after automorphism, the points z- , 21, 2 23 lie at
(13.4)

- i, -1, i, and 1 respectively.

Figure 13-1: A schematic of the moduli space of discs with four special points of type
(2, 3, 3, 2). All non-signed marked points are inputs.

-11

Sk I
The associated Floer theoretic operation to the space Y, ' with sign twisting

datum

tLR,r,k,l,s =(1, 2, ... r,r, + 11 -.. , r + kr, + k,

r+k+1,...,r+k+l,r+k+l,r+k+1+1,..., (13.5)

r + k + 1± s).

is

( pLR),,k,l,, -=, (~-1 WW Fl,®,W,®

W*'' & W'6' g) W* (& WA & W* & WA & W** __ WA6

(13.6)
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Then, define the morphism

,,rjjS ® (I:Rrl wor ® (WA 9TW®0WA(9TWG(9WA) (9W's -- + WA.
k>0,1>0

(13.7)

One can calculate that the morphism is degree zero, as desired.

Proposition 13.1. The pre-morphism of bimodules

pLR E homw-w(WA Ow WA Ow OWA, WA) (13.8)

is closed, i.e.

(13-9)6 pLR = 0-

Proof. We leave this mostly as an exercise, but this follows from analyzing the equa-

tions arising from the boundary of the one-dimensional space of maps with domain

r'k'''. The relevant codimension 1 boundary components involve strip-breaking and

the codimension 1 boundary strata of the abstract moduli space N''" , which is

covered by

-k'

Ik'+1+'

De '+1+s'

-r',kX,s-s'

x-r-r'+1 ,k,L,s,

X - k-k'+1,,s,Xn+1

x-r,'k,l -l'+1,s,

-r+k1 1 s-s'+1Xn+

X -1 + r - r ' '

r k-k',I-L',s

-, k,-L',s-8'

X3 + gr
X,.+i Z

0 < n < r - r' + 1

0 < n < k - k' + 1

0 < n < 1 - 1'+ 1

0 < n <s- s' + 1

(13.10)

(13.11)

(13.12)

(13.13)

(13.14)

(13.15)

(13.16)

(13.17)

Above, the notation x- means the output of the first component is glued to the input

point z of the second component, and the notation xi+ means the output of the first

component is glued to the special point 2. Also, in (13.14), (13.15), and (13.16), the
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r' + 1st, k' + 1st, and 1'+ 1st inputs on the first component become the distinguished

point 21, 2, and 3 respectively after gluing. 5

Now, we show that ALR was in fact homotopic to TA,left,right. We construct a

geometric homotopy using

Definition 13.2. The moduli space

8rk,s (13.18)

is the abstract moduli space of discs with r + k + 1 + s + 3 positive boundary marked

points and one negative boundary marked point labeled in counterclockwise order from

the negative point as (z, zi, .. . , z,, , , .1 .,,2, z,... , z 2, 3, z, z3), such

that, for any t E (0, 1),

after automorphism, the points z-t, 2, 22 3 lie at

- i, -1, exp(i T( - t)), and 1 respectively.
(13.19)

Sr,k,l," fibers over the open interval (0, 1) given by the value of t, and thus has

dimension one greater than 'Rkl,'. Compactifying, we see that 8 ' ''' submerses over

[0, 1] and has codimension one boundary covered by the natural inclusions of the

following strata, the first two of which correspond to fibers at the endpoints 0 and 1,
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and the remainder of which lie over the entire interval:

-k

9z

-r'+1+k

-k'+1+l

De '+1+8
+al ls

xr-r'+1 z(r-r')+s+(l-l')+1 (t = 1 fiber)

rkIS (t = 0 fiber)

xn+1 r'1,kis 0 < n < r -r' + 1

1g-k l'+lSX n+1 7 ,k0+,ls < n < k -k'+ 1I

x2  grks'' 0 n~-l±

'x 1 + -rkSls

'X 2+

'X3+

(13.20)

(13.21)

(13.22)

(13.23)

(13.24)

(13.25)

(13.26)

(13.27)

(13.28)

(13.29)Xr'+1 r'+1+s'

Above, in (13.20), the r'+ 1st and r'+ k + 2nd inputs of the first component and the

(r - r') + ( - ') + 2nd input of the second component become the three special points

21, 2, and i3 respectively after gluing. Also, the notation for strata (13.22)-(13.29)

exactly mirrors the notation in (13.10)-(13.17).

There is an associated Floer operation

Hr,k,L,s = F.,,,., (13.30)

and we can thus define a morphism of bimodules, of degree -1

J-C E homw-w(WA Ow WA Ow OWA, WA), (13.31)

' = Jfr,k,,s.
k,l

(13.32)

An analysis of the boundaries of the one-dimensional moduli space of maps given by
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Figure 13-2: The moduli space 8 ,k',' and its t -+ {0, 1} degenerations.

+ exp(ij(1 - t))
+2

-1 +

-t

+

-t

1

+

8r,k,,s reveals

Proposition 13.2. J-C is a chain homotopy between TA,left,,right and I1 LR.

Proof. The t = 1 strata (13.20) correspond to 3 A\eft,right, the t = 0 strata (13.21)

correspond to I'LR, and the other strata (13.22)-(13.29) correspond to the chain ho-

motopy terms X o d - d o 9-C.

13.2 A family of annuli

Recall that the morphism C! induces functorial maps

(% : WA ®w-w WA -- + WA Ow- W! ,
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which, composed with the map

fp: WA Ow-w WI -+ homw-w(WA, WA) (13.34)

defined in (2.373), gives a map from (two-pointed) Hochschild homology to Hochschild

cohomology. We now prove that this composed map is in fact homotopic to the map

from Hochschild homology to cohomology passing through SH*(M).

Theorem 13.1 (Generalized Cardy Condition). There is a (homotopy) -commutative

diagram

WA ®W-W WA WA @w-w W! (13.35)

120e 
jIA

SH*(M) 2eo > 2 CC*(WW)

We first how this result completes the proof of Theorem 1.1.

Proof of Theorem 1.1. By Corollary 11.2 and Theorem 1.3, the maps 2 W0 and eg
are isomorphisms. Moreover, so is pi, by Proposition 2.3 (see also (2.373) for the

explicit for of ft). Thus by the diagram (13.35), so is 20e. By Proposition 5.6, 2 W0

and 2 oe are homotopic to the usual CO and 0C!, implying the result.

Alternatively, let us note that we didn't need to a priori know that 2 eO was an

isomorphism to conclude the proof. Surjectivity of 2 0E and injectivity of 2 0, the

contents of Proposition 1.1, suffice. 0

To construct the homotopy, we introduce some auxiliary moduli spaces of annuli.

Definition 13.3. The moduli space

A 1  (13.36)

consists of annuli with two positive punctures on the inner boundary, one positive

puncture on the outer boundary, and one negative puncture on the outer boundary.

The codimension 3 subspace

Al (13.37)
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consists of those annuli that are conformally equivalent to

{zIl < Iz| < R} C C, (13.38)

for any (varying) R, with inner positive marked points at ±i, outer positive marked

point at Ri, and outer negative marked point at -Ri.

Definition 13.4. Define

Ak,l;s,t (13.39)

to be the moduli space of annuli with

" k + 1 + 2 positive marked points on the inner boundary, labeled ao, a1, ... ,a,

a', a1, ... ,a' in counterclockwise order,

" one negative marked point on the outer boundary, labeled zt, and

" s + t + 1 positive marked points on the outer boundary, labeled counterclockwise

from ztu as b,...,, b', b',..., b.

There is a map

7r Ak,l;,,t -- + A1 (13.40)

given by forgetting all of the marked points except for ao, a', bO, and zt.

Definition 13.5. Define

A-,;, (13.41)

to be the pre-image of A- under 7r.

Via the map

A - (0, 1) (13.42)

which associates to any annulus the scaling parameter , the space A-,;.,,t also

fibers over (0, 1). Compactifying, we see that Akl;,,,t submerses over [0, 1], and has

boundary stratum covered by the natural images of the inclusions of the following
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codimension 1 strata

-k'

-if

9ZkXa(n+l)'

-l'+k'+1
9z

-t'+i'+19z

-,., 3,_ ,

x gz,,l (fiber over 1)

x (1,1+),(2,3+) -J '--'' (fiber over 0)

X Akk'+1s,t, 0 < n < k - k' + 1

X Akl-1 +1;s,t, 0 < n < 1 - l'+ 1

x a, A

xni >+ I;s-s'+1,t, 0 < n < S - S+ 1

xbn+1) Ak,;s,t-t'+1, 0 < n < t - t'+ 1

b -

x,,+1 '

(13.43)

(13.44)

(13.45)

(13.46)

(13.47)

(13.48)

(13.49)

(13.50)

(13.51)

(13.52)

Here, the notation x! means the output of the first stratum is glued to the input

point ag, x means glue to a , and x , x , mean the same for by, b. Also, in (13.44),

the two special inputs of the first factor and the second special input of the second

factor become the special input points on the annulus after gluing. Also, in (13.47)

and (13.48), the k' + 1st and 1' + 1st marked points of the first component become

the special point (ao or a' respectively) after gluing.

Given sign twisting datum

tA,k,L,s,t = {(1,- k- k±1,- . .k+l7kl11 .. ,, ,s± +1, ... ,s+t,s+t} (13.53)

with respect to the ordering of boundary inputs

1, ... , ak, a , a', ., a/ ao, bi, . , b, z in, b', b' (13.54)
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there are associated Floer operations

Ak,l;, := (-1)t^',''Is,*F--
AkL. 8 t(13.55)

(WA & W®I & WA & W*Sk)dia® W*t 0 WA ( W**8 WA

where we have indicated the inputs corresponding to the special points ao, a' , and b'

by the first, second, and third WA input factor, and the output zot by the output

WA factor. As usual, the diag superscript indicates that the first set of k + 1 + 2

inputs must be cylically composable. Using these operations, define a map

A : 2 CC,(W,W) -+ 2 CC*(W,W) (13.56)

by

A: (x 0 x, . i y 0 yq 0 ... y1) (13.57)

where 4 is the 2-Hochschild co-chain given by

(D(Cm, ... , c1 c, dn ... , di) = Aq,r;n,m(x xr ( - X1 0 Y

yq -- @yq; cm, ... , ci, c, dn, ... , di).

(13.58)

A dimension computation shows that the operation A has degree n - 1 as a map

from Hochschild homology to Hochschild cohomology. An analysis of the boundary

of the one-dimensional moduli spaces of maps with source domain the various A-L.

reveals:

Proposition 13.3. A gives a chain homotopy between 2C0 o 20o and pLR 0 E!#

Proof. The strata over the endpoints of the interval {0, 1} correspond exactly to the

operations 2 0 o 20( and pLRo #. The various intermediate strata give terms

corresponding to dCC. o A i A o dcC.. In Appendix B we discuss the ingredients

necessary to check the signs of this equation. 0

By postcomposing with the chain homotopy in Proposition 13.2 between ft and
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ILR, Theorem 13.1 follows.

Remark 13.1. If bimodules 93o, 1 come from any Lagrangian in the product for

which we are able to define the quilt functor,

30 = M(Lo) (13.59)

31 = M(L1 )

then there is an analogue of the Cardy condition, which looks like (13.35):

etO
30 O&w-w 51 # > BI @w-w 931 (13.60)

oe I

homw2(Lo,Ll) -03 homw-w( 3 o, 31)

Here, 93 is the bimodule dual of B0, as defined in Section 2.13, and eCV is a gener-

alization of our C morphism. The moduli space controlling the relevant commutative

diagram is a quilted generalization of the annulus. The only obstacle to the existence

of this diagram for arbitrary pairs of Lagrangians in M 2 is our current inability to

define the functor M in complete generality, due to issues of admissibility and com-

pactness of moduli spaces in M 2 .
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Figure 13-3: The space of annuli A- .,, and its degenerations associated to the end-
points {0, 1}.

Ri +

R-> oo

R->1

-Ri
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Chapter 14

Some consequences

14.1 A converse result

In Chapter 11, we proved that if M is non-degenerate, then the product Lagrangians

Li x Lj split-generate A in W 2 . The proof went via analyzing a homotopy commutative

diagram

CC, (W, W) 2 2 , (14.1)
A split

120e 
II

CH*(M) D >* hOm* 2 (A, A)

where W2 was a category quasi-isomorphic to W2 the full subcategory of product

Lagrangians in W 2.

Corollary 14.1. Under the same hypotheses, r is a quasi-isomorphism.

Proof. The map H*(p) hits the unit, so by Proposition 2.7 H*(p.) is an isomorphism.

D is an isomorphism by definition, and we then note, thanks to Theorem 1.4, that

2 M9 is also a quasi-isomorphism. Hence, r is a quasi-isomorphism. 0

Remark 14.1. It seems believable that the map 1' is always an isomorphism, via the

existence of an explicit quasi-inverse instead of such circuitous arguments. At the

time of writing we have not come up with a simple proof.
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With the technology we have established, we can also see that non-degeneracy is

in fact equivalent to split-generation of the diagonal:

Proposition 14.1. If A is split-generated by product Lagrangians in W 2 , then M is

non-degenerate.

Proof. If so, then since the quilt functor M is full on product Lagrangians (Proposition

9.5), we conclude that M is full on A. This implies that the maps eg, ft, and CO are

isomorphisms in the Cardy Condition diagram (1.23) (this is the content of Corollary

12.1, Corollary 2.3, and Proposition 9.7). Hence (C is an isomorphism as well; in

particular, it hits the unit.

In particular, I' is once more an isomorphism.

14.2 The fundamental class

Assume M is non-degenerate, and let o- E CC, (W, W) be any pre-image of [e] E

SH*(M) under the map 0C6. Because 01C is of degree n, o- is a degree -n element.

Following terminology from the introduction, call o- a fundamental class for the

wrapped Fukaya category. Our reason for this terminology is that

Corollary 14.2. Cap product with a induces an isomorphism

-no : HH*(W, W) -~-+ HH,_n(W, W) (14.2)

that is quasi-inverse to the geometric morphisms WO o OC. Thus, by Theorem 1.4, it

is also quasi-inverse to pLR O CO#-

Proof. We note that by the module structure compatibility of (9 the following holds

on the level of homology:

06,((60o oe(x)) n a) = 06(x) -06(o-)

= OC(x) - [e] (14.3)

= M9C(x).
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Since 0C is a homology-level isomorphism, we conclude that

(co o o(x)) n a = x (14.4)

as desired.

14.3 A ring structure on Hochschild homology

We can pull back the ring structure from Hochschild cohomology to Hochschild ho-

mology. Thanks to Theorem 1.4, this can be done without passing through symplectic

cohomology.

Corollary 14.3. Let o- be the pre-image of the unit, and let a, #3 be two classes in

HH,(W, W) that map to elements a and b of symplectic cohomology via M6. Then,

the following Hochschild homology classes are equal in homology and map to a -b:

a *1 # := (f, o (! g (a)) n # (14.5)

a *2 o := a n (p o 6#)) (14.6)

a* (( o e6#)(a) * (,4 o e#)(#)) n o-. (14.7)

It is illustrative to write down an explicit expression for (14.5) in terms of opera-

tions. First, we note that for two-pointed complexes, cap-product has a very simple

form

2 CC,(W, W) x 2 CC*(W, W) -+ 2 CC,(W, W) (14.8)
(0,T) -- +(

where T# is the pushforward operation on the tensor product WA Ow-w WA that acts

by collapsing terms around and including the first factor of WA (with usual Koszul

reordering signs).
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Now, if 8 is the Hochschild class represented by

# = a bi -.. -- bt @ b 0 a 0 ... 0 a. (14.9)

and a is represented by

a = c 0 ci, 0 - -9 cv 0 d @ di 9 - - -0 dw (14.10)

then the formula (14.5) is, up to sign:

a *1 # := (pw(a-k"+1, ... , a,_.', *, Cr'+1,--- , Cr"-1,

p-w(c,",7 .. cvd, di,., d _g, -, bi'+1, ... , b1'+1"),I

/ -(14.11)

o C6% ,II,q,,'(dw-q+1, ... C, ci, ... ,

a,-+. +l. as, a, bi, ... , b )

0 b'l+0"+1 -- bt 0 b 0 a1 0 ... - ,.
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Appendix A

Action, energy and compactness

The goal of this appendix is to prove a compactness result for Floer-theoretic oper-

ations controlled by bordered Riemann surfaces mapping into a Liouville manifold,

under some assumptions about the almost complex structure and Hamiltonian pertur-

bation terms. There are several existing compactness results for the wrapped Fukaya

category and some open-closed maps, e.g. [A3, §B], which are unfortunately not di-

rectly applicable for our choices of Hamiltonian perturbations. The problems occur

because we use time-dependent perturbations of a standard Hamiltonian, which we

cannot guarantee will vanish at infinitely many levels of the cylindrical coordinate r

(this is an essential assumption in [A3, §B]). Solutions to Floer's equation for such

perturbed Hamiltonians will fail to satisfy a maximum principle, but if the complex

structure has been carefully chosen and the time-dependent perturbations are suffi-

ciently small, this failure can be controlled. We make use in an essential way of a

delicate technique for obtaining a-priori C0 bounds on such solutions due to Floer-

Hofer and Cieliebak [FH2] [C]. This technique has also been used by Oancea [02],

whose work we draw upon.

Remark A.1. Our situation is a little different from [FH2] [C] [02] in that we need a

variant of their compactness result for potentially finite cylindrical regions in a larger

Riemann surface. This, and differing conventions regarding Hamiltonians (quadratic

versus linear) and complex structures (contact type versus rescaled contact type) pre-
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vent us from citing any of these papers directly.

Our setup is as follows: Let W be a Liouville manifold with cylindrical end

W = W Uaw aW X [1, oo),. (A.1)

The coordinate on the end is given by a function 7r, on W - W, which we extend over

the interior of W to a function

Ir,. : W -+- [0, oo) (A.2)

such that

W = r-1([0 1]). (A.3)

Let S be a bordered surface with boundary OS, and equip S with a Floer datum in

the sense of Definition 4.11, namely:

" a collection of 6-bounded weighted strip and cylinder data,

" a sub-closed one form as, compatible with the weighted strip and cylinder

data

" a primary Hamiltonian HS : S -+ 'i(M) that is H compatible with the

weighted strip and cylinder data

" an adapted rescaling function as, constant and equal to the weights on each

strip and cylinder region,

" an almost complex structure Js that is adapted to the weighted strip and

cylinder data, the rescaling function as, and some fixed J, and

" an S' perturbation Fs adapted to (FT, 4.E) for some FT, #, as in the definition.

Fix a Lagrangian labeling L for the boundary components of S and a compatible

choice of input and output chords and orbits corresponding to the positive and neg-
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ative marked points on S

Xin, X 0wt, Yin, Yout.

We study maps u: S -+ W satisfying Floer's equation for this datum, namely

(du - Xs 0 7)0" = 0

with asymptotic/boundary conditions

limpz± U =

lim * U = X

for p E a"S, u(p) E ?P(P)(Ln)

Here Xs is the Hamiltonian vector field corresponding to the total Hamiltonian

Hs** = Hs + Fs. (A.6)

The compactness result we need is:

Theorem A.1. Given such a map u : S -+ W, there is a constant C depending only

on F, and #, zin, ztt, g gt such that

(17r, o u) < C. (A.7)

Moreover, given any set of 'n 'n, there are a finite number of collections , z.

for which the relevant moduli spaces are non-empty.

First, we define appropriate notions of action and energy. Suppose we have fixed a

Hamiltonian H and a time-dependent perturbation F, and have picked a surface S

with compatible Floer data. Let x E x(Li, L1 ) be the asymptotic condition at strip-

like end ek with corresponding weight Wk. Moreover, suppose the perturbation term

Fs is equal to the constant Ck on this strip-like end (this can be chosen to be zero if
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there are no interior marked points in S).

Definition A.1. The action of x is defined to be the quantity

A(x) : - (-' )*O + 0;
1

Wk -H*k(x(t))dt + fL (x(1)) - fLi(x(O)) + WkCk. (A.8)

where the fLi are the chosen fixed primitives of the Lagrangians Li,

(A.9)Wk ( )*H
2Wk

and

zwk (A.10)

is the chord x thought of as a time-1 chord of Wk - Hwk, under the rescaling corre-

spondence (4.3).

Similarly, let y E 0 be the asymptotic condition at cylindrical end 61 with corre-

sponding weight v i.

Definition A.2. The action of y is the quantity

1

vi -H" (x(t))dt +A(y) : - ,)*0 +
Si 0

v - F"'(t,x(t))dt
0

(A.11)

where HV' is as before and Ftv' is defined as

Ft( pV)*F
Fv : 2 .

og
(A.12)

Lemma A. 1. The action of a Hamiltonian chord or orbit becomes arbitrarily negative

as r -+ oo.

Proof. This Lemma is a variant of one in [A3, §B.2]. The first observation is, by

Lemma 4.1, that

Hk = H = 2 (A.13)
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away from a compact subset. Also, for a Hamiltonian chord z.k

Wk0 = O(Xwk.Hwk)dt

= Wk - w( Z, XHwk)dt

= Wk - dH*k(Z)dt (A.14)

= 2 Wk - rdr(rar)dt

= 2wkr 2dt.

Thus, for a chord x E x(Li, Lj) away from a compact set (so fL, and f& are zero):

A(x)= - Z 0+ JI
= -wk - r'dt+w kCk,

which satisfies the Lemma. Similarly for an orbit y E 0,

A(y) = - * + vi -Hs(t, y(t))dt

= - vt - (O(Xn, ,) + 9(X,) - HVI - Fvl)dt (A.18)

= - Vi - (fHv +(Xpvi) - Fvl)dt. (A.19)

The above expression also satisfies the Lemma, as HVL dominates 9(XFr,) and FV

away from a compact set. 0

Following [AS], given a map u satisfying Floer's equation, we define two notions

of energy. The geometric energy of n is defined as

Egeo(u) := jdu-X@yI|2. (A.20)

where the norm || - comes from the complex structure Js. Picking local coordinates

271

WtkHWk(x(t))dt + WkCk (A.15)

(A.16)

(A.17)



z = s + it for S, we see that for a solution u to Floer's equation,

Egeo(U) = J ((du - X 0 y)(0,), Js(du - X 0@)(18,)dsdt

= w(du(i98 ) - X -'(i), (du - X 09) o j(0,e))dsdt

= j(w(G,, atu) - w(X o Y(8 ), et) - w( 8,u, X 0 -(6t))) dsdt (A.21)

= (u*w - (dH (&su)y(at) - dH(atu)-y(a))dsdt)

= u*w - d(u*H)-y,

a version of the energy identity for J-holomorphic curves. The topological energy

of u is defined as

Eto,(u) := u*w - d(u*(Hs) -7). (A.22)
Js s 

(.2

Since 7 is sub-closed and Hs is positive,

0 < Egeo(u) <; Et,(u). (A.23)

Noting that

E*(U*HsY) = wk- (H+ ± Ck)dt (A.24)

on strip-like ends and

6* (U* Hs0 )= (Wk HV + F ')dt (A.25)

on cylindrical ends, we apply Stokes' theorem to (A.22) to conclude:

Et,(u) = ( E A(y) - E A(y)) + ( E A(x) - E A(x)). (A.26)

VEjout yE:Vin zEscu.t zE:F

Proposition A.1. For any xin, yin there are finitely many choices of xot, yot such

that there is a solution u to the relevant Floer's equation.

Proof. By Lemma A.1 and (A.26), for fixed inputs , 7in, for all but a finite se-

lection of s4 ut, Yout, any u satisfying Floer's equation with asymptotic conditions

(in, in, out, okut) has negative Egeo(u), which is impossible. 0
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Given a map

U : S -- W (A.27)

as above, there is a notion of intermediate action of u along a loop S1 " S.

Definition A.3. Define the intermediate action of an embedded oriented loop

L : S' -+ S to be:

A(L) := - J L*u*O + L *(u*(Hs -)) (A.28)
= si fsi1

A useful fact about intermediate action is:

Lemma A.2. There are constants c1 , c2 depending on the input and output chords

and orbits such that

A (L) E {ci, c2] (A.29)

for any embedded oriented loop L.

Proof. As S is genus 0, any embedded loop L is separates S into two regions, one Sin

that has outgoing boundary on L and one So,, that has incoming boundary on L.

We note that topological energy Etw,(u) is non-negative on any sub-region of S and

additive, i.e.

Et±,(U) = Eto,(uIsi) + Et,(uIs.,), EtO,(uIsi), EtO,(uIsS.) ;> 0. (A.30)

Hence

E top(ujs.,) < Etap(u) (-1

EtOP(Ulsin) <; EtOP(U).

Now each of Et,(uls,.,), Et,(ulsin) can be expressed via Stokes theorem as the

positive or negative action of L respectively plus/minus actions of inputs and outputs

on each of Sct/Sin, so we obtain upper and lower bounds for A(L) in terms of actions

of inputs and outputs. 0
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Now, given a fixed Floer datum on S, we view S as the union of two regions

with different Hamiltonian behavior. On the first region, there is a non-zero time-

dependent perturbation:

Definition A.4. Define the cylindrical perturbed regions Sc of S to be the union

of the images of the

" cylindrical ends

7 : A± -+ S,

and

" finite cylinders

5' : [a,, b,] x S -+ S

in the strip and cylinder data chosen for S.

Recall that the Floer datum on S consists of 6-bounded cylinder data, and an S

perturbation adapted to (FT, 4,), for some chosen 6 < 1 and E < 1, the sense of

Definitions 4.4 and 4.10. This implies that on the 6-collar (see Definition 4.5)

S6  (A.32)

of S, with

6 =6- , (A.33)

the perturbation FT is locally constant.

Definition A.5. Define the unperturbed region S' of S to be the union of the

complement of the cylindrical perturbed region S\Sc with the 6-collar S3. This is the

region where the perturbation term FT is locally constant.

The intersection of the two regions Su and S' is exactly the S collar S3.

We now examine the function

p = 7r, oU (A.34)
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on each of the two regions of S, S' and SC. In the next two sections, we prove the

following claims:

Proposition A.2. A maximum principle holds for p on the unperturbed region Su.

Proposition A.3. On the portion of the cylindrical perturbed region S' outside the

6-collar

Sc\S6 (A.35)

there is an upper bound on p in terms of the Floer data and asymptotic conditions.

Remark A.2. Note that we are only able to directly establish direct upper bounds for

p outside of a collar of S', and are forced to rely on the maximum principle to deduce

bounds for p on the collar. This has to do with the technique used to establish such

bounds.

These results, along with Proposition A.1 imply Theorem A.1.

A.1 The unperturbed region

In a portion of the unperturbed region S' mapping to the conical end of W, the total

Hamiltonian is given by Hs, a quadratic function, plus a locally constant function

Ps. Thus, the Hamiltonian vector field Xs is equal to

Xs = 2r -R, (A.36)

where R is the Reeb flow on BW. In particular,

dr(X) = 0. (A.37)

Recall that on the conical end, our (surface-dependent) almost complex structure Js

satisfies

dr o J =- . (A.38)
r
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for some positive rescaling function as : S -+ [1, oo). Namely, setting

12
S:= r 2

we have that

dS o J = rdr o J = a, - 0. (A.40)

Now, consider Floer's equation on the conical end

J o (du - X 0 -y) = (du - X 0 -y) o j (A.41)

and apply dS to both sides, with 8 o u =j2 to obtain

dcr = -as - (0 o (du - X -y)) (A.42)

Differentiating once more,

ddc = -as(u*w - d(O(X) - y)) - das A (0 o (du - X 9 -y)). (A.43)

Substituting (A.42) into (A.43), we finally obtain the following second-order differen-

tial equation for (:

ddc = -as(u*w - d(9(X) - y)) + das A dc
as

On the cylindrical end, we have that up to a locally constant function

0(X) = 2r 2 = 2H; (A.45)
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hence

=u*w - d(O(X)) Ay - O(X)dy

= u*w - 2d(u*H) A y - O(X)dy

= (u*w - d(u*H) A y) + (X)dy - d(u*H) A 7

= (u*w - d(u*H) A -y) - O(X)dy - d(2() A y.

(A.46)

Thus, ( satisfies

dde( + 2asd< A y -das A de = _as(u*w - d(u*H) A -y) + asO(X)d7.
as

Note that by the energy identity (A.21) and the fact that -y is sub-closed,

- as(u*w - d(u*H) A -y) + as9(X)dy < 0.

(A.47)

(A.48)

Thus, ( satisfies an equation of the form

dde( + 2asd< A -y - das A dc( 0
as

(A.49)

which in local coordinates z = s + it looks like

A( + v(s, t)O.,4+ w(s, t) ag ;> 0. (A.50)

for some functions v, w. Such equations are known to satisfy the maximum principle;

see e.g. [E]. To finally establish Proposition A.2, we must show that maxima of 6

achieved along portions of the Lagrangian boundary OSIs. mapping to the cylindrical

end also satisfy

d = 0 (A.51)

hence are subject to the usual maximum principle. Pick local coordinates z = s + it

near a boundary point p with boundary locally modeled by {t = 0}. For a boundary
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maximum,

Using (A.42) to calculate Btg, we see that

ot( = d'C((O)

Since -y was chosen to equal zero on the boundary of S, we have that X 9 -Y(,) = 0.

Similarly, at our point p, 09u lies in the tangent space of an exact Lagrangian L with

chosen primitive fL vanishing on the cylindrical end. Thus 0( 8 u) = 0. Putting these

together,

at( = 0 (A.54)

as desired.

A.2 A convexity argument for the unperturbed re-

gion

Below we present an alternate convexity argument for the unperturbed region. This

section is not strictly necessary, but we have included it for its potential usefulness.

Let C be the overall bound for p = 7r, o u on the perturbed region and consider

5S:= p- 1([C, oo)) C S" (A.55)

S splits as a disjoint union of surfaces S on which the total Hamiltonian is equal to

a quadratic Hamiltonian r 2 plus a constant term K (different surfaces have different

constant term). On any such region 5, note that there is a refinement of the basic
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geometric/topological energy inequality as follows:

Eto,(u) > Egeo(u) + J u*H(-dy)

> Egeo(U) + (C2 + K) _(-dy)
(s

> (C2 + K) I_(-d-y),
(A.56)

with equality if and only if Egeo(u) = 0. The boundary of 9 splits as Ms, the portion

mapping via u to &W x {C}, &'S, the portion with Lagrangian boundary, and PS,

the punctures. Suppose there are boundary punctures {xi} in &'S. We calculate,

Eto,(uls) = (*8 - u*Hy) + (u*0 - u*H-y) + ZA(xi). (A.57)

Note first that 0 restricted to the cylindrical end of any Lagrangian is zero, and

similarly for y; implying the second term above vanishes. Moreover,

6(X) = 2r 2 = 2(u*H - K) (A.58)

and

u*Hlang = C2 + K; (A.59)

hence

Etp(u) 0 o (du - X )+

o 0 o (du - X ) +

(u*H - 2K)7 + A(xi)
i

fa(C' - K)-y ± ZA(xi).
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Following action arguments in [A3, Appendix B] and [AS, Lemma 7.2], we rewrite

/ 0o(du-X®7y)= j o(-J)(du-X0-y)oj

= -dr o (du - X 9 -) o j (A.61)
ans as

= _ r dro(du)oj.
Jag as

as dr o X = dr o (2r -R) = 0 on S. As in [AS, Lemma 7.2], note now that for a vector

tangent to O"S with the positive boundary orientation, j( points inward. Apply

du and note that in order for j( to point inward, du o (j ) must not decrease the

r-coordinate. Namely dr o du o j(() > 0, and

0 o (du - X @) < 0. (A.62)

Thus,

Eto,(ulg) (C2 - K) 7 + A(xi). (A.63)

Outside a sufficiently large compact set, actions are negative, so (increasing C if

necessary)

Et,(uI;) < (C2 - K),

(C2 - K)( d y - )(A.64)

" (C2 - K) J(dZy - wi)

" (C2+K) (-dy).

Along with the opposite inequality (A.56), this implies that Eg,,(ulg) = 0. So du

must be a constant multiple of the Reeb flow, which is possible only if the image of

ufIg is contained in a single level BW x {C}.
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A.3 The perturbed cylindrical regions

The starting point for this case is the following classical refinement of the maximum

principle for uniformly elliptic second order linear differential operators associated

with Dirichlet problems in bounded domains:

Proposition A.4 (Compare [C, Prop. 5.1]). Let L be a strongly positive second-

order elliptic differential operator on a domain Q (such as -A on a finite cylinder

[a, b] x S'). Let A be the smallest eigenvalue of L. Then A is positive. Moreover, for

any positive A < A, if f : Q -+ R is smooth and satisfies the following properties:

Lf > Af inK (A.65)

f = 0 on i

then f > 0 on Q.

Proof. The proof combines a theorem of Krein-Rutman with the maximum principle,

and can be found in Thorems 4.3 and 4.4 of [Am]. 0

Using this Proposition we prove a variant of a result of Floer-Hofer [FH2, Prop. 8]:

Proposition A.5. Let Z be a cylinder of the form [c, d], x S,, with c E [-oo, oo),

d E (oo,oo]. Let

g: Z -+ R (A.66)

be a function satisfying the following two properties:

1. For any r7 < 1, there exists a c,, with the following property: On any rq-width

sub-cylinder

(ss±+) x S 1 C Z (A.67)

there is a loop {s'} x S' satisfying

sup[g(s', t)] < c,. (A.68)
t
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2. For some A > 0 and (possibly negative) constant A, g satisfies the following

equation

Ag + Ag > A. (A.69)

Then for sufficiently small 7, there is a constant C(A, A, i) such that

g(s, t) < C (A.70)

everywhere except possibly outside a 2rq-collar of Z.

Proof. Starting from one end, partition Z into a maximal collection of adjacent q-sized

cylinders [s, s + q] x S 1-this covers all of Z except a at most a portion of Z's collar

of width at most 77 (when Z is finite). To each such sub-cylinder Zk = [sk, sk +i] x S1

of Z associate a number

(A.71)

satisfying (A.68). An adjacent pair of such s', s'+1 satisfies

sk+1 - sk <2

and

g(', t) < c7

g(S'k+1, 0 < C.

We will now examine the new regions

Zk = [s'k, k+1] x S 1 ,

which cover all of Z except a portion of Z's collar of width at most 27. Let

Ek = (sk+1 - k)
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and consider the function

h(s, t) := (Ac. + JAI)(,E - (s - s' - Ek)2) + c,.

h(s, t) satisfies the following properties on [s', s'+1 ]:

h(s,t) c. s

(s, t) < (Ac. +|IA1) E' + c, < (Ac,, + I A 1)772 + c,.

Moreover , for q chosen sufficiently small (< )

(-A - A)h(s, t) 2(Ac + AI) - Ah(s,t)

(2(Ac, + AI)) - A[(Ac, + A),q2 + C,]

JAI(2 - A 2) + Ac,(2 - A 2 _ 1)

> |AI.

Therefore, the function

- g(s, t) + h(s, t) (A.80)

satisfies the following two properties:

-g(s, t) + h(s, t) > 0 on aCk,

(-A - A)(-g(s, t) + h(s, t)) > 0 on Ck.

(A.81)

(A.82)

Now, the smallest eigenvalue of -A on Zk subject to the boundary condition of 0 on

BZk can be explicitly calculated via Fourier series to be

X = 2 
2

-C 4772'
(A.83)

so for q sufficiently small, A is smaller than A. Thus Proposition A.4 applies, and we
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conclude that on all of Zk:

namely on Zk

g(s, t) <; h(s, t) < (Ac. + IA 1)q2 + c,.

This final bound holds on every new cylinder Zk and is independent of k. Since the

cylinders Zk cover all but a 2q collar of Z, we conclude the result. O

Returning to our main argument, let us recall that pulled back to a particular

cylinder [c, d] x S' in the cylindrical region SC with associated weight v, our chosen

Floer datum has the following form:

" The sub-closed one-form -y is actually closed and equal to vdt.

" The main Hamiltonian Hs is equal to H,*f

" The rescaling function as is equal to the constant v.

" The almost-complex structure JS = (#")*Jt is v-rescaled contact type,

e.g. on the conical end,

dr o J =- -
r

(A.86)

* The perturbation term FT is monotonic in s, i.e.

BFT < 0, (A.87)

and has norm and all derivatives bounded by constants independent of the

particular cylinder.

In particular, we note that on any such region, the total Hamiltonian

Hst := Hs + Fs
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(A.88)



is monotonic in s. Also, u pulled back to any such region satisfies the usual form of

Floer's equation:

(du - X 0 (v . dt))' = 0, i.e.
(A.89)

&8u + Jt(Qtu - XV.(H't)) = 0-

Below, we will frequently suppress the weight v, building it into the total Hamiltonian

Hstg = v - Hgto. On a cylindrical region of S, we examine the function

12 1
I 2 _(_ro U) 2 : [c, d] x S' -+ R. (A.90)
2 2

Proposition A.3 can now be refined as follows:

Proposition A.6. (almost) satisfies Conditions 1 and 2 from Proposition A.5.

Namely, there is a replacement satisfying Conditions 1 and 2, with

(A.91)
i < + C'.

Choosing qr smaller than , we see that on all but a S collar of S, and hence and

p are absolutely bounded in terms of the Floer data and asymptotic conditions.

In order to better examine intermediate actions along loops £ : S' - Sc in the

cylindrical region, we will define define relevant function spaces for maps x : S' -+ W,

following [02, §4]. First, define the following continuous projection to the compact

region:

Wrin : W (A.92)

p p(A.93)

{p p = (p, r) E OW X [1, oo).

285



Given x: S' -+ W, denote by z the composition

2t := 7rino X. (A.94)

Definition A.6. Define the following function spaces:

L 2(S, W) : {x: S -+ W measurable: 7r, o x E L2 (S1
7R)} (A.95)

H'(S', W) := {x E L2 (S, W) : E L 2(x*TW), (7r, o x)' E L2 (S', R)}. (A.96)

Here, measurability is with regards to some metric g = w(-, J-), and independent of

choices. Also, for a smooth map x, t is well-defined as a distribution given an embed-

ding of W into Euclidean space. The requirement that it be L 2(x*TWT1) is independent

of embedding, though we declare that for some fixed embedding that | |I|12 be the re-

striction of the usual Euclidean L2 norm. We define the norms associated to these

spaces as follows:

x1L2 := ||Lf o1||2 (A.97)

||X||2 := 117r, o X|21 + 1L2. (A.98)

Definition A.7. Define the normed space

C0 (S', W) (A.99)

of continuous functions from S' to W as follows: The norm of a continuous map

x is given by by choosing an embedding of W into Euclidean space and restricting

the standard Euclidean sup norm on 2, plus the sup norm of 7r, o x. This space is

independent of embedding of W.

Lemma A.3 (Sobolev embedding). There is a compact embedding

H1(S', W) c C0 (S', W). (A.100)

286



Proof. See [02, Lemma 4.7]. The main point is to leverage the known compact em-

bedding H 1 (S 1 , R) C C 0 (S 1 , R) to ensure that any sequence fk bounded in H1 (S', W)

takes values in a compact set. Thus, one can apply Sobolev embedding for maps from

S1 to a compact target manifold.

By definition, we have that

if f E C0 (S', W) then r, o f is bounded. (A.101)

Given an almost complex structure J, we recall the associated metric

(X, Y)j = W(X, JY). (A.102)

For a smooth map x : S1 --+ W and a S1 dependent complex structure J we use

this metric to define the following L2 norm

I1_ 122 := is (i (t),7 Jtei(t))dt. (A.103)

The relation to the function spaces defined earlier is as follows:

Claim A.1. For Jt of rescaled contact type, the L2 norm ||L||2 bounds || |2 and

Proof. Suppose first that x maps entirely to the cylindrical end of W. Then t is

smooth and the norm of ' given by a choice of embedding into Euclidean space is

equivalent to the one coming from w(-, J.) on t, for any J. Now, for any J of rescaled

contact type, 1,. and ThW are (-, .)j orthogonal, implying that

lil2 = I (, (r o x)') 2

= 1Il2 ) +|(7r,. oX) 2 . (A.104)

Above, the notation lI| (t) refers to the fact that we are taking the norm of with

respect to the metric at level 7r, o x. The norm (-, -) j behaves in the following manner
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with regards to level on the cylindrical portion oW x [1, oo): For R and O,

(R, R); = v

(Or, dr)J = 1
V

(A.105)

independent of level r (here v is the rescaling constant). For vectors in the orthogonal

complement of R, 0 r, the norm grows linearly in r. In particular,

(A.106)

thus both lII and |(7rr o x)'l are bounded by a constant multiple of li1. Now extend

this bound to arbitrary x as follows: suppose that 7r, o x < 1, e.g. x C W. Then,

since d7r, is an operator with bounded norm on V,

(Ir, 0 X)2 = (d7rr o <)2 (const) -.

Similarly, when x C W, X = 2, so lI| is trivially bounded by Iz1.

(A.107)

5

Lemma A.4 (Condition 1). For any 7 > 0 there is a c,7 such that on any sub-cylinder

[s, s + 77] x S' of the cylindrical region S*,

sup[7rr 0 u(st)] 5 c, (A.108)

for some s' E [s, s + 771.

Proof. Let

2 = (SO, SO + 7) x S1 (A.109)

be a given sub-cylinder of the cylindrical region Sc. Let

A2(s) (A.110)

denote the intermediate action of the loop {s} x S' C 2, and let u(s, t) denote the
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restriction of u to Z. By the positivity of topological energy,

A 2 (so) - A2(so + r/) = Etp,(ul) < K, (A.111)

where K is the topological energy of u. The mean-value theorem therefore implies

the existence of

s' E (so, so + r) (A.112)

satisfying

10.,(A 2(s))II s=' K/ 7 . (A.113)

Moreover, we know from Lemma A.2 that

(-A 2 (s')) < M (A.114)

for some constant M depending only on the asymptotics of S. We claim that the

equations (A.113) and (A.114) give a bound for the loop u(s', -) in the H' norm

(A.96), establishing the Lemma for s' (using the Sobolev embedding (A.100)).

Recalling the special form of our Floer data on Z, and abbreviating H := HS't,

J := JS, X = XHst the derivative A 2 (s) can be expressed as:

= - w(asu, atu)dt + j S(

= - w(Otu, J(9au - X))dt +
sS1 asxS

= - uS' w(atu, J(Oau - X))dt +

= - w(Ltu, J(dtu - X))dt -

= - w(Otu - X, J(Gtv - X))dt +
- sS1

=--||Btn(s, ) X||2 + I a,H(s7,-)dt,
JS1

U*(H))dt

(dH o 8u + Os9H)dt
1

'1

'1

w(X, 8,u)dt + j 8 Hdt

w(X, JS(atu - X))dt + xS'

[ aHdt

(A.115)
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where above we have twiced used that u satisfies Floer's equation. Abbreviate

x8 (t) := u(s, t), (A.116)

and note that since Hg"' is monotonically decreasing, (A.115) and (A.113) imply that

IItxe - X 12 K - (A.117)

For a rescaled-standard complex structure J, and a Hamiltonian vector field Xs

equal to 2r -R plus a bounded term,

IXs12 < C(w(2r -R, J(2r -R)) + 1) = C(r2 + 1),

IXsI5 O(|r|+ 1).

(A.118)

(A.119)

for some constants C, d. Thus by (A.117),

IitXII 5 ItX, - XI| ± IIXII O(1 + |7rr oXsz1|L2). (A.120)

By Claim A.1, a bound on IItxI is as good as a bound on II(7r, o x,')'lI and ||II||.

The equation (A.120) implies that a bound for ||7r, 0 Xj I L2 suffices to establish the

desired H1 bound on xw.

We know by hypothesis that for any s the action of the loop x., is bounded below:

- A(x,) = j*O - x*H < M
JS1 8 j

(A.121)
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for some M. We rewrite the first term of (A.121) as

x*,0 = w(Z,±,)dt

= J w(Z, (atXz - X(x,)) + X(x,,))

= J(JZ, tx - X)+ ±

Thus by Cauchy-Schwarz

Substituting into (A.121) we see that

M > f (d H(Z) - H) - |IZI| -|I|9tx - X||,1
xz.,(si)

(dH(Z) - H) < M + IZII -I|itx, - X|.
/(Si)

By (A.117), ||I9tx - XI| is bounded. Moreover, Z = r -0, has norm equal to r times

a constant. Thus,

(A.126)
Lg(si)(dH(Z) - H) < M + CoI I7r, o x. I

for some new constant M. For xg mapping entirely to the cylindrical end, we see

that

dH(Z) - H = r - dH(,) - H
(A.127)

= r2 + dFs(Z) - Fs.

The last two terms are totally bounded by assumption, so

fS S)r 2 = ||1r,. o Xg||12 < N + Collir,. o x.|,11 (A.128)
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dH(Z)dt.
1

5t(S')

dH(Z) (A.123)

e.g.

L .

(A.124)

(A.125)

I x*,0 > -|Z|-|x,-X 
|+



for constants N, Co, implying a bound for I 7r, o x, 1. We extend to the general case

by noting that whenever x,' maps to W, Ir, o xz| is bounded by 1. 5

We have just proven that Condition 1 holds for

p = 7rr o U (A.129)

This implies that it holds for

(A.130)
2

as well as any satisfying (A.91).

Lemma A.5 (Condition 2). On any cylindrical part of S there exists a (, satisfying

(A.131)
S< + +C'

such that

A + A ;> -A (A.132)

for constants C, C' depending only on the asymptotic conditions of S and the Floer

data.

Proof. Actually, we will prove that ( itself satisfies (A.132) on the cylindrical end of

W; we will then perform the replacement to extend the validity of (A.132) to the

compact region W.

Letting
1r2
=r22' (A.133)

and ( = 8 o u we calculate the Laplacian A( on the cylindrical end of W. Begin with

Floer's equation

J o (du - X 0 dt) = (du - X 0 dt) o j,
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apply dS to both sides. Since J is v-rescaled-contact type

dS o J = rdr o J = -vrs = -vO,

we have that

dc= d o j = v(-u*O + (X)dt) + dS(X)(dt o j)

Differentiating once more, we see that

ddc' = v(-u*w + (&,(X)) ds A dt) - at(dS(X)) ds A dt.

Since ddc = -A( ds A dt, we see that

A = v(w( 8 u, Dtu) - Q8 (0(X))) + at(dS(X)).

Now, as in [CFH] and [02], rewrite w(98,u, Btu) as:

w( 8 U, atu) =
1 1
1 ( 8 u, 8tu) + 1W(du, i9tu)

= (w(a.,u, Jdau + X) + (- Jate + JX, Oeu)) (A.139)

= 1 ( 8 u 2 + 1tu|2 + w (98 u, X) - W(arU, JX))

The other terms in (A.138) can be expanded as follows, where 9 is the contact form

on 9W (as in (3.7)):

at(dS(X)) = d8 o OtX + dS o VuX,

a.(O(X)) = a8,(r#(X))

= (dr o u,)6(X) + rs(98,X) + r#(V.X)

(A.140)

(A.141)

293

(A.135)

(A.136)

(A.137)

(A.138)

and



Putting these together, we have that

At =' |a.u|2 ± 'IjaU12 + Vw(OSu, X) + -W(atu, JX) + dS o atX
2 2 2 2 (A.142)
+ dS o VtX + v(dr o u,,)(X) + vr(o9,X) + vr#(V.X).

When J is of v-rescaled contact type, we recall that as linear operators

# has constant norm; and (A.143)

dr = d(v/i8) = -- has constant norm, hence (A.144)

dS has norm O(v). (A.145)

Moreover, we have the following inequalities:

IX| 15 C(1 + -vS),

IVyXI 5 CIYI, for any vector field Y, (A.146)

| 8XI 5 C(1±+ v)

for some (possibly different) constants C depending on the rescaling constant v and

the time-dependent perturbation term of our total Hamiltonian. We use these in-

equalities to estimate the terms in (A.142):

|w(Su, X)| 5 P8 u||X 5 C(1+ )|8,ul (A.147)

Iw(Au, JX)I 5 |jtullXI 5 C(1 + A)|d9ul (A.148)

Id8 o tX 5 C(1+ )2  (A.149)

Id8 o VuX| 5 C(1+ )|Btul (A.150)

|(dr o u.)#(X)| C(1 + v'b)|,ul (A.151)

Ir#(a.,X) 1 IrI98 XI 1 C(1+ v )2  (A.152)

IrGV,XI 1 Ir| |.ul C(1 + N)|8,ul (A.153)

again for potentially different constants C depending on those in (A.146). Putting
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these together, there exists constants c1 , c2 and c3 such that ( satisfies an equation

of the following form:

A >A lUl12 + |8tU|12 - C1 (1 + )|,Ul2 ± 2  
- C(1 ± (A.154)

- c2(1 + V - c3 (1

which implies that

A + A( 2 -A (A.155)

for obvious constants A, A depending on c1 , c2 , c3. This holds on the cylindrical end

r > 1, where the estimates above apply.

We extend as follows, directly following an argument in [02, Thm. 4.61. Let

p : R+ -+- R+ (A.156)

be a smooth function such that W(r) = 0 for r < 1, p'(r) = 1 for r> 2, and p0"(r) > 0

for 1 < r < 2. Clearly

(A.157)
p(r) < r + C'

Thus, the modification

:= O oc (A.158)

satisfies (A.91) as required. Moreover, note that

A as 6(V'((s, ) -480 +8 IM '((s, t) - 8C()

= V"(((s, t))(I|as 2 + Iat(2) + ,'(((s, t)) - (At) (A.159)

> p'((s, t))(-A - A() (-A - A ) (-A - A )

as desired.
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Appendix B

Orientations and signs

In this appendix, we recall the ingredients necessary to orient various moduli spaces

of maps, thereby obtaining operations defined over the integers (or over a field of ar-

bitrary characteristic). The relevant theory was first developed in [FH1] and adapted

to the Lagrangian case in [F0002, §8]. We will proceed as follows:

" In Section B.1, we associate, to every time-1 chord x E x(Li, Lj) or orbit y E 0,

real one-dimensional vector spaces called orientation lines

OX, 0,, (B.1)

coming from the linearization of Floer's equation on any strip-like or cylindrical

end. Then we recall from general theory how orientation lines, orientations of

our Lagrangians and orientations of abstract moduli spaces determine canonical

orientations of moduli spaces of maps. In the semi-stable case, this orientation

is canonical up to a choice of trivialization of the natural R action.

" In Section B.2, we give a recipe for computing the sign of terms in the expression

arising from the codimension 1 boundary components of a moduli space of maps.

" In Section B.3, we choose orientations for the top strata of various abstract

moduli spaces of open-closed strings/glued pairs of discs.
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* Finally, in Section B.4, we will use all of the ingredients discussed to carefully

verify the signs arising in a single case.

We will draw heavily from the discussion in [S4, (111)] (which discusses surfaces

without interior punctures), along with the extension to general open-closed strings

in [A3, §C]. Our notation will primarily follow [A3, §C].

B.1 Orientation Lines and Moduli Spaces of Maps

Given y E 0, there is a unique homotopy class of trivializations of the pullback of TM

to S1 that is compatible with our chosen trivialization of A'TM. The linearization

of Floer's equation (3.37) on a cylindrical end [1, oo) x S' with respect to such a

trivialization exponentially converges to an operator of the form

Y -+ 8, Y - Jt8tY - A(+oo, t)Y, (B.2)

where J - A(+oo, t) is a self-adjoint operator (see [FH1] for more details). Thus, to

define an orientation line, we once and for all fix a local operator

D, : H 1(C, C") -+ L2 (C, C") (B.3)

extending the asymptotics (B.2) in the following fashion. Endow C with a negative

strip-like end around oo of the form

e : (-oo, 0] x R/Z C (B.4)

s, t - exp(-27r(s + it))

and consider extensions of Jt and A(-oo, t) to families Jc of complex structures and

Ac of endomorphisms of C". Using these families, we define the operator D, to be

as in (B.2) using the extended families Jc, Ac.

Definition B.1. The orientation line o. is the determinant line det(D,).
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In a similar fashion, given x E x(Li, Lj), after applying a canonical up to homotopy

trivialization of the pullback of TM to [0, 1], x can be thought of as a path between

two Lagrangian subspaces Ai and A1 of C", and the linearized operator corresponding

to Floer's equation (3.26) asymptotically takes the same form as (B.2). Now, choose

a negative striplike end around 00 in the upper half plane

S(-oo, 0] x [0, 1] -+ (B5)

s,t - exp(iri - ir(s + it)).

Also choose some family of Lagrangian subspaces F2, z E R C H such that Fe(sxfO) =

Aj, FE(sxf1I) = Aj, and choose extensions of A and J to all of H as before. One thus

obtains an operator

Dx : H1 (H, C", F) -+ L 2(H, C") (B.6)

Definition B.2. The orientation line ox is the determinant line det(Dx).

Remark B.1. We have omitted from discussion the grading structure, but we should

remark that in reality, when working with graded Lagrangians, trivialization gives us

graded Lagrangian spaces A, A# of C" (thought of as living in the universal

cover of the Lagrangian Grassmannian of C"). Instead of giving such a discussion

now, we simply note that the family F of Lagrangian subspaces chosen above must lift

to a family of graded Lagrangian subspaces interpolating between the lifts At and At*

The reader is referred to [S4, (11g)] for a more explicit spectral flow description

of these determinant lines and indices.

By definition, orientation lines are naturally graded by the indices of the operators

we have constructed above, meaning that

oX& 0 oX2 = (- 1 )|lbX21.20 2 & ox1 (B.7)

where |xI is the degree of the chord (or orbit) x. Also, there are natural pairings

o, (& o, -+ R. (B.8)
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Given a vector i of chords or orbits, abbreviate the tensor product of orientation lines

in x, as

ox : ox (B.9)
xEz

The application of orientation lines to our setup is this: Standard gluing theory

tells us that given a regular point u of some moduli space of maps with asymptotic

conditions, orientation lines for the asymptotic conditions and an orientation for the

abstract domain moduli space canonically determine an orientation of the tangent

space at u.

To elaborate, let M be some abstract moduli space of Riemann surfaces E with

boundary S. Denote by (2, 5) the surface obtained by compactifying, i.e. filling in

the boundary and interior punctures. Given a collection of asymptotic conditions

(Zmt, ot, zn, in) one can form the moduli space of maps

X~at, 7 Yot; zin, 7 in) (B.10)

as described, for example, in Section 4. Suppose we have chosen an orientation of M

and orientation lines or, o... Then:

Lemma B.1. Let C1,...,Ck be the components of the boundary of S, and ej denote

the number of negative ends of O. If we fix a marked point zj E C mapping to a

Lagrangian Lj then, assuming the moduli space M(4', ' ; in, gin) is regular at a

point u, we have a canonical isomorphism

A(M(4-t, ; , - -)) - A(M) 9 ( A(Tju(zj)Lj)*1-ei 0 o 0 o7 ol o

(B.11)

where A denotes top exterior power.

Proof. The version of this Lemma in the absence of interior punctures can be found

in [S4, Prop. 11.13]. The minor generalization of including interior punctures is

discussed in [A3, Lem. C.4. 0

In particular, given fixed orientation of M, when the moduli space M(ot, got; An, Yin)
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is rigid, we obtain, at any regular point U E M('ot, 'ot; ' , 'in), an isomorphism

-VU : o ( 0 ( (Tlu(zj)Lj)-~ s) 0 O;,t og.. (B.12)

If we fix orientations for the Lj, then we obtain an isomorphism of the form (B.12)

without the Lj factors. But the Ly factors will continue to have relevance in sign

comparison arguments.

Remark B.2 (The semistable case). The moduli spaces M(yo; y1), RZ(xo; x 1 ) arise

as a further quotient of the non-rigid elements of M(yo; yi) and R 1 (xo; x1 ) by the

natural R actions. Thus, at rigid points u E M(yo; yi), v E 'R(xo; x1) one obtains

trivializations of A(J$(yo; yi)), A('R 1(xo; x 1 )) and hence isomorphisms

oYI -* o~(B.13)

by choosing a trivialization of the R actions. In both cases, following the conventions

in [S4, (12f)] and [A3, §C.6], choose ., to be the vector field inducing the trivialization.

B.2 Comparing Signs

Let U be some abstract compact moduli space, and suppose its codimension one

boundary has a component covered by a product of lower dimensional moduli spaces

(either of which may also decompose as a product).

A xvg B. (B.14)

We should first elaborate upon the notation X.U,O. We suppose first that we have fixed

separate orderings of the input and output boundary and interior marked points for

A, '3, Q; such orderings will be specified case by case.
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f= (v -, +),.7.-,(V(vo )}

W= {(wiwoj), .. ., (w-7,wj)},

A x ro 3

(B.15)

(B.16)

refers to the product of abstract moduli spaces A with 3 in which

" the vi th boundary output of A is (nodally)

B, for 1 < i < k, and

" the w-th interior output of X is (nodally)

B, for 1 < j < l.

glued to the vtth boundary input of

glued to the with interior input of

We refer to such (V', zi) as a nodal gluing datum.

Now, suppose we had fixed orientations for A, B, and Q. The associated space of

maps

X~in, Yin; Xou, 7 You) (B.17)

inherits an orientation from Lemma B.1 and has as a codimension-1 boundary com-

ponent the product of moduli spaces

(B.18)

for suitable input and output vectors z,,n ein; z4, y?. Thus, the product (B.18)

inherits a boundary orientation from (B.17). However, Lemma B.1 and our chosen

orientations for A and 3 also give (B.18) a canonical product orientation The question

of relevance to us is

What is the sign difference between the product orientation and

boundary orientation of (B.18)?
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Definition B.3. Given vectors of the form

the notation

(B.19)

A (zin, sin; zOut7 , t) x 6,v B (Ysn is,9n; z-!t, paiu)



Actually, we will also equip A, '3, and Q with sign twisting data i, i and Ko and

calculate the sign difference with these twistings incorporated. But we can just add

them at the end.

Abbreviate

XV Viogim,ggtnsaugu := ot 0 ot 00 0 0-o (B.20)

and

Xy : (Yi, y Ai; "ou, yVu). (B.21)

Then, (B.19) can be rephrased as: what is the sign difference in the failure of com-

mutativity of the following diagram?

A(Q(x-y)) > A(Q) 0L o 0 og (B.22)

A('(xy 2 )) 0 A(A(xy)) > A('B) 0 LB 0 oy2 0 A(A) 0 LA 0 o1

Here Lo, LA, and £3 are the powers of orientation of a fixed boundary Lagrangians,

one for each boundary component of representatives of the moduli spaces, appearing

in Lemma B.1; these satisfy £5 0 LA = LO (up to an even power of the top exterior

power of Lagrangians, which is trivial). The top and bottom horizontal arrows are the

ones given by Lemma B.1. The reversal of B and A above comes from the fact that

we originally listed the boundary strata of A, '3 in the reverse order of composition.

Proposition B.1 (Sign Comparison). The sign difference between the product and

boundary orientations is the sum of four contributions:

" Koszul signs from reordering A(A) past og2 and LB.

" Koszul signs from reordering LA past 02.

" Koszul signs from reordering os 0 Og1 to become og (using the natural

pairings (B.8) on elements coming from the gluing (ii, ta)).

" Comparing the product versus boundary orientation on abstract moduli

spaces A x64 '3.
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Since all of the operations we construct involve sign twisting data (Definition 4.16),

we add back in said data to obtain the right signs.

Corollary B.1. The sign of the composed term (-1)t1Fo og (-1)rFA in the ex-

pression arising from the codimension 1 boundary principle (Lemma 4.4) applied to

Q is the sum of:

" all terms from Proposition B. 1; and

" contributions from the sign twisting data ti1 and t2, in the sense of (4.30).

B.3 Abstract Moduli Spaces and their orientations

By Lemma B.1, we must choose orientations of the various abstract moduli spaces we

consider in order to orient the associated operations. In this section, we do precisely

that. We will also, in a sample case, compute explicitly the sign difference between

the induced and chosen orientation on boundary strata.

B.3.1 2d

Fix a slice of 'Rd in which the first three boundary marked points z(~, z+ ,and z4

are fixed, and consider the positions of the remaining points (z3 , ... , zd) with respect

to the counterclockwise boundary orientation as a local chart. With respect to this

chart, orient 'Zd by the top form

dz3 A - A dzd. (B.23)

This agrees with the conventions in [S4] and [A3], so we will not discuss this case or

its signs further.

B.3.2 9Z

Take a slice of 9' in which the interior point yt is fixed, as is the distinguished

marked point zd. With respect to the induced coordinates (z 1,..., Zd) induced by the
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positions of the remaining marked points, pick orientation form

- dzi A ... A dzdl. (B.24)

This agrees with the choice made in [A3, C.3].

B.3.3 'R1'1

Take a slice of 91 in which the interior point Yin and outgoing boundary point zj-,

are fixed, and using the positions of the remaining coordinates (z 1 ,..., za) as the local

chart, again pick orientation form

-dzi A -.. A dzd. (B.25)

B.3.4 'R1

Fix a slice of 9Z 1d 2 (see Definition 5.4) in which z 0 , z',, and yt are fixed at -i, i,

and 0 respectively, and consider the positions of the remaining points in the slice

(z.,.. , Zj, Z1,..., z) as the local chart. With respect to these coordinates, pick

orientation form

-dz A -.. Adz, Adz' A ... A dz. (B.26)

Proposition B.2. With respect to the strata listed in (5.60)-(5.63), two of the dif-

ferences in sign between chosen and induced orientations on boundary strata are as

follows:

Proof. We have not listed the sign differences for the strata (5.61) and (5.62), which

follow from identical calculations. For (5.60), with respect to the local charts (zn+3, ... ,zn+k')
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stratum sign difference

(5.60) 1+n+ kk'(l + k - n)

(5.63) 1 + l(l'+ 1) + k(l -l')



on J-' and (z. .. , zn, i, Zn+k'+1,-., z, z', .... , z) on 2k-k'+1,1, the gluing map

p [0, 1) x 3-k' X -k'+1,l -- + (B.27)

has the approximate form

t (zn+3, (zi,. .. , ,z, z, z ± t . ± t 3 1 -3,7Zn+k'+1, ., . - - - ± * ) t

(Zi,7 ...,) zn, z, z + t, z: + tzn+3, ... - z + tzn+k', zn+k'+1, - -- )

(B.28)

Thus, the pullback under p of the top form

- dzi A - A dzk A dz' A .- A dz'. (B.29)

is, modulo positive rescaling,

dz 1 A--- Adzn Adi Adt AdZn+3 A --- Adzn+k Adzn+k+l A . Adzk Adz' A-- dz' (B.30)

which visibly differs from the product orientation (using the outward pointing vector

-dt)

(-dt) A (-dzi A dzn A di A dzn+w+1 A ... ) A (dzn+3 A ... dzn+k )

by a sign of parity

n + 1 + (k' - 2). (1+ k - n - k') = 1 +n + k'+ k'(l + k - n).

For (5.63), the gluing map

p : [0, 1) x 22'+'+1 X -,- I,1

(B.31)

(B.32)

(B.33)

306



takes the following approximate form:

t, (zk-k'+3,. ., Zk, z0 , z, ... , zj',), (z 1 , ... , Zkjk,, zP+1, . .. , z) )

(zi,7 .. zk-kr, i -t(z' - a), i - t(zo' - b), i tZk-k'+3, - - -, 7 -1z, t

... i + tz;',, z 1 , ... z')

(B.34)

for some constants b > a > 0. Thus, the pull back of the top form (B.29) is, up to

positive rescaling

(-1)'-2dz 1 A.. dzk-kr Adt A dz6 Adzk-k'+ 3 A --- AdzkA dz'1 dz', A ... A dz', (B.35)

which differs from the product orientation

(-dt) A (dziA ... A dzak-I A dzi',41 A ... A dzj,)

A (dzk-k+3 A ... dzk A dz' A ... A dz',)
(B.36)

by a sign of parity

1+(k'-2)+(k-k')+(k'-2)+(k'+l'-1) -(l-l') = 1+l(l'+1)+k'(l-l') (mod 2). (B.37)

0

B.3.5 Q(3, r)

Strictly speaking, we embed the open locus of quilted strips into glued discs with

sequential point identifications, but since this embedding is an isomorphism on the

open locus, it will suffice to write down a top form on the level of Q(3, r). There are

three cases:

e If r 2 > 0, then picking a slice of the R action for which the highest marked

307



point on the middle strip Z2 is fixed, we obtain coordinates

( 1 r 3 r z 2 - 1 .Z3'.. 3'7 .,lZ . Z2) (B.38)

If r2 = 0 but r3 > 0, pick a slice for which z is fixed to obtain the chart

(z , .. . , zr, zr, ... , z (B.39)

Lastly, if r 2 = r 3 = 0, picking a slice for which z4 is fixed, we obtain the chart

(B.40)

In all three cases, pick orientation form the top exterior power of these coordinates

of the chart in the orders specified above.

B.3.6 y~l's't

Fixing a a slice of the action for which z, z 2 , z4, z2 are fixed at i, -i, 1 and -1

and using the positions of the remaining coordinates

(Zi, .., Z z , ... ,I z , 1z2, ... , z2, z3, ... . z3) (B.41)

as a chart, pick orientation form

-dzl A ... A dzk Adz, A ... dzi A

dzA---Adz2Adz3A --- Adz.
(B.42)

B.3.7 Ak,;s,t

In a similar fashion, fix a slice of the action in which ao, ao, bO, and zt are at ±i,

Ri and -Ri respectively. The remaining coordinates include the positions of the

remaining boundary points a 1,... ,ak,a',. . ., a, b1 ,... ,b,, b1,. ... , bt, and the radial
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parameter r += * With respect to these coordinates, choose orientation form

-dr A dal A --- A dak A da' A --- da'A
(B.43)

db1 A ... A db, A db' A ... A db'.

B.4 Sign Verification

In this section, we use all of the ingredients above to verify the signs of equations in

one case. Namely, we will (partly) show that

Proposition B.3 (Corollary 5.2 with signs)- 2 0C is a chain map (with the right

signs).

Proof of Prop. B.3. We need to establish that the boundary strata (5.60)-(5.63) along

with strip-breaking and our chosen sign twisting data, determine the equation

2M o d2cc. - dCH 0 2 0C = 0 (B.44)

up to an overall sign. As all the cases are analogous, we will simply show that some

of the terms in

20c o d2cc. (B.45)

appear with the correct sign (up to the overall sign); in particular we focus upon all

of the terms in the strata (5.60), which should contribute to the terms

E(-1)*,E20C(a, zi, ...,7 x1, b, y,, .. .,ym+k+1,7 la'(Ym+k, - -. -,ym+1),um, - -- , 1)

m,k
(B.46)

where Ij' is the sign

y ||~i . (B.47)
j1

So, fix a set of asymptotic inputs (Y1,..., y, b, x 1,..., xL, a). The strata (5.60) are,

for k <s and 0 < m < s - k' + 1,

R X m+1 ys-k+1,. (B.48)
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Abbreviating

(B.49)

Yi-+j {yi,yi+1,. - - -, I

the corresponding moduli spaces are

9ek(9, Ym+1-im+k) X -k'+11 (z; Yi-+m, 9, Ym+k+1-+s, b, x1 1 , a) (B.50)

in reverse order of composition, where z is an output orbit, and 9 ranges over all

possible admissible asymptotic conditions. Abbreviating A. := A(qRk), and A20e :=

A(3s-k+1,1), Lemma B.1 tells us that the natural product orientation form is isomor-

phic to

(A20e 9 A(Lo) 0 oz @9Ov O0o v 0OV 9 of)
o 1 (9 ( Ax,, ® 9 o j 0 v m+i1 0 k)a(B .5 1 )

Om+1-+m+k) *

where, as before, we've abbreviated o o 0 v and so on, and we've abbre-

viated A(LO) := A(TU(z1)LO) for one of the Lagrangian boundary conditions LO of the

moduli space - 1 m, , Ym+k+1-+,, b, zi-i, a) . From the above description,

we can immediately calculate some of the sign contributions in Proposition B.1:

e Rk has dimension (k - 2), so the sign for reordering A, to be next to A20e has

parity

*1:=(k-2)(n-l-s+k +1+n)=k(l+s) (mod2). (B.52)

" there are no Lagrangian terms A(TI,(z,)L,) in orientation form of the moduli

space associated to jk, so the associated signs of this sort are zero,

" the sign for reordering the orientation lines og 0 o to be immediately
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to the right of oyy (allowing one also to pair and cancel the oy, og) has parity

*2 := (2 - k)(la|+ 1 yi + bl + Iil).
ai=m+k+1 I= (B.53)

= k(lal + lyil ± +b|+ Zlx) (mod 2).
i=m+k+1 i=1

e the sign difference between boundary and product orientations on the moduli

space 'k xq-1, was computed in Proposition B.2 to have parity

*3 := 1+ m+ k + k(l+ s - m). (B.54)

Finally, we can add in the sign twist contributions mentioned in Corollary B.1,

corresponding to the operations 2(9 C1,s-k+1, and pk:

" The sign twist contribution from pLk has parity

m+k

§2 (1,..., k) - (IYm+1, - - -, IYm+kI) = E (i - m)|yiI. (B.55)
i-m+1

" The sign twist contribution from 2OeCl, 8 -k+1 has parity

m 8

§1:=ilyjl+(m+1)|gl+ E (i -k+1)|yi|+(s -k+1)lbl
i=1 i=m+k+1

+ (s-k+1+i)xiI+(s-k+1+l)|a

(B.56)

where
m+k

19|= 2-k m+ lyil. (B.57)
i=M+1
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Combining all of these signs, we compute that

m

§1+§2+*1+*2+*3=Z yil+m+*,, (mod2), (B.58)
i=1

where

*(i + 1)|yjI + (s + 1)IbI + E(s + 1 + i)|xjI + (s + 1 + l)Ial (B.59)
i=1 i=1

is independent of k,m, and

m

Z IyIl + m = T (mod 2) (B.60)
i=1

as desired. This calculation extends formally to the semi-stable case k = 1 as well.

The only extra ingredient, following Remark B.2, is an extra sign of parity 0 or 1

coming from determining whether the vector 1, after gluing is inward pointing (1)

or outward pointing (0). In this case, the vector is outward pointing so there is no

additional sign contribution. Note that when the second component is semi-stable

instead, the vector will be inward pointing, contributing to e.g. the -1 coefficient in

-dcH 0 20e. See [S4, (12f)] for more details. 0
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