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Abstract

Ribonucleotide reductases (RNRs) catalyze the reduction of nucleotides to deoxynucleotides in
all organisms. The class Ia and lb RNRs comprise two subunits: a2 contains the site of
nucleotide reduction, and p2 contains an essential stable tyrosyl radical (Y-), generated by
oxidation of a dinuclear metal cluster. The diferric-Y (Fe" 2-Y-) cofactor of the class Ia RNRs
self-assembles by reaction of Fe"2-NrdB with 02 and a reducing equivalent. Whether the class
Ib RNRs utilize a diiron or dimanganese cofactor in vivo has been controversial. To determine
the physiological metallocofactor of the Escherichia coli class lb RNR, we recombinantly
express and purify a2 (NrdE) and p2 (NrdF) and show that NrdF self-assembles an active Fe 12-
Y- cofactor using Fe" and 02. We also present the first purification of NrdI, a protein of
unknown function conserved in class lb RNR systems. We show that NrdI is a flavodoxin-like
protein with unusual redox properties. Although Mnr 2-NrdF does not react with 02, in the
presence of reduced NrdI (Nrdlhq) and 02, it assembles an active dimanganese(III)-Y- (Mn 12-
Y-) cofactor. Biochemical evidence indicates that Nrdlhq binds tightly to NrdF and reacts with
02 to provide an oxidant that channels to the metal site in NrdF to assemble the Mn"12-Y-
cofactor, a model supported by crystal structures of a Mn"2-NrdF*NrdI complex. NrdF purified
from its endogenous levels in an iron-limited E. coli strain contains the Mn" 2 -Y- cofactor,
establishing its physiological relevance. Rapid kinetics studies of Mn"'12 -Y- cofactor assembly in
Bacillus subtilis NrdF support a mechanism in which NrdIhg rapidly reduces 02 to 02' and the
02'~ channels to and reacts with Mn" 2-NrdF to form a Mn" Mnv intermediate, which oxidizes
tyrosine to Y-. Finally, we also demonstrate that E. coli NrdF, when incubated anaerobically
with Mn" and Fe" and then exposed to H2 0 2 , forms an active Y--containing metallocofactor that
we suggest is Fe"Mn'l-Y-. These results raise the issues of how a single active site can generate
a stable, active Ye using three different metal cofactors and oxidants in vitro, and therefore how
metallation of NrdF with manganese is controlled in vivo.

Thesis Supervisor: JoAnne Stubbe
Title: Novartis Professor of Chemistry and Professor of Biology
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Chapter 1

Introduction to ribonucleotide reductases and
metallocofactor assembly

Adapted in part from: Cotruvo, J. A., Jr.; Stubbe, J. Annu. Rev. Biochem. 2011, 80, 733-767; and
Stubbe, J.; Cotruvo, J.A., Jr. Curr. Opin. Chem. Biol. 2011, 15, 284-290.
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1.1. THE FERRITIN SUPERFAMILY OF PROTEINS AND 02 ACTIVATION

The proteins of the ferritin superfamily15 catalyze myriad essential biological reactions,

including 02 transport in hemerythrin; iron storage in ferritins, bacterioferritins, and Dps

proteins; oxidation of hydrocarbons by the bacterial multicomponent monooxygenases (BMMs),

such as soluble methane monooxygenase (sMMO); and tyrosine- and metal-based radical

formation in class I ribonucleotide reductases (RNRs). These proteins share a common four-

helix bundle architecture harboring a dinuclear metal binding site consisting of two His and four

carboxylate residues (usually 4 Glu residues, but in the class Ia and lb RNRs, 3 Glu residues and

1 Asp). However, this common scaffold has been modified in each case to confer a specialized

function through addition of substrate binding regions and unique oxidant access routes,6

interaction with specific accessory factors such as electron transfer proteins7-10 and other

regulatory proteins,11 and complexation of specific metal ions.

The vast majority of ferritin superfamily proteins bind iron as their physiological cofactor

and reversibly bind and/or activate 02 or H20 2 at diferrous (Fe" 2) sites. The manganese

catalases, which catalyze H20 2 disproportionation at a structurally related dimanganese site that

cycles between Mn 2 and Mn"'2 states, are a notable exception.12.14 Other proteins in the

superfamily have been proposed to require metal clusters other than the canonical diiron one.

For example, a manganese-iron cofactor was recently identified through in vitro reconstitution

studies in the class Ic RNR;15 it has subsequently been found in the heterologously purified

ligand-binding Mn/Fe oxidase Rv0233 of Mycobacterium tuberculosis,16 although in neither case

has the physiological cofactor been identified.
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Figure 1.1. (A) Structures and (B) metallocofactors of the class I RNR p2 subunits. (A) The
class Ia Escherichia coli NrdB (PDB code: lMXR),' 7 the class Ib E. coli NrdF (3N37),6 and the
class Ic Chlamydia trachomatis NrdB (lSYY, 4D8G). '', Fe and Mn ions are shown as brown
and purple spheres. Images were generated using PyMOL. (B) The metals and protein residues
involved in metal binding are shown in cartoon form. More detailed structures are shown in
Figure 1.7. The metal site closest to Tyr or Phe is termed site 1 (Mnl, Fel) and the other is site
2 (Mn2, Fe2). Because the coordination modes of the Asp and Glu residues are dependent on the
oxidation state of the cluster, no metal-ligand bonds are drawn. The structure of the class Ia
FeI" 2 -Y- cofactor has been established. The class Ib Mn'I 2-Y- cofactor has been crystallized2 0

but, owing to the sensitivity of manganese to photoreduction, the oxidation states of the
manganese ions and the number and identity of bridging ligands are not clear. The MnIvFe
cofactor of the class Ic cluster was recently crystallized, 1 9 '2 with the data suggesting that Mn
occupies site 1 and Fe site 2 in the form of the cofactor with highest activity.

The amazing versatility of these proteins from a bioinorganic standpoint is perhaps best

illustrated by the class I RNRs, which are closely related structurally and bind three different

metal cofactors using a virtually identical ligand set (Figure 1.1). Unlike most of the ferritin

superfamily proteins, in these enzymes the protein serves as its own substrate, oxidizing a

tyrosine residue adjacent to the metal cluster to a stable tyrosyl radical (Y-) (class Ia and Ib) or

forming a stable radical on the metal cluster itself (class Ic). Like many other ferritin

superfamily proteins, the class Ia and Ic RNRs use 02 to generate their respective diferric-Y- and

MnvFeri cofactors.i5 ,22 The class Ic RNRs can also efficiently assemble cofactor using H20 2.23
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The work described in this thesis reveals that, in the class lb RNRs, Nature has devised a unique

twist on this design to enable formation of a Y- from a dimanganese(II) (Mn"2) cluster -

chemistry that would likely be inaccessible if not for the use of an accessory protein to generate

in situ the essential oxidant for cluster oxidation, 02'~. Furthermore, that the class lb RNR can, in

fact, generate this Y- by multiple pathways using multiple metallocofactors (those of the class Ia

and Ic RNRs) raises the important question of how (and if) metal specificity is conferred inside

the cell for this apparently inherently nonspecific metal-binding scaffold. These are the central

issues of this thesis.

Scheme 1.1. The reaction catalyzed by RNRs. Class I RNRs use only nucleoside 5'-diphosphate
substrates. The reaction is initiated by abstraction of the 3'-hydrogen atom (red).
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H Class la, Ib, Ic H
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1.2. GENERAL INTRODUCTION TO RIBONUCLEOTIDE REDUCTASES

Ribonucleotide reductases (RNRs) catalyze the conversion of the four nucleotide 5'-di- or

triphosphate (NDPs or NTPs) to their corresponding deoxynucleotide 5'-di- or triphosphate

(dNDPs or dNTPs) and serve as the only de novo source of deoxynucleotides in all organisms

(Scheme 1.1).24,25 These enzymes are largely responsible for the regulation of the concentrations

and relative ratios of dNTPs, which govern the fidelity of DNA replication and repair. RNRs are

regulated at many levels;26 three of these are universal: allostery, transcription, and

metallocofactor assembly/repair. All RNRs are allosterically regulated, with nucleotide binding

sites controlling the specificity of substrate reduction (specificity site) and overall activity
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27(activity site). The consequences of allostery are quaternary structural changes that modulate

RNR activity. 28-32 All RNRs are transcriptionally regulated as well; for example, NrdR is a

global regulator of prokaryotic RNRs. 33-35  NrdR contains an ATP/dATP-binding domain,

designated the ATP cone domain, which mimics the activity site in the class Ia and Ic enzymes,

suggesting that its regulation of RNRs may in part involve sensing of cellular ATP/dATP levels.

A third general mechanism of regulation involves control of the concentration of active

metallocofactor through biosynthetic and possibly maintenance pathways. 36 -39
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Class lb H
o many prokaryotes

Fe "11  Fe' Mn'Iv * Fe "'

Class la Clss0
all eukaryotes, soelraroes

some prokarots some okaryotes

Nf
H OAH

H2C OH

S-adenosylmethionine, [4Fe4S]*

Class iI Class Ill
aerobic and anaerobic prokaryotes strict, facultative anaerobes

Figure 1.2. Classes of RNRs. RNRs are classified on the basis of the metallocofactor used to
reversibly generate the cysteine thiyl radical (red) essential for catalysis. Class Ia RNRs use a
diferric-Y- cofactor, class Ib RNRs (as shown in this thesis) use a dimanganese(III)-Y- cofactor,
class Ic RNRs use a MnWFemII cofactor, class II RNRs use adenosylcobalamin, and class III
RNRs use a glycyl radical generated by a radical SAM protein using S-adenosylmethionine and a
[4Fe4S]* cluster.

RNRs are divided into three main classes (Figure 1.2) on the basis of the

metallocofactors they require for nucleotide reduction. Many organisms, including E. coli, the

primary focus of this thesis, encode multiple RNRs, the expression of which is dependent on
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growth conditions. The aerobic, class I RNRs share the same structural fold, utilize two types of

subunits, a and p, and contain dinuclear metal clusters required for catalysis (Figure 1.1). a

houses the active site where nucleotide reduction occurs; p harbors the metallocofactor essential

for initiation of nucleotide reduction. There is a general consensus that in E. coli,40 the best

studied prokaryotic system, the active form is a2p2 (Figure 1.3).32,4143 Studies of a have shown

that the allosteric specificity effectors bind at a four-helix bundle at the a2 dimer interface;44 the

subunit is an obligate dimer ($2) when the metal cluster is oxidized in all class I RNRs

examined so far.32 4s,46 Therefore, although further investigation is warranted, we suggest that an

a2p2 architecture47 is the most likely active form of the class lb RNRs. 48 Quaternary structure is

more complex in eukaryotic RNRs and will not be addressed further in this thesis.

0

H O 
H

CO H O
SH

CONH 2 HS

Figure 1.3. Docking model for the interaction of a2 and P2 (E. coli class Ia). No crystal
structure of an a2 p2 holocomplex thought to be competent for turnover is available for a class I
RNR. The model was generated on the basis of shape and charge complementarity between the
two subunits. Monomers of a2 are in blue and green (substrate GDP and effector TTP at the
specificity site in spheres). An arrow indicates the substrate binding site in a2. a2 was
crystallized in the presence of a peptide (pink) corresponding to the 21 C-terminal residues of p
(355-375), but only residues 360-375 are visible in the structure. Monomers of f2 are in red and
yellow (diiron cluster in spheres), indicated by an arrow and expanded for clarity. Residues 341-
359 (p2) and 733-762 (a2) were not observed in the structures. 1 ' 4 9'50
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Table 1.1. Overview of active class I RNRs

Class Iaa
aC NrdA

pd NrdB
Active RNR a202

Specific activity' 6000-8000

Metallocofactor
in vitro Fe"12-Y-

in vivo Fe"12-Y-

Y-/p2

Accessory factors
Reductant

1.2

Thioredoxin
Glutaredoxin

Class Ib
NrdE
NrdF
U-20 2?

See Table 1.2

Mn'I"2-Y-
Fe III2-Y-

Mni"2-Y-
Fe" 2-Y- ?g

See Table 1.2

NrdH
TrxA (B. subtilis)

Cofactor assembly YfaE Nrdl ?
a E. coli
b C. trachomatis
C subunit in which nucleotide reduction occurs
d subunit that harbors the dinuclear metal cluster
e nmol CDP produced min~1 (mg p),
f probably inactive
g At present there is no evidence in favor of a Fem2-Y- cofactor being present in a class lb RNR
in vivo in physiological expression conditions, but this possibility cannot be ruled out

Class I is further divided into three subclasses based on sequence similarity, the identity

of the metal cluster, and accessory factors involved in nucleotide reduction and cofactor

assembly. In class Ia, the active metallocofactor is a diferric-Y- (Fe"I2 -Y-). 51 The class lb RNR

is also active with a Fe" 2 -Y- cofactor in vitro, but the work described in this thesis demonstrates

that an active dimanganese(III)-Y- (Mn" 2-Y-) cofactor can be generated as well (Chapters 4 and

6); recent studies, 20,52-54 including those described in Chapter 5, have shown this cofactor to be

physiologically relevant. We argue in Chapter 5 that most or all class lb RNRs are likely to use
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Mn" 2-Y- cofactors. In class Ic, the active cofactor is proposed to be a MnWFemII cluster.' 5

Important features of each of these subclasses are summarized in Table 1.1. The class II and III

enzymes also have structures similar to the class I a subunits but use different metallocofactors.

The 02-independent class II RNRs use adenosylcobalamin and the anaerobic class III enzymes

use a glycyl radical generated by a [4Fe4S]*'2* cluster and S-adenosylmethionine.

SH
PPO N

CO- HO OH

CONH 2 HS SH

Active site common to all
class l and 11 RNRs

Class la, lb, Ic:
Class li
Class Ill

H20

H H20
N PPO N

____ 
2

P

NDP

'I

CONH 2 S,

dNDP

Figure 1.4. Proposed mechanism of nucleotide reduction by RNRs. The active sites of all three
classes of RNRs share a conserved cysteine residue (SH) on the top face of the substrate. In the
first step of catalysis, this cysteine is oxidized to a thiyl radical (S-) by a Y- (class Ia, Ib),
MnivFeni cofactor (class Ic), 5'-deoxyadenosyl radical (class II), or a glycyl radical (class III).
The S- initiates substrate reduction by abstraction of the nucleotide's 3' hydrogen atom (red),
which is returned to the 3' position in the product at the end of the reaction. For a detailed
discussion of this mechanism, see ref. ". In class I and II RNRs, two Cys residues located on the
bottom face of the substrate are the direct source of the reducing equivalents for nucleotide
reduction. Reduction of the resulting disulfide bond, necessary for multiple turnovers, is
accomplished using electrons from a thiol-dependent protein (thioredoxin or glutaredoxin).
Class III RNRs differ from classes I and II in that only one Cys residue on the bottom face is
conserved, and formate acts as the reductant. Class III RNRs also lack the Glu (-CO2) and Asn
(-CONH 2) residues conserved in the active sites of class I and II RNRs.
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All RNRs share a common catalytic mechanism in which the metallocofactor is either

directly or indirectly involved in oxidation of a conserved Cys residue in the active site of a to a

thiyl radical (S-).s6 ,5 7 Although the S- has only been observed directly in the case of the class II

RNRs,56 its involvement in catalysis has been inferred in the class I and III RNRs by the

common architecture of their a subunits.26 ,5 7 The S- initiates a complex, radical-mediated

reduction process (Figure 1.4).'5 In class I and II RNRs, the two electrons required for

substrate reduction are provided by two active site Cys residues, which must be re-reduced after

every turnover by two Cys in the C-terminal tail of a that are then reduced by an exogenous

reducing system (Table 1.1). In class III RNRs, only one of these cysteines is present and

formate is required as a reductant; therefore, some aspects of their nucleotide reduction

mechanism will differ from class I and II RNRs.

Although the use of the S- in initiation of nucleotide reduction is conserved, the

mechanism by which the S- is generated is not. In the class II and III RNRs, the cysteine is

oxidized by direct hydrogen atom abstraction by a 5'-deoxyadenosyl radical (generated by

homolysis of the Co-carbon bond of the adenosylcobalamin cofactor) or by a glycyl radical,

respectively. In the case of the class I RNRs, however, oxidation occurs by the Y- (class Ia or

Ib) or MnLvFem cluster (class Ic) in the p2 subunit over a long distance, proposed to be 35 A, via

a specific proton-coupled electron transfer (PCET) pathway involving conserved aromatic amino

acid residues (Figure 1.5).49'58'59 The radical initiation process has been studied extensively in

the E. coli class Ia RNR, and studies have commenced in the class Ic.60 In the former case,

nucleotide reduction is rate-limited by conformational changes triggered by the binding of

substrates and effectors to a.61 However, site-specific incorporation of unnatural amino acids
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into pathway residues has begun to unravel the details of the mechanism of radical propagation

between the Y* and active site Cys residue.62 66

o NH
N O HN

H N G035
Tyrl22 H Gu350 0 HS

O H Trp48 -O . Cys439

\)NH HO
O0 HO

e~ OH

f O- Asp237 Tyr3S6
O"" *-vHOH 0 HN-/

Asp84 H N N
O His1 18 N, O H

Glu115-(( 0 O 0 Tyr730
0 His241 0 / Tyr731

H20OIGlu2O4
Glu238

Figure 1.5. The proposed PCET pathway of all class I RNRs (E. coli class Ia numbering is
used). PCET is triggered by binding of substrate and effector to a. In f, proton transfers are
proposed to move orthogonally to electron transfers, while in a, they are proposed to move
collinearly.58' 59 The proton donor/acceptor for Tyr122 is proposed to be the solvent molecule
bound to Fel, with proton transfer being mediated by Asp84. Glu350 and Tyr356 are located in
the C terminus of p, which is not observed in any structures; therefore, the connection of the
PCET pathway across the subunit interface is unknown at present. The involvement of Trp48 in
the PCET pathway has been proposed, but no evidence directly implicating it in the pathway
exists at present.

This thesis focuses on the class I RNR metallocofactors. Active cofactor formation has

been best characterized in the class Ia enzymes. The general observations from those studies

have recently been extended to the class Ic and, in this thesis, the class lb RNRs. The class I

RNR metallocofactors can be generated by self-assembly in vitro, requiring only metal-free

(apo) p2, reduced metal (Fe" or Mn"), 02, and a one-electron reductant (which, in the case of

class Ib, must be provided by a specific protein). In the remainder of this chapter, we review the

state of knowledge about these in vitro assembly processes in each class I subclass at the outset

of the work described in this thesis. We also discuss how this information can be translated to
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the cellular context to understand how these metallocofactors are biosynthesized, focusing on the

central issues of metal, oxidant, and electron delivery. In considering these issues, we also offer

our perspective on the challenges of understanding metallation and mismetallation of

metalloenzymes, an issue brought into focus by the controversies over the physiological

metallocofactors of the class Ib and Ic RNRs.

1.3. CLASS Ia RNRs

1.3.1. Characterization of the diferric-Y- cofactor. Class Ia RNRs, comprised of NrdA (a2)

and NrdB ($2) subunits, are found in all eukaryotes and a few prokaryotes, such as E. coli.67 The

E. coli class Ia RNR was the first to be purified and is the best characterized system to date.

Classic experiments in the 1970s identified the source of an EPR signal in preparations of the

protein as a Y-, 5 1,68 later localized to position 122, associated with a diferric cluster.69 The Y- is

absolutely essential for RNR activity. Activity scaled with Y- content in the protein,70 and, if the

Y- was reduced by small molecule scavengers such as hydroxyurea (HU)6 8 and hydroxylamine,7 1

the protein was inactivated.

The UV-vis and X-band EPR spectra of the diferric-Y- cofactor are shown in Figure 1.6.

The Y- has characteristic UV-visible absorption features at 390 nm, 410 nm (sharp), and 600 nim

(broad, not shown), with an extinction coefficient at 410 nm of 3200-3800 M1 cm- (Figure 1.6,

left).' 7  Studies using isotopically substituted tyrosines have demonstrated that the hyperfine

coupling pattern of the EPR signal of the E. coli NrdB Y- (Figure 1.6, right) arises from spin

density being delocalized onto the phenol oxygen, the C3 and C5 positions of the ring, and the P

carbon, with the major hyperfine splitting of -20 G being from coupling to one of the p

protons.74 ,75 The features at 325 and 365 nm in the UV-vis spectrum arise from the diferric

cluster. M6ssbauer, resonance Raman, 76 and EPR77 analyses of NrdBs have demonstrated that
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the diferric cluster is p-oxo bridged and consists of two antiferromagnetically coupled high spin

Fe"' ions, leading to an S = 0 ground state. Whereas the diferric-Y- cofactor is common to all

class Ia RNRs, details of the Y- environment are distinct in E. coli NrdB relative to the best

studied eukaryotic class Ia RNR, from mouse. High-field EPR studies have shown that in E. coli

NrdB the phenol oxygen of Y- is not engaged in a hydrogen bond, whereas it is in the mouse

P2. 7 '75 Furthermore, the Y- is weakly magnetically coupled through space to the diferric cluster

in both cases, but the mouse Y- is much more strongly coupled than is the E. coli Y-, as

manifested by a higher microwave power required to saturate the EPR signal of the former

(expressed as P112, the power at which the signal is 50% saturated).77

11
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Figure 1.6. (left) UV-vis absorption spectrum of the diferric-Y- cofactor of E. coli NrdB. (A)
The diferric cluster, prepared by reduction of diferric-Y- NrdB with HU. (B) The spectrum of
Y- (difference spectrum of the diferric-Y- cofactor and the HU-treated protein). (C) The
diferric-Y- cofactor. Reproduced from ref. 73. (right) X-band EPR spectrum at 77 K of
diferric-Y- NrdB.
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Figure 1.7. Structures of the reduced (left) and oxidized (right) metallocofactors of the class I
ribonucleotide reductases. Solvent molecules are shown as red spheres, and iron and manganese
ions are brown and purple spheres. The images were generated using PyMOL from the following
Protein Data Bank files: E coli Fe"2-NrdB (lPIY), 78 E coli Fel" 2-NrdB (1MXR),17 F coli Mn1

2-
NrdF (3N37),6 C. ammoniagenes Mn"' 2-NrdF (3MJO), 20 E. coli Fe12-NrdF (3N3 8),6 S.

Typhimurium Fe"12-NrdF (2R2F), 79 and C. trachomatis FeIr 2-NrdB (I SYY)18 (as shown in
Figure 1.1, Mn likely occupies site 1 and Fe site 2 in the active cofactor).
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Numerous crystal structures of the class Ia RNRs are available; structures of the metal

sites of the diferrous7 8 and Ye-reduced (met) diferric 7 forms of E. coli NrdB are shown in

Figure 1.7. The metal binding sites have been designated 1 and 2, with site 1 being the closer

one to the radical-forming tyrosine. In the crystal structure of E. coli diferrous NrdB, obtained

by soaking of apoNrdB crystals with a solution of Fel1, the site 1 Fe" is 4-coordinate and the site

2 Fe" is 5-coordinate, in agreement with circular dichroism (CD) and magnetic circular

dichroism (MCD) studies of Fer 2-NrdB in solution.80 The path of metal ingress is unknown, but

in E. coli NrdB site 2 appears to be the higher affinity metal binding site, 80-82 implying that either

independent access routes to each site exist or a single route exists via site 1. The Fe-Fe distance

is 3.8 A. In the diferric form, this distance contracts to 3.3 A. However, it should be noted that

Y- is reduced, either during crystallization or data collection, in all p2 structures, and single

crystal EPR studies have demonstrated that the hydrogen bond that exists between Tyrl22-OH

and Asp84 in the crystal structure is not present in the Y--containing form due to a change in Tyr

sidechain dihedral angle to displace the OH by ~1 A.17 Therefore, these structures must be used

cautiously to think about assembly of Y- and its reduction/oxidation during enzyme turnover.

Finally, the crystal structures 45' 50' 83 have revealed a hydrophobic channel from the protein surface

to the metal site near site 2, which was proposed to be the route of 02 access for cluster

assembly.

1.3.2. Mechanism of assembly of the diferric-Ye cofactor. A major breakthrough in

22understanding how the Y- was generated was the report, by Atkin et al. in 1973, that

apoprotein, Fe", and 02 were necessary and sufficient for self-assembly of the diferric-Y-

cofactor in vitro. Through subsequent studies, the stoichiometry of the reaction was established

to be that shown in Scheme 1.2.8486

46



Scheme 1.2. Stoichiometry of diferric-Y- cofactor assembly in the E. coli class Ia RNR.

2Fe" + Y122 \ OH + 02 + e- + H* ' Fell'-O Feli + Y122 O- + H20

The mechanism of diferric-Y- cofactor assembly has been studied extensively by many

groups by a battery of spectroscopic methods: stopped flow (SF) UV-visible absorption, rapid

freeze quench (RFQ) EPR, electron nuclear double resonance (ENDOR), M6ssbauer, extended

x-ray absorption fine structure (EXAFS), and MCD spectroscopies. These studies, primarily in

E. coli and mouse enzymes, have led to the mechanistic model shown in Figure 1.8.87

Fe" OH Diferrous

apoNrdB (1) = 1.31 mm/s, AEQ = 3.24 mm/s a

Fe" Fe" (2) 8 = 1.20 mm/s, AEO = 2.92 mm/s a

02

\/OH / OH O

O HO H20

Fe1  I.I-,Fe"' 0 e Fe'" "Fe'
o Fe" "FeIv

Intermediate P Intermediate X Diferric-tyrosyl radical

8 = 0.63 mm/s, AEO = 1.73 mm/s b (1) 8 = 0.56 mm/s, AEQ = -0.9 mm/s c (1) 8 = 0.54 mm/s, AEO = 1.64 mm/s a

Max ~ 700 nm b (2) 8 = 0.26 mm/s, AEO = -0.6 mm/s c (2) 8 = 0.45 mm/s, AEO = 2.41 mm/s a

XMax = 365 nmd XMax = 410 nm*

g = 2.00 d g = 2.0047 '

Figure 1.8. Proposed mechanism of assembly of the diferric-Y- cofactor of class Ia RNRs.

Spectroscopic parameters for each species are shown. a Ref. 88, b Ref. 89, C Ref. 9 0 ,d Ref. 91,
eRef. 92, Ref. 68. The designations (1) and (2) for the Mssbauer parameters indicate distinct

parameters for each Fe but do not necessarily imply sites 1 and 2, respectively.

In the first step of cluster assembly, Fe" accesses the metal binding sites by an unknown

route, a process that is rate-limited by a conformational change (5-10 s-1 in E. coli,8 8,9 1,93 0.3 s-1

in mouse94). The Fe"2 cluster (Figure 1.7) reacts with 02 to generate a p-peroxodiferric

intermediate (800 mM~1 s-1 in mouse8 9). An intermediate with similar spectroscopic features was
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also observed in E. coli but disappeared within 10 ms;93 a peroxodiferric intermediate has,

however, been observed in a Trp48Ala/Asp84Glu mutant. 89  The peroxo intermediate is

proposed to be reduced by a neighboring tryptophan residue (Trp48 in E. coli class Ia RNR) to

form a Fe"'Fev intermediate, termed X,88' 90'91'95'96 and a tryptophan cation radical (Trp*') 4' 91' 97

(60-80 s~1 in E coli,91' 93' 97 ~60 s~1 in mouse89 ). X is the species responsible for oxidation of the

catalytically essential tyrosine (1 s~' in E. coli,91 5 s-1 in mouse94 ). In the presence of excess

reducing equivalents (Fe", ascorbate, or thiols), the Trp* does not accumulate. 91 In the absence

of excess reducing equivalents, the Trp* can also oxidize the tyrosine to Y- at -6 s- leaving X

to be reduced by an unknown pathway.84-97

Glu115  Glu115  Glu115s O
Asp4 A GIu 204 O O O\GlU2 4  Asp4 0 Glu204-O0 H 0 / 0 - N8(HiSii8),, / -O"\ iv Ty 12 -O(0 0-F'

10 /1 O V O N(i1)-,-Fem'Ol[ Fe Tyr122-OH(O-) O
Tyr122-OH ellFe" Fe O O /''NSFeIV

NE(Hs110 N O/'N(His241) As4, - HOH-O, O (Hs21 N(is1a O N(His241)H2 0 0 0- (H)OH N/&
GIu 238  Tyr122-OH ' GlU238 O Glu238

Solomon and Bollinger Noodleman Hoffman and Stubbe

Figure 1.9. Three proposed structures of intermediate X, proposed by Solomon, Bollinger, and
coworkers, 98 Noodleman and coworkers, 99 and Hoffman and Stubbe (one of their proposed

96,100structures). ' Site 1 is shown in red and site 2 is shown in blue.

Although there is general agreement that X is an Fel"Fe species with a H2 0 and p-oxo

bridge derived from 02, the details of its structure have been controversial (Figure 1.9), with

multiple models proposed by three different groups based on RFQ EPR, ENDOR, and

M6ssbauer studies (Hoffman and Stubbe96 ,10 0), RFQ-MCD and time-dependent density

functional theory (DFT) studies (Solomon, Bollinger, and coworkers9 8 ), and DFT calculations

(Noodleman and coworkers99). Determination of the structure of X by spectroscopic methods

has been complicated by the fact that substoichiometric Y- is formed in in vitro reconstitutions:

only 1.2 Y-/p2 and 3.2-3.6 Fe/p2 is routinely obtained for E. coli NrdB. Since each Y- is
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associated with a diferric cluster, 0.8-1.2 Fe" 13/2 were oxidized to Fe"' (0.4-0.6 diferric clusters)

but are not associated with Y-. Whether these diferric clusters are also formed by X or by

another mechanism is unknown. Furthermore, the distribution of Y- between the two p

monomers and whether the unusual Y-/p2 stoichiometry is an artifact of reconstitution or

reflective of -I Y-/p2 possibly being present in vivo are also unknown.

In Figure 1.9, X is indicated with the FeIV at site 2. The evidence in favor of this

assignment is primarily from an ingenious experiment performed by Bollinger and coworkers 8 '

in which the diferric-Y- reconstitution reaction was carried out using a mixture of 56Fe" and

57Fe and monitored using M6ssbauer spectroscopy. The experimental design exploited the facts

that the M6ssbauer method is sensitive only to 57Fe and that the M6ssbauer parameters of the two

sites are distinct (Figure 1.8). The Fe"' with the lower isomer shift (6) and higher quadrupole

splitting (AEQ) has been suggested9 5 to correspond to site 1 due to its more asymmetric

coordination environment in diferric-Y- (in part because of the Asp). When apoNrdB was

incubated with 0.5 57Fe"/2 and then trapped by addition of 3 56Fe"/p2 and 02,-80% of the

M6ssbauer-detectable iron (57Fe) in the resulting diferric-Y- NrdB had parameters of the

putatively site 2 iron. When a similar experiment was carried out and the reaction was quenched

when X was nearly maximally accumulated, 45% of the 57Fe corresponded to the site of X with

Feiv character, while only 5% corresponded to the site of X with Fe" character. Together, the

data suggest that the FeI of X is at site 2. The assignment of the locations of Fe" and Fe1" in X

will be important when we consider the mechanism of MnII 2-Y- assembly in B. subtilis NrdF

and propose a structure of the analogous MnlIMnv intermediate in that system (Chapter 6).

The mechanism of cluster assembly in vivo is expected to be the same as that elucidated

in vitro. However, the in vitro studies raise the issues of how the metal, oxidant, and extra

49



reducing equivalent are delivered in a biological setting. The issue of oxidant delivery for class

la RNR cofactor assembly is trivial in aerobic growth conditions. (We note, however, that it is

crucial for the class Ib RNRs, as seen in Chapters 4 and 6.) Here we consider the sources of Fe"

and the extra electron.

1.3.3. Identification of YfaE and its proposed role in biosynthesis and maintenance.

1.3.3.1. Electron donation. Clues as to how iron and the extra electron are delivered in

vivo to E. coli NrdB were provided by the presence of a gene encoding a [2Fe2S]-ferredoxin,

yfaE, immediately downstream of nrdA and nrdB. The presence of yfaE in an operon with

nrdAB suggests a functional association between YfaE and the class Ia RNR. Bioinformatic

analyses of genomes encoding class Ia RNRs revealed that 29% of the operons containing nrdAB

also contained a gene for a YfaE-like ferredoxin.' 0 In vitro experiments demonstrated that YfaE,

though mostly insoluble when overexpressed, could be solubilized and reconstituted

anaerobically with iron-sulfur (FeS) clusters (80% [2Fe2S]* and 20% [4Fe4S]2+). Initial

experiments tested whether YfaE could play a role in regenerating Y- in met-NrdB, with its Y-

reduced, as part of a repair (maintenance) pathway. Early studies monitoring RNR activity in

crude cell extracts had suggested that the cell possessed mechanisms to reduce Y- and regenerate

it, suggesting a possible physiological regulatory role for this process.38 Investigation of the

involvement of a ferredoxin like YfaE in such a pathway was inspired by studies of the bacterial

multicomponent monooxygenases, such as sMMO, structurally related to the class Ia RNR. In

sMMO, 02 is activated by the diferrous cluster to oxidize methane to methanol. Because the

oxidation is only a two-electron process but 02 is a 4-electron oxidant, at the end of every

turnover the protein remains in the diferric form, which must be reduced to the diferrous form for

the next turnover. 01 A reductase subunit consisting of a [2Fe2S] ferredoxin domain and a
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ferredoxin reductase domain (containing FAD) is responsible for this reduction.10 2 Therefore,

the ability of [2Fe2S]*-YfaE to carry out the analogous reduction of met-NrdB was

investigated.10 These studies demonstrated that YfaE was chemically and kinetically competent

in the reduction of met-diferric cluster to a diferrous cluster. The diferrous cluster was then able

to react with 02 and reassemble the active diferric-Y- cofactor. More recent studies in our

laboratory have demonstrated by whole cell EPR and western blotting analyses that Y- levels can

be modulated in vivo, suggesting the in vivo relevance of the maintenance pathway.3 9 The

proposed role of YfaE in the maintenance pathway is shown in Figure 1.10A (red).

Further experiments showed that YfaE might also be able to act as the source of the extra

reducing equivalent in vivo. When met-NrdB was reduced with excess [2Fe2S]*-YfaE, followed

by admission of 02 to reassemble diferric-Y- cofactor, the reconstituted protein had the highest

Y- content (1.5 Y-/p2) and specific activity (10300 nmol/min/mg) observed in an in vitro

reconstitution of any class Ia RNR.10 These results were interpreted as suggesting that [2Fe2S]*-

YfaE, in place of Fe" normally used in in vitro reconstitutions, was able to provide the extra

reducing equivalent required for cluster assembly and protect the protein from radical damage

that might result from formation of the Trp48*' (Figure 1.10A, blue) The kinetic competence of

YfaE in this process is to date untested but seems likely given these results. It will be interesting

to see whether Trp48*' still accumulates in the cofactor assembly reaction carried out with

limiting Fe" if [2Fe2S]*-YfaE is present as well.
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Figure 1.10. The proposed biosynthetic and maintenance pathways for the metallocofactors of
the class Ia (A) and Ib (B) RNRs. The steps shown in blue highlight the requirement for the
extra reducing equivalent, and in red, the maintenance pathway. In the case of class Ib, two
possible routes to the putative Mnm"MnIv intermediate are shown. Details of the proposed
mechanisms are described in the text.

1.3.3.2. Iron delivery. The mechanism of iron loading of NrdB is less clear. The

speciation of "free" ferrous iron pools inside the cell is largely unknown103 ,104 and whether there

is a specific iron source for non-heme diiron proteins in vivo is unclear. However, recent studies
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in Saccharomyces cerevisiae have suggested involvement of the monothiol glutaredoxins Grx3

and Grx4, which contain a labile, glutathione-ligated [2Fe2S] cluster, 105 in the Fe loading process

for that organism's class Ia RNR. Deletion of Grx3/4 leads to cells that contain high cytosolic

iron levels, yet iron-requiring enzymes located in the cytosol and mitochondria that utilize heme,

FeS clusters, and diiron clusters are compromised, suggesting that the iron is not readily

bioavailable.106 In the case of the class Ia RNR, both Fe loading and activity are impaired.

These results implicate Grx3/4 in cellular Fe metabolism in S. cerevisiae, but exactly where these

proteins fit into the cluster assembly pathways is still unclear. Whether a protein with a labile

FeS cluster can function to deliver only iron to Fe-requiring proteins and whether YfaE might be

able to play a similar role in E. coli with its [2Fe2S] cluster1 07 remain to be established. It is also

possible (as discussed in section 1.6) that a specific Fe delivery protein may not be required, at

least in prokaryotes.

1.3.3.3. Essentiality of YfaE. While YfaE is not essential in standard laboratory growth

conditions, an E. coli AyfaE strain grown in minimal media in the presence of HU exhibited a

growth rate one-third that of the isogenic wt strain, supporting the proposed maintenance role.' 07

Recent studies have also suggested that YfaE is important in oxidative stress. In E. coli cells

experiencing a constant, low level of H20 2 (0.5-1 gM) due to deletion of catalase and peroxidase

genes (Hpx~), yfaE becomes essential.54 This defect could be rescued by deletion of mntH,

encoding the primary Mn" importer, or by ensuring only low levels of Mn" in the culture

medium. It was proposed, based on the previous data from our laboratory linking YfaE to

biosynthesis and/or maintenance, that YfaE helps "discriminate between iron and manganese

during NrdB activation." 54  Whether this involves a role in iron delivery, or possibly a

modulation of the affinity of apoNrdB for Fe" or Fe"2-NrdB for 02 binding, is yet to be
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determined. An alternative hypothesis is that YfaE may be involved in a redox stress sensing

role that aids in the transition to expression of the class Ib RNR (vide infra). Nevertheless, the in

vitro data together suggest at least a role of YfaE in electron donation to NrdB in cluster

assembly and possibly maintenance. Interestingly, the fact that YfaE itself is not universally

conserved even among bacterial class Ia RNRs suggests that different organisms have devised

distinct strategies to carry out the essential functions of electron and possibly iron delivery to

NrdB.

1.4. CLASS Ib RNRs

1.4.1. Distribution and regulation. Class lb RNRs are the most widely distributed class I

RNRs among prokaryotes, 6 7 found in obligate and facultative aerobes, including many human

pathogens, such as Mycobacterium tuberculosis, Streptococcus pyogenes, Bacillus anthracis, and

Staphylococcus aureus, and organisms that are known to accumulate high (mM) concentrations

of manganese, such as Lactobacillus plantarum and Deinococcus radiodurans.108'109 Although

some prokaryotes depend on a class lb RNR alone for aerobic growth, many others contain one

or more RNRs in addition to the class Ib enzyme. Both class Ia and Ib RNRs are present in

enterobacteriaceae such as E. coli and Salmonella enterica serovar Typhimurium (S.

Typhimurium), but the physiological role of class lb and the interplay between class Ia and lb

RNRs in these organisms is poorly understood. In E. coli, the class lb RNR is present at

insufficient levels to support normal aerobic growth in the absence of the class Ia enzyme." 0

The expression of the class lb RNR is repressed by the global transcriptional regulator

Fur, 54,i,12 and its expression is induced by iron limitation and oxidative stress, 11-5 conditions

commonly encountered by invading pathogens. As Imlay has pointed out, oxidative stress can

be regarded as a special case of iron limitation in which oxidation of Fur-bound Fe" to Fel"' by
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reactive oxygen species leads to the derepression of Fur-regulated genes as a result of the lower

affinity of Fur for Fe"I than for Fe" . 16 Class Ib RNR expression is also artificially induced by

HU114,' 5 and by deletion of the transcription factor NrdR.35

Interestingly, more recent experiments have indicated that expression of nrdHIEF is also

induced by apo-IscR. 54 IscR normally coordinates a [2Fe2S] cluster, but in its apo form it

positively regulates genes such as the backup FeS cluster assembly system, sufABCDSE.17 ,' 8 In

oxidative stress, the IscR cluster may be degraded, generating the apoprotein."19 That nrdHIEF

transcription is induced by apo-IscR has been suggested to be linked to the putative involvement

of the FeS-containing YfaE in NrdB cluster assembly; 54 when FeS synthesis or function is

disrupted by oxidative stress, it would be useful to induce expression of the class lb RNR.

Although this connection is speculative, the body of regulatory data together suggest that

nrdHIEF transcription is induced in E. coli situations when loading of the class Ia RNR with iron

is compromised. One such condition in this organism and in others would be in the early stages

of infection when a bacterium is engulfed by a macrophage. A recent study" 2 has suggested that

this may be true for the related S. Typhimurium, although longer tern (24 h) survival requires the

class Ia RNR.

1.4.2. Differentiation from the class Ia RNRs. Like the class la RNRs, the class Ib enzymes

are composed of two homodimeric subunits, a2 (NrdE) and p2 (NrdF) (Table 1.1).44'47'79

Despite their low sequence identity (~20% between E. coli NrdAB and NrdEF), the class Ia and

lb RNRs are structurally homologous (Figure 1.1A). One major difference lies in the a2

subunit, which in the class lb RNRs lacks the N-terminal ATP cone domain(s) containing the

activity site for allosteric regulation by dATP and ATP.44 ,47, 20, 2' As a result, high

concentrations of dATP do not inhibit RNR activity in in vitro assays as they do for class Ia
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RNRs, and the specific activities of most class Ib RNRs are obtained using CDP as substrate

with dATP as the nucleotide effector.

Class Ia and lb RNRs are most readily distinguished, however, by the clustering of nrdE

and nrdF genes with two other genes, nrdH and nrd. In many organisms, such as E. coli, the

operon is organized as nrdHIEF, and the genes are cotranscribed (Figure 1.11).111'115 In other

organisms, one or more of these genes is located elsewhere in the genome. In Corynebacterium

ammoniagenes, for example, nrdF is located 1 kb downstream of nrdHIE, and the two regions

are transcribed separately from their own promoters, but in a coordinated fashion.12 2 Other

organisms, such as mycobacteriaceae and streptococci, contain two homologous copies of one or

more of nrdH, nrdI, nrdE, and nrdF, but some of the translated proteins are nonfunctional in

nucleotide reduction in vitro or in vivo, and the functions of these gene products are

unknown. 123-125

Fur|

7 nrdF
Figure 1.11. Schematic representation of the nrdHIEF operon in E. coli. All four genes are
cotranscribed from a common promoter upstream of nrdH. There are two NrdR boxes (gray)
and a putative Fur box (white) upstream of the promoter. However, work of Martin and Imlay
has recently suggested that the regulation of nrdHIEF by Fur does not occur via binding to this
site.54

In 1996, shortly after purification of the S. Typhimurium class Ib RNR, a 9-ka protein

called NrdH was purified from Lactococcus lactis and was shown to be essential for high activity

of the purified NrdEF from endogenous levels. 126  Further characterization and cloning,

expression, and purification of the E. coli NrdH demonstrated that it contains a CXXC motif

(usually C-[V/M]-QC) characteristic of thiol-disulfide oxidoreductases.12 7 It has a glutaredoxin-

like sequence but is thioredoxin-like in structure,12 8 and it is efficiently reduced by thioredoxin

reductase but not glutaredoxin reductase.12 7 Biochemical studies have demonstrated that NrdH
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can act as an electron donor to NrdE,126,127 suggesting that it plays a role analogous to that of

thioredoxin or glutaredoxin for the class la RNR (Table 1.1). Putative nrdH genes have been

identified in the genomes of most class Ib organisms. However, the annotated NrdHs of many

Bacillus and Staphylococcus species have CXXC motifs (e.g. CPPC) distinct from those of most

other NrdHs, and although S. aureus requires a class Ib RNR for aerobic growth, its NrdH is not

essential in these conditions, making NrdH's role unclear in that organism.129 These organisms

may use general reduction systems for RNR; for example, we have recently shown that the

Bacillus subtilis class Ib RNR uses thioredoxin (TrxA) (X. Zhu and J. Stubbe, in preparation).130

Attempts to purify the fourth protein putatively involved in the class Ib RNR system,

NrdI, were reported in 1997;127 the overexpressed E. coli protein was found almost entirely in

insoluble inclusions. A small amount of soluble protein was purified to 50% homogeneity and it

stimulated by less than two-fold the activity of diferric-Y- S. Typhimurium NrdF (-90% identity

between the E. coli and S. Typhimurium NrdEFs make the two systems functionally

interchangeable). The protein was not reported to contain any cofactor in that study, but genome

annotations later predicted that the protein was a flavodoxin. Subsequent efforts to purify the

NrdIs of several other organisms recombinantly also failed due to poor solubility.13 ' In this

thesis, we were able to isolate E. coli NrdI, however, and we have demonstrated that NrdI is in

fact the missing link necessary for understanding how the class Ib RNR can use manganese

instead of iron in its active cofactor.

1.4.3. Characterization of a diferric-Ye cofactor in NrdF. The first nrdEF genes were

identified serendipitously by screening a plasmid library of S. Typhimurium to find genome

fragments able to heterologously complement an E. coli AnrdB strain to allow aerobic growth. 3 2

The nrdEF gene products were overexpressed at low levels in this strain and the proteins were
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purified.420 The purified NrdF contained diferric cluster (Figure 1.12A), ~1 Y-/02, and was

active in nucleotide reduction in the presence of NrdE and DTT (used as a reductant to replace

NrdH), with dATP being the optimal effector for CDP reduction (Table 1.2). Interestingly, the

77 K X-band EPR spectrum of the Y- (Figure 1.12B) was remarkably different from that of E

coli NrdB, exhibiting only a small hyperfine coupling as a result of a different dihedral angle

between the Cp proton and the plane of the tyrosine ring.' 33 Subsequently, many other class lb

RNRs have been purified from recombinant expression systems (E. coli grown in rich media); in

these cases, the NrdFs invariably contain iron and variable amounts of Y- (Table 1.2). As with

class Ia NrdBs, a diferric-Y- cofactor self-assembles in NrdF from only apoprotein, Fe", and

02;134 however, Y- yields from these reconstitutions are generally lower than in class Ia RNRs

(e.g. 1.2 Y-/02 for E coli NrdB) (Table 1.2). 13 Systematic efforts have not been made in these

systems to optimize reconstitution procedures. Although it is generally assumed that the diferric-

Y- cofactor of NrdF is assembled by a similar mechanism to that of the class Ia RNRs, no

mechanistic studies of this process have been reported for any class Ib RNR.

0.500~h I
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Figure 1.12. UV-vis absorption (A) and 77 K EPR (B) spectra of the diferric-Y- cofactor of S.
Typhimurium NrdF.

58



Table 1.2. Class lb RNR properties: Y- content, metal loading, and activity

Source Mn" 2-Y*cofactor Fe"'2-Y*-cofactor Reference
Y-/p2 Mn/p2 SAa Y-/P2 Fe/p2 SA'

E. coli
As isolatedb 0.2 0.9 720 - - - Chapter 5
Reconstituted 0.25 1.4 600 0.7 3.6-3.8 300 Chapters 2, 4

C. ammoniagenes
As isolated 0.36c 1.5c 69000c 0 1 36 20c, 1 34d

Reconstituted - - - 0.4 3.0 48 134
B. subtilise

As isolated 0.4-0.5 1.8-2.4 70-160 0.2 0.9 5 53e
Reconstituted 1.0 3.1 1100 0.9 2.6 9 53e

S. typhimurium!
As isolated - - - 0.9 3.6 830 120
Reconstituted - - - 0.4 3.2 325 134

M tuberculosis'
As isolated - - - 0.3-0.4 - 120 123

B. anthracis'
Reconstituted 0.4 - 709 0.6 3 7 46,136

B. cereul'
Reconstituted 0.33 - 1129 0.7 - 159 46

S. pyogenest

As isolated - - - 1.0 2.4 169 125
al 1

b

C

nmol CDP produced min (mg p)
Purified from endogenous levels
Overexpressed in C. ammoniagenes

d Overexpressed in E. coli in rich medium
e Protein containing Mn" 2 -Y- cofactor was isolated by overexpression of the entire class lb
operon in B. subtilis. Protein containing Fe" 2-Y- cofactor was isolated by overexpression of
NrdF in E. coli. Reconstitution of Mn,"2-Y* cofactor gives 0.6 Y-/02; active cofactor was
enriched by removal of apoNrdF by anion exchange chromatography, yielding NrdF containing
1 Y-/p2, which was assayed with TrxA/TrxB/NADPH (X. Zhu and J. Stubbe, in preparation).
fOverexpressed in E. coli.
g Assayed with NrdH, thioredoxin reductase, NADPH

Structural analyses indicated that, despite the low sequence identity, the class Lb RNR

a244 and P279 subunits were structurally homologous to their corresponding class la subunits.

Most structures of NrdFs are of the diferrous and diferric forms, as iron was long assumed to be

the physiological metal for these enzymes. Although the diferrous and diferric NrdF metal sites

are broadly similar to those of NrdB (Figure 1.7), a key distinction is the presence of a solvent
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molecule hydrogen bonded to the Y--harboring tyrosine (Tyr105 in E. coli NrdF numbering) in

the diferrous and in some diferric crystal structures.9,3,138 The functional relevance, if any, of

this water molecule is unknown. However, high-field EPR studies of NrdFs demonstrate that, as

in E. coli class Ia NrdB, the Y- is not engaged in a hydrogen bond.75 133"39 Very recently,

structures of the physiologically relevant, Mn-containing forms of class lb RNRs have become

available.6,20,140  It is noteworthy that in the structures of E. coli Mn"2-NrdF6 and C.

ammoniagenes Mn"' 2-NrdF,20 the solvent molecule near Tyrl05 is not observed. The C.

ammoniagenes Mn"12-NrdF metal site (Mn-Mn distance of 3.3 A, but probably somewhat

photoreduced) is strikingly similar to that of E. coli Fem'2-NrdB, but the E. coli Mn"2-NrdF metal

site displays an unprecedented coordination mode for Glul58 among ferritin superfamily

proteins. This structure is discussed in more detail in Chapter 4.

1.4.4. Controversy over the identity of the class lb RNR metallocofactor. Class lb RNRs

possess metal-binding residues identical to those of the class Ia RNRs (Figures 1.1 and 1.7),

and, because of the reliance on heterologous expression systems and failure to consider

physiological expression conditions, the long-prevailing belief was that they, too, utilize diiron

cofactors in vitro and in vivo.26,134 However, evidence primarily accumulated by Auling,

Follmann, and coworkers in the 1980s and 1990s suggested that corynebacterial NrdFs bind Mn

inside the cell. These studies were unfortunately plagued by extremely low specific activities

and inability to observe Y- conclusively correlated with Mn. At the same time, researchers

accustomed to the facile self-assembly of diferric-Y- cofactor interpreted the inability to obtain

Y. in in vitro reconstitutions with Mn" as evidence against the relevance of Mn in the in vivo

system. In this section, we briefly review this data to provide context for our studies of Mn in

class lb.
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1.4.4.1. Evidence for the presence of manganese in the class lb RNR. Although not

recognized at the time as a member of a new subclass of class I RNRs, the first class lb RNR to

be purified was in fact the NrdE and NrdF subunits of Corynebacterium (formerly

Brevibacterium) ammoniagenes, an organism that contains only a class lb RNR, in 1988.52,121

Early studies with this organism 4,142 and Arthrobacter citreus 143 had shown that depletion of

manganese in growth media led to elongated cells in which protein and RNA synthesis were

normal but DNA synthesis was impaired. Addition of Mn" to the media resulted in a resumption

of growth1 4 1,142 and stimulation of RNR activity in cell extracts. 52 ,14 3,144 For purification of the

class lb RNR, C. ammoniagenes cells were grown for 10-12 h in Mn-limited media and, 1 h prior

to harvest, 10 pM Mn" was added to stimulate RNR activity. When the RNR was purified

from these cells, however, it catalyzed nucleotide reduction at a very low rate (0.7

nmol/min/mg), and no Y- was detectable by EPR spectroscopy.145 As purified, NrdF was EPR

silent, but when the protein was precipitated with trichloroacetic acid, the characteristic sextet

EPR signal at g = 2.0 of Mn" was visible. Furthermore, when radioactive 54Mn" was used to

stimulate growth and purified NrdF was run on a non-denaturing polyacrylamide gel, the

radioactivity comigrated with NrdF. Finally, the UV-vis absorption spectrum was reminiscent of

spectra of Mn1 2 model complexes.146 147 These data indicated that the C. ammoniagenes RNR

contained Mn, and Auling and coworkers proposed a dimanganese-Y- cofactor as the active

form of the protein. 148

The purification of C. ammoniagenes RNR was repeated by Sj6berg and coworkers, this

time yielding NrdF with a specific activity of 34 nmol/min/mg, 0.9 Mn/p2, and 0.16 Fe/32, but

again, the protein was EPR silent unless acid-denatured, in which case Mn" was visible.149 The

observation of EPR-silent Mn suggested the presence of Mn"' ions in the active protein, but
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when reconstitutions of apoNrdFs of C. ammoniagenes and S. Typhimurium with Mn" and 02 or

H20 2 were attempted, no Y. formation was observed.3 4 With H20 2, Mn oxidation was reported,

and using potassium periodate, known to oxidize the Mn"2 state of Mn catalases to the Mn IJMnV

state, 5 0. radical was generated but no Mn was reported to be oxidized. 3 4 By contrast, diferric-Y-

cofactor could be generated in in vitro reconstitutions of apoNrdF with Fe" and 02. Therefore,

Sj6berg and coworkers134,138 concluded that the importance of Mn" for growth of C.

ammoniagenes was unrelated to RNR function specifically, ignoring the evidence from Auling's

and their own work for presence of EPR-silent Mn in active NrdF preparations. The low levels

of RNR activity observed in their and Auling's enzyme preparations were instead ascribed to

contaminating amounts of diferric-Y- cofactor.

1.4.4.2. Reports of tyrosyl radicals associated with manganese in NrdF prior to 2010. In

1996, Auling and coworkers15 1 reported an improved, faster purification protocol that allowed

observation of a radical signal in samples containing partially purified NrdF from C.

ammoniagenes. The signal had an average g value of 2.004 and a total signal width of 80 G.

Most importantly, its microwave power at half saturation (Pv12) of 0.5 mW at 77 K suggested that

the radical was only very weakly coupled to a metal cluster. Their spin quantification gave 0.13

radicals per P2, and so their specific activity (0.9 nmol/min/mg) was extraordinarily low for this

Y- content (compare to Table 1.2). The rate of decay of this radical signal correlated with loss

of enzyme activity upon standing in buffer containing 2 mM DTT at room temperature (half-life:

90 min) or upon incubation with HU. None of these properties match those of the dimanganese-

Y- cofactor we generated in vitro and observed in vivo in K coli NrdF (Chapters 4 and 5) or

which was observed in C. ammoniagenes NrdF (150 G spectrum breadth, <10% saturation at 100

mW 77 K) (Figure 1.13).20 The results described in this thesis and in the report of Cox et al. 20
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suggest that the radical reported in 1996151 may not have been associated with a Mnm2-Y-

cofactor in C. ammoniagenes NrdF.
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Figure 1.13. Comparison of the Y-s reported for (A) E. coli Mn"' 2-Y- NrdF (77 K, 1 mW
power, Chapter 5), (B) C. ammoniagenes NrdF (77 K, 1 mW, purified in 1996), 151 and (C) C.
ammoniagenes Mn 1 2 -Y- NrdF (77 K, 2 mW, purified in 2010),20 all purified from the
endogenous organisms. In (A), the endogenous radical signal (black) is overlaid with the signal
of NrdF reconstituted with Mn" 2-Y- cofactor in vitro (red).

Finally, while the work described in this thesis was in progress, and shortly before

publication of our discovery that a dimanganese(III)-Y- cofactor could be assembled in vitro,

Auling and coworkers published evidence that Corynebacterium glutamicum NrdF as purified

from its native organism contained Mn (1.6 Mn/s2), only 0.12 Fe/p2, EPR and UV-vis

absorption features suggestive of a Y-, and extraordinarily high specific activity, 32000

nmol/min/mg, 5 times higher than E. coli NrdB. Although the spectroscopic properties of this

Y- are again distinct from those of E. coli and even the very closely related C. ammoniagenes

NrdF, they are similar to B. cereus NrdF reconstituted with Mn.'s 2 As suggested by Cox et al,20

the Mn1 ions in these systems may be weakly antiferromagnetically coupled, unlike in E. coli

and C. ammoniagenes NrdFs, where they are ferromagnetically coupled.

Soon after that report, as a result of the work described in this thesis (Chapters 4 and 5)

and isolation of high levels of C. ammoniagenes NrdF from its native organism by Auling and
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coworkers, the physiological relevance of and the ability to reconstitute a Mn 1
2-Y- cofactor in

vitro was no longer in doubt. The history of the controversy over the identity of this cofactor is a

lesson, however, that enzymes must be considered in their appropriate physiological contexts,

not relying too heavily on recombinant protein overexpressed heterologously, to determine their

metallocofactor. At the same time, the activity of both the diferric-Y- and dimanganese-Y-

cofactors (Table 1.2) and the complexity of the factors affecting metallation in vivo (section 1.6)

means we cannot automatically extrapolate from the available evidence that all class Ib RNRs

will be dimanganese enzymes in vivo.

1.5. CLASS Ic RNRs

1.5.1. Discovery of an active Mn Fem cofactor. The class Ic RNR was discovered in 2000 by

McClarty and coworkers in Chlamydia trachomatisi5 3 an obligate intracellular pathogen, and

this remains the only class Ic RNR characterized to date. Determination of its sequence and

comparison with that of other RNRs 67 also suggest the presence of class Ic RNRs in the genomes

of certain archaea and eubacteria.18'154 Sequence alignments reveal that all the residues in the

PCET pathway (Figure 1.5) and active site for nucleotide reduction are conserved. However,

important differences at and adjacent to metal site 1 of $2 (NrdB) relative to the class Ia and Ib

RNRs are apparent (Figures 1.1). First, Phe127 in C. trachomatis NrdB aligns with the tyrosine

oxidized to the Y- in the class Ia and Ib RNRs (Figure 1.6). Second, Glu89 (C. trachomatis

NrdB), replaces Asp84 (E. coli NrdB), as a ligand to Fel. In early studies1 13 in which

recombinant C. trachomatis RNR expressed in and isolated from E. coli was incubated with HU,

RNR activity was drastically reduced, suggesting the importance of a Y- in catalysis. It was

initially proposed that Tyr129 could be the site of Y- formation, but the X-ray crystal structure18

confirmed that Phe127 is located at the position of the tyrosine residue oxidized in class Ia and Ib
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RNRs (Figure 1.1B). Tyr129, by contrast, resides on the protein surface. The structure also

revealed a diferric cluster with a terminal H20 and two bridging HxO ligands assigned as

hydroxides (Figure 1.6), similar to the diferric cluster of sMMO 5 5 (which also contains a Glu

instead of a Asp ligand to the site 1 metal) and distinct from all class Ia and Ib cluster structures

to date.

Initial attempts to self-assemble the active cofactor for C. trachomatis NrdB starting with

Fe" and 02 revealed an EPR-active species similar to intermediate X (Figure 1.8), the oxidant

required for Tyr oxidation in class Ia cofactor assembly. Thus, the hypothesis became that, in

the absence of a nearby Tyr to be oxidized, an Fe vFeIrI species (X) replaces the Y- as the active

radical initiator in class Ic RNRs. Although this hypothesis was at first intriguing, a number of

issues became apparent when examining the data in detail. First, the specific activity reported

for the class Ic RNR was low and variable.15615 7 It should be noted, however, that the rate of

dNDP formation required to meet the needs of C. trachomatis for DNA replication is not

currently known. Second, recent studies failed to observe a correlation between RNR activity

and levels of X.15 This is in contrast to the class Ia and Ib enzymes where the activity correlates

with the concentrations of the Y- (ref. 70 and Chapter 4), suggesting that X is not the active

cofactor. Third, and problematic from a chemical perspective, is the questionable ability of a

pathway residue, such as Tyr338 or Trp51 (equivalent to Tyr356 or Trp48 in E coli NrdB,

Figure 1.5), to reoxidize C. trachomatis FeI"2-NrdB to FeivFe" at the end of each catalytic

cycle. Recent studies of the E coli class Ia RNR with an unnatural amino acid, 3-nitrotyrosine

(NO 2Y), site specifically replacing Tyr122, have shown that intermediate X can oxidize NO2 Y to

a NO2Y- despite the fact that an N-acylated, esterified NO2Y amino acid is 200 mV more

difficult to oxidize than a similarly blocked Tyr.64 The NO2Y- is capable of catalyzing only a
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single turnover. Thus, the ability of a Tyr or Trp radical in the PCET pathway to reoxidize a

Fe" 1
2 cluster to FevFeir seems unlikely.5 8 ,6 4 A recent density functional theory study has come

to the same conclusion.158 However, the possibility that the class Ic RNRs catalyze only a single

turnover, with the cofactor regenerated by a specific repair pathway or de novo biosynthetic

pathway for every dNDP produced, 5 7 cannot be ruled out.

The variability of C. trachomatis RNR activity, the lack of correlation of activity with

iron content, and the inability to replicate the published generation of an active cofactor with Fe"

and 02156 suggested to the Bollinger and Krebs laboratories' 5 159 that the metallocofactor of C.

trachomatis p2 had been misidentified. Their careful studies demonstrated that p2 activity was

dependent on the presence of both manganese and iron, in an unprecedented MnvFeuII cofactor,

and that its specific activity is ~600 nmol/min/mg when apoprotein is reconstituted with 2 Mn"

and 2 Fer/p2 in the presence of 02.15 The lower activities reported earlier 5 3, 5 6 ,i5 7 were

suggested to have arisen from variable amounts of undetected, "contaminating" manganese. 5

More recent studies have found that an ordered loading of p2 under aerobic conditions with 3

Mn"/2 prior to addition of 1.5 Fe"/p2 maximizes MnlvFe'l and minimizes FevFelll production

(still 10% of metal sites).160 Although the Mn"2 form of the protein does not react with 02, the

Fel 2 form does (k = 2.8 s'1 for X formation),156 raising the issue of how mismetallation would be

prevented in vivo with this cofactor.

1.5.2. Characterization of the Mn"Fe1i cofactor. In vitro self-assembly was optimized to

give 1.5 MnIvFell/p2 by ordered addition of Mn" and Fe", as described above.160 M6ssbauer

and EPR spectroscopies were used to characterize this cofactor and reveal the mechanisms of its

formation. The active cofactor contains Mn'v and Fell' ions antiferromagnetically coupled with

an S = 1 ground state. 15 161 EXAFS analysis and density functional theory calculations' 60
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suggested p-oxo, p-hydroxo, and g-1,3-carboxylato bridges between the metals, which are 2.92

A apart, and a terminal solvent molecule (H20 or OH-) at site 1. Although the calculations could

not establish the site of manganese binding, site 1 was generally favored 162 on the basis of the

Asp to Glu substitution and the observation of manganese specifically in this site in the crystal

structure of the structurally related Mn/Fe oxidase Rv0233 from M tuberculosis, which, unlike

C. trachomatis NrdB, contains approximately equal amounts of Mn and Fe when overexpressed

in E. coli in rich medium.16 As MnIvFel"l assembly is maximized by adding Mn" before Fe", this

proposal may imply that site 1 is the higher affinity metal site in C trachomatis NrdB, or at least

that the sites have similar affinities, which contrasts with E coli NrdB where site 2 appears to

have higher affinity for both Fe" and Mn".8 0 -82,163 ,164 This difference might be accounted for in

part by the Asp to Glu substitution at site 1, which would make the ligand environments of the

two sites more similar. The location of redox-inert Phe127 (Phe, Leu, Ile, or Val in other

predicted class Ic RNRs) adjacent to site 1 is proposed to create a stabilizing environment for

IV 154Mn .

Subsequent crystal structures of C. trachomatis NrdB containing active MnVFelI

cofactor by the H6gbom lab2 ' and by the Bollinger/Krebs and Rosenzweig labs' 9 have indicated,

by anomalous Mn and Fe scattering, that Mn preferentially occupies site 1. However, both

studies are complicated by heterogeneity at the metal site. In the study of H5gbom and

coworkers,2 ' the protein used for crystallization contained 0.7-0.9 Mn/p2 and 2.0-2.9 Fe/p2,

loaded when the protein was expressed in E coli. Although their data show that Mn was not

present at site 2, presence of Pb" or Mn" in the two crystallization conditions makes it difficult to

draw strong conclusions about specificity of Mn and Fe occupancy at the metal sites. In the

study of the Bollinger/Krebs and Rosenzweig labs,' 9 apoNrdB was reconstituted by two different
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procedures: the first as described above with 3 Mn"/p2 added first, followed by 1.5 Fer/P2 and

02, to minimize diiron cofactor formation, and a second with 0.6 Mn"/p2 followed by excess Fe"

and 02 to trap the Mn" in its highest affinity site. Crystallographic analysis showed that, while

Fe and Mn were present at both sites in both preparations, Mn was mainly located at site 1, and

the second preparation showed less Mn at site 2 and greater contrast between the sites.

Spectroscopic analyses and activity assays of the two preparations were interpreted as suggesting

that two different MnvFelil cofactors could be formed, one with Mn at site 1 and Fe at site 2

(most active), and one with Fe at site 1 and Mn at site 2 (less active or inactive). These studies

suggest Mn is at site 1 in the active nIvFeII cofactor but also emphasize the importance of

controlling correct metal loading of a heterodinuclear cofactor in vivo. How the Mn/Fe oxidase

apparently loads more specifically with Mn and Fe' 6 in a highly similar protein framework is

also of interest.

1.5.3. Mechanism of MnWFeIII cofactor assembly in vitro. As in class Ia, cofactor self-

assembly in the class Ic RNR has been studied by SF-UV-vis spectroscopy and by RFQ-EPR and

M6ssbauer spectroscopies (Figure 1.14). Rapid mixing of C. trachomatis Mn"Fe"-NrdB with

02 results in the formation of an MnivFelv intermediate (k = 13000 M-1 s-1) with an S = 1/2

ground state arising from antiferromagnetic coupling between the two metal sites.16' This

intermediate can be slowly reduced (kobs = 0.021 s1) to the active MnvFe"I (Figure 1.14).166

This reduction step has been proposed to proceed by a two-step pathway through Trp51

(equivalent to Trp48 in E. coli NrdB) and Tyr222, a residue conserved uniquely in class Ic p2s

but not essential for cluster assembly or for the PCET pathway.166
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Tyr222e reductant?

02 MnIv Fev Tyr222
(k = 13 mM1 s-1)

Mn", Fe" 
(k = 0.021 s-1) Trp51**

delivery H202  OH

apoNrdB 1nb. Mn" Fe" 8 M1 sO)

MnO Fel"'* 0
2e- H

(active)
H20 2  0~

(k = 1.7 mM- 1 s-1)

Mn' Fel"'

Figure 1.14. Bollinger/Krebs model for activation of C. trachomatis class Ic RNR using 02 and
H202 as oxidants (rate constants for each step, where known, are given in parentheses).

The four oxidizing equivalents required to form the MnIvFeIv intermediate from Mn"Fe"-

NrdB can also be provided by 2 equivalents of H20 2 and a stepwise mechanism.23 The first

equivalent oxidizes the Mn"Fe" cluster to the Mn"'Fe"' state (k = 1700 M-1 s-1 for Mn"'Fe"'

formation), which can react with a second equivalent of H20 2 (k = 8 M-1 s-1) to generate the

MnIvFeiv state. This state is converted to the active MnvFel" cofactor as discussed above. By

contrast, class Ia Fe"2-NrdB reacts with H202 to produce the inactive met Fe" 2 cluster, but

further oxidation occurs very slowly and to a limited extent. 167

1.5.4. Are the MnWFe"' and FeWFe"' cofactors both active? The arguments enumerated

above suggest that the original proposal that the FeivFeI cofactor is active in dNDP formation is

incorrect.18 ,15 6,157 The strongest evidence against this proposal comes from studies with C.

trachomatis p2 containing either a FeWFeIII or MnIvFe1II cofactor, a2, and the mechanism-based

inhibitor 2'-azido-2'-deoxyadenosine 5'-diphosphate (N3ADP). Previous studies with the class Ia

RNRs indicate that the Y- is reduced concomitant with formation of a well-characterized

69



nitrogen-centered radical derived from breakdown of N3ADP.168 However, in the case of C.

trachomatis FeI Fel"-NrdB, addition of N3ADP under turnover conditions did not accelerate

decay of the X-like EPR signal, suggesting that the FevFeI" cofactor is not competent for

nucleotide reduction, in contrast to similar studies with MnvFeI-NrdB.l5 Therefore, the current

evidence supports only the activity of the Mn1vFe1 cofactor.

1.5.5. Relevance of MnvFeri cofactor in vivo. Predicted class Ic RNRs are found in a limited

number of organisms (~45)14, but about half of these are extremophiles or pathogens. It was

initially proposed1 8 that the Y--less class Ic RNRs might have evolved in pathogenic organisms

as a mechanism of resistance to 02' , NO, and peroxynitrite, oxidants produced by a host's

immune system and known to react with the Y- of F. coli NrdB.169,17 0 The details of these

reactions deserve further study, and the reactivity of the MnvFeIII cofactor with these species has

not yet been reported. Furthermore, the hypothesis also needs to be examined in light of the

observation that many more pathogens use class lb RNRs, which likely use Mnm2 -Y- cofactors,

as argued in this thesis. The stability of the Mn" 2-Y- cofactor in the presence of 02' and NO is

also not currently known, but it is possible that the class Ib and Ic RNR cofactors may constitute

different solutions to the same problem of oxidative stress for certain pathogenic organisms. It is

also a possibility that the metal requirements of the Ia, Ib, and Ic subclasses of class I RNRs

reflect differences in Fe and Mn homeostasis in their host organisms (which are linked to

oxidative stress),6'16"7' rather than oxidative stress per se.

Given the complexities of heterobinuclear cluster formation in vitro (see above) and in

vivo (see below), as well as the high catalytic activity of the class Ib RNR containing three

different cofactors (this thesis), it may be premature to conclude that the MnIv Fel" is the

physiologically relevant cofactor of the class Ic RNRs. It is therefore essential to isolate C.
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trachomatis or another class Ic RNR from the native organism to demonstrate whether this

cofactor is the active form of the class Ic RNR in vivo.

1.6. METALLATION AND MISMETALLATION OF CLASS I RNRs

1.6.1. Mismetallation in vitro. The controversy over the active metallocofactors of the class Ib

and Ic RNRs raises important questions as to how these proteins are correctly metallated inside

the cell. Biochemical work often relies on the overexpression of a protein of interest in a

heterologous host, such as E coli, whose cellular metal incorporation machinery will often be

overwhelmed in the presence of non-physiological levels of a foreign or even native apo-

metalloprotein. Futhermore, if accessory proteins are necessary for metallocofactor assembly -

for more complex cofactors like FeS clusters 172,173 or clusters of hydrogenases, 174,175 or a simpler

one like the Mnm'2-Y cofactor - either an incorrect cofactor or none at all will be incorporated.

While it is problematic for the biochemist if the overexpressed and purified protein is

inactive due to incorrect or no metal insertion, the more insidious problem (as illustrated by the

history of the class lb RNRs) is if the purified protein is active, but due to a non-physiological

cofactor. There are many examples of systems for which this issue has arisen, besides the class

lb and Ic RNRs; a non-exhaustive list is: peptide deformylase, 176 calprotectin,17 7 particulate

MMO,178 the arylamine N-oxygenase AurF,179'180 and some Mn- or Fe-superoxide dismutases

(SODs). 8 1 ,18 2  Comparison of the activities of the protein when reconstituted in vitro with

different metals may hint at which ones are plausible candidates for in vivo relevance, but

ultimately the cellular context in which a given protein is expressed must be considered to assign

the "correct" metal to a given system.
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1.6.2. Mismetallation in vivo. However, mismetallation is also a challenge for organisms

during routine growth. Cellular metal ion homeostasis must be carefully managed for several

reasons. First, cells use a variety of metals, often for specialized purposes. Second, some metals

(like Fe" and Cul) can catalyze reactions in the presence of 02 that are damaging to the cell.

Third and most fundamentally, metal selectivity is usually not inherent in the protein sequence,

and the "correct" metal for a given metalloprotein is often not the one that binds with the highest

affinity. To ensure that the correct metal is inserted into a protein and, perhaps more

importantly, to prevent the incorrect metal from binding, cells express metallochaperones18 3 for

some of the tightest binding and most toxic metals, Cu'1184 Zn" 1 0 3 Co", 185 and Ni.s18 6 Fe" and

Mn1 are typically the weakest binding of the biologically used first row transition metals,187 and

the existence of chaperones for these metals is less certain. Many organisms, like E. coli,

accumulate high pM - mM levels of "free" iron in a labile pool, weakly bound to proteins or

small molecules. 0 3 The deleterious chemistry of the reactions of Fe" with 02 and H2 0 2 (Fenton

chemistry) may suggest the benefit of sequestering this iron in a less reactive form. Putative iron

chaperones have been identified, mainly in eukaryotic systems, in transfer of Fe into ferritin and

in FeS and non-heme diiron cluster assembly.104'106'188'189 A ferredoxin involved in liberation of

Fe" from bacterioferritin has also been found.190 No chaperones have been identified for Mn" to

date, and perhaps none are necessary as, in addition to tending to bind weakly to biological

ligand sets, its non-enzymatic redox chemistry with the appropriate ligands191 counteracts

oxidative stress (see below), in contrast to that of Fe". If both Fe" and Mn" bind to proteins

weakly and neither metal is tightly sequestered by a chaperone, the correct metallation may

merely be determined by the relative affinities of the two metals for the protein and the

"differential bioavailability" of the two metals in a given growth condition. This model has been
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proposed by Culotta and coworkers to explain how the S. cerevisiae Mn-SOD is correctly

metallated even in the presence of high, but sequestered, levels of iron in the mitochondrial

matrix,192 ,193 and by Whittaker and coworkers to explain how the E coli Mn-SOD is metallated

sufficiently correctly in the presence of -100-fold greater concentrations of Fe.194

1.6.3. Mn" and Fe" in non-redox reactions. Especially for non-redox reactions, it is not

necessarily true that a given protein will utilize only one metal; metallation state may be

dependent on the growth conditions. Recent studies from the Imlay lab have implicated an

exchange of Fe" for Mnr in mononuclear, non-redox metalloenzymes as critical for protecting

the enzyme in oxidative stress conditions. In search of cellular targets of H20 2 stress in E. coli,

Sobota and Imlay identified ribulose 5-phosphate 3-epimerase (Rpe) as a likely candidate.195

When H202 was added to crude extracts of E coli Hpx~ cells constitutively producing -1 gM

levels of H202, Rpe rapidly lost activity. Further studies showed that, although the recombinant

enzyme purified with 0.3 Zn" bound per polypeptide,196 kcat/KM for the enzyme was an order of

magnitude higher with Co" and two orders of magnitude higher with Fe" and Mn". Loss of

activity in the recombinant enzyme under H202 stress was only replicated when the enzyme was

reconstituted with Fe", suggesting that based on the earlier results in crude extracts this was the

metal bound to the protein in vivo.

Earlier studies had established that during oxidative stress, bioavailable Fe" levels

decrease as a result of oxidation to FeI, and Mn" import is stimulated.' 7 ' Therefore, when Mn"

was added to the culture media and crude cell extracts were assayed for Rpe activity, the Rpe

activity was partially recovered relative to cells that had not been grown with Mn". These data

suggest that Rpe is a mononuclear iron enzyme in normal growth, but in oxidative stress

conditions in which the iron cofactor is damaged, it can be replaced by Mn" without
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compromising function. Obtaining more direct evidence for this proposal is challenging,

however, because the weak binding of Fe" and Mn" to enzymes such as Rpe results in the

proteins of interest being primarily in their apo forms when isolated or even partially purified. In

subsequent studies,197 further evidence was obtained using mutant strains that the Mn transporter

MntH and the Fe storage/detoxification protein Dps are involved in rescuing the activities of

three other putative mononuclear Fe" proteins when E coli is grown under oxidative stress

conditions. MntH increases cellular Mn", while Dps sequesters Fe" and therefore limits Fenton

chemistry associated with Fe" cofactors. The authors suggested that this represents a general

strategy by E. coli to stave off oxidative damage to enzymes that typically use iron cofactors.

The Fe" and Mn" forms are each important in specialized growth conditions, driven by

bioavailable Fe and Mn concentrations.

1.6.4. Control of metallation of class I RNRs. Because class I RNRs use Fe and Mn in redox

reactions, how they successfully discriminate between Fe" and Mn" in vivo is potentially more

complex. However, once again, the issue may reduce to relative affinities and metal

availabilities. We suggest that aerobic prokaryotes can use three general strategies to ensure

correct metallation of their class I RNRs. We chiefly consider organisms containing class Ib

RNRs because those RNRs alone are active in vitro with two different metallocofactors.

First, the facultative aerobes that express both class Ia and lb RNRs are almost

exclusively enterobacteriaceae, like . coli. The levels of intracellular Mn in E coli have been

measured to be -15 M,103'171 whereas iron levels are ~0.1-1 mM.'03"198 To consider whether

differential bioavailability is a plausible model for RNR metallation in these systems without

needed to invoke specific Fe" delivery factors, the Kds of apoNrdB for Fe" and Mn" have to be

considered. Unfortunately, this information is incomplete. The Hendrich lab has reported Kds

74



for Mn" binding to apoNrdB of 2 and 26 gM, assigned to sites 2 and 1, respectively.' 63

Therefore, both Kds are on the order of typical Mn concentrations in the cell in defined

medium.171 The affinity of the protein for Fe" is not well established, although probably

somewhat weaker than for Mn" based on the fact that Mn" effectively inhibits diferric-Y*

assembly if apoNrdB is preincubated with Mn" (23 jiM apoNrdB, 2 Mn/32) and then exposed

to "excess" Fe" and 02.199 How this experiment relates to the physiological situation of ~0.1-1

mM iron103'198 and -2 pM P2 39 is difficult to extrapolate without knowledge of the Kds for Fe"

binding. It is possible that Fe" binding could outcompete Mn" without requiring a chaperone,

however. Furthermore, the reactivity of the Fe"2 cluster with 02 but unreactivity of Mn"2 and

mixed Mn"Fe" clusters82 with 02 could allow sufficient time for inappropriately loaded metals to

dissociate and remetallate correctly. Our observation by western blotting analyses that NrdB is

present even under severe Fe limitation and Mn" supplementation when NrdF is expressed

(Chapter 5) and when NrdB is largely inactive and likely mostly loaded with Mn", suggests that

this mismetallation may be reversible when Fe" levels are increased.

Under "normal," high intracellular Fe levels in E. coli, the class Ib RNR is not

significantly expressed." 0 "'5 However, our data (Chapter 5) and results of Martin and Imlay54

have together shown that the class lb RNR is expressed, is active, and contains a Mnr12-Y*

cofactor in conditions of iron limitation and oxidative stress. 7 1 These results suggest that NrdF

is only expressed when it can be correctly metallated with Mn. Therefore, correct metallation of

K coli NrdB and NrdF may be ensured by controlling the expression patterns of these proteins in

response to metal availability. We suggest this will be true for other organisms that contain both

class Ia and Ib RNRs as well.
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A second strategy may exist for the many prokaryotes that encode class lb RNRs as their

only aerobic RNRs. Manganese is present at higher concentrations in normal growth conditions

for many of these organisms than in E coli. In an extreme example, Lactobacillus plantarum,

accumulates up to 20 mM Mn", 108 although evidence suggests other organisms like D.

radiodurans,109 B. subtilis,20 0 and Staphylococcus aureus,20 1 all of which use only class lb RNRs

for aerobic growth, also accumulate significant levels of Mn (at least 50-100 pM). The high

levels of Mn" are proposed to serve as an oxidative defense, particularly against 02'~, a role

which has been supported by in vitro1,2 and in vivo 203 characterization of Mn"-phosphate and

pyrophosphate complexes. This chemistry has also been proposed to be exploited by pathogens,

for which manganese has been shown in a number of cases to be key for virulence. 204 In these

organisms, the presence of high levels of Mn" for cellular functions such as oxidative stress

resistance may be reflected in their expression of a class lb RNR rather than a class Ia. Even

though Mn112 -Y- cofactor assembly is somewhat more complicated than Fe" 2-Y- assembly

because of its requirement for NrdI, this option may be preferred to forcing Fe" into a NrdB-like

protein in the presence of high concentrations of Mn". Indeed, the B. subtilis class lb RNR

contains a Mn" 2-Y- cofactor even when grown in rich medium (LB).53

However, the case of certain class lb RNRs may be more analogous to that of non-redox

Fe/Mn enzymes because NrdF can be activated by both metals. This raises the possibility of a

third strategy for metallation, that NrdF could be loaded and active with both dimanganese and

diiron cofactors at the same time, or at different times, in the same organism. One would expect

this situation to be most likely in organisms whose NrdFs are comparably active with Mn"' 2-Y-

and Fe"I2-Y* cofactors. The first such organism is Streptococcus sanguinis (0. Makhlynets and

J. Stubbe, unpublished data). Although available intracellular Fe and Mn concentration data for
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this and other streptococci is not easily translatable to pM for comparison with the above

concentrations, the related S. pneumoniae has been reported to accumulate similar levels of Mn

and Fe (300 ng/mg protein), suggesting the plausibility of metal loading and assembly of both

Mn and Fe cofactors in vivo. Other studies of S. pneumoniae have reported somewhat higher Fe

concentrations (900 ng/mg protein).198 One way that NrdF cluster assembly could be biased

toward Fe" 2 -Y- cofactor formation would be by decoupling regulation of nrdI from the

remaining class lb RNR genes. The observed separation of nrdI from nrdHEF in the S.

sanguinis, S. pneumoniae, and other streptococcal genomes could indicate that in Fe-sufficient

conditions these genes may not always be coregulated. In Fe-limited conditions, nrdl and

nrdHEF could be regulated together to generate the Mn cofactor in NrdF, whereas in Fe-replete

conditions, the FeI" 2 -Y- cofactor can self-assemble and NrdI might not be expressed, perhaps

repressed by Fur. While universal conservation of nrdl suggests that the Mn"' 2-Y- cofactor is

likely relevant in all organisms in at least certain growth conditions, it is also possible that NrdI

acts as the extra electron source for Fe I 2-Y- cofactor assembly in certain organisms. Finally, as

certain organisms tolerate some mismetallation of MnSOD with Fe even when the Fe-loaded

MnSOD is inactive, 181 ,206 it is possible that streptococci or other class Ib RNR-requiring

organisms may allow both cofactors to be present in the cell at once, since both are active.

Finally, metallation of the C. trachomatis class Ic RNR is more complex because of its

heterodinuclear cofactor and the reactivity of the diferrous form with 02 to form a likely inactive

Fe,"Feiv cofactor. In vitro reconstitution studies have demonstrated that obtaining homogeneous

MnIvFeri cofactor is a challenge,15' 65 with evidence for two MnIv FeI clusters with distinct

activities having been presented.19 Of course, the concentrations at which metal loading studies

are carried out in vitro (>tens of pM) are much higher than the likely physiological protein
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concentrations (order of 1 gM), and these experiments would thus tend to diminish any

preference that a given metal site would have for Mn" or Fe" over the other metal. This may

help explain why Mn is localized to site 1 in C. trachomatis NrdB loaded with metal in Mn -

supplemented . coli2 1, whereas it is present at both sites 1 and 2 (although mainly at site 1) in

protein reconstituted with Mn and Fe in vitro. 19 It is unlikely that the concentrations of Fe and

Mn in E. coli are equivalent to those in C. trachomatis, explaining the substoichiometric and

unequal Mn and Fe loading of even the protein loaded in K coli. If C. trachomatis follows the

trend of many other pathogens in accumulating high levels of Mn", however, the major problem

that mismetallation could form the inactive diiron cofactor might be avoided based on

considerations of in vivo metal concentrations alone.

1.6.5. Conclusions. It is clear from this discussion that a number of issues have to be

considered to propose a global model for how Nature manages metal homeostasis to minimize

mismetallation, despite the use of protein scaffolds that exhibit little inherent metal ion

specificity, such as the class I RNRs. Ultimately, the answers to this question will require more

complete information: total and bioavailable metal concentrations in a variety of organisms in

several growth conditions, Kds of metalloproteins for their physiological and non-physiological

metal ions, cellular concentrations of these proteins, protein expression patterns, speciation of

"free" metals in cells, and whether metal chaperones for weakly binding metals like Mn" and Fe"

exist in general. This is an ambitious undertaking but, as more organisms and protein systems

are studied and new metallomic methods182,206,207 are applied, the issues of the cellular interplay

between Mn and Fe specifically and of mismetallation in general will come into focus.
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1.7. CHAPTER PREVIEW

At the time at which the work described in this thesis was initiated, the class Ib RNRs

were generally accepted to be diiron proteins. The Auling laboratory had demonstrated in 1988

that NrdF purified homologously from C. ammoniagenes contained Mn, had low RNR activity,

and had no observable Ye. 52 Despite more than twenty years of further effort, no definitive link

between manganese loading, Y-, and activity was made. The enzyme activities and Y- contents

were so low that they could be ascribed to low levels of contaminating diferric-Y- cofactor. 3 4

The apoenzyme could be activated in vitro by reconstitution with Fe" and 02, as with class la

RNRs.134 By contrast, efforts to oxidize Mn" 2 forms of NrdF using 02 had been unsuccessful,

and there was no hypothesis as to how a dimanganese-Y- cofactor could be generated.

In this thesis, we demonstrate that the class lb RNR can generate a MnI' 2 -Y- cofactor in

vitro and in vivo and we outline the mechanism of assembly of this novel cofactor, which

involves a unique flavodoxin-like accessory protein, NrdI.

In Chapter 2, we describe the cloning, overexpression, purification, and characterization

of three of the four proteins constituting the E. coli class Ib RNR system, NrdE (a2), NrdF (p2),

and NrdH. We show that E. coli NrdF, as for previously characterized NrdFs, can be

reconstituted with a diferric-Y* cofactor (0.7 Y-/p2, with a specific activity of -300

nmol/min/mg). NrdE has a specific activity of 110 nmol/min/mg. We also overexpress and

purify NrdH and show preliminary results that its inclusion in activity assays as an electron

donor to NrdE increases RNR activity -3-fold relative to using the non-physiological reductant

DTT.

In Chapter 3, we present the first purification and characterization of a NrdI protein,

from E. coli. We show that NrdI is a flavodoxin-like protein with unusual redox properties and

79



then demonstrate that it interacts with NrdF by a variety of methods, including that the fully

reduced, hydroquinone form of NrdI (Nrdlhq) specifically reduces met-NrdF to the diferrous

state. Prior to our discovery of the dimanganese-Y- cofactor, the evidence for NrdI-NrdF

interaction and electron transfer between them led us to propose a maintenance role of NrdI in

regeneration of diferric-Y- cofactor of NrdF in iron-limited growth conditions, if the Y- was

reduced. This role is analogous to that proposed for YfaE in the class Ia RNR (Figure 1.10B,

red).

Given the interaction of NrdI and NrdF, the conservation of NrdI in class lb RNR

systems, the reactivity of flavoproteins with 02 to generate 02' or H2 0 2 , and the preexisting

evidence supporting the involvement of manganese in the function of some class Ib RNRs, we

hypothesized that the function of NrdI was to react with 02 to generate the oxidant required for

assembly of a dimanganese-Y- cofactor in class Ib RNRs. In Chapter 4, we test this hypothesis

in vitro and demonstrate that E. coli NrdF can assemble a Mn"I2-Y- cofactor (0.25 Y-/p2, -600

U/mg) from Mn"2-NrdF, Nrdlhq, and 02. We characterize this novel cofactor by UV-visible and

EPR spectroscopies, and we demonstrate that this cofactor is active in nucleotide reduction, with

specific activity 5-6 higher on a per-Y- basis than the diferric-Y- cofactor. Based on failed

efforts to reconstitute active cofactor in the absence of NrdI using 02, H20 2, and 02', we

proposed that NrdI reacted with 02 to produce hydroperoxyl anion (HO2~), two equivalents of

which and an extra electron would be needed for Y- formation (Figure 1.10B). However, the

involvement of 02'~ as oxidant could not be ruled out based on our results, and we proposed an

alternative mechanism using this oxidant (Figure 1.10B, green). Addition of superoxide

dismutase or catalase to the reconstitution reaction did not reduce the yield of Y-, suggesting that

the oxidant produced by NrdI is channeled to the NrdF metal site within a NrdI/NrdF complex.
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In support of this hypothesis, crystal structures of Mnr 2-NrdF alone and in the presence of NrdIhq

and oxidized NrdI reveal a hydrophilic channel (Figure 1.15) filled with ordered solvent

molecules connecting the FMN cofactor in NrdI to the metal site in NrdF.

N83
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Figure 1.15. The hydrophilic oxidant channel in the E. coli Nrdlhq/Mn12-NrdF complex
(Chapter 4). NrdF is shown in gray, Nrdlhq in green (the flavin is shown in sticks), and ordered
water molecules in the channel are red spheres with mesh indicating their electron density.
Residues lining the pathway (very highly conserved in NrdFs) are shown in sticks. Metal sites 1
and 2 are indicated.

In Chapter 5, we show that a Mn"12-Y- cofactor spectroscopically identical to the one

assembled in vitro using apoNrdF, Mn", NrdIhq, and 02 is generated inside the cell in a severely

iron-limited E coli strain, GR536, deficient in the known iron uptake systems.2 0 8 This strain was

chosen for study because the class Ib RNR is only expressed at very low levels in normal, iron-

replete laboratory growth conditions, and because this strain requires either Fe" or Mn" for

growth after Fe is depleted from the medium. GR536 was grown to mid-logarithmic phase in

Fe-limited minimal media in the presence of Mn". Western blots of cell extracts demonstrated

that NrdF, NrdI, and NrdB were present in these conditions. NrdI was present at levels 13-fold
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lower than of NrdF, suggesting that its function in the class lb system is catalytic. Both NrdF and

NrdB had RNR activity, but the activity of NrdF assayed in crude cell extracts was 10 times that

of NrdB, indicating that the class lb RNR is the primary RNR active under these conditions.

NrdF was purified from its endogenous levels in these growth conditions and the purified protein

was characterized by UV-visible and EPR spectroscopies, activity assays, and metal analysis,

and found to contain a Mn"' 2-Y- cofactor identical to that obtained by reconstitution of NrdF

with Mn", Nrdlhq, and 02. This establishes that the class lb RNR is competent to form a

dimanganese-Y- cofactor in vivo.

In Chapter 6, we investigate the mechanism by which the MnrI2-Y- cofactor is

assembled in vitro in B. subtilis class Ib RNR. This system was chosen for mechanistic study

instead of E. coli NrdF because 0.6 Y-/$2 can be generated from Mnn-loaded NrdF, Nrdlhq, and

02 in in vitro reconstitutions, the highest to date. After a full characterization of the UV-visible

and EPR spectra of NrdI in its hq, sq, and ox redox states, and NrdF in the Mn"2 and Mn" 2 -Y-

forms, determination of the Kd for Nrdlhq/Mn 2-NrdF interaction, and the rate of

disproportionation and comproportionation of NrdI, we investigate the reaction of Nrdlhq with 02

by stopped flow absorption and rapid freeze quench EPR spectroscopies. We show that the rate

constant for reaction of Nrdlhq with 02 is accelerated -50-fold in the presence of Mn"-loaded

NrdF. The results support a mechanism (Scheme 1.3) in which Nrdlhq rapidly reduces 02 to 02',

the 02'~ channels to and reacts with the Mn"2 cluster in NrdF to form a MnI"Mnv intermediate,

and the MnI"MnIv species oxidizes tyrosine to Y-. Therefore, the controlled production of 02'

by Nrdlhq during cofactor assembly both circumvents the non-reactivity of the Mn"2 cluster with

02 and satisfies the requirement for only three oxidizing equivalents for Ye generation.
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Scheme 1.3. Proposed mechanism of MnII 2-Y- cofactor assembly in B. subtilis NrdF. Rate
constants were measured in this study. The detailed structures of the proposed Mn"Mn"'-OO(H)
and Mn1IMnv intermediates, as well as the oxidation state of NrdI when it dissociates from
NrdF, are unknown. Site 2 is shown in red.
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In Chapter 7, we return to the study of . coli NrdF and show that it is active with a third

metallocofactor, which we have tentatively identified as a Fe,"Mn"'-Y-, formed using yet

another oxidant, H20 2. Upon loading apoNrdF anaerobically with 2 Mn"/p2 followed by 2

Fe"/p2 and addition of 4 H2 0 2/p2, an oxidized metal cluster is generated along with -0.4 Y-/p2

(1 min after H2 0 2 addition), characterized by UV-vis absorption and EPR spectroscopies. Most

of this Y- generated decays within 2 h, but -0.1-0.15 Y-/s2 is stable. Analyses by EPR

spectroscopy suggest the formation of three metal clusters: Fe "Mn'i, an EPR-silent, higher

valent cluster (proposed to be Fe"IMn"v), and cofactor proposed to be Fer"Mn'I-Y-. Activity

assays show that the protein is active, and experiments using the mechanism-based inhibitor 2'-

azido-2'-deoxycytidine-5'-diphosphate suggest that the Fe"'Mn'"-Y- cofactor is responsible for

the activity. Unlike class Ic RNR's MnFe cofactor, the one formed in NrdF cannot be assembled

using 02 as an oxidant.
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The central conclusion of this thesis is that class Ib RNRs assemble a MnmI2-Y* cofactor

in vitro and in vivo. Our studies have shown that NrdF has the unique and remarkable ability to

form active Y. from three different reduced metal clusters (Fe" 2, Mn"2 , and Mn"Fe") using three

different oxidants (02, 02'~, H20 2, respectively). Therefore, it is an ideal system to study

fundamental issues common to all class I RNRs and the ferritin superfamily enzymes: factors

controlling metal binding/specificity, oxidant access and binding to the metal site, electron

transfer during assembly, the reduction potentials of the intermediates involved in

metallocofactor assembly of all class I RNRs, and, most generally, how the protein environment

of a given enzyme modulates these properties to impart correct function.

1.8. REFERENCES

1. Nordlund, P.; Eklund, H. Di-iron-carboxylate proteins. Curr. Opin. Struct. Biol. 1995, 5,
758-66.

2. Solomon, E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.; Lee, S. K.; Lehnert, N.;
Neese, F.; Skulan, A. J.; Yang, Y. S.; Zhou, J. Geometric and electronic
structure/function correlations in non-heme iron enzymes. Chem. Rev. 2000, 100, 235-
350.

3. Sazinsky, M. H.; Lippard, S. J. Correlating structure with function in bacterial
multicomponent monooxygenases and related diiron proteins. Acc. Chem. Res. 2006, 39,
558-66.

4. Wallar, B. J.; Lipscomb, J. D. Dioxygen Activation by Enzymes Containing Binuclear
Non-Heme Iron Clusters. Chem. Rev. 1996, 96, 2625-2658.

5. Cooley, R. B.; Arp, D. J.; Karplus, P. A. Evolutionary origin of a secondary structure: pi-
helices as cryptic but widespread insertional variations of alpha-helices that enhance
protein functionality. J. Mo. Biol. 2011, 404, 232-46.

6. Boal, A. K.; Cotruvo, J. A., Jr.; Stubbe, J.; Rosenzweig, A. C. Structural basis for
activation of class lb ribonucleotide reductase. Science 2010, 329, 1526-1530.

7. Gassner, G. T.; Lippard, S. J. Component interactions in the soluble methane
monooxygenase system from Methylococcus capsulatus (Bath). Biochemistry 1999, 38,
12768-12785.

84



8. Kopp, D. A.; Gassner, G. T.; Blazyk, J. L.; Lippard, S. J. Electron-transfer reactions of
the reductase component of soluble methane monooxygenase from Methylococcus
capsulatus (Bath). Biochemistry 2001, 40, 14932-14941.

9. Sobrado, P.; Lyle, K. S.; Kaul, S. P.; Turco, M. M.; Arabshahi, I.; Marwah, A.; Fox, B.
G. Identification of the binding region of the [2Fe-2S] ferredoxin in stearoyl-acyl carrier
protein desaturase: insight into the catalytic complex and mechanism of action.
Biochemistry 2006, 45, 4848-58.

10. Wu, C.-H.; Jiang, W.; Krebs, C.; Stubbe, J. YfaE, a ferredoxin involved in diferric-
tyrosyl radical maintenance in Escherichia coli ribonucleotide reductase. Biochemistry
2007, 46, 11577-11588.

11. Bailey, L. J.; McCoy, J. G.; Phillips, G. N., Jr.; Fox, B. G. Structural consequences of
effector protein complex formation in a diiron hydroxylase. Proc. Natl. Acad Sci. US.A.
2008, 105, 19194-8.

12. Dismukes, G. C. Manganese enzymes with dinuclear active sites. Chem. Rev. 1996, 96,
2909-2926.

13. Barynin, V. V.; Whittaker, M. M.; Antonyuk, S. V.; Lamzin, V. S.; Harrison, P. M.;
Artymiuk, P. J.; Whittaker, J. W. Crystal structure of manganese catalase from
Lactobacillusplantarum. Structure 2001, 9, 725-738.

14. Whittaker, M. M.; Barynin, V. V.; Igarashi, T.; Whittaker, J. W. Outer sphere
mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster core:
Mechanistic implications. Eur. J Biochem. 2003, 270, 1102-1116.

15. Jiang, W.; Yun, D.; Saleh, L.; Barr, E. W.; Xing, G.; Hoffart, L. M.; Maslak, M. A.;
Krebs, C.; Bollinger, J. M. J. A manganese(IV)/iron(III) cofactor in Chlamydia
trachomatis ribonucleotide reductase. Science 2007, 316, 1188-1191.

16. Andersson, C. S.; Hgbom, M. A Mycobacterium tuberculosis ligand-binding Mn/Fe
protein reveals a new cofactor in a remodeled R2-protein scaffold. Proc. Natl. Acad Sci.
US.A. 2009, 106, 5633-5638.

17. Hdgbom, M.; Galander, M.; Andersson, M.; Kolberg, M.; Hofbauer, W.; Lassmann, G.;
Nordlund, P.; Lendzian, F. Displacement of the tyrosyl radical cofactor in ribonucleotide
reductase obtained by single-crystal high-field EPR and 1.4-angstrom x-ray data. Proc.
Natl. Acad Sci. U S. A. 2003, 100, 3209-3214.

18. H5gbom, M.; Stenmark, P.; Voevodskaya, N.; McClarty, G.; Graslund, A.; Nordlund, P.
The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass.
Science 2004, 305, 245-248.

85



19. Dassama, L. M.; Boal, A. K.; Krebs, C.; Rosenzweig, A. C.; Bollinger, J. M., Jr.
Evidence that the P subunit of Chlamydia trachomatis ribonucleotide reductase is active
with the manganese ion of its manganese(IV)/iron(III) cofactor in site 1. J. Am. Chem.
Soc. 2012, 134, 2520-2523.

20. Cox, N.; Ogata, H.; Stolle, P.; Reijerse, E.; Auling, G.; Lubitz, W. A tyrosyl-
dimanganese coupled spin system is the native metalloradical cofactor of the R2F subunit
of the ribonucleotide reductase of Corynebacterium ammoniagenes. J. Am. Chem. Soc.
2010, 132, 11197-11213.

21. Andersson, C. S.; Ohrstr6m, M.; Popovid-Bijelid, A.; Graslund, A.; Stenmark, P.;
H6gbom, M. The manganese ion of the heteronuclear Mn/Fe cofactor in Chlamydia
trachomatis ribonucleotide reductase R2c is located at metal position 1. J. Am. Chem.
Soc. 2012, 134, 123-125.

22. Atkin, C. L.; Thelander, L.; Reichard, P.; Lang, G. Iron and free-radical in ribonucleotide
reductase - exchange of iron and Mdssbauer-spectroscopy of protein-B2 subunit of
Escherichia coli enzyme. J. Biol. Chem. 1973, 248, 7464-7472.

23. Jiang, W.; Xie, J.; Nergaard, H.; Bollinger, J. M., Jr.; Krebs, C. Rapid and quantitative
activation of Chlamydia trachomatis ribonucleotide reductase by hydrogen peroxide.
Biochemistry 2008, 47, 4477-4483.

24. Jordan, A.; Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 1998, 67, 71-
98.

25. Stubbe, J.; van der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 1998,
98, 705-762.

26. Nordlund, P.; Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 2006, 75,
681-706.

27. Xu, H.; Faber, C.; Uchiki, T.; Fairman, J. W.; Racca, J.; Dealwis, C. Structures of
eukaryotic ribonucleotide reductase I provide insights into dNTP regulation. Proc. Natl.
Acad Sci. US.A. 2006, 103, 4022-4027.

28. Kashlan, 0. B.; Scott, C. P.; Lear, J. D.; Cooperman, B. S. A comprehensive model for
the allosteric regulation of mammalian ribonucleotide reductase. Functional
consequences of ATP- and dATP-induced oligomerization of the large subunit.
Biochemistry 2002, 41, 462-474.

29. Rofougaran, R.; Vodnala, M.; Hofer, A. Enzymatically active mammalian ribonucleotide
reductase exists primarily as an a6f2 octamer. J Biol. Chem. 2006, 281, 27705-27711.

30. Rofougaran, R.; Crona, M.; Vodnala, M.; Sj6berg, B. M.; Hofer, A. Oligomerization
status directs activity regulation of the Escherichia coli class Ia ribonucleotide reductase.
J Biol. Chem. 2008, 353, 35310-35318.

86



31. Fairman, J. W.; Wijerathna, S. R.; Ahmad, M. F.; Xu, H.; Nakano, R.; Jha, S.;
Prendergast, J.; Welin, R. M.; Flodin, S.; Roos, A.; Nordlund, P.; Li, Z.; Walz, T.;
Dealwis, C. G. Structural basis for allosteric regulation of human ribonucleotide
reductase by nucleotide-induced oligomerization. Nat. Struct. Mol. Bio., 18, 316-22.

32. Ando, N.; Brignole, E. J.; Zimanyi, C. M.; Funk, M. A.; Yokoyama, K.; Asturias, F. J.;
Stubbe, J.; Drennan, C. L. Structural interconversions modulate activity of Escherichia
coli ribonucleotide reductase. Proc. Nad. Acad Sci. US.A. 2011, 108, 21046-51.

33. Rodionov, D. A.; Gelfand, M. S. Identification of a bacterial regulatory system for
ribonucleotide reductases by phylogenetic profiling. Trends Genet. 2005, 21, 385-389.

34. Grinberg, I.; Shteinberg, T.; Gorovitz, B.; Aharonowitz, Y.; Cohen, G.; Borovok, I. The
Streptomyces NrdR transcriptional regulator is a Zn ribbon/ATP cone protein that binds
to the promoter regions of class Ia and class II ribonucleotide reductase operons. J.
Bacteriol. 2006, 188, 7635-7644.

35. Torrents, E.; Grinberg, I.; Gorovitz-Harris, B.; Lundstrim, H.; Borovok, I.; Aharonowitz,
Y.; Sj5berg, B. M.; Cohen, G. NrdR controls differential expression of the Escherichia
coli ribonucleotide reductase genes. J Bacteriol. 2007, 189, 5012-5021.

36. Cotruvo, J. A., Jr.; Stubbe, J. Class I ribonucleotide reductases: Metallocofactor assembly
and repair in vitro and in vivo. Annu. Rev. Biochem. 2011, 80, 733-767.

37. Hoover, D. M.; Jarrett, J. T.; Sands, R. H.; Dunham, W. R.; Ludwig, M. L.; Matthews, R.
G. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its
physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation
from the cobalamin cofactor. Biochemistry 1997, 36, 127-138.

38. Barlow, T.; Eliasson, R.; Platz, A.; Reichard, P.; Sj5berg, B. M. Enzymic modification of
a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc. Nati. Acad
Sci. U.S.A. 1983, 80, 1492-1495.

39. Hristova, D.; Wu, C.-H.; Stubbe, J. Importance of the maintenance pathway in the
regulation of the activity of Escherichia coli ribonucleotide reductase. Biochemistry
2008, 47, 3989-3999.

40. E. coli class Ia RNR can also form higher order oligomers; binding of the negative
allosteric effector dATP to the N-terminal ATP cone domain (activity site) abrogates
RNR activity (Brown, N.C., Reichard, P. J. Mol. Biol. 1969, 46, 39-55), shown to be due
to formation of an a4p4 configuration via its activity site interacting with $2.2 The
formation of higher order oligomers in the class Ib RNR is unlikely given their lack of the
activity site.

41. Brown, N. C.; Reichard, P. Ribonucleoside diphosphate reductase : Formation of active
and inactive complexes of proteins B1 and B2. J. Mol. Biol. 1969, 46, 25-38.

87



42. Thelander, L. Physicochemical characterization of ribonucleoside diphosphate reductase
from Escherichia coli. J Biol. Chem. 1973, 248, 4591-601.

43. Seyedsayamdost, M. R.; Chan, C. T.; Mugnaini, V.; Stubbe, J.; Bennati, M. PELDOR
spectroscopy with DOPA-p2 and NH2Y-a2s: distance measurements between residues
involved in the radical propagation pathway of E. coli ribonucleotide reductase. J. Am.
Chem. Soc. 2007, 129, 15748-9.

44. Uppsten, M.; Farnegirdh, M.; Jordan, A.; Eliasson, R.; Eklund, H.; Uhlin, U. Structure of
the large subunit of class Ib ribonucleotide reductase from Salmonella typhimurium and
its complexes with allosteric effectors. J. Mol. Biol. 2003, 330, 87-97.

45. Nordlund, P.; Eklund, H. Structure and function of the Escherichia coli ribonucleotide
reductase protein R2. J. Mol. Biol. 1993, 232, 123-164.

46. Crona, M.; Torrents, E.; Rohr, A. K.; Hofer, A.; Furrer, E.; Tomter, A. B.; Andersson, K.
K.; Sahlin, M.; Sjbberg, B. M. NrdH-redoxin mediates high enzyme activity in
manganese-reconstituted ribonucleotide reductase from Bacillus anthracis. J Biol. Chem.
2011, 286, 33053-33060.

47. Eliasson, R.; Pontis, E.; Jordan, A.; Reichard, P. Allosteric regulation of the third
ribonucleotide reductase (NrdEF enzyme) from enterobacteriaceae. J Biol. Chem. 1996,
271, 26582-7.

48. Other sucrose gradient centrifugation and gel fitration studies have suggested an ap2
subunit composition of the enzyme,5 2,1 49 but these experiments were carried out without
substrates/effectors. Binding of effector at the specificity site would be expected to drive
a2 formation and thus an a2p2 active complex.

49. Uhlin, U.; Eklund, H. Structure of ribonucleotide reductase protein R1. Nature 1994, 370,
533-539.

50. Nordlund, P.; Sj6berg, B. M.; Eklund, H. Three-dimensional structure of the free radical
protein of ribonucleotide reductase. Nature 1990, 345, 593-8.

51. Sj5berg, B. M.; Reichard, P.; Graslund, A.; Ehrenberg, A. Nature of free-radical in
ribonucleotide reductase from Escherichia coli. J Biol. Chem. 1977, 252, 536-541.

52. Willing, A.; Follmann, H.; Auling, G. Ribonucleotide reductase of Brevibacterium
ammoniagenes is a manganese enzyme. Eur. J. Biochem. 1988, 170, 603-611.

53. Zhang, Y.; Stubbe, J. Bacillus subtilis class Ib ribonucleotide reductase is a
dimanganese(III)-tyrosyl radical enzyme. Biochemistry 2011, 50, 5615-5623.

54. Martin, J. E.; Imlay, J. A. The alternative aerobic ribonucleotide reductase of Escherichia
coli, NrdEF, is a manganese-dependent enzyme that enables cell replication during
periods of iron starvation. Mol. Microbiol. 2011, 80, 319-334.

88



55. Licht, S.; Stubbe, J. In Comprehensive Natural Products Chemistry; Poulter, C. D., Ed.;
Elsevier Science: New York, 1999; Vol. 5, p 163-203.

56. Licht, S.; Gerfen, G. J.; Stubbe, J. Thiyl radicals in ribonucleotide reductases. Science
1996, 271, 477-81.

57. Stubbe, J. Ribonucleotide reductases in the twenty-first century. Proc. Natl. Acad Sci. U
S. A. 1998, 95, 2723-2724.

58. Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Radical initiation in the class I
ribonucleotide reductase: Long-range proton-coupled electron transfer? Chem. Rev. 2003,
103, 2167-2201.

59. Reece, S. Y.; Hodgkiss, J. M.; Stubbe, J.; Nocera, D. G. Proton-coupled electron transfer:
the mechanistic underpinning for radical transport and catalysis in biology. Philos. Trans.
Royal Soc. B 2006, 361, 1351-1364.

60. Jiang, W.; Xie, J.; Varano, P. T.; Krebs, C.; Bollinger, J. M., Jr. Two distinct mechanisms
of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by
hydroxyurea: Implications for the protein gating of intersubunit electron transfer.
Biochemistry 2010, 49, 5340-5349.

61. Ge, J.; Yu, G.; Ator, M. A.; Stubbe, J. Pre-steady-state and steady-state kinetic analysis
of E. coli class I ribonucleotide reductase. Biochemistry 2003, 42, 10017-10083.

62. Seyedsayamdost, M. R.; Yee, C. S.; Reece, S. Y.; Nocera, D. G.; Stubbe, J. pH rate
profiles of FY 356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: Evidence
that Y3 56 is a redox-active amino acid along the radical propagation pathway. J Am.
Chem. Soc. 2006, 128, 1562-1568.

63. Seyedsayamdost, M. R.; Xie, J.; Chan, C. T. Y.; Schultz, P. G.; Stubbe, J. Site-specific
insertion of 3-aminotyrosine into the a2 subunit of E. coli ribonucleotide reductase:
Direct evidence for involvement of Y730 and Y731 in radical propagation. J. Am. Chem.
Soc. 2007, 129, 15060-15071.

64. Yokoyama, K.; Uhlin, U.; Stubbe, J. A hot oxidant, 3-NO 2Y12 2 radical, unmasking
conformational gating in ribonucleotide reductase. J Am. Chem. Soc. 2010, 132, 15368-
15379.

65. Minnihan, E. C.; Seyedsayamdost, M. R.; Uhlin, U.; Stubbe, J. Kinetics of radical
intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted
Escherichia coli ribonucleotide reductases. J Am. Chem. Soc., 133, 9430-40.

66. Minnihan, E. C.; Young, D. D.; Schultz, P. G.; Stubbe, J. Incorporation of fluorotyrosines
into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase.
J Am. Chem. Soc. 2011, 133, 15942-15945.

89



67. Lundin, D.; Torrents, E.; Poole, A. M.; Sjdberg, B. M. RNRdb, a curated database of the
universal enzyme family ribonucleotide reductase, reveals a high level of misannotation
in sequences deposited to Genbank. BMC Genomics 2009, 10, 589-596.

68. Ehrenberg, A.; Reichard, P. Electron spin resonance of the iron-containing protein B2
from ribonucleotide reductase. J. Biol. Chem. 1972, 247, 3485-8.

69. Larsson, A.; Sjdberg, B. M. Identification of the stable free radical tyrosine residue in
ribonucleotide reductase. EMBO J 1986, 5, 203 7-2040.

70. Bollinger, J. M., Jr. On the chemical mechanism of assembly of the tyrosyl radical-
dinuclear iron cluster cofactor of E. coli ribonucleotide reductase. Ph.D., Massachusetts
Institute of Technology, 1993.

71. Gerez, C.; Fontecave, M. Reduction of the small subunit of Escherichia coli
ribonucleotide reductase by hydrazines and hydroxylamines. Biochemistry 1992, 31, 780-
786.

72. Petersson, L.; Graslund, A.; Ehrenberg, A.; Sjoberg, B. M.; Reichard, P. The iron center
in ribonucleotide reductase from Escherichia coli. J Biol. Chem. 1980, 255, 6706-12.

73. Bollinger, J. M., Jr.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J.
Use of rapid kinetics methods to study the assembly of the diferric-tyrosyl radical
cofactor of Escherichia coli ribonucleotide reductase. Methods Enzymol. 1995, 258, 278-
303.

74. Bender, C. J.; Sahlin, M.; Babcock, G. T.; Barry, B. A.; Chandrashekar, T. K.; Salowe, S.
P.; Stubbe, J.; Lindstroem, B.; Petersson, L. An ENDOR study of the tyrosyl free radical
in ribonucleotide reductase from Escherichia coli. J Am. Chem. Soc. 1989, 111, 8076-
8083.

75. Lendzian, F. Structure and interactions of amino acid radicals in class I ribonucleotide
reductase studied by ENDOR and high-field EPR spectroscopy. Biochim. Biophys. Acta
2005, 1707, 67-90.

76. Sjoberg, B. M.; Loehr, T. M.; Sanders-Loehr, J. Raman spectral evidence for a mu-oxo
bridge in the binuclear iron center of ribonucleotide reductase. Biochemistry 1982, 21,
96-102.

77. Sahlin, M.; Petersson, L.; Graslund, A.; Ehrenberg, A.; Sjiberg, B. M.; Thelander, L.
Magnetic interaction between the tyrosyl free radical and the antiferromagnetically
coupled iron center in ribonucleotide reductase. Biochemistry 1987, 26, 5541-5548.

78. Voegtli, W. C.; Sommerhalter, M.; Saleh, L.; Baldwin, J.; Bollinger, J. M., Jr.;
Rosenzweig, A. C. Variable coordination geometries at the diiron(II) active site of
ribonucleotide reductase R2. J. Am. Chem. Soc. 2003, 125, 15822-30.

90



79. Eriksson, M.; Jordan, A.; Eklund, H. Structure of Salmonella typhimurium nrdF
ribonucleotide reductase in its oxidized and reduced forms. Biochemistry 1998, 37,
13359-13369.

80. Yang, Y.-S.; Baldwin, J.; Ley, B. A.; Bollinger, J. M., Jr.; Solomon, E. I. Spectroscopic
and electronic structure description of the reduced binuclear non-heme iron active site in
ribonucleotide reductase from E. coli: comparison to reduced A9 desaturase and electronic
structure contributions to differences in 02 reactivity. J Am. Chem. Soc. 2000, 122, 8495-
8510.

81. Bollinger, J. M., Jr.; Chen, S.; Parkin, S. E.; Mangravite, L. M.; Ley, B. A.; Edmondson,
D. E.; Huynh, B. H. Differential iron(II) affinity of the sites of the diiron cluster in
protein R2 of Escherichia coli ribonucleotide reductase: tracking the individual sites
through the 02 activation sequence. J Am. Chem. Soc. 1997, 119, 5976-5977.

82. Pierce, B. S.; Hendrich, M. P. Local and global effects of metal binding within the small
subunit of ribonucleotide reductase. J Am. Chem. Soc. 2005, 127, 3613-3623.

83. Kauppi, B.; Nielsen, B. B.; Ramaswamy, S.; Larsen, I. K.; Thelander, M.; Thelander, L.;
Eklund, H. The three-dimensional structure of mammalian ribonucleotide reductase
protein R2 reveals a more-accessible iron-radical site than Escherichia coli R2. J. Mol.
Biol. 1996, 262, 706-20.

84. Bollinger, J. M., Jr.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J.
Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli
ribonucleotide reductase. 3. Kinetics of the limiting Fe reaction by optical, EPR, and
M6ssbauer spectroscopies. J Am. Chem. Soc. 1994, 116, 8024-8032.

85. Elgren, T. E.; Lynch, J. B.; Juarez-Garcia, C.; Munck, E.; Sjoberg, B. M.; Que, L., Jr.
Electron transfer associated with oxygen activation in the B2 protein of ribonucleotide
reductase from Escherichia coli. J Biol. Chem. 1991, 266, 19265-8.

86. Ochiai, E.-I.; Mann, G. J.; Graslund, A.; Thelander, L. Tyrosyl free radical formation in
the small subunit of mouse ribonucleotide reductase. J. Biol. Chem. 1990, 265, 15758-
15761.

87. Stubbe, J.; Riggs-Gelasco, P. Harnessing free radicals: Formation and function of the
tyrosyl radical in ribonucleotide reductase. Trends Biochem. Sci. 1998, 23, 438-443.

88. Bollinger, J. M., Jr.; Tong, W. H.; Ravi, N.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J.
Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli
ribonucleotide reductase. 2. Kinetics of the excess Fe 2 reaction by optical, EPR, and
Mossbauer spectroscopies. J Am. Chem. Soc. 1994, 116, 8015-8023.

89. Yun, D.; Garcia-Serres, R.; Chicalese, B. M.; An, Y. H.; Huynh, B. H.; Bollinger, J. M.,
Jr. (p.-1,2-peroxo)diiron(III/III) complex as a precursor to the diiron(III/IV) intermediate
X in the assembly of the iron-radical cofactor of ribonucleotide reductase from mouse.
Biochemistry 2007, 46, 1925-32.

91



90. Sturgeon, B. E.; Burdi, D.; Chen, S.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J.;
Hoffman, B. M. Reconsideration of X, the diiron intermediate formed during cofactor
assembly in E. coli ribonucleotide reductase. J Am. Chem. Soc. 1996, 118, 7551-7557.

91. Bollinger, J. M., Jr.; Edmondson, D. E.; Huynh, B. H.; Filley, J.; Norton, J. R.; Stubbe, J.
Mechanism of assembly of the tyrosyl radical dinuclear iron cluster cofactor of
ribonucleotide reductase. Science 1991, 253, 292-298.

92. Brown, N. C.; Eliasson, R.; Reichard, P.; Thelander, L. Spectrum and iron content of
protein B2 from ribonucleoside diphosphate reductase. Eur. J. Biochem. 1969, 9, 512-8.

93. Tong, W. H.; Chen, S.; Lloyd, S. G.; Edmondson, D. E.; Huynh, B. H.; Stubbe, J.
Mechanism of assembly of the diferric cluster-tyrosyl radical cofactor of Escherichia coli
ribonucleotide reductase from the diferrous form of the R2 subunit. J Am. Chem. Soc.
1996, 118, 2107-2108.

94. Yun, D.; Krebs, C.; Gupta, G. P.; Iwig, D. F.; Huynh, B. H.; Bollinger, J. M., Jr. Facile
electron transfer during formation of cluster X and kinetic competence of X for tyrosyl
radical production in protein R2 of ribonucleotide reductase from mouse. Biochemistry
2002, 41, 981-90.

95. Ravi, N.; Bollinger, J. M., Jr.; Huynh, B. H.; Edmondson, D. E.; Stubbe, J. Mechanism of
assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli ribonucleotide
reductase. 1. Mbssbauer characterization of the diferric radical precursor. J Am. Chem.
Soc. 1994, 116, 8007-8014.

96. Shanmugam, M.; Doan, P. E.; Lees, N. S.; Stubbe, J.; Hoffman, B. M. Identification of
protonated oxygenic ligands of ribonucleotide reductase intermediate X. J. Am. Chem.
Soc. 2009, 131, 3370-3376.

97. Baldwin, J.; Krebs, C.; Ley, B. A.; Edmondson, D. E.; Huynh, B. H.; Bollinger, J. M., Jr.
Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of
Escherichia coli ribonucleotide reductase. 1. Evidence for a transient tryptophan radical.
J Am. Chem. Soc. 2000, 122, 12195-12206.

98. Mitid, N.; Clay, M. D.; Saleh, L.; Bollinger, J. M.; Solomon, E. I. Spectroscopic and
electronic structure studies of intermediate X in ribonucleotide reductase R2 and two
variants: A description of the Fe(IV)-oxo Bond in the Fe(III)-O-Fe(IV) Dimer. J Am.
Chem. Soc. 2007, 129, 9049-9065.

99. Han, W.-G.; Liu, T. Q.; Lovell, T.; Noodleman, L. Density functional theory study of
Fe(IV) d-d optical transitions in active-site models of class I ribonucleotide reductase
intermediate X with vertical self-consistent reaction field methods. Inorg. Chem. 2006,
45, 8533-8542.

92



100. Burdi, D.; Willems, J. P.; Riggs-Gelasco, P.; Antholine, W. E.; Stubbe, J.; Hoffman, B.
M. The core structure of X generated in the assembly of the diiron cluster of
ribonucleotide reductase: 1702 and H2

170 ENDOR. J. Am. Chem. Soc. 1998, 120, 12910-
12919.

101. Baik, M. H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J. Mechanistic studies on the
hydroxylation of methane by methane monooxygenase. J Am. Chem. Soc. 2003, 103,
2385-2419.

102. Blazyk, J. L.; Gassner, G. T.; Lippard, S. J. Intermolecular electron-transfer reactions in
soluble methane monooxygenase: A role for hysteresis in protein function. J Am. Chem.
Soc. 2005, 127, 17364-17376.

103. Outten, C. E.; O'Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins
controlling zinc homeostasis. Science 2001, 292, 2488-2492.

104. Philpott, C. C. Coming into view: eukaryotic iron chaperones and intracellular iron
delivery. J. Biol. Chem. 2012, 287, 13518-13523.

105. Li, H.; Mapolelo, D. T.; Dingra, N. N.; Naik, S. G.; Lees, N. S.; Hoffman, B. M.; Riggs-
Gelasco, P. J.; Huynh, B. H.; Johnson, M. K.; Outten, C. E. The yeast iron regulatory
proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster
with cysteinyl and histidyl ligation. Biochemistry 2009, 48, 9569-9581.

106. Mihlenhoff, U.; Netz, D. J. A.; Molik, S.; Richter, N.; Uzarska, M.; Berthet, J. G.;
Seubert, A.; Zhang, Y.; Stubbe, J.; Pierrel, F.; Herrero, E.; Lillig, C. H.; Lill, R. Cytosolic
monothiol glutaredoxins function in intracellular iron sensing and trafficking via their
bound iron-sulfur cluster. Cell Metab. 2010, 12, 373-3 85.

107. Wu, C.-H. In vivo cofactor biosynthesis and maintenance in the class Ia ribonucleotide
reductase small subunit of Escherichia coli. Ph.D., Massachusetts Institute of
Technology, 2009.

108. Archibald, F. S.; Fridovich, I. Manganese and defenses against oxygen toxicity in
Lactobacillus plantarum. J Bacteriol. 1981, 145, 442-451.

109. Daly, M. J.; Gaidamakova, E. K.; Matrosova, V. Y.; Vasilenko, A.; Zhai, M.;
Venkateswaran, A.; Hess, M.; Omelchenko, M. V.; Kostandarithes, H. M.; Makarova, K.
S.; Wackett, L. P.; Fredrickson, J. K.; Ghosal, D. Accumulation of Mn(II) in Deinococcus
radiodurans facilitates gamma-radiation resistance. Science 2004, 306, 1025-1028.

110. Jordan, A.; Aragall, E.; Gibert, I.; Barb6, J. Promoter identification and expression
analysis of Salmonella typhimurium and Escherichia coli nrdEF operons encoding one of
two class I ribonucleotide reductases present in both bacteria Mol. Microbiol. 1996, 19,
777-790.

93



111. Vassinova, N.; Kozyrev, D. A method for direct cloning of Fur-regulated genes:
identification of seven new Fur-regulated loci in Escherichia coli. Microbiology 2000,
146, 3171-3182.

112. Panosa, A.; Roca, I.; Gibert, I. Ribonucleotide reductases of Salmonella Typhimurium:
Transcriptional regulation and differential role in pathogenesis. PLoS ONE 2010, 5,
el 1328.

113. McHugh, J. P.; Rodriguez-Quifiones, F.; Abdul-Tehrani, H.; Svistunenko, D. A.; Poole,
R. K.; Cooper, C. E.; Andrews, S. C. Global iron-dependent gene regulation in
Escherichia coli. A new mechanism for iron homeostasis. J. Biol. Chem. 2003, 278,
29478-29486.

114. Gon, S.; Faulkner, M. J.; Beckwith, J. In vivo requirement for glutaredoxins and
thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli.
Antioxid Redox Signal. 2006, 8, 73 5-742.

115. Monje-Casas, F.; Jurado, J.; Prieto-Alamo, M. J.; Holmgren, A.; Pueyo, C. Expression
analysis of the nrdHIEF operon from Escherichia coli. Conditions that trigger the
transcript level in vivo. J. Biol. Chem. 2001, 276, 18031-18037.

116. Varghese, S.; Wu, A.; Park, S.; Imlay, K. R. C.; Imlay, J. A. Submicromolar hydrogen
peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli.
Mol. Microbiol. 2007, 64, 822-830.

117. Outten, F. W.; Djaman, 0.; Storz, G. A suf operon requirement for Fe-S cluster assembly
during iron starvation in Escherichia coli. Mol. Microbiol. 2004, 52, 861-72.

118. Yeo, W. S.; Lee, J. H.; Lee, K. C.; Roe, J. H. IscR acts as an activator in response to
oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol. Microbiol.
2006, 61, 206-18.

119. Jang, S.; Imlay, J. A. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur
assembly system, and OxyR induces the Suf system to compensate. Mol. Microbiol., 78,
1448-67.

120. Jordan, A.; Pontis, E.; Atta, M.; Krook, M.; Gibert, I.; Barb6, J.; Reichard, P. A second
class I ribonucleotide reductase in Enterobacteriaceae: Characterization of the
Salmonella typhimurium enzyme. Proc. Natl. Acad Sci. U.S.A. 1994, 91, 12892-12896.

121. Willing, A.; Follmann, H.; Auling, G. Nucleotide and thioredoxin specificity of the
manganese ribonucleotide reductase from Brevibacterium ammoniagenes. Eur. J.
Biochem. 1988, 175, 167-173.

122. Torrents, E.; Roca, I.; Gibert, I. Corynebacterium ammoniagenes class lb ribonucleotide
reductase: transcriptional regulation of an atypical genomic organization in the nrd
cluster. Microbiology 2003, 149, 1011-20.

94



123. Yang, F.; Curran, S. C.; Li, L.-S.; Avarbock, D.; Graf, J. D.; Chua, M.-M.; Lu, G.; Salem,
J.; Rubin, H. Characterization of two genes encoding the Mycobacterium tuberculosis
ribonucleotide reductase small subunit. J. Bacteriol. 1997, 179, 6408-6415.

124. Mowa, M. B.; Warner, D. F.; Kaplan, G.; Kana, B. D.; Mizrahi, V. Function and
regulation of class I ribonucleotide reductase-encoding genes in mycobacteria. J.
Bacteriol. 2009, 191, 985-995.

125. Roca, I.; Torrents, E.; Sahlin, M.; Gibert, I.; Sj~berg, B. M. NrdI essentiality for class Ib
ribonucleotide reduction in Streptococcus pyogenes. J Bacteriol. 2008, 190, 4849-4858.

126. Jordan, A.; Pontis, E.; Aslund, F.; Hellman, U.; Gibert, I.; Reichard, P. The
ribonucleotide reductase system of Lactococcus lactis. Characterization of an NrdEF
enzyme and a new electron transport protein. J Biol. Chem. 1996, 271, 8779-8785.

127. Jordan, A.; Aslund, F.; Pontis, E.; Reichard, P.; Holmgren, A. Characterization of
Escherichia coli NrdH. A glutaredoxin-like protein with a thioredoxin-like activity
profile. J. Biol. Chem. 1997, 272,18044-18050.

128. Stehr, M.; Schneider, G.; Aslund, F.; Holmgren, A.; Lindqvist, Y. Structural basis for the
thioredoxin-like activity profile of the glutaredoxin-like NrdH-redoxin from Escherichia
coli. J Biol. Chem. 2001, 276, 35836-35841.

129. Rabinovitch, I.; Yanku, M.; Yeheskel, A.; Cohen, G.; Borovok, I.; Aharonowitz, Y.
Staphylococcus aureus NrdH-redoxin is a reductant of the class lb ribonucleotide
reductase. J. Bacteriol. 2010, 192, 4963-4972.

130. Hartig, E.; Hartmann, A.; Schatzle, M.; Albertini, A. M.; Jahn, D. The Bacillus subtilis
nrdEF genes, encoding a class lb ribonucleotide reductase, are essential for aerobic and
anaerobic growth. Appl. Environ. Microbiol. 2006, 72, 5260-5265.

131. Johansson, R.; Torrents, E.; Lundin, D.; Sprenger, J.; Sahlin, M.; Sjiberg, B. M.; Logan,
D. T. High-resolution crystal structures of the flavoprotein NrdI in oxidized and reduced
states - an unusual flavodoxin. FEBSJ 2010, 277, 4265-4277.

132. Jordan, A.; Gibert, I.; Barb6, J. Cloning and sequencing of the genes from Salmonella
typhimurium encoding a new bacterial ribonucleotide reductase. J Bacteriol. 1994, 176,
3420-3427.

133. Allard, P.; Barra, A. L.; Andersson, K. K.; Schmidt, P. P.; Atta, M.; Graslund, A.
Characterization of a new tyrosyl free radical in Salmonella typhimurium ribonucleotide
reductase with EPR at 9.45 and 245 GHz. J. Am. Chem. Soc. 1996, 118, 895-896.

134. Huque, Y.; Fieschi, F.; Torrents, E.; Gibert, I.; Eliasson, R.; Reichard, P.; Sahlin, M.;
Sj6berg, B. M. The active form of the R2F protein of class Ib ribonucleotide reductase
from Corynebacterium ammoniagenes is a diferric protein. J Biol. Chem. 2000, 275,
25365-25371.

95



135. Systematic studies of reconstitution of NrdF with diferric-tyrosyl radical cofactor have
not been carried out in any system to date, to our knowledge.

136. Torrents, E.; Sahlin, M.; Biglino, D.; Graslund, A.; Sjberg, B. M. Efficient growth
inhibition of Bacillus anthracis by knocking out the ribonucleotide reductase tyrosyl
radical. Proc. Natl. Acad Sci. U.S.A. 2005, 102, 17946-17951.

137. Uppsten, M.; Davis, J.; Rubin, H.; Uhlin, U. Crystal structure of the biologically active
form of class lb ribonucleotide reductase small subunit from Mycobacterium
tuberculosis. FEBS Lett. 2004, 569, 117-122.

138. Hdgbom, M.; Huque, Y.; Sjaberg, B. M.; Nordlund, P. Crystal structure of the di-
iron/radical protein of ribonucleotide reductase from Corynebacterium ammoniagenes.
Biochemistry 2002, 41, 1381-1389.

139. Liu, A.; Ptsch, S.; Davydov, A.; Barra, A.-L.; Rubin, H.; Graslund, A. The tyrosyl free
radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is
located in a rigid hydrophobic pocket. Biochemistry 1998, 37, 16369-163 77.

140. Boal, A. K.; Cotruvo, J. A., Jr.; Stubbe, J.; Rosenzweig, A. C. The dimanganese(II) site
of Bacillus subtilis class Ib ribonucleotide reductase. Biochemistry 2012, 51, 3861-3871.

141. Oka, T.; Udagawa, K.; Kinoshita, S. Unbalanced growth death due to depletion of Mn 2+

in Brevibacterium ammoniagenes. J Bacteriol. 1968, 96, 1760-1767.

142. Auling, G.; Thaler, M.; Diekmann, H. Parameters of unbalanced growth and reversible
inhibition of deoxyribonucleic acid synthesis in Brevibacterium ammoniagenes ATCC
6872 induced by depletion of Mn2+. Inhibitor studies on the reversibility of
deoxyribonucleic acid synthesis. Arch. Microbiol. 1980, 127, 105-114.

143. Ph6nzig, J.; Auling, G. Manganese deficiency impairs ribonucleotide reduction but not
DNA replication in Arthrobacter species. Arch. Microbiol. 1987, 146, 396-401.

144. Schimpff-Weiland, G.; Follmann, H.; Auling, G. A new manganese-activated
ribonucleotide reductase found in gram-positive bacteria. Biochem. Biophys. Res.
Commun. 1981, 102, 1276-1282.

145. One issue appears to be that the purification buffers contained dithiothreitol (DTT),
presumably in an effort to maintain active NrdE; this probably led to reduction of a
significant portion of the Y- over the lengthy purification, making its detection extremely
difficult.

146. Wieghardt, K.; Bossek, U.; Ventur, D.; Weiss, J. Assembly and structural
characterization of binuclear pt-oxo-di-p -acetato bridged complexes of manganese(III) -
Analogs of the di-iron(III) center in hemerythrin J Chem. Soc. Chem. Commun. 1985,
1985, 347-349.

96



147. Sheats, J. E.; Czernuszewicz, R. S.; Dismukes, G. C.; Rheingold, A. L.; Petrouleas, V.;
Stubbe, J.; Armstrong, W. H.; Beer, R. H.; Lippard, S. J. Binuclear manganese(III)
complexes of potential biological signifcance. J. Am. Chem. Soc. 1987, 109, 1435-1444.

148. Similar work by Auling and coworkers showed that Mn limitation also impaired growth
of B. subtilis and partial purification of NrdF from that organism suggested the presence
of Mn (Mohamed, S.F. et al. BioFactors 1998, 7, 337-344).

149. Fieschi, F.; Torrents, E.; Toulokhonova, L.; Jordan, A.; Hellman, U.; Barbd, J.; Gibert, I.;
Karlsson, M.; Sj6berg, B. M. The manganese-containing ribonucleotide reductase of
Corynebacterium ammoniagenes is a class lb enzyme. J. Biol. Chem. 1998, 273, 4329-
4337.

150. Khangulov, S. V.; Barynin, V. V.; Antonyuk-Barynina, S. V. Manganese-containing
catalase from Thermus thermophilus peroxide-induced redox transformation of
manganese ions in presence of specific inhibitors of catalase activity. Biochim. Biophys.
Acta 1990, 1020, 25-33.

151. Griepenburg, U.; Lassmann, G.; Auling, G. Detection of a stable free radical in the B2
subunit of the manganese ribonucleotide reductase (Mn-RRase) of Corynebacterium
ammoniagenes. Free Radic. Res. 1996, 26, 473-481.

152. Tomter, A. B.; Zoppellaro, G.; Bell, C. B., III; Barra, A.-L.; Andersen, N. H.; Solomon,
E. I.; Andersson, K. K. Spectroscopic studies of the iron and manganese reconstituted
tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein. PLoS ONE 2012,
7, e33436.

153. Roshick, C.; Iliffe-Lee, E. R.; McClarty, G. Cloning and characterization of
ribonucleotide reductase from Chlamydia trachomatis. J. Biol. Chem. 2000, 275, 38111-
38119.

154. H6gbom, M. The manganese/iron-carboxylate proteins: what is what, where are they, and
what can the sequences tell us? J Biol. Inorg. Chem. 2010, 15, 339-349.

155. Rosenzweig, A. C.; Brandstetter, H.; Whittington, D. A.; Nordlund, P.; Lippard, S. J.;
Frederick, C. A. Crystal structures of the methane monooxygenase hydroxylase from
Methylococcus capsulatus (Bath): Implications for substrate gating and component
interactions. Proteins 1997, 29, 141-152.

156. Voevodskaya, N.; Lendzian, F.; Graslund, A. A stable Fem-Fel replacement of tyrosyl
radical in a class I ribonucleotide reductase. Biochem. Biophys. Res. Commun. 2005, 330,
1213-1216.

157. Voevodskaya, N.; Narvaez, A.-J.; Domkin, V.; Torrents, E.; Thelander, L.; Graslund, A.
Chlamydial ribonucleotide reductase: Tyrosyl radical function in catalysis replaced by the
Fem-Felv cluster. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 9850-9854.

97



158. Roos, K.; Siegbahn, P. E. M. Density functional theory study of the manganese-
containing ribonucleotide reductase from Chlamydia trachomatis: Why manganese is
needed in the active complex Biochemistry 2009, 48, 1878-1887.

159. Jiang, W.; Yun, D.; Saleh, L.; Bollinger, J. M., Jr.; Krebs, C. Formation and function of
the manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase.
Biochemistry 2008, 47, 13736-13744.

160. Younker, J. M.; Krest, C. M.; Jiang, W.; Krebs, C.; Bollinger, J. M., Jr.; Green, M. T.
Structural analysis of the Mn(IV)/Fe(III) cofactor of Chlamydia trachomatis
ribonucleotide reductase by extended x-ray absorption fine structure spectroscopy and
density functional theory calculations. J Am. Chem. Soc. 2008, 130, 15022-15027.

161. Jiang, W.; Bollinger, J. M., Jr.; Krebs, C. The active form of Chlamydia trachomatis
ribonucleotide reductase R2 protein contains a heterodinuclear Mn(IV)/Fe(III) cluster
with S= 1 ground state. J. Am. Chem. Soc. 2007, 129, 7504-7505.

162. Bollinger, J. M. J.; Jiang, W.; Green, M. T.; Krebs, C. The manganese(IV)/iron(III)
cofactor of Chlamydia trachomatis ribonucleotide reductase: structure, assembly, radical
initiation, and evolution. Curr. Opin. Struct. Biol. 2008, 18, 650-657.

163. Pierce, B. S.; Elgren, T. E.; Hendrich, M. P. Mechanistic implications for the formation
of the diiron cluster in ribonucleotide reductase provided by quantitative EPR
spectroscopy. J. Am. Chem. Soc. 2003, 125, 8748-8759.

164. Other computational studies of the Noodleman group proposed, by contrast, that site 2
has the higher affinity for MnII, therefore suggesting that Mn occupies site 2 and Fe site
1 in the active cofactor (Han, W.-G. et al. Inorg. Chem. 2010, 49, 7266-728 1).

165. Jiang, W.; Hoffart, L. M.; Krebs, C.; Bollinger, J. M., Jr. A manganese(IV)/iron(IV)
intermediate in assembly of the manganese(IV)/iron(III) cofactor of Chlamydia
trachomatis ribonucleotide reductase. Biochemistry 2007, 46, 8709-8716.

166. Jiang, W.; Saleh, L.; Barr, E. W.; Xie, J.; Gardner, M. M.; Krebs, C.; Bollinger, J. M., Jr.
Branched activation- and catalysis-specific pathways for electron relay to the
manganese/iron cofactor in ribonucleotide reductase from Chlamydia trachomatis.
Biochemistry 2008, 47, 8477-8484.

167. Sahlin, M.; Sjdberg, B. M.; Backes, G.; Loehr, T.; Sanders-Loehr, J. Activation of the
iron-containing B2 protein of ribonucleotide reductase by hydrogen peroxide. Biochem.
Biophys. Res. Commun. 1990, 167, 813-818.

168. Fritscher, J.; Artin, E.; Wnuk, S.; Bar, G.; Robblee, J. H.; Kacprzak, S.; Kaupp, M.;
Griffin, R. G.; Bennati, M.; Stubbe, J. Structure of the nitrogen-centered radical formed
during inactivation of E. coli ribonucleotide reductase by 2'-azido-2'-deoxyuridine-5'-
diphosphate: trapping of the 3'-ketonucleotide. J. Am. Chem. Soc. 2005, 127, 7729-38.

98



169. Gaudu, P.; Niviere, V.; Petillot, Y.; Kauppi, B.; Fontecave, M. The irreversible
inactivation of ribonucleotide reductase from Escherichia coli by superoxide radicals.
FEBSLett. 1996, 387, 137-140.

170. Roy, B.; Lepoivre, M.; Henry, Y.; Fontecave, M. Inhibition of ribonucleotide reductase
by nitric oxide derived from thionitrites: reversible modifications of both subunits.
Biochemistry 1995, 34, 5411-5418.

171. Anjem, A.; Varghese, S.; Imlay, J. A. Manganese import is a key element of the OxyR
response to hydrogen peroxide in Escherichia coli. Mol. Microbiol. 2009, 72, 844-858.

172. Johnson, D. C.; Dean, D. R.; Smith, A. D.; Johnston, M. K. Structure, function, and
formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 2005, 74, 247-281.

173. Lill, R.; Mthlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms,
connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669-700.

174. Bdck, A.; King, P. W.; Blokesch, M.; Posewitz, M. C. Maturation of hydrogenases. Adv.
Microb. Physiol. 2006, 51, 1-71.

175. Mulder, D. W.; Shepard, E. M.; Meuser, J. E.; Joshi, N.; King, P. W.; Posewitz, M. C.;
Broderick, J. B.; Peters, J. W. Insights into [FeFe]-hydrogenase structure, mechanism,
and maturation. Structure 2011, 19, 1038-52.

176. Rajagopalan, P. T. R.; Pei, D. Oxygen-mediated inactivation of peptide deformylase. J.
Biol. Chem. 1998, 273, 22305-223 10.

177. Kehl-Fie, T. E.; Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and
zinc. Curr. Opin. Chem. Biol. 2010, 14, 218-224.

178. Balasubramanian, R.; Smith, S. M.; Rawat, S.; Yatsunyk, L. A.; Stemmler, T. L.;
Rosenzweig, A. C. Oxidation of methane by a biological dicopper centre. Nature, 465,
115-9.

179. Krebs, C.; Matthews, M. L.; Jiang, W.; Bollinger, J. M., Jr. AurF from Streptomyces
thioluteus and a possible new family of manganese/iron oxygenases. Biochemistry 2007,
46, 10413-8.

180. Choi, Y. S.; Zhang, H.; Brunzelle, J. S.; Nair, S. K.; Zhao, H. In vitro reconstitution and
crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin
biosynthesis. Proc. Natl. Acad. Sci. USA. 2008, 105, 6858-63.

181. Beyer, W. F., Jr.; Fridovich, I. In vivo competition between iron and manganese for
occupancy of the active site region of the manganese superoxide dismutase of
Escherichia coli. J Biol. Chem. 1991, 266, 303-308.

182. Tottey, S.; Waldron, K. J.; Firbank, S. J.; Reale, B.; Bessant, C.; Sato, K.; Cheek, T. R.;
Gray, J.; Banfield, M. J.; Dennison, C.; Robinson, N. J. Protein-folding location can

99



regulate manganese-binding versus copper- or zinc-binding. Nature 2008, 455, 1138-
1142.

183. Rae, T. D.; Schmidt, P. J.; Pufhal, R. A.; Culotta, V. C.; O'Halloran, T. V. Undetectable
intracellular free copper: the requirement of a copper chaperone for superoxide
dismutase. Science 1999, 284, 805-808.

184. Boal, A. K.; Rosenzweig, A. C. Structural biology of copper trafficking. Chem. Rev.
2009, 109, 4760-4779.

185. Zhou, Z.; Hashimoto, Y.; Shiraki, K.; Kobayashi, M. Discovery of posttranslational
maturation by self-subunit swapping. Proc. Natl. Acad Sci. U. S. A. 2008, 105, 14849-
14854.

186. Maier, R. J.; Benoit, S. L.; Seshadri, S. Nickel-binding and accessory proteins facilitating
Ni-enzyme maturation in Helicobacterpylori. Biometals 2007, 20, 655-664.

187. Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University Science
Books: Mill Valley, CA, 1994.

188. Shi, H.; Bencze, K. Z.; Stemmler, T. L.; Philpott, C. C. A cytosolic iron chaperone that
delivers iron to ferritin. Science 2008, 320, 1207-1210.

189. Stemmler, T. L.; Lesuisse, E.; Pain, D.; Dancis, A. Frataxin and mitochondrial Fe-S
cluster biogenesis. J Biol. Chem. 2010, in press.

190. Weeratunga, S. K.; Gee, C. E.; Lovell, S.; Zeng, Y.; Woodin, C. L.; Rivera, M. Binding
of Pseudomonas aeruginosa apobacterioferritin-associated ferredoxin to bacterioferritin
B promotes heme mediation of electron delivery and mobilization of core mineral iron.
Biochemistry 2009, 48, 7420-7431.

191. Bamese, K.; Gralla, E. B.; Valentine, J. S.; Cabelli, D. E. Biologically relevant
mechanism for catalytic superoxide removal by simple manganese compounds. Proc.
Natl. Acad Sci. US.A. 2012, 109, doi: 10.1073/pnas.1203051109.

192. Naranuntarat, A.; Jensen, L. T.; Pazicni, S.; Penner-Hahn, J. E.; Culotta, V. C. The
interaction of mitochondrial iron with manganese superoxide dismutase. J. Biol. Chem.
2009, 284,22633-22640.

193. Aguirre, J. D.; Culotta, V. C. Battles with iron: manganese in oxidative stress protection.
J. Biol. Chem. 2012, 287, 13541.

194. Mizuno, K.; Whittaker, M. M.; Bachinger, H. P.; Whittaker, J. W. Calorimetric studies on
the tight-binding metal interactions of Escherichia coli manganese superoxide dismutase.
J Biol. Chem. 2004, 279, 27339-27344.

100



195. Sobota, J. M.; Imlay, J. A. Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia
coli is rapidly damaged by hydrogen peroxide but can be protected by manganese. Proc.
Natl. Acad Sci. US.A. 2011, 108, 5402-5407.

196. Akana, J.; Fedorov, A. A.; Fedorov, E.; Novak, W. R.; Babbitt, P. C.; Almo, S. C.; Gerlt,
J. A. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to
members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
Biochemistry 2006, 45, 2493-503.

197. Anjem, A.; Imlay, J. A. Mononuclear iron enzymes are primary targets of hydrogen
peroxide stress. J Biol. Chem. 2012, 287, 15544-15556.

198. Pericone, C. D.; Park, S.; Imlay, J. A.; Weiser, J. N. Factors contributing to hydrogen
peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and
avoidance of the toxic effects of the fenton reaction. J Bacteriol. 2003, 185, 6815-25.

199. Atta, M.; Nordlund, P.; Aberg, A.; Eklund, H.; Fontecave, M. Substitution of manganese
for iron in ribonucleotide reductase from Escherichia coli: Spectroscopic and
crystallographic characterization. J. Biol. Chem. 1992, 267, 20682-20688.

200. Golynskiy, M. V.; Gunderson, W. A.; Hendrich, M. P.; Cohen, S. M. Metal binding
studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry
2006, 45, 15359-15372.

201. Ezra, F. S.; Lucas, D. S.; Mustacich, R. V.; Russell, A. F. Phosphorus-31 and carbon-13
nuclear magnetic resonance studies of anaerobic glucose metabolism and lactate transport
in Staphylococcus aureus cells. Biochemistry 1983, 22, 3841-9.

202. Bamese, K.; Gralla, E. B.; Cabelli, D. E.; Valentine, J. S. Manganous phosphate acts as a
superoxide dismutase. J. Am. Chem. Soc. 2008, 130, 4604-4606.

203. McNaughton, R. L.; Reddi, A. R.; Clement, M. H. S.; Sharma, A.; Barnese, K.;
Rosenfeld, L.; Gralla, E. B.; Valentine, J. S.; Culotta, V. C.; Hoffman, B. M. Probing in
vivo Mn + speciation and oxidative stress resistance in yeast cells with electron-nuclear
double resonance spectroscopy. Proc. Nati. Acad Sci. U.S.A. 2010, 107, 15335-15339.

204. Papp-Wallace, K. M.; Maguire, M. E. Manganese transport and the role of manganese in
virulence Annu. Rev. Microbiol. 2006, 60, 187-209.

205. Jacobsen, F. E.; Kazmierczak, K. M.; Lisher, J. P.; Winkler, M. E.; Giedroc, D. P.
Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus
pneumoniae. Metallomics 2011, 3, 38-41.

206. Tu, W. Y.; Pohl, S.; Gray, J.; Robinson, N. J.; Harwood, C. R.; Waldron, K. J. Cellular
Iron Distribution in Bacillus anthracis. J. Bacteriol. 2012, 194, 932-940.

101



207. Cvetkovic, A.; Menon, A. L.; Thorgersen, M. P.; Scott, J. W.; Poole Ii, F. L.; Jenney Jr,
F. E.; Lancaster, W. A.; Praissman, J. L.; Shanmukh, S.; Vaccaro, B. J.; Trauger, S. A.;
Kalisiak, E.; Apon, J. V.; Siuzdak, G.; Yannone, S. M.; Tainer, J. A.; Adams, M. W. W.

Microbial metalloproteomes are largely uncharacterized. Nature, 466, 779-782.

208. Grass, G.; Franke, S.; Taudte, N.; Nies, D. H.; Kucharski, L. M.; Maguire, M. E.;
Rensing, C. The metal permease ZupT from Escherichia coli is a transporter with a broad

substrate spectrum. J Bacteriol. 2005, 187, 1604-1611.

102



Chapter 2

Characterization of E. coli NrdE, NrdF, and NrdH

Adapted in part from: Cotruvo, J. A., Jr.; Stubbe, J. Proc. Natl. Acad Sci. US.A. 2008, 105,
14383-14388.
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2.1. INTRODUCTION

In this chapter, we present the characterization of three of the four proteins constituting

the Escherichia coli class lb RNR system, NrdE, NrdF, and NrdH (NrdI is the subject of the

following chapter). E. coli contains genes for two aerobic class I RNRs (Ia and lb).1, 2 The class

Ia RNR is the primary source of deoxynucleotides under normal aerobic, vegetative growth

conditions. The class lb RNR is induced in oxidative stress and iron limitation, but its role in

these conditions was unknown at the outset of the studies described in this thesis. 3-6 We were

initially motivated to study the E. coli system by our laboratory's previous studies7-9 suggesting

the importance of pathways for the assembly of the diferric-Y- cofactor in the class la P2

(biosynthetic pathway), reduction of the Y- (regulatory pathway), and reactivation of the Yo-

reduced, diferric form of the protein (met-p2, maintenance pathway) (Scheme 2.1). These

studies implicated a [2Fe2S]-ferredoxin, YfaE, in the maintenance and possibly biosynthetic

pathways of the E. coli class Ia RNR.7'8 Further investigation of these pathways utilized E. coli

mutant strains containing deletions in iron transport and storage genes.9  However, these

alterations in iron homeostatic pathways have the potential to lead to iron limitation and

therefore may lead to expression of the class lb RNR. To understand the interplay of the class Ia

and Ib RNRs and the mechanisms by which their metallocofactors are biosynthesized and

maintained, and by which the concentration of Yo is regulated in vivo, we began to examine the

proteins found in the class Ib operon.

The class Ib RNR is composed of two proteins, NrdE (a) and NrdF (p); we expected

NrdF would contain a diferric-Y- cofactor in vitro and in vivo.1'1o'" The genes encoding NrdE

and NrdF are found in an operon (nrdHIEF) with two additional genes, nrdH and nrdI. NrdH is a

thioredoxin-like protein that functions as a specific disulfide reductase for NrdE. 12 ,13 NrdI had
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not been functionally characterized, but it was annotated in genomic databases as a flavodoxin,

and a recent structure of Bacillus subtilis NrdI (PDB code: 1RLJ) supported this annotation.

Based on these observations, our initial hypothesis was that the utility of the class Ib NrdHIEF

system in E. coli and many bacteria under Fe-limited and oxidative stress conditions is due, at

least in part, to the involvement of a flavodoxin (NrdI) instead of a ferredoxin (YfaE) in its

cofactor maintenance pathway.

Blosynthetic pathway

class la: 02 /1 e~
M2+ delivery class Ib: 02 /1 e- or ?

apo-p2 - M M2 M2+ M2+ . M a. M M3

Y YY' Y'V V . V.
active p2

in vitro: in vivo: small
HU molecule(s)

Nrdi-FMN : or protein(s)
[2Fe2S] 2

+-YfaE Regulatory

reductases? t pathway

Nrdl-FMNH- (class Ib)
[2Fe2S]'*-YfaE (class la) o o

M3+ M3 M3+ M3

Maintenance pathway
met-p2

Figure 2.1. Initial working model for E. coli NrdB and NrdF biosynthesis, maintenance,
and regulation. M denotes a metal (Fe or Mn). The model is based on recent studies of
NrdB,'' and the present studies of NrdF. Tyr122 (NrdB) and Tyrl05 (NrdF) are the precursors to
the Yo. When this work was initiated, it was generally believed that NrdF was a diiron protein,
though the involvement of Mn in vivo had been suggested.14 02 and an extra electron, possibly
provided by YfaE in vivo, have been shown to be required for cluster assembly of NrdB. Fre
may play an important role in the maintenance pathway, possibly as a reductase for YfaE.7'"

In order to test this proposal, we set out to characterize all four proteins of the E coli

class Ib RNR. At the outset of this work, the NrdE and NrdF proteins of Corynebacterium

ammoniagenes,10 Salmonella enterica serovar Typhimurium (with which E. coli NrdE and NrdF

share 89 and 87% sequence identity, respectively),1 Mycobacterium tuberculosis,16' 17 and

Bacillus anthracis18 had been expressed recombinantly in E coli and purified. Purified NrdF
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contained a diferric-Y- cofactor in all cases except B. anthracis, whose diferric cofactor was lost

during purification. The L. lactis12 and C. ammoniagenes1 4' 19 NrdE and NrdF subunits had been

purified from endogenous levels, although insufficient protein was purified in both cases to

determine the nature of their metallocofactors. The specific activities of these NrdEs and NrdFs,

as well as the Y-/p2 and Fe/p2 contents of the NrdFs, are summarized in Table 2.1. As is

apparent, characterization of most of these systems has been incomplete, and all of the

parameters shown in Table 2.1 are highly variable between systems. Several of these enzymes

had been characterized crystallographically as well. Structures of the diferrous and diferric

forms of S. Typhimurium20 (Figure 1.7) and C. ammoniagenes" NrdFs were available. There

was also a structure of the diferric form of M tuberculosis NrdF2 1 and a Mn"-loaded form of C.

ammoniagenes NrdF." The only crystallographically characterized NrdE was that of S.

Typhimurium, in complex with dATP, dTTP, and dCTP bound at the allosteric specificity site. 22

Finally, Uhlin and coworkers were able to obtain a crystal structure of an asymmetric S.

Typhimurium a2p2 complex at 4 A resolution in which only one p subunit is interacting weakly

with its a partner.23 As a result of the weak interaction, the functional relevance of this complex

is uncertain.

The other previously characterized component of the class lb RNR system was the

disulfide reductase NrdH. After every RNR turnover, the disulfide bond generated in the active

site must be reduced by a pair of Cys residues at the C-terminus of a, which in turn must be

reduced by an external reducing system. In assays of E coli class Ia RNR, this external reducing

system is composed of thioredoxin (TrxA) and thioredoxin reductase (TrxB) and NADPH. At

the start of our work, the E coli13 (for which a crystal structure is available 24 ) and L. lactis2

NrdHs had been purified and characterized as the analogous disulfide reductases for their
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respective NrdEs. However, dithiothreitol (DTT) was commonly used for RNR assays in most

class Ib systems, including in our own studies, to recycle NrdE.

Table 2.1. Class lb RNR properties: Activity
loading, and activity of recombinant NrdFs

of recombinant NrdEs and Y- content, metal

Source NrdE Fe"'2-Y- NrdF Reference
SAa Y-/p2 Fe/P2 SAb

E coli
As isolated 110C - - - Chapter 2
Reconstituted - 0.7 3.6-3.8 300 Chapters 2, 4

C. ammoniagenes
As isolated - 0.1 1.0 36 10
Reconstituted - 0.4 3.0 48 10

B. subtilis
As isolated 500" 0.2 0.9 5 25
Reconstituted - 0.9 2.6 9 25

S. typhimurium
As isolated 280 0.9 3.6 830 1
Reconstituted - 0.4 3.2 325 10

M tuberculosis
As isolated - 0.3-0.4 - 120 16

B. anthracis
Reconstituted - 0.6 3 7 18,26

B. cereus
Reconstituted - 0.7 - 15e 26

S. pyogenes
As isolated 45 1.0 2.4 169 27

a -1 -
nimol dCDP produced min

b nmol dCDP produced min4

literature

(mg a)
(mg p)'. Few NrdE specific activities have been reported in the

C Can be increased to 280 nmol/min/mg using Mnm2-Y- NrdF (0.25 Y-/02)
d Assayed with B. subtilis TrxA, TrxB, NADPH, and Mn"' 2-Y- NrdF (1 Y-//p2) (see Table 1.2)

Assayed with NrdH, thioredoxin reductase, NADPH

This chapter describes the cloning, overexpression, purification, and characterization of

E coli NrdE, NrdF, and NrdH. NrdE was purified in an N-terminally His6-tagged form and had

a specific activity of 110 nmol/min/mg. NrdF could be isolated containing a diferric-Y- cofactor

upon addition of Fe" and ascorbate into crude extracts (0.33 Y-/p2); it could also be purified as
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an apoprotein and the diferric-Y- cluster reconstituted using Fe" and 02, giving 0.7 Y-/02 and

300 nmol/min/mg activity. The Y-/2 content of NrdF and the activities of both proteins were

similar to those of previously characterized class lb RNR proteins (Table 2.1). Finally, NrdH

was purified by a published protocol and a preliminary test of its ability to donate electrons to

NrdE during enzyme turnover was carried out. Similar to previous reports, in the presence of 20

mM DTT, 0.4 pM NrdH increased the activity of NrdF by nearly 3-fold. Although several

aspects of the experiments presented in this chapter have not been optimized, the preliminary

characterization of these proteins and thorough studies of NrdI (Chapter 3) provide the

foundation for our experiments to probe a possible role of NrdI in a class lb RNR maintenance

pathway (described in Chapter 3), and our subsequent discovery (described in Chapter 4) that

NrdI mediates assembly of a dimanganese(III)-Y- cofactor in NrdF.

2.2. MATERIALS AND METHODS

2.2.1. Materials. Chemical reagents were purchased from Sigma Aldrich at the highest purity

available, unless otherwise indicated. 5-[3H] Cytidine 5'-diphosphate ([3H]-CDP, 3900

cpm/nmol) was from ViTrax. pET-3a, pET-24a, and pET-28a vectors were obtained from

Novagen. Primers and competent cells [TOP10 and BL21 Gold (DE3)] were purchased from

Invitrogen. Wild-type E. coli K-12 was obtained from the Yale E. coli Genetic Stock Center.

PfuUltraII and Herculase Hotstart DNA polymerases were from Stratagene. Restriction enzymes

were purchased from New England Biolabs. T4 DNA ligase, isopropyl-p-D-

thiogalactopyranoside (IPTG), and DL-dithiothreitol (DTT) were from Promega. Luria-Bertani

medium (LB) and agar were obtained from BD Biosciences. Complete protease inhibitor

cocktail tablets, DNase, and alkaline phosphatase were purchased from Roche. Ni-nitriloacetic

acid (Ni-NTA) agarose resin was from Qiagen. Sequences of all plasmids constructed were
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confirmed by DNA sequencing at the MIT Biopolymers Laboratory. UV-visible absorption

spectra were acquired on a Varian Cary 3 UV-vis spectrophotometer. All anaerobic procedures

were carried out in a custom-designed glovebox (M. Braun) in a cold room at 4 *C, or in a

glovebox (M. Braun) at room temperature. Protein solutions and buffers for anaerobic work

were degassed on a Schlenk line with 5-6 cycles (for protein) or 3 cycles (for buffers) of

evacuation and refilling with Ar prior to introduction to the glovebox. Concentrations of NrdE

and NrdF are reported per dimer, and of NrdH per monomer.

2.2.2. Buffers. NrdE and NrdF were routinely stored in 50 mM HEPES, 5% glycerol, pH 7.6

(Buffer A). Other buffers used in the purification procedures described below were: 50 mM

Tris, 5% glycerol, pH 7.6 (Buffer B), Buffer B containing 1 mM EDTA (Buffer C), and 50 mM

sodium phosphate, 5% glycerol, pH 7.0 (Buffer D). 02-saturated buffers (~1.9 mM 02) were

prepared immediately prior to use at 4 'C by sparging with 02 (zero grade, Airgas) for at least 30

min.

Table 2.2. Primers used in this chapter

Name Sequencea
NrdE forward 5'-GTAACCGACATATGGCAACGACAACCGCAGAATGC-3'

NrdE reverse 5'-ATAGAGGATCCTTAAAGTGCACAGGAGACGC-3'

NrdF forward 5'-AAGGAATACATATGAAACTCTCACGTATCAGCG-3'

NrdF reverse 5'-AAATAGGATCCTCAGAAATTCCAGTCTTCATC-3'

NrdH forward 5'-AAATACGACATATGCGCATTACTATTTACACTC-3'

NrdH reverse 5'-GACGAGGATCCTCATGCACTGGCCGCGTGTG-3'

a Restriction sites are underlined
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2.2.3. Cloning, expression, and purification of N-terminally His6-tagged NrdE. Two

primers, NrdE forward and NrdE reverse (Table 2.2), containing restriction sites for NdeI and

BamHI, respectively, were used to obtain nrdE from a single colony of wt E. coli K-12 using

Herculase Hotstart DNA polymerase and PCR according to the manufacturer's protocol. nrdE

was then cloned into pET-28a via NdeI and BamHI restriction sites using T4 DNA ligase with a

vector-to-insert ratio of 1:3 (37 C, 2 h).

pET-28a-nrdE was transformed into BL21 Gold (DE3) cells and grown on LB-agar

plates with 70 pg/mL kanamycin (Km). A single colony was inoculated into 8 mL LB (70

tg/mL Km in all growths), grown at 37C until saturated (16 h), and transferred into 2 L LB.

The cultures were grown at 370 C with shaking at 200 rpm. At OD6 0 0 0.8, IPTG was added to a

final concentration of 0.4 mM. After 4 h, cells were pelleted by centrifugation at 14000 g for 10

min at 4 'C and frozen at -80 *C. Typical yield was -2.5 g cell paste/L culture.

Cell paste (~10 g) was resuspended in 50 mL Buffer B containing 10 mM p-

mercaptoethanol, with 3 Complete Mini protease inhibitor cocktail tablets and 10 U/mL DNase.

The cells were lysed by passage once through a French pressure cell at 14000 psi. After

centrifugation (50000 g, 30 min), the supernatant was loaded onto a Ni-NTA agarose column

(Qiagen, 1 x 5 cm, 4 mL). The column was washed with 10 column volumes (CV) Buffer D

containing 10 mM imidazole and 10 mM P-mercaptoethanol, and the protein was eluted with a

20 x 20 mL, 10-250 mM imidazole linear gradient in the same buffer, with 1 mL fractions

collected. NrdE-containing fractions, assessed by SDS-PAGE, were pooled and loaded onto a

Q-Sepharose High Performance column (2.5 x 4 cm, 20 mL, gravity flow). The column was

washed with 5 CV Buffer B containing 10 mM DTT and eluted with a 75 x 75 mL linear

gradient from 0-1 M NaCl in Buffer B containing 10 mM DTT. Fractions of 2.5 mL were

110



collected and those corresponding to the major protein peak (eluting at ~300 mM NaCl, as

assessed by Bradford assay) were pooled and concentrated to ~1 mL using an Amicon Ultra 30

kDa MWCO centrifugal filtration device. NaCl was removed by further dilutions/concentrations

in Buffer A containing 10 mM DTT. This procedure resulted in ~1 mg NrdE per L culture

(-95% purity by SDS-PAGE). The concentration of NrdE was determined using 6280 = 177

mM cm , estimated by ExPaSy.28 The amino acid sequence of the N-terminal tag was

MGSSH 6SSGLVPRGSH.

2.2.4. Cloning, expression, and purification of N-terminally His6-tagged and untagged

NrdF. Cloning of E. coli nrdF into pET-24a (untagged) and pET-28a (His6-tagged) was carried

out as described for nrdE, using the primers NrdF forward and NrdF reverse (Table 2.2), NdeI

and BamHI sites underlined. Untagged NrdF was overexpressed as described for NrdE. His6 -

tagged NrdF was overexpressed in the apo form by adding 100 pM 1,1 0-phenanthroline (from a

100 mM stock in 0.1 N HCl) to the growth medium 20 min prior to induction with IPTG.29

Typical yields were ~2.0 g cell paste/L culture.

2.2.4.1. Purification of apo His6-tagged NrdF. All operations were carried out at 4 *C.

Cell paste (9 g) was resuspended in 45 mL Buffer D containing 10 mM imidazole, 4 Complete

Mini protease inhibitor cocktail tablets, 0.25 mM phenylmethanesulfonylfluoride (PMSF), and 1

mM 1,10-phenanthroline. The cells were lysed by passage once through a French pressure cell

at 14000 psi. After centrifugation (50000 g, 30 min), nucleic acids were precipitated by addition

of 12 mL 6% (w/v) streptomycin sulfate (1.6% final concentration) with stirring for 15 min,

followed by centrifugation (50000 g, 20 min). DNase (5 U/mL) was added to the supernatant,

which was incubated with 7.5 mL Ni-NTA agarose resin on a rocker at 4 'C for 1 h, and the

column was packed (1.5 x 4 cm). The column was washed with 40 CV Buffer D containing 10
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mM imidazole, and eluted with Buffer D containing 250 mM imidazole, with 3 mL fractions

collected. The major protein-containing fractions assessed by A28 0/260 (15 mL) were pooled and

loaded onto a Sephadex G-25 column (2.5 x 45 cm, 220 mL) pre-equilibrated in Buffer A.

Fractions containing protein (by A2 80/260) were pooled and concentrated to 8 mL using an

Amicon Ultra 30 kDa MWCO centrifugal filtration device. This procedure resulted in -40 mg

NrdF per L culture (-95% purity by SDS-PAGE). The concentration of NrdF was determined

using 6280 = 122 mM-1cm 1 , based on the estimate by ExPaSy.2 8

2.2.4.2. Purification of untagged NrdF. This procedure was similar to that previously

reported for E. coli NrdB.30 All operations were carried out at 4 'C. Cell paste (16 g) was

resuspended in 80 mL Buffer B, with 8 Complete Mini protease inhibitor cocktail tablets and

0.25 mM PMSF. The cells were lysed by passage once through a French pressure cell at 14000

psi. A 10 mL solution of 80 mg ferrous ammonium sulfate and 80 mg sodium ascorbate in

Buffer B was added dropwise to the stirring crude extract, and stirred for an additional 20 min.

After centrifugation (30000 g, 20 min), nucleic acids were precipitated by addition of 16 mL 6%

(w/v) streptomycin sulfate (1% final concentration) with stirring for 15 min, followed by

centrifugation (50000 g, 20 min). Ammonium sulfate (43 g, 390 g/L final concentration) was

then added slowly to the protein solution, which was stirred for 30 min and centrifuged (50000 g,

20 min). The pellet was dissolved in a minimal volume (18 mL) of Buffer B containing 0.25

mM PMSF and desalted on a Sephadex G-25 column (2.5 x 41 cm, 200 mL) pre-equilibrated

with Buffer C containing 0.25 mM PMSF; 6 mL fractions were collected. Green fractions were

pooled and brought to 100 mM NaCl by addition of 1 M NaCl in Buffer C prior to loading to a

DEAE Sepharose column (5.5 x 8 cm, 200 mL) pre-equilibrated with Buffer C containing 100

mM NaCl. The column was washed with 2 CV 100 mM NaCl in Buffer C containing 0.25 mM
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PMSF and eluted with a 400 x 400 mL linear gradient of 100 - 500 mM NaCI in Buffer C

containing 0.25 PMSF, with 8 mL fractions collected. Fractions containing NrdF (as judged by

A2 80/2 60 and A405) were pooled and loaded onto a Q Sepharose Fast Flow column (5.5 x 6.5 cm,

150 mL) pre-equilibrated with 200 mM NaCl in Buffer C. The column was washed with 2 CV

200 mM NaCL in Buffer C and eluted with a 250 x 250 mL linear gradient of 200 - 700 mM

NaCL in Buffer C, with 7 mL fractions collected. Fractions were pooled based on A280/260 and

A405 and concentrated to 20 mL by a Millipore Amicon concentrator with a YM10 membrane.

The concentrated protein was loaded onto a Sephadex G-25 column (2.5 x 41 cm, 200 mL) pre-

equilibrated with Buffer A. Green fractions were pooled and concentrated to -30 mL. The NrdF

purification procedure resulted in ~120 mg ~95% pure NrdF (assessed by SDS-PAGE) per L

culture, with 3.1 Fe/p2 and 0.33 Y-/p2 (assessed by EPR spectroscopy). The concentration of

NrdF containing diferric cluster was determined using &280 = 132 mM- cm-1 .28 As subsequent

work was performed using reconstituted apo-NrdF, the iron loading procedure in the crude

extract was not optimized.

2.2.5. Purification of apo-NrdF. Apo-NrdF was overexpressed as described above, except that

100 gM 1,10-phenanthroline was added to the growth medium 20 min prior to induction with

IPTG.29 Purification of apo-NrdF was analogous to that of the holoprotein, except that 100 pM

1,10-phenanthroline was included in the lysis buffer. The purification procedure for apo-NrdF

resulted in ~25 mg/L culture (~95% pure by SDS-PAGE). The apoprotein contained 0.05 Fe/p2,

as determined by the ferrozine assay (section 2.2.7), and 0.003 Mn/p2, as determined by atomic

absorption spectroscopy (section 2.2.8). The concentration of NrdF was determined using &280=

122 mM~'cm', based on the estimate by ExPaSy.28
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2.2.6. Reconstitution of diferric-Y- cofactor. Assembly of the cofactor was carried out by

anaerobic incubation of apo-NrdF (500 tL -220 pM) with 1.1 mM ferrous ammonium sulfate (5

Fe"/p2) with stirring for 20 min at 4 'C. 02-saturated (~1.9 mM 02) Buffer A was added to 3.5

02/P2 (200 pL) and mixed, followed by addition of 75 pL of 120 mM ferrozine in Buffer A and

50 tL 90 mM sodium dithionite in Buffer A. After 3-min incubation, the solution was loaded

onto a Sephadex G-25 column (1.5 x 8.5 cm, 15 mL), NrdF-containing fractions were pooled

using the Bradford reagent for protein detection, and concentrated using a Centricon Ultracel

YM-10 centrifugal concentrator. In initial attempts, the reconstituted protein contained 3.6-3.8

Fe/2 and 0.50 Y-/2. In later experiments, in which excess Fe was not removed using dithionite

and ferrozine, 0.70 Y-/p2 was obtained (it is not known whether the higher Y- content was the

result of carrying out the reconstitution in the absence of dithionite and ferrozine).

2.2.7. Iron quantification. Iron quantitation was carried out by the ferrozine method, 31 with

slight modifications to scale down the protocol. A set of standards was made by diluting 10, 20,

30, 40, and 50 pL of a 179 pM iron standard stock solution (Sigma) to a volume of 50 ptL with

distilled-deionized water. Protein samples were diluted to 50 pL with distilled-deionized water.

A blank sample of 50 pL deionized water was also prepared. Hydrochloric acid (2 N, 100 pL)

was added to the standards and samples, and the tubes were incubated in a sandbath at 100 C for

30 min. After the sample had cooled to room temperature, 10 mM ferrozine (200 pL), saturated

ammonium acetate (150 gL), and sodium ascorbate (40 pL, 14.9 mg/mL, made the same day)

were added. The suspensions containing protein were centrifuged at 14100 g for 3 min. A5 62

was measured without further incubation and the standard curve was used to determine the

concentration of Fe" in the samples.
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2.2.8. Manganese quantification. Quantification of manganese was performed using a Perkin-

Elmer AAnalyst 600 spectrometer in the laboratory of Prof. Stephen Lippard, using a manganese

standard solution (1000 ± 4 mg/L. Fluka) serially diluted to 5 pg/L using volumetric flasks. The

standard curve (0, 1.25, 2.5, 3.75, and 5 pg/L Mn) was generated by the instrument. Protein

samples were serially diluted in distilled-deionized water to an appropriate concentration for

analysis. Each analysis was performed in triplicate and the results averaged.

2.2.9. EPR spin quantification of Y-. EPR spectra were recorded at 77 K on a Br ker EMX X-

band spectrometer (9.3 GHz, 50 pW power, 2.52 x 103 gain, 1.5 G modulation amplitude). A

CuSO4 standard solution was used for spin quantification,32 with analysis performed by using

Win-EPR software (Brnker).

2.2.10. Activity assays. The reaction mixture contained in a final volume of 170pL: 0.2 gM

NrdF (or NrdE), 1.0 pM NrdE (or NrdF), 0.3 mM dATP, 20 mM DTT, and 0.5 mM [3H]-CDP

(3900 cpm/nmol), in 50 mM HEPES, 15 mM MgSO 4 , 1 mM EDTA, pH 7.6, at 37 'C. At five

time points (typically 0, 3, 6, 9, 12 min), 30 gL aliquots were removed and heated at 100 *C for 2

min. After removal of the phosphates using alkaline phosphatase, dCDP formation was analyzed

by the method of Steeper and Steuart. 33 One unit of activity is equivalent to 1 nmol of dCDP

produced per min.

2.2.11. Cloning, expression, and purification of NrdH. Cloning of E. coli nrdH was carried

out by Chia-Hung Wu as described for nrdE, using the primers NrdH forward and NrdH reverse

(NdeI and BamHI sites underlined, Table 2.2), and Taq polymerase (Promega). nrdH was

cloned into pET-3a. E. coli BL21(DE3) cells were transformed with pET3a-nrdH and grown in

4 x 2 L LB medium containing 50 pg/mL Km in 6 L flasks, at 37 'C with shaking at 220 rpm.
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At OD 600 = 0.7, protein expression was induced by addition of IPTG to 0.4 mM. Four hours

after induction, the cells were harvested by centrifugation at 4 *C at 7000 g for 10 min. The

growth yielded 17 g cell paste.

NrdH was purified using the protocol previously described 13 with modifications. All

operations were performed at 4 'C. Half of the cell paste (8.4 g) was resuspended in 40 mL 20

mM Tris, 1 mM EDTA, pH 9.5, and lysed by passage once through a French pressure cell at

14000 psi. The lysate was centrifuged at 17000 g for 30 min. The supernatant was loaded onto a

DEAE Fast Flow column (5.5 x 7.5 cm, 180 mL) equilibrated in 20 mM Tris, 1 mM EDTA, pH

9.5. The column was eluted with 1 L of 50 mM Tris, 1 mM EDTA, pH 8.0. Two 50-mL

fractions were collected, followed by 16 25-mL and 3 125-mL fractions. NrdH-containing

fractions were assessed by 17% SDS-PAGE. Elution fractions 8-10 were pooled (80 mL) and 25

mL 50 mM Tris, 2 M NaCl, 40% glycerol, pH 8.0 was added to give final concentrations of 10%

glycerol and 500 mM NaCl. The protein was then concentrated to 15 mL using an Amicon Ultra

YM-3 centrifugal concentrator. The concentrated protein was applied to a Sephadex G-50

column (2.5 x 67 cm, 330 mL) equilibrated with 50 mM Tris, 10% glycerol, 500 mM NaCl, pH

8.0. NrdH-containing fractions were identified by an A2 8 0/A2 60 plot of the eluting fractions, and

NrdH was concentrated to 3.3 mL, 520 pM. Protein concentration was assessed using 6 280 =

7210 M-1 cm .13 The yield was 15 mg (2 mg/g cell paste), with >95% purity by SDS-PAGE

analysis).

2.2.12. DTNB assays to quantify free thiols in NrdH. The free thiol contents of oxidized and

reduced preparations of NrdH was assessed by assay with 5,5'-dithiobis-(2-nitrobenzoic acid)

(DTNB). 34 In a quartz cuvette, 20 pL 5 mM DTNB was mixed with 280 pL 50 mM sodium

phosphate, 5% glycerol, pH 7.6 and the A412nm was monitored on a Cary 3 spectrophotometer
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until stable. A standard curve was created by addition of 0, 4, 8, 12, 16, or 20 pL 470 pM N-

acetylcysteamine and the appropriate amount of water such that the total volume in the cuvette

was 320 pL. The A412m was monitored until no further increase (almost instantaneous). NrdH

samples were assayed similarly to the standard, except that 20 ptL NrdH was added in place of N-

acetylcysteamine (7-29 pM final NrdH concentration). The A412m was monitored for 2-3 min

until no further significant increase (<0.002/min).

2.3. RESULTS AND DISCUSSION

2.3.1. Purification and characterization of NrdE and NrdF

2.3.1.1. Purification. Wild type (wt) NrdE and NrdF were purified to 95% homogeneity

by standard procedures (Figure 2.2). NrdE was purified with an N-terminal His 6 tag

(MGSSH 6 SSGLVPRGSH), which was not cleaved prior to use. The expression was poor, and

only -1 mg purified NrdE per L culture was typically obtained. Although a tagged NrdF

construct was also made, few experiments were performed using this protein as the purification

yields of the untagged protein were so high (120 mg/L culture for holo-NrdF and 25 mg/L for

apo-NrdF, expressed in the presence of 100 pM 1,10-phenanthroline added to the culture

media2 9 ).

Purified holo-NrdF (untagged) contained 0.33 Y- and 3.1 Fe/P2 when Fe" and ascorbate

were added at 5 mg/g cell paste to the crude cell extracts after lysis, following a procedure that in

our lab routinely gives 1.2 Y-/p2 in the case of wt E. coli NrdB. It is possible that the very high

levels of overexpression of NrdF (protein yield of 120 mg/g cell paste compared to 30 mg/g cell

paste in the case of NrdB) are responsible for the low Y- yield. However, this has not been

investigated further, and we did not optimize this protocol by titration of Fe" and ascorbate into

the crude extracts. However, we were able to obtain 0.5 Y-/02 (3.6-3.8 Fe/32) and later 0.7
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Y-/p2 (Fe content not determined) through in vitro reconstitutions of apoNrdF with 5 Fe"/2 and

3.5 02/@2 (see section 2.2.6 for the detailed procedure). If studies of the diferric-Y- form of E.

coli NrdF are pursued in the future, higher ratios of Fer/p2, and the effect of the concentrations

of NrdF and 02 on the efficacy of Y- generation should be tested, as the Kds for Fe" binding to

NrdF are not known. Despite the poorer cluster self-assembly than in E. coli class Ia RNR, at the

time that these studies were carried out, diferric-Y- assembly in E. coli NrdF was comparable to

that obtained through in vitro reconstitutions in other systems (Table 2.1). More recently, the

Streptococcus pyogenes (1.0 Y./%2), 27 Bacillus subtilis (0.9 Y-/02), 25 and B. cereus (-0.8-1

Y-/02) 35 NrdFs have been reconstituted with higher amounts of diferric-Y- cofactor. In no case

have systematic reconstitution studies been carried out for diferric-Y- assembly in class Ib

RNRs, and higher Y- yields are likely attainable.

kDa 1 2 3

250 -+
150

100

75

50-.

37--+

Figure 2.2. SDS-PAGE (10%) analysis of 4 gg purified E. coli NrdE (tagged, lane 2) and NrdF
(untagged, lane 3). Molecular weight standards are in lane 1.
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The UV-visible absorption (Figure 2.3A) and EPR spectra (gav ~ 2.0054, Figure 2.3B) of

the E. coli diferric-Y- cofactor are very similar to those previously reported for S. Typhimurium

NrdF and most other diferric-Y- NrdFs (the orientation of the Y* is different in the case of the

Bacillus NrdFs, resulting in a distinct EPR signal with an additional hyperfine splitting

observed).' 10'18
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Figure 2.3. Spectroscopic characterization of NrdF. (A) UV-vis spectrum of NrdF (-360 tM,
0.33 Y-/dimer). The sharp absorption feature at 408 nm is from the Y- (see Figure 7.13 for a
spectrum of NrdF with higher Y- content). The broad features at 325 and 370 nm are associated
with the diferric cluster. (B) X-band EPR spectrum of NrdF at 77 K (gav - 2.0054). Spectrum
acquired at 9.4 GHz, 50 p.W power, 2.52 x 103 gain, 1.5 G modulation amplitude, and 100 MHz
modulation frequency.

2.3.1.2. Activity assays. Activity assays of NrdE and NrdF were modeled closely after

those of Jordan et al. for the S. Typhimurium enzymes, given their high sequence identity with

their E. coli counterparts.' The concentrations of substrate CDP (0.5 mM), effector dATP (0.3

mM), and DTT (20 mM) were the same chosen by Jordan et al., who varied the concentration of

each assay component independently to determine the minimum concentration needed for

maximum activity. Enzyme concentrations (0.2 gM for limiting subunit, 1.0 pM for excess

subunit) were chosen on the basis of initial experiments that were conducted using 0.1, 0.2, and
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0.5 pM NrdF in the presence of 1.0 pM NrdE. Because the specific activity of NrdF was

equivalent for the experiments containing 0.2 and 0.5 pM NrdF, but -50% lower for 0.1 gM,

concentrations of 0.2 pM for the limiting subunit and 1.0 pM for the excess subunit were

selected for future assays. These absolute and relative concentrations may merit further

optimization, however, especially in light of the discovery of the Mn" 2-Y* cofactor, with 5-fold

higher activity than Fe" 2 -Y- (Chapter 4). It is also conceivable that the Kds of the NrdE-NrdF

interaction would be distinct for Mn" 2-Y- and Fe" 2-Y- NrdFs.

Table 2.3. Specific activities (nmol/min/mg) of NrdE with Fe" 2-Y- NrdF and Mn"12-Y- NrdF

NrdE preparation Fe .. 2-Y- NrdF Fe .. 2-Y- NrdF Mn II2-Y- NrdF
(0.33 Y-/s2) (0.7 Y-/p2) (0.25 Y-/p2)

Protease inhibitor tablets 110 ND a 280
PMSF as protease inhibitor ND 80 140
a ND: not determined

Under the assay conditions described above and in section 2.2.10, the specific activity of

NrdE was 110 nmol CDP reduced/min/mg using diferric-Y- NrdF containing 0.33 Y-/p2 (this

protein was not assayed with diferric-Y- NrdF containing 0.7 Y-/p2; however, using MnmI2 -Y-

NrdF with 0.25 Y-/p2, this activity increases up to 280 nmol/min/mg) (Table 2.3). This value

compares with a specific activity of 280 nmol/min/mg reported for the untagged S. Typhimurium

NrdE using diferric-Y* NrdF with 0.9 Y-/p2 (Table 2.1).36 After considering the difference in

Y-/32 of the NrdFs of the two systems, the activities of the two NrdEs are comparable. This may

also suggest that the N-terminal tag interferes minimally with the E. coli NrdEF activity assays,

but an attempt has not been made to remove the tag by cleavage at the thrombin site in the linker

region to rigorously demonstrate this. Interestingly, when a purification was carried out using 1

mM PMSF in place of the protease inhibitor cocktails described in section 2.2.3, the specific

activity of NrdE was reduced by half, perhaps as a result of alkylation by PMSF of the Cys
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residues essential for turnover. It is possible that lower concentrations of PMSF could be used in

the absence of the protease inhibitor cocktails in the future without compromising NrdE activity.

The specific activity of diferric-Y- containing 0.7 Y-/p2 is -300 nmol/min/mg, assayed

with the NrdE purified in the presence of PMSF. Therefore, assaying this NrdF with NrdE with

the higher specific activity should increase the value to -600 nmol/min/mg, again comparable

with that of the S. Typhimurium NrdF as isolated, after accounting for differences in Y- contents.

2.3.2. Purification of NrdH and utility in activity assays. The reported protocol of Jordan et

al. for NrdH purification was followed in our single purification of the protein. 1 3 That procedure

involved lysing cells in 50 mM Tris, 1 mM EDTA, pH 7.5 buffer and dialyzing the lysate after

centrifugation against 20 mM Tris, 1 mM EDTA, pH 9.5 (it is noted that Tris does not buffer at

this pH) before loading onto a DEAE column, which was then eluted with 50 mM Tris, 1 mM

EDTA, pH 8.0. This procedure presumably is meant to take advantage of the high isoelectric

point of NrdH (predicted to be 7.9).28 However, many proteins would not tolerate prolonged

incubation at pH 9.5, and Cys thiols (the catalytically active residues of NrdH) would be quickly

oxidized. However, Jordan et al. showed that their purified protein was active as an electron

donor to NrdE and as a reductant of insulin disulfides, with an activity in the latter assay similar

to that of TrxA.1 3

In an attempt to streamline the published procedure, the cell paste containing

overexpressed NrdH was lysed in the pH 9.5 buffer. However, a significant portion of the NrdH

was present in the insoluble fraction, and NrdH did not bind well to the DEAE column and

eluted from the column in a large volume. Although we were able to obtain 2 mg purified NrdH

per g cell paste (Figure 2.4), versus 7 mg/g cells as reported,24 the method is inadequate. A new

purification strategy should be found if the role of NrdH is to be further studied.
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Figure 2.4. Purification of NrdH (17% SDS-PAGE). Lanes 1,2: pre, post-induction. Lane 3:
crude extract. Lane 4: pooled fractions after DEAE. Lanes 5-7: pooled fractions after Sephadex
G50 chromatography (4 jig).

The free thiol content in purified NrdH was assessed by DTNB assay, with N-

acetylcysteamine as standard, giving 0.1 free thiols per NrdH monomer (NrdH contains 2 Cys

residues). The finding that NrdH as isolated was almost completely oxidized is not surprising

given that the protein should be rapidly oxidized in the absence of DTT at pH 9.5 and 8.0 in the

purification buffers. Therefore, two methods were attempted to reduce NrdH to investigate

whether the protein was damaged during purification. First, NrdH (500 pM) was incubated with

10 mM DTT for 20 min at room temperature (not optimized). The protein was passed through a

5 mL Sephadex G25 column and the DTNB assay was carried out immediately, giving 1.1 free

thiols/NrdH. Second, NrdH (-500 pM) was reduced anaerobically by addition of a

stoichiometric amount of a standardized solution of sodium dithionite. The free thiol content

was assayed after 4 h at 4 *C and found to be 1.6 ± 0.1 thiols/NrdH. It is possible that the

slightly substoichiometric thiol reduction is due to damage of the protein during the purification.
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It has been reported that inclusion of E. coli NrdH at an unstated concentration in the

activity assay of S. Typhimurium NrdE or diferric-Y- NrdF increases activity of the RNR subunit

three-fold.10 Therefore, NrdF containing dimanganese-Y- cofactor (0.25 Y-/p2, see Chapter 4

for assembly of this cofactor), assembled with 2 Nrdhq/p2, was assayed (0.2 RM NrdF) in the

presence or absence of 0.4 gM NrdH. Both assays contained 20 mM DTT. Using DTT (1 mM)

rather than TrxB/NADPH (0.1 pM / 1 mM) as a reductant for NrdH modestly decreases the

apparent Km for E. coli NrdH as electron donor to S. typhimurium NrdE from 1.2-1.6 to 0.3-0.6

RM.1 The resulting activities were 600 U/mg (no NrdH) and 1630 U/mg (2 NrdH/p2). Future

studies should take the apparent Km into account in their experimental design.

Only minimal studies with NrdH have been carried out, and there are many ways in

which the experimental design should be improved in future studies. The published purification

protocol is potentially damaging to the protein, although we cannot say this with certainty as the

protein was not assayed during the course of the purification. However, the insulin disulfide

reduction assay could be used in the future to monitor NrdH activity throughout the purification

to help develop a better protocol. Even when purified in pH 9.5 buffer, NrdH is clearly active,

though, with addition of only 0.4 pM to the activity assay increasing the specific activity of NrdF

nearly 3-fold. Through a systematic study, a robust activity assay that does not depend on DTT

can be developed for the E. coli class lb system utilizing NrdH and TrxB as a reducing system,

as has recently been done for the B. subtilis class lb RNR by Xuling Zhu in our lab using two

proteins, TrxA and YosR, as NrdH equivalents (X. Zhu and J. Stubbe, in preparation).

2.4. CONCLUSIONS

In this chapter we have presented the purification of E. coli NrdE, NrdF, and NrdH, along

with their preliminary characterization. It is clear that there still is a substantial amount of
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optimization that can be done for each protein. Exploring options to obtain better expression of

NrdE would be desirable if the protein is to be used for biophysical studies such as x-ray

crystallography. A new purification protocol for NrdH and a new activity assay for NrdE and

NrdF using NrdH should be developed if extensive further studies with the E. coli system are to

be carried out. It is also likely that diferric-Y- cofactor formation in NrdF can be further

optimized. However, after the purification of NrdI and characterization of its interaction with

NrdF, described in the following chapter, we began to more seriously consider that the cofactor

of the E. coli class lb RNR in vivo is not a diferric-Y-, and we did not return to improve many of

the protocols presented in this chapter.
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Chapter 3

Characterization of E. coli NrdI

Adapted in part from: Cotruvo, J. A., Jr.; Stubbe, J. Proc. Nati. Acad. Sci. US.A. 2008, 105,
14383-14388; and Cotruvo, J. A., Jr.; Stubbe, J. Biochemistry 2010, 49, 1297-1309.
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3.1. INTRODUCTION

In this chapter, we present the purification and characterization of Escherichia coli NrdI,

the fourth of the proteins constituting that organism's class Ib RNR system. No NrdI had been

functionally characterized at the outset of this work, even though nrdI was known to be present

in all organisms encoding class lb RNRs.1 NrdI was annotated in the genomic databases as a

flavodoxin, and a recent crystal structure of Bacillus subtilis NrdI (PDB code: 1RLJ) showed a

protein with a flavodoxin fold and a bound flavin mononucleotide (FMN), supporting this

annotation. Efforts to purify E. coli NrdI had been reported2 but had been hampered by poor

solubility. The protein, purified to 50% homogeneity, stimulated by < 2-fold the activity of S.

Typhimurium diferric-Y- NrdF. Therefore, its role in the class lb RNR was unclear.

Biosynthetic pathway

class la: 02 1 e~
M2+ delivery class Ib: 02/ 1 e- or?

apo-p2 - M2* M2 M2* M2. -.. M3. M M3 *
Y Y Y. Y.

active p2

in vitro: in vivo: small
HU molecule(s)

NrdI-FMN or protein(s)
[2Fe2S] 2+-YfaE Regulatory

reductases? t pathway

Nrdi-FMNH- (class Ib)
[2Fe2S]*-YfaE (class la) o o

M3+ M3 M3+ M3

Maintenance pathway 4 4
met-p2

Figure 3.1. Initial working model for E. coli NrdB and NrdF biosynthesis, maintenance,
and retulation. M denotes a metal (Fe or Mn). The model is based on recent studies of
NrdB,3' and the present studies of NrdF. Tyr122 (NrdB) and Tyr105 (NrdF) are the precursors to
the Y-. When this work was initiated, it was generally believed that NrdF was a diiron protein,
though the involvement of Mn in vivo had been suggested.s 02 and an extra electron, possibly
provided by YfaE in vivo, have been shown to be required for cluster assembly of NrdB. Fre
may play an important role in the maintenance pathway, possibly as a reductase for YfaE.3 ,6
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As described in Chapter 2, we were initially motivated to study the E. coli class lb system

by our laboratory's previous studies3,4,7 suggesting the importance of pathways for the assembly

of the diferric-Y- cofactor in the class Ia P2 (biosynthetic pathway), reduction of the Y-

(regulatory pathway), and reactivation of the Y--reduced, diferric form of the protein (met-p2,

maintenance pathway) (Figure 3.1). These studies implicated a [2Fe2S]-ferredoxin, YfaE, in the

maintenance and possibly biosynthetic pathways of the E. coli class Ia RNR.3 ,4 The annotation

of NrdI as a flavodoxin and the evidence supporting induction of the nrdHIEF operon under

oxidative stress and iron-limited growth conditions 8"-1 suggested to us that NrdI's role in the

class Ib RNR might be analogous to that proposed for YfaE in the class Ia RNR: maintenance of

a diferric-Y- cofactor. The requirement for a flavodoxin instead of a ferredoxin would provide a

rationale for the expression of NrdEF in oxidative stress and iron limitation, as the cell would be

expected to decrease the synthesis of nonessential iron-requring proteins under these

conditions.12 Furthermore, flavodoxins in a number of systems have been observed to substitute

for ferredoxins in vitro and in vivo under iron-limited growth conditions.13-15

To test our hypothesis, NrdI was cloned, overexpressed, purified, and characterized.

NrdI was overexpressed primarily in inclusion bodies that were resolubilized and refolded in the

presence of FMN, giving rise to large amounts of soluble NrdI containing non-covalently bound

FMN. The three different redox states of FMN in NrdI - hydroquinone (hq), semiquinone (sq),

and oxidized (ox) (Scheme 3.1) - were characterized by UV-visible absorption and EPR

spectroscopies, and the reduction potentials governing their interconversions were determined.

We found that NrdI has unusual redox properties for a flavodoxin, allowing it to function

anaerobically as a two-electron reductant of the Y*-reduced diferric cluster in met-NrdF.

Addition of 02 to diferrous NrdF results in rapid regeneration of the diferric-Y- cofactor. These
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results supported our proposed Y- maintenance role for NrdI in the class lb RNR, but more

importantly provided evidence that NrdI and NrdF physically interact.

Scheme 3.1. Equilibria between the three redox states of a flavodoxin-bound flavin, with the
key isoalloxazine ring positions indicated.

N1 02

R R R
N N- O N O N O

NH +1 N NH +1 e- ~ NH

H O (H) O O
N5 hq C4a 04 sq ox

(neutral or anionic)

Further consideration of the evidence suggesting the involvement of manganese in the

class lb RNR of Corynebacterium ammoniagenes, along with our evidence that NrdI and NrdF

interacted, eventually led us to hypothesize that NrdI's function in the class lb RNR was to react

with 02 to provide the essential oxidant required for assembly of a dimanganese-Y- cofactor in

NrdF. Our discovery that Nrdlhq was required for assembly of this cofactor (described in more

detail in Chapter 4) caused us to investigate the NrdI-NrdF interaction in more detail. We also

present the results of these studies of the NrdI-NrdF interaction in this chapter. We demonstrate

by a pulldown assay that NrdI and NrdF interact strongly, and we estimate a Kd of <50 nM by

fluorescence titration of Nrdlhq and NrdF. We also show that, in the presence of NrdF, NrdI

stabilizes the anionic form of its sq, whereas in the absence of NrdF it stabilizes the neutral form.

Formation of anionic sq is unprecedented for a flavodoxin, as these proteins are normally highly

negatively charged and only form neutral sq. This suggests that NrdF contributes to a positive

electrostatic environment of the flavin cofactor. Finally, studies of the N83D mutant of NrdI

suggest the importance of electrostatics in determining the reduction potentials of NrdI's FMN
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cofactor and in determining the protonation state of its sq form when in complex with NrdF. The

unique properties of NrdI described in this chapter - unusual redox potentials relative to other

flavodoxins, a uniquely positive electrostatic environment of the flavin, and the perturbation of

that environment by binding of NrdF - will be key to our thinking about the mechanism of

dimanganese-Y- cofactor assembly and NrdI's role in that process in the rest of this thesis.

3.2. MATERIALS AND METHODS

3.2.1. Materials. Chemical reagents were purchased from Sigma Aldrich at the highest purity

available, unless otherwise indicated. FMN purchased from Sigma Aldrich contained 76% FMN,

4% riboflavin, and 5% riboflavin diphosphates. pET-3a and pET-28a vectors were obtained

from Novagen. Primers and competent cells [TOP10, BL21 Gold (DE3), and BL21 (DE3)

pLysS] were purchased from Invitrogen. Wild-type E. coli K-12 was obtained from the Yale E.

coli Genetic Stock Center. PfuUltraII and Herculase Hotstart DNA polymerases were from

Stratagene. Restriction enzymes were purchased from New England Biolabs. T4 DNA ligase,

isopropyl-p-D-thiogalactopyranoside (IPTG), and DL-dithiothreitol (DTT) were from Promega.

Luria-Bertani medium (LB) and agar were obtained from BD Biosciences. Complete protease

inhibitor cocktail tablets, DNase, and alkaline phosphatase were purchased from Roche. Ni-

nitriloacetic acid (Ni-NTA) agarose resin was from Qiagen. Sequences of all plasmids

constructed were confirmed by DNA sequencing at the MIT Biopolymers Laboratory. UV-

visible absorption spectra were acquired on a Varian Cary 3 UV-vis spectrophotometer. All

anaerobic procedures were carried out in a custom-designed glovebox (M. Braun) in a cold room

at 4 'C, or in a glovebox (M. Braun) at room temperature. Protein solutions and buffers for

anaerobic work were degassed on a Schlenk line with 5-6 cycles (for protein) or 3 cycles (for

buffers) of evacuation and refilling with Ar prior to introduction to the glovebox. UV-visible
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spectra of anaerobic samples were acquired in anaerobic cuvettes (Starna Cells) fitted with a

Teflon/silicon septum (12 mm, Pierce), and anaerobic titrations used a 50 or 100 pL gastight

syringe fitted with a repeating dispenser (Hamilton). Concentrations of NrdE and NrdF are

reported per dimer, and of NrdI per monomer.

3.2.2. Buffers. NrdF were routinely stored in 50 mM HEPES, 5% glycerol, pH 7.6 (Buffer A).

NrdI was poorly soluble in Buffer A at concentrations >30 gM and was stored in 50 mM sodium

phosphate, 20% glycerol, pH 7.0 (Buffer B). Most experiments involving NrdI were also

performed in this buffer. Other buffers used in the purification procedures described below

were: 50 mM Tris, 5% glycerol, pH 7.6 (Buffer C), and 50 mM sodium phosphate, 5% glycerol,

pH 7.6 (Buffer D).

3.2.3. Cloning, expression, and purification of NrdL.

3.2.3.1. Cloning and expression. Cloning and expression of E coli nrdI was carried out

by Chia-Hung Wu as described for nrdE, using the primers 5'-GCGGCCAG-

CATATGAGCCAGCTCGTCTACTTCTC-3' and 5'-CGTTTGGATCCTCAGGCATTCTG-

CGGTTGTC-3', and Taq polymerase (Promega). nrdI was cloned into pET-28a (tagged, tag:

MGSSH 6 SSGLVPRGSH) and pET-3a (untagged). Tagged NrdI was overexpressed by induction

with 0.4 mM IPTG for 4 h at 30 *C in experiments to isolate soluble protein (most of the NrdI

was insoluble in this case) or at 37 'C to isolate inclusion bodies. In both cases, typical yields of

cells were -2.8-2.9 g cell paste/L culture.

For growth of untagged NrdI, pET-3a-nrdI was transformed into E coli BL21(DE3)

pLysS cells, grown on LB-agar plates with 100 gg/mL ampicillin (Amp) and 34 pg/mL

chloramphenicol (Cm). A single colony was inoculated into 8 mL LB (100 ptg/mL Amp, 34
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gg/mL Cm in all growths), grown at 37 'C until saturated, and transferred into 2 L LB in a 6 L

flask. The cultures were grown at 37 *C with shaking at 200 rpm. At OD 60 0 ~ 0.8, IPTG was

added to a final concentration of 0.4 mM. After 4 h, cells were pelleted by centrifugation at

14000 g for 10 min at 4 'C and frozen at -80 'C. Yield was 2.6-2.7 g cell paste/L culture.

3.2.3.2. Purification of soluble tagged NrdI The cell pellet from a 2 L growth of

pET28a-nrdI (5.6 g, induction at 30 'C) was resuspended in 28 mL 50 mM sodium phosphate,

10% glycerol, pH 7.6 containing 10 mM imidazole, 0.25 mM PMSF, and 3 Complete Mini

protease inhibitor cocktail tablets. The cell suspension was passed through a French pressure

cell at 14000 psi, followed by centrifugation at 50000 g for 20 min. Nucleic acids were

precipitated by addition of 6 mL 6% (w/v) streptomycin sulfate to a final concentration of 1.3%

with stirring for 15 min; the solution was centrifuged at 50000 g for 30 min and was incubated

with 5 U/mL DNase for 10 min. The protein solution was incubated with 7.5 mL Ni-NTA resin

on a rocker at 4 *C for 1 h, and the column was packed (1.5 x 4 cm) and washed with 40 column

volumes (CV) 50 mM sodium phosphate, 10% glycerol, pH 7.6 containing 10 mM imidazole.

Protein was eluted with a 25 x 25 mL linear gradient of 10-250 mM imidazole in 50 mM sodium

phosphate, 10% glycerol, pH 7.6. NrdI-containing fractions were identified by SDS-PAGE,

pooled, and loaded onto a Q-Sepharose Fast Flow column (2.5 x 3 cm, 15 mL) and eluted with a

40 x 40 mL gradient of 0-1 M NaCl in 50 mM sodium phosphate, 10% glycerol, pH 7.6 (1.5 mL

fractions collected). NrdI did not bind to the column and the loading flowthrough and NrdI-

containing fractions (1-11, assessed by SDS-PAGE) were pooled and concentrated using a

Millipore Centricon YM-3 centrifugal filtration device. The imidazole was removed by repeated

dilution/concentration with 50 mM sodium phosphate, 10% glycerol, pH 7.6. This procedure

yielded 60 pg NrdI (30 pg/L culture, >95% purity), based on a2 8 0 =18.5 mM' cm~1.16
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3.2.3.3. Purification of soluble untagged NrdI Cell paste (~9 g) from a growth of

pET3a-nrdl was resuspended in 45 mL Buffer B, containing 4 Roche Complete Mini protease

inhibitor tablets, 0.25 mM PMSF, and 20 U/mL DNase. Cells were lysed by passage through a

French pressure cell once at 14000 psi and the lysate was centrifuged at 4'C at 24000 g for 20

min. The supernatant was loaded onto a DEAE column (5.5 x 7.5 cm, 180 mL) equilibrated with

Buffer B containing 100 mM NaCl. The column was washed with 2 CV of the same buffer and

6 mL fractions were collected and assessed for the presence of NrdI by SDS-PAGE analysis.

NrdI did not bind to the column, and NrdI-containing fractions were pooled and exchanged into

Buffer B without NaCl by repeated concentration and resuspension using an Amicon YM-10

membrane. The protein was then loaded onto an SP Sepharose Fast Flow column (2.5 x 3 cm,

15 mL) equilibrated with Buffer B, the column was washed with 2 CV of Buffer B, and eluted

with a 50 x 50 mL gradient of 0 - 100 mM NaCl in Buffer B. Fractions (2 mL each) were

collected and the presence of NrdI was assessed by SDS-PAGE. NrdI-containing fractions were

pooled, exchanged to Buffer B containing 200 mM NaCl, and concentrated to 9 mL. The

resulting protein was -80% pure, ~2 mg yield.

3.2.3.4. Purification of NrdI inclusion bodies. Cell paste (12 g) from a growth of

pET28a-nrdl at 37 'C was suspended in 60 mL 50 mM sodium phosphate, 10% glycerol, pH 7.6

containing 1 mM PMSF and passed through a French pressure cell once at 14000 psi. The lysate

was centrifuged at 30000 g for 20 min. The pellet was resuspended in 60 mL of 100 mM Tris-

HCl, 4% (v/v) Triton X-100, 2 M urea, pH 8.0,3 by vortexing and sonication on ice (7 W for 4 x

1-min increments, with 1 min rest in between), and the suspension was centrifuged at 17000 g

for 20 min. The resuspension and centrifugation were repeated once. The pellet was washed
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twice with 60 mL water, resuspended and centrifuged at 17000 g for 20 min. The procedure

yielded -0.2 g inclusion bodies/g of cell paste, which were stored at -20 'C.

3.2.3.5. Solubilization, refolding, and purification of NrdI. NrdI inclusion bodies (600

mg) were solubilized by suspension in 240 mL 50 mM sodium phosphate, 8 M urea, pH 7.0

overnight (14 h) at 25 'C. DTT was added to 10 mM and the solution was stirred for 2 h more.

All subsequent operations were performed at 4 'C. The solution was added dropwise to a stirring

solution of 1.68 L Buffer B, containing 200 pM FMN and 1 mM EDTA, and stirred for 3 h in the

dark (covered with foil). Some precipitate was visible and the insoluble material was removed

by centrifugation at 7000 g for 10 min. The supernatant was incubated with 18 mL SP

Sepharose Fast Flow resin (pre-equilibrated with Buffer B) with stirring for 1 h. The column

(2.5 x 4 cm) was packed and washed with 20 column volumes of Buffer B. NrdI was eluted with

Buffer B containing 200 mM NaCl. NrdI-containing fractions were identified by their yellow

color, pooled and concentrated with a Millipore Amicon Ultra 10 kDa MWCO centrifugal

filtration device. SDS-PAGE (17%) established that the protein was purified to homogeneity,

giving typically ~90 mg/g inclusion bodies.

3.2.4. NrdI cofactor identification by HPLC. The identity of the putative flavin cofactor was

determined by HPLC based on the protocol described by Birch and coworkers.1 7 A Waters

HPLC system fitted with an Alltech Econosil C18 column (250 x 4.6 mm, 10 pm pore size) and

a Waters 2487 Dual X Absorbance Detector were used. The mobile phase was

acetonitrile/water/trifluoroacetic acid/phosphoric acid (14:85.4:0.1:0.09) and the flow rate was

0.5 mL/min. The detector wavelengths were 375 and 450 nm. The column was calibrated by

injections of standards (retention times): FMN (17.8 min or 18.3 min, in two independent

experiments), FAD (12.9 min), and riboflavin (27.4 min). NrdI (100 pL, ~20 pg/mL, purified by
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Ni-NTA affinity chromatography as described in section 3.2.3.2) was denatured by heating in a

sandbath in the dark at 100 0C for 15 min and centrifuged at 14100 g for 4 min. The supernatant

was injected onto the column. Refolded NrdI (section 3.2.3.5) was analyzed in a similar

experiment, indicating that only FMN was present. Results are shown in Table 3.1.

3.2.5. Determination of the visible spectra and extinction coefficients of the ox, sq, and hq

forms of NrdL. The -454ox for NrdI (11.0 mM' cm') was determined by the method of Mayhew

and Massey.18 To refolded NrdI (-60-90 pM, 240 pL), trichloroacetic acid [TCA, 50% (w/v)]

was added to a final concentration of 5%, and incubated for 5 min at 4 'C. The sample was

centrifuged (14100 g, 1 min), the supernatant was collected and the pellet washed with 100 ptL

50% TCA. The supernatants were combined and neutralized with 1 M NaOH. The

concentration of FMN was determined using 3445 = 12.5 mM~1 cm, 19 from which 8454ox of NrdI

was determined.

The spectrum of the hq form was determined by anaerobic titration of NrdI (~100 gM)

with a freshly prepared solution of 4-5 mM sodium dithionite in Buffer B, standardized using a 1

mM solution of potassium ferricyanide (C420 = 1020 M-1 cm-1), in a septum-sealed anaerobic

cuvette fitted with a gastight syringe with repeating dispenser.2 0 E454hq was determined relative to

C454ox-

The Esq at 575 nm was determined from the vis and EPR spectra of NrdI samples partially

reduced with dithionite to quantify the amount of sq at 293 K. To NrdI (300 pL, -100 pM) in an

anaerobic box at 4 'C -0.5 equiv sodium dithionite was added to maximize the amount of sq

(-30 pM). The visible spectrum was recorded in an anaerobic cuvette. The cuvette was then

brought into an anaerobic box at room temperature and 150 pL was transferred to an aqueous flat

cell (Wilmad, WG-808-Q). The X-band EPR spectrum was recorded at 293 K (-9.85 GHz,
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6.346 mW power, 104 gain, 1.50 G modulation amplitude). Spin quantitation was carried out by

double integration of the spectrum in comparison with Y- of E coli NrdF at 293 K (~9.85 GHz,

7.989 mW power, 104 gain, 1.50 G modulation amplitude) used as a standard. The concentration

of Y- in the NrdF standard solution was determined at 77 K by comparison with a CuSO4

standard.' 8 575sq was calculated from the visible spectrum and spin quantitation. From the

amount of dithionite added and the concentration of sq (using E575sq), the concentrations of ox

and hq NrdI were determined. The spectral contributions of the ox and hq forms, scaled by

concentration, were subtracted from the total spectrum to give the spectrum of the pure sq.

3.2.6. Determination of the reduction potentials (EoxJsq and Esq/hq) of NrdI. The set of

reactions used to determine the reduction potentials of NrdI are shown in Scheme 3.2. NrdI was

made anaerobic on a Schlenk line and the other reagents were brought into a glovebox at 4 'C in

solid form. NrdI (-30 pM), -25 gM phenosafranin (PS, Xmax = 524 rn, E524 = 34.6 mM' cm'

for oxidized PS, determined by anaerobic titration with a standardized solution of sodium

dithionite, see section 3.2.5), 2 pM methyl viologen (MeV), 250 pM xanthine in Buffer B, in a

final volume of 400 gL, were placed in an anaerobic cuvette. Xanthine oxidase (XO, from

buttermilk, 0.6 U/mg protein, 1 U = 1 tmol xanthine oxidized per min at pH 7.5, 25 *C, Sigma

Aldrich) was also added to the cuvette at 150 nM, but not in contact with the other reagents. A

visible spectrum was acquired from 360-800 nm at 25 'C. The concentrations of NrdI and PS

were determined by fitting this spectrum as a linear combination of the spectra of NrdIox and

oxidized PS in Matlab (The MathWorks). The cuvette was then inverted to add the XO and

initiate the reaction and spectra were acquired every 2-4 min until A454 was -10% of its initial

value. The spectra (-80-100) were collected for analysis.
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xanthine oxidase
anthine xa urate Em -350 mV

2 e-

2 MeV 2+ 2 MeV** Em = -446 mV

PSred PSox Em = -252 mV
FMNH FMN Eox/sq = -264 mV

.FMNH-. .FMNH Eo9/sq = -255 mV

Scheme 3.2. Schematic representation of the xanthine oxidase method for reduction potential
22determination. Note that the protons are not treated rigorously in this illustration.

Difference spectra for each redox couple (PSox/red, Nrdox/sq, and NrdIsq/hq) were calculated

by subtracting es of the oxidized from the reduced forms at each wavelength (380 nm < X < 800

nm). The spectra and Fs of the oxidized and reduced PS were determined by titration with a

standardized solution of sodium dithionite in Buffer B, pH 7.0, at 25 *C.

Each dataset was analyzed by subtraction of the average absorbance between 750 and

800 nm, followed by subtraction of the initial oxidized spectrum from each subsequent

spectrum23 between 380 nm < X < 800 nm. Each difference spectrum was fit as a linear

combination of component difference spectra by using multiple linear regression analysis in

Matlab. The concentrations of NrdIox, Nrdlsq, and Nrdlhq and PSox and PSred were calculated

from the outputs of the fits. The solution potential (Eh) at each point in the titration was

determined from the concentrations of PSox and PSred by the Nernst equation, using E, = -252

mV for PS.24 The number of oxidizing equivalents (4) present at a given point in the titration

was calculated from the concentrations of NrdIox, Nrdlsq, and Nrdlhq at that point. Eh was plotted
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against 4, and the data points for which Eh was within 30 mV of -252 mV were fit to equation

3.1:25

RT RT I -+ )( 1)2 + 4x 2 -)
Eh =Eln +--Tin + (Inl)-InKI(+-1) (3.1)

m(Nrd2F 2- 2F 1- + ({-1)2+4K4(2-4)

where Em(NrdI) = Eh at = 1 and K = 1/K, where K is the sq formation constant, defined as

[sq]2/([hq] [ox]). Eoxsq and Esq/hq were determined using equation 3.2.

Eoxsq - Esqmq = RT In K (3.2)
nF

3.2.7. Preparation of Nrdlhq. NrdI (600 p.L, ~100 pM in Buffer B) was degassed and brought

into the glovebox and placed in a septum-sealed anaerobic cuvette. A 50 pL gastight syringe

fitted with a repeating dispenser was filled with a freshly prepared solution of sodium dithionite

(3-4 mM) in Buffer B. The spectrum of NrdIox was recorded and dithionite was added in 1-5 ptL

aliquots. Spectra were recorded from 300-800 nm after each addition, and aliquots were added

until disappearance of the ox and sq features.

3.2.8. Preparation of met-NrdF. NrdF (5 mL, 380 pM, 3.1 Fe/p2, 0.33 Y-/p2) was incubated

with 77 mM hydroxyurea at 23 'C for 15 min, which was then removed by Sephadex G-25

chromatography (2.5 x 20 cm, 100 mL in Buffer A). Fractions (~20 mL) were pooled and

concentrated to -5 mL using an Amicon Ultra 5 kDa MWCO centrifugal filtration device and

stored at -80 'C. Met-NrdF (3.4 Fe/p2 by ferrozine assay, ~0.002 Y-/p2 by EPR spectroscopy)

was thawed, degassed on a Schlenk line, and brought into the 4 'C glovebox immediately prior

to use. The UV-vis spectrum of the diferric cluster was not affected by this treatment.
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3.2.9. Titration of met-NrdF with Nrdlhq. Titration experiments at 25 'C were modeled after

those described for met-NrdB and YfaE. 3 NrdF was reduced with HU to produce met-NrdF

(section 3.2.8), and NrdI was reduced with sodium dithionite (section 3.2.7). There was <5%

excess dithionite present after reductive titration of NrdI, as judged from the 312 nm region (ax

of dithionite) of the UV-visible absorption spectrum of Nrdlhq. Protein was degassed on a

Schlenk line (evacuation followed by 5-6 cycles of filling with Ar for 3-5 min) and brought into

a 4 'C glovebox immediately prior to use.

3.2.9.1. Reduction of met-NrdF to diferrous NrdF and calculation of Fe reduced and

NrdI oxidized Nrdlhq (~100 1 M in Buffer B) was loaded into a 100 pL gastight syringe and the

needle was inserted through the septum in a 0.5 mL cuvette that contained 240 pL of -20 gM

met-NrdF (~4.8 nmol) in Buffer A. Nrdlhq was added in 2 or 4 pL (0.2 or 0.4 nmol) aliquots and

a spectrum recorded after each addition. Titrations were monitored at 341 nm, the isosbestic

point of NrdIox and Nrdlhq (Nrdlsq did not accumulate during the titrations, as met-NrdF was in

excess). The amount of Fe"' in nmol present at a given point in the titration, Nx, was calculated

after each addition of Nrdlhq according to equation 3.3:

Nx = NFe { 341,i A 341,i 341Fe,x.3)

F e 341met 341met - 341diferrous

where V is the initial volume of the titration (240 pL), A 34 1, is the initial A3 4 1, due to met-NrdF,

and E341met is the extinction coefficient of met-NrdF at 341 nm, determined to be 8.9 mM~l cm',

based on E280 = 132 mM-1 cm~1. NFe is the amount of Fe/p2. The first term in equation 3.3 is the

initial amount of Fe"' in the cuvette (in nmol) and the second term is the nmol Fe reduced at a

given point in the titration. The extinction coefficient of diferrous NrdF at 341 nm, C341diferrous, is

0.5 mM' cm', determined by comparison of A280 and A34 1 of an anaerobic solution of diferrous

NrdF (6280 = 123 mM-1 cm-1 for apo-NrdF). The extinction coefficient for apo-NrdF was
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determined by comparing A2 80 of a sample of apo-NrdF anaerobically incubated with 6 Fe/p2

(as ferrous ammonium sulfate) with stirring for 20 min at 4 *C, before and after rapid addition of

02 and mixing, using E2 80 = 132 mM~1 cm-1 for the NrdF after 02 addition. A341Fe,x, the volume-

adjusted contribution of the NrdF cluster to the total absorbance at 341 nm after addition of V,

gL Nrdlhq was calculated using equation 3.4:

A341Fex =A341,x+ j C(341Nrd (34)

V, V, + V,

A 3 4 1,x is the total A3 4 1 after addition of Vx gL Nrdlhq, c is the concentration of Nrdlhq added and

E341NrdI is the extinction coefficient of NrdI at 341 nm, 4.4 mM-1 cm-1, based on C454ox. Titrations

were monitored by plotting Nx versus nmol Nrdlhq added. The titration endpoint was judged to

have been reached when there was no significant change in Nx upon a further addition of 2 tL

Nrdlhq. Titrations of the reconstituted NrdF (0.50 Y-/p2) were performed in exactly the same

manner.

3.2.9.2. Reassembly of diferric-Y- NrdF following the titration. At the endpoint of the

titration, 02 was blown over the solution for 5 s, and the sample was mixed and a spectrum

recorded. Repetition of the procedure resulted in no further Y- formation. The sample was

transferred to an EPR tube and frozen in liquid N2. The quantity of Y- regenerated was

determined by EPR spectroscopy.

3.2.10. EPR spin quantification of Ye. EPR spectra were recorded at 77 K on a Brnker EMX

X-band spectrometer (9.3 GHz, 50 pW power, 2.52 x 103 gain, 1.5 G modulation amplitude). A

CuSO4 standard solution was used for spin quantitation, 1 with analysis performed by using Win-

EPR software (BrUker).
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3.2.11. Reduction of met-NrdF and met-NrdB by Nrdlhq, FMNH 2, and [2Fe-2S]*-YfaE.

NrdI (~90 pM) and FMN (-450 pM) were pre-reduced anaerobically by titration with sodium

dithionite as described above. [2Fe-2S]'*-YfaE and met-NrdB were prepared as described

previously3 and met-NrdF was prepared as above. In a glovebox at 4 'C in reaction volumes of

240 ptL, met-NrdF (20 gM) was mixed with [2Fe-2S]*-YfaE in the ratios of 1 or 3 [2Fe-2S]*-

YfaE per Fe in met-NrdF; met-NrdF (30 pM) with 1 or 5 FMNH 2 per Fe; met-NrdB (20 pM)

with 1 or 3 NrdI per Fe; and met-NrdB (30 pM) with 1 or 5 FMNH2 per Fe. After anaerobic

incubation for 5 min at 25 'C, oxidation to generate cluster was carried out as above. The

solutions were transferred to EPR tubes and frozen in liquid N2 for Y- quantification.

3.2.12. Pulldown of NrdF with NrdI. In this and subsequently described experiments, we

investigate the binding of NrdI to NrdF suggested by our titrations of met-NrdF with Nrdlhq. In

certain experiments performed after the discovery of NrdI's role in Mn"12-Y- cofactor assembly,

Mn"2-NrdF (apo-NrdF incubated with 4 Mn"/2) was used instead of met-NrdF.

In a final volume of 1 mL, 12.5 gM apo-NrdF, 60 pM MnCl 2, and 25 pM oxidized NrdI

(NrdIox) were mixed in Buffer D and incubated at 4 'C for 5 min before loading onto a 0.2 mL

(0.7 x 1.2 cm) Ni-NTA agarose column. The column was washed with 6 mL Buffer D, 3 mL

Buffer D containing 10 mM imidazole, 2 mL Buffer D containing 50 mM imidazole, and 1 mL

Buffer D containing 250 mM imidazole. The flowthrough and column washes were collected

and analyzed by SDS-PAGE. As a control, an analogous experiment was carried out with 1 mL

12.5 ptM Mn"2-NrdF in Buffer D, in the absence of NrdIox.

3.2.13. Titration of NrdI in the presence of NrdF to determine the visible spectrum of the

NrdI anionic sq. To a septum-sealed anaerobic cuvette fitted with a gas-tight syringe and
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repeating dispenser, 250 pL of apo- or Mn" 2-NrdF (36 RM) and 72 pM NrdIOx were added and

mixed with Buffer C. The syringe contained ~1 mM sodium dithionite in Buffer C, which was

added in 2 RL aliquots until no further change in the UV-vis spectrum occurred. Equilibrium

was reached after each addition within the time required to mix the sample by inversion and to

initiate spectrum acquisition.

The spectrum of the anionic semiquinone (sq) form of NrdI was estimated as described in

section 3.2.5. At 293 K, the visible spectrum was acquired of an anaerobic sample of 70 pM

NrdI and 35 pM apoNrdF, titrated with dithionite to maximize sq formation (~30%). This

sample was then transferred into a sealed aqueous flat cell (Wilmad) in an anaerobic box and its

EPR spectrum was acquired at 293 K. Spin quantitation was performed using a diferric-Y- NrdF

sample of known Y- concentration (determined by comparison to a CuSO4 standard solution at

77 K). Comparison of the sq concentration, determined by EPR spectroscopy, with the visible

spectrum allowed calculation of the esq at 585 nm (only Nrdlsq has significant absorption at >550

nm). The resulting value (E585nm = 1.5 mM~1 cm'1) was used to calculate the concentration of

NrdIsq at given points during titrations, allowing determination of the concentrations of NrdIox

and Nrdlhq. The spectra of NrdIox and Nrdlhq in the presence of apo-NrdF (Figure 3.9), scaled by

concentration, were subtracted from the overall spectrum, yielding the anionic sq spectrum.

3.2.14. Fluorometric determination of the Kd for Nrdlhq binding to Mn"2-NrdF.

Fluorescence titration studies were carried out using a Photon Technology International QM-4-

SE spectrofluorometer equipped with FELIX software and 0.5 mm excitation and 0.75 mm

emission bandwidth slits. The excitation wavelength was 380 nm and the emission data were

acquired at 475-625 nm, with 1 nm steps and 0.5 s integration time.
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All solutions were prepared in the anaerobic chamber. In a typical experiment, 700 gL 1

pM apo-NrdF (0.7 nmol), 4 pM MnCl2, and 100 pM dithionite in 50 mM sodium phosphate, 5%

glycerol, pH 7.0, was added to a semi-micro quartz fluorometer cell (10 mm pathlength, Starna

Cells), which was sealed with a septum and screw cap. NrdIhq (100 pM) and dithionite (100 pM)

in the same buffer was placed in a 50 pL Hamilton syringe fitted to a repeat dispenser. The

syringe was inserted into the cuvette and the apparatus was removed from the glovebox for the

titration. After equilibration to room temperature (RT, 23 C), a baseline spectrum was initially

acquired, followed by addition of Nrdlhq in 1 or 2 pL (0.1 or 0.2 nmol) aliquots, mixing by

inversion, and equilibration for 1 min, followed by data acquisition. The shutter was opened just

before each scan and closed immediately after to minimize photobleaching. Data were analyzed

by the method of Eftink,26 described below, to determine the stoichiometry of NrdI binding (n)

and the Kd.

3.2.14.1. Analysis of fluorescence titration data. The molar fluorescence of unbound

Nrdlhq, FL, was determined by titration of a solution of Nrdlhq (100 gM) and dithionite (100 gM)

in 50 mM sodium phosphate, 5% glycerol, pH 7.0 into 700 pL of the same buffer containing 100

pM dithionite. Fluorescence at 512 nm (volume adjusted) was plotted against Nrdlhq added and

the slope of the linear regression fit represented FL-

The fluorescence maximum of Nrdlhq was at 516 nm for unbound and at 512 nm for

bound Nrdlhq (see Figure 3.12) The molar fluorescence of bound Nrdlhq, FML, at 512 nm was

determined to be 3.5FL by titration of 700 pL 5 pM NrdIhq with 270 pM Mnr 2-NrdF, 100 gM

dithionite, in 50 mM sodium phosphate, 5% glycerol, pH 7.0 (11 pM final NrdF concentration).

For each point in the titration, the fluorescence change associated with binding of Nrdlhq

to NrdF, AF, was calculated according to equation 3.5:
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AF= F-F0 - FL[L]T (3.5)

where F is the total fluorescence at 512 nm, FO is the initial fluorescence at 512 nm, and [L]T is

the total concentration of NrdI (pM) at each point in the titration. The concentration of free

Nrdlhq, [L], was extracted after each addition of Nrdlhq by rearranging equation 3.6, which

expresses that the total fluorescence is the sum of the fluorescence of bound and unbound NrdI,

to give equation 3.7:

F = FL[L] + FML([L]T - [L]) (3.6)

[L] = F-FMLL]T (37)
FL - FML

The values of AF and [L] for each titration point were plotted and fit to equation 3.8,26

AF = (nK[L]AFmax)/(1 + K[L]) (3.8)

where K is the association constant for NrdI-NrdF, n is the stoichiometry of NrdI binding (per

NrdF dimer), and AFmax is the maximum fluorescence change associated with Nrdlhq binding,

expressed as equation 3.9:

AFmax = [M]T(FML - FL) (3.9)

where [M]T is the concentration of NrdF.

3.2.15. Site-directed mutagenesis, overexpression, and purification of N83D-NrdI. The

mutant was constructed to investigate the effect of charge on the degree of sq stabilization of

NrdI. Site-directed mutagenesis was carried out on pET28a-nrdl using PfuUltra II polymerase

and the primers: 5'-GGC GTT ATT GCT TCT GGT GAT CGC AAC TTT GGT GAG GCG-3'

and 5'-CGC CTC ACC AAA GTT GCG ATC ACC AGA AGC AAT AAC GCC-3' (the

mutated codon is bolded). XL10 Gold Ultracompetent cells (Stratagene) were transformed with

the mutagenesis product, plasmids were isolated from single colonies by miniprep (Qiagen), and

the purified plasmids were sequenced at the MIT Biopolymers laboratory to confirm the
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presence of the desired mutations. Cells transformed with the pET28a-nrdI(N83D) plasmid were

grown and protein overexpressed exactly as for the wt protein (section 3.2.3). The cultures

yielded 10.6 g wet cell paste (2.6 g/L). Inclusion bodies were purified from the wet cell paste

(3.2.3.3), giving ~0.2 g inclusion bodies per g cell paste. N83D-NrdI was refolded and purified

from the inclusion bodies as described in 3.2.3.4, yielding 85 mg purified N83D-NrdI per g

inclusion bodies.

3.2.16. Manganese quantification. Quantification of manganese was performed using a

Perkin-Elmer AAnalyst 600 spectrometer in the laboratory of Prof. Stephen Lippard, using a

manganese standard solution (1000 ± 4 mg/L. Fluka) serially diluted to 5 pg/L using volumetric

flasks. The standard curve (0, 1.25, 2.5, 3.75, and 5 pg/L Mn) was generated by the instrument.

Protein samples were serially diluted in distilled/deionized water to an appropriate concentration

for analysis. Each analysis was performed in triplicate and the results averaged.

3.3. RESULTS

3.3.1. Purification of NrdI

3.3.1.1. In soluble form. At the start of our studies, NrdI was recognized as a conserved

component of the class Ib RNR system, but no NrdI had been biochemically characterized and its

function was unknown. Therefore, we cloned and expressed untagged NrdI (15.3 kDa) and

tagged NrdI (17.3 kDa, tag: MGSSH 6SSGLVPRGSH). The untagged protein was poorly

overexpressed, whereas tagged NrdI was overexpressed to ~30% of cellular protein but was

found predominantly in inclusion bodies (Figure 3.2, lanes 1-4). Small amounts of soluble

untagged (0.2 mg/g cell paste) and His6-tagged (0.01 mg/g cell paste) NrdI were purified by

conventional chromatographic methods, as described in section 3.2.3. In each case, the visible
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spectrum exhibited features suggestive of a flavin (Figure 3.3). HPLC analysis of the small

molecules isolated from the supernatant subsequent to protein denaturation by heating or with

5% TCA revealed the bound cofactor to be FMN (Table 3.1). In neither case, however, was

FMN incorporation stoichiometric.

3 7 +4

20 +

15 +

1 2 3 4 5 6

Figure 3.2. SDS-PAGE (17%) analysis of expression, refolding, and purification of tagged
NrdI. Lane 1: pre-induction; lane 2: post-induction; lane 3: lysate (soluble fraction); lane 4:
lysate (insoluble fraction); lane 5: refolded NrdI after SP Sepharose column (1.7 gg); lane 6:
same as 5, boiled, but without addition of p-mercaptoethanol. The band in lane 6 at 35 kDa
suggests dimerization of NrdI through a disulfide bond.
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Figure 3.3. UV-visible absorption spectrum of soluble, untagged NrdI, purified from
BL21(DE3) pLysS cells. Despite the trailing absorption features suggestive of some precipitated
protein, features at -380 and 450 nm indicate a bound flavin cofactor.
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Table 3.1. HPLC retention times of standards and FMN bound to tagged NrdI (1) purified from
the soluble fraction of crude extract and (2) from inclusion bodies and refolding. See section
3.2.4 for experimental details.

Retention time (min)

Experiment 1

FAD standard 12.9

FMN standard 17.8

Soluble NrdI 17.9

Experiment 2

FMN standard 18.3

Riboflavin standard 27.4

Refolded NrdI 18.3

3.3.1.2. From inclusion bodies. Because of the low yield of soluble NrdI, high levels of

expression of tagged NrdI, and previous reports that flavodoxins can be refolded,27 the inclusion

bodies became the focus of our attention. Ultimately, solubilization and refolding of the tagged

NrdI (from here on referred to as simply "NrdI") found in inclusion bodies became the method of

choice for isolating large amounts of NrdI loaded with FMN cofactor and all biochemical studies

of the class Ib RNR system. Inclusion bodies were isolated from the cell extract and solubilized

in buffer containing 8 M urea and 10 mM DTT. The solubilized protein was then refolded by 8-

fold dilution into buffer without urea in the presence of FMN. Although the inclusion bodies

fully solubilized in urea, some protein precipitated upon addition to the refolding solution. The

presence of DTT in the refolding solution was essential for high yields of refolded NrdI; in its

absence, yields were >7 times lower. The presence of 20% glycerol also improved purification

yields significantly. Despite the presence of riboflavin (4%) and riboflavin diphosphate (5%)

impurities in the FMN used for refolding, HPLC analysis (Table 3.1) demonstrated that only the

FMN bound to the refolded NrdI. Because preliminary experiments demonstrated that NrdI does
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not bind to DEAE or Q Sepharose anion exchange columns, the protein was concentrated on an

SP Sepharose column and eluted with 200 mM NaCl, yielding homogeneous NrdI as judged by

SDS-PAGE (Figure 3.2, lane 5). A typical yield of ~90 mg NrdI per g of inclusion bodies (18

mg/g cell paste) was obtained.

The A2 80/A4 54 ratio is -4.3 for NrdI, based on multiple purifications. To estimate the

degree of FMN loading of NrdI, the contribution of the flavin absorption at 280 nm must be

subtracted from the total NrdI A280 . The contribution of the FMN absorption at 280 nm was

estimated to be 18 mM~1 cm~1 based on the extinction coefficient at 454 nm of the oxidized

protein (11 mM'1 cm~1, determined below) and the A280/A445 of free FNN, which is 1.6, on the

assumption that that ratio is similar to the A280/A4 54 ratio of NrdI-bound FMN. Using the

calculated contribution, as well as the estimated 8280 of the NrdI polypeptide (18.5 mM~1 cm'1), 16

the refolded NrdI contained 0.7 FMN/NrdI. Attempts to use the Bradford assay, using bovine

serum albumin (BSA) as standard, to determine the FMN loading gave results of -1.4

FMN/NrdI. In the future, it would be useful to more accurately determine the FMN loading by

precipitation of NrdI with 5% TCA, followed by resuspension of the precipitate in a solution of

0.1% SDS and measuring the UV-vis spectrum, as later done for B. subtilis NrdI.28 If the 0.7

FMN/NrdI value is correct, it is not known whether soluble apoprotein would be able to bind to

NrdF and therefore be problematic for experiments requiring NrdI-NrdF interaction. However,

the fact that NrdI stoichiometrically reduces met-NrdF (Table 3.2) suggests that, if apoNrdl is

present, it does not interfere significantly with holoNrdl-NrdF complex formation.

3.3.2. Spectroscopic characterization of NrdI. The UV-visible absorption spectrum of NrdI is

shown in Figure 3.4 (solid line). At pH 7.0, it exhibits maxima at 275, 380, and 454 nm, with

shoulders at -425 and -480 nm. The extinction coefficient of the oxidized, protein-bound FMN
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cofactor at 454 nm (C4540 x) was determined to be 11.0 mM' cm' by the method of Mayhew and

Massey 8 and was used to calculate the concentration of NrdI in all experiments.

12

E 8-

-0

01

300 400 500 600 700 800

Wavelength (nm)

Figure 3.4. UV-vis spectra of NrdI in the ox (solid line), sq (dotted line), and hq (dashed line)
forms. The sq spectrum was estimated as described in Materials and Methods.

To determine the spectrum of the hq form of NrdI (Figure 3.4, dashed line, 8454hq = 0.8

mM' cm'), anaerobic titrations with sodium dithionite were carried out. These titrations

indicated that -1.6 equiv dithionite, instead of the expected 1 equiv, were required to reduce

NrdI. NrdI was examined by SDS-PAGE in the absence of p-mercaptoethanol (Figure 3.2, lane

6), revealing a -35 kDa band in addition to the expected ~17 kDa band for NrdI. This suggests

that the NrdI monomer, which contains one cysteine residue, Cys101, readily forms an

intermolecular disulfide bond. This observation also likely explains why inclusion of DTT in the

refolding buffer is essential for obtaining high yields of refolded NrdI. Upon pre-incubation with

tris(2-carboxyethyl)phosphine (5 mM for 5 min) to reduce the disulfide bond, the NrdI could be

fully reduced by a stoichiometric amount of dithionite.
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Figure 3.5. Selected spectra from anaerobic titration of ~100 p.M NrdI with -3.5 mM sodium
dithionite, showing maximum extent of sq formation (-28%).

Typical flavodoxins can stabilize near-stoichiometric amounts of the neutral sq form of

their FMN cofactors, as the differences in reduction potential between the protein-bound ox/sq

and sq/hq couples are on the order of 200-300 mV. To our surprise, however, reductive titration

of NrdI revealed low amounts of neutral sq, detectable at 575 nm (Figure 3.5). Attempts to

obtain the sq spectrum and C575sq from such a titration, either by a plot of A454 versus A575
18 or by

spectral deconvolution using evolving factor analysis,2 3 failed because all three redox states

coexist in significant amounts throughout the titration. Ultimately, 6 575sq was determined to be

3.4 mM'1 cm~1 by correlation of the visible and EPR spectra (acquired at room temperature using

an aqueous flat cell, with spin quantitation using NrdF Y- as a standard)29 of NrdI, partially

reduced with a defined amount of dithionite. Using 6 575sq and titrations of NrdI with dithionite,

the spectrum of the pure sq was extracted and is consistent with those reported for other

flavodoxins (Figure 3.4). From these results, the maximum amount of sq stabilized by NrdI was

calculated to be -28%, predicting that the reduction potential of the sq/hq couple (Esq/hq) is
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higher than that of the ox/sq couple (Eoxisq) by ~14 mV at 25 'C, using equation 3.2 (section

3.2.6). This difference in redox potentials can also be expressed in terms of the sq formation

constant K = [sq]2/([hq] [ox])= 0.8.

3.3.3. Reduction potential determination. The predicted similarity of Eoxjsq and Esqmq is

unusual relative to typical flavodoxins and essential to understanding NrdI's function. These

potentials were thus measured spectrophotometrically using the xanthine oxidase (XO) method2 2

at 25 0C, pH 7.0, with data analysis using the Michaelis equation (equation 3.1, section 3.2.6).

This method uses catalytic, anaerobic oxidation of xanthine to urate by XO as a source of

reducing equivalents, an indicator dye of known midpoint potential (phenosafranin, Em = -252

mV at pH 7.0, 25 C24), and a low potential dye as a mediator (methyl viologen) (Scheme 3.2).

To enhance the sensitivity of the analysis due to the small amount of sq formed in the

experiments, difference spectra were obtained by subtraction of the spectrum prior to XO

addition from each subsequent spectrum. The difference spectra were then fit to dye (PSred -

PSox) and protein (hq - sq, sq - ox) difference spectra using multiple linear regression analysis.

Analysis of the datasets yielded an average redox potential (Em) of -260 L 10 mV and a K

value of 0.7 ± 0.2 (Figure 3.6). Using equation 3.2, these values correspond to Eox/sq = -264 ± 17

mV and Esq/hq = -255 ± 17 mV. The large errors are primarily due to the overlapping visible

spectra of the oxidized PS and the sq, the substantial difference in their extinction coefficients,

and the low amounts of sq formed during the experiment. However, Eox/sq and Esq/hq are

consistent with the predicted difference in Eox/sq and Esq/hq based on the titrations with dithionite.

While Eox/sq (-264 mV) is consistent with those of long-chain flavodoxins, its Esq/hq (-255 mV) is

200 mV higher than for most flavodoxins.3 0 Structural causes and mechanistic implications for

these unusual reduction potentials are discussed below.
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Figure 3.6. Determination of the reduction potentials of NrdI. (A) Representative difference
spectra from a NrdI reduction potential measurement using the XO method. Spectra 1-5 (black
lines) were acquired 30, 60, 90, 120, and 180 min following addition of XO. Fits (red lines) are
superimposed on the experimental difference spectra. (B) Plot of solution potential (calculated
from concentrations of ox and red PS indicator) vs. degree of oxidation (F) for a typical reduction
potential determination. The data was fit (red line) to equation 3.1. For this particular titration,
Em= -266 mV and K = 0.8.

3.3.4. Evidence for interaction of NrdF and NrdI. Based on the presence of nrdI within the

nrdHIEF operon and the induction of this operon under Fe-limited growth conditions and

oxidative stress, we postulated that the flavodoxin-like protein NrdI might replace the Fe-

requiring [2Fe2S] ferredoxin YfaE3 in the maintenance pathway of a diferric-Y- cofactor for

NrdF (Scheme 3.1). We, have obtained five lines of evidence that NrdI and NrdF interact,

described below. Initially, we performed analogous experiments to those that had shown that

[2Fe2S]*-YfaE can transfer electrons to met-NrdB;3 we demonstrated that NrdIhq can

stiochiometrically transfer its two electrons to met-NrdF, but not met-NrdB, indicating a specific

interaction. Later, in the course of our investigations leading to the discovery that NrdI is

essential for formation of a dimaganese-Y- cofactor in NrdF, we obtained additional, direct

evidence for interaction of NrdI and NrdF and estimates of the strength of this interaction.
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3.3.4.1. Titration of met-NrdF with NrdIhq. To test the model that NrdI's role in the

NrdEF system was analogous to YfaE's role in the NrdAB system, met-NrdF (-0.002 Y-/p2)

was prepared by reduction of the Y- of NrdF (0.33 Y-/p2, 3.4 Fe/2, Chapter 2)31 by

hydroxyurea (HU). The diferric cluster remains intact during this treatment, as judged by its

UV-visible spectrum. In the absence of 02, NrdI (~100 pM, reduced to hq by titration with

dithionite) was titrated into a cuvette containing met-NrdF (-20 pM, 4.5 nmol), and spectra were

recorded from 300-800 nm after each addition. The reduction of met-NrdF was monitored at 341

nm, the isosbestic point of the hq and ox forms of NrdI. Representative spectra during the course

of the titration are shown in Figure 3.7. Under these conditions, no sq formation was observed,

indicating that NrdI was fully oxidized by met-NrdF (consistent with the equivalence of Eox/sq

and Esq/hq). Upon reaching an endpoint, as judged by the ability to attribute the full absorbance

change at 341 nm to the amount of Nrdlhq added, 02 was added to allow diferric-Y- cofactor

assembly. The resulting difference spectrum (Figure 3.7, inset) demonstrates regeneration of

Ye. The results of several titration experiments are summarized in Table 3.2. Stoichiometric

reduction of met-NrdF was observed, with 1.9 Fe reduced / NrdI oxidized. The Y-/p2 recovered

was similar to the Y- in the starting NrdF, even though -80% of the total met-NrdF-bound Fe

was reduced. Similar titrations were carried out with NrdF (0.50 Ye/2) reconstituted from

apoprotein, with 1.8 Fe reduced / NrdI oxidized and 0.38 Y-/02 recovered (Table 3.2). These

results demonstrate that NrdI is chemically competent to carry out stoichiometric reduction of

met-NrdF and suggest a role in NrdF maintenance. It would be of interest to repeat these

experiments now that higher levels of Y- (0.7 Y-/02) can be obtained in in vitro reconstitutions

with Fe" and 02.
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Figure 3.7. Anaerobic titration of met-NrdF with Nrdlhq. Met-NrdF (4.4 nmol, 14.9 nmol Fe,
thin line) was titrated with 2.5 and 5.0 nmol Nrdlhq (dashed lines), and to an endpoint with 5.9
nmol Nrdlhq (thick line). After addition of 02 to assemble diferric-Y- cofactor, a final spectrum
was acquired (dotted line). Inset: Difference spectrum between the endpoint of the titration with
Nrdlhq and addition of 02. The arrow indicates the sharp 408 nm feature associated with Y-.

Table 3.2. Stoichiometry of Fe reduction in anaerobic titrations of met-NrdF with Nrdlhq

Total Fe Fe reduced Nrdlhq added Fe reduced/ Y-/3 2

(nmol) (nmol) (nmol) NrdIhq added
14.9 a 11.6 ±0.4 6.2 ±0.2 1.9 ±0.1 0.32 0.01

16 .6 b 10.6 ±0.4 5.8 ±0.2 1.8 ±0.1 0.38 ±0.02
a Average (± standard deviation) of four anaerobic titrations of met-NrdF (~4.5 nmol, 3.4 Fe/p2),
reconstituted in crude extracts, with Nrdhq. 02 was added at the endpoint of each titration.
b Average of three anaerobic titrations of met-NrdF (-4.4 nmol, 3.8 Fe/p2), reconstituted from
apoprotein. Different batches of NrdI were used in titration sets A and B.

3.3.4.2. Specificity of NrdIfor met-NrdF. A number of control experiments were carried

out to demonstrate the physiological importance of NrdI in met-NrdF reduction. First, met-NrdF

(20-30 pM) was incubated anaerobically with stoichiometric or excess (relative to Fe) amounts

of [2Fe2S] '-YfaE or free FMNH 2 (Table 3.3). At the end of the incubation, 02 was added and

the samples were transferred to EPR tubes and frozen in liquid N2 for Y- quantitation.

Analogous experiments with met-NrdB, using either Nrdlhq or FMNH 2 as a reductant, were also
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performed. In all cases, the concentrations used were far above likely physiological ones

(Chapter 5). Only 0.02-0.05 Y-/32 were regenerated, which we attribute to dissociation of

reduced Fe", followed by binding to apo-p2 and cluster assembly. The results show that NrdI is

competent for specific reduction of NrdF, orthogonal to reduction of NrdB by YfaE (Scheme

3.1).

Table 3.3. Orthogonality of the NrdHIEF and NrdAB-YfaE systems.
NrdB with YfaE (not shown) gave results as described previously. 3

A control titration of met-

Reductant Oxidant Fe (nmol
Nrdlhq met-NrdF 16.3

Nrdlhq met-NrdB 16.3

16.3

YfaE met-NrdF 16.3

16.3

FNNH 2  met-NrdF 24.5

24.5

FMNH 2  met-NrdB 24.5

24.5

a Reactions with Nrdlhq and YfaE

) Reducing equiv (nmol)
18.6

18.6

55.6

16.3

48.9

24.4

122

24.4

122

contained 20 [tM met-NrdB

Y-/p2
0.29

0.02 ± 0.01

0.02 ± 0.01

0.05 ± 0.01

0.04 ± 0.01

0.03 ± 0.01

0.04 ± 0.01

0.03 ± 0.01

0.04 ± 0.01

or NrdF and 20 or 60 pM Nrdlhq
or YfaE
b Reactions with FMNH2 contained 30 pM met-NrdB or met-NrdF and 20 or 100 gM FMNH2

3.3.4.3. Introduction to further experiments demonstrating interaction of NrdI and NrdF.

The remainder of this chapter describes experiments that were carried out after our discovery that

NrdF could also generate a dimanganese(III)-Ye cofactor by reaction of Mn"-loaded NrdF

(Mn"2-NrdF) with Nrdlhq and 02 (Chapter 4). As a result, many experiments involving NrdF

were performed using the Mn"2-loaded form of the protein; as shown in Chapters 4 and 6, NrdF

binds 3.4 Mn"/p2.
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3.3.4.4. Pulldown of NrdF with NrdI using Ni affinity chromatography. Direct evidence

for the interaction of NrdI and NrdF was obtained by Ni affinity chromatography of a mixture of

untagged NrdF, loaded with 4 Mn/02, and 2 His6-tagged NrdIox/p2 (Figure 3.8, lanes 1-5).

Although Mn" 2-loaded NrdF was used in these experiments, similar results were obtained using

apo-NrdF (although these experiments were not attempted using met-NrdF, we anticipate the

results would also be similar in this case, given that Nrdlhq specifically reduces met-NrdF). The

mixture was loaded onto a Ni affinity column (lane 1) and washed extensively with Buffer D

containing 0 mM [30 column volumes (CV), lane 2], 10 mM (15 CV, lane 3), and 50 mM

imidazole (10 CV, lane 4), before elution with 5 CV Buffer D containing 250 mM imidazole

(lane 5). The fractions were analyzed by 17% SDS-PAGE. Approximately 45% of the total

NrdF, quantified by densitometry, coeluted with NrdI at 250 mM imidazole. By contrast, in a

control experiment (lanes 6-8), Mn"2-NrdF in the absence of NrdI eluted completely by the end

of the 30 CV Buffer D wash. These results demonstrate a tight interaction between NrdIox and

Mn"2-NrdF. Similar results were obtained when the procedure was carried out anaerobically

using NrdIhq.

NrdF

NrdI

1 2 3 4 5 6 7 8
Mn"2-NrdF + NrdI Mn"2-NrdF

Figure 3.8. Mn" 2-NrdF interacts strongly with NrdI. Lanes 1-5: Mn"2-NrdF was incubated with
2 NrdIox/$2 and loaded onto a Ni affinity column. Lane 1: flowthrough; lanes 2-5: washes with
Buffer D containing 0, 10, 50, and 250 mM imidazole, respectively. Equal volumes of each
sample were loaded onto the gel. Lanes 6-8: Mn"2-NrdF in the absence of NrdI does not bind to
the Ni column. Flowthrough (lane 6), wash with Buffer D (lane 7), wash with Buffer D
containing 10 mM imidazole (lane 8).
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Figure 3.9. (left) Spectra of the ox (solid lines), sq (dotted lines), and hq (dashed lines) forms of
NrdI in the presence (black) and absence (red) of apoNrdF, in Buffer B. The spectra of the
neutral and anionic sq forms were estimated as described in Materials and Methods. (right) UV-
vis spectra of D-amino acid oxidase in the oxidized (solid line) and anionic sq (dotted line)
forms. Reproduced from ref. 32.

3.3.4.5. Perturbations of the visible spectrum of NrdI in the presence of NrdF. The

sensitivity of flavins to their environment suggested that the spectrum of NrdI's FMN cofactor in

different oxidation states might serve as a probe for its interaction with NrdF. Incubation of

NrdIox or Nrdlhq with apoNrdF (2 NrdI/p32) demonstrated slight perturbations of the flavin

spectrum relative to the control in the absence of apoNrdF, primarily in the 350-410 nm region

(Figure 3.9, solid and dashed lines). Our studies described above showed that anaerobic titration

of NrdIox with dithionite in the absence of NrdF led to stabilization of a maximum of 28% of

total flavin as a neutral sq intermediate (Figure 3.9, red dotted line). The UV-visible spectra at

the beginning, midpoint, and endpoint of a similar titration of NrdI and apoNrdF are shown in

Figure 3.10A. Surprisingly, the midpoint spectrum (dotted line) exhibits a dramatically higher

absorption in the 350-410 nm region than is seen in the midpoint spectrum in a similar titration

of NrdI in the absence of apoNrdF (Figure 3.10B). The 5 50-700 nm region also displays lower

absorption and a broad band centered at 585 nm in the presence of NrdF, relative to this region in
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the absence of apoNrdF (peak at 575 nm, shoulder at 620 nm) (Figure 3.10, insets). These

spectra demonstrate that the differences in the 350-410 and 550-700 nm regions in the presence

and absence of NrdF are due to formation of distinct species. The extracted sq spectra (Figure

3.9, dotted lines, deconvoluted as described in section 3.2.13) and their extinction coefficients

are consistent with anionic and neutral sqs, respectively (Figure 3.9).

A

0
U
C
0
I.-
0
'I)

Wavelength (nm)

800

Wavelength (nm)

Figure 3.10. Initial (solid line), midpoint (dotted line), and endpoint (dashed line) spectra from
(A) an anaerobic titration of 72 tM NrdI in the presence of 36 pM apoNrdF with ~1 mM sodium
dithionite in Buffer B; and (B) an anaerobic titration of 100 gM NrdI with -3.5 mM sodium
dithionite in Buffer B. In the case of (B), the spectra were scaled to 72 pM NrdI to facilitate
direct comparison with (A). Insets: Enlargements of the 500-700 nm regions of each titration.
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Support for this interpretation comes from the EPR spectra at 293 K of the two sqs

(Figure 3.11). In the presence of apoNrdF, the peak-to-trough linewidth of Nrdlsq was 15 G,

diagnostic of an anionic sq,33 compared to 19 G, characteristic of a neutral sq, for Nrdlsq in the

absence of apoNrdF. Spin quantitation of the anionic sq yielded 31-34%, as estimated from

Figure 3.10A using the extinction coefficient at 585 nm, similar to the 28% neutral sq

stabilization when NrdI is titrated with dithionite in the absence of NrdF. Thus, binding of NrdF

does not greatly alter the relative reduction potentials of NrdI's ox/sq and sq/hq couples.

Titrations carried out with Mnr 2-NrdF in place of apoNrdF gave similar results. Clearly, binding

of NrdI to NrdF affects the electrostatic environment of the flavin, illustrated most dramatically

by the altered protonation state of the sq.

A

3460 3480 3500 3520

Field (G)

B

3540 3560 3460 3480 3500 3520

Field (G)

Figure 3.11. EPR spectra of NrdIsq in the presence (black) and absence (red) of apoNrdF. NrdI
(~70 gM) was titrated anaerobically in the presence or absence of ~35 gM apoNrdF in a septum-
sealed cuvette with 1-2 mM sodium dithionite at 20 *C until sq formation was maximized (-25
pM in each case). A) Spectra as acquired. Although the spectra are noisy, the peak-to-trough
linewidth of the signals can be calculated to be 15 G in the presence of apoNrdF (black) and 19
G in the absence of apoNrdF (red). B) Digital filtering of the spectra acquired in (A) was carried
out in Origin (Microcal) in order to more clearly demonstrate the difference in linewidth between
the two signals. This filtering decreased noise from frequency components below a given
threshold value, without altering the shape, linewidth, or amplitude of the signals.
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3.3.4.6. Binding of NrdIhq to Mn"2-NrdF monitored by spectrofluorometry. Our later

studies of the kinetics of Mn"12-Y- cofactor assembly require a knowledge of the affinity of

Nrdlhq for Mn"2-NrdF (Chapter 6). Previous studies have demonstrated that the hq forms of

some flavoproteins, including flavodoxins, are weakly fluorescent, with excitation maxima at

around 370 nm and emission maxima in the 500-530 nm region.34 We found that the NrdIhq

FMN cofactor displays similar fluorescence properties, with the emission spectrum shown in

Figure 3.12A (black line, excitation at 380 nm), with a peak at 516 nm. Titration of Nrdlhq with

a solution of Mn"2-NrdF demonstrated that the Nrdlhq fluorescence emission spectrum is

sensitive to the presence of NrdF, with a 3.5-fold increase in intensity and a slight shift in the

emission maximum to 512 nm (Figure 3.12A). This sensitivity to the presence of NrdF was

used to determine the Kd for NrdIhq binding to Mn"2-NrdF. Titrations of Mn"-loaded E. coli

NrdF (1 pM, 4 Mn"/p2) with Nrdlhq were analyzed using a non-cooperative binding model

(Figure 3.12B, equation 3.8). This analysis gives 0.7 ± 0.1 Nrdls binding per NrdF dimer, with

a Kd of ~50 nM. This Kd determination is limited by the fluorescence intensity of the hq and the

propensity for photobleaching at larger slit widths and thus probably represents an upper limit; it

may be possible to achieve a more reliable Kd through further attempts at slightly lower NrdF

concentrations. The stoichiometry of NrdI binding is at odds with the ability to crystallize the

NrdI/Mnr 2-NrdF complex with 2 Nrdls bound per P2 (Chapter 5), although the fluorescence

experiments were obviously carried out at much lower concentrations. Experiments could be

performed at higher concentrations to determine whether the unusual stoichiometry is observed

there as well. Other possible explanations for the observed stoichiometry of <1 NrdI/p2 are the

possible presence of apoNrdl, which may bind to NrdF as well, or an incorrect extinction

coefficient for NrdF (which should be determined by amino acid analysis if further work will be
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carried out in this system). Finally, interpretation of the data requires knowledge of the binding

affinity of Mn" for NrdF and the oligomeric state of NrdF under these conditions, the latter of

which could be determined by size exclusion chromatography. Still, the data clearly indicate a

tight interaction of E. coli NrdI and NrdF.

A 32000- B 4000
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Figure 3.12. Binding of Nrdlhq to Mn"2-NrdF, monitored by spectrofluorometry. (A)
Fluorescence emission spectra (Xex = 380 nm) of 5 pM Nrdlhq alone (black) and in the presence
of 6 gM (red) and 10 pM (blue) Mnr2-NrdF. (B) Analysis of titrations of 100 or 150 pM Nrdlhq
into 1 pM Mnr 2-NrdF. The data are from 3 independent titrations with all datapoints included
and simultaneously fit to equation 3.8 with K = 20 gM' (Kd = 50 nM) and n = 0.7.

3.3.5. The role of the conserved asparagine, Asn83, in determining the reduction potentials

of NrdI. While E. coli NrdI's Eox/sq (-264 mV) is consistent with those of long-chain

flavodoxins (see Discussion), its Esq/hq (-255 mV) is 200 mV higher than for most flavodoxins.30

We hypothesized that the relatively high Esq/hq value could be explained by a relatively neutral or

positive electrostatic environment for the isoalloxazine ring. Because flavodoxins bind the

anionic form of the reduced flavin (FMINH~), 34~36 explanations for the depression of Esq/hq by 200-

300 mV for flavodoxin-bound relative to free FMN (-172 mV) 37 have focused on the conserved,

negative electrostatic environment of the FMN cofactor in these proteins. Zhou and Swenson 38

have implicated an Asp residue commonly found -6 A from the flavin NI in flavodoxins (D95)
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in contributing -50 mV to the depression of Esq/hq in Desulfovibrio vulgaris flavodoxin. The

analogous residue in Nrdls is a conserved Asn. In order to test whether this Asp -+ Asn

substitution plays an important role in modulation of the FMN reduction potentials in NrdI, the

N83D mutant of NrdI was constructed and purified and its redox properties were characterized.

Like wt NrdI, N83D-NrdI was found primarily in inclusion bodies when overexpressed

as an N-terminally His6-tagged construct in pET-28a (same tag as wt NrdI). The yields of

inclusion bodies and purified protein following refolding were similar to those for wt NrdI. The

UV-visible spectrum of the oxidized mutant was indistinguishable from that of the wt tagged

protein, with absorption peaks at 377 and 455 nm and pronounced shoulders at -425 and 480 nm

(Figure 3.13A). However, when N83D-NrdI was titrated anaerobically with sodium dithionite

in Buffer B, the features of neutral sq were more prominent in the 500-700 nm region (Figure

3.13A) compared to wt NrdI (Figure 3.11B). Using the &575 of wt Nrdlsq (3.4 mM' cm'),

N83D-NrdI thermodynamically stabilizes 54% neutral sq, approximately twice as much wt.

A 10- _ U B 0.28

-2 ul0.4
0.8 - -- u 0.24

-- 6 ul
8 ul 0.20

0.610 
u

0.6412 ul 0.16

14~ ~ ~ 12o es a
0.4 -- 1 ud

2 WI -0.08

0.2 -24 ul
-- 26 Wl 0.04-

0.0 - 0.00
400 500 600 700 800 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Wavelength (nm) A4

Figure 3.13. (A) Anaerobic titration of N83D-NrdI (76 pM) with -1 mM sodium dithionite in
Buffer B. (B) Determination of the extinction coefficient of N83D-NrdIsq. 39 Plot of the A5 79,
reporting only on sq formation, versus A455 (at which wavelength the S455ox is known to be 11.0
mM' cm-). The red lines are tangents to the first (right) and last (left) three points in the
titration. The A 579 of the intersection point of the two lines (0.28) represents the theoretical A579

if 100% sq were formed. Dividing this value by the concentration of N83D-NrdI gives the &579sq.
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Because it is possible that the N83D mutation would alter the extinction coefficient of the

sq form of cofactor, this value was determined for the mutant by plotting the absorbance values

at 579 nm (a maximum in the sq spectrum) and 455 nm (a maximum in the ox spectrum) during

the titration (Figure 3.13B). The intersection of the tangents to the initial and final titration

points in this plot was used to approximate the 579 of the sq as 3.6 mM 1 cm 1 , similar to wt.39

Stabilization of 51% sq (calculated using this value for F579) corresponds to a sq formation

constant K of 4.3 (versus 0.8 for wt NrdI). By equation 3.2, this corresponds to a difference

between Eox/sq and Esqq of 38 mV (versus -9 mV for wt NrdI). The N83D mutation is expected

to primarily affect Esq/hq, 40 suggesting that the mutation has decreased Esqq by 47 mV, in good

agreement with the effect of the D95N mutation on Esq/hq of D. vulgaris flavodoxin.38

An analogous titration of N83D-NrdI in the presence of apoNrdF (2 NrdI/P2) was carried

out to investigate whether NrdF alters the electrostatic properties of the mutant NrdI.

Interestingly, the absorbance in the 550-650 nm region was markedly lower and the 350-400 nm

region significantly higher than in the absence of NrdF (Figure 3.14). As shown in Figure 3.9,

the features in the 550-650 nm region are consistent with neutral sq, whereas the data in the 350-

400 nm region suggest formation of a similar amount of anionic sq as with the titration of wt

NrdI in the presence of NrdF (Figure 3.10A). Spin quantitation by EPR spectroscopy at 20 'C

of a sample containing maximal sq gave 41% Nrdlsq. All of these observations can be

accommodated for by the presence of a mixture of neutral and anionic sq during the titration.

The 350-400 nm region is dominated by the anionic sq features because this form has the higher

extinction coefficient in this region, while the 550-750 nm region is dominated by the neutral sq

feature because this form has the higher extinction coefficient in this region (Figure 3.9). This

mixture of species could be a result of a weaker NrdI-NrdF interaction in the mutant (this Kd has
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not been determined). Alternatively, it could be explained by Asp83 partially counteracting the

effect of the positively charged residues in NrdF (see section 4.3.10.2) on the electrostatic

environment of the flavin in the NrdI-NrdF complex, which leads to anionic sq stabilization in wt

NrdI. Although these results are complex and preliminary, the studies with N83D-NrdI suggest

the importance of this conserved Asn residue for the electrostatic environment and redox

properties of NrdI's FMN cofactor.
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Figure 3.14. Titration of 72 pM N83D-NrdI with dithionite in the presence of 36 gM apoNrdF
(compare to Figure 3.13, in the absence of NrdF). (A) Full spectrum. Note the increased
absorption below 400 nm during the course of the titration, indicative of formation of anionic sq
(arrow). (B) Enlargement of the 500-750 nm region.

3.4. DISCUSSION

3.4.1. Determinants of NrdI's unusual redox potentials. Initially as a method to judge the

success of the refolding of His6-tagged NrdI, we focused on characterizing the redox properties

of the bound FMN. Typically, the protein environment of a flavodoxin stabilizes near-

stoichiometric amounts of neutral FMN sq by shifting Esq/q from -172 mV for free FMN 37 to

between -370 to -450 mV for bound FMN, 30 and EoxJsq from -238 mV to between -50 to -220 mV

for free and bound FMN, respectively. Thus the physiological role of typical flavodoxins is as a
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one-electron reductant. Our studies indicate that NrdI's Eox/sq and Esq/hq values are roughly

equivalent: -264 and -255 mV, respectively. This behavior is, to our knowledge, unprecedented

for a flavodoxin.

Two arguments suggest that the unusual reduction potentials of NrdI are physiologically

interesting. The first is based on an examination of sequence alignments and structures of wt and

mutant flavodoxins in comparison with sequence alignments of Nrdls (Appendix 1) and

available crystal structures of Nrdls. The second is the ability of Nrdlhq to specifically interact

with and reduce met-NrdF.

Flavodoxins have been categorized into two classes, short-chain and long-chain, which

differ by an insertion of ~20 residues interrupting the final p strand. 4 1 Structures of both classes

of flavodoxins in the three different oxidation states have been determined. Additional structures

in which residues suggested to be involved in redox perturbation have been mutated,3 0,42

combined with reduction potential measurements of these mutants,38,42 have given us a

framework to think about the unusual properties of NrdI.

The basis for the large perturbation of the sq/hq equilibrium in flavodoxins relative to

free FMN is proposed to be largely electrostatic. 4 0,43 The reduced FMN (FMNH~) is bound in the

anionic form with its NI atom deprotonated (see Scheme 3.2). There is often an Asp residue

within ~6 A of Ni, and there are additional, uncompensated negatively charged residues within

the vicinity of the FMN. This negative electrostatic environment is proposed to hinder reduction

of the sq to the hq, lowering Esq/hq.38 In D. vulgaris flavodoxin, for example, seven acidic

residues, without compensating positively charged residues, are within 13 A of the FMN N1.

The crystal structure of E. coli NrdI in complex with NrdF44 (Chapter 4) shows that, within that

same radius, there are only two acidic residues, Glul 10 (9 A) and Asp95 (13 A), and two basic
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residues, Arg92 and Arg1O8 (10 and 13 A). (NrdF contributes three other basic residues, also

discussed in Chapter 4). These observations suggest a more positively charged environment in

E. coli NrdI than in typical flavodoxins.

D. vulgaris flavodoxin Asp95, 6.3 A from the FMN NI in the oxidized protein, is

particularly interesting. Mutation of this residue to Asn increases Esq/hq by 46 mV.3 8 This Asp95

is conserved in many but flavodoxins but is an Asn residue, E. coli Asn83, in all Nrdls. Because

the flavin in Nrdlhq is anionic (FMNH) based on its UV-visible spectrum, 34 we hypothesized that

the effect of this Asp--Asn substitution on the electrostatics of the FMNH plays an important

role in stabilizing the hq form and destabilizing the sq form in E. coli NrdI relative to other

flavodoxins, resulting in a higher Esq/hq for NrdI. To test this hypothesis, Asn83 was mutated to

Asp. This mutation increased the difference between Eox/sq and Esq/hq from -9 to 38 mV,

presumably mostly attributable to a decrease in Esq/hq. While this single mutation does not

account for the full extent of Esq/hq perturbation in E. coli NrdI versus other flavodoxins, it

establishes that a less negative electrostatic environment near the flavin contributes to the

unusually high sq/hq reduction potential in E. coli NrdI.

Subsequent to the work described in this chapter, Andersson and coworkers45 and Logan,

Sj6berg, and coworkers4 6 reported crystal structures of oxidized and reduced (sq and hq) forms

of Bacillus cereus and Bacillus anthracis NrdIs. These proteins have been reported to stabilize

~100%45 and -60% sq,4 6 respectively, although no data have been published to substantiate these

conclusions. Because protein electrostatics seems to play a key role in modulating NrdI's redox

potentials, the latter group analyzed the predicted isoelectric points of Nrdls (Figure 3.15). They

noted that the distribution of pIs is bimodal, with E. coli NrdI being in the high pI group and B.

cereus and B. anthracis Nrdls in the low pI group. (Phylogenetic classification of class Ib RNRs
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into three major groups is discussed in detail in Chapter 5.) Sj6berg, Logan, and coworkers

suggested that the two groups of Nrdls might have two distinct functions, or that the electrostatic

properties of the respective NrdFs may compensate for these variations in NrdI electrostatics.

However, another figure in their paper shows clearly that, despite the lower overall pI of each

Bacillus NrdI relative to E. coli NrdI, the electrostatic environment of the FMN is still relatively

positive (Figure 3.16). Our results with N83D NrdI show that a single Asn to Asp substitution

significantly increases the amount of sq stabilized, from -30% to -50%. Therefore, the

difference in charge of one of two residues adjacent to the FMN, rather than markedly different

pls, could account for these interspecies differences in NrdIsq stabilization. Thus, a defining

characteristic of Nrdls, despite their differences in overall charge, seems to be a positive

electrostatic environment of the FMN cofactor.
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Figure 3.15. Distribution of predicted isoelectric points for (A) NrdIs and (B) flavodoxins,
color-coded according to bacterial phylum of the NrdI or flavodoxin's source organism.
Reproduced from Johansson et al.46
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Figure 3.16. Electrostatic potentials (blue - positive, red - negative) for B. anthracis NrdI (A)
and C. beijerinckii flavodoxin (B), looking toward the FMN cofactor (shown as a space-filling
model). Reproduced from Johansson et al.

Of course, the presence of NrdF could also affect the redox properties of NrdI. However,

our titrations of NrdI with sodium dithionite in the presence and absence of NrdF show that NrdF

does not significantly alter the amount of sq stabilized, although it alters the protonation state of

that sq, favoring the anionic form over the neutral form. This observation is remarkable given

the extent of FMN pKa perturbation in typical flavodoxins. The pKa of FMN in solution in the

sq form is 8.6 (N5). 37 Anionic sq has never been observed in a flavodoxin; in the short-chain P.

elsdenii flavodoxin, the pKa value is perturbed to >13.43 The dramatically increased pKa of the

bound FMNsq has been attributed to electrostatic effects and hydrogen bonding with a loop

region that interacts with the N5 position of the FMN (50s loop, see below).40 Because the 50s

loop interacts with N5 in NrdI (Chapter 4), in the case of E. coli NrdI, at least, electrostatics must

be the dominant force. As flavin environments in Nrdls appear to be conservedly more

electrostatically positive than in typical flavodoxins, the pKa of the bound FMNsq in NrdIs is

expected to be much lower than 13. In the presence of NrdF, Arg25 specifically, and other

positively charged residues in the vicinity of the flavin (see Chapter 4), would further favor

deprotonation of the NrdIsq. Since only anionic sq is observed at pH 7.0, the pKa of N5 is likely
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<6.5 under these conditions. By contrast, the anionic and neutral sq forms of N83D-NrdI coexist

in the presence of NrdF at pH 7.0, suggesting that addition of a single acidic residue in NrdI

increases the pKa of the sq to ~7.0. Interestingly, of the NrdI-NrdF systems characterized to

date, E. coli is the only one that has been found to stabilize anionic sq in the presence of NrdF.

Flavodoxins also perturb the pKa of NI from 6.5 to <4.43 Studies using 1-deaza-FMN-

substituted C. beijerinckii and P. elsdenii flavodoxins have suggested that, in addition to

electrostatic effects, the depression of the NI pKa is due to its protonation being sterically

prevented by the protein.43  In the crystal structure of the hq form of C. beijerinckii

flavodoxin, 40' 47 N1 is 3.0 A from the backbone amide nitrogen of Gly89, whereas in oxidized 1-

deaza-FMN-substituted C. beijerinckii flavodoxin, the presence of the hydrogen atom at C1

results in a displacement of the protein backbone in this region that moves the amide nitrogen of

Gly89 into an orientation allowing it to hydrogen bond with 02 instead (Scheme 3.1).43

Interestingly, in E. coli NrdIhq (in complex with NrdF44), NI is not sterically crowded and the

backbone amide nitrogen of Asn83 is oriented to hydrogen bond to 02 as well (3.1 A). This is

also the case in B. cereus Nrdlsq, in which the amide of Asn7l is 3.0 A from 02. Because the

negative charge of FMNH can be delocalized onto N1, 02, and 04 (see Scheme 3.1), this

hydrogen bond to 02 may play the same role in stabilization of the negative charge on the flavin

as the hydrogen bond to NI in typical flavodoxins. Alternatively, the imperative to compensate

the negative charge of FMNH- in NrdI should be less than in typical flavodoxins, as the

electrostatic environment of the flavin is more positive.

The perturbation of the ox/sq equilibrium in generic flavodoxins is proposed to be

associated with conformational changes of a flexible loop near the N5 of FMN (the 50s loop, E.

coli NrdI G5oGGGTAG56, see Figure 4.9). 30,41,47 In both long- and short-chain flavodoxins, the
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sq and hq forms are stabilized by a hydrogen bond from the protonated N5H to a protein

backbone CO. The ability also to form a hydrogen bond in the ox form between N5 and a

protein backbone amide, absent in short-chain flavodoxins, is thought to contribute to the lower

Eox/sq values of long-chain flavodoxins.,30 4 7 Therefore, Eox/sq for NrdI, low for a short-chain

flavodoxin, could be explained by the presence of a flexible, G-rich, loop in the vicinity of N5 in

most NrdIs. This loop could be responsible for hydrogen bonding with the N5 position in all

three FMN oxidation states, either as hydrogen bond donor (ox) or acceptor (sq and hq). This

proposal has been confirmed by crystal structures of E. coli,44 B. anthracis,4 6 and B. cereus4 5

NrdIs in the ox, sq, and hq states (Figure 4.9).

Further characterization of E. coli and other Nrdls is necessary to understand more fully

the effects of protein structure on properties of the FMN - determinations of the pKas of NI and

N5 and reduction potentials of Nrdls, mutations of conserved residues, and crystal structures in

the presence of NrdF would all be desirable. Nevertheless, we have identified the positive

electrostatic environment of the FMN and its interactions with the 50s loop as two key properties

governing the physiological function of NrdI. Rationales for Nature's choice of an unusual

flavodoxin for the class lb RNR system will be offered in Chapter 6. In essence, we propose that

positive charges near the flavin are important to aid in the reaction of Nrdlhq with 02, and the

high Esq/hq in NrdI is merely a reflection of that positively charged environment.

3.4.2. The physiological role of NrdI. Compelling support that the reduction potentials

observed are not an artifact of refolding or the His6 tag is provided by the demonstration that

NrdI can reduce NrdF. Anaerobic titration of met-NrdF with Nrdlhq resulted in reduction of

-80% of its Fe and upon admission of 02, diferric-Y- cofactor was generated to the same level as

the starting NrdF (Table 3.2). Our inability to generate higher ratios of Y-/p2, as observed with
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the class Ia system, 3 suggests that despite its reduction, much of the Fe is not chemically

competent in cofactor assembly. Control experiments with FMNH 2 as reductant in place of

Nrdlhq yielded ~10% the levels of Y- observed with NrdIhq, similar to the results with met-NrdB

and FMNH 2. These results demonstrate that FMNH 2 can only inefficiently reduce met-NrdF

(and met-NrdB) to form cofactor and that dissociation of FMNH2 from Nrdlhq does not account

for Y- formation. The midpoint reduction potentials of NrdI and met-NrdB are

thermodynamically favorable for reduction of met-NrdB (Em = -115 mV), 48 suggesting that lack

of NrdI-NrdF interaction is the reason for failure of Nrdlhq to reduce this cluster. Thus, NrdI can

specifically reduce NrdF and may be involved in diferric-Y- maintenance of the class lb RNR,

analogous to the role proposed for YfaE in the class Ia RNR (Scheme 3.1). The presence of

NrdI and NrdF within the same operon and the fact that flavodoxins in a number of systems have

been observed to substitute for ferredoxins in vitro and in vivo under Fe-limited growth

conditions 13-15 provide additional support for this proposal.

Rapid reduction of diferric, met-NrdF to the diferrous state to initiate its reactivation

requires two electrons, one at a time. A number of strategies are possible to achieve this goal.

The reduction potentials of E. coli NrdI ensure rapid transfer of the second electron to mixed-

valent (Fe"Fe"') NrdF, assuming that this state is more susceptible to reduction than met-NrdF,

as is the case in the E. coli class Ia NrdB.49 An alternative strategy has evolved to reduce met-

NrdB. The [2Fe2S]-ferredoxin YfaE is a one-electron reductant. Thus, for YfaE to function

efficiently in the delivery of the second electron, the catalytic involvement of a ferredoxin

reductase (Fre) (Scheme 3.1) is likely required, or 2 YfaEs must be able to bind to a single P. In

light of NrdI's involvement in Mn" 2 -Y- cofactor assembly and its presence at substoichiometric

levels relative to NrdF in vivo (Chapters 4 and 5), the question of whether NrdI's reductase is a
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one- or two-electron reductant (or both) is particularly important. Unfortunately, in no case is

(are) the NrdI reductase(s) known at present.

While some of the work described in this chapter was in progress, Sj6berg and coworkers

published the results of a study in which nrdI from Streptococcus pyogenes was shown to be

essential for activity of the NrdEF system in a heterologous complementation assay in E. coli.50

S. pyogenes is one of several prokaryotes that contain two different versions of one or more class

lb genes; it contains two operons, designated nrdHEF and nrdF*I*E*, and a standalone gene

designated nrdI2. Sj6berg and coworkers demonstrated by quantitative RT-PCR experiments

that all seven genes are transcribed. NrdE, NrdF, NrdE*, and NrdF* were purified, but NrdI*

and NrdI2 were found in inclusion bodies when overexpressed and their purification was not

attempted. Only NrdF could assemble diferric-Y- cofactor, as NrdF* lacks two metal-binding

residues (equivalent to E. coli NrdF Glul58 and Glu192), and only NrdE and NrdF were active

in nucleotide reduction.5' To assess the activity of these RNR operons in vivo, a heterologous

complementation assay using an E. coli strain claimed to be unable to reduce nucleotides

aerobically at 42 'C (IG 101, nrdA(Ts)-nrdB1/nrdH: Spc) was carried out. Although nrdH has

been mutated in this strain, nrdIEF should be transcribed (this has not been reported, however).

The results were complex. When the E. coli strain was transformed with a plasmid containing S.

pyogenes nrdHEF, growth at 42 'C was not observed, but it was observed with a plasmid

containing S. pyogenes nrdF*I*E*, encoding NrdE* and NrdF*, which were inactive in vitro.

All three genes were required for complementation. nrdI* and nrdI2 could not complement

nrdHEF either, but nrdI2 was able to (weakly) complement the nrdHEF operon of the closely

related S. pneumoniae (S. pyogenes NrdI2 shows high similarity to the only NrdI encoded by S.

pneumoniae; NrdI* is similar to E. coli NrdI).
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From these results, the authors concluded that NrdI* is functional in vivo, that it appears

to be required for activity of the NrdE*NrdF* system, and that NrdEF can also be active in vivo

if provided with the correct NrdI protein, but they offer no good explanation for how NrdF* is

active in vivo. They suggested a maintenance role for NrdI* in vivo and proposed, cryptically,

that the activity of the nrdF*I*E* operon in vivo may mean that NrdI plays "a more direct role in

ribonucleotide reduction than in activating a reduced met-p2 protein."so Even in light of our

subsequent discovery of a Mn" 2-Y* cofactor in NrdF, the S. pyogenes results are difficult to

rationalize, as NrdF* lacks two metal ligands and yet is also essential for complementation of the

temperature-sensitive growth phenotype, which argues against interaction of NrdI* with E. coli

NrdF as a possible explanation. Furthermore, it is unclear what metal is loaded in the NrdFs

under these growth conditions (LB), although iron would be most likely. Therefore, it is hard to

draw strong conclusions from these experiments. However, the fact that all streptococci encode

NrdIs similar to NrdI2 but not NrdI* suggests to us that, contrary to the conclusion of Sjdberg

and coworkers, NrdI2 is the essential NrdI protein in S. pyogenes.

By contrast, our results indicate direct interaction between NrdI and NrdF. We initially

suggested plausible explanations based on the available data for the expression of NrdEF under

oxidative stress and Fe-limited growth conditions. Reactive oxygen species are known to

degrade Fe-S clusters and YfaE appears to be 02-sensitive. Thus YfaE may be unable to fulfill

its role in NrdB maintenance under these conditions, even if NrdAB is still expressed. Response

to Fe limitation would involve decreasing synthesis of non-essential Fe-requiring proteins,1 and

thus an RNR using a flavodoxin (NrdI) rather than a [2Fe2S]-ferredoxin would also be more

favorable. Furthermore, this switch provides a rationalization for the regulation of nrdHIEF by

Fur.
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However, this proposal does not satisfactorily address the issue of why E. coli would

express yet another Fe-dependent protein in Fe-limited growth conditions. Under Fe-limited

growth conditions, E. coli replaces the Fe-dependent superoxide dismutase with a similar Mn-

dependent SOD,52 the only difference relative to the class Ia and lb RNR situation being that

FeSOD is inactive with Mn and vice versa. In Chapters 4 and 5, we suggest that the answer to

this question is that the class Ib RNR is not iron-dependent in vivo after all - it is manganese-

dependent. The observed reduction of met-NrdF by Nrdlhq may simply reflect the

thermodynamic feasibility of this reaction and the fact that NrdI and NrdF interact, although a

maintenance pathway of the class Ib RNR has neither been proven nor ruled out at present. We

will return, however, to the unique properties of NrdI described in the present chapter in an effort

to explain the chemistry of dimanganese-Y- cofactor assembly (Chapter 6).
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Chapter 4

An active dimanganese(III)-tyrosyl radical cofactor in
Escherichia coli class Ib ribonucleotide reductase

Adapted in part from: Cotruvo, J. A., Jr.; Stubbe, J. Biochemistry 2010, 49, 1297-1309; Boal,
A.K.; Cotruvo, J. A., Jr.; Stubbe, J.; Rosenzweig, A.C. Science 2010, 329, 1526-1530; Boal,
A.K.; Cotruvo, J. A., Jr.; Stubbe, J.; Rosenzweig, A.C. Biochemistry 2012, 51, 3861-3871; and
Cotruvo, J. A., Jr.; Stubbe, J. Annu. Rev. Biochem. 2011, 80, 733-767.
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4.1. INTRODUCTION

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to

deoxynucleotides in all organisms, supplying and controlling the pool of deoxynucleotides

(dNTPs1 ) required for DNA replication and repair.' Class I RNRs are composed of two

homodimeric subunits: a2, which contains the site of nucleotide reduction, and p2, which

harbors the metallocofactor required for initiation of nucleotide reduction. Escherichia coli (Ec)

possesses two RNRs that are differentially expressed in aerobic growth. Its class Ia RNR, NrdA

(a2) and NrdB (p2), supplies and controls pools of dNTPs needed for DNA biosynthesis under

normal growth conditions. The function of the class lb RNR, NrdE (a2) and NrdF (P2), is not

well understood, but the enzyme is expressed under iron-limited and oxidative stress

conditions.2 5 However, for many prokaryotes - including the human pathogens Mycobacterium

tuberculosis (Mt), Bacillus anthracis (Ba), and Staphylococcus aureus - class Ib RNRs supply

the dNTPs used in DNA biosynthesis in aerobic growth conditions.6 While the class Ia RNRs

require a diferric-tyrosyl radical (FeI" 2-Y-) cofactor for activity, the nature of the class lb RNR's

metallocofactor is controversial . The present chapter describes our efforts to identify the

active form of the metallocofactor of the E. coli class Ib RNR and the structural basis for its

activation.

Initial in vivo and in vitro studies of the class Ib RNR metallocofactor were carried out in

Corynebacterium ammoniagenes (Ca), which possesses only a class Ib enzyme. Early

experiments demonstrated that C. ammoniagenes required manganese for growth,16 and

biochemical studies of the Ca RNR purified from endogenous levels' 8 led Follmann and Auling

to propose a Mn" 2 -Y- cofactor.9 The isolated NrdF protein, however, had a specific activity

(SA) of 0.7 nmol dCDP produced/min/mg (U/mg) protein, <0.01% that of the purified Ec class
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Ia P2 (NrdB), and no detectable Y-. 9 The amounts of NrdF isolated were insufficient for

biophysical characterization of the active cofactor.9,12  Very recently, Auling, Pierik, and

coworkers have reported that the NrdF purified from Corynebacterium glutamicum contains Mn,

possesses a SA of 32000 U/mg (>500% of Ec NrdB), and has an EPR spectrum consistent with

the presence of an organic radical. 13 However, the structure of the active cofactor was not

specified. E. coli also requires Mn for growth when all known Fe uptake systems are deleted and

the resulting strain (GR536) is grown in minimal media in the presence of Fe chelators.17

Although the origin of this Mn requirement is unknown, the class Ib RNR is expressed in these

conditions (Chapter 5). Finally, studies by Imlay and coworkers have recently established that E.

coli requires Mn under conditions of chronic H20 2 stress, another condition in which nrdEF

transcript levels are increased.4

By contrast, other studies have demonstrated activity of a FemI2 -Y- cofactor in NrdF.

Sequence alignments of the class lb and la RNRs and a comparison of their crystal structures

reveal that they possess the same metal ligands and a tyrosine residue (Y105 in Ec NrdF) in the

appropriate position for oxidation.19,20 Metallocofactor self-assembly studies in apoNrdFs from

several organisms have been carried out, modeled after those of Atkin and Reichard2 1 on the

class Ia NrdB. In these experiments, apo-NrdF, Fe", and 02 were able to form a Fem2-Y'

cofactor that was active in nucleotide reduction. Some NrdFs also co-purify with a Fe"12-Y'

cofactor when overexpressed heterologously in E. coli in rich media. For example, heterologous

expression of Salmonella enterica serovar Typhimurium (St) NrdF in E. coli resulted in NrdF

with 1 Y-/02 and a SA of 660-850 U/mg,10' while cofactor self-assembly in vitro from apo-

NrdF gave 0.4 Y-/02 and 325 U/mg SA.10 In general, however, Fem12-Y- NrdFs assembled in

vitro or in vivo to date possess 50.5 Y-/p2 and/or activities of <200 U/mg (Table 1.2).
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Conversely, efforts to self-assemble an active manganese cofactor in St and Ca NrdFs using Mn"

and the physiological oxidants 02 and H20 2 failed to generate significant Y- and activity.10 As a

result of these experiments, the Fe"I2-Y- has been proposed to be the active cofactor in the class

lb p2s.10

Our efforts have recently focused on understanding the biosynthesis and maintenance

(regeneration of Y- from inactive, Y--reduced protein) of the metallocofactors of the E. coli class

Ia and Ib RNRs. Analyses of operons of these RNRs (http://theseed.uchicago.edu) and in vitro

experiments have revealed that an unusual ferredoxin, YfaE, in the case of class Ia,22,23 and an

unusual flavodoxin, NrdI, in the case of class Ib (Chapter 3), are involved in some way in one or

both of these pathways in E. coli. Indeed, class Ia and Ib RNRs are distinguished, in part, by the

presence of nrd, often in the same operon as nrdE and nrdF. Recent genetic studies of the class

Ib RNR from Streptococcus pyogenes, which does not possess a class Ia enzyme, suggested that

NrdI is essential for NrdEF activity in vivo.2 4

These studies together have caused us to reinvestigate, in vitro and in vivo, whether a

dimanganese-Y- cofactor could be active in nucleotide reduction in the class Ib RNR, with NrdI

supplying the oxidant required for metallocofactor assembly. Here we show that NrdI interacts

strongly with NrdF and we report the first in vitro generation of a dimanganese-Y- cofactor, in

Ec NrdF. This reconstitution was successful only when dimanganese(II) NrdF (Mn"2-NrdF) was

incubated anaerobically with the two-electron reduced, hydroquinone form of NrdI (Nrdlhq),

followed by addition of 02. A dimanganese-Y- cofactor (0.25 Y-/$2) was generated with a SA

of 600 U/mg. EPR analysis supports the proposal that this cofactor is Mn" 2-Y- and that the Y-

is electronically coupled to the metal center. While NrdIhq is essential for Mn"12-Y- cofactor

generation in vitro, it interferes with Fe" 2-Y* cofactor formation. Self-assembly experiments
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carried out with Fer 2-NrdF and 02, in the presence and absence of Nrdlhq, generated a Ferr2-Y-

cofactor with 0.2 and 0.7 Y-/p2 and SAs of 80 and 300 U/mg, respectively.

Our biochemical experiments support the hypothesis that Nrdlhq, in complex with NrdF,

provides the oxidant required for assembly of the Mn'" 2 -Y- cofactor in NrdF by reacting with 02

to generate either HOO(H) or 02'~. Such a role is, to our knowledge, unprecedented for a

flavodoxin-like protein, although not uncommon in other classes of flavoenzymes. 2s Crystal

structures of Mn"2-NrdF alone and in complex with NrdI, obtained in collaboration with Amie

Boal and Amy Rosenzweig (Northwestern University) and also presented in this chapter, reveal a

hydrophilic channel from NrdI's flavin cofactor to the metal site in NrdF, supporting our

proposal for Mn"I2-Y- assembly by oxidant channeling. We suggest that this essential oxidant

production role explains the universal conservation of NrdI in class lb RNR systems, and that the

Mn"12-Y- cofactor may also be the active form of class lb RNRs inside the cell. More generally,

our results emphasize that in vitro study of metalloproteins must consider their in vivo

expression conditions so that the physiologically important metallocofactor is identified.

4.2. MATERIALS AND METHODS

4.2.1. General considerations. Chemical reagents were obtained from Sigma-Aldrich in the

highest purity available unless otherwise indicated. 2'-Azido-2'-deoxycytidine 5'-diphosphate

(N3CDP) was synthesized as described.26,27 UV-vis spectra were acquired on a Varian Cary 3

UV-vis spectrophotometer. Anaerobic procedures were carried out in a glovebox (MBraun) in a

cold room at 4 'C. Protein solutions and buffers for anaerobic work were degassed on a Schlenk

line with 5-6 cycles (protein) or 3 cycles (buffer) of evacuation and refilling with Ar prior to

introduction into the glovebox. Manganese concentrations were determined using a Perkin-

Elmer AAnalyst 600 atomic absorption spectrometer, and iron was quantified by the ferrozine
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method.2 8 Solutions of H20 2 [E23Onm = 72.8 M 1 cm~1] 2 9 were prepared immediately before use by

dilution of a 30% H20 2 stock solution. Concentrations of NrdF and NrdI are given per dimer

(p2) and monomer, respectively.

For experiments attempting to identify the oxidant involved in Mn"12 -Y- cofactor

assembly, xanthine oxidase (XO) from buttermilk (0.6 U/mg, 1 U =1 mol xanthine oxidized

per min at pH 7.5 and 25 C), superoxide dismutase (SOD) from bovine erythrocytes (3800

U/mg, 1 U inhibits the rate of ferricytochrome c reduction by 50% in a system using xanthine

and XO at pH 7.8 at 25 C), and bovine liver catalase (4500 U/mg, 1 U decomposes 1 gmol H20 2

per min at pH 7.0, 25 'C) were purchased from Sigma-Aldrich. 5-(Diethoxyphosphoryl)-5-

methyl- 1 -pyrroline-N-oxide (DEPMPO) was purchased from Enzo Life Sciences.

4.2.2. Buffers. The SA of the Mn" 2-Y- cofactor was highest when assembled in 50 mM

HEPES, 5% glycerol, pH 7.6 (Buffer A). However, NrdI was poorly soluble in Buffer A at

concentrations >30 gM; therefore, most experiments were carried out in 50 mM sodium

phosphate, 5% glycerol, pH 7.6 (Buffer B). 0 2-saturated Buffers A and B (-1.9 mM 02) were

prepared immediately prior to use at 4 *C by sparging with 02 (zero grade, Airgas) for at least 30

min. Titrations of NrdI in the presence of NrdF were carried out in 50 mM sodium phosphate,

20% glycerol, 200 mM NaCl, pH 7.0 (Buffer C) because previous characterization of NrdI had

been performed in this buffer (Chapter 3).

4.2.3. Preparation of Mn" 2-NrdF. Apo-NrdF (-500 pM) was expressed in E. coli BL21 Gold

(DE3) cells (Stratagene) in the presence of 1,10-phenanthroline as previously described,30

purified to homogeneity (Chapter 2), and stored in Buffer A. For most experiments, Mn"2-NrdF

was prepared anaerobically by incubation of apo-NrdF (330 pM) with 1.32 mM MnCl2 in Buffer
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A. For experiments investigating the oxidation state of the dimanganese-Y- cofactor by EPR,

Mn"2-NrdF (500 pL) was prepared aerobically, the excess Mn" was removed by Sephadex G25

(1 x 6 cm, 5 mL), and the protein was concentrated using an Amicon Ultra 10 kDa MWCO

centrifugal filtration device (Millipore) and degassed.

4.2.4. Preparation of Nrdlhq. N-terminally His6-tagged NrdI (~400 gM) was purified from

inclusion bodies as described in Chapter 3 and stored in Buffer C. NrdI (500 pL) was fully

reduced by titration with a 5-6 mM solution of sodium dithionite in Buffer C, in a septum-sealed

anaerobic cuvette (Stama Cells) fitted with a Hamilton gas-tight syringe with repeating dispenser

(Chapter 3).

4.2.5. In vitro generation of the dimanganese-Y- cofactor. In an anaerobic box, Mn"2-NrdF

and variable amounts of Nrdlhq were mixed with Buffer A (Buffer B) to give a volume of 120

gL. The reactions were initiated by addition of 130 gL 0 2-saturated Buffer A (Buffer B) outside

the box. The final reaction mixtures contained 10 gM (50 pM) Mn"2-NrdF, 0-20 pM (0-200

pM) Nrdlhq, and 1 mM 02. After incubation for 1-2 min, 10 ptL aliquots were frozen in liquid N2

and subsequently assayed for activity as described below. The remainder of the solution was

transferred to an EPR tube and frozen in liquid N2 for analysis. Because NrdI is stored in Buffer

C, which contains 20% glycerol, the glycerol content of the samples varied between 5 and 12%.

4.2.6. Removal of Mn" from dimanganese-Y. NrdF. Dimanganese-Y- NrdF was prepared in

a 250 pL reaction mixture containing 50 jM Mnr 2-NrdF, 100 pM NrdIhq and 1 mM 02, in Buffer

B. After 2 min, ethylenediaminetetraacetic acid (EDTA) at a final concentration of 5 mM was

added and the reaction mixture incubated at 4 'C for 2 h with gentle rocking. Mn"-EDTA was

removed from the protein using a Sephadex G25 column (1 x 6 cm, 5 mL), and the protein was
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concentrated to the original volume using an Amicon Ultra 10 kDa MWCO centrifugal filtration

device and frozen in liquid N2 for EPR analysis.

4.2.7. Inactivation of dimanganese-Y. NrdF by hydroxyurea (HU) and hydroxylamine. A

reaction mixture of 250 pL containing 30 ptM Mn" 2-NrdF, 60 pM Nrdlhq, and 1 mM 02 in Buffer

B was prepared as described above. After 2 min, HU or NH2OH was added to a final

concentration of 30 mM or 1 mM and the samples were incubated at 25 'C for 20 or 5 min,

respectively. The HU or NH2OH was then removed by Sephadex G25 chromatography (1 x 6

cm, 5 mL) and the protein-containing fraction was frozen and subsequently assayed for activity.

4.2.8. Activity assays. A typical assay reaction contained in a final volume of 135 pLL: 0.2 pM

reconstituted NrdF (or NrdE), 1.0 pM NrdE (or NrdF), 0.3 mM dATP, 20 mM dithiothreitol

(DTT), and 0.5 mM [3H]-CDP (ViTrax, 4800-6500 cpm/nmol), in 50 mM HEPES, 15 mM

MgSO 4 , 1 mM EDTA, pH 7.6, at 37 'C (Chapter 2). At four timepoints (typically 0, 3, 6, and 9

min), 30 pL aliquots were removed and heated at 100 *C for 2 min. Subsequent to removal of

the phosphates using alkaline phosphatase (Roche), dCDP formation was analyzed by the

method of Steeper and Steuart. 31 One unit (U) of activity is equivalent to 1 nmol dCDP

produced/min. The SA of N-terminally His6-tagged NrdE (Chapter 2, purified using PMSF as

protease inhibitor) was 80 U/mg when assayed with Fe"12-Y- NrdF (0.7 Y*/p2) or 140 U/mg

when assayed with dimanganese-Y- NrdF (0.25 Y-/p2).

4.2.9. Reaction of dimanganese-Y- NrdF with NrdE, N3CDP, and dATP. A reaction

mixture of 240 ptL contained 20 pM NrdE, 20 gM dimanganese-Y- NrdF (0.3 Y-/02), 0.3 mM

dATP, 10 mM DTT, 15 mM MgSO 4, and 250 pM N3CDP (or CDP) in Buffer A. The reaction

was initiated by addition of dimanganese-Y- NrdF and hand-quenched in liquid N 2 after 40 s, 1
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min, or 10 min. The concentrations of the nitrogen-centered radical (N-) and Y- were

determined by EPR spectroscopy at 77 K, with the N- and Y- signals deconvoluted using an in-

house Excel program as described.32

4.2.10. EPR spectroscopy. EPR spectra were acquired on a Briker EMX X-band spectrometer

at 77 K using a quartz finger dewar, at 3.6 to 20 K using an Oxford Instruments liquid helium

cryostat, or at 293 K using an aqueous flat cell. All spectra were acquired at 9.3-9.9 GHz, 100

kHz modulation frequency. Other acquisition parameters for dimanganese-Y- NrdF were: 1) at

77 K, 1 mW power, 1.5 G modulation amplitude, 2.52 x 104 gain, 10.24 ms time constant; 2) at

20 K, 0.2 mW power, 4 G modulation amplitude, 2.52 x 10 4 gain, 5.12 ms time constant; and 3)

at 3.6 K, 0.1 mW power, 4 G modulation amplitude, 1.26 x 104 gain, 20.48 ms time constant.

Other parameters for FemI2-Y- NrdF at 77 K were 50 gW power, 1.5 G modulation amplitude,

2.52 x 103 gain, 5.12 ms time constant.

4.2.10.1. Y- quantification. All spectra used for spin quantification were acquired under

non-saturating conditions. At 77 K and below, spin quantification was performed by double

integration of the signal and comparison with either a CuSO4 standard sample or an Ec NrdB

sample. For NrdB, Y- content was determined by the dropline method3 3 and by EPR

spectroscopy at 77 K by comparison with the CuSO 4 standard.34 Analysis was carried out using

WinEPR software (Bruker).

Quantifications of Y- in dimanganese-Y- NrdF were carried out at 77 K. For samples not

treated by EDTA/Sephadex G25, four species were present: Y-, Mn"2 cluster, Mn "2 cluster, and

mononuclear Mn". Mononuclear Mn" was the predominant species other than Y- that was

visible at 77 K. This Mn" background signal was removed prior to Y- quantitation as follows.

For the dimanganese-Y- NrdF samples prepared with various amounts of NrdIhq (Figure 4.3),
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the spectrum of an equal concentration of Mn"2-NrdF was acquired with identical settings. For

other samples, the spectrum of an analogous dimanganese-Y- NrdF sample that had been treated

with 1 mM NH2OH to completely reduce the Y- was acquired. The background spectrum was

then subtracted from the dimanganese-Y- spectrum and Ye was quantified.

For EDTA/Sephadex G25-treated samples, which only contained Mn" 2 cluster and Y-,

the large linewidth of the Y- signal (-150 G) necessitated subtraction of the spectrum of a buffer

sample, acquired under identical conditions, to achieve the flat baseline required for Y-

quantification.

4.2.10.2. Power saturation studies. The microwave power at half-saturation (PI12) and

the inhomogeneous broadening (b) of the Y- signals were calculated by fitting the double

integral of the signal per scan (1) determined at a number of spectrometer power settings (P) to

equation 4.1 .

I= KxVJ (4.1)
1 + (P / P )]O.sb

K is a sample- and instrument-dependent constant.

4.2.11. Preparation of Fe"I2-Y- NrdF. Apo-NrdF and variable amounts of ferrous ammonium

sulfate were mixed anaerobically in Buffer A (227 pL total volume) and incubated for 20 min.

0 2-saturated Buffer A (23 pL) was then added outside the anaerobic box to give a solution

containing 50 iM apoNrdF, 0-250 pM Fe", and 175 pM 02. A sample containing 50 pM apo-

NrdF, 200 gM Fe", 100 pM Nrdlhq, and 175 M 02 was also prepared analogously in Buffer B.

After 1-2 min, a 10 pL aliquot was removed from each reaction and frozen for subsequent

activity assays, and the remainder of the mixture was transferred to an EPR tube and frozen in

liquid N2 for analysis.
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4.2.12. Efforts to determine the oxidant generated by reaction of Nrdlhq with 02. Several

experiments were carried out to look for evidence for production of 02' by reaction of NrdIhq

with 02 and for cluster assembly in Mn"2-NrdF with H20 2 or 02' -

4.2.12.1. Mn"'2-Y- cofactor assembly in the presence of SOD or catalase. In an

anaerobic box, Mn"2-NrdF, Nrdlhq, and SOD or catalase were mixed with Buffer A to give a

volume of 120 pL. The reactions were initiated by addition of 130 L 0 2-saturated Buffer A

outside the box. The final reaction mixture contained 10 gM Mnr 2-NrdF, 20 pM Nrdlhq, 15 U

SOD or catalase, and 1 mM 02. After 1-2 min, UV-vis spectra were acquired and samples were

frozen in liquid N 2 for activity assays.

4.2.12.2. Preparation of NrdIhq for reconstitution of Mn"2-NrdF with H20 2 and for spin

trapping experiments. Nrdlhq (500 pL) was reduced in an anaerobic cuvette by titration with 5-6

mM dithionite in Buffer C as described in the text. In the anaerobic box, the protein was passed

through a Sephadex G25 column (1 x 6 cm, 5 mL) equilibrated in Buffer C. Nrdlhq was used in

the following experiments without further concentration.

4.2.12.3. Reconstitution of Mn"2-NrdF with H2 0 2 and 02', monitored by UV-vis

spectrophotometry. In a 250 pL volume in an anaerobic cuvette, 20 gM Nrdlhq was mixed with

10 pM Mn"2-NrdF or apo-NrdF in Buffer C. A solution of 660 ptM H20 2 in water, prepared in

an anaerobic box, was titrated into the cuvette using a gas-tight syringe. Visible spectra were

acquired after each 2 or 4 ptL addition. NrdI was fully oxidized upon addition of 55 pM H20 2.

To test whether 02' was competent for cluster assembly, a 300 gL reaction mixture contained

final concentrations of 20 pM Mn" 2NrdF, 0 or 40 jM NrdIox, 200 gM xanthine, and 0.0015 or

0.003 U XO (5 or 10 ptM 02'~/min), in Buffer C. Spectra were acquired periodically at room

temperature (23 *C) over 30 min between 300 and 800 nm.
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4.2.12.4. Spin trapping experiments to determine the ability of Nrdhq to generate 02*.

4.2.12.4.1. Detection of 02'~ produced by Nrdlhq. A 425 mM solution of DEPMPO in

water was degassed on a Schlenk line and brought into an anaerobic box at 4 'C. A 125 pL

volume contained 40 mM DEPMPO and 10 [tM (or 40 pM) Nrdlhq, either in the absence or the

presence of 5 pM (or 20 pM) apo-NrdF, in Buffer C. The samples were mixed at 4 'C with 125

ptL 02-saturated Buffer C, transferred to EPR tubes, and frozen in liquid N2 40 s after addition of

oxygenated buffer.

EPR spectra were acquired at 293 K within 7 days of sample preparation, during which

time the DEPMPO-superoxide spin adduct (HOO-DEPMPO-) is known to be stable.36,37

Immediately before acquisition, each sample was thawed in an ice-water bath and transferred

into an aqueous flat cell. Spectra were recorded at 9.86 GHz using parameters previously

described,36 with minor modifications: 10.08 mW power, 6.3 x 103 gain, 100 kHz modulation

frequency, 2 G modulation amplitude, 150 G sweep width, 81.92 ms conversion time, 81.92 ms

time constant, 167.8 s sweep time, and 3 scans. Spectrum acquisition was complete within 12

min of thawing.

4.2.12.4.2. Control to determine the efficiency of 02'~ trapping by DEPMPO. A 300 ptL

reaction contained final concentrations of 0.003 U XO, 10 pM xanthine, and 20 mM DEPMPO

in Buffer C. The reaction was initiated by addition of xanthine, incubated at 25 'C for 2 min,

and frozen in liquid N2 for quantitation of HOO-DEPMPO- by EPR spectroscopy. Total 02'

production in an analogous reaction mixture was determined spectrophotometrically by the

reduction of ferricytochrome c by 02, monitored at 550 nm. 38,39 A 300 pL solution contained

final concentrations of 0.003 U XO, 50 gM ferricytochrome c, 0.1 mM EDTA, and 10 jiM

xanthine in Buffer C. The reaction was monitored for 2 min at 550 nm, and the extent of
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ferricytochrome c reduction during that time was calculated using the difference in the extinction

-1 -140coefficients of ferro- and ferricytochrome c at 550 nm, 21100 M cm~ . The concentration of

ferricytochrome c reduced was taken to be equal to the concentration of 02'~ produced.

Comparison of this value with the concentration of HOO-DEPMPO- quantitated by EPR gave an

estimate of the efficiency of 02'~ trapping by DEPMPO.

4.2.13. Investigation of the ability of Nrdlhq to reduce Mn 2-NrdF. MnII 2-Y- NrdF (500

1iL) was prepared by reaction of 50 pM Mn"2-NrdF and 80 pM Nrdlhq with 1 mM 02 in Buffer

B, as described in 4.2.5. The protein was incubated with 5 mM EDTA for 2 h and, immediately

prior to Sephadex G25 chromatography, Y- was reduced by incubation with 1 mM NH2OH for 2

min. The resulting protein (with NrdIox still present) was degassed on a Schlenk line and brought

into an anaerobic box. In a final volume of 240 [tL, 25 pM MnI 2-NrdF was mixed with 40 gM

Nrdlhq in Buffer B to give a final concentration of 80 ptM NrdI. Nrdlhq and NrdIox

disproportionated upon mixing, such that NrdI was present in the ox, sq, and hq forms. The

sample was transferred to an EPR tube and frozen anaerobically in liquid N2 within 4 min of

adding Nrdlhq. The extent of reduction of MnI 2-NrdF was approximated by comparing the

amplitude of the most intense Mn"2 hyperfine line (-2860 G, see Figure 4.4A) of the EPR

spectrum at 20 K to the amplitude of the same line in samples of Mnr 2-NrdF (3.4 Mn/2) in the

presence of NrdIx. A sample of 25 pM MnII 2-NrdF in Buffer B, without further addition of

Nrdlhq, was also prepared.

4.2.14. Investigation of the ability of NrdIhq to reduce Ye in Mn" 2-Y. NrdF. Mn"I2-Y*

NrdF (250 pL) was prepared by reaction of 50 RM Mn" 2-NrdF and 100 jM Nrdlhq with 1 mM 02

in Buffer B, as described in the text. Mn" was removed by EDTA treatment and Sephadex G25
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chromatography. The protein (with NrdIox still present) was degassed on a Schlenk line and

brought into an anaerobic box. In a septum-sealed anaerobic cuvette in a final volume of 250

pL, 34 pM Nrdlhq was mixed with 17 pM Mnm2-Y- NrdF (complexed with 34 pM NrdIox) in

Buffer B to give a final NrdI concentration of 68 [tM NrdI. The cuvette was fitted with a gas-

tight Hamilton syringe with repeating dispenser, containing 1 mM K3Fe(CN) 6 in Buffer B. The

sample was incubated for 5 min at 25 'C, a UV-vis spectrum was acquired, and the sample was

titrated over -25 min with the potassium ferricyanide solution to oxidize Nrdlhq and NrdIsq. UV-

vis spectra were acquired after each 2 or 4 p.L addition until the endpoint was reached (no change

in the visible spectrum above 450 nm). The sample was transferred to an EPR tube and Y- was

quantitated by EPR at 77 K, and compared to a sample of 17 p.M Mn" 2-Y- NrdF in Buffer B.

4.2.15. Crystal structures of NrdI and NrdF. Crystallographic work was performed by Amie

K. Boal (Northwestern University).

4.2.15.1. General crystallographic methods. All data sets were processed using the

HKL2000 package 4 1 and solved by molecular replacement using the program PHASER.42

Model building and refinement were performed with Coot43 and Refmac5, 44 respectively. Data

collection and refinement statistics are shown in Tables 4.2 and 4.3. Ramachandran plots were

calculated with PROCHECK4 5 and diffraction-component precision index (DPI) errors were

calculated with SFCHECK.46 Figures were prepared using PyMOL 47 and channel calculations

were performed with HOLLOW. 48 All data were collected at the Life Sciences Collaborative

Access Team (LS-CAT) beamlines at the Advanced Photon Source (APS).

4.2.15.2. Mn" 2-NrdF structure. Mn"2-NrdF was generated via incubation of apoNrdF

(30 mg/mL in Buffer A) with four molar equivalents of MnCl 2 on ice for 20 min. Hexagonal

prism-shaped crystals were obtained using the sitting drop vapor diffusion method at 20 'C with
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30% (w/v) PEG 4000, 0.1 M HEPES pH 7.5 as a precipitant. Crystals were soaked in

cryoprotectant solution (30% (w/v) PEG 4000, 0.1 M HEPES pH 7.5) for less than 5 min,

mounted on rayon loops, and flash cooled in liquid N2.

The structure was solved using the coordinates of St Fe" 2-NrdF (PDB accession code

1R2F)19 as the initial model. The final model consists of residues 5-288, two Mn ions, one

glycerol molecule, and 400 water molecules. As observed in all other class I P2 structures, the

last 32 residues are not observed in the electron density map and were not modeled.

Ramachandran plots indicate that 100% of the residues are in the allowed and additionally

allowed regions, and the DPI error is 0.067 A. Anomalous difference Fourier maps calculated

using data collected at the Mn" absorption edge (Mn"2-NrdF anomalous, Table 4.2) reveal

strong density at both Mn" sites, and both were modeled at full occupancy.

4.2.15.3. Fe"2-NrdF structure. ApoNrdF (20 mg/mL in Buffer A) was crystallized via

hanging drop vapor diffusion at room temperature in 25% (w/v) PEG 4000, 0.1 M HEPES pH

7.6, 0.1 M Li2 SO 4 . Hexagonal prism-shaped crystals were transferred to a 10 p.L cryoprotectant

solution (35% (w/v) PEG 4000, 0.1 M HEPES pH 7.6, 0.1 M Li 2 SO 4 ) and mixed with an

additional 10 pL cryoprotectant (as above) aliquot containing 8 mM Fe(NH 4)2(SO4) 2 and 8 mN

sulfuric acid. The crystals were soaked for 5 min, during which the pH of the drop remained

between 7 and 8. Crystals were then mounted on rayon loops and flash frozen in liquid N2 .

The structure was solved using the coordinates of Mn"2-NrdF as a starting model. The

final model consists of residues 6-287, two Fe" ions, and 154 water molecules. Ramachandran

plots indicate that 100% of the residues are in the allowed and additionally allowed regions, and

the DPI error is 0.107 A. Anomalous difference Fourier maps calculated using data collected at

the Fe" absorption edge (Fe-NrdF anomalous, Table 4.2) reveal strong peaks at both sites, but
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both were best modeled at an occupancy of 0.5. The occupancy was adjusted to minimize

residual density observed in F0 -Fe maps. A similar soaking procedure using MnCl2 yielded a

structure identical to the Mn" 2-NrdF co-crystal structure described above with the Mn" sites

modeled at 0.9 occupancy. The average protein B factors for Fe"2-NrdF are higher than those

observed for Mnr 2-NrdF (Table 4.2). This likely reflects the difference in how the structures

were obtained (Fe" 2-NrdF by crystallization of apoNrdF followed by soaking with Fe" versus

Mn 2-NrdF by cocrystallization). The average protein B factors for a Mn 2-NrdF structure

obtained by soaking with Mn" are similar to those of the Fer 2-NrdF structure.

4.2.15.4. NrdI0/NrdF structure. NrdI in 20 mM HEPES pH 7.0, 5% glycerol was

concentrated to 22 mg/mL in a Microcon (Amicon) centrifugal concentrator at 4 'C in the

presence of 5 mM p-mercaptoethanol to reduce an intermolecular disulfide bond (Chapter 3).

An equimolar amount of Mn"2-NrdF, prepared as described in 4.2.13.1, was added to NrdI along

with additional p-mercaptoethanol to a final concentration of 5 mM. Bright yellow crystals (22

mg/mL total protein) were obtained using the hanging drop vapor diffusion method with 20%

(w/v) PEG 3000, 0.1 M HEPES pH 7.6, 0.1 M lithium sulfate as the precipitant. Crystals were

soaked in cryoprotectant solution (30% (w/v) PEG 3000, 0.1 M HEPES pH 7.6) for less than 5

min, mounted on rayon loops, and flash cooled in liquid N2.

The structure was solved using the coordinates of Mn" 2-NrdF and Bacillus subtilis Nrdl

(PDB accession code 1RLJ) as the initial model. The final model consists of residues 6-288 for

NrdF chain A, 6-287 for NrdF chain B, residues 3-130 for each NrdI chain, four Mn" ions, two

flavin mononucleotide (FMN) cofactors, and 20 water molecules. In this structure and in all

other complex structures described below, residual electron density extending from the C-

terminus of NrdF along the surface of NrdI was observed in the 2F-Fe and F-Fe maps but could
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not be modeled. Ramachandran plots indicate that 100% of the residues are in the allowed and

additionally allowed regions, and the DPI error is 0.326 A. All four Mn" sites in the asymmetric

unit were modeled at full occupancy with minimal density around the metal center observed in

F-Fe maps.

4.2.15.5. NrdIhq/NrdF structure. NrdI (20 mM HEPES pH 7.0, 5% glycerol) was

concentrated to 22 mg/mL and degassed on a Schlenk line with 5 cycles of evacuation and

purging with argon gas. All subsequent manipulations, including crystallization, were carried

out in an anaerobic chamber (Coy Laboratory Products). NrdI was reduced with 2 molar

equivalents of sodium dithionite and immediately mixed with an equimolar amount of degassed

Mn 2-NrdF. Some precipitation was evident upon addition of dithionite to NrdI and was

removed by brief centrifugation after complex formation. Colorless crystals were obtained by

hanging drop vapor diffusion at room temperature using 0.1 M HEPES pH 7.0, 20% (w/v) PEG

3000, 0.2 M Li2SO 4 as the precipitant. Ten molar equivalents of sodium dithionite (3 mM) were

added to the wells immediately prior to drop setup. Crystals were soaked briefly in

cryoprotectant solution in the anaerobic chamber (35% PEG (w/v) 3000, 0.1 M HEPES pH 7.0,

0.1 M Li2 SO 4 ) and immediately flash cooled in liquid N2 .

The structure was solved using NrdIox/NrdF as a starting model. The final model consists

of residues 6-287 for each NrdF chain, residues 3-133 NrdI chain C, residues 3-130 for NrdI chain

D, four Mn" ions, two FMN cofactors, and 280 water molecules. Ramachandran plots indicate that

100% of the residues are in the allowed and additionally allowed regions, and the DPI error is

0.147 A. All Mn" sites were modeled at full occupancy.

4.2.15.6. NrdIhqNrdFperox structure. NrdIox/NrdF crystals were obtained as described

above. These crystals were soaked in cryoprotectant solution (35% PEG (w/v) 4000, 0.1 M
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HEPES pH 7.6, 0.1 M Li 2 SO 4 ) containing 100 mM sodium dithionite under ambient conditions

for -2 min and immediately flash cooled in liquid N2. The structure was solved using

NrdIox/NrdF as the initial model. The final model consists of residues 5-288 for each NrdF

chain, residues 3-131 for each NrdI chain, four Mn" ions, two FMN cofactors, two peroxide

molecules, and 168 water molecules. Ramachandran plots indicate that 100% of the residues are

in the allowed and additionally allowed regions, and DPI error is 0.280 A. All four Mn" sites

were modeled at full occupancy.

4.3. RESULTS

4.3.1. Attempts to self-assemble active dimanganese-Y- cofactor in the absence of NrdI.

Previous attempts to self-assemble an active dimanganese cofactor in vitro starting with St Mn"2-

NrdF by addition of 02 or with Ca Mn 2-NrdF by addition of 02 or H20 2 failed to generate any

significant Y. or activity.10 We also attempted self-assembly experiments with Ec apo-NrdF.

ApoNrdF was obtained by its overexpression in the presence of 1,10-phenanthroline in the

growth medium (Chapter 2).30 The isolated protein contained 0.01 Mn/2, assayed by atomic

absorption spectroscopy, and 0.03 Fe/p2, using the ferrozine assay. Activity assays revealed no

detectable dCDP formation.

Apo-NrdF was then mixed anaerobically with 4 Mn"/p2 and the EPR spectrum of the

resulting material was recorded at 20 K (Figure 4.1). The EPR signal, displaying an average

effective nuclear hyperfine coupling constant (am,,) of 46 G, is consistent with two weakly

antiferromagnetically coupled Mn" ions and is similar to the spectra previously reported for the

Ca and St Mn"2-NrdFs10 and the Mn" 2-catalases 49' 50. Mn"2-NrdF was then exposed to either an

excess of 02 or 4 H2 0 2/p2 at 25 "C for 20 min. The visible spectra of the resulting mixtures

exhibited no absorption features consistent with Y- and an assay of the reaction mixtures for
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dCDP formation revealed a SA of 5 U/mg in each case. The results suggest that, as with the St

and Ca enzymes, Ec Mn" 2-NrdF is unable to assemble a significant amount of an active

dimanganese-Y- cofactor with the physiological oxidants 02 and H20 2 .

I ' I ' i ' I ' I '

1600 2400 3200 4000 4800

Field (G)

Figure 4.1. X-band EPR spectrum of Mnr 2-NrdF at 20 K. Apo-NrdF (40 pM) was incubated
with 4 Mn"/p2 and mononuclear Mn" was removed by Sephadex G-25. The resulting protein
contained 3.4 ± 0.2 Mn/p2 by atomic absorption spectroscopy.

4.3.2. In vitro assembly of an active dimanganese-Y- cofactor in NrdF. Our inability to

obtain significant activity in Mn"2-NrdF with 02 or H20 2 and our spectroscopic evidence for a

tight, specific interaction between NrdF and NrdI (Chapter 3) suggested a role for NrdI in cluster

assembly. We hypothesized that Nrdlhq in the presence of 02 could generate an oxidant (H20 2,

HO2, or 02'~) that could be delivered directly to the Mn" 2 center in NrdF and be required to

assemble active cofactor. The failure of reconstitutions in the absence of NrdI might then be

explained by NrdI binding to Mnr 2 -NrdF, affecting its structure and/or reduction potential (if

H20 2 is the oxidant), or by forming an oxidant not tested previously (HO2~ or 02'~).

Mn"2-NrdF (50 pM dimer) was incubated anaerobically with Nrdlhq (100 pM monomer)

in Buffer B. Exposure of the sample to 02 (1 mM) resulted in rapid generation of NrdIox and a

sharp absorption feature at 408 nm consistent with a Y- (Figure 4.2A, solid line and inset). The
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SA of the resulting protein was 600 U/mg. No loss of activity was observed after 20 min

incubation at room temperature. Control experiments indicated that no Y- or activity was

generated when 02 was added to Nrdlhq prior to its mixing with Mn"2-NrdF (Figure 4.2A,

dashed line) or to apoNrdF preincubated with Nrdlhq. Thus, Nrdlhq plays a key role in generating

active dimanganese-Y. NrdF in the presence of 02.

Subtraction of the spectrum of Mn"2-NrdF in the presence of 2 NrdI0 x/p2 from that of

dimanganese-Y- NrdF (Figure 4.2B) reveals, in addition to the Y- (Figure 4.2A, inset), a

trailing absorbance feature. This feature is suggestive of Mn in an oxidation state of +111 or

greater, such as in the p-oxo-bridged Mn"' 2 and Mnr1MnIv forms of Mn catalases.
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Figure 4.2. Visible spectra of dimanganese-Y- NrdF. (A) Visible spectra of 50 pM Mn" 2-NrdF
reconstituted with 100 gM Nrdlhq and 1 mM 02 in Buffer B (solid line); 50 pM Mn" 2-NrdF with
100 pM NrdIox (dashed line); and dimanganese-Y- NrdF after incubation with 50 mM HU for 8
min (dotted line). The arrow indicates the characteristic feature of Y- at 408 nm. Inset:
Spectrum of Ye, obtained by subtraction of the spectrum of HU-treated NrdF from that of
dimanganese-Y- NrdF. (B) Spectrum of the dimanganese-Y- cofactor, obtained by subtraction
of the spectrum of Mn"2-NrdF in the presence of NrdIox from that of dimanganese-Y- NrdF.

4.3.3. Correlation of Ye and activity of the dimanganese-Y- cofactor. Studies of class Ia

NrdBs have demonstrated that their SAs are directly correlated with their Y- content. To
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determine if a similar correlation is observed with the dimanganese-Y- cofactor, Mn"2-NrdF was

incubated with increasing amounts of Nrdlhq in Buffer B and then exposed to 02. The rate of

dCDP formation and the Ye content were then measured for each sample. The results are shown

in Figure 4.3A. Y-/p2 and SA increased with increasing amounts of NrdI up to 1-1.5 NrdI/p2,

with a maximum of 0.25 Y-/p2 formed and 600 U/mg SA. A similar experiment carried out in

Buffer A gave a maximum SA of 800 U/mg, but NrdIhq is not sufficiently soluble in this buffer

to carry out the EPR experiment to quantitate Y-. Apo-NrdF contains only 0.03 Fe/s2, which if

completely organized in Fe" 2 -Y- cofactor would contribute at most 10 U/mg SA, based on the

SA calculated for Fer12-Y- NrdF (500 U/mg/Y-, see 4.3.8). These data strongly suggest that the

cofactor formed in these experiments contains Mn and Y-.
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NrdI/p2 Y-/p2

Figure 4.3. Specific activity, Y-/p2, and specific activity/Y* of dimanganese-Y- NrdF
assembled with increasing concentrations of Nrdlhq. A) SA (empty squares) and Ye/p2 (filled
squares) are dependent on Nrdlhq concentration in the assembly reaction. Mn"2-NrdF was
preincubated with 0, 0.4, 0.8, 1.2, 1.6, 2, or 4 Nrdlhq/02, in Buffer B and exposed to excess 02.
Y- was determined by EPR spin quantitation as described in Materials and Methods. Error bars
indicate standard deviations of at least 2 independent experiments. B) SA/Y- plotted against
Ye/p2 from data in Figure 5A.

As shown in Figure 4.3B, SA/Y- appears to decrease with increasing Y-/2. We suggest

that this result is due to the low SA of our NrdE (a2) preparations (80 or 140 U/mg, depending
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on the metallocofactor, vs. 280 U/mg for St NrdE with FeIr 2-Y- NrdF)," which in turn limits

NrdF activity.

To provide additional support for the importance of Y- for catalytic activity,

dimanganese-Y- NrdF was incubated with hydroxyurea (HU) and hydroxylamine. HU reduces

Y- without affecting the diferric clusters of bacterial p2s such as Ec NrdB5 3 and Ec (Chapter 3)

and Ba 4 Fe"12-Y* NrdFs, but it reduces both Y- and diferric cluster in the case of mouse p2.

NH2OH reduces the Y- of Ba Fer12-Y- NrdF5 4 and Ec NrdB;56 in the latter case at least it also

reduces Fe"' 2 cluster. NH2OH is also known to reduce the Mn"' 2 and MniMnIv forms of Mn

catalases. 57 When NH2OH (1 mM) was incubated with 30 gM dimanganese-Y- NrdF at 25 'C,

the visible features of Y- were abolished within 1 min. On the other hand, HU, even at 30 mM,

required 10 min for Y- reduction under the same conditions. Both samples retained activity, 96

and 56 U/mg, respectively, which correlates with <0.05 Y-/P2, difficult to detect by vis

spectroscopy. The residual activity after HU or NH2OH treatment cannot correspond to FeII2-Y-

cofactor, which is known to be efficiently reduced by these reagents on this timescale. 8 A

control in the absence of HU or NH 2OH retained full activity at the end of the incubation. These

data support the importance of the Y- for activity.

It was also observed that Ye reduction by HU and NH2OH was accompanied by a slower

decrease in the intensity of the trailing absorption feature that we have suggested is associated

with an oxidized Mn cluster in dimanganese-Y- NrdF (Figure 4.2B, 400-700 nm). In the case of

NH2OH, a 40% decrease was apparent within 1 min, whereas in the case of HU, no decrease was

apparent in the first minute but a 30% decrease was visible within 5 min. After these initial

declines, little further decrease was observed over 5 min. These results, suggestive of reduction

of oxidized Mn cluster by both HU and NH 2OH, are consistent with observations that NH 2OH
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can reduce the MnI"MnIv and Mn"12 forms of Mn catalases." A more detailed analysis of the

effects of HU and NH2OH on Y- and dimanganese cluster will be carried out once more

homogeneous dimanganese-Y- cofactor is obtained.
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Figure 4.4. EPR spectra of dimanganese-Y- NrdF. (A) Comparison of the 20 K EPR spectra of
dimanganese-Y* NrdF and Mnr 2-NrdF in the presence of NrdIox. In black, Mn"2-NrdF (50 pM)
was reconstituted with 2 NrdIhq/02 (100 gM) and 1 mM 02. In red, an identical sample, except
NrdIhq was oxidized prior to addition of Mn '2-NrdF (control). A small amount of mononuclear
Mn" is visible at g = 2.0054 (3345 G). Inset: Expansion of the 2500-3100 G region to show the
decrease in Mn1

2 hyperfine intensity upon cofactor assembly. Arrows indicate the peak-to-
trough intensity used to compare Mn"2 cluster concentrations. (B) EPR spectrum (20 K) of
dimanganese-Y- NrdF (50 gM) after EDTA and Sephadex G25 treatment, and after subtraction
of a buffer sample. (C) Comparison of the 77 K EPR spectra of EDTA-treated Mn"' 2-Y- NrdF
(black, acquired at 1 mW power) and FeI" 2-Y- NrdF (red, 50 gW power), with the vertical scales
normalized for sample concentration and spectrometer settings except for power. (D) EPR
spectrum (3.6 K) of EDTA-treated Mn" 2-NrdF, after subtraction of a buffer sample.
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4.3.4. The active cofactor is Mn" 2-Y-. The oxidation state of the Mn center in active

dimanganese-Y- NrdF was investigated by EPR spectroscopy at 20 and 3.6 K, as the EPR

features of the cluster are poorly defined at liquid N2 temperatures and above. The EPR spectrum

at 20 K of a representative sample prepared with 2 Nrdhq/02 in Buffer B (Figure 4.4A, black

line), with 3.4 ± 0.2 Mn/2 and 0.25 ± 0.03 Y-/p2, shows a sharp feature at g = 2.0054 associated

with Y-, as well as lesser amounts of the Mn"2 cluster signal relative to a Mn"2-NrdF sample in

the presence of NrdIox (Figure 4.4A, red line). The spectrum of the Mn"2 cluster is broad and a

baseline could not be obtained. Therefore, for comparison of the relative amounts of Mn 2

cluster between the two samples, the peak-to-trough intensity59 of the most intense Mn"2-NrdF

hyperfine line was used (Figure 4.4A, arrows). This amplitude was reduced by 45% in

dimanganese-Y- NrdF generated with 2 Nrdhq/p2, relative to the Mn"2-NrdF and NrdIox control

(Figure 4.4A, inset). Since NrdF contains 3.4 Mn/p2 (1.7 dimanganese clusters/p2), these

results suggest formation of 0.8 oxidized Mn cluster/p2.

Mnm2, MnrMnr1, and Mn"MnlIV clusters were considered as possible components of the

active dimanganese-Y- cofactor in NrdF. Previous studies of Mn catalases5 1 and model

complexes mimicking Mn catalases6 0 have revealed the rich EPR spectra associated with

MnrMnII and MnlI"Mnlv clusters and optimized temperature and power settings for cluster

detection. 9'51'6 However, extensive analysis failed to reveal the characteristic features of these

clusters. The EPR spectrum of Mn"Mn"'-catalase has been detected at <20 K and 25 mW,4 9,51

while MnlIMnlv-catalase has been observed at 50-80 K and 25 mW 4 9'51 and 6 K and 0.3 mW.61

No evidence for these clusters was obtained in our preparations of dimanganese-Y- NrdF, before

or after EDTA treatment, at 3.6-50 K and 0.1-50 mW microwave power. We also looked for a

MnrMn"' or Mnr1Mnv cluster strongly antiferromagnetically coupled to Y- subsequent to Ye
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reduction with NH2OH and HU. No features associated with a MnrMnr1 or MnI"MnIv cluster

were observed in either case. Because treatments with these reductants had appeared to lead to

partial reduction of oxidized cluster in UV-vis experiments, we also looked for increased

formation of Mn"2 cluster under these conditions, as judged by increased amplitudes of the Mn"2

hyperfine features at 20 K. We could not achieve efficient and complete Y- reduction with

NH2OH and HU without at least 20-30% reduction of oxidized Mn cluster. Therefore, we

cannot rule out the presence of a coupled Y--mixed valent Mn cofactor based on these results

alone. However, the N3CDP experiments described below provide strong EPR evidence that

such a cofactor is not present in NrdF. Thus the most likely oxidation state of the active

metallocofactor is Mn" 2, which would be EPR silent.

In order to obtain further evidence in support of this proposal, dimanganese-Y- NrdF was

treated with EDTA, in an effort to remove Mn" from NrdF. Following removal of Mn"-EDTA

by Sephadex G25 chromatography, NrdF retained 1.4 ± 0.2 Mn/p2, consistent with the above

calculation of 0.8 oxidized clusters/p2. EPR spectra of the resulting protein at 20 K

demonstrated complete removal of the Mn"2 cluster features (Figure 4.4B), while the Y- content

of the protein was unaffected (0.28 ± 0.01 Y-/p2). This analysis suggests Mn" 2-Y- is the NrdF

cofactor. However, the possibility of a MnrMn"' or Mn'vMn"' cluster, strongly

antiferromagnetically coupled to a population of Y- such that both metal cluster and Y- are EPR

silent, cannot be excluded on the basis of these experiments alone.

4.3.5. Confirmation of the identity and activity of the Mn' 2-Y- cofactor using N3CDP. The

mechanism-based inhibitor 2'-azido-2'-deoxycytidine 5'-diphosphate (N3CDP) was employed to

confirm the importance of the Y- in NrdF in deoxynucleotide formation and to rule out the

presence of a strongly exchange-coupled Mn"Mni"-Y- or Mn"IIMnlv-Y- cofactor. Previous
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studies have shown that class Ia RNRs are inactivated by 2'-azido-2'-deoxynucleoside

diphosphates, accompanied by rapid loss of ~50% Y- (<30 s) and formation of ~50% of a new

nitrogen-centered radical (N-) in a2,62,63 and that after 20 min, -90% Y- is reduced. 62 Detection

of N- thus indicates that RNR is active in nucleotide reduction. Similar experiments have not

been reported for a class lb RNR. To provide additional support for the activity of MnII 2 -Y*

NrdF, the protein was incubated with NrdE, allosteric effector dATP, and N3CDP. The reaction

was quenched after 40 s and the spin quantitated by EPR spectroscopy at 77 K. Under these

conditions, the total radical concentration remained unchanged and 60% of the total spin was

found to be associated with N- and 40% with Y- (all values ± 10%). When the reaction was

quenched after 10 min, 25% of the initial spin was lost, with 20% of the remaining spin as Y-

and 80% as N-. Given that a control without N3CDP retains the same amount of total radical

over the course of this 10 min incubation, at least 80% of the total Y- is active. These studies

also rule out the presence of mixed-valent Mn clusters antiferromagnetically coupled to Y-, as no

new EPR signals, other than N-, are detected. Therefore, the data together support Mn" 2-Y- as

the active cofactor in NrdF.

4.3.6. Ye interacts with the Mn" 2 cluster. The EPR spectra of Mn1r2-Y- NrdF and Fe" 2-Y*

NrdF (see below for preparation of the latter) at 77 K are shown in Figure 4.4C (black and red

lines, respectively). The former signal has a larger linewidth (150 G vs. 60 G for Fe" 2-Y-) and

the hyperfine features associated with the p and ring hydrogens are more poorly resolved than for

the FeI" 2-Y-. At 20 K, however, additional, lower intensity features (between 3100-3600 G) are

present to the low- and high-field sides of the "sharp" signal, 150 G in width (Figure 4.4B).

These "broader" features at 20 K become more prominent at 3.6 K (Figure 4.4D). The EPR

features between 3100 and 3600 G are not present in Fer12-Y- NrdF or in Mnr 2-NrdF in the
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presence of NrdIox. They are also absent in Mni 2-Y- NrdF treated with NH2OH or HU and are

decreased upon N 3CDP treatment, demonstrating that these features are associated with Y-

coupled to the metal cluster.

Table 4.1. EPR relaxation properties of the Mn- and Fe-associated Y- in E. coli NrdF compared
with those of Fe-associated Y-s of other NrdF proteins

P112 (mW) b
Ec MnNrdF

3.6 K 1.6 ±0.2 0.91 ±0.02
77 K >100a ND

Ec FeNrdF
3.6 K 0.03 ± 0.01 0.98 ± 0.03
77 K 0.47 ± 0.05 0.83 ± 0.01

Mt FeNrdF'
5 K 0.01 0.78
77 K 0.72 1.25

St FeNrdFd
95 K 3.7 1

Ca FeNrdFd
95 K 1.3 1

a Signal only 10% saturated at 100 mW
b ND - not determined

c Ref. 64
dRef. 10

4.3.7. Relaxation properties of the Ye. The microwave power at half-saturation (P1 2) values

of Y- in Mn" 2-Y- NrdF at 3.6 and 77 K were measured (Table 4.1) and found to be two orders

of magnitude higher than for E. coli and other Ferr 2-Y- NrdFs. The strong temperature

dependence of the spectra (Figure 4.4B-D) and faster relaxation of the Y- at 3.6-77 K relative to

the Ferr 2-Y- cluster may reflect a smaller magnitude of the exchange coupling constant (J) for

the Mn" 2 cluster relative to the Fe" 2 cluster. This would result in greater population of

paramagnetic excited states of the antiferromagnetically coupled Mn' 2 cluster, leading to faster

relaxation of Ye. Alternatively, the data could also reflect the Mn" 2 cluster being
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ferromagnetically coupled, such as with an S = 4 ground state. Studies are in progress to further

characterize the electronic properties of the Mn" 2 -Y- cofactor to evaluate these proposals in the

E. coli system. Subsequent multifrequency EPR studies by the Lubitz group on Ca NrdF,

overexpressed and purified from its native organism, have characterized that protein's EPR

signal. It is almost identical to our Ec dimanganese-Y- NrdF and has been characterized

extensively as a Y- weakly antiferromagnetically coupled to a ferromagnetically coupled Mn 2

cluster.6 5
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Figure 4.5. Specific activity, Y-/s2, and SA/Y- of Fe" 2-Y- NrdF. A) Correlation of specific
activity and Y-/02. Apo-NrdF was preincubated anaerobically with 0, 0.6, 1, 2, 3, 4, or 5 Fe"l/p2
followed by addition of 3.5 02/p2. Data is shown for two sets of independent experiments (filled
and open circles). SAs were determined using the radioactive assay. Y-/p2 was determined by
EPR spin quantitation. Errors in the SA and Ye determinations are estimated at <10%. B)
SA/Y- plotted against Y-/p2.

4.3.8. Fe" 2 -Y* cofactor assembly in the absence and presence of Nrdlhq. Because Fe" 2 -Y-

cofactor can self-assemble from Fer, 02, and apoNrdF, a systematic investigation of whether SA

correlates with Y- in Fe" 2-Y- NrdF was also carried out to compare with our Mn" 2-Y- cofactor

results. Apo-NrdF was incubated anaerobically with 0, 0.6, 1, 2, 3, 4, or 5 Fer/p2 and exposed to

3.5 02/p2, the Y- was quantitated by EPR, and the resulting protein was assayed for dCDP

formation. The highest Y- content achieved was 0.7 Y-/02, with an activity of -300 U/mg
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(Figure 4.5A). However, as was observed with Mn" 2-Y- NrdF, the SA/Y- also decreases as the

amount of Y- increases (Figure 4.5B). While the maximum Y- content of Fe" 2-Y- NrdF is

higher than for Mn' 2-Y- NrdF, the SA/Y- is 4-5 times higher for Mn" 2-Y- NrdF.

The ability to form FerI2-Y- NrdF in the presence of NrdIhq under conditions analogous

to those described for the Mn"12 -Y- cofactor was also investigated. Y- content similar to that

observed with Mnr12-Y- NrdF resulted (0.19 Y-/p2), but the SA was only 78 U/mg. This SA per

Yo (~500 U/mg/Y-) is similar to that observed when NrdF is reconstituted with 4 Fe"/2 and 02

alone, but only ~1/3 the amount of Y- was generated. Thus, while NrdIhq is required for Mn"12 -

Y- cofactor assembly, it appears to interfere with Fe" 2-Y- cofactor assembly in vitro.

4.3.9. Attempts to identify the oxidant in MnI"2-Y* cofactor assembly.

4.3.9.1. Evidence for oxidant channeling. To gain insight into whether Nrdlhq reacted

with 02 to generate HOO(H) or 02'~ as the active oxidant in Mn1 2-Y- assembly reaction, we

carried out cluster assembly reactions in the presence of catalase or superoxide dismutase (SOD),

to scavenge HOO(H) or 02', respectively. Following cofactor assembly, the resulting NrdFs

were assayed for RNR activity; the SAs of the samples were 760 U/mg (control), 750 U/mg

(reaction with 15 U SOD), and 740 U/mg (reaction with 15 U catalase). The inability of either

enzyme to decrease the amount of active Mn"12 -Y* cofactor formed suggests that the oxidant

produced by NrdI's reaction with 02 is sequestered in the NrdI-NrdF complex and does not

access bulk solvent - the oxidant channels to the metal site.

4.3.9.2. 02' as a possible oxidant in cluster assembly. Because 02' had not been tested

as a possible oxidant for Mnr 2-NrdF, we used xanthine oxidase (XO), which uses 02 as an

electron acceptor to form 02'~ during aerobic turnover with xanthine, to produce a constant flux
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of 02'~ (5-10 pM 02~/min). We monitored the reaction in the presence of 20 pM Mnr 2-NrdF

spectrophotometrically, but saw no evidence of Mn" 2 cluster or Y- formation.

We also measured whether 02 was produced by reaction of Nrdlhq with 02 using the

nitrone spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO). We

selected DEPMPO because of the long half-life (-890 s in 0.1 M phosphate, pH 7.0) of the

DEPMPO-superoxide spin adduct, HOO-DEPMPO-.3 6 This half-life is 15 times longer than the

spin adduct of 02' with the more commonly used 5,5-dimethyl-l-pyrroline-N-oxide (DMPO).3 6

Furthermore, HOO-DEPMPO- is known to be stable upon freezing and thawing and for at least 7

days at 77 K.36,37 As a control to determine the efficiency of 02~ trapping by DEPMPO under

our experimental conditions, 02' was generated by XO/xanthine. 02' formation was measured

by a spectrophotometric assay using cytochrome c and the extent of spin trapping was

quantitated by EPR spectroscopy. Under these conditions, 6.0 ± 0.3 pM 02' was detected by

cytochrome c reduction, while 2.2 ± 0.5 gM HOO-DEPMPO- was observed by EPR methods.

Therefore, 40% of the total 02' generated was detected as HOO-DEPMPO-.

Nrdlhq (5 or 20 gM), in the absence or presence of apoNrdF (2.5 or 10 pM), was oxidized

in the presence of 20 mM DEPMPO by addition of 0 2-saturated buffer. HOO-DEPMPO-

formation was analyzed by EPR spectroscopy. No HOO-DEPMPO- was detectable in the

samples containing 5 gM NrdI. In the samples containing 20 jiM NrdI, a signal that quantified to

0.7 pM was visible, estimated by comparison of the peak-to-trough amplitude of the HOO-

DEPMPO- pure line at 3505 G with the controls.36 Assuming this represents 40% of total 02'

formation, reaction of 20 pM Nrdlhq with 02 produced -2 pM 02'~ out of a potential 40 pM 02'

(0.1 02'NrdI). Given that we had observed -0.25 Y-/p2 produced by 1.2 Nrdhq/32, this level of

02' production does not appear to be sufficient to account for the amount of Y- generated in our
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cluster assembly reactions. However, this method relies heavily on the accuracy of the value of

40% trapping efficiency of 02' by DEPMPO, and the Y. yield in this system is low; therefore,

we cannot rule out the possibility that 02'~ is the oxidant involved in Mn" 2-Y- cofactor

assembly.

4.3.10. Crystal structures of Mn"2-NrdF and its complex with NrdI reveal a channel for

oxidant transport. To obtain structural insight into the mechanism of Mn"I2-Y- assembly, we

collaborated with Amie Boal and Amy Rosenzweig. In this section, we present the crystal

structures of E coli NrdF in the Mn" 2 and Fe"2 forms, providing structural insight into how NrdF

is able to generate Y- from two different metallocofactors using two different oxidants. We also

present structures of NrdF in complex with Nrdlhq and NrdIox. Reaction of the NrdIox/NrdF

complex in the crystal with 100 mM dithionite and 02 results in trapping of a small molecule

best modeled as a peroxide in a channel linking the NrdI flavin to the NrdF metal site, supporting

the proposed model of Mn" 2-Y- cofactor activation by oxidant channeling.

4.3.10.1. Mn"2-NrdF and Fe"2-NrdF. The 1.65 A resolution (Table 4.2) crystal structure

of Mn"2-NrdF contains one monomer per asymmetric unit with the other half of the dimer

related by crystallographic symmetry. The overall fold closely resembles that of other class I P2

subunits.66 Anomalous diffraction data are consistent with the presence of two fully occupied

II 67Mn" sites with a Mn-Mn distance of 3.7 A (Figure 4.6). Mnl is coordinated by HislOl,

Asp67, and a terminal water molecule, and Mn2 is coordinated by His195 and a terminal water

molecule. Three glutamate residues (Glu98, Glul58, and Glul92) bridge the two metals in a

fashion previously not observed in RNRs and related carboxylate-bridged diiron enzymes

(Figure 4.6). [The metal site in the reported structure of the Mn"2 form of Ca NrdF2 ' differs

from the Ec Mn"2-NrdF structure and is more similar to the Fe" 2-NrdF structures. Based on the
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fact that the Ca protein contained 1 Fe/p2 as compared to 0.03 Fe/2 for the Ec protein, and on

the high sequence identity between Ca and Ec NrdFs (66%), it is possible that the crystallized Ca

protein did not contain two fully occupied Mn" sites. Additionally, the presence of two

coordinated solvent molecules in a Mn"2 or Fe"2 P2 as observed in Ec Mn" 2-NrdF is unusual. A

single solvent molecule is coordinated to the second metal site (Mn2 or Fe2) in class Ia Ec Mn 2-

substituted P2 and class Ib St and Mt Fe"2-NrdF.19,68,69 However, the solvent molecule in these

class Ib NrdF structures likely derives from preparation of Fe" 2-NrdF by chemical or

photoreduction of the pt-oxo bridged diferric cluster.] Thus, each Mn" is six-coordinate so ligand

dissociation or reorganization, possibly via loss of the solvent molecule coordinated to Mn2, is

necessary for reaction of the cluster with the oxidant. The non-coordinating side chain oxygen

atom of Asp67 is hydrogen bonded to the hydroxyl group of Tyr105, the site of the stable Y-. A

similar interaction is observed in the E. coli class la Fe"2 p2 structures.66 In the class lb Fe"2 P2

structures, however, the interaction between Asp67 and Tyr105 is mediated by a water molecule.

As a result, the Mnl-Tyr105(OH) distance is 5.8 A as compared to the Fel-Tyrl05(OH)

distances of St NrdF (6.4-7.0 A),' 9 Ca NrdF (6.2-6.7 A), 2 0 and Ec Fer 2-NrdF (6.7 A), which was

determined to 1.9 A resolution by soaking apo crystals of NrdF with Fe" (Table 4.2, Figure

4.6B,C). The shorter Mnl-Tyr105(OH) distance may be associated with the unusual EPR

spectrum of the Mn-associated Y- relative to the Fe-associated Y- in NrdF.70

214



E158

H20 E192
*H 20

H98

H101 H195

H101 H195

C

vI' **0 OH es .Oe Der

OH-'2 .9\ 1.
2 Fe 2.

H1z 2. HY

Figure 4.6. Structures of Mnr 2-NrdF and Fe"2-NrdF. (A) Stereoview of the Mnr 2-NrdF active
site. Mn" ions are shown as purple spheres, water molecules are shown as red spheres, and NrdF
side chains are represented in stick format and colored by atom type. (B) Stereoview of the Fe"2-
NrdF active site. Fe" ions, modeled at 0.5 occupancy, are shown as orange spheres. Metal-
ligand interactions are highlighted with dashed lines. (C) Diagram of metal-ligand and
hydrogen bonding interactions in Mn" 2- (left) and Fe" 2- (right) NrdF structures. Distances are
reported in A.
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Table 4.2. Data

Data collection
Wavelength (A)
Space group
Cell dimensions

a, b, c (A)
Wavelength (A)
Resolution (A)
Rsym or Rmerge
I/ GI1
Completeness (%)
Redundancy

Refinement
Resolution (A)
No. reflections
Rork / Rfree
No. atoms

Protein
Ligand/ion
Water

B-factors
Protein
Ligand/ion
Water

R.m.s. deviations
Bond lengths (A)
Bond angles (0)

collection and refinement statistics for NrdF structures

Mn" 2-NrdF Mn" 2 -NrdF Fe"2-NrdF
(native) (anomalous) (native)

0.98 1.85 1.03
P6522 P6522 P6522

78.14, 78.14, 266.75 78.21, 78.21, 267.19 79.14, 79.14, 267.98
0.98 1.85 1.03
50.0-1.65 (1.68-1.65) 50.0-2.33 (2.37-2.33) 50.0-1.90 (1.93-1.90)
0.059 (0.605) 0.064 (0.150) 0.079 (0.618)
30.5 (2.2) 35.4(23.6) 36.2 (2.0)
96.9(95.1) 95.1 (92.8) 97.5 (72.9)
7.3(7.0) 16.4(16.9) 18.0(7.8)

50.0-1.65
54457
0.167/0.186
2799
2391
8
400

11.6
38.7
26.1

0.009
1.09

Fe" 2-NrdF
(anomalous)

1.72
P6522

79.08, 79.08, 268.39
1.72
50.0-2.20 (2.24-2.20)
0.098 (0.580)
30.5 (2.4)
99.5 (92.4)
16.8 (5.6)

50.0-1.90
36996
0.196/0.220
2487
2331
2
154

27.2
36.7
32.8

0.009
1.004

The two Mn" ions are bridged by Glu98 in a pt-1,3 fashion and by Glul92 in a p-(I1,32

arrangement (Figure 4.6A). The position of Glul 92 is similar to that observed for the equivalent

ligand in the E coli class Ia P2 structure obtained by soaking Fe" into apo crystals.71 The most

significant difference between Mn"2-NrdF and other P2 structures is the orientation of Glul58,

which bridges the two Mn" ions in a Ii- 1,3 mode, rather than coordinating Fe2 or Mn2 in a

monodentate or bidentate fashion (Figure 4.6). Glul58 is located in a short n-helical segment

analogous to a conformationally flexible region observed in other p2s and diiron enzymes and

hypothesized to dictate access to the active site. 19,72,73 The space occupied by the Glul58 side
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chain in Fe"2-NrdF is occupied by two solvent molecules in Mnr 2-NrdF: the coordinated water at

Mn2 and a second water that links the coordinated water to the side chain of conserved residue

Ser154 (Figures 4.6, 4.7). Ser154 is involved in a conserved hydrogen bonding network that

connects Glul58 to a solvent channel from the protein surface (Figure 4.8A). The channel

opening is located near conserved residue Lys260. This channel is better suited to allow access

to the metal site by a hydrophilic oxidant [HOO(H) or 02'] than the analogous channel present

in class Ia p2 structures, which has been proposed as the 02 access route in the class Ia

enzymes 74 and is more hydrophobic, smaller, and less solvent exposed, and therefore more

appropriate for 02 passage (Figure 4.8B). The ordered solvent and hydrogen bonding

interactions may help constrain the unusual orientation of Glul 58 in Mn"2-NrdF. Moreover, the

location of the two interacting solvent molecules at Mn2 could easily accommodate the oxidant

(Figure 4.7, inset). These waters may dissociate, allowing the oxidant to initially bind

terminally to Mn2 in this position. Alternatively, a conformational change in Glul58, perhaps

triggered by disruption of the hydrogen bonding network in the channel by passage of the

oxidant, may allow the oxidant to bind initially in a mode more similar to that proposed for the

class Ia RNRs.7 5 By contrast, in both class Ia (Figure 4.8) and Ib Fe"2 structures, including

Fe" 2-NrdF (Figure 4.6B), Glul58 and Phe162 create a hydrophobic pocket above the Fe2 site

opposite His195 (E. coli NrdF numbering), an ideal destination for 02 before it reacts with the

Fe"2 site.
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2.7 A
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Figure 4.7. The Mnr 2-NrdF solvent exposed active site channel terminating at Mn2. A 2Fo-Fe
electron density map (red, mesh contoured at 2a) shows ordered waters in the channel. The Mn
anomalous difference Fourier map (purple mesh, contoured at 12a) is also shown. Residues
implicated in channel access are shown as white sticks and a conserved hydrogen bonding
network (illustrated with dashed lines in inset) linking ordered solvent in the channel to Mn2
ligand Glul58 is shown as yellow sticks. Ser154 is modeled in two separate rotamer
conformations in Mn"2-NrdF, but in all NrdI/NrdF complex structures, it adopts the rotamer that
points into the solvent channel.
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B

Figure 4.8. Views of the active site channels in Mn"2-NrdF (class Ib) and Fe"2-NrdB (class Ia)
(PDB code IPIY). (A) Mn" 2-NrdF is shown as a white ribbon diagram and the Mn" ions are
shown as purple spheres. Residues lining the active site channel are represented in stick format.
The active site channel is indicated by a gray arrow. Ser154 is shown here as the rotamer that
points into the channel cavity. As shown in Figure 4.7, it can be modeled in two conformations.
(B) Fe"2-NrdB is shown as a pink ribbon diagram and the Fe" ions are shown as orange spheres.
Residues lining the active site channel are represented in stick format. The active site channel is
indicated by a gray arrow. Glu204 in NrdB is the equivalent residue to NrdF Glul 58 and is
coordinated to Fe2 in a monodentate fashion.

The E. coli Fe"2-NrdF structure was obtained by crystallization of apo-NrdF followed by

soaking with Fe' ions in cryoprotectant solution. Nonheme Fer12 protein structures are routinely

obtained in a similar fashion 20,7 or by crystallizing the Fe"12 form followed by chemical or

photoreduction.' 9 As with the Mn"2-NrdF structure reported here, Fe112-NrdF crystallized with

one NrdF monomer per asymmetric unit with the second monomer in the functional P2 subunit

related by crystallographic symmetry. Although a fully occupied class Ia Fe" 2-P2 structure was

obtained by this method,7 ' the Fe" sites in the Fe"2-NrdF structure reported here are best

modeled at 0.5 occupancy. Consequently, the model may represent an average of apo, partially

loaded, and fully loaded states. The C. ammoniagenes Fe" 2-NrdF structure, 20 obtained similarly,

contains two P2 dimers in the asymmetric unit with the Fer2 sites fully occupied in one of the
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four NrdF molecules with 0.3-0.6 occupancy for the other three Fe" 2 sites. In the immediate

vicinity of the metal site, the . coli Fe" 2-NrdF structure is identical to that of the fully occupied

C. ammoniagenes Fe"2-NrdF subunit. This observation supports the conclusion that the unusual

features of the E. coli Mn"2-NrdF coordination environment result from Mn" in the active site

and are not an anomaly of the E. coli NrdF protein.

Table 4.3. Data collection and refinement statistics for NrdI/NrdF complex structures

NrdIox/NrdF Nrdlhq/NrdF Nrdlhq/NrdF Nrdhq/NrdFperox
(native) (native) (anomalous) (native)

Data collection
Wavelength (A) 1.08 1.08 1.85 1.08
Space group P212121  P212121  P212121  P212121
Cell dimensions

a, b, c (A) 75.40, 90.72, 143.79 74.86, 90.68, 143.84 75.06, 90.70, 143.95 75.72, 91.35, 144.11
Resolution (A) 50.0-2.50 (2.50-2.54) 50.0-2.00 (2.03-2.00) 30.0-2.40 (2.44-2.40) 50.0-2.35 (2.39-2.35)
Rsym or Rmerge 0.095 (0.373) 0.084 (0.641) 0.116 (0.837) 0.122 (0.476)
I/ al 12.4(2.4) 23.6(3.0) 17.8(3.0) 10.9(2.2)
Completeness (%) 91.4 (68.1) 100.0 (100.0) 100.0 (99.9) 93.2 (81.9)
Redundancy 4.0 (3.0) 7.4 (7.4) 7.0 (6.5) 4.4 (2.8)

Refinement
Resolution (A) 50.00-2.50 50.00-2.00 50.00-2.35
No. reflections 29768 63605 37194

Rwork / Rfree 0.235/0.273 0.203/0.227 0.234/0.275
No. atoms 6680 6973 6891

Protein 6594 6627 6653
Ligand/ion 66 66 70
Water 20 280 168

B-factors
Protein 28.9 (NrdF) 21.2 (NrdF) 20.9 (NrdF)

43.2 (NrdI) 30.6 (NrdI) 34.2 (NrdI)
Ligand/ion 43.0 (37.6) 27.6 (21.7) 23.8 (21.4)
Water 20.2 26.7 22.9

R.m.s. deviations
Bond lengths (A) 0.006 0.009 0.006
Bond angles (*) 0.856 1.054 0.817

4.3.10.2. NrdJo/Mn"2-NrdF. The complex between NrdIox and Mnr 2-NrdF (NrdI0 x/NrdF)

was crystallized and its structure determined to 2.5 A resolution (Table 4.3). Two NrdI and two

NrdF molecules are present in the asymmetric unit (Figure 4.9A). One NrdI protein is bound to

each NrdF opposite the dimer interface and directly over the solvent-exposed channel to the
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active site. The NrdI/NrdF interface, which buries ~800 A2 surface area per chain, is largely

hydrophobic, with several interprotein hydrogen bonds.67 The overall fold of NrdF is the same

as in the Mn"2-NrdF structure, and the active site is nearly identical, including the unusual

coordination mode of Glul58. NrdI adopts a typical flavodoxin-like fold,76 with the

isoalloxazine ring of the FMN near the protein surface and enclosed by two loop regions (Figure

4.9B). One of these loops provides the closest positive charge on NrdI to the reactive C4a

position of the flavin (Arg92), while the other, the glycine-rich "50s loop," interacts with the N5

position and displays dramatic redox-dependent conformational changes (see below). The 50s

loop comprises residues 50-56 (Gly 4-Thr-Ala-Gly), and as predicted (Chapter 3), the amide

nitrogen atom of Gly51 is within hydrogen bonding distance of the flavin N5 atom, similar to

what is observed in oxidized long-chain flavodoxins.77 The electron density for the NrdI 50s

loop is not completely continuous, suggesting conformational flexibility.

The structure of the NrdIox/NrdF complex reveals how NrdF contributes to the

electrostatic environment of the FMN binding pocket. Typical flavodoxins are able to carry out

single electron transfers in part through destabilization of the reduced FMN, bound in the anionic

form (FMNH~, protonated at N5 and deprotonated at NI), by acidic residues proximal to the

isoalloxazine ring.78 The FMN environment in NrdI is more positively charged (Arg92 and

Arg108) and in complex with NrdF, three additional charged residues from NrdF (Lys 18, Arg25,

and Arg 190) are located within 12 A of the FMN C4a position. The presence of positive charges

near the 0 2-reactive C4a position is a conserved feature of flavoproteins that activate 02, such as

the oxidases, which reduce 02 to H2 0 2 as part of their catalytic cycle, 79'8 0 suggesting that

electrostatics may play a similar role in NrdI to favor its reaction with 02 to form the essential

oxidant in Mn"' 2-Y- cofactor assembly.
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NrdiMn"2 NrdF Nrd gfrdF

Figure 4.9. Structures of NrdI/NrdF protein-protein complexes. (A) A ribbon diagram of the

NrdI0 x/NrdF structure. NrdI is shown in green and Mn"2-NrdF is shown in white. The NrdI
FMN cofactor is shown as yellow sticks. (B) The NrdI FMN environment in the NrdIox/NrdF
structure (NrdI shown in green). (C) The NrdI FMN environment in the Nrdlhq/NrdF structure

(NrdI shown in purple). Hydrogen bonding interactions with the FMIN N5 position are shown as

dashed lines.
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Figure 4.10. The NrdI/NrdF channel. (A) NrdI/NrdF complex formation extends the NrdF
active site channel to the FMN cofactor. The complex channel is depicted as a light blue mesh
and was calculated using a 1.4 A probe radius. Selected NrdI (green) and NrdF (white) residues
lining the channel are shown as sticks. (B) Observation of a trapped species, best modeled as
peroxide, in the NrdI/NrdF channel in a crystal reduced by dithionite in the presence of oxygen
(Nrdlhq/NrdFperox). Strong Fo-Fe electron density (green mesh, contoured at 3.3a) is present in the
channel after the first refinement cycle. The FMN cofactor (yellow), NrdI side chains lining the
channel (purple), NrdF residues in the channel and at the active site (white), and the peroxide
(red) are all shown as sticks. (C) A zoomed-in view of the modeled peroxide shown in Fig. 3B
and hydrogen bonding interactions with residues and solvent in the channel. The final 2Fo-Fe
electron density (blue mesh, contoured at 1.8a) is superimposed on the initial Fo-Fe electron
density map from Figure 4.9A. Water molecules are shown as red spheres. Dashed black lines
indicate potential hydrogen bonding interactions. The gray dashed line represents the distance
between the modeled peroxide and the nearest charged residue, conserved NrdF residue Lys260.
The Glul 92 backbone carbonyl group and the side chain of Ser 159 constitute the narrowest point
of the active site channel. The oxygen atom distal to the Mnr 2 site interacts strongly with the
side chains of NrdI residues Asn85 (2.8 A) and conserved Asn83 (2.8 A). (D) The extended
hydrogen bonding network near the putative peroxide binding site. The side chain (continued)
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orientations of Asn83 and Asn257 can be assigned unequivocally based on their interactions with
Lys260 and the backbone amide nitrogen of Asn85, and the carbonyl oxygen of Phe253,
respectively. The interactions of w2 with Asn257 (2.8 A) and the backbone carbonyl of Ser159
(2.7 A) constrain w2 to act as a hydrogen bond acceptor for the proximal oxygen atom of the
modeled peroxide (2.9 A), suggesting this oxygen is protonated. The distal oxygen accepts two
hydrogen bonds from Asn83 and Asn85. Since no other potential hydrogen bond donor or
acceptor exists for this oxygen atom, its protonation state cannot be determined from this
analysis.

Complex formation between NrdI and NrdF results in a 10 A extension of the NrdF

active site channel along the NrdI/NrdF interface toward the flavin ring (Figure 4.10A). Solvent

access to the channel is prevented by NrdI Phe86 and other hydrophobic and bulky residues near

the flavin. Like the portion of the channel within NrdF, the interfacial region is lined with polar

uncharged residues and backbone atoms. The side chains of NrdI residues Asn83 (completely

conserved) and Asn85 (largely conserved) point into the channel. The position of the highly

conserved Lys260 in NrdF enforces a sharp turn in the channel, leading directly to the Mn"2 site.

Lys260 is involved in a hydrogen bond network with the strictly conserved residues Tyr256 and

NrdI Glu110. The NrdF portion of the channel is lined by the side chains of Ser159, Tyr197, and

Asn264. Approximately 7 A from the Mn2 site, the channel constricts to 4.1 A (Figures 4.7,

4.10). This constriction is formed by the carbonyl oxygen of bridging ligand Glul92 and the

side chain of Ser159, which follows in sequence space the unusual bridging ligand Glul58.

Thus, the interactions that define this narrow point of the channel are intimately connected to the

Mn'2 coordination sphere.
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Figure 4.11. The NrdIhq/NrdF active site channel terminating at Mn2. Nrdlhq (purple) and NrdF
(white) are shown as ribbon diagrams. Residues and backbone atoms lining the interfacial
region of the channel are highlighted in stick format. A 2F-Fe electron density map (cyan mesh,
contoured at 1.2o) shows ordered waters in the channel. The Mn anomalous difference Fourier
map (purple mesh, contoured at 9a) is also shown. Water molecules within the channel cavity
are represented as cyan spheres whereas water molecules implicated in the extended hydrogen
bonding network are shown as red spheres and labelled wl, w2, and w3. Potential hydrogen
bonding interactions involving ordered solvent in the channel are illustrated with dashed lines in
the inset. In one NrdI/NrdF subunit, electron density for two of these waters is not observed,
indicating they are disordered or not fully occupied. Notably, these specific waters occupy the
putative peroxide binding site in the NrdIhq/NrdFperox structure.

4.3.10.3. Nrdig/Mn"2-NrdF and NrdI,,,VMn"2-NrdF. As a first step toward

investigating the NrdI-mediated activation of the NrdF metallocofactor on the molecular level,

two structures of reduced NrdI in complex with NrdF were determined (Table 4.3). For the first

structure (Nrdlhq/NrdF, 2.0 A resolution), crystals were grown in the presence of 3 mM dithionite

in an anaerobic chamber. These crystals were colorless, indicating that the flavin is reduced.
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For the second structure, which reveals a trapped species best modeled as peroxide

(NrdIhq/NrdFperox, 2.35 A resolution), Nrdox/NrdF crystals were soaked in 100 mM dithionite

outside the anaerobic chamber until the bright yellow color bleached (-2 min). Both structures

reveal conformational changes near the FMNH~ cofactor suggesting reduction of the flavin

(Figure 4.9C).67 The most dramatic change involves the NrdI 50s loop, which adopts a more

open conformation exposing the isoalloxazine ring to solvent (Figure 4.9C). Protonation of the

flavin N5 concomitant with reduction breaks the N5 hydrogen bond with the amide nitrogen of

Gly51, and the carbonyl oxygen of Gly50 is positioned to accept a hydrogen bond from the

FMNH~ N5H. In addition, NrdF Arg25 is oriented closer to C4a (6 A) compared with the

NrdIox/NrdF complex, and in one NrdF monomer, it is hydrogen bonded to the backbone

carbonyl of NrdI Gly50, perhaps locking in place the orientation of the 50s loop. The proximity

of a positively charged residue to the reduced FMN may be important in its reaction with 02 and

is consistent with the unusual redox properties of NrdI. As in the NrdIox/NrdF structure (Figure

4.10A), there is no clear solvent access route to the channel. The Nrdlhq/NrdF structure reveals

little conformational change within the complex when compared with NrdIox/NrdF. However, a

highly ordered water network is evident within the channel (Figure 4.11) that extends along the

NrdI/NrdF interface to the NrdI FMN cofactor.

Surprisingly, strong (-7a) unexplained electron density (Figure 4.10B) was observed in

both active site channels of the structure obtained from aerobically dithionite-soaked crystals

(Nrdlhq/NrdFperox). This density is oblong in shape (Figure 4.10C) and a number of small

molecules have been modeled in an effort to determine its identity (described in more detail in

ref. 67). Modeling as a single water molecule results in strong difference electron density (4.5a),

consistent with a diatomic species. Modeling as dioxygen yields difference density at the edges,
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suggesting that the 0-0 bond distance is longer than 1.2 A. Less difference density was evident

with superoxide (0-0 bond distance 1.34 A), with the best fit being a fully occupied peroxide

species with an 0-0 bond distance of 1.47 A. Given that the crystals were exposed to 100 mM

dithionite, we also considered the possibility that bisulfite, a dithionite breakdown product, could

account for the density. Modeling with bisulfite yields Fo-Fe difference density and high B

factors, however. Therefore, we modeled the electron density as a peroxide. Peroxide could

have been produced by reaction of 02 with Nrdlhq or with the dithionite used to reduce

NrdIox.8 1 ,8 2

Lys 260

he 253 w ..H NH K Asn 83
W-, H H H -... N-H..

H-NH 

----Asn 85 NH
w2

Asn 257 H O.. H H H
H .--. H ''(.H) dtal

H-- ,, proximal

Tyr 163 H

H
Ser 159 H

GIu 158

Figure 4.12. A schematic drawing, including protons, of the hydrogen bonding network in
Nrdlhq/NrdFperox, deduced from the structure. Ordered solvent is shown in blue and the modeled
peroxide is shown in red. Hydrogen bonding interactions are illustrated as dashed lines. As
drawn, Asn85 and Asn83 each donate a hydrogen bond to a H02 or H20 2 peroxide species. The
conformation of Asn85 cannot be assigned definitively, but the rotamer depicted is favored based
on computational analysis.83 The residues involved in this network are very highly conserved.

The putative peroxide species is lodged at the bend in the active site channel ~10 A from

the FMN isoalloxazine ring and -10 A from the Mn2 site (Figure 4.10B). It is within hydrogen

bonding distance of residues from both NrdF and NrdI as well as solvent molecules in the

channel (Figure 4.10C,D). The side chain of the single charged residue in the channel, NrdF
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Lys260, is 3.9 A from the distal peroxide oxygen atom but not positioned appropriately for

proton transfer, consistent with a role in electrostatic attraction alone. It is also protected from

protonation by Tyr163 by an intervening solvent molecule. The modeled peroxide is involved in

an extensive hydrogen bonding network where the proton donors and acceptors can be inferred

(Figures 4.10D and 4.12). The structure suggests that the proximal oxygen atom is protonated,

consistent with either H202 or HO2. Although its identity cannot be definitively determined, the

presence of the trapped species supports the relevance of the channel for oxidant transport in

Mn"12-Y- assembly.

4.4. DISCUSSION

4.4.1. Formation of a Mn"12-Y- cofactor. Despite the documented dependence of C.

ammoniagenes and other gram-positive bacteria on Mn" for growth, DNA synthesis, and

possibly deoxynucleotide formation,7,16 general acceptance of the proposal by Follmann, Auling,

and coworkers of a Mn-containing class lb RNR in these organisms 9 has been hindered by the

inability to assemble active Mn-containing cofactor in vitro and the low activity of the purified

Ca NrdF.'0 "2 In this chapter, we have demonstrated for the first time that a Mn"2-NrdF is

competent in vitro to form an active MnIII2 -Y- cofactor in the presence of Nrdlhq and 02.

Our assignment of Mn" 2-Y- as the active form of NrdF is supported by previous

experiments with Ca NrdF. The visible spectrum of that protein, reported by Follmann, Auling,

and coworkers,9 is similar to that of p-oxo, di-p-carboxylato-Mn"' 2 model compounds

synthesized by the Wieghardt8 4 and Lippard8 5 groups. However, our demonstration that NrdI

copurifies with NrdF suggests that certain features of the Ca NrdF visible spectrum could have

been associated with NrdI. When Ca NrdF was purified by Sjaberg and coworkers,1 2 it

contained 1 Mn/p2 and was EPR silent. This observation is also consistent with the presence of
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a Mn" 2 cluster. No Y- was detected by either the Auling or the Sjberg group, although HU was

able to abolish the low levels of activity, suggesting its presence. In neither case was the yield of

active enzyme sufficiently high for biophysical characterization. We propose that we have

formed in vitro the same NrdF cofactor isolated from C. ammoniagenes, and perhaps more

recently from Corynebacterium glutamicum.13

4.4.2. The role of NrdI in Mn" 2-Y- cofactor assembly. Reaction of NrdIhq with 02 could

potentially generate 02', H2 0 2 , or HO2, which are all potential oxidants of Mn"2-NrdF. A

number of experiments were carried out in an effort to identify the oxidant. Our efforts to form

active cofactor from Mn"2-NrdF using 02~ generated aerobically by the xanthine/xanthine

oxidase system, in the presence or absence of NrdIx, have been unsuccessful. We have also

looked for 02'~ formation using the nitrone spin trap DEPMPO by incubation of Nrdlhq,

apoNrdF, and 02. While very low levels of 02' were trapped, the amounts were insufficient to

account for the 0.25 Y-/02 we have observed in MnII 2-Y- NrdF. The complexity of the spin

trapping experiments make it difficult to draw strong conclusions about whether 02' is the

oxidant produced by NrdI for Mn" 2-Y- cofactor assembly, although we can conclude that Ec

NrdI produces it inefficiently.

Cluster assembly aerobically using H20 2 as oxidant, in the presence or absence of NrdIox,

gave a SA of 5 U/mg. Interestingly, when Mn"2-NrdF was exposed to a five-fold excess of H2 0 2

over 20 min under anaerobic conditions in the presence of Nrdlhq (section 4.2.12.3), a significant

amount of active cofactor (330 U/mg) was generated. However, Nrdlhq was fully oxidized in

both this experiment and a control reaction containing apo-NrdF in place of Mn"2-NrdF.

Although this experiment was only carried out once, this result suggests that generation of active

cofactor was not associated with H20 2 reacting with Mn"2-NrdF (which would have allowed
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NrdI to be oxidized by reduction of Mn"' thus formed), but instead with catalase activity

unrelated to the manganese cluster that generated 02, which in turn reacted with NrdIhq to form

Mnr12-Y- cofactor.

An alternative oxidant such as ClO- could be generated from buffer components.

However, removal of Cl from Buffer C and use of MnSO 4 in place of MnCl2 did not

significantly affect the SA of the reconstituted Mn"12-Y- NrdF.

Based on these negative results, our initial working model was that Nrdlhq reacts with 02

to produce HO2, although we could not completely rule out H20 2 or 02'~ production. The

oxidant is then transported to Mn2 in NrdF via a channel from the protein surface; this channel

has been suggested to be the route of 02 access to the metal cluster in other class I RNRs.19, 74,86

Channeling of the oxidant to the metal site is supported by the observation that Mn" 2-Y- NrdF

assembly is not affected by the presence of SOD or catalase.

4.4.3. Crystallographic support for the role of NrdI. Our crystallographic results also lend

strong support to the oxidant channeling hypothesis. The structure of Nrdlhq/NrdF shows that

NrdF enhances the positive electrostatic environment of NrdI's FMNH~ cofactor, as our titrations

of NrdI with dithionite in the presence of NrdF had shown (Chapter 3), which would be expected

to favor its reaction with 02 by facilitating the initial electron transfer step to form a NrdIsq-02'

radical pair.80 Complexation results in continuation of the NrdF channel to the NrdI FMN

cofactor, delineating an obvious path from the NrdI site of oxidant formation to Mn2. The

Nrdlhq/NrdFperox structure offers a crystallographic snapshot of a putative peroxide species within

the channel. While the identity of the species cannot be determined, its presence demonstrates

the competence of the channel to transport small molecules from its opening at the flavin. Why

the putative peroxide is stalled in the channel in its observed position could be because it is not
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the correct oxidant (for example, H20 2 instead of 02'~), or because some conformational

flexibility (such as of Glul58) is precluded in the crystal. Efforts are in progress to attempt

Mn"12 -Y* cofactor assembly and monitor the conformational changes that take place in the

crystal by exposure of NrdIhq/NrdF crystals to 02.

Closer to the metal site, the p-1,3 bridging mode of Glul58 (Figures 4.6, 4.13A) and

coordination of a solvent molecule at Mn2 link site 2 directly to the oxidant channel. Ala75 and

Ile94 provide sufficient space for occupancy of the channel by waters in the crystal structure,

forming a hydrogen bonded network of ordered solvent near Mn2 (wl-w5, Figure 4.13C).

Subsequent work from our laboratories that will not be described in detail in this thesis17 has

shed light on the basis for the unusual coordination mode of Glu 158. The crystal structure of B.

subtilis (Bs) Mn"2-NrdF reveals that that enzyme contains a metal site much more akin to Fe12-

NrdBs and NrdFs than to Ec Mn" 2-NrdF, with Glul64 (equivalent to Ec NrdF Glul58)

coordinating Mn2 alone in bidentate mode. In Bs NrdF, Ala75 and Ile94 are replaced by

methionines (Met74 and Met93), conserved in the Bacillales subclass (mainly Bacillus and

Staphylococcus species) of class lb RNRs (Figure 4.13B, Appendix 2). The increased

hydrophobicity and steric bulk of Met74 effectively preclude ordered solvation of the oxidant

channel in the vicinity of Mn2; only w5, within hydrogen bonding distance of Ser160 (Ec NrdF

Ser154), and a water trans to His201 (Ec NrdF His195) are observed (Figure 4.13B,D). The Ala

to Met substitution in Bs Mn" 2-NrdF obviates water occupancy at the position of w4, which may

be sufficient to disfavor formation of the wl-w3 network, and Glul64 occupies the channel

instead to coordinate Mn2 in the usual bidentate mode. With only two structures of Mn"2-NrdFs,

it is difficult to assess which type of channel will be more common, although most non-
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Bacillales NrdF sequences have smaller residues (such as Ala75 in Ec NrdF) at the position

equivalent to Bs Met74 (Appendix 2).

AIasW ' | [ f J Met74N%1

Figure 4.13. The solvent channel to Mn2 in the Ec (A) and Bs (B) Mn"2-NrdF structures.
Residues lining the channel and active site residues are shown as sticks and colored by atom
type. The active site ligand Glul64 (Bs numbering) / Glu158 (Ec numbering) is colored pink
and the Mn ions are represented as purple spheres. A 2Fo-Fe electron density map showing
ordered waters in the channels is shown as cyan (A, 1.5a) or red (B, 1.2a) mesh. (C) and (D)
show an enlarged view of the channel close to Mn2 in a slightly different orientation compared
to (A) and (B).

Like Bs NrdF, Ec Fe"2-NrdF (despite the presence of Ala75 instead of a Met) lacks

ordered solvent between Ser159 and metal site 2 and Glul58 coordinates that site in bidentate

fashion. However, in that case, the propensity of Fe" for a lower coordination number than Mn"

in the class I RNR scaffold 20,67,68,71,88,89 may be sufficient to exclude ordered water from metal
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site 2 site so that Glul 58 remains bidentate to Fe2 and the solvent channel cannot accommodate

ordered water molecules below Ser159. These observations highlight the interplay between

protein side chains and solvent in the second coordination sphere in influencing the overall

coordination geometry and raises important questions about solvent order/disorder and oxidant

access to the metal site. In Chapter 6 we show that the oxidant in Mn" 2-Y- assembly in Bs NrdF

is 02~. If Ec and Bs NrdF use the same oxidant, the significant structural differences in the

vicinity of Mn2 exhibited by the two systems might reflect a situation in which some details of

the conformational dynamics required to transport the oxidant to the metal site are different,

rather than an entirely different mechanism of metal cluster oxidation. Studies involving site-

directed mutagenesis of the residues lining the oxidant channels in E coli and B. subtilis NrdFs

are in progress to test these hypotheses.

4.4.4. Proposed mechanisms of Mn' 2-Y. cofactor formation. Scheme 4.1 shows two

proposed mechanisms for assembly of the Mn"' 2-Y- cofactor based on our biochemical analysis.

Because our efforts to assemble cofactor with H20 2 and O2 were unsuccessful, and because the

Mn"2 center of NrdF is not reactive with 02, we initially proposed that NrdI must convert two

molecules of 02 to HO2 to access the metal cluster oxidation states high enough to oxidize Y105

to Y-. Our initial working model for this process is shown in Scheme 4.1 (top). A similar

mechanism can be envisioned using H20 2 as oxidant. The use of H20 2 as an oxidant to

efficiently generate an active RNR cofactor has been demonstrated in studies on the Chlamydia

trachomatis class Ic RNR, which uses an active MnvFe"' cofactor, not Y-, in catalysis. 90 In that

system, H20 2 can function in vitro to generate the active Mn'vFer1 cofactor from either the

Mn"Fe" or Mn"'Fe"' forms of the protein.9 1
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We suggest that the first steps in Mn" 2-Y- cofactor formation in NrdF are analogous to

those proposed for the reaction of reduced Mn catalase with H20 2. 92,93 Mn catalases catalyze the

disproportionation of H20 2 to 02 and H20 in an active site that cycles between the Mn"2 and

Mn"' 2 states.59 Furthermore, the active sites of the Mn catalases share important structural

features with 0 2-activating diiron enzymes like the class Ia RNRs, methane monooxygenase, and

A9 desaturase.94'95 For these reasons, Mn catalases have served as a framework for the first step

(Scheme 4.1, A) of Mn" 2 -Y- cofactor assembly in NrdF.

Scheme 4.1. Proposed mechanisms for formation of Mn " 2-Y. NrdF by Nrdhq and 02.

- Nrdlhq

reductasered / &OH 02 N

Nrdlox o
HOO(H) Mn9 M Nrdle
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In step A, NrdF-bound Nrdlhq is proposed to reduce 02 to HO2, which channels to the

metal site and initially binds terminally to Mn2. Binding to Mn2 is proposed based on crystal

structures of N3~ bound to class Ia RNRs75 and Mn catalase. 95  Reorganization of the

hydroperoxide ligand, protonation, and heterolytic 0-0 bond cleavage could lead to a p-oxo-

bridged Mn" 2 cluster as proposed for Mn catalases. 92,96

The reduction potentials of dimanganese(III) model complexes8 4'85'96'97 are unlikely to be

high enough to oxidize Tyrl05 to Y- (Ey./y ~1.2 V vs. NHE); 98 therefore, a second equivalent of
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HO2 must be provided by NrdI to generate the Y- (step B, Scheme 1). NrdIox must either

dissociate from NrdF to allow binding of a second Nrdlhq or be reduced by an unknown

reductant. As NrdI is present only in catalytic levels in vivo (Chapter 5), the latter would be

most likely in vivo. Following the second reaction of Nrdlhq with 02, a second HO2 is proposed

to bind to Mn2. Here the analogy to the Mn catalases ends, as HO2 oxidizes rather than reduces

the Mn" 2 cluster. The reduction potentials of the MnIIMn to Mn"' 2 couples of p-oxo, p-

carboxylato-bridged dimanganese model complexes have been reported to fall in the 0.7-0.9 V

range. 84' 85 Reduction potentials of MnV2 to MnVMnII couples of these complexes are so high

(e.g. 1.6 V)8 5 that oxidation of MnivMn"1 complexes that contain phenolate ligands has been

reported to lead to oxidation of the ligand to the phenoxyl radical instead of oxidation to the

MnV2 state.99  We suggest that in NrdF, oxidation of the Mn" 2 cluster by the bound

hydroperoxide does not lead to Mnv 2 formation; rather, Trp31 is oxidized, leading to a di-g-oxo-

MnIIMnIv-Trp31*' intermediate. The Trp3 1* would then be reduced by an exogenous reductant.

This aspect of our mechanism parallels the self-assembly pathway of the class Ia RNR's FeI2-Y-

cofactor, in which a p-1,2-peroxodiferric intermediatel 0 is reduced by Trp48 (Ec NrdB

numbering) to form a p-oxo-bridged Fe"'Fe' intermediate (X), rather than an FeI V2 species. 0 1 03

X subsequently oxidizes Tyr122 to the FeI" 2-Y- cofactor.10 4 Likewise, the reduction potential of

the Mnv MnII species in NrdF is expected to be in the range to be able to oxidize Tyr105,

resulting in the Mn" 2-Y* cofactor.

The mechanism involving a HOO(H) oxidant is unappealing, however, in that it requires

two molecules of 02 and five electrons. Because of its specific interaction with NrdF, NrdI

would be a natural choice to deliver the fifth, "extra" electron to Trp31, but it would be

surprising if this protein acted both as a two-electron reductant to form HOO(H) and as a one-
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electron reductant to furnish this extra electron. A much simpler and appealing mechanism is

shown in Scheme 4.1 (bottom), in which 02'~ is the oxidant in cluster assembly. This

mechanism is attractive because only one molecule of 02 and one electron, provided by NrdI,

would be necessary. Furthermore, oxidation of Mn" to Mn"' by 02' has precedent in Mn-

SODs' 05 and production of a Mn1IIMnv cluster in Mn catalases has been suggested to occur by

oxidation of a Mn"Mn"' form by H20 2 
9 1 0 6 This mechanism is discussed in more detail in

Chapter 6 along with the evidence in favor of it in the Bs NrdF system.

4.4.5. Substoichiometry of Ye formation in NrdF. Our efforts so far to increase Y- content in

Mn'" 2-Y- NrdF have been unsuccessful. We have attempted to express NrdF under a variety of

conditions: 1) using 2 mM MnCl2 in the growth medium'0 in the presence of 100 jiM 1,10-

phenanthroline 30 to chelate iron; 2) controlling the levels of expression with arabinose by placing

nrdF in a pBAD vector; and 3) coexpressing the entire nrdHIEF operon. We have also

investigated a number of self-assembly protocols, including: 1) removal of NrdI's N-terminal

His tag; 2) removal of Cl~ (present in Buffer C and therefore also in the assembly reactions), as it

has been shown bind to and inhibit the Mn"2 form of Thermus thermophilus Mn catalase; 49 3)

addition of ascorbate as a source of a reducing equivalent; 0 2 4) addition of NrdE; 5) cluster

assembly in 50 mM MOPS and Tris buffers, pH 7.6; and 6) cluster assembly with smaller

amounts of 02 added. None of these methods led to increased SA of NrdF or increased Y-.

Regardless of the oxidant produced by NrdI, the complexity of the mechanistic proposal

in Scheme 4.1, however, provides a rationalization for our lack of success. If HOO(H) is the

oxidant, in our in vitro reconstitutions, after NrdF-bound Nrdlhq reacts with 02 to form HO2~ and

Mn "2-NrdF, it must be reduced by another Nrdlhq in solution. This is expected to be an

inefficient process due to comproportionation of the ox and hq forms to form sq (subsequent
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results in the Bs system suggest that comproportionation of NrdIox and Nrdlhq in the presence of

NrdF would be far too slow to affect the cluster assembly reaction, Chapter 6). Alternatively,

orchestration of the sequential binding of two Nrdlhqs to NrdF with the appropriate timing would

also be challenging. These gymnastics could be avoided in vivo with a physiological reductant.

NrdI could then act catalytically.

We investigated whether Nrdlhq could reduce the Y- of MnmI2 -Y- cofactor, thereby

contributing to the substoichiometric Y- content. We found that, although Y- content was

reduced from 0.3 to 0.2 Y-/p2 over 30 min, this reduction is likely too slow to contribute

significantly in the cluster assembly reactions, which are complete within seconds. We therefore

favor the absence of the putative NrdI reductase as the explanation for substoichiometric Mnm12-

Ye cofactor assembly in our in vitro reconstitutions.

If 02'~ is the oxidant, it is curious why Ec NrdI would be so inefficient at 02'~ production.

This, too, could be remedied by the presence of the appropriate (one-electron) reductase, which

might be needed to further favor 02'~ over H2 0 2 production by Nrdlhq. An alternative

explanation is that NrdIsq could be the form of NrdI that reacts with 02 to produce 02' in this

system, and it can only be efficiently produced by reduction of NrdIox by the reductase

immediately prior to NrdI's reaction with 02.

Bioinformatic efforts identified Ec YieF as a potential NrdI reductase by analysis of

genes adjacent to nrdHIEF operons listed in the SEED database (http://theseed.uchicago.edu).

Interestingly, directly upstream of the nrdHIEF operon in mycobacteria and other organisms,

such as Tsukamurella paurometabola - an actinomycete similar to mycobacteria, Rhodococcus,

and Nocardia - is found a gene annotated as an NADPH-dependent flavin reductase. A BLAST

search of the E. coli K12 genome with the T paurometabola NADPH-dependent flavin
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oxidoreductase identified YieF as the only good match. A BLAST search of the protein against

all genomes in the NCBI database revealed that YieF belongs to a ubiquitous family of NADPH-

dependent flavin reductases. While most of the organisms that contain YieF homologs encode

class Ib RNRs, 6 some encode only class Ia, Ic, or II RNRs, or a combination of all of the above.

yieF is not in the vicinity of the nrdHIEF operon in E. coli. YieF is annotated as a chromate

reductase, as it and its Pseudomonas putida (which does not contain a class Ib RNR) homolog

ChrR have been characterized as reductases of Cry1 to Cr"'.107 Both YieF and ChrR are dimeric

proteins of ~22 kDa/monomer that purify with FMN when overexpressed in E. coli. YieF was

reported to not stabilize any sq form of its FMN cofactor.107 The pET28a-yieF plasmid was

obtained from A. C. Matin (Stanford University School of Medicine) and the protein was

purified by the published protocol.107 Preliminary experiments indicated that YieF (5 pM) was

able to maintain NrdI (20 pM) in the hq form in the presence of 0.1 mM NADPH and aerobic

buffer, but no evidence for Mn oxidation or Y- formation was observed when Mnr 2-NrdF (10

pM) was added to the reaction mixture (data not shown). Although these experiments were not

optimized, the identification of 02' as the oxidant in B. subtilis MnII 2 -Y- cofactor assembly, a

one-electron reductant such as the flavodoxin reductase Fpr would be a more likely reductase for

Ec NrdI than the two-electron reductant YieF (see Chapter 6).

4.4.6. Implications for the maintenance pathway. In the first proposed mechanism for Mn 12-

Ye assembly, the requirement for 2 eq HO2 in cluster assembly also requires that the Nrdlhq

bound to Mn'"2-NrdF must not reduce the manganese cluster before Nrdlhq reacts with 02.

However, we have previously shown that Nrdlhq efficiently reduces met-NrdF to Fe"2-NrdF, and

we proposed that this maintenance role may be operative in vivo. A similar maintenance

function for NrdI, in addition to its biosynthetic role, may also exist for Y--reduced Mn'"2-NrdF.
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In this case, Nrdlhq would be involved in step B (Scheme 4.1), to reoxidize the Y to the Y-. In

preliminary experiments in which EDTA-treated, Y--reduced Mn"' 2-NrdF was incubated

anaerobically with Nrdlhq, formation of at least 80% Mn"2 cluster was observed by EPR.

Therefore, Nrdlhq can reduce Mn' 2-NrdF, at least within the 4 min required for these samples'

preparation. However, it is possible that this process is slow enough not to compete with

reaction of Nrdlhq with 02 in vivo.

4.4.7. Is the Mn"12-Y. cofactor active in vivo? The remarkable observation that Ec NrdF is

active in nucleotide reduction in vitro with both Fe"I2-Y- and Mn" 2 -Y- cofactors could mean

that both forms are physiologically relevant. For example, E. coli contains Fe-dependent and

Mn-dependent SODs, with the latter being upregulated in Fe-limited growth conditions.108 In

addition, certain, so-called "cambialistic," SODs are active in both Fe and Mn forms. The

Propionibacterium shermanii cambialistic SOD purifies with Fe when the organism is grown in

rich media but purifies with Mn when grown under Fe-limited conditions in the presence of

Mn".109 Imlay and coworkers have proposed that in E. coli, metallation of certain enzymes may

be flexible; for example, those enzymes may use Fe" when grown in the absence of oxidative

stress and Mn" under oxidative stress conditions, to avoid protein and cell damage.18 Likewise,

it is possible that Fe" 2-Y- NrdF is active in Fe-replete conditions, while Mn"I2-Y- NrdF will be

active in Fe-limited conditions and will require NrdI for assembly.

Studies of Rensing and coworkers have demonstrated that growth of E. coli GR536, a

strain deficient in all known iron uptake systems, is dependent on Mn under severely Fe-limited

conditions.' 7 Experiments described in the next chapter demonstrate that NrdF is expressed in

these conditions and the purified protein is active in nucleotide reduction and contains a Mn 12-
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Y- cofactor. NrdF expressed under Fe limitation and oxidative stress is thus likely to contain a

Mn" 2-Y- cofactor in E. coli.

In other organisms that depend on the class Ib RNR for DNA replication in aerobic

growth, it is possible that both diiron and dimanganese cofactors are used in vivo, depending on

the growth conditions. Several observations suggest, however, that in these organisms as well,

the Mn"I2 -Y- cofactor may be active. First, studies in C. ammoniagenes',16 have suggested that

Mn is required for growth and possibly deoxynucleotide formation. Isolation of a Mn-containing

NrdF, with only trace amounts of Fe, from this organism,9, 12 even when cells were grown in Fe-

containing media,14 argues for Mn being present in Ca NrdF in a variety of growth conditions.

Furthermore, the ubiquitous presence of nrdI contiguous to nrdEF, suggesting coordinated

expression, implies that NrdI plays an essential role in all class Ib RNRs in vivo, such as in

metallocofactor biosynthesis. While we have found that NrdI is required for Mn" 2-Y- cofactor

generation in NrdF, it is not required and in fact hinders Fe" 2-Y- cofactor formation in NrdF in

vitro. (In subsequent work with B. anthracis NrdF, inclusion of NrdI in the Fe" 2-Y- cofactor

assembly reaction did not have this negative effect, perhaps due to its lower affinity for NrdF

than in E. coli.I10)

Therefore, our current hypothesis is that NrdF contains the Mn1r2-Y- cofactor in E. coli

and related enterobacteria, whereas the identity of the cofactor in other organisms containing

class Ib RNRs may depend on the specific organism and/or growth conditions. The in vitro

activity of both Mn" 2-Y* and Fe" 2 -Y- cofactors in NrdF underscores the importance of the

cellular metallocofactor assembly machinery (e.g. chaperone proteins, metal transporters, and

deliverers of reducing equivalents), which may not be available when metalloproteins are
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expressed heterologously in rich media. In vivo studies must accompany in vitro studies, to

ensure the metalloenzymes being examined in molecular detail are physiologically relevant.
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Chapter 5

E. coli class Ib ribonucleotide reductase contains a
dimanganese(III)-tyrosyl radical cofactor in vivo

Adapted in part from: Cotruvo, J. A., Jr.; Stubbe, J. Biochemistry 2011, 50, 1672-1681; and
Cotruvo, J. A., Jr. Annu. Rev. Biochem. 2011, 80, 733-767.

251



5.1. INTRODUCTION

The identity of the metallocofactor required for activity of the class lb RNRs in vivo has

been debated for nearly three decades (summarized in Chapter 1). Although the class Ib RNR is

active in vitro with a diferric-Y- (Fe" 2 -Y-) cofactor,I we have characterized a dimanganese(III)-

Y- (Mn I 2-Y-) cofactor in NrdF that is also active in nucleotide reduction (Chapter 4). Here we

demonstrate that the Escherichia coli class Ib RNR uses this Mn" 2-Y- cofactor inside the cell

under defined, iron-limited growth conditions.

Contemporaneous work by Auling, Lubitz, and coworkers has demonstrated the ability of

Corynebacterium ammoniagenes NrdF to form the dimanganese cofactor inside the cell.2 ,3

However, their NrdF was overexpressed in C. ammoniagenes to 5% of total cellular protein in

the presence of 185 pM MnCl2 in the growth media. The yield of purified NrdF was -4 mg/g

cells, with 0.36 Y-/2, 1.5 Mn/p2, and a stated specific activity of 69000 nmol/min/mg, and

NrdF contained a Mn cofactor identical to that of E. coli Mn" 2-Y- NrdF reconstituted in vitro.

The activity of both diiron and dimanganese forms of NrdF in vitro raises the question of

how correct metallation is controlled in vivo.4 ,5 Overexpression of metalloproteins, even in their

native organisms, can lead to mismetallation, but attempts to date to purify NrdFs from cells with

their normal levels of expression in several organisms have failed to yield sufficient active

cofactor to allow its identification and biophysical characterization. 6-8 In this chapter we report

our efforts to purify NrdF from its endogenous levels in E. coli. This is challenging because the

class Ia RNR, containing a diferric-Y- cofactor, is the RNR expressed in normal aerobic growth

conditions, whereas transcription of the class lb RNR genes occurs, based on current knowledge,

under iron-limited and oxidative stress conditions.9-13 We selected for study the E. coli strain

GR536, which is deficient in the five known iron uptake pathways but is still able to import iron
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by an unknown pathway(s). Rensing and coworkers have demonstrated that, after preculturing

the strain in minimal media without added metals and dilution into minimal media containing the

cell-permeable Fe" chelator 2,2'-dipyridyl (bipy), growth is severely attenuated, but it is fully

restored by addition of Mn".' 4 We hypothesized that Mn" was limiting in these growth

conditions, at least in part, because of an essential role in the class lb RNR metallocofactor. To

address this question, we have employed two strategies, presented in this chapter, to purify NrdF

from low, endogenous protein levels.

The initial effort involved homologous recombination to introduce an N-terminal StreplI-

tag onto nrdF (constructs are denoted N-S-x-nrdF, N for N-terminal, S for StrepII tag, x is the

length of the linker) in the genome of GR536. The resulting strain was then grown in Fe-limited

conditions in the presence of 10 mM hydroxyurea,1 1 15 to increase NrdF expression. NrdF was

successfully purified (-40% purity), but contained only -0.6 Mn/p2 and had a specific activity of

120 nmol/min/mg. Although no Y- was detected, treatment of the purified protein with 2'-azido-

2'-deoxycytidine 5'-diphosphate (N3CDP), allosteric effector dATP, and NrdE lead to formation

of a nitrogen-centered radical (N-) observed by EPR, indicative of an active metallocofactor.16

A second approach used E coli GR536 cells grown in Fe limitation in the presence of

100 pM Mn" and harvested in mid-exponential phase. From 88 g of cell paste, 150 pg NrdF

with 0.20 Y-/02, a specific activity of 720 nmol/min/mg, and 0.9 Mn/p2 was obtained.

Spectroscopic and biochemical data show that a MnII 2 -Y- cofactor is the active form of NrdF in

E coli in these growth conditions. Activity assays in crude extracts and western blotting

analyses suggest that the class lb RNR is the primary source of deoxynucleotides for E coli in

these growth conditions. Quantitative western blots also demonstrate that levels of NrdI are 16-

fold lower than of NrdF, suggesting that NrdI acts catalytically in vivo in Mn1 2-Y* generation.
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These studies represent the first purification of a NrdF without overexpression that allows

for definitive determination of its active metallocofactor. Our results demonstrate that E. coli

NrdF is an obligate manganese protein under these growth conditions. Furthermore, we propose

that emerging data illustrating the requirement of pathogens such as Salmonella enterica serovar

Typhimurium (S. Typhimurium), Staphylococcus aureus, and Streptococcus pyogenes - all of

which contain class Ib RNRs - on manganese for growth and virulence1 7' 18 may be explained by

a requirement for a Mnm'2-Y- cofactor in class Ib RNRs in general.

Table 5.1. E.

Strain
K-12

W3110

GR536

GR536A

GR536-N-S-n

GR538

JW2649

JW2651

TOP1O

coli strains used in this chapter

Genotype/description
F +

F X- IN(rrnD-rrnE) 1 rph- 1

W3110 AfecABCDE::kan AzupT::cat AmntH

AfeoABC AentC

W3110 AfecABCDE AzupT AmntH AfeoABC

AentC

rdF Sequence encoding MAWSHPQFEKGA

(StrepII-tag, underlined, with GA linker) inserted

before nrdF start codon in GR536A genome. N

denotes N-terminal, S denotes the StrepIl tag)

W31 10 AfecABCDE::kan AzupT::cat AentC

AfeoABC

BW25113 AnrdI755::kan

BW25113 AnrdF757::kan

F mcrA A(mrr-hsdRMS-mcrBC) <p80lacZAM15

AlacX74 deoR nupG recAl araD139 A(ara-

leu)7697 galU galK rpsL(StrR) endA1 X-
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Source or reference
Yale E. coli genetic

stock center (CGSC

catalog no. 7296)

19

14

This study

This study

14

20

20

Invitrogen



5.2. MATERIALS AND METHODS

5.2.1. Bacterial strains, materials, and media. E. coli strains used in this chapter are listed in

Table 5.1, plasmids in Table 5.2, and primers (obtained from Invitrogen) in Table 5.3. E. coli

strains GR536 and GR538 were gifts of C. Rensing (U. Arizona), pKO3 was provided by G.

Church (Harvard Medical School), and pCP20 was provided by S. Walker (Harvard Medical

School). DH5a-T1R and TOP10 cells were from Invitrogen. Restriction enzymes and Taq DNA

polymerase were from New England Biolabs. PfuUltraII DNA polymerase was form Stratagene.

QIAquick kits (Qiagen) were used for gel purification, miniprepping, and gel extraction. The

sequences of the nrdF regions of all plasmids and homologous recombination strains were

verified by DNA sequencing at the MIT Biopolymers Laboratory.

Table 5.2. Plasmids used in this chapter

Plasmid Description Source or reference
pCR2.1-TOPO TOPO cloning vector; Amp and Km resistance Invitrogen

pKO3 Gene replacement vector; confers Cm resistance, 21

sucrose sensitivity

pKO3-N-S-nrdF N-terminally StrepII-tagged nrdF (GA linker), This study

with the 599 nt upstream and 299 nt downstream

of nrdF, ligated into pKO3 (Appendix 3)

pCP20 Helper plasmid for excision of antibiotic 23

resistance cassettes introduced using the Wanner

method of gene replacement2

pBAD-mycHisA Titrable L-arabinose (ara) induction of the gene Invitrogen

of interest, Amp resistance

pBAD-N-S-x-nrdF N-terminally StrepII-tagged nrdF in pBAD (x = This study

linker length: 0, 2, 5, or 6 amino acids)a

pET24a-nrdF E. coli nrdF in pET24a Chapter 2

a See Table 5.1 for definition of N-S-nrdF. For x = 2, linker: GA. For x = 5, linker: SLGGH.
For x = 6, linker: GSGGSG
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Table 5.3. Primers used in this chapter

Name Sequence"
Strep-0 forward 5'-GATATACCCATGGCGTGGAGCCACCCGCAGTTCGAAAAAATG

AAACTCTCACGTATC-3'

Strep-GA forward 5'-GATATACCCATGGCGTGGAGCCACCCGCAGTTCGAAAAAGGC

GCGATGAAACTCTCACGTATC-3'

Strep-SLGGH 5'-GATATACCCATGGCGTGGAGCCACCCGCAGTTCGAAAAATCT

forward CTGGGCGGCCA TATGAAACTCTCACGTATC-3'

Strep-GSGGSG 5'-GATATACCCATGGCGTGGAGCCACCCGCAGTTCGAAAAAGGC

forward TCTGGCGGCTCTGGCATGAAACTCTCACGTATC-3'

NrdF forward 5'-AAGGAATACATATGAAACTCTCACGTATCAGCG-3'

NrdF reverse 5'-CAAGCCTCGAGTCAGAAATTCCAGTCTTCATCTCTTCTG-3'

UR forward 5'-CCTTCGCCGGATCCAAACAGTCACGCTATGCCAGTGG-3'

UR reverse 5'-GGCGCTGATACGTGAGAGCATATGAGATATTCCTTAAAGTGC

ACAGG-3'

DR forward 5'-GAAGGAGATATACATATGGCGTGGAGCCACCCGCAGTTCGAA

AAAGGCGCGATGAAACTCTCACG-3'

DR reverse 5'-GTCACTTTTTTGGATCCTAACATACTGAGAATCTGAGGCAAC

CCC-3'

Mut forward 5'-CTCTGATGCCCGATGCACTCACGCCTCATGAAGAAGCG-3'

Mut reverse 5'-CGCTTCTTCATGAGGCGTGAGTGCATCGGGCATCAGAG-3'

nrdE1319-1338 5'-GCGGTTTAACGGCAGTATCA-3'

nrdE842-861 5'-TCCGCATTAAAACACTGTCG-3'

Strep reverse 5'-CTTTTCGAACTGCGGGTGGCT-3'

a Restriction sites are bolded, the StreplI tag sequence is underlined, and the linker region is
italicized.

Chemical reagents were obtained from Sigma-Aldrich in the highest purity available

unless otherwise indicated. N-terminally His6-tagged NrdI (NrdI) and NrdE (140 nmol/min/mg,

assayed with Mnm2-Y- NrdF containing 0.25 Y-/02) were purified as reported (Chapters 2 and
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3). (The NrdE used in these experiments was purified using PMSF as a protease inhibitor. We

have subsequently found that use of PMSF results in ~50% lower specific activity of the purified

NrdE than the use of Roche Complete protease inhibitor tablets, 140 vs. 280 nmol/min/mg.) E.

coli NrdA (2500-3000 nmol/min/mg), NrdB (1.2 Y-/p2, specific activity 7000 nmol min' mg~' at

25 *C), thioredoxin (TrxA, 40 units/mg), and thioredoxin reductase (TrxB, 1400 units/mg) were

isolated as described. 24 -26 NrdA was pre-reduced using DTT and treated with hydroxyurea to

reduce any Ye in copurifying endogenous NrdB and exchanged into assay buffer (50 mM

HEPES, 15 mM MgSO 4, 1 mM EDTA, pH 7.6), following the reported procedure. 2 7

Concentrations of NrdA, NrdE, and NrdF are expressed per dimer, and of HisNrdl per monomer.

Concentrations of proteins prior to FPLC were assessed by Bradford assay using bovine serum

albumin as a standard. After FPLC purification, an 8280 of 132 mM' cm-1 for NrdF was used.

Polyclonal rabbit antibodies to NrdB, NrdF, and NrdI were produced by Covance Research

Products. Antibodies against NrdF were purified by the acetone powder method described in

section 5.2.16.28

Supplemented M9-based minimal medium consisted of 1 x M9 salts (11.28 g/L), 0.3%

(w/v) Bacto casamino acids (BD), 0.2% (w/v) glycerol, 0.1% (w/v) NaCl, 0.1 mM CaCl2, 1 mM

MgSO4. 14'2

5.2.2. Construction of pBAD-N-S-x-nrdF plasmids. pET24a-nrdF was used as a template for

insertion of N-terminal StrepIl tags by PCR (manufacturer's protocol) using PfuUltraII DNA

polymerase (Stratagene), the NrdF reverse primer containing a XhoI restriction site, and either

Strep-0 forward, Strep-GA forward, Strep-SLGGH forward, or Strep-GSGGSG forward primers,

containing NcoI restriction sites, a StrepIl tag, and linker region (Table 5.3). The purified PCR

products and pBAD-mycHisA (Table 5.2) were digested for 7 h at 37 OC with 10 U/ptg NcoI and
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XhoI. After purification, the PCR products were ligated into pBAD-mycHisA using T4 DNA

ligase (Promega) with a 1:5 ratio of vector to insert (overnight, 16 C), transformed into DH5a

cells (Invitrogen), and plated onto LB-agar containing 100 gg/mL Amp at 37 'C. Plasmids were

isolated by miniprep (Qiagen) and stored at -20 *C, and the nrdF sequences were verified by

DNA sequencing.

5.2.3. Overexpression and purification of N-S-x-NrdF proteins. TOP10 cells (Invitrogen)

were transformed with each plasmid and plated overnight at 37 'C on LB-agar plates (100

pg/mL Amp). Two mL of saturated overnight cultures of each construct were added to 500 mL

LB-Amp in 2.8 L baffle flasks and the cultures were grown at 37 'C with shaking at 200 rpm.

At OD 60 0 - 0.6, expression of the N-S-x-NrdFs was induced by addition of L-arabinose (ara) to

50 pM for 2 h. Cells were harvested by centrifugation at 5000 g for 10 min at 4 'C. Each

culture yielded ~1.8 g of cell paste.

The purification procedure was essentially as described by Hristova et al.29 Cell paste

was suspended in 4 mL Buffer A (100 mM Tris, 150 mM NaCl, 5% glycerol, pH 7.6) per g cell

paste, passed through a French press twice at 14000 psi, and centrifuged at 60000 g at 4 'C for

30 min. The supernatant was loaded onto a 1.3 mL (0.8 x 3 cm) Strep-Tactin Sepharose column

(IBA) and washed with 20-30 column volumes (CV) Buffer A. The column was eluted with

Buffer A containing 2.5 mM desthiobiotin, and -0.5 mL fractions were collected. Protein was

detected using the Bradford reagent and protein-containing fractions were concentrated to -300

pL using Amicon Ultra YM- 10 centrifugal filters. The column elutions were complete within 4

h of cell lysis. Yields were -0.5 mg for N-S-2-NrdF, -0.2 mg for N-S-5-NrdF and N-S-6-NrdF,

and no detectable protein eluted off of the column in the case of N-S-0-NrdF. Proteins were of

>95% purity by SDS-PAGE.
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Scheme 5.1. Strategy for generation of E. coli GR536 N-S-nrdF, by insertion of an N-terminal
StrepHI tag to nrdF in the E. coli GR536A genome by homologous recombination. See sections
5.2.4, 5.2.6, and 5.3.2-4 for more details.
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5.2.4. Construction of pKO3-N-S-nrdF. The construction of this plasmid is shown

schematically in Scheme 5.1. E. coli K-12 nrdF and the 299 nt region immediately downstream

(DR) were cloned from F coli K-12 genomic DNA, using the NrdF forward primer (NdeI

restriction site) and the DR reverse primer (BamHI restriction site) (Scheme 5.1, step 1). The

genomic DNA was purified using the GenElute Bacterial Genomic DNA Kit (Sigma). The 599

nt region immediately upstream (UR) of nrdF was cloned from purified . coli K-12 genomic

DNA using the UR forward and UR reverse primers (BamHI and NdeI restriction sites,

respectively) (step 2). Herculase HotStart DNA polymerase (Stratagene) was used for these PCR

reactions, following the manufacturer's protocol. Following the purification of the 1.3 kb nrdF-

DR PCR product, a StreplI tag followed by a GA linker was inserted onto the N-terminal region

of the nrdF-DR fragment by PCR using PfuUltralI Fusion DNA polymerase, the DR reverse

primer, and the Strep-GA forward primer (step 3). After the PCR reactions and prior to

purification (Qiagen PCR purification kit) of the UR and Strep-GA-nrdF-DR PCR products, 2 U

Taq DNA polymerase was added to the PCR reaction mixtures (100 pL) and the tubes were

incubated at 72 'C for 10 min, following the Invitrogen TOPO TA cloning kit manual (step 4).

This procedure adds 3'-A overhangs for TOPO cloning. The plasmid for the TOPO cloning

reaction (pCR2.1-TOPO) contains 3'-T overhangs and is covalently bound to the Vaccinia virus

topoisomerase I, allowing for high efficiency ligation of inserts into vector and amplification of

the insert.30

The purified UR and Strep-GA-nrdF-DR constructs were digested with 10 U NdeI per g

DNA for 6-7 h, purified, and ligated in a 1:1 ratio at 16 *C for 12 h, using T4 DNA ligase (step

5). The 1.9 kb UR-Strep-GA-nrdF-DR product was purified by gel extraction and amplified by

PCR using Taq polymerase (GoTaq Green Master Mix, Promega) with an annealing temperature
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of 70 'C. The 1.9 kb band was purified by gel extraction and amplified by ligation into pCR2.1-

TOPO following the manufacturer's protocol (step 6). The ligation mixture was transformed

into DH5a-T1R and plated onto LB-agar [50 gg/mL kanamycin (Km), 40 pL 40 mg/mL 5-

bromo-4-chloro-indolyl-p-D-galactopyranoside (X-gal)]. After overnight growth, white or light

blue colonies were screened for presence of the insert by colony PCR (using GoTaq Green

Master Mix) and restriction digestion (BamHI). Colonies containing insert were sequenced.

Out of 7 clones, all had mutations in the nrdF reading frame; the best had two mutations, CAG to

CAA (both encoding Gln), and CTC to CCC (Leu to Pro). The second mutation was corrected

by site-directed mutagenesis (SDM) with PfuUltraII Fusion polymerase, using the Mut forward

and Mut reverse primers (Table 5.3). Correction of the mutation was confirmed by DNA

sequencing After SDM, pCR2.1-TOPO-UR-Strep-GA-nrdF-DR was digested overnight with a

10-fold excess of BamHI to excise the amplified UR-Strep-GA-nrdF-DR fragment (step 7).

pKO3 was digested overnight with a 10-fold excess of BamHI and treated with

thermosensitive alkaline phosphatase (Promega, 1 U/pg DNA), and the phosphatase was

inactivated according to the manufacturer's protocol. The 1.9 kb UR-Strep-GA-nrdF-DR inserts

were purified by gel extraction and ligated into pKO3 at a vector:insert ratio of 1:9, with T4

DNA ligase, at 23 *C for 1 h (step 8). DH5a-T1R cells (Invitrogen) were transformed with 5 gL

of the ligation product and plated on LB-agar plates containing 20 pg/mL chloramphenicol (Cm)

at 30 'C. Colonies were screened by digestion with NdeI (see section 5.3.2.2) and colonies

showing two bands (there is one NdeI site in the insert and one in pKO3) were grown and their

plasmids isolated by miniprep. The resulting plasmid was pKO3-N-S-nrdF (Table 5.1), and the

presence of insert without mutations was verified by DNA sequencing.
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5.2.5. Electroporation of electrocompetent GR536 and GR536A (Table 5.1).

Electrocompetent GR536 and GR536A cells were prepared by standard procedures3 1 and 100 pL

electrocompetent cells were electroporated with 30 ng pKO3-N-S-nrdF or pCP20 (Table 5.2) at

2.5 kV, with a 5.2 ms time constant. After addition of 900 ptL SOC medium, the cells were

incubated at 30 *C for 1.5 h with gentle inversion and plated on pre-warmed LB-agar plates at

the appropriate temperature (see below).

5.2.6. Elimination of antibiotic resistance genes from GR536. To be able to use pKO3-N-S-

nrdF as a gene replacement vector, the Cm resistance cassette in GR536 had to be removed. The

Cm and Km resistance cassettes present in GR536 were eliminated as described previously.2 2

Electrocompetent GR536 cells were electroporated (2.5 kV) with pCP20 and plated on LB-agar

containing 100 ptg/mL Amp at 30 'C. Colonies were picked and placed into 1 mL LB, 10 pL

were diluted into 1 mL LB, and 100 tL of each suspension was plated on LB-agar (no selection)

at 42 *C. Twenty four colonies were tested for loss of all antibiotic resistance by streaking in

parallel onto LB-agar plates with no antibiotic, 20 ptg/mL Cm, 50 pg/mL Km, or 100 pg/mL

Amp. One of the Cm-, Km-, and Amp-sensitive colonies was selected as GR536A.

5.2.7. Construction of E. coli GR536-N-S-nrdF. The general protocol has been described

previously in Link et al2 and is shown in Scheme 5.1, step 9. Electrocompetent GR536A cells

(section 5.2.6) were electroporated at 2.5 kV with pKO3-N-S-nrdF. The cells were plated to

prewarmed LB-agar plates containing 20 pg/mL Cm at 30 'C and 43 'C. The integration

frequency was estimated as the ratio of the number colonies on the 43 'C plate to that on the 30

'C plate. Four colonies were picked from the 43 'C plates and placed in 1 mL LB, serially

diluted (100- and 1000-fold), and 100 tL of each dilution was plated onto 5% sucrose plates at
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30 'C and onto LB-agar plates (20 pg/mL Cm) at 43 'C. The excision frequency was calculated

as the ratio of the number of sucrose-resistant colonies to the number of Cm-resistant colonies.

Of the sucrose resistant colonies, 48 were plated in parallel onto LB-agar-20 pg/mL Cm and LB-

agar-5% sucrose plates at 30 'C. Sucrose-resistant and Cm-sensitive colonies were analyzed by

PCR using the nrdE842-861 primer and the Strep reverse primer, which anneals to the StrepIl tag

in the reverse direction. Colonies showing a 1.3 kb PCR product were cultured overnight at 37

'C in LB, genomic DNA was prepared using the GenElute Bacterial Genomic DNA kit, and the

genomic DNA was sequenced from -300 nt upstream of nrdF to -300 nt downstream of nrdF to

confirm the presence of the StreplI tag and no mutations.

5.2.8. Growth of GR536-N-S-NrdF and purification of N-S-NrdF

5.2.8.1. Growth of GR536-N-S-nrdF. GR536-N-S-nrdF was grown as previously

described for GR536.14 A single colony was used to inoculate an overnight culture in LB

without antibiotics at 37 *C. After 12 h, an aliquot (500 ptL) of the saturated culture was

transferred to a sterile eppendorf tube, centrifuged at 7000 g for 30 s, and resuspended in 500 pL

sterile PBS at 4 'C. Two hundred pL of this suspension were added to 100 mL supplemented

M9 minimal medium (section 5.2.1 for recipe) in a 500 mL baffle flask and grown at 37 'C with

shaking at 200 rpm. After 10 h, 0.2 mL of this culture was used to inoculate 100 mL of fresh

supplemented M9 minimal medium, also in a 500 mL baffle flask. After 2 h shaking at 37 'C,

24 mL of the culture was diluted into 12 L supplemented minimal medium containing 50 piM

2,2'-dipyridyl and 50 pM MnCl2 medium in a 20 L fermentor in the laboratory of Prof. Tania

Baker (Department of Biology, Massachusetts Institute of Technology) (rpm automatically

adjusted to maintain 02 setting >25). The pH of the culture was maintained at 7.0 throughout

using NH40H. When the culture reached OD 60 0 - 0.1 (-10-11 h), HU was added to 10 mM from
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a freshly prepared 1.5 M solution in sterile, distilled/deionized water. The OD 600 value of the

culture was monitored regularly and the cells (61 g wet cell paste) were harvested by

centrifugation (5000 g, 4 'C) at ~15-17 h (OD 600 4) and frozen in liquid N2.

5.2.8.2. Purification of N-S-NrdF. All operations were carried out at 4 *C. The cell

paste from a 12 L fermentor growth (61 g) was resuspended in 300 mL 50 mM Tris, 5%

glycerol, pH 7.6 (Buffer B) containing 1 mM phenylmethanesulfonyl fluoride (PMSF). Cells

were lysed by passage once through a French pressure cell at 14000 psi and centrifuged at 30000

g for 20 min. To the stirring supernatant, 70 mL 6% streptomycin sulfate (1% final

concentration) was added dropwise and stirred for 20 min, followed by centrifugation at 38000 g

for 20 min. Ammonium sulfate (390 g/L) was added to the stirring supernatant over 20 min, and

the suspension was stirred a further 20 min and centrifuged at 38000 g for 20 min. The pellet

was dissolved in 40 mL Buffer B with 1 mM PMSF and the protein solution was desalted on a

Sephadex G25 column (5 x 42 cm, 825 mL). The pooled protein was loaded onto a DEAE

Sepharose column (7.5 x 9.5 cm, 420 mL), which was washed with 2 CV Buffer B containing 50

mM NaCl and 1 mM PMSF. The column was eluted with a 750 x 750 mL gradient of 50-700

mM NaCl in Buffer B containing 1 mM PMSF, and 20 mL fractions were collected. NrdF-

containing fractions were identified by the dot blotting technique described in section 5.2.11.

Fractions 40-91 (1.1 L, eluted at -400-700 mM NaCl) were pooled and concentrated to 700 mL

over 4 h using an Amicon concentrator and YM10 membrane (Millipore). DNase was added to

1 U/mL and concentration was continued to 550 mL over 2 h. The protein was then loaded at -3

mL/min onto a 15 mL (2.5 x 3 cm) Strep-Tactin Sepharose column, equilibrated with Buffer A.

The column was washed with 15 CV Buffer A and eluted with 10 CV Buffer A containing 2.5

mM desthiobiotin. The protein was concentrated to 400 pL using an Amicon Ultra YM1O
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centrifugal filtration device. This procedure yielded -90 pg NrdF, -40% pure according to SDS-

PAGE, and 120 nmol/min/mg NrdF, assuming 40% purity.

5.2.8.3. Reaction of N-S-NrdF with N3CDP, NrdE, and dATP. Because Y was not

observed in N-S-NrdF isolated from GR536-N-S-nrdF, this experiment was performed to probe

whether the protein contained an EPR-silent active cofactor (e.g. MnIvFemI). A reaction mixture

of 240 pL contained 3 pM NrdE, -3 gM N-S-NrdF (purified from), 0.3 mM dATP, 5 mM DTT,

15 mM MgSO 4, and 50 pM 2'-azido-2'-deoxycytidine 5'-diphosphate (N3CDP) in 50 mM

HEPES, 5% glycerol, pH 7.6. The reaction was initiated by addition of NrdF and hand-

quenched in liquid N2 after 1 min at room temperature. The EPR spectrum of the reaction

mixture was acquired at 10 K at 0.2 mW power, 100 kHz modulation frequency, 4 G modulation

amplitude, and 2.52 x 104 gain.

5.2.9. Growth of E. coli GR536. F coli GR536 was grown as previously described.1 4 A 5 mL

culture of LB containing 30 pg/mL Km and 20 pg/mL Cm was inoculated with a single colony

from an LB-agar plate containing the same antibiotics and was grown for -12 h at 37 'C to an

OD6 0 0 of 2-3. An aliquot (500 gL) was removed, centrifuged at 10000 g for 1 min, and

resuspended in an equal volume of sterile phosphate-buffered saline (PBS) and used to inoculate

100 mL M9-based minimal medium (section 5.2.1) without antibiotics in a 500 mL baffle flask

to an OD 600 of 0.004. From this point on, no antibiotics were added to the culture media. The

culture was grown for 10 h at 37 'C with shaking at 220 rpm (final OD60 0 - 2). To further

decrease cellular iron levels, this culture was diluted 500-fold into another 100 mL minimal

medium in a 500 mL baffle flask, which was grown for 2 h at 37 'C with shaking at 220 rpm

(final OD 60 0 - 0.02). This culture was diluted 500-fold into the final, large-scale cultures, which

were grown at 37 C in supplemented minimal medium containing 50 pM 2,2'-dipyridyl and 100

265



pM MnCl2 in either a New Brunswick Bioflo 110 fermentor (10 L culture volume) with 300 rpm

stirring and 2.5 L/min aeration, or in 2.8 L baffle flasks (1 L culture volume) or 6 L flasks (2 L

culture volume) with shaking at 220 rpm.

Cells were harvested while still in exponential growth at an OD 600 of 0.5 - 0.7 (13.5-14.5

h in the fermentor or 14.5-17 h in the shaker; doubling times were 50-60 min) by centrifugation

at 7000 g for 10 min at 4 *C, flash frozen in liquid N2, and stored at -80 'C. The OD600 of a 100

mL culture grown in parallel containing 2,2'-dipyridyl but without added MnCl2 was zero after

16 h growth, verifying the reported dependence of this strain on added Mn" for growth.' 4 Cells

were grown in six batches, each starting from a different E coli GR536 colony. From a total

culture volume of 91 L, 88 g wet cell paste was obtained.

5.2.10. Purification of NrdF from E. coli GR536. In order to minimize the amount of time

NrdF was present in the crude cell extract, the first steps in the purification of NrdF from E coli

GR536 were carried out in three batches of approximately 30 g wet cell paste. All operations

were perfomed at 4 'C. For each batch, the cell paste was resuspended in 5 mL/g 50 mM Tris,

5% glycerol, pH 7.6 (Buffer B) containing 1 mM phenylmethanesulfonyl fluoride (PMSF) and

cells were lysed by passage once through a French pressure cell at 14000 psi. The lysate was

centrifuged at 45000 g for 20 min. Ammonium sulfate was added to 60% saturation (390 g/L)

over 15 min to the stirred supernatant, followed by 20 min further stirring, and the suspension

was centrifuged at 40000 g for 20 min. The pellet was redissolved in ~12 mL of 50 mM sodium

phosphate, 5% glycerol, pH 7.0 (Buffer C), containing 1 mM PMSF, and passed through a

Sephadex G25 column (2.5 x 35 cm, 170 mL) equilibrated in the same buffer. Protein-

containing fractions were identified by their yellow-brown color and pooled (-55-100 mL).

HisNrdl (8.5 mg) and DNase (NEB, final concentration 5 U/mL) were added to the pooled
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fractions and the solution was stirred for 1 h. An equal volume of Buffer C containing 1 M NaCl

was added and the protein was loaded onto a Ni-NTA agarose column (1.1 x 2.2 cm, 2 mL)

equilibrated with Buffer B containing 500 mM NaCl (Buffer D). The column was washed with

20 CV of Buffer D. The column was then washed with 5 CV Buffer D containing 50 mM

imidazole and eluted with 10 CV Buffer D containing 250 mM imidazole. The eluted protein

was diluted with Buffer D to -40 mM imidazole and concentrated to -40 mL using an Amicon

Ultra YM30 centrifugal concentrator (Millipore). The protein solution was flash frozen in liquid

nitrogen and stored at -80 'C until further purification. These steps were complete 11-13 h after

thawing each batch of cell paste.

The protein solutions from the three preparations (120 mL) were thawed on ice, pooled,

and diluted 10-fold in 20 mM HEPES, 5% glycerol, pH 7.0 (Buffer E) containing 10 mM NaCl

and concentrated using a Millipore YM30 membrane in an Amicon concentrator to -500 mL (4

h). The protein solution was loaded onto a DEAE Sepharose Fast Flow column (2.5 x 3 cm, 15

mL) preequilibrated with Buffer E containing 10 mM NaCl. The column was washed with 30

mL Buffer E containing 200 mM NaCl, which was collected in two 15 mL fractions. The

protein was then eluted with a 120 mL linear gradient from 200 mM to 1 M NaCl in Buffer E,

and 1.7 mL fractions were collected. NrdF-containing fractions were determined by dot blotting

with antibodies to NrdF as described below. NrdF eluted in the second wash fraction and elution

fractions 1-32. Because a large amount of NrdI was also present in the wash, only the elution

fractions 1-32 were pooled (-55 mL, 200-600 mM NaCl). These were concentrated to -16

mg/mL (450 ptL) using an Amicon Ultra YM1O centrifugal concentrator, frozen in liquid N2, and

stored at -80 *C until further purification. These steps were complete 15 h after thawing of the

protein solution following Ni-NTA chromatography. The protein was then chromatographed
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twice using a Poros HQ/20 FPLC anion exchange column (Applied Biosystems, 1.6 x 10 cm, 20

mL, flow rate of 2 mL/min). In the first run, the column was equilibrated with Buffer E

containing 200 mM NaCl before sample loading, and the column was washed with 2 CV Buffer

E containing 200 mM NaCl and eluted with a 120 mL linear gradient from 200 to 900 mM NaCl

in the same buffer. One-minute fractions were collected. NrdF-containing fractions were

identified by SDS-PAGE and dot blotting, and fractions eluting between 35 and 43 min (610-690

mM NaCl) were pooled and concentrated to 320 pL using Amicon Ultra and Microcon YM10

centrifugal concentrators, frozen in liquid N2, and stored at -80 'C for further purification. The

second FPLC step was performed analogously, but the column was equilibrated in Buffer E

containing 400 mM NaCl and washed with 1 CV of the same buffer, and the protein was eluted

with a 120 mL gradient from 400 to 800 mM NaCl in Buffer E. The NrdF-containing fractions

(eluting at ~530 mM NaCl) were pooled, concentrated as before, frozen in liquid N 2, and stored

at -80 'C for analysis. This protocol resulted in NrdF purified to 95% homogeneity.

5.2.11. Detection of NrdF-containing fractions by dot blotting. NrdF-containing fractions

after DEAE and FPLC chromatography were determined by spotting 1 or 2 pL of each fraction

onto a 6 x 10 cm, 0.45 pm Protran nitrocellulose membrane (Schleicher and Schuell). After

drying, the membrane was incubated with gentle shaking at room temperature in 25 mL blocking

buffer (3% milk powder, 0.1% Tween 20, 40 mM Tris acetate, 1 mM EDTA, pH 8.3) for 30 min,

to which purified antibodies to NrdF were added at 1:10000 dilution and further incubated for 45

min. The membrane was washed three times with 40 mL PBS for 4 min each, incubated with

HRP-conjugated goat anti-rabbit secondary antibodies (Thermo Scientific) at 1:2000 dilution in

blocking buffer for 45 min, washed three times with 40 mL PBS for 4 min each, developed using
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SuperSignal West Femto Maximum Sensitivity chemiluminescence reagents (Thermo

Scientific), and imaged using a CCD camera (ChemiDoc XRS, Bio-Rad).

5.2.12. Activity assays of NrdF in crude extract/partially purified NrdF. Assays of NrdF in

crude extracts and of protein after ammonium sulfate precipitation and Sephadex G25 steps

contained in a final volume of 135 pL: 2.5 mg/mL extract or partially purified protein, 5 gM

NrdE (140 nmol/min/mg, assayed with MnmI2-Y- NrdF containing 0.25 Y-/p2), 0.3 mM dATP,

20 mM dithiothreitol (DTT), 10 mM NaF, and 0.5 mM [3H]-CDP (ViTrax, 5600-21000

cpm/nmol), in assay buffer at 37 C.32 Assays were initiated by addition of NrdF. Aliquots (30

pL) were removed at 20 s, 3 min, 6 min, and 9 min and heated at 100 'C for 2 min. Each aliquot

was incubated with 14 U calf intestine alkaline phosphatase (Roche) and 120 nmol

deoxycytidine in 75 mM Tris, 0.15 EDTA, pH 8.5, for 2 h at 37 'C, and dC was analyzed by the

method of Steeper and Steuart.3 3

5.2.13. Activity assays of purified NrdF. Assays of NrdF after the Ni-NTA, DEAE, and FPLC

steps were performed as above, except 1.0 RM NrdE was used, no NaF was present, and the

concentration of protein in the assay mixture was either 0.5 mg/mL (after Ni-NTA), 0.1 mg/mL

(after DEAE), or 0.015 mg/mL (0.2 pM) NrdF (after FPLC).

5.2.14. Activity assays of NrdB in crude extracts. Assays of NrdB in crude extracts contained

in a final volume of 135 pL: 2.5 mg/mL protein, 5 pM NrdA (see section 5.2.1), 3 mM ATP, 30

gM TrxA, 0.5 pM TrxB, 1 mM NADPH, 10 mM NaF, and 1 mM [3H]-CDP (21000 cpm/nmol),

in assay buffer at 37 C.32 Assays were initiated by addition of the extract. Aliquots (30 gL)

were removed at 20 s, 3 min, 6 min, and 9 min and heated at 100 'C for 2 min and the samples

were worked up as described above.
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5.2.15. Assays of cross-reactivity of the class Ia and Ib RNRs. Assays of NrdE with E. coli

NrdB (see section 5.2.1) contained in a final volume of 135 gL: 0.5 pM NrdB, 2.5 pM NrdE, 0.3

mM dATP, 20 mM DTT, and 0.5 mM [3H]-CDP (21000 cpm/nmol), in assay buffer at 37 *C.

Assays of Mn' 2-Y. NrdF (600 nmol/min/mg) with pre-reduced, HU-treated E. coli NrdA

contained in a final volume of 135 pL: 0.5 pM NrdF, 2.5 pM NrdA, 3 mM ATP, 30 pM TrxA,

0.5 pM TrxB, 1 mM NADPH, and 0.5 mM [3H]-CDP (21000 cpm/nmol), in assay buffer at 37

'C. In both cases, assays were initiated by addition of the p2 subunit. Aliquots (30 piL) were

removed at 20 s, 3 min, 6 min, and 9 min and heated at 100 'C for 2 min. The samples were

worked up as described above.

5.2.16. Purification of NrdF antibodies by the acetone powder method. Antibodies to

NrdF exhibited a large number of cross-reacting bands and were therefore purified by incubation

with an acetone powder of K coli BW25113-AnrdF cells (JW2651, Table 5.1). JW2651 cells

were grown at 37 'C in minimal media (see section 5.2.1) to an OD 600 of 1.0 and harvested by

centrifugation. From 4 L culture, 6.44 g wet cell paste was obtained. The cells were

resuspended in 26 mL Buffer B and lysed by passage through the French press once at 14000 psi.

After centrifugation (60000 g, 20 min, 4 'C), the supernatant (30 mL) was added to 120 mL

acetone (which had been kept for several hours in a -20 'C freezer), mixed, and incubated on ice

for 30 min. The mixture was centrifuged at 10000 g for 10 min at 4 *C. The pellet was

suspended in 60 mL acetone (-20 C), incubated on ice for 10 min and centrifuged again. The

pellet was crushed and dried overnight, yielding 0.905 g dry acetone powder. The polyclonal

antibodies to NrdF from rabbits MA424 and 425 (produced by Covance) were purified by

incubation of ~1.9 mL serum with ~150 mg acetone powder with gentle rocking at 4 'C for 30
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min. The suspension was centrifuged at 7000 g for 10 min at 4 *C and the supernatant was

collected, aliquoted, and stored at -80 'C.

5.2.17. Western blot analysis of NrdB, NrdF, and NrdI in E. coli GR536. E coli GR536

cells grown as described above and harvested at OD 60 0 ~0.08, 0.16, and 0.55, were resuspended

in 5 mL/g Buffer A with 1 mM PMSF, lysed by French pressure cell, and centrifuged at 45000 g

at 4 'C for 20 min. After determination of the protein concentration of the supernatant by

Bradford assay, the supernatant was diluted with 2 x Laemmli buffer and boiled for 10 min at 100

'C. Because the presence of additional proteins affected transfer of the NrdF and NrdI standards

in western blots, extracts of K coli JW2649 and JW2651 (Table 5.1) were also prepared. These

extracts were prepared by a similar protocol as the E. coli GR536 extracts, except that the cells

were grown in LB to OD600 ~0.8 and resuspended in 1 mL/g Buffer C before lysis.

Quantitation of NrdB, NrdF, and NrdI was carried out by western blot analysis as

described, 29 with the following modifications in the case of NrdF and NrdI. For NrdF, the

standard curve used purified NrdF (4-34 ng) mixed with 40 pg . coli JW2651 extract and

loaded onto a Criterion 10% Tris-HCl gel (Bio-Rad). E coli GR536 extracts (40 pig) were

loaded in duplicate. The gel was run at 200 V for 40 min at 4'C. The proteins were transferred

to a PVDF membrane (Bio-Rad) at 200 mA, 4 'C, for 1 h in 25 mM Tris, 195 mM glycine, 15%

(v/v) methanol, and 0.01% (w/v) SDS using a Criterion Blotter system (Bio-Rad). The

membrane was then handled as described above for dot blotting, with primary antibodies to NrdF

added at 1:10000 dilution. For NrdI, the standard curve used purified HisNrdl (0.5-6 ng) mixed

with 100 pig E coli JW2649 extract and loaded onto a Criterion 15% Tris-HCl gel. E coli

GR536 extracts (100 ptg) were loaded in duplicate. The gel was run at 200 V for 45 min at 4 'C.

271



The proteins were transferred to a PVDF membrane as above but at 100 V, 4 'C, for 80 min.

Primary antibodies to NrdI were added at 1:500 dilution.

5.2.18. EPR spectroscopy. EPR spectra of NrdF were acquired on a Br ker EMX X-band

spectrometer at 77 K or 4.6 K using an Oxford Instruments liquid helium cryostat. Acquisition

parameters were as described.34 Spin quantitation was performed by double integration of the

signal and comparison with an Ec NrdB sample whose Y- content had been determined by the

dropline method 5 and by EPR spectroscopy by comparison with a CuSO4 standard.36 To ensure

a flat baseline, quantitations of Ye in NrdF at 77 K were carried out after subtraction of a buffer

sample acquired under identical conditions. Analysis was carried out using WinEPR software

(Brlker). The microwave power at half-saturation (P112) and the inhomogeneous broadening (b)

of the Ye signal were calculated as described.34

5.2.19. Atomic absorption spectroscopy. Quantitation of manganese was performed using a

Perkin-Elmer AAnalyst 600 spectrometer in the laboratory of Prof. Stephen Lippard, using a

manganese standard solution (1000 ± 4 mg/L. Fluka) serially diluted to 5 ptg/L using volumetric

flasks. The standard curve (0, 1.25, 2.5, 3.75, and 5 pg/L Mn) was generated by the instrument.

Protein samples were serially diluted in distilled/deionized water to an appropriate concentration

for analysis. Each analysis was performed in triplicate and the results averaged.

5.2.20. Investigation of the ability of Nrdlhq and 02 to activate E. coli Mn"2-NrdB. The

protocol was analogous to that described for activation of Mn"2-NrdF using Nrdlhq and 02

(Chapter 4). N-terminally His6-tagged apo-NrdB24 and N-terminally His6-tagged NrdI (Chapter

3) were degassed on a Schlenk line by five cycles of evacuation and refilling with Ar and

brought into an anaerobic box at 4 'C (MBraun). NrdI was reduced by addition of 1.5 equiv
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sodium dithionite, and MnCl2 (4 Mn"/p12) was added to apo-NrdB and incubated for 5 min. The

final reaction mixture contained Mn"2-NrdB (10 1iM dimer), Nrdlhq (20 [M), and 1 mM 02.

Mn"2-NrdB and Nrdlhq were mixed with Buffer F (50 mM sodium phosphate, 5% glycerol, pH

7.6) to give a volume of 48 pL. The reaction was initiated by addition of 52 pL 0 2-saturated

buffer F at 4 'C outside the box.

The assay of the resulting NrdB contained in a final volume of 135 pL: 0.1 pM NrdB, 0.5

gM prereduced NrdA, 3 mM ATP, 30 pM TrxA, 0.5 pM TrxB, 1 mM NADPH, and 0.5 mM

[3H]-CDP (21000 cpm/nmol), in assay buffer at 37 'C. ApoNrdB was assayed in parallel.

5.3. RESULTS

5.3.1. Preliminary studies of N-terminally Strepl-tagged NrdF proteins. Our first strategy

for determination of NrdF's physiologically cofactor, designed prior to our in vitro assembly of a

Mn"' 2-Y- cofactor and knowledge of NrdI's tight binding to NrdF, relied on purification of a

StrepIl-tagged NrdF from endogenous levels in E coli GR536. Before pursuing these studies,

however, it was necessary to design a tagged construct that would not affect NrdF activity and

would bind well to the Strep-Tactin column, maximizing protein yields. We decided to use a

StreplI tag because of its small size, few potentially metal-binding residues, and previous success

with similar N-terminally tagged constructs of NrdB2 9 (a C-terminal tag was not attempted as

that would be expected to disrupt NrdE-NrdF interactions).

Four N-terminally StreplI-tagged NrdF proteins, each containing different amino acid

linkers between the tag and the wt NrdF sequence, were generated (Table 5.2). In analogy to

generation of StrepIl-tagged NrdB proteins previously described,29 sequences encoding either no

linker or linkers of GA, SLGGH, or GSGGSG were placed in front of the nrdF gene and inserted

into pBAD-mycHisA. The overexpression of the tagged NrdF proteins from resulting pBAD-N-
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S-x-nrdF constructs (x = 0, 2, 5, or 6) was evaluated, as was the effectiveness of each tag binding

to the Strep-Tactin resin. Finally, the influence of the tags on Y- content and interaction with

NrdE were determined by EPR spectroscopy and activity assay, respectively.
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pre post pre post pre post pre post
N-S-0-NrdF N-S-2-NrdF N-S-5-NrdF N-S-6-NrdF

Figure 5.1. Overexpression of N-S-x-NrdF proteins. Loaded in the "pre" and "post" lanes are
approximately equal numbers of cells pre- and post-induction with 50 pM ara. The N-S-x-NrdF
band is the middle band of the three in the red box, just below the 37 kDa molecular weight
marker.

To test overexpression of the various N-S-x-NrdF proteins from pBAD, TOP10 cells

harboring pBAD-N-S-x-nrdF constructs were grown in LB to OD 600  0.6, and expression of N-

S-x-NrdF was induced for 2 h by addition of L-arabinose (ara) to 50 gM. The degree of

expression of each protein is shown in Figure 5.1. Only for the N-S-0-nrdF and N-S-2-nrdF

constructs did ara addition appear to lead to overexpression of NrdF. NrdF expression from the

x = 5 and 6 constructs was at or only slightly above pre-induction levels. The reason for the poor

induction with these constructs is not clear. There were no errors in the sequenced region of the

vector (~100 nt on either side of the insert), and all codons used for the tag and linkers are the
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first or second in abundance for each amino acid in E. coli. Moreover, the analogous pBAD

constructs containing N-S-5- and N-S-6-nrdB overexpress normally.29 Studies in which the

concentration of ara was varied from 50 to 500 pM demonstrated that the expression of N-S-2-

NrdF, but not of N-S-5-NrdF, was titrable (not shown). Therefore, these studies indicated tha N-

S-0-NrdF or N-S-2-NrdF would be the most useful constructs to pursue, provided that they

bound well to the Strep-Tactin resin.

Table 5.4. Summary of purifications of N-terminally StrepII-tagged NrdF proteins. Wt NrdF
reconstituted with Fe/ascorbate in the crude lysate is shown for comparison (Chapter 2).

Protein Yield Ye/p2a Activity
(mg) (nmol/min/mg)

N-S-0-NrdF N/Ab N/A N/A
N-S-2-NrdF 0.54 0.32 201
N-S-5-NrdF 0.22 0.31 200
N-S-6-NrdF ~0.15c ~0.3c 150c
wt NrdF N/A 0.33 189

a Determined by EPR spectroscopy.
b N/A: not applicable.

c Difficult to estimate because of DNA contamination in the final protein solution.

The N-terminally StreplI-tagged NrdFs, with each of the four linkers, were overexpressed

under similar conditions by induction with 50 pM ara. NrdF was purified from 1.8 g cell paste in

one step using Strep-Tactin Sepharose chromatography, starting from the approximately equal

masses of wet cell paste from induction of each of the four constructs with 50 ptM ara. In each

case, elution from the column was complete within 4 h of cell lysis, minimizing possible Y-

decay in crude extracts. The yields, Y- content, and specific activities of the purified proteins are

shown in Table 5.4. No detectable protein was present in the elution fractions in the case of N-

S-0-NrdF. Figure 5.2 shows that this was because a large amount of protein eluted from the

column in the wash (lane 6). While some N-S-2-NrdF was also lost during the column wash,
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-0.5 mg protein (-95% pure by SDS-PAGE, Figure 5.2, lanes 12 and 13) was isolated. The

yields of N-S-5-NrdF and N-S-6-NrdF were < 40% that of N-S-2-NrdF, consistent with their

significantly lower levels of expression. The Ye contents (-0.3 Y-/dimer) and activities (-200

nmol/min/mg) of all three purified proteins were similar.
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Figure 5.2. Purification of N-S-0-NrdF and N-S-2-NrdF. Lane 1: molecular weight markers.
Lanes 2-6: N-S-0-NrdF pre-induction, post-induction, insoluble fraction upon lysis, Strep-Tactin
column flowthrough (9 mL), and wash (-40 mL). Lanes 7-11: N-S-2-NrdF pre-induction, post-
induction, insoluble fraction upon lysis, flowthrough (9 mL), and wash (-40 mL). Lanes 12 and
13: -1.8 and -3.6 pg N-S-2-NrdF.

These studies demonstrated that N-S-2-, 5-, and 6-NrdF can be successfully purified

when overexpressed at relatively low levels from an ara-inducible pBAD vector and that they

exhibited similar binding to Strep-Tactin Sepharose resin. All three were purified with similar

Y- contents and had similar specific activities. Because the expression of N-S-2-NrdF could also

be modulated by varying the concentration of ara in the growth medium, this construct was

chosen for further experiments.
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5.3.2. Construction of pKO3-N-S-nrdF. Here we describe the construction of a plasmid

encoding N-S-2-NrdF for incorporation of a StreplL tag and GA linker into the E. coli GR536

genome by homologous recombination.

5.3.2.1. Use of pKO3 as a gene replacement vector. pKO3, from the Church

laboratory,2 1 was chosen as a homologous recombination vector because of the ease of selections

for the two recombination events and insertion of the desired mutation into the genome without

addition of a "scar" of several nucleotides (as would be left by the Wanner method, discussed

below). The latter issue is particularly important as the promoter for nrdF is present upstream of

nrdH and the mRNA of the whole nrdHIEF operon is synthesized as a single unit.15  A

schematic of pKO3 is shown in Figure 5.3. A strain into which gene deletion or insertion is

desired is transformed with the vector containing the desired mutated chromosomal sequence and

plated at 43 *C. Because of the temperature-sensitive replication origin controlling Cm

acetyltransferase (cat) expression from the plasmid, at this temperature, Cm resistance will only

be conferred on cells that have integrated the plasmid into the chromosome using the cell's

recombinases. This allows for a facile selection of chromosomal integrates. When the cells are

shifted to the permissive temperature of 30 'C, the integrated plasmid can be excised from the

genome and, depending on the position of this event, the genome reverts to the wild type

sequence or to the mutated sequence that was cloned into the vector. The sacB gene from B.

subtilis encodes levansucrase, which uses sucrose as a substrate to yield fructose polymers and is

lethal for E. coli grown on 5% sucrose. This is used to screen for loss of pKO3 after the second

recombination event. Sucrose-resistant and Cm-sensitive colonies have undergone the two

recombination events, and some of them will have incorporated the mutated sequence into their

chromosome.
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O"O(034L Sm S

Figure 5.3. The gene replacement vector pKO3 (see also Appendix 3, Figure A3.1). The
various features of the vector are described in the text. A section of the multi-cloning region of
the vector is enlarged; Sm (SmaI), N (NotI), B (BamHI), and S (SalI) indicate unique restriction
sites in this region. Reproduced from Link et al."

5.3.2.2. Creation of pKO3-N-S-nrdF. The basic strategy for creating this plasmid is

shown in Scheme 5.1. Briefly, the -599 to -1 region 5' to nrdF (upstream region, UR) was

amplified by PCR from E. coli K-12 genomic DNA, with restriction sites on either end (5'-

BamHI - nrdF UR - NdeI-3'). Addition of the NdeI site (CATATG) required CAT to be added

between -1 and +1. A fragment (from +1 to *299) containing nrdF, the 299 nt immediately 3' to

nrdF (downstream region, DR), and a BamHI restriction site at the 3' end was also amplified by

PCR. A StrepIl tag and GA linker, with an NdeI site at the 5' end, were appended to the latter

fragment by PCR (5'-NdeI - Strep-GA-nrdF - DR - BamHI-3'). The UR and Strep-GA-nrdF

fragments were digested with NdeI and ligated, and the UR-Strep-GA-nrdF-DR fragment was

extracted, amplified by PCR, and inserted into a TOPO vector. The resulting plasmid was

amplified inside the cell, isolated, and digested with BamHI, and the UR-Strep-GA-nrdF-DR

insert was gel extracted and ligated into pKO3, which contains a unique BamHI site in the multi-

cloning region of the vector.
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PCR amplification of the UR (-0.6 kb) and Strep-GA-nrdF-DR (-1.3 kb, nrdF being 960

bp) fragments is shown in Figure 5.4. After digestion with NdeI, the two fragments were ligated

together, as shown in Figure 5.5, and the 1.9 kb band corresponding to the UR-Strep-GA-nrdF-

DR product was gel extracted.
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UR Strep-GA-nrdF-DR

Figure 5.4. 1% agarose gel demonstrating PCR amplification of the UR and Strep-GA-nrdF-DR
fragments. The sizes of selected bands of the DNA ladder (in kb) are shown at left.

Obtaining sufficient insert for ligation into pKO3 proved challenging. Initially, the

ligation of the gel extracted, BamHI-digested UR-Strep-GA-nrdF-DR insert directly into

BamHI-digested, phosphatase-treated pKO3 yielded only colonies with the vector self-ligated.

Cloning of the insert directly into a TOPO vector, after addition of 3'-A overhangs by incubation

of the insert with 1 U Taq polymerase at 72 'C for 15 min (as suggested by the manufacturer),

was attempted next, but no colonies contained the insert. Finally, the procedure described in

section 5.2.4 was used. The reaction volumes for the PCR amplifications of the UR and N-S-2-

nrdF-DR fragments were doubled to 100 pL, and 3'-A overhangs were added directly after

amplication. The 1.9 kb band was gel extracted and further amplified using Taq polymerase

with a high annealing temperature, to increase specificity. This procedure amplified the 1.9 kb
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band but also led to a nonspecific 0.9 kb product. The 1.9 kb product could be prepared in large

quantities by this approach, gel-purified, and used for the TOPO cloning reaction.
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Figure 5.5. Ligation of UR and Strep-GA-nrdF-DR fragments. Band 1 (-0.6 kb) corresponds
to unligated UR, band 2 (-1.3 kb) to unligated Strep-GA-nrdF-DR and dimerized UR (faint band
just below the thick band), band 3 (-1.9 kb) to the correct UR-Strep-GA-nrdF-DR ligation
product, and band 4 (-2.5 kb) to dimerized Strep-GA-nrdF-DR.

Out of ten white or light-blue colonies grown up from LB-agar plates containing 5-

bromo-4-chloro-3-indolyl-p-D-galactopyranoside (X-gal) for the TOPO cloning reaction, six

contained a -1.9 kb insert when the isolated plasmids were digested with BamHI. However,

none of these six inserts had a sequence free of mutations, with the best having two apparent

mutations in nrdF itself. The inability to find a clone without a mutation was likely the result of

using Taq, a relatively low fidelity polymerase, to amplify the insert prior to the TOPO reaction.

The first mutation (CAG --+ CAA) was >400 nt downstream from the nrdF start codon. The

signal was ambiguous for the mutated nucleotide in the sequencing results, but since both codons

encode Gln with high codon usage (69% and 31%, respectively), this mutation did not need to be

corrected. The second mutation (CTC --+ CCC) was >200 nt downstream from the nrdF start

codon and resulted in a Leu -+ Pro mutation in NrdF. Although it is possible this mutation

would not be transferred to the genome in the homologous recombination event to insert the
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StrepII tag, site-directed mutagenesis to correct it was performed and was successful. After

isolation of the insert by BamHI digestion of the pCR2.1-TOPO-UR-Strep-GA-nrdF-DR

plasmid and gel extraction, the insert was ligated into pKO3.

Ligation of UR-Strep-GA-nrdF-DR into the BamHI site of pKO3 was tested by

restriction digests with NdeI. NdeI cuts pKO3 once, 2.8 kb in one direction from the BamHI site

and 2.9 kb in the other. It also cuts the insert once, between the UR and nrdF (dividing the insert

into 0.6 and 1.3 kb fragments). Therefore, plasmids containing the insert should be cut into 4.1

and 3.5 kb fragments, or 4.2 and 3.4 kb fragments, depending on the direction of the insertion.

The restriction analysis is shown in Figure 5.6. Although the differences in the fragment sizes

are small, the direction of insertion can be determined from the band positions on the gel. Three

lanes (marked with *) also have bands at 1.9 kb, likely due to ligation of more than one insert

into the vector, resulting in two NdeI sites 1.9 kb apart. The direction of the insert should have

no effect on the homologous recombination and either could be used in subsequent experiments.

The presence of the insert with no mutations was verified by DNA sequencing, resulting in

pKO3-N-S-nrdF (Appendix 3, Figure A3.2).
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Figure 5.6. NdeI digest of plasmids isolated from 12 Cm-resistant colonies of the pKO3-UR-
Strep-GA-nrdF-DR ligation reaction. Lanes labeled * likely have > 1 insert, lanes labeled 1
likely have the insert in the reverse direction (4.1, 3.5 kb fragments), and lanes labeled 2 have the
insert in the forward direction (4.2, 3.4 kb fragments).
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5.3.3. Construction of GR536A. Rensing and coworkers created GR5364 using the Wanner

22method of gene disruption. This method replaces a given chromosomal sequence with an

antibiotic resistance gene using the bacteriophage X Red recombination system. Flanking the

resistance gene are repeats of an FRT (FLP recognition target) sequence. FLP is a site-specific

recombinase from Saccharomyces cerevisiae. If it is desired that the resistance cassette be

removed, the cell can be transformed with the helper plasmid pCP20, which encodes FLP from a

temperature-sensitive replication origin, excising the DNA between the FRT sites and leaving an

82-85 nt scar in the genome. Because GR536 retains Cm and Km resistance cassettes in place of

two of the deleted genes, and because pKO3 also contains the cat gene, these cassettes had to be

removed from GR536 using pCP20 before pKO3-N-S-nrdF could be used for homologous

recombination. At the end of the resistance elimination procedure, 24 colonies were streaked to

test for Cm and Km resistance, as well as Amp resistance (due to loss of pCP20). After 47 h at

30 "C, all 24 of the streaked colonies were Km resistant, 12 had 1-3 small Cm-resistant colonies

growing in the streaks, and 4 had 1-2 small Amp-resistant colonies. One of the colonies that

were sensitive to all three antibiotics was selected as GR536A, stored as a glycerol stock, and

electrocompetent cells were prepared.

5.3.4. Construction of GR536-N-S-nrdF by homologous recombination. Electrocompetent

E. coli GR536A were transformed with pKO3-N-S-nrdF and grown at 43 and 30 "C. The 30 'C

plates had hundreds of colonies after 15 h. There were 5 colonies on the 43 "C plates onto which

150 or 300 pL of the transformation reaction had been plated. The efficiency of plasmid

integration into the genome could therefore be estimated as 10-2 to 10-3, similar to that reported

previously for this step using pKO3 with other inserts. Four colonies were selected from the 43

'C plates and added to 1 mL LB, serially diluted, and 100 pL of each dilution was plated onto
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5% sucrose plates at 30 *C and onto LB-agar plates (20 pg/mL Cm) at 43 *C. Of the several

hundred resulting colonies, 48 colonies were patch-plated onto 5% sucrose and LB-agar-Cm20

plates. All were Cm-sensitive, and 24 of those were analyzed by PCR using a primer that

anneals to the StreplI tag in the reverse direction (Strep reverse) and a primer that anneals in the

forward direction on nrdE ~1.3 kb upstream from the StrepI tag (nrdE842-861). As shown in

Figure 5.7, two of the colonies tested had the predicted 1.3 kb band, suggesting incorporation of

the StreplI tag. Generation of GR536-N-S-nrdF was confirmed by DNA sequencing. The DNA

sequence of the region surrounding and including the insert is shown in Figure A3.3.

1.5

Figure 5.7. Colony PCR of 24 sucrose-resistant, Cm-sensitive colonies indicating incorporation
of the StreplI tag into the GR536A genome (bands at 1.3 kb).

5.3.5. Purification of N-S-NrdF from GR536-N-S-nrdF. Preliminary small-scale growths and

purifications established that the StrepIl tag had been successfully inserted into the GR536A

genome and that N-S-NrdF was expressed in iron-limited growth conditions and could be

purified by Strep-Tactin chromatography. GR536-N-S-nrdF was grown as previously described

for GR53614 in a supplemented M9 minimal medium with 50 gM bipy and 50 pM MnCl2.

Under these conditions, the cultures do not grow in the absence of added MnCl 2. A 2 L culture

harvested at an OD600 of 1.1 yielded 4.6 g wet cell paste. The protein was purified similarly to

the overexpressed N-S-x-NrdF constructs, with the soluble lysate being loaded directly onto a 5
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mL Strep-Tactin Sepharose column, which was washed with 20 CV buffer and eluted with buffer

containing 2.5 mM desthiobiotin. Although a large amount of DNA coeluted with the N-S-

NrdF, the yield of NrdF could be estimated by quantitative western blots to be 0.4-0.6 pg NrdF

per g cell paste.

Further experiments suggested that the presence of hydroxyurea (HU), which reduces Y*

in class Ia and lb RNRs, in the culture medium increased expression of NrdF, consistent with

previous reports that HU increases nrdF mRNA levels." HU (0, 10, or 25 mM) was added to

GR536-N-S-nrdF cultures, grown in the presence of 50 pM bipy and 50 pM MnCl2, at an OD 600

of 0.1. Samples were removed at OD 60 0 values of 0.5, 0.8, 1.1, and 1.5 for cell counting and

western blot analysis. The OD 60 0 samples from the growths with 0, 10, and 25 mM HU,

harvested at OD 600-0.8, were chosen for cell counting in order to correlate OD600 values with cell

number for this strain under these growth conditions. Unexpectedly, cell counting gave 280, 54,

and 31 cells (times 107) for the 0, 10, 25 mM HU samples, respectively, while the OD 60 0 values

for these samples were very similar. In retrospect, these data likely suggest that the cells

exposed to HU were stalled in replication and therefore filamenting rather than growing, possibly

due to insufficient RNR activity. Western blots suggested, however, that HU increased

expression levels of NrdF by >2-fold per cell, and it was decided that adding 10 mM HU to

subsequent cultures at OD 600 = 0.1 would be a useful strategy in obtaining greater quantities of

NrdF. Of course, this might come at the expense of activity, as HU reduces Y-. Optimization of

purifications of N-S-NrdF expressed under these conditions established that DNA binding to the

Strep-Tactin column was a significant issue in the purification, and addition of streptomycin

sulfate (1%) and ammonium sulfate precipitation steps, as well as DEAE anion exchange

284



chromatography and DNase treatment steps, prior to loading of protein onto the Strep-Tactin

column helped to reduce the amount of DNA present in the purified protein.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.8. Western blot analysis of NrdF expression at high OD 600 values. Lanes 1-7: 2, 6, 10,
14, 18, 22, 26 ng NrdF + 1 x 108 JW2651 cells. Lanes 8-12 contain 1 x 108 cells from the
fermentor growth: OD 60 0 = 1.0, 1.5, 2.0, 2.6, 3.8.

Before a large-scale growth and purification was attempted, it was also determined

whether GR536-N-S-nrdF could be grown to higher ODs without affecting NrdF expression.

HU was added to 10 mM at OD 60 0 - 0.1. Samples were taken at various ODs for Western blot

analysis of NrdF expression levels. Whereas OD 60 0 values of cultures in baffle flasks stopped

increasing at OD 600 ~1.4, probably due to 02 limitation, fermentor cultures continued to grow to

an OD 60 0 of - 4. The western blot (Figure 5.8) showed that N-S-NrdF expression was relatively

insensitive to cell density. Therefore, the 12 L fermentor culture used to prepare cell paste for

the large-scale N-S-NrdF purification was grown to OD 60 0 ~ 3.8, yielding 61 g wet cell paste.

The purification of N-S-NrdF from the 61 g of cell paste from the 12 L fermentor growth

was carried out as described in section 5.2.8. The purification was completed within 36 h of

lysis and resulted in -90 gg NrdF (1.5 ig/g cell paste). Because a large amount of DNA

coeluted with the N-S-NrdF, and because the protein is only -40% pure, as judged by SDS-

PAGE analysis (Figure 5.9B), this yield is an estimate. (The protein was not further purified by
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FPLC.) No Y* is apparent in the UV-visible spectrum (Figure 5.9A), but a feature at 300-400

nm is present that could correspond to an oxidized metal cluster. This feature may also have

arisen from one of the contaminants visible in Figure 5.9B. The band at -75 kDa appears at the

same molecular weight as NrdE, but this was not investigated further; if this were NrdE, it would

suggest that the recent finding that B. subtilis NrdE and NrdF copurify when isolated from the

endogenous organism 37 may be general for class Ib RNRs.

A 0.06 B 75
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NrdF 37

0.04
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0 0.03-

0.02-
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0.00
300 400 500 600 700 800

Wavelength (nm)

Figure 5.9. Characterization of N-S-NrdF purified from GR536-N-S-nrdF. (A) UV-visible
spectrum (300-800 nm) of ~3 pM purified N-S-NrdF. (B) SDS-PAGE analysis (17%) of N-S-
NrdF. The band just below the 37 kDa marker is NrdF (indicated at left).

The specific activity of the isolated protein was 120 nmol/min/mg, assuming 40% purity.

An assay conducted without added NrdE gave 0.4 nmol/min/mg; this is not surprising even if the

75 kDa band is NrdE, as its cysteine residues would likely be irreversibly oxidized and the

protein inactivated over the course of the purification. If the cofactor is Mni 2-Y, as we

anticipate it would be under these growth conditions, this activity corresponds to ~0.05 Y-/p2, or

~0.2 gM Y-, explaining why Ye was not visible in the UV-visible spectrum. Atomic absorption

data on the protein revealed 1.9 pM Mn, which could correlate to as much as 0.6 Mn/p2.
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The EPR spectrum (1.5 G modulation amplitude, 10 K, up to 4 mW power) revealed no

discernible radical signal. The correct parameters for the Mn-associated Y* were not known at

the time these experiments were carried out, as the dimanganese-Y- cofactor had not yet been

reconstituted in vitro and its distinct saturation behavior relative the diferric-Y cofactor was not

anticipated. Even then, however, 0.2 tM Y- would be very difficult to detect. However, when

the protein (-3 pM) was incubated for 1 min with NrdE, effector dATP, and the mechanism-

based inhibitor N3CDP, which has been shown to inactivate class Ia RNRs with concomitant loss

of -50% Y- and formation of -50% of a nitrogen-centered radical (N-) in a2, 16'31 the EPR

spectrum revealed a signal consistent with the nitrogen-centered radical (-0.4 pM, Figure 5.10).

The appearance of this signal but not the Y- signal in earlier experiments could be due to the

acquisition parameters used for the N3CDP reaction sample being better suited for N- detection

than the parameters used for Y- detection in N-S-NrdF.

A B

3200 3250 300 3400 3450 3500 3250 3275 3300 3325 3350 3375 3400

Field (G) Field (G)

Figure 5.10. (A) EPR spectrum (10 K) of -3 pM N-S-NrdF incubated for 1 min with N3CDP,
dATP, and NrdE, after subtraction of the background signal using a 50 mM HEPES, 5%
glycerol, pH 7.6 buffer sample. Parameters: 0.2 mW power, 100 kHz modulation frequency, 4 G
modulation amplitude, and 2.52 x 104 gain, 25 scans. (B) For comparison, EPR spectrum (77 K)
of 20 pM Mn 2-Y- NrdF reacted for 10 min with 20 tM NrdE, 0.3 mM dATP, 10 mM DTT,
250 N3CDP in assay buffer, after subtraction of the remaining Y- signal (see Chapter 4 for
details and parameters).
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To summarize, through these experiments, we have shown that NrdF is expressed under

iron-limited conditions in GR536, and the protein was partially purified and shown to be active

and to contain Mn. However, the inability to observe Y- and link it directly to the presence of

Mn and activity is the same problem that plagued the earlier work of Auling6 and, much later,

Sj~berg.7 Both of these investigators had shown the presence of Mn and activity in C.

ammoniagenes NrdF, purified from endogenous levels, but had never definitively observed Y-.

More cells would be needed, and the use of HU, while it increased the yield of NrdF, probably

also decreased the Y- content in the purified protein. Furthermore, although the specificity of the

Strep-Tactin column is high, the efficiency of binding is fairly low, and we consistently observed

loss of a significant amount of N-S-NrdF in the column flowthrough and wash fractions. The

discovery of the Mn"12-Y- and the tight binding of NrdI and NrdF enabled us to formulate a more

robust protocol for purification of NrdF from endogenous levels and determine its physiological

cofactor, described in the remainder of this chapter.

5.3.6. NrdF is expressed and active in E. coli GR536. Rensing and coworkers have created E.

coli strains in which multiple transport systems involved in iron uptake were deleted in an effort

to study metal specificity of particular transporters.' 4 Deletions were made in the feo (ferrous

uptake) and fec (ferric citrate) loci, as well as in entC (involved in enterobactin biosynthesis for

FeI uptake), zupT (a broad specificity divalent cation importer), and mntH (a Mn" transporter

that also can uptake Fe"). When the E coli strain GR536 (Table 5.1), which lacked all five of

these systems, was cultured in minimal media in the presence of 50 pM bipy, only addition of

Mn" - not Fe", Mg", or Zn" - allowed normal growth.

Given our recent observation that the E coli class lb RNR can form a Mn" 2 -Y- cofactor,

and that the class lb RNR of E coli is expressed under iron-limited conditions, we hypothesized
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that the growth defect of E. coli GR536 in the absence of Mn" could be the result of manganese

deficiency in the class lb RNR, limiting deoxynucleotide production and thus also growth.

Therefore, we grew E. coli GR536 cells as previously described,' 4 in M9 minimal media in the

presence of 50 pM bipy and 100 pM MnCl 2, and harvested them in early and mid-exponential

growth phases (OD 600 = 0.08, 0.16, and 0.55) when demand for deoxynucleotides is expected to

be maximal. Levels of NrdF and NrdB were determined by western blot analysis. Both proteins

are expressed under these conditions (Figure 5.11, Table 5.5). In mid-exponential phase, NrdF

is present at -400 ng/mg total protein and NrdB at ~140 ng/mg. The amount of NrdB is

comparable to the 190 ng/mg NrdB in E coli K-12 wild type cells grown in LB medium

(Yokoyama, Hassan, and Stubbe, unpublished results). Our previous studies had shown that, in

vitro, the flavoprotein NrdI is required for Mn" 2-Y- assembly in NrdF (Chapter 4). Thus, to

determine if NrdI is used stoichiometrically or catalytically, western blots were also carried out

under the same conditions using antibodies to NrdI. NrdI was determined to be present at ~1/13

the amount of NrdF (10 ng/mg) and thus probably functions catalytically.

Table 5.5. Protein levels and specific activities of class Ia and lb RNRs in crude extracts
OD 60 0 Protein level (ng/mg protein)a Specific activity Specific activity

(nmol/min/mg protein) (nmol/min/mg p2 )d

NrdF NrdB NrdI NrdFb NrdBc NrdF NrdB

0.08 450 180 160 ±10 16 ±3 1.1 0.08 0.02 2400 1000 500 100

0.16 370 90 140 ±40 10 ±1 0.8 0.1 0.09 0.03 2200 600 600 ±300

0.55 300 110 120 ±50 9 3 0.6 ±0.1 0.05 ±0.01 2000± 800 400 ±200

a Determined by western blotting
b Radioactive assay, 5 ptM NrdE, DTT, 37 0C
'Radioactive assay, 5 piM NrdA, TrxA, TrxB, NADPH, 37 'C
d Specific activities are normalized for the p2 (NrdF or NrdB) levels determined by western
blotting
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Figure 5.11. Representative western blots to determine the levels of NrdB, NrdF, and NrdI in E.
coli GR536 cells harvested at OD 600 0.08, 0.16, and 0.55. Standards for quantitation are in lanes
1-8. Lanes 9-11 (NrdB and NrdF blots) and 9-14 (NrdI blot) show the amount of each protein in
E. coli GR536 crude cell extracts. For the NrdF and NrdI standard lanes, crude extracts of
AnrdF (40 jig) and Anrdl (100 pg) deletion strains were added. Note that HisNrdl was used as
the standard for the NrdI blots, and that these standards run slightly slower (-2 kDa) than the
untagged NrdI band in the extract. The samples are shown in duplicate for the NrdI blot.

To determine growth conditions that maximized formation of active NrdF, activity assays

were carried out on the crude cell extracts at different stages of growth (Table 5.5). Control

experiments showed no cross-reactivity between the class Ia and lb subunits (Table 5.6), and

therefore both NrdF and NrdB could be assayed in the crude extracts by adding the appropriate

a2 subunit (NrdE or NrdA), substrate, and allosteric effector. At OD 60 0 = 0.55, the specific

activity of NrdF was 0.6 nmol/min/mg total protein (2000 nmol/min/mg NrdF). NrdB protein

levels are 3-fold lower than NrdF and NrdB activity is ~10-fold lower, 0.05 nmol/min/mg total

protein (400 nmol/min/mg NrdB). It should be noted that the assays for NrdB activity were

carried out with a physiological reducing system (thioredoxin/thioredoxin reductase) while those
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for NrdF used DTT. These results thus likely underestimate the difference in specific activities

of NrdF and NrdB in the crude extracts. Therefore, under these iron-limited growth conditions,

the class Ib RNR is the primary source of deoxynucleotides for the cell. The specific activity of

NrdF was constant (-2200 nmol/min/mg) over the cell densities examined, indicating that the

highest yield of active NrdF per liter of culture would be obtained by harvesting cells at OD 600 -

0.5. Thus these growth conditions were chosen as a starting point for purification of NrdF.

Table 5.6. Activity assays of E coli NrdB with NrdE and NrdF with NrdAa
Time NrdB/NrdE NrdF/NrdA
(min) (cpm) (cpm)
0.33 106 109

3 114 118

6 112 115

9 116 129

a Despite the high specific activity of [3H]-CDP and relatively high concentrations of enzyme
used, the data exhibits very low counts per min (cpm) above background and poor linearity.
Least-squares fitting of the data gave a specific activity for NrdB with NrdE of 0.3 nmol/min/mg,
or <0.005% of that with NrdA. The specific activity of NrdF with NrdA was 0.7 nmol/min/mg,
or <0.1% of that with NrdE. Therefore, the E. coli class la and Ib RNRs show no significant
cross-reactivity.

5.3.7. Purification of NrdF from E. coli GR536. E. coli GR536 harvested at OD 60 0 = 0.5-0.7

gave 88 g wet cell paste from 91 L culture. A summary of the purification of NrdF is shown in

Table 5.7. The central feature of the purification protocol was the addition of His6 -tagged NrdI,

known to interact tightly with NrdF (Chapter 3). Ni-NTA affinity chromatography resulted in

12-fold purification of NrdF. Although a large excess of NrdI was added to the extract to pull

out NrdF, only 50% of the NrdF activity was recovered after this step. This is likely due to the

extensive washing of the Ni-NTA column carried out to remove the majority of the cellular

proteins. The recovery following DEAE anion exchange chromatography was also low; 2/3 of

the remaining NrdF activity was lost in the flowthrough and wash of this column. NrdI and
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NrdF are difficult to separate and, in our experience, the NrdI-NrdF complex does not bind well

to anion exchange columns, which probably accounts for the low recovery in this step. It is also

possible that the NrdF bound to NrdI has different levels of Mn and Ye than that which is free

and thus binds more tightly to the column (see Discussion), but the former fraction was not

characterized further. Still, these steps together accomplished 74-fold purification of NrdF.

NrdF was further purified by two additional chromatographic steps using a Poros HQ/20 FPLC

column (Figures 5.12 and 5.13), yielding protein of 95% homogeneity (Figure 5.14).

Table 5.7. Purification of NrdF from E. coli GR536a
Purification step Protein Total activity Specific activity Percent Purification

(mg) (nmol/min) (nmol/min/mg) recovery factor
Crude extractb 7100 5400 0.76 100 1

(NH4 )2SO 4 / G25' 5400 2100 0.39 40 0.5

Ni-NTA 140 1200 8.8 22 12

DEAE 7.1 400 56 7 74

FPLC 1 0.39 230 580 4 780

FPLC 2 0.15 110 720 2 950

a NrdF was purified from 88 g of cells
b The results shown represent the aggregate of
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Figure 5.12. Poros HQ/20 elution profile from the first FPLC step in the purification of NrdF
from E. coli GR536. (A) The FPLC trace (A2 80) is shown as a black solid line (left axis), and the
wash and NaCl gradient is denoted by the red dashes (right axis). NrdF eluted in the peak
centered at 57 min, and the peak at 80 min is DNA. (B) Expansion of the 30-70 min region of
the elution profile.
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Figure 5.13. (A) SDS-PAGE (12.5%) of selected fractions (corresponding to minutes in Figure
5.12) eluting from the first FPLC chromatography step. The first lane contains molecular weight
standards (mass given at left in kDa). NrdF is visible in fractions 57 and 59 and is indicated with
an arrow. (B) Comparison of the partially purified NrdF after the DEAE (lane 2) and first FPLC
(lanes 3 and 4, 1.5 and 3 gg, respectively) steps.
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Figure 5.14. NrdF from E. coli GR536 is purified to near homogeneity. A) Elution profile from

the second FPLC step. NrdF eluted at 29 min. B) SDS-PAGE (12.5%) analysis. Lane 1:
molecular weight standards (kDa). Lanes 2 and 3: NrdF, 1 and 3 pg, respectively.

5.3.8. NrdF as isolated contains a Mn" 2-Ye cofactor. The UV-visible spectrum of NrdF

isolated from E. coli GR536 (Figure 5.15) contains the characteristic sharp and broad features at

408 and 390 nm, respectively, of a Y-. The absence of shoulders at -325 and 370 nm indicates

that the protein has not copurified with a diferric cluster, and the broad absorption feature at

~500 nm is suggestive of a Mn 1
2 cluster.3 4 ,39 The purified NrdF contained only 0.86 0.03

Mn/$2, assayed by atomic absorption spectroscopy, and thus is mainly in the apo form.
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Figure 5.15. Visible spectrum of NrdF (7 gM) isolated from its endogenous levels in E. coli

GR536. The spectrum is consistent with that of the Mnm2-Y cofactor previously described.34
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Additional evidence for the presence of a MnIr 2 -Y- cofactor in the isolated protein was

provided by EPR spectroscopy. We have previously demonstrated that this method allows facile

discrimination between the Mn"12-Y- and FeII 2-Y- cofactors in NrdF due to differences in their

temperature dependence, linewidths, and saturation behavior (Chapter 4). The EPR spectra of

NrdF at 77 and 4.6 K are shown in Figure 5.16. The Yo signal is identical to that of the Mn" 2-

Y- cofactor reconstituted in vitro,34 with strong temperature dependence and linewidths of 450 G

at 4.6 K and 130 G at 77 K. The electronic spin relaxation properties (P112 = 4.2 ± 0.6 mW at 4.6

K, while at 77 K and 100 mW power the signal is only 20% saturated) are also similar to those

previously reported for the Mn"'2-Y- cofactor. These properties differ from those of the FeI" 2-Y-

signal, which displays little temperature dependence from 3.6 to 293 K, a linewidth of 60 G, and

slower electronic spin relaxation (P, 2 = 0.03 ± 0.01 mW at 3.6 K). Spin quantitation of the

purified NrdF Y- gives 0.20 Y--/02. The specific activity of 720 nmol/min/mg compares well

with that observed for MnIr 2-Y- NrdF assembled in vitro with NrdI and 02 (550 nmol/min/mg

for 0.2 Y-/p2). By contrast, the specific activity of diferric-Y- NrdF with 0.2 Y-/p2 is -150

nmol/min/mg. Together, the data demonstrate that the active cofactor of NrdF in vivo is a

Mn" 2-Y- cofactor identical to that which we recently assembled in vitro.

A B

35 3300 33 ' 3400 3450 3000 3200 3600 3800
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Figure 5.16. EPR spectra of NrdF from E. coli GR536 after the first FPLC step (black) overlaid
with Mni"2-Y- reconstituted in vitro (red). A) At 77 K. B) At 4.6 ± 0.2 K.
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5.4. DISCUSSION

5.4.1. In vivo formation of a dimanganese(III)-Y- cofactor in NrdF. A dimanganese-Y-

cofactor was first proposed in 1988 upon isolation of the C. ammoniagenes class lb RNR.6 Over

the past two decades, substantial effort has been devoted to establishing that an active manganese

cofactor is present in the class lb RNRs. The class lb RNRs are structurally homologous the

iron-dependent class Ia enzymes, and when C. ammoniagenes and other NrdFs were expressed

recombinantly in E. coli, iron was incorporated and the protein was active, leading to the

misconception that Fe is representative of the active metallocofactor inside the cell.' 40 Efforts to

isolate NrdFs from C. ammoniagenes and C. glutamicum were successful, but the active

cofactors could not be characterized.6 7 Only recently have active class lb RNRs containing a

dimanganese cofactor been successfully obtained and characterized: by cluster assembly in vitro

in E. coli NrdF, requiring NrdI and 02,34 and by overexpression of C. ammoniagenes NrdF in its

native organism.2

Thus our efforts to isolate the class lb RNR from E. coli initially focused on conditions to

maximize the amount of active enzyme produced. Transcriptional profiling studies under iron

limitation and oxidative stress demonstrated elevated levels of mRNA for the class Ib system

under these conditions. 9-12 In line with earlier studies of mRNA levels, 5 preliminary western

blots also showed that the level of NrdF was elevated by addition of hydroxyurea to the culture

medium. After examination of many variations of growth conditions, a strain created by the

Rensing group lacking all known iron uptake systems and requiring Mn" for growth in Fe-

limited conditions was chosen.

Purification of NrdF was facilitated by taking advantage of our previous observation that

NrdI binds tightly to NrdF. 34 While this affinity purification was successful, the Mn and Y-
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contents of the purified protein were substoichiometric. In retrospect, the majority

(approximately 2/3) of the activity remaining after the affinity step was lost in the DEAE

chromatography step, in large part probably due to the difficulty of separating NrdI from NrdF.

NrdF in the discarded fraction may have had higher Mn loading; given that NrdJ is present at

catalytic levels inside the cell, it is possible that the affinity between these two proteins is

dependent on the Mn loading of NrdF and the oxidation state of the flavin cofactor of NrdI.

However, pulldown experiments with NrdIox and Nrdlhq in vitro have demonstrated that the

NrdI-NrdF interaction is tight in both cases, and the binding affinities of apo- and Mn"2-NrdF for

Nrdlhq also appear to be on a similar order (-50 nM) (Chapter 3). There are several other

possible explanations for the substoichiometric Y, and Mn contents of the purified NrdF. The

possibility that Mn" availability is somewhat limited due to deletion of the major Mn" uptake

system, MntH, is disfavored because growth of a different strain (E coli GR538, see Table 5.1)

containing the Mnr transporter, MntH, in the presence of Mn" led to no increase in the amount

of RNR activity observed in crude extracts relative to E. coli GR536 grown under the same

conditions (data not shown). Alternatively, it is possible that NrdF does not need to be fully

loaded with Mn and Y- to provide sufficient activity for the cells to survive, or that Mn or Y- is

partially reduced in crude cell extracts.

Low Mn and Y- contents have also been observed in the recent isolation of C.

ammoniagenes NrdF, in which the level of NrdF expression was genetically manipulated to be

5% of the total protein,2 and in B. subtilis, in which NrdF expression was upregulated 35-fold

relative to the wild-type levels. 37 Thus, in the cases examined so far, the growth conditions have

been manipulated to maximize amounts of NrdF produced. The substoichiometric amounts of

Mn and Y- in these preparations underscores the need to understand the factors involved in NrdF
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cluster assembly, including regulation of cellular Mn" uptake, the mechanism of Mn" loading of

NrdF, and the importance of the levels of NrdF and accessory proteins like NrdI for efficient

cofactor assembly.

A number of arguments suggest not only that E. coli NrdF can assemble a Mni12-Y*

cofactor in vivo, but also that it is an obligate manganese protein. First, there is a committed

biosynthetic pathway involving NrdI that provides the essential oxidant for cluster formation. To

confirm the essential role of NrdI in cluster assembly in vivo, a knockout of nrdI could be made

in GR536. The GR536 AnrdI strain would be expected to be lethal in the growth conditions

identified in which NrdF contains a Mn" 2-Y* cofactor. Second, if E. coli substitutes or

supplements its Fe-dependent class Ia RNR with the class lb RNR in Fe-limited conditions, it is

reasonable that the class Ib RNR would not use Fe. A similar situation has been observed in E.

coli under Fe-limited growth conditions with superoxide dismutase (SOD), in which the Fe-

dependent SOD is replaced with a Mn-dependent SOD. 4 1 Third, while it is possible that NrdF is

a diiron protein under other growth conditions such as oxidative stress, Imlay and coworkers

have pointed out that oxidative stress is simply a special case of Fe limitation. Oxidation of Fe"

to Fe"', by H20 2 stress, disables the Fe"-responsive transcription factor Fur,42 leading to

derepression of Fur-regulated genes such as nrdHIEF. Finally, in an elegant set of in vivo

experiments conducted contemporaneously with the work described in this chapter, Martin and

Imlay have provided compelling evidence that manganese is required for function of NrdF inside

the cell and that the iron-loaded protein is not sufficiently active to support growth.43 They

found that E. coli AnrdAB mutants have severely compromised growth in iron-limited, defined

media unless Mn" is added to the medium or Mn" import is stimulated by accumulation of 0.5-1

ptM H20 2 inside the cell by deletion of catalase and peroxidase genes (Hpx~). 5'43 These mutants
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also do not grow if Fe" is added instead of Mn", or if mntH is deleted. Furthermore, whole cell

EPR spectroscopy of a AnrdAB strain deficient in major iron uptake pathways, JEM 1121

(AtonB1 AfeoABC AzupT), transformed with pBAD-N-S-nrdF, and grown in minimal medium,

shows a signal consistent with a Mn"'2 -Y- cofactor. When the same experiment is conducted in

a wt strain transformed with pBAD-N-S-nrdF and grown in LB, Fe II2-Y* cofactor is observed.

As the AnrdAB strain does not grow under these conditions, this observation suggests that the

activity of the iron-loaded NrdF is low (or, possibly, that NrdE is not sufficiently induced under

these growth conditions). The independent but complementary approaches in their studies and

our own both have led to the conclusion that F. coli NrdF is an obligate dimanganese protein.

5.4.2. The role of the class Ib RNR in E. coli. The expression of the class lb RNR in iron

limitation and oxidative stress suggests that this system may be especially relevant to K coli and

related enterobacteria such as pathogenic S. Typhimurium when the bacterium is engulfed by a

macrophage, which creates these conditions to weaken and kill invading organisms.44 By

extension, the presumptive use of a Mn" 2-Y- cofactor instead of a diferric-Y- may provide

insight into why so many other pathogenic organisms depend on class lb RNRs as their primary

aerobic source of deoxynucleotides.

Recent work of Gibert and coworkers has begun to address the role of the class lb RNR

in physiological conditions in S. Typhimurium.13 Their studies investigated the survival of

AnrdAB and AnrdEF S. Typhimurium LT2 strains in a macrophage cell line either possessing or

lacking the integral membrane protein Nrampl, which is important in conferring host resistance

to infections by pathogens. Phagocytosis of pathogens by macrophages leads to recruitment of

Nramp 1 to the membrane of the phagosome where it acts as an efflux pump for divalent cations

such as Mn", Fe", and Zn".17 '45 Gibert and coworkers found that NrdEF appears to play an
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important role in the early stages of infection, with deletion of nrdAB not affecting viability of S.

Typhimurium in either Nrampl*' or Nrampl~' macrophages up to 6 h post-infection.

Interestingly, at 24 h, the AnrdAB S. Typhimurium was no longer viable in either macrophage

cell line, but was still viable at 24 h when infecting Nramp I~'~ macrophages in the presence of the

Fe" chelator, bipy. One interpretation of these results in light of our own is that, as long as Fe is

limiting, NrdEF activity is sufficient to sustain viability of S. Typhimurium. The inviability at 24

h in the absence of bipy may be due to the phagosome no longer being sufficiently Fe-limited or

oxidatively stressed for class lb expression to be high enough to support growth.

In support of this hypothesis, the response of the major locus containing S. Typhimurium

virulence genes, Salmonella pathogenicity island 2 (SPI2), to metal efflux by Nrampl is

relatively slow.46 SPI2 has been implicated in promoting survival and replication of the

pathogen within the macrophage in part by interfering with localization of the superoxide-

producing NADPH oxidase, a major part of the host's oxidative response, to the phagosomal

membrane. 47  Furthermore, while Nrampl is directed to the phagosome within 1 h post-

infection,45 transcription of the SPI2 genes is not significantly induced until 6 h.46 In the absence

of Nrampl, chelation of Fe by bipy is able to induce transcription of these virulence genes as

well.46 Therefore, iron limitation and oxidative stress may be particularly severe in the first 6 h

of infection, thus providing a window in which the class lb RNR would be important, until other

cellular processes have been mobilized to counteract the macrophage-mounted defense and Fe"

46becomes more available for metallation of the class Ia RNR. Studies of the time dependence of

metal availability in phagosomes would provide further insight into the struggle between host

and pathogen for metals. These results must be interpreted with caution, however, as the results
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of studies in macrophage cell lines can be highly dependent on the host cell type and the specific

S. Typhimurium strain used.' 7

In addition to active NrdEF, E. coli GR536 cells also contain substantial amounts of

largely inactive NrdAB; this may not be so surprising, however, as unlike nrdHIEF, there is no

evidence that nrdAB is regulated by cellular iron levels via Fur. NrdB could be predominantly in

the apo form or, given that Mn" binds more tightly to NrdB than Fe",48 loaded with Mn", which

cannot be converted to active cofactor. [The specific activity of Mn"2-NrdB exposed to Nrdlhq

and 02 was 59 nmol/min/mg, similar to that of apo-NrdB (70 nmol/min/mg). The observed

activity is likely a result of a very small amount of active diferric-Y- cofactor (<0.01 Y-/p2) in

the apoNrdB preparation.] The presence of a large amount of NrdAB with low activity may

suggest that such extreme Fe limitation is not likely to be physiologically relevant for E. coli and

that the role of the class lb RNR is to supplement, rather than completely replace, class Ia

function in iron limitation and oxidative stress. Alternatively, inactive NrdB (Mn"-loaded or

apo) may remain in expectation of the higher iron levels that would allow its activation. Further

studies are required to elucidate the factors controlling NrdAB and NrdEF expression levels and

activity in E. coli.

5.4.3. Are all NrdFs dimanganese proteins?

5.4.3.1. The role ofNrdI The question of whether all NrdFs, like those of E. coli and C.

ammoniagenes, use manganese or if some use iron must be addressed on an organism-by-

organism basis. Growth and expression conditions, differences in metal homeostatic

mechanisms, cellular metal concentrations, and relative binding affinities of different NrdFs for

Mn" and Fe" all are important factors. The paucity of this information for most organisms

utilizing class lb RNRs makes evaluation of this issue difficult. However, the requirement of
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NrdI for assembly of the Mn"12-Y- cofactor, 3 4 and biochemical 32 and structural4 9 -5 2

characterizations of NrdF and NrdI, allows us to begin to address this question indirectly.

We have previously suggested that NrdI's effectiveness in reducing 02 for Mn1 2 -Y*

cluster assembly arises from two factors: the positive electrostatic environment of the flavin, due

to contributions from basic residues in both NrdI and NrdF (Chapters 2 and 3), and the presence

of a flexible loop region ("50s loop") near the flavin N5 and reactive C4a positions, able to

hydrogen bond with the flavin in both the oxidized and fully reduced states. These hypotheses

are strongly supported by the x-ray structures of these forms of NrdI in complex with NrdF.49

As previously observed for NrdFs,53 genomic analysis reveals that Nrdls can be classified

into three major groups that correlate with the length and composition of the 50s loop [see

Johansson et al. 5' for a phylogenetic tree]. Other properties that appear to differ among the

groups include the binding affinity of NrdI for NrdF, 34'3'54 the electrostatic environment of the

flavin in the NrdI/NrdF complex, 34'49'51 and the protonation state of the NrdI sq form stabilized in

the presence of NrdF.34 The proposed structure-function relationships outlined above, along with

the available biochemical and physiological data, suggest that Nrdls of the same phylogenetic

group function similarly.

The first and largest group of Nrdls includes the proteins from E. coli and C.

ammoniagenes, both of which assemble Mn" 2 --Y- cofactors in vivo. S. pyogenes NrdIl (NrdI*)

also falls into this class and has been reported to be essential for activity of its class lb RNR in

vivo; 55 as discussed in Chapter 3, the assignment of NrdI* as the essential NrdI from this

organism may not be correct due to complexities of the assay.

A second, smaller group contains Nrdls from Lactobacillus, Lactococcus, and

Enterococcus, as well as the nonessential NrdI2 of S. pyogenes and other, likely essential NrdIs
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of Streptococcus species (such as S. sanguinis). These phylogenetically grouped NrdIs have

either -7-residue 50s loops lacking Gly or longer (-14-residue) loops with Gly residues. This

category includes Lactobacillus plantarum, an organism that accumulates high levels of

manganese and does not require iron for growth;56 its class lb RNR is therefore expected to use a

Mn" 2 -Y* cofactor.

NrdIs of the third group contain three-residue 50s loops not capable of hydrogen bonding

to the flavin in the oxidized state. These NrdIs are found predominantly in Bacillus and

Staphylococcus, including B. cereus50 and B. anthracis.5 1 The class lb RNRs of phytoplasmas,

obligate intracellular plant pathogens, also fall into this group; in these cases, NrdI does not exist

as a separate protein but is instead fused to the N terminus of NrdE. Crystal structures and redox

titration experiments of Nrdls from B. subtilis (PDB code 1RLJ), B. cereus,50 and B. anthracis5 1

have been reported. B. subtilis and B. cereus Nrdls share 48% sequence identity. Surprisingly,

although the redox properties of B. subtilis NrdI are similar to those of E. coli NrdI (-30% sq

thermodynamically stabilized),37 B. anthracis and B. cereus Nrdls have been reported to stabilize

-60% and nearly stoichiometric amounts of flavin sq in reductive titration experiments,

suggestive of a function involving one-electron chemistry. As discussed in Chapter 3, these

higher amounts of sq thermodynamically stabilized could arise from only a slightly less positive,

but still net positive electrostatic environment of the flavin. Furthermore, this environment could

easily be modulated by interaction with NrdF (or other protein factors involved in cluster

assembly) (Chapters 3 and 6). Experiments from our laboratory have shown that NrdF from the

closely related B. subtilis assembles a MnI1
2 -Y- cofactor in vivo.37 It remains to be determined

whether the manganese dependency of B. subtilis RNR is the exception or the norm for this
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branch of class lb RNRs, as the B. anthracis and B. cereus enzymes have not been isolated from

their native organisms.

As will be discussed in Chapter 6, in which we show that B. subtilis NrdI produces 02' as

the active oxidant in Mn' 2-Y- cofactor assembly, the details associated with NrdI's function in

cluster assembly in the three phylogenetic groups of class lb RNR systems appear to be distinct.

However, the overall strategy of providing a positive electrostatic environment for 02 activation

by the flavin cofactor appears to be conserved in all Nrdls. This fact, coupled to in vivo

evidence for the relevance of the Mn "2-Y* in each group of class lb RNRs, leads us to propose

that the Mnr12-Y- cofactor demonstrated in E. coli will also be found in the class lb RNRs of all

three phylogenetic groups, although perhaps not in all organisms and in all growth conditions

(section 1.6).

5.4.3.2. The essential physiological role of Mn. A large number of prokaryotes have

been documented to require Mn for growth and, in the case of pathogens, virulence. Some, like

Lactobacillus plantarum56 and the radiation-resistant Deinococcus radiodurans,57 which both

encode class lb RNRs, do not require iron for aerobic growth and accumulate high levels of

intracellular Mn, as determined by metal analysis of cell extracts. The Lyme disease pathogen,

Borrelia burgdorferi, which has been shown to require Mn but not Fe for growth; 58 although this

organism does not possess any RNR, other Borreliae contain class lb RNRs.59 While other

prokaryotes that depend on class lb RNRs for aerobic growth have not completely done away

with a requirement for iron, they also have been shown to accumulate high levels of Mn. The

affinities of regulators of Mn" transport, for example MntR from B. subtilis and AntR from B.

anthracis AntR, are high - 160 and 60 pM, respectively 60'6 - suggesting that the concentration

range of weakly bound Mn" in these organisms may be of a similar order. Mn" has also been
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reported to be crucial for full virulence of the pathogenic organisms including S. Typhimurium,

17,45,62S. aureus, and S. pyogenes 1,. In Streptococcus sanguinis, deletion of the putative Mn"

transporter SsaB leads to a 1000-fold decrease in virulence. 63 In fact, the host's immune

response devotes much energy to making both Fe" and Mn" limiting nutrients in the phagosome.

Despite the importance of manganese, the essential roles that it plays are not well

understood. Relatively few enzymes have an absolute requirement for this metal. A long-

standing hypothesis is that one of the major physiological functions of the high levels of Mn",

complexed mostly with phosphates and nucleotides in the cell, is to counteract oxidative stress

by acting as a superoxide dismutase (SOD) to disproportionate superoxide into H20 2 and 02.56

This proposal is supported by in vitro studies of Mn"-phosphate complexes 64' 65 and recently by

electron nuclear double resonance spectroscopic studies of whole S. cerevisiae cells.66 Such a

role could be particularly important for pathogens, as superoxide is a key part of the host's

oxidative defense. Alternatively, the essential role of Mn" may be related to MnSOD activity.

Others have suggested that Mn" can act as an essential Lewis acid in some enzymes,5 , 7

especially to replace Ferl in certain conditions to prevent oxidative damage by Fenton

chemistry.
5' 67' 68

Fe and Mn homeostasis appears to be quite different in the bacteria described above than

in E. coli, which may explain why E. coli and related enterobacteriaceae are the only prokaryotes

that contain both class Ia and lb RNRs, and why their class Ib RNRs are only expressed in iron

limitation and oxidative stress. Overexpression of all NrdFs reported to date in E. coli grown in

rich medium leads to incorporation of Fe and diferric-Y- formation with widely varying levels.

By contrast, when C. ammoniagenes NrdF is overexpressed in its native organism in the

presence of iron, it is still not loaded with iron. 2 In E. coli grown in a defined minimal medium,
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Mn levels are quite low -- 15 pM5 - compared with ~1 mM Fe, 69 although most of this Fe is not

readily bioavailable. 70 No Mn" chaperones are known, and we suggest that bioavailable iron

levels are normally too high and manganese levels too low in enterobacteriaceae to metallate the

class Ib RNR correctly with manganese, and only in Fe limitation or oxidative stress is the ratio

of free Mn" to Fe" high enough to allow Mn to effectively compete with Fe" for binding to

NrdF. In other class lb-containing organisms, metal homeostasis may be controlled in such a

way that there is less Fe" and more bioavailable Mn" for loading NrdF, such that it is correctly

metallated with Mn" in normal growth. In other cases, the situation could be even more

nuanced. For example, S. sanguinis NrdF, the organism's only aerobic RNR, has approximately

equal activities (on a per-Y- basis) with MnIII2 -Y- and Fe" 2 -Y- cofactors in vitro (0. Makhlynets

and J. Stubbe, unpublished data). In this organism, nrdI is not contained on the operon

containing the rest of the class lb RNR genes, nrdHEF. The separation of nrdI from nrdF on the

chromosome suggests that, in some conditions, the genes may not be coregulated. A plausible

scenario is that in Fe-limited conditions, nrdI and nrdHEF may be regulated together and NrdF

contains a MnI112-Y- cofactor, whereas in Fe-replete conditions, the Fe" 2 -Y- cofactor can self-

assemble and NrdI might not be expressed. Ultimately, the answers to these questions may come

down to the subtleties of how each organism controls Mn" and Fe" homeostasis.

We propose that the Mn requirement of many prokaryotes is linked, at least in part, to a

Mn requirement for the class lb RNR. The essential function of RNR for deoxynucleotide

provision for replication and DNA repair in certain conditions is an obvious explanation for a

requirement for Mn. The Mn-dependence, rather than Fe-dependence, of the class Ib RNRs of

these organisms may reflect the struggle between host and pathogen for essential metals.
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5.4.4. Conclusion. The activity of NrdFs of E. coli3 4 and C. ammoniagenes2 - and more

recently B. subtilis,37 B. anthracis,53' 54 and B. cereus71 - with both Fe"' 2-Y- and Mn"12-Y*

cofactors demonstrates that the metal coordination environment in NrdF itself is not the primary

determinant of the NrdF's active form. Instead, the redox properties of NrdI, the mechanism of

metallation of NrdF, cellular Mn and Fe homeostasis, and regulation of RNR expression all

appear to play roles. The biochemical and physiological data presented here argue that most, if

not all, class Ib RNRs are dimanganese proteins in vivo, at least in growth conditions examined

thus far. Ultimately, however, parallel in vitro and in vivo studies of a number of class Ib RNR

systems, such as we have presented in this thesis will be necessary to determine 1) whether all

class Ib RNRs contain Mnr12-Y- cofactors inside the cell, and 2) what factors are responsible for

imparting cofactor specificity in vivo.
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Chapter 6

Mechanism of assembly of the dimanganese-tyrosyl
radical cofactor of class Ib ribonucleotide reductase:
Enzymatic generation of superoxide is required for

tyrosine oxidation via a Mn(III)Mn(IV) intermediate

315



6.1. INTRODUCTION

Ribonucleotide reductases (RNRs) catalyze the reduction of nucleotides to their

corresponding deoxynucleotides and serve as the only de novo source of the deoxynucleotides

required for DNA replication and repair for all organisms.' RNRs are classified 2 on the basis of

the stable metallocofactor required for transient generation of a cysteine thiyl radical 3'4 that

initiates nucleotide reduction. In the cases of the structurally homologous class Ia and Ib RNRs,

the oxidizing equivalent necessary for reversible thiyl radical generation is stored as a stable

tyrosyl radical (Y-) in the enzymes' $2 subunits. The essential Ye is generated by reaction of a

reduced, dinuclear metal cofactor with an oxidant. In class la RNRs, the active cofactor is a

diferric-Y- (Fe" 2-Y-), which can be assembled in vitro and in vivo using 02 as oxidant.5'6

Although class lb RNRs can also assemble an active Fe" 2-Y- cofactor in vitro in their p2

subunits (NrdFs), we recently discovered that an active dimanganese(III)-Y- (Mn"r2-Y-) cofactor

can be generated as well.7  The relevance of the Mn'" 2 -Y- cofactor in vivo has been

demonstrated recently by purification of the NrdFs of Corynebacterium ammoniagenes,8

Escherichia coli,9 and Bacillus subtilis'0 from their native organisms; this result is likely

extendable to most or all class lb RNRs.9 Unlike the Fe" 2 forms of the class Ia and Ib RNRs, the

Mn"2 form of NrdF is unreactive with 02, '" and Mn"'12-Y- assembly in vitro requires a

flavodoxin-like protein conserved in class lb systems, NrdI, in addition to 02.7 Here we report

our efforts to elucidate the mechanism of Mn"12 -Y. cofactor assembly and the essential role of

NrdI in the B. subtilis class Ib RNR using stopped flow (SF) absorption and rapid freeze quench

(RFQ) EPR spectroscopies.

Extensive studies of the mechanism of FeI" 2-Y- cofactor assembly 12 in class Ia RNRs

(Scheme 6.1) have provided a framework for thinking about the mechanism of Mn1" 2 -Y-
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cofactor assembly. The Fer12 -Y- cofactor can be self-assembled in vitro from apo-2, Fe", 02,

and a reducing equivalent (Scheme 6.2A). The diferrous form of the protein reacts with 02 to

generate a p-peroxodiferric intermediate.13"14 This intermediate is reduced by a neighboring

tryptophan residue (W48 in . coli class Ia RNR) to form a Fer1FeIv intermediate, termed X, 5-'9

and a tryptophan cation radical (W').15 ,2 0 ,2 ' X is the species responsible for oxidation of the

catalytically essential tyrosine (Y122 in E. coli class Ia). In the presence of excess reducing

equivalents (Fe", ascorbate, or thiols), this W+' does not accumulate.' 5 A protein factor, the

ferredoxin YfaE in E. coli, is proposed to act as the donor of the extra electron in vivo.2 2

Scheme 6.1. Mechanism of diferric-Y- cofactor assembly in class Ia RNRs.

OH 02 f-( OH H20

Fe" Fell Fe"ll F e Fe'' Fe"1

Intermediate X

Our previous results have provided the first and, to date, only insight into the mechanism

of Mn' 2 -Y- cofactor assembly by demonstrating that reconstitution of that cofactor in vitro is

only possible in the presence of Mn", 02, and the reduced (hydroquinone, hq) form of NrdI.7

Our studies of Mn' 2-Y* assembly in E. coli suggested that NrdI reacts with 02 to generate an

oxidant competent to oxidize the Mn" 2 cluster, and that this oxidant channels within a NrdI-NrdF

complex from its site of production at the FMN cofactor of NrdI to the metal site in NrdF. This

channeling proposal has been supported by the crystal structure of the E. coli NrdI*Mn" 2-NrdF

complex. 23 NrdI could conceivably generate either HOO(H) (represented as H2 0 2 in Scheme

6.2B) or 02' (Scheme 6.2C) as the oxidant; previous experiments were unable to distinguish

between these options.2,7
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Scheme 6.2. (A) Stoichiometry of diferric-Y- cofactor assembly in the E coli class Ia RNR. (B)
and (C) Proposed stoichiometries of dimanganese-Y- cofactor assembly in K coli and B. subtilis
class lb RNRs with H2 0 2 and 02' as oxidants.

(A) 2Fell + Y122 OH + 02 + e- +H Fel"-'Feli + Y122 0 - + H20

(B) 2Mn" + Y105 OH + 2H202 + e- + H* - o Mn1"' NMnIl + Y105-j- O- + 2H 20

H20"

(C) 2Mn" + Y10+ 2+ H+ 1 Mn"' 'oMn1'" + Y105-c& O-
H20'**

MnI" 2-Y- cluster is assembled in vitro with the highest yields to date in B. subtilis NrdF

(0.6 Y-/p2), 0 providing an opportunity to follow the cluster assembly reaction in this system by

SF absorption and RFQ-EPR spectroscopies. The results of these studies, presented in this

manuscript, strongly suggest that the oxidant is 02'~, produced by reaction of Nrdlhq with 02,

oxidizing NrdI to its neutral semiquinone form, Nrdlsq. The first metal-centered intermediate

observed is a Mn1nMnv species, which is kinetically competent to oxidize tyrosine to Y-. This is

the first catalytically relevant MnIMniv dimer in biology, and the analog to X in Fe" 2-Y-

cofactor assembly. With 02' as oxidant, the exact number of oxidizing equivalents necessary for

tyrosine oxidation are provided, and the neighboring W residue does not appear to be oxidized

during cluster assembly. Thus 02'~ is an elegant solution to both the unreactivity of the Mn 2

cluster with 02 and the need for three electrons for Mn"' 2 formation and tyrosine oxidation.

6.2. MATERIALS AND METHODS

6.2.1. General considerations. Chemical reagents and CuZn superoxide dismutase from bovine

erythrocytes (SOD, specific activity of 4000 U/mg) were obtained from Sigma-Aldrich at the

highest purity available. Manganese concentrations were determined using a Perkin-Elmer
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AAnalyst 600 atomic absorption (AA) spectrometer and a Mn standard solution (Fluka). Iron

quantification was carried out using the ferrozine method. SF experiments were carried out

using an Applied Photophysics DX 17MV instrument with the Pro-Data upgrade, using a PMT

detector. RFQ experiments were performed using an Update Instruments 1019 syringe ram unit

and a model 715 syringe ram controller. In both cases, the temperature was maintained at 25 'C

using a Lauda circulating water bath. The temperature of the isopentane bath for RFQ was

maintained using a liquid N2 jacket and monitored using a Fluke 5211 thermometer with an

Anritsu Cu thermocouple probe. Calibrated EPR tubes (3.2 ± 0.01 inner diameter) were from

Wilmad Labglass. For anaerobic experiments, protein solutions and buffers were degassed on a

Schlenk line with 5-6 cycles (protein) or 3 cycles (buffer) of evacuation and refilling with Ar and

then brought into an anaerobic chamber (MBraun) in a cold room at 4 'C. A small amount of

precipitation of both NrdI and NrdF was observed upon degassing; the solutions were

centrifuged in the anaerobic chamber before use.

6.2.2. Protein purification. N-terminally His6-tagged apoNrdF (tag: MGSSH 6SSGLVPRGSH)

was purified as previously described,' 0 with 1,10-phenanthroline added to the culture medium at

100 pM 20 min prior to induction.2 5 An additional chromatographic step was added to the

published procedures to increase purity and remove minor DNA contaminants. Purifications

were typically carried out starting from ~24 g cell paste (16-18 L growth). The eluent following

Ni-NTA chromatography (10 mL column, 2.5 x 2 cm) was diluted 4-fold in 50 mM Tris, 5%

glycerol, pH 7.6 (Buffer A) and loaded onto a Q Sepharose column (30 mL, 2.5 x 6.5 cm)

equilibrated in Buffer A containing 150 mM NaCl, washed with 2 column volumes of the same

buffer, and eluted with a 100 x 100 mL gradient of Buffer A containing 150 - 450 mM NaCl.

ApoNrdF eluted at 280-380 mM NaCl. The pooled fractions were concentrated and exchanged

319



into 50 mM HEPES, 5% glycerol, pH 7.6 (Buffer B) using an Amicon Ultra 30 kDa MWCO

centrifugal filtration device, yielding 7-8 mg/g cell paste. ApoNrdF concentrations (expressed

per $2) were assessed using &2 8 0 = 110 mM 1 cm 1.10 ApoNrdF contained <0.01 Mn/$2 as

purified.

N-terminally His6-tagged NrdI (tag: MGSSH 6SSGLVPRGSH) was purified as

described'4 with minor modifications. Following Ni-NTA chromatography, the eluent was

diluted 4-fold in 50 mM sodium phosphate, 5% glycerol, pH 7.6 and loaded onto an SP

Sepharose column (10 mL, 2.5 x 2 cm), which was washed with 4 column volumes of Buffer B

and eluted with Buffer B containing 200 mM NaCl. The eluted protein was concentrated and

exchanged into Buffer B using an Amicon Ultra 10 kDa MWCO centrifugal concentrator.

6.2.3. Determination of the UV-visible spectra of NrdI in the oxidized (ox), sq, and hq

forms. The extinction coefficient of oxidized NrdI at 449 nm in Buffer B was determined to be

12.3 mM~1 cm-' by trichloroacetic acid precipitation as described.26 ,27 From this value, the

spectra of the hq and sq forms were determined as described for E coli NrdI.26

6.2.4. Preparation of Nrdlhq, Mn"-loaded NrdF, and 0 2-saturated buffer. Anaerobic

solutions of NrdI (350-450 pM) were reduced by titration with a solution of sodium dithionite

(5-6 mM in Buffer B), in a septum-sealed anaerobic cuvette fitted with a gastight syringe with

repeating dispenser. 2 6  Sodium dithionite was added in 1 pL aliquots and monitored

spectrophotometrically (300-800 nm) until no further change occurred. There was <5% excess

dithionite in the resulting Nrdlhq solutions.

To a solution of ~450 pM apoNrdF, a solution of 3-10 mM MnCl2 in Buffer B (Mn

concentration determined by AA spectroscopy) was added to a final concentration of 3.5
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Mn"/p2. The protein was incubated 1-2 min before use. For most SF experiments, the NrdF

solutions were aerobic, while for the highest concentration SF experiments and RFQ-EPR

experiments, the procedure was carried out in an anaerobic chamber. We denote this protein

"Mn"-loaded NrdF" rather than "Mn" 2-NrdF" because titrations of apoNrdF with Mn" monitored

by EPR spectroscopy show that not all of the added Mn" is bound under these conditions.

0 2-saturated Buffer B was prepared immediately prior to use at 23 'C by sparging with

100% 02 in a covered container for 0.5-1 h (nominally 1.3 mM 0228). Where noted, SOD

(section 6.2.1) was added to the buffer at a final concentration of 100-500 U/mL.

6.2.5. Determination of the UV-visible absorption spectra of the Mn"12 cluster and the Ye.

6.2.5.1. Preparation of Mnw2rY- NrdF. Mn"'2-Y- NrdF was prepared by mixing an

anaerobic solution of 150 pM Mnr 2-NrdF and 100 gM Nrdlhq in Buffer B with 0 2-saturated

buffer in a 1:1 ratio at 25 'C (7 mL total volume). These concentrations were chosen because the

RFQ-EPR experiments were carried out under the same conditions. The protein solution was

then incubated on ice for 30 min with 5 mM EDTA to chelate unreacted Mn" and loaded to a Q

Sepharose column (3 mL, 1 x 3.5 cm) preequilibrated in Buffer B containing 100 mM NaCl, and

the column was washed with 9 mL of the same buffer. NrdI eluted in the loading and wash

fractions. NrdF was eluted with 4 mL Buffer B containing 500 mM NaCl. Protein-containing

fractions were pooled and repeatedly diluted with Buffer B and concentrated to <10 mM NaCl.

The resulting Mnm2-Y- NrdF contained 1.0 Mn/s2 and 0.36 ± 0.01 Y-/2.

6.2.5.2. Reduction of Y- using hydroxylamine. Determination of the spectra of Mn"' 2

cluster and Y- is complicated by the ability of Y- scavengers such as hydroxyurea and

hydroxylamine to also reduce the Mn'"2 cluster, albeit more slowly than Y-. 7 Therefore, Y-

concentration (by EPR spectroscopy), Mn concentration (by AA spectroscopy), UV-vis spectra

321



had to be correlated before treatment of Mn" 2-Y- NrdF with NH 2OH and after NH2OH removal.

At 23 *C, a UV-vis spectrum was acquired of 300 ptL Mnl"2-Y- NrdF (200 pM) in Buffer B

containing 5 mM EDTA. The EDTA was present to remove Mn" formed by reduction of Mn' 2

cluster by NH2OH. After addition of NH2OH to a final concentration of 0.5 mM, spectra were

acquired every 1-2 min, until the sharp signature of the Ye at 409 nm was completely abolished

(<10 min). The sample was immediately loaded at 4 'C onto a Sephadex G-25 column (1 x 6.5

cm, 5 mL) preequilibrated and eluted with Buffer B, and 0.5 mL fractions were collected.

Protein-containing fractions were pooled and concentrated to 300 pL using a Microcon 30 kDa

MWCO centrifugal filtration device (Amicon). A UV-vis spectrum was acquired of the resulting

undiluted Mn" 2-NrdF, the protein concentration was measured (C2 80 = 110 mM~1 cm'1) 2 9 and Mn

was quantified by AA spectroscopy.

6.2.5.3. Extinction coefficient determination. Because the extinction coefficients of

Mn"12 clusters are very low, the contribution of the protein scattering was subtracted from the

Mn"' 2-NrdF spectrum using a spectrum of apoNrdF. Using the resulting spectrum and the AA

results, the extinction coefficients for the Mn"12 cluster were determined assuming all of the Mn

associated with NrdF was in Mn"12 clusters. While we cannot demonstrate this with certainty,

2/3 of the Mn is associated with Y- (prior to Y. reduction) and is therefore dinuclear;

furthermore, as Mn" 2 cluster absorption bands likely arise from d-d transitions rather than

charge transfer,30 the spectrum of the Mn" 2 cluster should closely resemble that of two

mononuclear Mn1" ions. As each Y- is associated with 2 Mn"I ions, the initial 200 pM Mnl"2 -Y-

NrdF sample (1.0 Mn/p2, 0.36 Y-/p2) contained 30 pM Mn" 2 cluster not associated with Y-.

Subtraction of the protein scattering and the contribution of 30 pM Mn' 2 cluster from the initial

NrdF spectrum yielded the spectrum of the Mn" 2-Y* cofactor. Subtracting 70 pM Mn" 2 cluster
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from the Mn"'12 -Y- cofactor spectrum yielded a nonsensical Y- spectrum with negative

absorbances; however, scaling the Mn' 2 cluster spectrum by 35% and subtracting it from the

Mn" 2 -Y- cofactor spectrum gave a spectrum similar to the Y- associated with the diferric-Y-

cofactor (see Figure 6.21B). This difference spectrum represented Y-. The extinction

coefficient of Y. was calculated using this spectrum and the Y- concentration of the initial

sample determined by EPR spectroscopy. The entire determination was repeated 5 times using

two different preparations of Mnm'2-Y- NrdF and the average was used for Figure 6.1B.

6.2.6. Fluorometric determination of the Kd for Nrdlhq binding to Mn"2-NrdF. Fluorescence

titration studies were carried out using a Photon Technology International QM-4-SE

spectrofluorometer equipped with FELIX software and 0.5 mm excitation and 0.75 mm emission

bandwidth slits. The excitation wavelength was 380 nm and the emission data were acquired at

475-625 nm, with 1 nm steps and 0.5 s integration time.

All solutions were prepared in the anaerobic chamber. A typical experiment contained in

a final volume of 700 ptL: 1 pM apoNrdF, 4 jiM MnCl 2, and 100 pM dithionite in Buffer B.

Excess dithionite was added to ensure anaerobicity throughout the duration of the titration. This

solution was placed in a semi-micro quartz fluorometer cell (10 mm pathlength, Starna Cells),

which was sealed with a septum and screw cap. An airtight 50 pL Hamilton syringe containing

240 pM Nrdlhq and 100 gM dithionite in Buffer B, fitted to a repeat dispenser, was inserted into

the cuvette. The apparatus was removed from the glovebox and equilibrated at 23 'C for 5 min,

at which time a baseline spectrum was recorded. NrdIhq was then added in 1 or 2 pL aliquots, the

sample was mixed by inversion and equilibrated for 1 min, and the spectrum was recorded. The

shutter was opened just before each scan and closed immediately after to minimize

photobleaching. The final concentration of Nrdlhq was 15 pM. Data were analyzed by the
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method of Eftink,3 1 described in section 6.2.6.1, and provided the stoichiometry (n) of NrdI

binding (n) and the Kd for its interaction with NrdF.

6.2.6.1. Analysis offluorometric data to determine the affinity of the NrdIhq*Mn"2-NrdF

interaction. The molar fluorescence of unbound Nrdlhq, FL, was determined by titration of a

solution containing Nrdlhq (240 pM) and dithionite (100 pM) in Buffer B into 700 pL Buffer B

containing 100 pM dithionite (final concentration of Nrdlhq in the cuvette was 15 9M).

Fluorescence at 517 nm (after accounting for the volume change upon NrdI addition) was plotted

against Nrdlhq added and the slope of the least-squares regression line represented FL-

The molar fluorescence of bound Nrdlhq, FML, was determined relative to FL by acquiring

spectra of 2 RM Nrdlhq in the presence of 0-25 gM Mn"-loaded NrdF, 100 pM dithionite, in

Buffer B. The fluorescence intensity was saturated at ~ 15 M NrdF, and this value was used to

determine FML = 2.4FL-

For each point in the titration of 1 gM Mn"-loaded apoNrdF with Nrdlhq, the fluorescence

change associated with binding of Nrdlhq to NrdF, AF, was calculated according to

AF=F-Fo-FL[L]T (6.1)

where F is the total fluorescence at 517 nm, Fo is the initial fluorescence at 517 nm of the

solution containing 1 pM Mn"2-NrdF, and [L]r is the total concentration of NrdI (pM) at each

point in the titration. The concentration of free Nrdlhq, [L], was extracted after each addition of

Nrdlhq by rearranging equation (6.2) to give equation (6.3):

F= FL[L] + FML([L]T - [L]) (6.2)

[L] = F - FML [L]T (6.3)
FL - FML

The values of AF and [L] for each titration point were plotted and fit to equation 6.4,

AF = (nK[L]AFmax)/(1 + K[L]) (6.4)
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where K is the association constant for NrdI-NrdF, n is the stoichiometry of NrdI binding (per

NrdF dimer), and AFm is the maximum fluorescence change associated with Nrdlhq binding,

expressed as

AFmax= [M]T(FML - FL) (6.5)

where [M]T is the concentration of NrdF.

6.2.7. Kinetics of MnrI2-Y* cofactor assembly monitored by SF absorption spectroscopy.

SF kinetics experiments were carried out at 25 ± 1 0C, maintained using a Lauda circulating

water bath. The SF apparatus is in the open air; to minimize 02 contamination, the connections

of the syringes were purged continuously before and during the experiment with N2, and prior to

the experiment, the SF lines were rinsed with 10 mL 300 mM dithionite followed by 25-30 mL

anaerobic Buffer B. In a typical experiment, 20 gM Nrdlhq in Buffer B, prepared anaerobically

in a gastight Hamilton syringe, was mixed in a 1:1 ratio with 0 2-saturated Buffer B (1.3 mM 02),

drawn up into a gastight Hamilton syringe and also containing 500 U/mL (~0. 1 mg/mL) SOD

(section 6.2.1) and either no NrdF, 50 pM apoNrdF, or 50 jM Mn"-loaded NrdF (3.5

Mn"/NrdF). The reaction was monitored at single wavelengths (340, 410, or 610 nm), 4-5 shots

were collected and averaged, and repeated in 2 or 3 separate experiments. The reaction was also

monitored from 310 to 700 nm in 10 nm intervals (one shot per wavelength, performed on five

separate occasions and each data set analyzed independently); after blanking the instrument at

each wavelength, a zero timepoint spectrum was also obtained by mixing 20 pM Nrdlhq 1:1 with

anaerobic Buffer B. Global analysis of the multiwavelength SF data was carried out in KinTek

Explorer v 3.0 with SpectraFit.32,33
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6.2.8. Kinetics of Mnn'2-Y- cofactor assembly monitored by RFQ-EPR spectroscopy. In a

typical experiment, Mn"2-NrdF (150 jLM, 3.5 Mn"/p2) and Nrdlhq (100 ptM) 34 in Buffer B in one

syringe, prepared in the anaerobic box, was mixed with 0 2-saturated Buffer B in the second

syringe in a 1:1 ratio at 25 'C ± 1 'C, maintained using a Lauda circulating water bath, and aged

for a pre-determined time period (6 ms - 60 s) in the reaction loop. The reaction mixture (350-

400 pL) was sprayed, using a drive ram velocity of 1.25-3.2 cm/s,35 into liquid isopentane at

-140 ± 5 *C in a glass funnel attached to an EPR tube. 36 The samples were packed into the EPR

tubes using a stainless steel rod and stored in liquid N2 until analysis. Under these conditions, no

decay of Nrdlsq and the MnIMnIv intermediate was observed during storage for 1 month, but

-20-30% decay was observed over 7 months. The quench times stated in the Results (11 ms -

60 s) include the time required to pass through the reaction loop after mixing plus an estimated 5

ms for quenching. The packing factor for NrdF was determined to be 0.55 ± 0.03, using Fe" 2-Y-

NrdF, prepared as described,10 in Buffer B. The packing factor did not differ significantly when

NrdI was included.

6.2.9. EPR spectroscopy. The concentrations of Y- and Nrdlsq in reconstituted and RFQ-EPR

samples were determined on a Brniker EMX X-band spectrometer at 77 K using a quartz finger

dewar. Analysis of Y- has been described.7 Analysis of the sq was carried out at 77 K using the

following parameters: 9.34 GHz frequency, 5 1iW power, 5 x 104 gain, 100 kHz modulation

frequency, 1.5 G modulation amplitude, 5.12 ms time constant, 20.48 ms conversion time. Spin

quantitation of both Y- and sq was carried out using an E. coli Fe" 2-Y- NrdF standard sample

calibrated against a Cu" perchlorate standard.37 For measurements at <77 K, EPR spectra were

acquired using an Oxford Instruments ESR900 liquid helium cryostat with acquisition

parameters indicated in the appropriate figure legends.
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6.2.10. Determination of rate constants of NrdI comproportionation and disproportionation

by SF absorption spectroscopy. NrdI was reduced by anaerobic titration with sodium

dithionite as described 26 and the SF apparatus was prepared as described in section 6.2.7. In a

typical experiment, one syringe contained 20 pM Nrdlhq in Buffer B and the second contained 20

tM NrdIx either alone or with 80 pM apoNrdF. The reactions were monitored at 25 *C at 610

nm from 1.5 ms to 15 or 200 s, respectively. At least three replicate traces were collected and

averaged in three separate experiments and analyzed using KinTek Explorer v. 3.0 according to

equation 6.6 (section 6.3.5).

6.2.11. Data analysis. Nonlinear least-squares fitting of single wavelength data from SF and

RFQ-EPR experiments to sums of single exponentials was carried out using Origin (Microcal) or

KaleidaGraph (Synergy Software). All other kinetic analysis used KinTek Explorer v. 3.0 with

SpectraFit.32,33

6.2.12. Construction, expression, and purification of Y105F and W30Q NrdF mutants.

Primers for site-directed mutagenesis (Invitrogen) were: Y105F: 5'-C GCT GTC CAT GCG

AAG TCG TTC TCT AAT ATT TTC ATG-3' and W30Q: 5'-C CAA AAC GTG AAA CAG

TTC CAG CTT CCG GAA GAG ATT GC-3' (mutated codon underlined) and their reverse

complements. Mutagenesis of pET14b-nrdF0 was carried out using Platinum Pfx DNA

polymerase (Invitrogen) following the manufacturer's protocol. Clones were sequenced at the

MIT Biopolymers Facility.

Y105F-NrdF was expressed in K coli as apoprotein and purified similarly to wt

apoNrdF. 10  Briefly, K coli BL21(DE3) cells transformed with pET14b-nrdF(Y105F) were

grown in LB to an OD 600 of 0.6, at which point 100 pM 1,10-phenanthroline was added to the

327



culture medium. After 25 min, protein expression was induced by addition of 0.4 mM IPTG.

Cells were grown for an additional 4 h and harvested by centrifugation, yielding 14 g wet cell

paste from 8 L culture.

The cell paste was resuspended in 70 mL 50 mM sodium phosphate, 10 mM imidazole,

5% glycerol, pH 7.0, with 100 pM 1,10-phenanthroline, 1 mM PMSF, and 5 U/mL DNase.

After lysis by passage through a French pressure cell (14000 psi) and centrifugation (35000 g, 20

min), the supernatant (75 mL) was loaded to a 4 mL Ni-NTA column, which was washed with

35 CV of the same buffer. The protein was eluted with 7 CV 50 mM sodium phosphate, 250

mM imidazole, 5% glycerol, pH 7.0, and exchanged into 50 mM HEPES, 5% glycerol, pH 7.6

by repeated concentration and dilution steps using an Amicon Ultra 30 kDa MWCO centrifugal

filtration device. The protein yield was 95 mg (7 mg/g cell paste).

W30Q-NrdF was expressed similarly, except that 5% glycerol was included in the culture

medium to increase the amount of the protein present in the soluble fraction following lysis.3 8

The yield from 8 L culture was 17 g wet cell paste. The purification protocol was analogous to

that for Y105F, except that the buffers contained 10% glycerol. The protein yield was 28 mg

(1.6 mg/g cell paste).

Reconstitutions of Y105F- and W30Q-NrdFs with manganese and iron were carried out

as described.7 10

6.2.13. Attempts to assemble Mnm2-Y- cofactor using exogenous superoxide. The

experimental setup was similar to that of Bull and Fee. 39 Stable solutions of superoxide were

prepared as described by Valentine and Curtis,40 under Ar on the day of the SF experiment. In a

crimp vial, 0.4 g 18-crown-6 and -60 mg K0 2 (greater than the solubility limit) were weighed

out, and 5 mL anhydrous DMSO was added using a gastight syringe. The solution was mixed
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and the vial was sealed. The SF apparatus, maintained at 25 ± 1 *C using a circulating water

bath, was set up according to the Scheme 6.3.

Scheme 6.3. Experimental setup for attempts to assemble Mnm2-Y- cofactor using exogenous
superoxide.

Syringe A (2.5 mL): Syringe D (2.5 mL):
5 mM Na 2CO 3, pH 10.2 Mn" 2-NrdF in 50 mM

HEPES or TAPS
Syringe B (0.25 mL):
K0 2 in 0.3 M 18-crown-6
in DMSO

Mixer 1
Mixer 2 Syringe C (2.5 mL):

il 50 mM HEPES or
Incubation loop TAPS

UV-vis

Syringes C and D contained either 50 mM HEPES, pH 7.6; 50 mM HEPES, pH 8.0; or

50 mM TAPS, pH 8.5. These buffers were sparged with Ar for 10 min before loading onto the

SF instrument. In experiments containing NrdF, syringe D also contained 40 pM apoNrdF and

160 gM MnCl 2. The contents of syringes A and B were mixed (drive volume 200 ptL) and, after

aging for 10 ms, mixed with the contents of syringes C and D (drive volume 180 pL). The initial

concentration of superoxide, generally >1 mM, was assessed from the A3Onm after the second

mix, using 630o = 284 M~1 cm~1.39 The rate of superoxide disproportionation decreased at higher

pH. The presence of Mn"-loaded NrdF did not significantly affect the rate of disappearance of

superoxide (monitored at 300 nm) and did not significantly affect the SF traces at 340 nm,

suggesting no evidence of cluster assembly under these conditions.
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6.3. RESULTS

6.3.1. Proposed model for dimanganese(III)-Y- assembly. Here, we describe rapid kinetics

studies, using SF absorption and RFQ-EPR spectroscopies, of the mechanism by which NrdI is

involved in Mn"12-Y. cofactor assembly in the B. subtilis class Ib RNR. Our studies have led to

the working model in Scheme 6.4. Specifically, our evidence as described subsequently

supports 1) one-electron reduction of 02 by Nrdlhq to generate 02'~; 2) formation of a MnIIMnIV

intermediate at a rate slower than 02'~ production; and 3) decay of the MnlIMnIv intermediate

concomitant with Y- generation.

Scheme 6.4. Proposed mechanism of Mn"12 -Y- cofactor assembly in B. subtilis NrdF. Rate
constants were measured in this study. The detailed structures of the proposed Mn"Mn"'-OO(H)
and MninMnv intermediates, as well as the oxidation state of NrdI when it dissociates from
NrdF, are unknown. Site 2 is indicated in red.

OH Nrdlh 40-65s1 - OH Nrdq 2.4-5 s-1 fast

conformational H+
change?

Mni Mnil 02 Mnil Mnil

NrdF

fast OH 0.06-0.2 s*O
HO-0 H 1H20

MnniMni Mn Mn MnII Mn|Ul

0.8 s~

02 0?

6.3.1.1. Information required for experimental design and spectral deconvolution. In

order to design the SF and RFQ-EPR experiments that led to Scheme 6.4, a number of

preliminary experiments had to be carried out. First, it was necessary to obtain the UV-vis
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absorption and EPR spectra of starting materials and products. Second, a potential complicating

factor to the kinetics of NrdIhq oxidation is FMIN comproportionation and disproportionation.

Because minimal studies of the reaction of flavodoxins, and no studies of the reaction of Nrdls,

with 02 have been reported, the rates of the comproportionation and disproportionation reactions

also had to be assessed to ensure that they did not contribute significantly in the analysis. Third,

knowledge of the affinity between NrdIhq and Mn"2-NrdF was required to ensure complex

formation under the experimental conditions. As noted above, B. subtilis assembly was chosen

to study mechanism as 0.6 Y-/02 can be assembled.10 However, ensuring that >95% of NrdI was

bound to NrdF to simplify the kinetics of Nrdlhq oxidation is of greater importance than

maximizing Ye production, only 0.35 Y-/p2 under the conditions used below. This

substoichiometric cluster assembly complicates the analysis, but the rate constants of the four

observable processes fortuitously span three orders of magnitude (Scheme 6.4), enabling us to

probe the reaction mechanism despite these complexities.

6.3.2. UV-visible absorption spectra of NrdI, Mn" 2-NrdF, and Ye. Analysis of the SF data

requires knowledge of the UV-vis absorption spectra of the stable redox states of NrdI and NrdF.

The UV-vis absorption spectra of NrdI in hq, neutral sq,4 1 and ox states are shown in Figure

6.1A. Because NrdI accumulates only 30% sq during anaerobic titration with sodium

dithionite,1" its spectrum was estimated by correlation of UV-vis and EPR spectra of solutions of

NrdI partially reduced with known amounts of dithionite and is similar to those of flavodoxins

and other Nrds.2 6,2 7 ,4 2

The UV-vis absorption spectrum of NrdF reconstituted with Mn" 2-Y- cofactor is shown

in the inset of Figure 6.1B. Figure 6.1B also shows the spectrum resolved into its two

components, the Mn"' 2 cluster and the Y-. To obtain these spectra, Mn" 2-Y- NrdF was
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incubated with 0.5 mM hydroxylamine. As described in detail in section 6.2.5, this

deconvolution is complicated by the reduction of MnI11
2 cluster by hydroxylamine, albeit more

slowly than reduction of Ye; 7 -60% of the Mn was reduced during the course of the

hydroxylamine treatment, assessed by chelation and removal of Mn" followed by AA

spectroscopy on NrdF. The spectra shown in Figure 6.1B were then determined by spectral

subtractions and correlation to Mn quantified by AA spectroscopy and Y- quantified by EPR

spectroscopy. The spectrum of the Mn"12 cluster exhibits a weak, broad feature at 460 nm with a

shoulder at 485 nm, similar to the Mn"' 2 form of Mn catalase.4 ' The spectrum of Ye exhibits a

diagnostic, sharp peak at 410 nm, a shoulder at 392 nm, and a broad feature from 470 to 670 nm.

The analysis indicated that reduction of the Ye increases the UV-vis absorption spectrum

intensity of the formerly associated Mn"12 cluster by 190% (Figure 6.2). This observation is

consistent with delocalization of metal cluster electron density onto the Y- in the Mn"' 2-Y-

cofactor.8 The absorption spectrum of Mn"-loaded NrdF (not shown) is identical to that of apo-

NrdF, featureless in the visible region.

A B 5 04

12-
4 03

10 -02

4 --
E) 65 0.01

30 70 8 00 400 500 600 700 800

Wavelength (nm) Wavelength (nm)

Figure 6.1. UV-vis absorption spectra of NrdI and NrdF. (A) NrdIOx, (black), Nrdlsq (neutral
form, blue), and NrdIhg (red). The sq spectrurn was estimated as described in section 6.2.3. (B)

II

The Y- (red) and Mn 112 cluster (black, es given for cluster not coupled to Y-) in NrdF, after
removal of the the contribution of protein end absorption. Inset: 200 pM Mn"2-Y- NrdF,
containing 1.0 Mn/2 and 0.35 Y-/p2.
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Figure 6.2. Reduction of Mn"'12-Y- NrdF (200 gM) with hydroxylamine (0.5 mM), monitored
by UV-vis absorption spectroscopy at 23 *C. (A) UV-vis spectrum was acquired of 300 ptL
Mn I 2-Y- NrdF (200 gM) in Buffer B containing 5 mM EDTA (0 min, black). After addition of
NH2OH to a final concentration of 0.5 mM, spectra were acquired at the indicated times (1, 2.5,
4, 6, 8, and 10 min). By 10 min, the sharp feature of the Y- at 409 nm was completely abolished.
The spectra show that Mn" 2 cluster is also partially reduced during this treatment (see Figure
6.1B). (B) Comparison of the spectra taken before NH2OH addition (0 min) and 1 min after
show a significant, reproducible increase in absorption evident between 450 and 550 nm
accompanying reduction of Y-. This increase supports the conclusion that reduction of Y-
increases the extinction coefficient of the formerly associated Mn"' 2 cluster. Because reduction
of Y- and Mn"12 cluster are occurring simultaneously (tending to decrease overall absorption),
the effect of Y- reduction on increasing Mnr12 cluster extinction coefficient is underestimated by
this spectrum.

6.3.3. EPR spectra of Mnn-loaded NrdF, Mnm2-Y- NrdF, and Nrdlsq. Initially, NrdF was

loaded with Mn" as with E. coli NrdF, 7 by incubation of the apoprotein with 4 Mn"/p2 followed

by passage through a Sephadex G25 column to remove unbound Mn". For K coli, this

procedure yielded protein with a complex, multiline (-40 lines) EPR signal with negligible

amounts of mononuclear Mn". However, when this same protocol was followed for B. subtilis

NrdF, its EPR signal revealed a substantial contribution from mononuclear Mn" in addition to

the signal associated with the coupled Mn" 2 cluster. Titrations of 75 pM apoNrdF with Mn",

monitored by EPR spectroscopy at 10 K, show that this Mn" is present even at 1 Mn"/p2 (Figure
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6.3A). Measurements at 293 K, at which temperature only Mn" that is not protein bound is

detectable, suggest that this mononuclear Mn" is not protein bound and show that <10% of the

total Mn" added is unbound at 3.5 Mn"/P2 added (versus 20% at 4.0 Mn"/2). Therefore, to

minimize the unbound Mn" present, subsequent EPR samples were prepared using 3.5 Mnr/P2

(Figure 6.4A). Similar titrations of E. coli apoNrdF exhibit negligible unbound Mn", indicating

much stronger Mn" binding than to B. subtilis NrdF (Figure 6.3B). The EPR spectra of B.

subtilis Mn"' 2-Y- NrdF (10 K, Figure 6.4B), similar to that of E. coli NrdF,7 and Nrdlsq (77 K,

Figure 6.5), similar to previously described flavodoxin neutral sqs," are also important for the

RFQ-EPR analysis described below.

1.0 Mn
1.5 Min
2.0 Mn
2.5 Min
3.0 Mn
3.5 Mn
4.0 Mn

I ' * I I I 

1600 2400 3200 4000 4800

Field (G)

Figure 6.3. Titration of apoNrdF with Mn". (A) B. subtilis apoNrdF (75 gM) was incubated
with 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 Mn"/p2. In the 10 K EPR spectra of the samples,
unbound, mononuclear Mn" (sextet centered at g = 2.0, 3100-3600 G) is evident even in the 1.0
Mn/p2 sample. At 4.0 Mn"/p2, -20% of Mn" is unbound, as revealed by analysis of the same
sample at 293 K.
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Figure 6.3, continued. (B) An analogous titration of 30 gM K coli apoNrdF with Mn".
Unbound, mononuclear Mn" is apparent only at 4.0 Mn/p2. The absence of mononuclear Mn"
also suggests highly cooperative Mn" binding in this system. Acquisition parameters: 9.385
GHz, 0.1 mW power, 4 G modulation amplitude, 100 kHz modulation frequency, 2.52 x 104

gain, 5.12 ms time constant.

2000 2400 2800 3200 3600 4000 4400 2800

Field (G)

Figure 6.4. X-band EPR spectra of (A) Mn"-loaded NrdF (
at 0.1 mW, 10 K), (B) Mn"12-Y- NrdF (0.1 mW, 10 K).
described in Materials and Methods.

3200 3600 4000

Field (G)

150 pM NrdF, 3.4 Mn"/p2, acquired
Other acquisition parameters are
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Figure 6.5. EPR spectrum of Nrdlsq at 77 K. Acquisition parameters: 9.45 GHz frequency, 5
pW power, 1.5 G modulation amplitude, 100 kHz modulation frequency, 5 x 104 gain, 5.12 ms
time constant.

6.3.4. Kd for NrdIhq and Mnr 2-NrdF. Knowledge of the affinity of NrdIhq for Mn"2-NrdF is

also important to maximize complex formation in the rapid kinetics studies described

subsequently. To make this measurement, we took advantage of the previous observation that

the hq forms of flavodoxins display weak fluorescence with excitation maxima at around 370 nm

and emission maxima in the 500-530 nm region. 45 Initial experiments demonstrated that the

Nrdlhq FMNH~ cofactor displays similar fluorescence properties and that the intensity of its

fluorescence emission spectrum is sensitive to the presence of NrdF (Figure 6.6A); this property

was exploited to assess the Kd for Nrdlhq binding to Mn"2-NrdF. A control titration of E. coli

NrdF into B. subtilis NrdIhq exhibited no change in fluorescence, demonstrating that this method

reports on specific NrdI-NrdF interaction. Representative titrations of Mn"-loaded B. subtilis

NrdF (1 gM, 4 Mn"/p2) with Nrdlhq were analyzed using a non-cooperative binding model, as

described in section 6.2.6 (Figure 6.6B). The analysis gives 1.6 ± 0.1 Nrdls per NrdF dimer

with a Kd of 0.6 ± 0.2 pM. A similar Kd was obtained with apoNrdF. Figures 6.3A and 6.4A

suggest that NrdF is not fully loaded with Mn" under these conditions; the unusual binding
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stoichiometry may therefore indicate error in the computationally derived extinction coefficient

of NrdF,46 or that a fraction of NrdF is incompetent to bind NrdI. This Kd value is significantly

lower than that previously reported for B. anthracis NrdIox*NrdF of (23 p M). 47 The sequence

similarity (75% for NrdF, 63% for NrdI) between the B. subtilis and B. anthracis systems

suggests that the difference in Kds reflects tighter binding of NrdF to NrdIhq than to NrdIox. The

Kd of 0.6 gM indicates that at the concentrations of NrdF and NrdIhq used in subsequent rapid

kinetics experiments, >95% of Nrdlhq is complexed.

B
4000-

3000-
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2000-
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< 1000-
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0 2 4 6

Figure 6.6. Binding of B. subtilis NrdIhq to Mn"-loaded NrdF monitored by spectrofluorometry.
(A) Fluorescence emission spectra (,ma = 380 nm) of 2 pM NrdIhq alone (black) and in the
presence of 15 pM (red) and 25 gM (blue) Mn"-loaded NrdF (4 Mn"/p2). From the relative
fluorescence at the emission maximum at 517 nm, the ratio of the molar fluorescence of bound
and unbound Nrdlhq was determined to be 2.4. (B) Analysis of a typical titration to determine
the Kd for Nrdlhq binding to Mn"-loaded NrdF. The cuvette (700 gL) contained 1 gM apoNrdF,
4 Mn"/P2, and 100 pM dithionite in Buffer B, into which was titrated a solution of 240 pM
NrdIhq and 100 pM dithionite in Buffer B. The plot shown is of fluorescence change attributed
to Nrdlhq binding (AF) vs. free Nrdlhq concentration, extracted from the titration data according
to section 6.2.6.1. The data are fit to equation 6.4 (red). For this titration, Kd = 0.4 + 0.1 pM and
n = 1.7 ± 0.1. The experiment was carried out four times.

6.3.5. Determination of the rate constants for NrdI disproportionation and

comproportionation and their dependence on NrdF. The ability of NrdIox and NrdIhq forms
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(E-FMN and E-FMNH~ below) to comproportionate as observed for other flavodoxins*4 (eq. 6.6)

is important to establish, so its contribution to the overall kinetics of cluster assembly can be

assessed.

k.1
E-FMNH- + E-FMN & 2 E-FMNH*

k.1  (6.6)

The values of k+1 and k-I were measured at pH 7.6 and 25 'C by rapid mixing of anaerobic

solutions of 20 pM Nrdlhq and NrdIox and monitoring A6ionm, associated only with sq formation

(Figure 6.1A), by SF (Figure 6.7A). Similar experiments were also carried out in the presence

of sufficient apo-NrdF to form -98% complex, based on the Kd from section 6.3.4 (Figure 6.7B).

The SF traces were fit to the model in eq. 6.6 using KinTek Explorer (Table 6.1). Both k+1 and

k.1 are decreased 20-fold when Nrdlhq is complexed to NrdF. This is consistent with the burial of

the dimethylbenzene moiety of NrdI's FMN cofactor into NrdF, observed in the crystal structure

of the E coli NrdI-NrdF complex.23 This ring has been suggested to be involved in electron

transfer in flavodoxins. 49 The ratio k. 1/k. 1 is 0.5, similar to the Keq calculated from equilibrium

titrations with dithionite (0.7, 30% sq stabilized; 0.5 would suggest 33% stabilized). k+1 and k.1

are sufficiently small that they do not contribute significantly to the overall reaction of Nrdlhq

with 02, given the measured rate constants described below.

Table 6.1. Rate constants (mM' s-1) at 25 *C for NrdI comproportionation (k+1) and
disproportionation (k.1)

NrdI alone NrdI + apoNrdFa
k+1  13+4 0.6 0.2
k.1 25 c 3 1.3 0.1

a >95% Nrdlhq complexed according to section 6.3.4
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Figure 6.7. Rates of NrdI comproportionation and disproportionation monitored by SF UV-
visible spectroscopy. The contents of syringes containing anaerobic solutions of 20 pM Nrdlhq
and 20 gM NrdIOx (with or without 80 pM apoNrdF) were mixed 1:1 and A6 10 was followed. A)
The reaction in the absence of NrdF. B) The reaction in the presence of 40 [tM apoNrdF (after
mixing). The plots were fit to eq. 6.6 (red line), using KinTek Exlorer. Residuals are shown at
the bottom. For these traces, k+1 = 17 mM-1 s' and k- = 21 mM~ s- (A), and k. 1 = 0.8 mM' s~1
and k..1 = 1.2 mM~1 s-1 (B).

6.3.6. Reaction of Nrdhq with 02 monitored by SF absorption

6.3.6.1. In the absence of NrdF. As a starting point for probing the reaction of Nrdlhq

with 02 in the presence of Mn"-loaded NrdF, the kinetics of the reaction of Nrdlhq alone with 02

was investigated. In this section we establish that, although B. subtilis NrdI thermodynamically

stabilizes only -30% sq in titrations of NrdIox with dithionite, 0 ,26 Nrdlhq reacts with 02 to

produce 02'~ like typical flavodoxins, which thermodynamically stabilize nearly stoichiometric

amounts of sq.48

The chemistry of reduced flavoproteins with 02 is complex and can follow multiple

pathways (Scheme 6.5);50 however, the common first step is believed to be a single electron

transfer to 02 to produce a caged sq-02'~ radical pair.5 1 ,52 In flavodoxins48,5 3 and oxidases, 54

respectively, this species partitions by pathways 1 and 2 (Scheme 6.6), respectively, liberating
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02'~ in the former case and H20 2 in the latter. The intermediacy of the radical pair has only been

deduced from model studies.

Scheme 6.5. Reaction of reduced flavins with 02, omitting oxygen transfer reactions, adapted
from Massey.5 0
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To our knowledge, the reaction of a flavodoxin with 02 has only been investigated in

detail in a thesis by Ballou.5 3 In that system, Peptostreptococcus elsdenii, Ballou observed that

the SF data could be fit by the simple model described by eq. 6.7 and 6.8 only when SOD was

included in the reaction.55 The SOD was proposed to prevent reaction of the 02' produced by

eq. 6.7 and 6.8 with the flavin hq (E-FMNH~) and sq (E-FMNH-) forms (eq. 6.9 and 6.10).

Investigations of the reaction of Nrdlhq with 02 indicated a similar effect of SOD (Figure 6.8A),

demonstrating that 02~ is a product of the reaction. Thus, to decrease the potential complexity

associated with reactions in eq. 6.9 and 6.10, the experiments described subsequently contained

50 or 250 U/mL SOD (similar results were obtained at both concentrations).

E-FMNH- + 02 k2 E-FMNH + 02 (6.7)

E-FMNH'+ 02 k E-FMN + O2 (6.8)

E-FMNH- + 0- k E-FMNH + H20 2H+ (6.9)

E-FMNH'+ 0'- ~ E-FMN + H202H+ (6.10)
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0.010 .0.03- /
0.008 .

0.006- 0.02 -

0.0040

0.002 ..- \00

0.000- 0.00-

-0.002 . . - .............. . ....... ....................
0.1 1 10 0.01 0.1 1 10

Time (s) Time (s)

Figure 6.8. Comparison of the A610 traces for the reaction of NrdIhq with 02 in the presence and
absence of SOD at 25 0C. (A) Nrdlhq (20 pM), mixed 1:1 with 02-saturated buffer and 0 (red) or
500 (black) U/mL SOD. (B) NrdIhq (20 p.M), mixed 1:1 with 0 2-saturated buffer, Mn"-loaded
NrdF (50 gM, 3.5 Mn"/p2), and 0 (red) or 100 (black) U/mL SOD. The experiment with SOD
should be repeated to ensure that the lack of a burst phase and the lag phase observed were the
results of excess dithionite in the NrdIhq solution.
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Figure 6.9. Reaction of Nrdlhq with 02 in the presence of SOD at 25 'C, monitored by SF UV-
vis. Nrdlhq (20 gM) in Buffer B was mixed 1:1 with 0 2-saturated buffer containing SOD (500
U/mL). Kinetic traces (2000 points, 0-10 s) were acquired every 10 nm between 310 and 700
nm. A) Point-by-point reconstructions of the reaction spectra for a representative experiment at
the indicated timepoints. B) Spectra of NrdIox, Nrdlsq, and Nrdlhq, extracted from global analysis
of the multiwavelength data in KinTek Explorer with SpectraFit, fitted to eq. 6.6-6.8 in the main
text (sections 6.3.5 and 6.3.6). These fits yielded k2 = 1.4 ± 0.3 s-1 and k3 = 1.5 ± 0.4 s~1 (five
independent experiments). Including k± did not significantly affect goodness of fit or the rate
constants. Although the residuals (C) were satisfactory, the extracted spectrum of NrdIsq was not
correct (compare to Figure 6.1), with es ~1 mM~1 cm~1 higher in the 450-500 nm region and -1
mM~1 cm~1 lower in the 550-650 nm region, suggesting underestimation of NrdIox and
overestimation of NrdIsq. C) Residuals for the fit at each timepoint listed in A. Each residual
trace is offset by 0.001, represented by a tick.
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Figure 6.9, continued. D) Spectra of NrdIox, Nrdlsq, and Nrdlhq, extracted from global analysis
of the multiwavelength data in KinTek Explorer with SpectraFit, fitted to equations 6.7, 6.8, and
6.11. E) Residuals for the fit at each timepoint listed in A. Each residual trace is offset by 0.001,
represented by a tick.
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We initially investigated by SF the reaction of 20 pM NrdIhq mixed 1:1 with 0 2-saturated

buffer in the presence of 250 U/mL SOD at 25 *C, monitoring from 310 to 700 nm at 10 nm

increments (Figure 6.9A). Singular value decomposition (SVD) of the data indicated significant

contribution from three absorbing species: NrdIhq, Nrdlsq, and NrdIx, suggesting that a C4a-

peroxyflavin intermediate (Scheme 6.6) is not observed.56 The data were fit globally using

KinTek Explorer with SpectraFit to a model consisting of eq. 6.6-6.8 (Scheme 6.6, pathway 1),

and the spectra of these species were extracted (Figure 6.9B). The extracted NrdIsq spectrum

suggested that the amount of NrdIox was underestimated and that NrdIsq was overestimated by

this model. An additional pathway for NrdI0o formation was therefore considered (Scheme 6.6,

pathway 2). The new kinetic model thus included reactions 6.6-6.8 and 6.11. Equation 6.6 (with

k.1 and k.1 measured above) had no effect on the fits and was thus discarded from the model.

k6
E-FMNH- + 02 E-FMN + H20 2H+ (6.11)
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This model gave k2 = 1.6 ± 0.1 mM' s-, k6 = 0.7 ± 0.1 mM-' s-1, k3 = 2.0 ± 0.1 mM' s-, and

reproduced the spectrum of Nrdlsq (Figure 6.9D). Based on this model, we tentatively conclude

that, in the absence of NrdF, NrdIhq reacts with 02 by two predominant pathways to form 1)

NrdIsq and 02' and 2) NrdIox and H20 2 . Given the relative values of k2 and k6, ~70% of Nrdlhq

reacts by the former pathway to produce 02' and 30% to produce H20 2.
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Figure 6.10. Comparison of representative A610 traces for reaction of 20 pM Nrdlhq mixed 1:1
with 0 2-saturated buffer (black) and 0 2-saturated buffer containing 50 gM apo-NrdF (red). The
reactions were carried out at 25 *C, pH 7.6, in the presence of SOD (100 U/mL).

6.3.6.2. In the presence of apoNrdF. Similar experiments were carried out with Nrdlhq

(20 gM) mixed in a 1:1 ratio with 02-saturated buffer containing apoNrdF (50 gM, 98%

complex) and SOD. We anticipated that, in complex with NrdF, the physiologically relevant

reaction of NrdI with 02 would be favored and the heterogeneity of NrdIhq oxidation mechanisms

would be decreased. Unlike with the reaction of Nrdlhq alone with 02, the multiwavelength SF

data could not be satisfactorily modeled by eq. 6.7, 6.8, and 6.11, although SVD again indicated

the presence of only three spectrally distinct species. Our inability to model the results was at

least in part due to the presence of a burst phase within the dead time of the instrument (1.5 ms,

20% of total sq formed; note initial A610 in Figure 6.10, red). This burst phase was only
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observed in reactions containing NrdF. Therefore, we instead focused on the apparent first-order

rate constants (kapp) for NrdIsq formation and decay, which can be extracted directly from SF

traces acquired at 610 nm (Figure 6.10), where only Nrdlsq contributes significantly (Figure

6.1A). Whereas the A610 SF traces for reaction of Nrdlhq alone with 02 (Figure 6.11, Table 6.2)

can be fit to a sum of two exponentials, those in the presence of apoNrdF are best fit to three

(Figure 6.12, Table 6.2). We attribute the presence of two phases for sq formation to interaction

of NrdI with conformationally heterogeneous populations of apoNrdF. These phases were 5 and

15 times faster than the phase for NrdIsq formation in the absence of NrdF. The rates of NrdIsq

decay were very similar in the presence and absence of apoNrdF.

0.014-

0.012

0.010

0.008

S0.006 -

0.004-

0.002

0.000

0.01 0.1 1 10
Time (s)

Figure 6.11. Reaction of NrdIhq with 02 in the presence of SOD. Nrdlhq (20 gM) was mixed 1:1
with 0 2-saturated buffer containing 500 U/mL SOD, 25 'C, monitored at 610 nm. The data, the
average of five independent experiments, were fit to two exponentials (Table 6.2). Residuals are
shown at the bottom of the plot. The data were fit and plotted in Origin.
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Figure 6.12. Reaction of Nrdlhq with 02 in the presence of apoNrdF and SOD. Nrdlhq (20 gM)
was mixed 1:1 with 0 2-saturated buffer containing 50 pM apoNrdF and 500 U/mL SOD at 25 *C
and monitored at 610 nm. The data from five independent experiments were fit to two (A) or
three (B) exponentials. The rate constants for (A) are: 9.3 s 1 (AA = 0.028) and 0.88 s- (AA = -
0.034). The rate constants for (B) are shown in Table 6.2: 25 s 1 (AA = 0.004), 7.7 s- (AA =

0.025), and 0.91 s- (AA = -0.035). Residuals are shown at the bottom of the plot. The data were
fit and plotted in Origin.

Table 6.2. Apparent rate constants at 25
reaction of Nrdlhq with 0.6 mM 02 in
absorption at 610 nm.

*C (amplitudes in parentheses where applicable)
the absence/presence of apo-NrdF, monitored

for the
by SF

Reaction kapp (S-) a

Nrdb NrdI + apoNrdF'
Sq formation (phase 1) 1.6 ± 0.2 (0.052) 25 ± 4 (0.004)
Sq formation (phase 2) NAd 7.7 g 0.2 (0.025)
Sq decay (eq. 3) 1.1 ± 0.1 (-0.053) 0.91 ± 0.04 (-0.035)

a Values represent the mean ± standard deviation for fits of 5 independent experiments
b 1:1 mixing of 20 pM Nrdlhq with 0 2-saturated buffer, 100 U/mL SOD
c 1:1 mixing of 20 gM NrdIhq, with O2-saturated buffer, 50 pM apo-NrdF, 100 U/mL SOD
d NA: not applicable (phase not observed)

If the acceleration in Nrdlsq formation in the presence of apoNrdF were due to a large

increase in k6 rather than k2, the NrdIox produced by reaction 6.11 would have to react rapidly

with Nrdlhq (comproportionation) to form Nrdlsq (reaction 6.6); however, in the presence of

apoNrdF, k+1 (0.003 s 1 at 5 pM NrdIox) is three orders of magnitude too slow to account for the
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apparent rate of Nrdlsq formation. Therefore, despite the kinetic complexity, the data suggest

that the reaction of Nrdlhq with 02 to produce Nrdlsq and 02'~ also dominates in the presence of

apoNrdF.

6.3.7. Mn" 2 -Y- cofactor assembly monitored by SF absorption and RFQ-EPR

spectroscopies. The preliminary experiments described above provided us with the information

required to design the central experiment: the reaction of 100 ptM Nrdlhq and 150 gM Mn"-

loaded NrdF (3.5 Mn"/p2) mixed 1:1 with 0 2-saturated buffer, monitored by SF absorption and

RFQ-EPR spectroscopies. These concentrations were chosen to ensure a high percentage of

Nrdlhq-NrdF complex (97%) and thus simplify as much as possible the kinetics of NrdIhq

oxidation, despite the sub-optimal Y- yield (0.35 Y-/p2 and 1.0 Mn"'/p2; note that 30% of the

Mn oxidized is not associated with Y-, see section 6.4.2). The stoichiometry of Mn/p2 was

selected based on titrations of apoNrdF with Mn" (Figure 6.3A), which indicated that -3.2

Mn"/s2 were bound to NrdF under these conditions. Increasing the concentration of Mn" to

obtain more fully loaded NrdF results in high concentrations of mononuclear Mn", the EPR

signal from which complicates RFQ-EPR analysis. However, incompletely loaded NrdF is also

a likely contributor to the complications encountered in analyzing the kinetic data (see below).

Finally, SOD was not included in the SF or RFQ experiments reported here, as initial studies

demonstrated that its presence did not significantly affect the reaction rates (Figure 6.8B). This

is likely because the 02'~ formed by Nrdlhq reacting with 02 in the presence of Mn"-loaded NrdF

is funneled to the metal site where it can react with Mn", rather than reacting further with NrdI.

Initially, single wavelength traces were acquired at 610 nm (where NrdIx and Nrdlhq do

not contribute), 340 nm (at which the extinction coefficients of ox and hq are similar), and 410

nm (ax of Y-), at which all three species contribute significantly. The first-order rate constants
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and amplitudes extracted from fits of the single wavelength data are presented in Table 6.3 and

discussed below. Given the number of absorbing species and the complexity of their spectra,

point-by-point analysis of the reaction by SF spectroscopy was also carried out between 310 and

700 nm at 10 nm increments, as well at 405 and 415 nm (to better resolve the Y-). The spectra

reconstructed from the individual SF traces are shown in Figure 6.13 in three time regimes for

clarity: 0-0.083 s, 0.083-3 s, and 3-60 s. In the following sections we discuss how these data

lead to the mechanistic proposal for Mn"I2-Y- cofactor assembly shown in Scheme 6.4.
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Figure 6.13. Reaction of NrdIhq (100 pM) and Mn"-loaded NrdF (150 gM, 3.5 Mn"/g2) mixed
1:1 with 0 2-saturated buffer, as monitored by SF absorption spectroscopy, divided into three
time regimes: 0-83 ms (A), 83 ms - 3 s (B), and 3-60 s (C). The spectra are point-by-point
reconstructions from kinetic traces acquired every 10 nm between 310 and 700 nm, as well as
405 and 415 nm. One shot per wavelength is shown, but the data is representative of further
experiments conducted at this and lower concentrations (1:1 mixing of 20 pM Nrdlhq with 02-
saturated buffer containing 50 gM Mnr 2-NrdF).
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Table 6.3. Rate constants in the reaction of 100 RM Nrdlhq and 150 pM Mn"-loaded NrdF (3.5
Mn/p2) mixed 1:1 with 02-saturated buffer, determined by fits to single-wavelength SF (340,
410, or 610 nm) or RFQ-EPR (10 or 77 K) data. Values represent the average ± standard
deviation from at least three experiments (for SF, each experiment is the average of at least three
traces).
Reaction 340 nm 410 nm 610 nm RFQ-EPR

kob, Amplitude kos, Amplitude kbs, Amplitude kobs (s- 1) Amplitude
(s-1) (AA) (s-') (AA) (s-1) (AA) (RM) a

sq formation 50 0.12 45 -0.04 61, 0.12, 65 7 49
19 0.05

sq decay 0.2 -0.08 0.9 0.28 0.7 -0.18 0.7 0.1 40
III,IV 2.4 0.15 NAb NA NA NA 5±1 ND
formation
III,IV decay/ 0.07 -0.16 0.08 0.06 0.2 0.019 0.12 ±0.02 ND
Y- formation
a Adjusted for packing factor
b NA: not applicable (not observable at that wavelength)
C ND: not determined (the MninMniv signal has not been simulated and quantified)

6.3.7.1. NrdIsq production and decay. Nrdlsq is generated within 83 ms, with isosbestic

points at 330, 390, and 415 nm, indicating direct conversion of Nrdlhq to Nrdlsq (Figure 6.13A).

This species decays by -4 s to NrdIox, with an isosbestic point at -500 nm. The plot of A6 10

(Figure 6.14, red trace), is fit best to four exponentials (Table 6.3, Figure 6.12A) - two fast

phases of 61 and 19 s 1 , accounting for the initial increase at 610 nm, followed by a phase of 0.7

s (decreasing at 610 nm) corresponding to Nrdlsq oxidation, and finally a small increase of 0.2

s1 (section 6.3.7.3). A burst of sq formation in the dead time of the instrument (-20% of total

NrdI) is also apparent (Figure 6.14). The A610 plot indicates formation of a maximum of 39 pM

Nrdlsqg, or -80% of total NrdI. Given the 100-fold difference in the rates of sq formation and

decay, nearly 100% Nrdlsq should accumulate; that it does not suggests that the rest of Nrdlhq

may react to produce H20 2 directly instead of 02~ (Scheme 6.6, pathway 2). However, -10 RM

H20 2 could at most account for 5 pM of the 35 pM Y- observed under these conditions by the

proposed mechanism in Scheme 6.2B or any other chemically reasonable mechanism. Thus

these results further support our argument that 02~ as oxidant in cluster assembly.
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Figure 6.14. Formation and decay of Nrdlsq in the reaction of Nrdlhq (100 gM) and Mn"-loaded
NrdF (150 pM NrdF, 3.5 Mn"/p2), mixed 1:1 with 0 2-saturated buffer, monitored by SF
absorption and RFQ-EPR spectroscopies. Nrdlsq was quantified in RFQ timepoints (left axis,
black squares, mean ± SD of two experiments) quenched at the indicated times by EPR
spectroscopy (77 K, 5 pW). Nrdlsq was also monitored by SF absorption spectroscopy at 610 nm
(right axis, red line). The source of the discrepancy between the RFQ-EPR and SF data at <16
ms is not clear.

The two phases of sq formation are ~2-fold faster than the analogous phases in the

reaction of NrdIhq with 02 in the presence of apoNrdF. The sensitivity of these rate constants to

the presence of Mn" supports the argument that the existence of two phases likely reflects

differences in reactivity of Nrdlhq when it is bound to NrdF correctly loaded with Mnr versus

misloaded or unloaded NrdF (only -3.2 Mn"/p2 bound under these reaction conditions, section

6.3.3). Two apparent phases of sq formation are not needed for the fits at 340 and 410 nm

(Table 6.3), perhaps because other reactions dominate the amplitudes of the traces at these

wavelengths.

Informed by the SF results, the reaction of Nrdlhq with Mn"-loaded NrdF and 02 under

identical conditions to the SF experiments was also carried out by the RFQ method, quenching
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from 11 ms - 60 s and analyzed by EPR spectroscopy. Nrdlsq can be quantified in the RFQ

samples at 77 K, even in the presence of multiple Mn-derived signals and Y-, because its signal

saturates at microwave powers orders of magnitude below the other paramagnetic species. The

samples from 11 ms to 7 s were analyzed at 5 gW at 77 K and the results overlaid on the A6 10

trace of the SF reactions (Figure 6.14). The data show accumulation of -40 pM sq and can be

fitted to a two-exponential model with ksbi = 65 ± 7 s- and kobs2 = 0.7 ± 0.1 s~ . The longer

deadtime / quenching time and larger error inherent in the RFQ method preclude discernment of

two phases of sq formation, but Figure 6.14 shows generally good agreement between the SF

and RFQ data. The experiments should be repeated once or twice more to reduce error bars and

investigate whether the discrepancy between the RFQ-EPR and SF data at <16 ms is

reproducible. As with the reaction of NrdIhq in the absence/presence of apoNrdF, the rate of sq

formation is too fast to be accounted for by a two-electron reaction pathway followed by

comproportionation, again supporting the conclusion that the majority of Nrdlhq reacts with 02 to

form Nrdlsq and 02'1.

6.3.7.2. Formation and decay of a MnmMnV intermediate. The reconstructed spectra in

Figure 6.13B in the 83 ms - 3 s regime are dominated in the visible region by the conversion of

Nrdlsq to NrdIox, with an isosbestic point at -500 nm. Absence of the NrdIsq/NrdIox isosbestic

point at -350 nm (Figure 6.1A) indicates formation of an additional, UV-absorbing species; the

300-350 nm region displays significantly higher absorbance than can be attributed to NrdIox

(Figure 6.1A). This absorbance is more clearly observed in the spectra for the final, 3-60 s,

regime (Figure 6.13C), in which features in the 300-350 nm region decay as the sharp feature of

the Y- grows in at 410 nm. The A340 SF traces (Figure 6.15B, Table 6.3) suggest formation and

decay of this UV absorbing feature at 2.4 and 0.07 s"', respectively.
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Figure 6.15. Representative single wavelength stopped flow traces for the reaction of Nrdlhq
with 02 in the presence of Mn"-loaded NrdF at 25 *C. NrdIhq (100 gM) and Mnn-loaded NrdF
(150 gM, 3.5 Mn"/p2) were mixed 1:1 with 0 2-saturated buffer. Fits are in red and residuals are
shown at the bottom of each plot. (A) 610 nm, fit to four exponentials. (B) 340 nm, fit to four
exponentials. (C) 410 nm, fit to three exponentials. The data were fit and plotted in Origin.
Rate constants for the fits are shown in Table 6.3.

The UV-visible spectrum of this species was estimated from the spectrum of the 1 s

timepoint reconstructed from the SF data. At this timepoint, substantial intermediate is present,

little Y- is apparent (Figure 6.13B) and NrdI is entirely in the sq and ox forms. After subtraction

of the contributions of Nrdlsq (22 pM, from the RFQ-EPR analysis) and NrdIox (28 gM), the

spectrum shown in Figure 6.16 was obtained. The broad, trailing, relatively featureless
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spectrum, with little visible absorption, is similar to that of the Mn"MnIv form of Mn catalase"

and synthetic models. 58
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Figure 6.16. Estimated UV-vis spectrum of the putative Mnl"Mn intermediate, determined as
described in the text.

The identity of the intermediate was determined by analysis of the RFQ samples by EPR

spectroscopy at 10 K, where potential, EPR-active intermediates in cofactor formation

(Mn"Mn"' and MnI"IMnIv) may be observable. The spectra of the 11 ms to 60 s samples from a

representative timecourse are overlaid in Figure 6.17, and the 1 s sample is shown in Figure

6.18A. The spectra reveal formation and decay of a multiline signal from 2700-4000 G, with the

most intense hyperfine lines separated by ~80 G. The EPR spectrum of the intermediate was

extracted by subtracting the spectrum of the sample from 60 s from that at 10 s. Because the

concentrations of Mn"2-NrdF and free Mn" are constant at 10-60 s and NrdI is fully oxidized by

10 s, this subtraction leaves only the intermediate and Y*. The amount of Y- subtracted, 12 pM,

was determined iteratively as the concentration necessary to remove the contribution of the

strong wing features at ~3200 and 3500 G (Figure 6.4B). This procedure gave the spectrum

shown in Figure 6.18B, a 16-line pattern characteristic of strongly antiferromagnetically coupled
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III V59,60S = 1/2 MnirMnl clusters. Work to simulate the EPR spectrum is currently in progress in

collaboration with the Britt laboratory (University of California, Davis) to be able to quantify the

amount of Mn"IMnv intermediate present in our samples. In the absence of a simulation, we

used the intensity of one of the most intense hyperfine lines (indicated with an arrow, Figure

6.18A) to estimate the relative concentrations of this intermediate in each sample. This analysis

is plotted in Figure 6.19 and fit to rate constants of 5 + 1 s~1 and 0.12 ± 0.02 s-1. The similarity

of these rate constants to those extracted from the SF analysis suggest the UV-absorbing and

EPR-active Mnl"Mnl are the same species. Interestingly, the rate constant for formation of

Mnl"MnIv is ten times slower than the rate of sq generation (section 6.4.4).
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Figure 6.17. Overlay of EPR spectra (A) for a representative RFQ time course in the reaction of
Mn"2-NrdF/Nrdlhq with 02. (B) Comparison of spectra to illustrate a small but significant shift
from 2701 to 2712 G in the lowest-field line from the 11 ms to 535 ms samples. Acquisition
parameters: 10 K, 0.1 mW, 9.385 GHz, 100 kHz modulation frequency, 4 G modulation
amplitude, 2.52 x 104 gain, 5.12 ms time constant.
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Figure 6.18. Characterization of the MnIMnW intermediate by EPR spectroscopy. (A) EPR
spectrum (10 K, 0.1 mW) of the 1 s RFQ sample, displaying hyperfine features suggestive of the
presence a Mnr1Mnl intermediate. The arrow indicates the peak used for the analysis in Figure
6.19. (B) EPR spectrum of the intermediate, estimated as described in the text.

CD
r~-.

0

15
0
0.

8000-
7000-

6000-

5000-

4000-

3000-

2000-

1000-

0-

0.01 0.1 1 10 100
Quench time (s)

Figure 6.19. Concentration of the putative Mn.Mnv intermediate, followed by the peak to
trough intensity of the hyperfine line centered at 3766 G. The data (black, mean ± SD for two
independent sets of experiments) are fit to a two phase model (red) with rate constants given in
Table 6.3.

6.3.7.3. Y- generation. To determine the kinetics of Y- generation and whether the

Mn"MnIV intermediate is kinetically competent for its formation, the single wavelength trace at

410 nm, the max of the Y-, was fit to three exponentials (Figure 6.15C, Table 6.3). The fastest
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phase, a small decrease at 45 s-1 is attributed to the oxidation of NrdIhq to Nrdlsq (8410s of these

species are very similar, Figure 6.1A). The second and major phase is an increase with kobs =

0.9 s-1 and an amplitude consistent with oxidation of Nrdlsq to NrdIox. The slowest phase (kobs =

0.09 s-) is associated with the appearance of the sharp feature of Y- (Figure 6.13C). Although

we cannot quantify the amount of MnrIMnIv formed at present, if we assume formation of 25

pM Y- (F410= 4.0 mM~1 cm~', AA 41 0 = 0.1) and 38 pM Mn" 2 cluster (6410 = 1 mM'I cm~1, AA 410 =

0.04) (section 6.3.7), the amplitude of this slowest phase, 0.06, can be accounted for by the decay

of 25 pM MnIMnv if that cluster's 6410 were 3 mM' cm-1 (AA 410 = -0.08). This is similar to the

extinction coefficient at this wavelength of the MnIMnv form of Thermus thermophilus Mn

catalase (2 mM~' cm1), further supporting that the UV-vis absorbing intermediate is a MnIMnIv

species. 57  By comparison, the amplitude of the slowest phase of the A610 trace, 0.019,

corresponds well to formation of the same amount of Mn" 2 cluster and Y- (6610 = 0.3 and 0.2

mM' cm~1, respectively). Because Nrdlsq and MnI"Mnl contribute significantly to the 77 K

EPR spectra of all but the 30, 40, and 60 s RFQ samples, independent determination of the rate

of Y- formation by EPR spectroscopy is problematic. However, the rate constants for decay of

the putative Mnr1Mnv intermediate obtained by RFQ-EPR (0.12 s-1) and SF (0.07-0.2 s-)

analyses match that for Y- formation (0.08 s-1); therefore, the MnlIMnIv intermediate is

kinetically competent for Y- generation.

6.3.7.4. Interpretation of the rate constant for sq decay (eq. 6.8). In all rapid kinetics

performed, regardless of the presence/absence of NrdF (in the presence of SOD), the kapp for

Nrdlsq decay is ~1 s-1. This rate constant is lower than that for MnlIMnIv formation (5 s-1),

which suggests that the 02' produced by this reaction (eq. 6.8) is not involved in MnI"Mn'v

generation and that 02' generated by Nrdlhq oxidation is predominantly responsible for Mn"2
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oxidation. Furthermore, the observation that the rate of Nrdlsq oxidation is not accelerated in the

presence of Mn"-loaded NrdF also provides further evidence that no further reducing

equivalents, such as to reduce a Trp radical, 2 0 ,2 1 are needed for cluster assembly. Thus 02'

provides the exact number of oxidizing equivalents needed for Mn" 2-Y. cofactor generation.
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Figure 6.20. SDS-PAGE (12.5%) analysis of 3 pg Y105F (lane 2) and W30Q (lane 3)
apoNrdFs. Molecular weight markers (kDa) are shown in lane 1.

6.3.8. Using Y105F and W30Q NrdF mutants and exogenous 02'~ to probe the mechanism

of Mn"n2-Y* cofactor assembly. We carried out additional experiments inspired by previous

studies of class Ia RNR Fei" 2-Y* cofactor assembly to test our mechanistic model.

6.3.8.1. Y105F-NrdF as mechanistic probe. First, in an effort to facilitate

characterization of the MnIIMnIv species, we generated the Y105F mutant of B. subtilis NrdF.

In studies of Fe"' 2-Y* cofactor assembly in the E. coli and mouse class Ia RNRs, mutation of the

radical-harboring tyrosine residue (Y122 in E. coli NrdB) to phenylalanine has been shown to

increase the lifetime of intermediate X.i5,61-63 Therefore, Y105F-NrdF was purified as the

apoprotein (Figure 6.20). Upon incubation with 5 Fer/p2 and 02, Y105F-NrdF forms wt

amounts of diferric cluster (without Ye) (Figure 6.21). Upon incubation of apo-Yl05F-NrdF
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with 4 Mn"/p2, followed by passage through a Sephadex G25 column, the protein retained 3.7

Mn"/p2, assessed by AA spectroscopy. The EPR spectrum of Y105F-Mn" 2-NrdF loaded with

3.5 Mn"/p2, shown in Figure 6.22A, exhibits little evidence of mononuclear Mn", suggesting

tighter Mn" binding than wt NrdF. Fluorescence titrations (Figure 6.23) exhibited a small

increase in NrdIhq fluorescence upon addition of Mn"-loaded Yl05F-NrdF, demonstrating that

NrdI binds to NrdF, but either more weakly or in a different manner (conformation/location)

from wt NrdF. SF studies demonstrate a slight acceleration of the kapp for sq formation (5.4 s-1)

relative to Nrdlhq in the absence of NrdF, but 10-fold less than Mn"-loaded wt NrdF (Figure

6.24), and gave no evidence of MnIIMnIv intermediate formation. One rationale for the

perturbation of Mn" and NrdI binding in this mutant is suggested by the crystal structure of B.

subtilis Mn"2-NrdF,64 in which a solvent molecule is hydrogen bonded between the phenolic OH

of Y105 and E198, a ligand to both Mnl and Mn2. It is possible that in the Y105F mutant this

solvent molecule is absent, leading to an alteration of the coordination environment of the metal

site, which might be propagated 20 A away to the interface with NrdI, distorting NrdI binding.
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A B
0.8 0.20

0.6-c 0.15-

o '0
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0.0- ,_0.00
300 400 500 600 700 800 300 400 500 600 700 800

Wavelength (nm) Wavelength (nm)
Figure 6.21. (A? UV-vis spectra of the products of the reaction of wt (solid line) and Y105F
(dashed line) Fe' 2-NrdF with 02. Apo-NrdF or apo-Yl05F-NrdF (40 gM dimer in Buffer B)
were incubated anaerobically with 200 ptM ferrous ammonium sulfate for 20 min and 02-
saturated Buffer B was added to 140 pM (3.5 02/2) at room temperature. (B) Difference
spectrum of wt and Y105F NrdF from (A), showing the spectrum of the Ye associated with Fe I2
cluster.
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Figure 6.22. EPR spectra (10 K) of 75 pM apo-Y105F (A) and W3OQ (B) NrdF, incubated with
3.5 Mn"/p2. Acquisition parameters: 9.385 GHz, 0.1 mW power, 4 G modulation amplitude,
100 kHz modulation frequency, 2.52 x 104 gain, 5.12 ms time constant. The large amount of
mononuclear Mn" and the unusual baseline in the W30Q-NrdF spectrum makes calculation of
the broad, underlying Mn"2 signal difficult.
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Figure 6.23. Fluorescence titration of NrdIhq with Mn"2-Yl05F-NrdF. The cuvette contained
700 1iL 5 pM Nrdlhq in Buffer B, into which 150 or 200 gM Mn"-loaded Y105F NrdF (4
Mnr/P2) was titrated. The percent increase in fluorescence at 517 nm against gM Y105F NrdF
added is plotted for two experiments, one in black, the other in red. For comparison, the
fluorescence increase for a titration of NrdIhq with wt Mn"2-NrdF was 140%.
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Figure 6.24. Reaction of Nrdlhq (20 pM) mixed 1:1 with 02-saturated buffer containing Mn"-
loaded NrdF-Y105F (50 pM NrdF, 3.5 Mn/p2) and SOD (500 U/mL), at 25 *C, monitored by SF
absorption spectroscopy. Kinetic traces (2000 points, 0-10 s) were acquired every 10 nm
between 310 and 700 nm and point-by-point reconstructions of the reaction spectra are shown for
a representative experiment at the indicated timepoints. No features suggestive of the Mnr1 Mn1 '

are apparent (compare with Figure 6.13).

6.3.8.2. W30Q-NrdF as mechanistic probe. In the assembly of the class Ia Fe"I2-Y-

cofactor, 2 0 ,2 1 the "extra" reducing equivalent necessary for cluster assembly is directly provided

by oxidation of W48 (K coli NrdB numbering) to a W* to generate X. In MnI" 2 -Y- cofactor

assembly, because Nrdlhq provides this reducing equivalent in reducing 02 to 02', the B. subtilis

analog of W48, W30, may not be required for MnIIMnv formation and tyrosine oxidation in

NrdF. Therefore, we mutated W30 to glutamine. Expression of this mutant yielded only -25%

the soluble protein of wt and Y105F NrdF. The EPR spectrum of W30Q-NrdF incubated with

3.5 Mn"/s2 (Figure 6.22B) in identical conditions to wt- (Figure 6.3) and Y105F-NrdF (Figure

6.22A) is dominated by mononuclear Mn", suggesting weaker Mn" binding to this protein than

to wt NrdF. Reconstitution of this mutant with Mn", Nrdlhq, and 02 resulted in no Y- observable

by EPR spectroscopy. Furthermore, no change in fluorescence was observed in titrations of

Nrdlhq with Mn"-loaded W30Q-NrdF (same conditions as in Figure 6.23). Cluster assembly

was also monitored by SF UV-vis spectroscopy; no evidence of a MnIIIMnIv intermediate or Y-

360



was observed. These results suggest NrdI does not bind to W30Q-NrdF. Although other

mutations of W30 may not preclude Mn cofactor assembly, the studies with both Yl 05F and

W30Q mutants suggest that the structural basis for Mn" binding and NrdL-NrdF interaction is

subtle and requires a correct primary and secondary coordination sphere at the metal site.

6.3.8.3. Cofactor assembly using exogenous 02'? Our identification of 02~ produced by

NrdI as the oxidant required for Mn" 2-Y- cofactor generation led us to investigate whether

exogenous 02~ could mediate cluster assembly as well. We have previously attempted to

activate E. coli Mnr 2-NrdF using 02' produced catalytically by the xanthine/xanthine oxidase

system, without success.7 To test whether higher 02' concentrations would allow for cofactor

assembly in B. subtilis NrdF, a stable solution of potassium superoxide was prepared in a

solution of 18-crown-6 in anhydrous DMSO.4 0 This solution was mixed in a sequential mixing

stopped flow apparatus, first with pH 10.2 buffer, and then with enzyme solution at pH 7.6-8.5

(Scheme 6.3).39 This method is routinely used to monitor activity of SODs.39 Despite the

presence of >1 mM 02' and 20 pM Mn"-loaded NrdF immediately after mixing, no evidence of

MnIMnIv formation was observed (at 340 nm), nor was there any apparent effect of the

presence of NrdF on the rate of disappearance of 02'~ (monitored at 300 nm). One explanation

for this result is that, under these experimental conditions, the reaction of the Mn" 2 center in

NrdF with 02 may not be able to compete kinetically with the disproportionation of 02' in

solution (kobs - 105 M-1 s- at pH 8, 23 oC), 65 even in the presence of large excesses of 02'.

Alternatively, the presence of NrdI may be required to funnel 02' into the metal site; Nrdlhq or

Nrdlsq could not be included in this experiment because they would react with 02'. These results

further highlight the essential role of NrdI in Mn" 2-Y* cofactor assembly.
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6.4. DISCUSSION

6.4.1. Key conclusions and proposed model for Mn" 2-Y- cofactor assembly (Scheme 6.4).

Our recent demonstration that both Nrdlhq and 02 are required for assembly of the MnI" 2 -Y-

cofactor of class lb RNRs strongly suggested that Nrdlhq is involved in formation of the required

oxidant, presumably either HOO(H) or 02'.7 Here, we have studied this process by rapid kinetic

methods. The major conclusions of our study are: 1) Nrdlhq reacts with 02 primarily (but not

exclusively) to form Nrdlsq and 02~. 2) The rate of Nrdlhq oxidation (Nrdlsq formation) is

dramatically increased in the presence of apoNrdF (up to 15-fold) and even further in the

presence of Mnn-loaded NrdF (30-fold), suggesting that this is the oxidation step relevant to

cluster assembly. The results together strongly suggest that 02' produced by Nrdlhq is the

oxidant required for Mn" 2 -Y- cofactor assembly. 3) The rate of Nrdlsq oxidation is not affected

by the presence of NrdF and this process is not relevant to cluster assembly. 4) Mn"2-NrdF is

oxidized by 02'~ to a MnIMnv intermediate that is kinetically competent for tyrosine oxidation

to Y-. While many complexities have been encountered in the course of the analysis, described

below, the SF and EPR data together provide strong support for the model in Scheme 6.4.

6.4.2. Kinetic complexity in cluster assembly. Our kinetic models suggest that, both in the

absence and presence of NrdF, not all of the Nrdlhq reacts to generate Nrdlsq and 02', with 20-

30% reacting instead to release H2 0 2 . NrdF does not seem to significantly alter the partitioning

between these two pathways, suggesting that heterogeneity in recombinant NrdI may contribute

to this observation. Meanwhile, the presence of two phases of sq formation is probably related to

heterogeneity in NrdF due to incomplete/incorrect Mn" binding. It is possible that both

observations are artifacts of attempting to use NrdI stoichiometrically in vitro whereas it acts

catalytically in vivo;9'10 the cluster assembly reaction does not have to be successful on every

362



attempt in vivo because, unlike in vitro, the NrdI reductase can presumably rapidly regenerate

Nrdlhq, minimizing failure. Interaction of the reductase in vivo may also influence the reaction

of Nrdlhq with 02 to favor 02'~ production. Under the assembly conditions used herein, however,

the observed complexities can be quantitatively evaluated assuming all the Mn oxidized (75 pM)

is present in dinuclear centers (38 pM Mn'I 2 clusters). Interestingly, the 38 gM value is

equivalent to the amount of Nrdlsq formed in the presence of Mn"-loaded NrdF. Of this 38 pM

Mn' 2 cluster formed, 25 pM Y- is generated; this correlates with the amplitude of the fastest

phase of the remaining Nrdlsq generation (AA610 = 0.12 = 24 pM Nrdlsq, Table 6.3). The

mechanism of oxidation of the remaining 25 ptM Mni" not associated with Y- (and whether it is

mononuclear or dinuclear) is unclear - but the analogous question in class la diferric-Y-

assembly, in which only 1.2 Y-/p2 are generated despite oxidation of 3.6 Fe/p2, is also

unanswered despite twenty years of mechanistic study. Further studies are in progress to probe

the burst phase of Nrdlsq formation in the presence of NrdF (Figure 6.14) and the multiple

phases of Nrdlsq formation. We are also examining cluster assembly in other class lb RNRs to

determine if they are kinetically simpler or distinct.

6.4.3. Reaction of Nrdlhq with 02. We suggest that the rate acceleration of Nrdlhq oxidation in

the presence of NrdF and 02 may be associated with the presence of positively charged residues

on NrdF at the NrdI binding site. 23,64 A key feature of the active sites of flavoproteins that react

with 02 as part of their catalytic cycles is a positively charged group in the vicinity of the

reactive C4a position of the flavin. This positive charge is thought to stabilize the transition state

for the electron transfer required to generate the caged sq-02'~ pair.66 This can be a protonated

histidine,67 a lysine,68 or even a positive charge on the cosubstrate itself. 69 Biochemical data7 and

the crystal structure of the E. coli NrdI-NrdF complex2 3 have shown that NrdF increases the
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positive charge of the FMN electrostatic environment by placing one Lys and two Arg residues

near the flavin when NrdI is complexed with NrdF. A computational model of the B. subtilis

Nrdl-NrdF complex 64 suggests that NrdF contributes an Arg and an Lys near the flavin in this

system as well. The role of this positive charge on NrdF augments the already conservedly

positive electrostatic environment of the flavin in NrdI, 26,70 helping to catalyze the reaction of

Nrdlhq with 02 to form 02'~; the maximum rate of Nrdlsq formation we have observed (Table 6.3)

is comparable to the rate of reaction of many flavoprotein oxidases with 02.66

The reaction of sq with 02 in B. subtilis NrdI (0.8 s , 0.6 mM 02) is 2 orders of

magnitude slower than the reaction of the hq and insensitive to the presence of NrdF. The hq

and neutral sq forms of NrdI (and flavodoxins in general) are protonated at the N5 position of the

flavin, whereas the ox form is deprotonated at this position. Crystal structures of flavodoxins7 1

and NrdIs 23 ,42,70 in their ox, sq, and hq forms have revealed that a peptide loop region (the "40s

loop" in B. subtilis, "50s loop" in E. coli) in the vicinity of the reactive C4a position of the flavin

undergoes a conformational change upon flavin reduction to allow for a hydrogen bonding

interaction between the N5H and a peptide backbone carbonyl. The proton transfer and

accompanying conformational change are reasonable sources of a kinetic barrier to sq oxidation

(e.g. ref. 72). The observation that the rate of sq oxidation is unchanged in the presence of NrdF

indicates either that the conformational change and proton transfer are rate limiting even if Nrdlsq

is bound to NrdF, or that the affinity of Nrdlsq for NrdF is low. Further studies are required to

determine when in the course of the cluster assembly reaction NrdI dissociates from NrdF, as

Nrdlsq or NrdIOx (only one of these options is shown in Scheme 6.4).

6.4.4. Formation of the Mn"IMn'v intermediate. We previously proposed in the E coli class

lb system, based on biochemical7 and crystallographic23 data, that the oxidant is conducted from
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NrdI to the metal site via a tunnel within the NrdI-NrdF complex lined by hydrophilic residues

and filled with a network of ordered water molecules. The recent crystal structure of B. subtilis

Mn"2-NrdF64 shows that a similar channel, though with fewer ordered water molecules, also

exists in this protein, terminating at Mn2, the Mn" ion farther from Y105.

We propose that the first step in cluster assembly upon 02'- encountering the active site is

inner- or outer-sphere transfer of an electron from one of the Mn" ions to 02', coupled with H*

transfer. It is also possible that superoxide is transported to the metal site in the protonated form,

HO2' (pKa 4.9), analogous to the case of azide binding to hemerythrin, in which HN 3 (pKa 4.75)

is proposed to be the species that binds to the metal site.7 2 The orientation of the channel

suggests that (H)02' would encounter site 2 first. Therefore, we envision initial formation of a

Mn"Mn"' intermediate or Mn"Mn"'-OO(H) adduct, with Mn" being at site 2. This species may

then collapse into a (hydro)peroxo-bridged Mn"Mn"r species.

Such a Mn"Mn1 species, if it forms and accumulates, should be detectable by UV-visible

absorption and EPR spectroscopy. Detection by SF UV-vis would be difficult given the broad

and weak visible bands of Mn"i complexes compared to the strong NrdI bands; the spectrum of

the Mn"Mn" would be expected to be similar to that of the Mn"12 cluster (Figure 6.1B) but with

half the extinction coefficient. 30' 73 Mn"Mnr1 clusters are typically weakly antiferromagnetically

coupled (S = 1/2) and display distinctive multiline signals centered at g ~ 2 in their low

temperature EPR spectra.5 7'59' 74 If the intermediate is uncoupled, it could be detectable by

formation of a signal resembling mononuclear Mn". However, we observe no clear evidence for

an intermediate prior to the MnirMniv, which is formed an order of magnitude more slowly than

Nrdlsq generation. If the oxidation of the site 2 Mn" to Mn"' to generate the proposed Mn"Mni

intermediate is similar to that of SOD, it is expected to be very fast (109 M' s' for Mn"-SOD1).
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A possible explanation is that all steps between 02' production and MnIIIMnv formation may be

rate limited by a conformational change associated with the 02' reaching the metal site.

Determination of the intermediacy of the MnrMn"' intermediate is a focus of continuing work.

Enzymatic precedent for the conversion of a Mn"Mn"' into a Mn"IMnI species by a

peroxide equivalent is provided by Mn catalase. Mn catalase catalyzes the disproportionation of

H20 2, cycling between Mn"2 and Mn"'2 states of the enzyme. Oxidized preparations (Mn" 2) of

Mn catalases can be reduced to Mn"2 by NH2OH;43 when the active enzyme is incubated with

NH 2OH in the presence of H2 0 2 , the inactive MnI"MnIV form accumulates, presumably by one-

electron reduction of Mn 1
2 by NH2OH to form Mn"Mn"', which reacts with H20 2 to form the

Mnl"Mnl ." Indirect evidence has also been presented suggesting (reversible) oxidation of an

uncoupled MnlMnl" complex by H20 2 to form a Mn"iiMn species.77  Unfortunately, the

kinetics of both of these processes have not been reported. Attempts to use Y105F and W30Q

mutants of NrdF, the analogues of which have been used as mechanistic probes of class Ia RNR

cofactor assembly,14'15'61'63'78 to investigate the formation of the Mnr1Mnv intermediate further

were unsuccessful.

In our model, an important consequence of 02' reacting with Mn2 initially, forming first

a Mn"Mni" and then a MnIMnIv species, is that the position of the Mniv is at site 2, where the

FeIV is proposed to reside in X,79 providing a close analogy between the tyrosine-oxidizing

intermediates in Fe"' 2 -Y- and MnIII2-Y- cluster assembly in class Ia and Ib RNRs. In addition, an

analogy can be drawn to the formation of a MnvFeI11 cofactor in the class Ic RNR from

Chlamydia trachomatis, in which the Y--forming tyrosine is replaced by phenylalanine.80 In that

protein, a Mn"Fe" cluster reacts with 02 to generate a Mn Fev intermediate, which decays

slowly (0.13 mM s-1 in the presence of ascorbate, or 0.021 s-1 in its absence) to the active
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IV 81,82
Mn' Fe"' cofactor. Recent studies suggest that Mn occupies site 1 and Fe site 2 in the active

MnVFe1I" cofactor. 83' 84 The results from all three class I subgroups together suggest that, despite

using different metallocofactors, the class I RNRs have engineered their metal sites such that the

metal at site 2 is reduced by one electron in the conversion between the intermediate directly

preceding the active cofactor and the active cofactor itself.

6.4.5. Tyrosine oxidation. The Mn"IMnIv intermediate decays concomitant with Y- generation,

suggesting that it is the oxidant directly responsible for tyrosine oxidation. This reaction is

notable for its low rate constant: 0.1 s1 (25 'C), compared to 1 s4 and 5 s- (both at 5 *C) for

oxidation of tyrosine by X in E. coli and mouse class Ia RNRs, respectively.' 5' 63 Although it is

not known whether electron, proton, or coupled electron/proton transfer is rate-limiting for

tyrosine oxidation in these systems, the very slow oxidation of tyrosine to Y- by a Mni Mni

intermediate may reflect a lower reduction potential compared to X, as has been suggested on the

basis of calculations on other RNR systems.85

6.4.6. Concluding remarks. Comparison of the general mechanisms of Mn" 2-Y- and Fe"12-Y*

cofactor assembly (Schemes 6.1 and 6.4) demonstrates Nature's elegant and efficient strategy to

balance two inherent problems in enzymatic Y- generation: how to activate 02 and the need for

an odd number of electrons for Y- generation. In Fe"12 -Y- cofactor assembly, reaction of 02

with a Fe"2 center is facile, but the Fe1vFeIV species that could potentially result is a stronger

oxidant than needed; 78 therefore, an extra electron is delivered after 02 activation to prevent that

intermediate's formation and/or accumulation. Because no known biological mono- or

multinuclear Mn11 centers, including that in NrdF, react at physiologically relevant rates with 02,

the most efficient strategy for circumventing this problem in Mnr1I2-Y- cofactor assembly is to
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deliver the extra electron as the first step in the process in the form of 02', with which Mn"

reacts readily. This reduction requires Nrdlhq. Once O2' is generated, the three oxidizing

equivalents necessary for formation of first a Mn1IIMnv species, and from it, a Y-, are present.

This is a much more efficient mechanism than use of H20 2 as oxidant, which would require 2 02

and 5 electrons to form one Y- (Scheme 6.2). Furthermore, since NrdI acts catalytically in

vivo, 9'10 identification of its function as a one-electron reductant suggests that the physiological

NrdI reductase might be the generic one-electron donor flavodoxin reductase. While this protein

is known in E. coli (Fpr), a flavodoxin reductase has yet to be identified in B. subtilis.

A final important question stemming from these results is how class lb RNRs assemble

both MnIr 2-Y- and FeII 2 -Y* cofactors, whereas class Ia RNRs assemble only Fe"12-Y* cofactors.

The structural 64 and mechanistic similarities between these systems suggest that the most incisive

answer to this question may not be found at the metal site, but instead in the ways in which the

unique difficulties of 02' production and transport to the metal site have been solved for cluster

formation in class lb RNRs. Production of 02'~ clearly requires a specific accessory protein,

NrdI. The oxidant channels in class lb RNRs appear configured for transport of a polar,

hydrophilic molecule like 02 - distinct from the analogous channels in the class Ia RNRs for 02

transport, which are largely hydrophobic.2 3 Thus Mn"12 -Y- cofactor assembly in the class lb

RNRs represents a remarkable example of how Nature has expanded the range of chemistry that

can be performed by the dimetal-carboxylate structural motif, by creating and harnessing a

normally deleterious oxidant for an essential cellular purpose.
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Chapter 7

Assembly of an active Fe(III)Mn(III)-tyrosyl radical
cofactor in E. coli class Ib ribonucleotide reductase

Arnie K. Boal was a contributor to some of the work described in this chapter.
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7.1. INTRODUCTION

Early in our studies of the class lb RNR, work of the Bollinger/Krebs laboratory

established that a MnV Fe II cofactor could be assembled in the NrdB subunit of the class Ic RNR

from Chlamydia trachomatis and was active in nucleotide reduction.' The metal site in this

protein differs from those of class Ia and lb RNRs in that 1) a glutamate residue (E89 in C.

trachomatis NrdB) replaces the aspartate ligand to the site 1 metal and 2) a phenylalanine residue

(C. trachomatis F127) replaces the tyrosine oxidized to the stable Y- in class Ia and lb RNRs

(Figure 7.1).2 Their subsequent studies elucidated the general mechanism of MnvFe1 cofactor

assembly, showing that Mn"Fe"-NrdB reacts with 02 to form a MnvFeIv intermediate,

characterized by EPR, M6ssbauer, and SF UV-visible absorption spectroscopies (Scheme 7.1).

This intermediate is slowly reduced to the active Mn"vFer11 cofactor (k = 0.021 s-', but

accelerated in the presence of ascorbate); the electron is proposed to be delivered via a relay of

two residues, W51 (equivalent to E coli NrdB W48 / NrdF W3 1) and Y222 (unique to class Ic

RNRs). 3,4 The MnIVFeI cofactor can also be assembled from Mn"Fe"-NrdB and 2 equiv of

H20 2 via Mn"'Fell and MnivFelv intermediates.5 Recent crystallographic results have suggested

that the Mnv ion in the active cofactor is located at site 1 and the Fel" ion at site 2.6,7 These

studies on the C. trachomatis RNR were the first definitive demonstration of activity of an RNR

with a Mn-containing cofactor and served as the impetus for the investigation reported in this

chapter of whether a Mn"IFe-Y- could be the active cofactor in K coli class lb RNR.
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E89
E120 2

E227
H230

Figure 7.1. The metal site of C. trachomatis NrdB. (A) Structure of the diferric form of the
protein (PDB code: 1 SYY). 2 Reproduced from ref. 8. (B) Anomalous difference electron
density map collected at the Mn absorption edge (purple mesh, contoured at 5.5Y) for a sample
of C. trachomatis NrdB containing Mn'Fe' cofactor, assembled with 3.0 Mn"/p2 followed by
slow introduction of 1.5 Fe"/p2 in the presence of 02.5 Metal sites 1 and 2 are indicated. The
data suggest that Mn primarily occupies site 1. Reproduced from ref. 7.

02

(k = 13 mM-1 s-1)

Mn" Fe"

H

(k = 8 M- s )

2 e-

H2O2 N

(k = 1.7 mM1 s1)

Tyr222e reductant?

Trp5l
Mnv FeIv Tyr222

(k = 0.021 s-) Trp51**

202

O2
| IV*' 0,

Mn' 0 '1-Fe"'

H

(active)

Mn' Fel"
Scheme 7.1. Bollinger/Krebs model for activation of C. trachomatis class Ic RNR using 02 and
H20 2 as oxidants (rate constants for each step, where known, are given in parentheses).

In this chapter, we show that NrdF incubated anaerobically first with 2 Mn"/p2, then 2

Fe"/p2, and finally 4 H20 2/p2 gives rise to a mixture of heterodinuclear metal clusters (we

propose Fe JMnir and FeiWMnv) and Y-. If Fe" is added before Mn", or 02 is the oxidant, no

heterodinuclear clusters are generated. A crystal structure of apoNrdF cocrystallized with

substoichiometric Mn" and soaked anaerobically with Ferl suggests that the Mn ion initially
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occupies site 2 and the Fe ion site 1 in Mn"- and Fe"- loaded NrdF. Throughout this chapter, we

describe this cluster as FeMn (denoting site 1 first). However, we note that this assignment may

not necessarily reflect the configuration of the oxidized metal site.

Our studies indicate that Y- is generated upon H20 2 addition (-0.4 Y-/02 at 1 min after

H20 2 addition) but -60% decays over 120 min, leaving a stable population of 0.1-0.15 Y-/p2,

which is coupled to a FeMn cluster. The unstable and stable Y*s are distinguishable by their

EPR spectra. Mutagenesis of conserved tyrosine residues adjacent to the metal cluster (Y105

and Y142, Figure 7.2) to Phe suggests that both Y- populations are located at Y105, as in the

Fe"' 2 -Y- and Mn" 2-Y- cofactors.

Y142
F162

Y1H05 Q70

E.6 E92 3,0

E1 92
Fe1 E9 Fe2

H101 H9

Figure 7.2. Metal site structure of E. coli Fer 2-NrdF (PDB code: 3N38). The hydrogen bonding
networks linking Y105 and Y142 to the metal ligands are shown with their distances. Although
evidence exists only for the physiological relevance of the dimanganese cofactor in this (or any)
class lb RNR, this structure is shown here because of its similarity to that of the Fe"Mn" form of
NrdF described in this chapter (Figure 7.19).

The FeMn-Y- NrdF is active in nucleotide reduction, and reactions using the mechanism-

based inhibitor 2'-azido-2'-deoxycytidine 5'-diphosphate (N3CDP) suggest that the stable Y-

alone is responsible for that activity. Analyses by EPR spectroscopy demonstrate that the Y- is
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weakly coupled to a metal cluster with non-zero spin, which we suggest is the Fe"Mn"i cluster;

therefore the active metallocofactor is proposed to be Fe"Mnr-Y-. We hypothesize that the

decay of all but 0.1-0.15 Y-/p2 of the Y- generated is due to the presence of an extra oxidizing

equivalent at the metal site subsequent to Yo generation by a FeIVMnV intermediate (Scheme

7.2). We cannot propose a satisfying, detailed chemical mechanism for this decay, however.

Scheme 7.2. Proposed mechanism for formation and decay of FeMn-Y- in E. coli NrdF. The
extra electron may be provided by excess Fe" in the reconstitution reaction. Whether multiple
pathways for production of stable Y- exist is unclear.

Y105 e- Y105-

W** Fe"' MnIV ' Fe'1' Mn"1

Y105 H20 2  Y105 H20 2  Y105 active

Fell Mn1  Fel' Mn'" Felv Mniv
site 1 site 2

Y105* Y105

Fe" Mniv' altered cluster
products?

Y105-

Fe'l Mn"l'

Finally, we outline continuing and future experiments to improve cluster assembly and

further characterize the cofactor by x-ray crystallography and EPR and M6ssbauer

spectroscopies. Besides the chemical interest of the ability of a single protein to oxidize a

tyrosine residue to a Ye starting with three different metal sites (Fe"2, Mn"2, and FeMn") and

three different oxidants (02, 02', and H20 2, respectively), further experiments in this system

should give us insight into mechanisms of oxidant binding and electron transfer during cofactor

assembly in all class I RNRs.

7.2. MATERIALS AND METHODS

7.2.1. Materials. His6-tagged NrdE, His 6-tagged NrdI, His 6-tagged apoNrdF, and untagged

apoNrdF were purified as described in Chapters 2 and 3. His6-tagged and untagged apoNrdFs
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yielded the same results in reconstitutions with Mn", Fe", and H20 2 and are used interchangeably

throughout this chapter. His6-tagged and untagged apoNrdF preparations were analyzed for iron

using the ferrozine assay9 (Chapter 2) and for manganese using atomic absorption (AA)

spectroscopy (section 7.2.3.5); in a typical preparation, apoNrdF contained 0.05 Fe/p2 and 0.003

Mn/p2. Concentrations of NrdE and NrdF are given per dimer and concentrations of NrdI are

per monomer (extinction coefficients are given in Chapters 2 and 3).

Chemical reagents were purchased from Sigma at the highest purity available, unless

otherwise indicated. 2'-Azido-2'-deoxycytidine 5'-diphosphate (N3CDP) was synthesized by E.

C. Minnihan as described.' 0 " Solutions of H20 2 , ~9 mM in water [C23o = 72.8 M~1 cm ],

were prepared immediately prior to use by dilution of a 30% H2 0 2 stock solution and sparged

with Ar for ~15 min to minimize the concentration of dissolved 02.

All anaerobic procedures were carried out in a glovebox (MBraun) in a cold room at 4

'C. Protein solutions and buffers for anaerobic work were degassed on a Schlenk line with 5-6

cycles (protein) or 3 cycles (buffer) of evacuation and refilling with Ar prior to introduction into

the glovebox.

7.2.2. Reconstitution of apoNrdF with Mn", Fell, and H2 0 2. In an anaerobic chamber at 4

*C, solutions of 3.6 mM MnCl 2 (standardized by AA spectroscopy) and 3 - 4 mM

(NH4)2Fe(SO 4)2 were prepared in Buffer A (50 mM HEPES, 5% glycerol, pH 7.6). The Fe"

solutions were prepared freshly each day, and the concentration of Fe was determined by

ferrozine assay (section 2.2.7).9 Depending on the experiment, stoichiometries of Mn"/p2 and

Fe"/02 added varied from 2-3 and 1.5-2, respectively, but in most experiments, 2 Mn"/p2 were

added to the solution of apoNrdF (200-340 pM, 400-500 ptL) and incubated for 20 min, followed

by addition of 2 Fe"/p2 and futher incubation for 5 min. The reaction mixture was removed from
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the anaerobic chamber in a sealed eppendorf tube, and 4 H20 2/p2 were added from the Ar-

sparged H2 0 2 solution and incubated on ice for 1-2 min. In some experiments, unreacted Mn"

was removed by incubation of the reconstituted protein (400 1.L, 340 ptM) with 80 gL Chelex

100 (Biorad, washed with HCl according to the manufacturer's protocol and stored in Buffer A)

at 4 'C for 2 h with slow inversion, and the resin was removed by centrifugation (1000 g, 1 min).

Experimental details for the several variations of the above procedures are given for the

appropriate experiments in the Results and Discussion.

7.2.3. Characterization of the FeMn-Y- cofactor

7.2.3.1. EPR spectroscopy. EPR spectra were acquired on a BrUker EMX X-band

spectrometer at 77 K using a quartz finger dewar or at 10 or 14 K using an Oxford Instruments

liquid helium cryostat. All spectra were acquired at 9.3-9.4 GHz, 100 kHz modulation

frequency. Other acquisition parameters were: 1) at 77 K, 0.1 or 1 mW power, 100 kHz

modulation frequency, 1.5 G modulation amplitude, 5.12 ms time constant, and 2) at 10-14 K,

0.2 mW power, 100 kHz modulation frequency, 4 G modulation amplitude, 5.12 ms time

constant. Spin quantification, where applicable, was performed by double integration and

comparison with a CuSO 4 standard sample' 3 or a Fe' 2-Y- NrdB standard sample whose Y-

content had in turn been determined using the CuSO 4 standard and spectrophotometrically using

the dropline method,'4 with analysis performed in WinEPR (Brnker). Further details of

individual EPR experiments are provided in the Results and Discussion.

7.2.3.2. Analysis of Ye stability by EPR spectroscopy. ApoNrdF (200 gM) was degassed

on a Schlenk line and brought into the anaerobic box. Mn" and Fe" were added sequentially as

described in section 7.2.2 to yield 1.9 mL 150 ptM Fe"Mn"-NrdF in Buffer A. The protein

solution was removed from the anaerobic box and H20 2 was added to 600 pM and stirred for -20
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s. The protein solution was put on ice and 235 gL aliquots were transferred to EPR tubes and

frozen in liquid N2 at 1, 5, 10, 20, 40, 60, and 120 min after H20 2 addition. In addition, a 235 pL

aliquot of the protein was removed at 30 min and incubated with 30 mM hydroxyurea for 20

min, transferred to an EPR tube, and frozen in liquid N2. This sample provided a "background"

control to remove the signals associated with Fe"'Mn"' and Mn"2 clusters and Mn" so that Y-

could be quantified at 77 K.

7.2.3.3. Analysis of Y- stability by UV-vis spectrophotometry. In studies of FeMn-Y*

cofactor stability followed by UV-vis spectrophotometry (details given in section 7.3.3.1), NrdF

Y- content was estimated from the dropline absorbance at 408 nm using equation 7.1 (based on

Bollinger et al.14):

[Y-] = [A408 - (2A402 + A420)/3] / 6408 (7.1)

6408 was determined to be 3050 M- cm-1 by correlation of the UV/visible spectra and EPR

spectra of three reconstitutions.

7.2.3.4. Activity assays. A typical assay reaction contained in a final volume of 170 ptL:

0.2 pM reconstituted NrdF, 1.0 pM NrdE, 0.3 mM dATP, 20 mM dithiothreitol (DTT), and 0.5

mM [3H]-CDP (ViTrax, 4100 cpm/nmol), in 50 mM HEPES, 15 mM MgSO 4, 1 mM EDTA, pH

7.6, at 37 'C (Chapter 2). At five timepoints, 30 pL aliquots were removed and heated at 100 'C

for 2 min. Subsequent to removal of the phosphates using alkaline phosphatase (Roche), dCDP

formation was analyzed by the method of Steeper and Steuart. One unit (U) of activity is

equivalent to 1 nmol dCDP produced/min. The specific activity of N-terminally His6-tagged

NrdE was 80 U/mg when assayed with Fe" 2-Y- NrdF (0.7 Y-/p2).

7.2.3.5. Atomic absorption spectroscopy. Quantitation of Mn in a Chelex-treated sample

of FeMn-Y* NrdF, described above, was performed using a Perkin-Elmer AAnalyst 600

384



spectrometer in the laboratory of Prof. Stephen J. Lippard, using a standard curve from 0-5

pg/mL Mn (dilution from a manganese standard solution, 1000 4 mg/L, Fluka).

7.2.4. Determination of the active form of FeMn-Y. NrdF by reaction with NrdE, N3CDP,

and dATP. A reaction mixture of 240 ptL contained 30 pM NrdE, 30 pM FeMn-Y- NrdF

(assembled with 2.5 Mn"/p2, 1.5 Fe"/p2, 4 H202/p2, and Chelex-treated as described above and

in section 7.3.2), 0.3 mM dATP, 10 mM DTT, 15 mM MgSO 4 , and 250 pM N 3CDP (or CDP) in

50 mM HEPES, 5% glycerol, pH 7.6. The reaction was initiated by addition of NrdF and hand-

quenched in liquid N2 after 1 min at room temperature (23 'C). The concentration of the

nitrogen-centered radical (N-) was determined by EPR spectroscopy at 77 K (parameters: 50 gW

power, 100 kHz modulation frequency, 1.5 G modulation amplitude, 5.12 ms time constant) in

comparison to the Fe"I2-Y- NrdB standard described above. At these settings, Y- and Fe"Mn"

cluster minimally contribute to the total signal because of their relaxation properties. EPR

spectra of the reaction mixtures were also acquired at 10 K, with parameters as indicated in

Figure 7.8 for FeMn-Y- NrdF.

7.2.5. Generation of Y105F and Y142F mutants of His6-tagged NrdF. Site-directed

mutagenesis was carried out on pET28a-nrdF, which contains NrdF with an N-terminal His6 tag

and linker (Chapter 2), using PfuUltraII polymerase (Stratagene) by the manufacturer's protocol

and the primers (mutated codons are bolded): 5'-CG GTT CAT GCC CGC TCT TTC AGT TCG

ATT TTC TCG ACG-3' and 5'-CGT CGA GAA AAT CGA ACT GAA AGA GCG GGC ATG

AAC CG-3' (Y105F); and 5'-GCT CAG ATT ATT CAG CAA CAT TTT CGC GGT GAT GAT

CCG C-3' and 5'-G CGG ATC ATC ACC GCG AAA ATG TTG CTG AAT AAT CTG AGC-3'

(Yl42F). XL10 Gold Ultracompetent cells (Stratagene) were transformed with the mutagenesis
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products, plasmids were isolated from single colonies by miniprep, and the purified plasmids

were sequenced at the MIT Biopolymers Laboratory to confirm the presence of the desired

mutations. The Y105F- and Y142F-NrdF proteins were overexpressed in the presence of 100

ptM 1,10-phenanthroline1 6 and the apoproteins were purified by Ni-NTA affinity chromatography

exactly as described for the wt apo His6-tagged NrdF (Chapter 2). These procedures yielded 1.8-

2.2 g/L wet cell paste and 20-23 mg protein (>95% purity by SDS-PAGE) per g cell paste.

Metal analysis was not carried out on these proteins.

7.2.6. Structural characterization of E. coli NrdF

All crystallographic experiments were performed by Arnie K. Boal (laboratory of Prof.

Amy C. Rosenzweig, Northwestern University).

7.2.6.1. ApoNrdF. E coli apoNrdF (untagged, 27 mg/mL in Buffer A) was crystallized

by hanging drop vapor diffusion at room temperature. Single hexagonal rod-shaped crystals

were grown with 25% (w/v) PEG 4000 as the precipitant in a well solution containing 0.2 M

sodium acetate, 0.2 M lithium sulfate, 0.03 M p-mercaptoethanol, and 0.1 M HEPES, pH 7. The

crystals were flash frozen in liquid N2 after mounting in rayon loops and cryoprotected in well

solution containing 35% (w/v) PEG 4000.

7.2.6.2. Fe"Mn"-NrdF. ApoNrdF (27 mg/mL in Buffer A) was incubated with 0.7

equivalents MnCl2 per P2 on ice for 20 minutes. The resulting solution was placed in a vial

sealed with a rubber septum and degassed via five cycles of purging with Ar(g) and evacuation

on a Schlenk line. All subsequent steps were carried out in a Coy anaerobic chamber. The

protein was crystallized by hanging drop vapor diffusion at room temperature and single

hexagonal rod-shaped crystals appeared overnight with 25% (w/v) PEG 4000 as the precipitant

in a well solution containing 0.2 M sodium acetate, 0.2 M lithium sulfate, 0.03 M p-
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mercaptoethanol, and 0.1 M HEPES, pH 7.6. To incorporate Fe", the crystals were harvested

one day after drop setup and soaked briefly (-30 s) in cryoprotectant solution containing the well

components described above, 35% PEG 4000, and 5 mM ferrous ammonium sulfate, prepared as

previously described.1 7 The Fe"-soaked crystals were mounted in rayon loops and flash frozen

in liquid N 2 .

7.2.6.3. Data analysis. Crystallographic datasets were collected at the Advanced Photon

Source at the Life Sciences Collaborative Access Team (LS-CAT) beamlines. The datasets were

processed with the HKL2000 package' 8 and the structure was determined by molecular

replacement using PHASER' 9 with E. coli Mn"2-NrdF (PDB accession code 3N37) as the initial

search model. Initial refinement of the structure was carried out with Coot and Refmac5.

Figures were prepared with PyMOL (SchrSdinger, LLC) and anomalous difference maps

were generated with FFT.2 Fe-only anomalous difference maps were created as described

previously23 ,24 using FFT and SFTOOLS. Note that the method for creating Fe-specific maps

fails to take into account the decay in Mn X-ray absorption as a function of wavelength and the

Fe-specific anomalous density shown here slightly underestimates of the amount of iron present

at each site.

7.3. RESULTS AND DISCUSSION

7.3.1. Reconstitution of apoNrdF with Mn", Fe11, and H20 2. Inspired by the studies of

Bollinger, Krebs, and coworkers on the C. trachomatis NrdB system, which demonstrated

formation of a Mn Feir cofactor from Mn , Fel, and either 021 or two equiv of H2 0 2 as

oxidant,5 we explored the reactivity of NrdF under similar conditions. Previously, we and

others 25 have tested the ability of apoNrdF, loaded with only Mn", only Fe", or both Mn" and

Fe", to assemble active cofactor when 02 is used as an oxidant. In Chapter 4, we showed that
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reconstitution of E coli apoNrdF with 5 Fe"/2 and 3.5 02/p2 gives NrdF containing 0.7 Y-/p2

and a specific activity of ~300 U/mg, whereas reconstitution with 4 Mn"/p2 and 02 or H20 2

gives no detectable Y- or activity. We also attempted incubating apoNrdF with 2 Fe"/02 and 2

Mn11/p2, added simultaneously, and then exposing the protein to 02, which is how Bollinger,

Krebs, and coworkers formed the MnIV FeIII cofactor in C. trachomatis NrdB in their initial

studies.! Compared to a control reaction in which 4 Fe"/p2 and 02 were added, half as much Y-

resulted. Sj6berg and coworkers2 5 have reported similar experiments with S. Typhimurium NrdF

yielding similar results. The fact that a statistical distribution of Fe and Mn does not result (1:2:1

FeFe:FeMn:MnMn) suggests that NrdF prefers to form homodinuclear sites under these reaction

conditions, perhaps driven by the reactivity of diferrous clusters with 02 but unreactivity of

Fe"Mn" or Mn" 2 clusters with 02.

Further studies from the Bollinger/Krebs lab demonstrated the importance of ratios of Mn

and Fe, order of metal addition, and timing of oxidant addition for maximizing active MnIV FeLII

generation in the C. trachomatis system. They found that addition of 3 Mn"/s2 first, followed by

slow addition over 20 min of an 0 2-saturated solution of 1.5 Fe"/s2 maximized formation of

MnFe clusters and minimized formation of diferrous clusters, which could also react with 02

(still 10-15% of the total protein).3 s,26 Therefore, we used the same ratio of Mn and Fe in our

initial studies with NrdF. E coli apo-NrdF was incubated anaerobically with 3 Mn"/p2 at 4 *C

for 20 min, followed by addition of 1.5 Fe"l/P2 and incubation for 5 min. The incubation times

were chosen arbitrarily. In one sample, 02 was blown over the surface of the sample for 5 s and

the sample was mixed. This procedure is sufficient to assemble Fe"12-Y- cofactor in NrdF

(Chapter 2). No evidence of metal cluster oxidation or of Y- formation was observed (Figure

7.3), indicating that in this sample, no significant amount of Fe"2 clusters were generated. In

388



second and third experiments, 2 H20 2/p2 was added anaerobically in the glovebox or aerobically,

immediately after removal from the glovebox. In both cases, the protein solution changed color

within seconds of mixing, and the spectra indicated formation of an oxidized metal cluster and

Y- (Figure 7.3, red). Addition of another 2 H2 0 2/p2 increased the absorption features of both

oxidized metal cluster and Y., but further additions of H20 2 did not affect the UV-vis spectrum.

Therefore, these features were maximized upon addition of a 2-4 H202/p2 (intermediate amounts

of H202/p2 were not attempted). The absorption of the protein reconstituted in this way is

distinct from that of Fe"'2-Y* NrdF (Figure 7.3, blue) in that it lacks the distinct bands at 325

and 370 nm associate with the diferric cluster. These data provide the first evidence that a

FeMn-Y* cofactor is being formed under these reaction conditions.
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Figure 7.3. UV-vis absorption spectra of apoNrdF reconstituted with Fe", Mn", and 02 or H2 0 2 .
Blue: 130 gM apoNrdF reconstituted with 5 Fe"/p2 and 3.5 02/p2, added as 02-saturated buffer.
Red: 160 gM apoNrdF incubated with 3 Mn"/p2 (20 min), 1.5 Fe"/p2 (5 min), and 4 H20 2/02.
Green: 160 gM apoNrdF incubated with 3 Mnl/p2 (20 min), 1.5 Fe"/p2 (5 min), and with 02
blown over the sample for 10 s and mixed.

The detection of Y- only when H20 2 was used as an oxidant caused us to explore cluster

formation further while varying the ratios of Mn" and Fe" used. Building on our experimental

design above, apoNrdF (120 pM) was first incubated anaerobically with either 4 Fe" or 4 Mn"
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per p2 for 20 min, followed by anaerobic addition of 4 H202/2 (Figure 7.4). As expected, NrdF

incubated with Fe" and H20 2 exhibited features of a ji-oxo-diferric cluster, with no apparent Y-

(met-NrdF, Figure 7.4, black). Using the extinction coefficient of met-NrdF determined

previously (E341 = 8.9 mM~1 cm~1, Chapter 3), NrdF was loaded with a full complement of diferric

cluster in this experiment. The UV-vis spectrum of the sample incubated with Mn" and H202

was identical to apoprotein. These results indicated that the Y--containing cofactor observed in

Figure 7.3 (red) includes both Fe and Mn. Next, the effect of the order of addition of Fe" and

Mn" on cofactor assembly was tested. In this experiment, 2 Fer/p2 were added first, the protein

was incubated at 4 *C for 20 min, 2 Mn"/p2 were added, and 5 min later 4 H202/p2 was added.

The spectrum of this sample revealed Fe"12 cluster (Figure 7.4, blue) at half the concentration of

that formed when 4 Fe" and 4 H202 per P2 were added, showing that essentially all of the Fe"

was oxidized in the form of diferric clusters. Therefore, the order of metal addition is key to

observation of the FeMn cluster and Ye.
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Figure 7.4. UV-vis absorption spectra of apo-NrdF (120 tM) reconstituted with 4 Fe"/p2 and 4
H202/p2 (black), 4 Mn"/p2 and 4 H202/02 (red), or 2 Fe"/32 (added first), 2 Mnr/p2, and 4
H202/p2 (blue). Further details are given in the text.
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Figure 7.5. UV-vis spectrum of apoNrdB (90 gM, black) and apoNrdF (100 pM, red), with 2
Mn"/P2 added anaerobically, followed 20 min later by 2 Fe"/$2. After 5 min incubation, 4
H20 2/p2 were added anaerobically.

The assembly of apoNrdF was also investigated by changing the ratio of Mn:Fe to 2:2

with 4 H20 2/p2. The results are shown in Figure 7.5 (red). Comparison of Figure 7.3 and

Figure 7.5 (and scaling for the different concentrations used) shows that the yield of FeMn-Y-

cluster is similar in the two experiments (3:1.5 vs. 2:2 Mn:Fe). Because the class Ia RNRs from

E. coli12,28 and from mouse29,30 have been reported to be able to generate Mn"I FeI forms,

although in neither case has the ability to form Y- been well characterized, a similar control

experiment was carried out using apoNrdB (Figure 7.5, black). The resulting spectrum is

qualitatively similar to that of apoNrdF incubated under the same conditions; however, only a

very small feature at 410 nm is observed, perhaps associated with diferric-Y- cluster, although

this was not investigated by EPR spectroscopy. Therefore, NrdF, but not NrdB, has an ability to

catalyze formation of significant amounts of FeMn-Y- cluster when loaded with Mn", Fe", and

H20 2 under the same conditions. The MnFe cluster spectra in NrdF and NrdB can be compared

to those of the MnvFei and MnvFev forms of C. trachomatis NrdB (Figure 7.6, green and
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blue, respectively). The putative E. coli FeMn-NrdF and FeMn-NrdB spectra in Figure 7.5 do

not exhibit the distinctive feature at 390 nm observed in the C. trachomatis NrdB MnWFeW

cluster, suggesting this is not the oxidation state of the clusters formed in E. coli NrdF and NrdB.

The UV-vis spectrum of the MnWFer cluster is relatively featureless and that of the Mn"'Fe"'

cluster in C. trachomatis NrdB has not been reported. Therefore, we cannot identify the

oxidation state(s) of the putative MnFe cluster in NrdF based on the UV-vis data.

A
0.6 50 ms

0.51.
100S

400 WvIgh(nnu) 700
Figure 7.6. UV-vis spectra of the MnI Fe intermediate (blue) and MnWFe"II cofactor (green) in
C. trachomatis NrdB, reproduced from ref. 3. The other spectra are not relevant to this chapter.
Conditions: 200 p.M NrdB, 3 Mn", 1.5 Fe'r/32. By our estimation from the data presented in ref.
3, the extinction coefficient of the MnIVFe intermediate at 390 nm is -3 mM4' cm' and that of
the MnWFei cluster is ~1.5 mM' cm'.

7.3.2. EPR spectroscopy of MnFe-Ye NrdF reveals a Fe"'Mnu' cluster and a coupled Ye

signal. Because the UV-vis data were inconclusive regarding the identity of the metallo-Y.

cofactor formed with Mn", Fe", and H202, EPR spectroscopy at 77 and 14 K was performed on a

sample of FeMn-Y- NrdF. To prepare the protein for these experiments, apoNrdF (420 p.L, 340

pM) was incubated with 2.5 Mn"/p32 for 20 min in an anaerobic box followed by 1.5 Fe"/p32 for 5

min prior to addition of 4 H202/32 from an Ar-sparged solution in water. A larger amount of

Mn" was added in an attempt to decrease the likelihood that diiron clusters would form.3 Initial

experiments showed that even in reactions with 2 Mn"/p32, 2 Fe"/p32, and 4 H202, excess Mn"
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was present after cluster assembly in mononuclear and dinuclear form. Therefore, the protein

was incubated with 80 pL Chelex 100 at 4 'C for 2 h, to allow the unstable population of Y- (see

section 7.3.3) to fully decay. The Chelex was then removed by centrifugation. Quantification of

Mn by AA spectroscopy gave 1.1 Mn/p2, 31 out of the 2.5 Mn"/p2 that had been added, and Y-

quantification by EPR spectroscopy at 77 K (see below) gave 0.12 Y-/p2. Iron was not

quantified and the specific activity of this sample was not determined.

The EPR spectrum of 50 iM FeMn-Y- NrdF at 77 K is shown in Figure 7.7A (black),

compared with a sample of 50 pM FeMn-Y- NrdF incubated with 20 mM HU for 20 min (red).

Y- reduction was followed by UV-vis absorption spectroscopy over this timeframe and <10% of

Y- was apparent at the conclusion of the incubation. The Y- signal at g = 2.0 was very weak at

the microwave power typically used to quantify the Fe"12-Y* cofactor, 50 pW, so measurements

were made at 1 mW power, typically used for the Mnr12-Y* cofactor and at which the FeMn-Y-

signal was not saturated. (A detailed power dependence study was not carried out on this signal,

however, and conditions for detection of this radical are likely not optimal.) At 1 mW, the

difference spectrum between the FeMn-Y- and HU-treated samples (Figure 7.7B) shows an

unusual radical signal with strong wing features at low and high field (centered at 3280 and 3380

G). The total signal was -150 G in width. The reduction of the EPR signal by HU treatment

suggests that these features are associated with Y-. The signal width and high microwave power

required to observe it suggest that the Y- is weakly coupled to an S # 0 metal center (MnLvFe is

S = 1, Mn"'Fe"' is S= 1/2), as in the Mn"I2 -Y* cofactor (Chapter 4).
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Figure 7.7. X-band EPR spectra (77 K) of NrdF (50 pM) reconstituted with 2.5 Mn"/p2, 1.5
Fe /p2, and 4 H202/p2, followed by Chelex treatment to remove residual Mn". (A) The Chelex-
treated 50 gM MnFe-NrdF sample (black) and an identical sample treated with 20 mM HU for
20 min prior to freezing in liquid N2 (red). The uneven baseline is due to features of the Fe"'MnI"
cluster. (B) Difference spectrum (black - red) showing coupling of the Ye to an S # 0 metal
center (hyperfine features at 3280 and 3380 G). Parameters: 9.34 GHz, 1 mW power, 1.5 G
modulation amplitude, 100 kHz modulation frequency, 10.24 ms time constant.

To further characterize the Y- and gain insight into the identity of the cluster(s) to which

it is coupled, the samples were analyzed at 14 K, at which temperature the Mn"'Fe"' cluster of C.

trachomatis NrdB was examined in previous studies of the Bollinger/Krebs laboratory (Figure

7.8D).1 The spectra of FeMn-Y- and HU-treated NrdFs are shown in Figure 7.8A (black and

red, respectively). Besides the presence of the Y- signal, the spectra are similar to those

observed for the Mn"'Feir form of C. trachomatis NrdB in the presence of NrdA, substrate CDP,

and effector ATP.' Therefore, we assign the hyperfine-split sextet signal to a Fe"IMni species,

although we have not yet attempted to simulate the spectra. Precise quantification of the

Mn"'Fe"' signal is difficult due to a shift in the baseline in the low temperature spectrum.
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Fi ure 7.8. X-band EPR spectra (14 K) of NrdF (50 pM) reconstituted with 2.5 Mn"/s2, 1.5
Fe /$2, and 4 H20 2/#2, followed by Chelex treatment to remove residual Mn". (A) The Chelex-
treated 50 pM MnFe-Y* NrdF sample (black) and an identical sample treated with 20 mM HU
for 20 min prior to freezing in liquid N2 (red). Arrows at 3300 and 3400 G indicate the strong
wing features also visible at 77 K indicating coupling of the Y- to the metal cluster. (B)
Difference spectrum of the active rotein minus the HU-treated sample (scaled by 0.6 to account
for the increased amount of Fe "Mn"' cluster in the HU-treated sample. Note that this
subtraction (or any other scaling factor) does not fully eliminate all of the hyperfine features,
especially the most intense features at 3300 and 3400 G. Parameters: 9.384 GHz, 0.2 mW
power, 4 G modulation amplitude, 100 kHz modulation frequency, 5.12 ms time constant. (C)
Expansion of the 3200-3500 G region in (B) to show the Y- signal. (D) 14 K EPR spectrum of
the Mn"'Fe"' form of C. trachomatis NrdB in the presence of NrdA, CDP, and ATP (0.2 mW
power, 4 G modulation amplitude).
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It is apparent from Figure 7.8A that HU treatment increases the intensity of the

Fe"Mn"' signal by -80% (from the new features from 2800 to 2900 G in Figure 7.8A it appears

that it also reduces a small amount of Fe"IMn"I cluster, liberating Mn" that then forms Mn 2

cluster). Therefore, it seems that a EPR-silent, higher-valent FeMn complex such as FeI Mnv is

present and can be reduced by HU.

Attempts to subtract the HU-treated NrdF spectrum (Figure 7.8A, red) from the starting

spectrum (black) such that the hyperfine features in the low and high field regions were entirely

removed were unsuccessful. The best difference spectrum was obtained by subtraction of the

HU-treated spectrum scaled by 0.6 (because HU treatment increases the intensity of the Mn"'Fe"I

signal by -80%, scaling by 0.6 approximates the initial concentration of Mn"'Fe"': 0.6 x (1 +

0.8) = 1.1) (Figure 7.8B). Because the 77 K EPR spectra indicate that the Y- is coupled to an S

0 metal center, we interpret this result as suggesting that the spectrum of the Y- at 14 K is

much more complex than at 77 K, with many hyperfine features due to coupling of the S = 1/2

signal with the metal center. As outlined by Cox et al.,32 if a Y- (S = 1/2) is coupled to a S = 1/2

metal center and the coupling constant is on the order of or greater than the difference in g value

between the Y- and the cluster (which in the case of a Fe"'Mni" is small), a complex split radical

signal would result. We propose that this explains the complicated Y- spectrum suggested by

Figure 7.8B and why the most intense couplings evident in the Y- spectrum are those closest to

g = 2.00. Therefore, we favor coupling of Y- to Fe"IMn"' (S = 1/2), but our unsophisticated

analysis cannot rule out coupling to an S = 1 cluster such as Fe"'MnI.

To conclude, these data demonstrate that reaction of Fe"Mn"-NrdF (2.5:1.5 Mn:Fe) with

H20 2 oxidizes 1.1 Mn and produces Fe"Mn"' cluster and Y- coupled to a metal center. HU

treatment reduces Y- and also increases the amount of FeIMn"' cluster, suggesting that a higher-
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valent species, possibly Fel"Mnl, is also formed in the cluster assembly reaction. Our proposal

is that the Y- is coupled to the Fe"'Mni' cluster, although further analysis and simulations are

required.

7.3.3. Stability of the FeMn-Y. cofactor

7.3.3.1. Monitored by UV-visible absorption spectroscopy. In order to test the stability

of the Y- formed by reaction of 2 Mn 1, 2 Fe" and 4 H20 2, as above, FeMn-Y- NrdF (100 ptM)

was prepared as described above and UV-vis spectra were acquired from 1 min to 60 min

following cluster assembly, at 25 *C. The results, shown in Figure 7.9A-C, demonstrate a slight

increase in the absorbance at >415 nm and in a feature at 350 nm, mainly within the first 10 min

after H20 2 addition but with a slower change at 10-60 min, as well as a decrease in the features

associated with Y- over time. To estimate the rate of Y- decay, the dropline correction method

[A408 - (2A 402 + A420)/3] was carried out as described in section 7.2.3.3.14 The results are shown

in Figure 7.9D, fit to single exponential decay with a half-life of 16 ± 1 min.

If all of the Y- were unstable, however, the dropline A4O8nm should go to zero, but the fit

suggests that at 60 min, only about 40% has decayed and is beginning to level off. Using , =

3050 M- cm', 0.33 Y-/p2 is present in the first timepoint and 0.2 Y-/p2 at 60 min. There is

some error in this analysis, as the , used for the dropline correction was calculated from diferric-

Y- cofactor, and this extinction coefficient is not necessarily the same for the FeMn-Y- cofactor.

Furthermore, the experiment was not carried out to longer times. While it is possible that the

stable Y* is associated with a diferric-Y- cofactor, the lack of formation of this cofactor when 02

is added to Mn"- and Fe"-loaded NrdF or when H20 2 is added to Fe" 2-NrdF suggests that this

was not the case. Therefore, the data suggest that there are two populations of Y- in the FeMn-

Ye NrdF, one unstable (with a half-life of~16 min) and one that is more stable.
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Figure 7.9. Decay of Y- formed by reconstitution of apoNrdF (100 gM) with 2 Mn", 2 Fe", and
4 H20 2 per P2, added as described above, monitored by UV-vis spectrophotometry at 25 *C. (A)
Spectra were acquired at "0" (effectively 1 min), 10, 15, 25, 45, and 60 min after addition of
H20 2. (B) Expansion of the 350-450 nm region showing Y- decay (408 nm) and increase in
metal cluster features at >415 nm in the first 10 min of the reaction. (C) Expansion of the 300-
400 region showing increase at 350 nm. (D) The dropline absorbance at 408 nm (A4 08 - (2A 402 +
A420)/3) is plotted against time and fit to a single exponential decay using Origin. The half-life
was calculated to be 16 ± 1 min.

7.3.3.2. Monitored by EPR spectroscopy. To confirm the results of the UV-vis

experiment, the stability of Y- was also monitored by EPR spectroscopy. FeMn-Y* NrdF (150

pM) was generated from apoNrdF, 2 Mn"/p2, 2 Fe"/p2, and 4 H20 2/p2, as above, and aliquots

were frozen in EPR tubes after 1, 5, 10, 20, 40, 60, and 120 min at 4 *C. Because mononuclear

and dinuclear Mn" are visible by EPR spectroscopy with the conditions used to detect Y., Ye
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quantification required preparation of a sample of FeMn-NrdF in parallel that was incubated with

a 200-fold excess of hydroxyurea (30 mM) for 20 min. A small amount of Y* (<10%) appeared

to still be present at the end of this incubation. The EPR spectra of these samples are shown in

Figure 7.10A. The Ye features observed are similar to those shown in Figure 7.7, with two

intense wing features are observed at 3280 and 3380 G in all but the HU-treated sample.

Interestingly, these features stay relatively constant over the timecourse, in contrast to the

sharper Y- feature centered at 3325 G. Subtraction of the spectrum at 120 min from that at 1 min

("O min" in the figure) demonstrates that the Y- that decays does not have the wing features

(Figure 7.10C). However, the spectrum is still broad (~100 G) and is therefore likely still

coupled to a metal cluster - either a different cluster, perhaps with a different spin state such as

Mn'vFemII (S = 1), than the more stable Y-, or the same cluster but more weakly coupled.

Although the relaxation behavior of the FeMn cluster-associated Y- was not studied in depth,

further study of the power dependence of the two Y-s may help distinguish between these

options.

After subtraction of the spectrum of the HU-treated sample from the spectra of the other

timepoints, spin quantitation was carried out on the resulting signal by double integration and

comparison with a CuSO4 standard sample. The "0 min" sample contained 0.44 Y-/02 and the

60 min sample had 0.21 Y-/p2. Figure 7.10B shows that the Y- signal at 120 min is somewhat

lower than at 60 min. There are insufficient datapoints to determine if there are multiple

unstable Y-s, and the experiment was carried out only once. The fit to a single exponential gave

a half-life of 13 ± 4 min. Although this experiment needs to be optimized further (timepoints

and data acquisition parameters), the data are overall consistent with the UV-vis data in

demonstrating the presence of two spectrally distinct populations of Y- with different stabilities.
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Figure 7.10. Decay of Y- formed by reconstitution of apoNrdF (150 gM) with 2 Mn", 2 Fe",
and 4 H20 2 per p2, monitored by EPR spectroscopy at 77 K. FeMn-Y* NrdF was assembled and
timepoints were frozen in liquid N2 after incubation for 1 to 120 min at 4 'C. (A) All spectra
overlaid. The "0 min" timepoint was frozen 1 min after mixing of Fe"Mn"-NrdF with H2 0 2.
The "met" spectrum is a sample of active FeMn-NrdF incubated with 30 mM HU for 20 min.
(B) The intensity of the Y. peak at 3316 G plotted against time, used to estimate the half-life of
the unstable Y. (fit is to an exponential decay with t/2 = 13 ± 4 min). (C) EPR spectrum of the
120 min timepoint subtracted from the "0 min" timepoint. Note the absence of the wings at 3280
and 3380 G. Parameters: 0.1 mW power, 100 kHz modulation frequency, 1.5 G modulation
amplitude, 5.12 ms time constant.

7.3.4. FeMn-Y- NrdF is active in nucleotide reduction. In order to determine if the activity of

reconstituted NrdF is associated with stable, unstable, or both populations of Y., FeMn-Y* NrdF

was reconstituted with 2 Mn"/P2, 2 Fe"/p2, and 4 H20 2/02, and dCDP formation was determined

as soon as possible after H20 2 addition (<1 min) and after 2 h incubation on ice (after decay of
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the unstable Y*). Two control samples were also prepared, in which apoNrdF was incubated

anaerobically with 4 Fe"/s2, followed by addition of either 2 02/2 as an 0 2-saturated solution at

4 *C or 4 H20 2/p2 from an Ar-sparged H202 solution in water. The protein samples were

assayed for dCDP formation 1 min after addition of the oxidant, and an EPR sample was frozen

20 min after start of the activity assay, for quantification of Y-.

*MnFeNrdF

m FeNrdF

AFeNrdF+H202

xMnFeNrdF 2h

0 2 4 6 8 10

Time, min

Figure 7.11. Radioactive assays apoNrdF samples reconstituted with
or Fe" and 02 or H202, as described in the text.

12 14

either Mn", Fe", and H202,

Table 7.1. Specific activities and Y-/p2 of apoNrdF samples reconstituted with either Mn , Fe",
and H202, or Fe" and 02 or H202, as described in the text.

Activity (nmol/min/mg) Y-/p2

FeMn-Y* NrdF, 0 min after H20 2 addition 136 ~0.4a
Fe"2-NrdF + 02 309 0.6
Fe"2-NrdF + H202 78 0.04
FeMn-Y- NrdF, 2 h after H20 2 addition 245 ~0.2 a
a Estimated on the basis of spin quantitation of Y- in the "0 min" sample in Figure 7.10

401

Ea.
U

900

800

700

600

500

400

300

200

100

0



The results of the activity assays are shown in Figure 7.11 and Table 7.1. The results are

complex. The activity of the FeMn-NrdF sample 120 min after reconstitution with H2 0 2 is

almost twice that of the same sample 1 min after reconstitution. However, this may be an

anomaly, as a similar FeMn-Y- NrdF stable incubated at 4 'C for 2 h had 115 U/mg activity, on

par with the 1 min sample in the experiment in Table 7.1. One explanation for the activity could

be formation of diferric-Y- cluster. Indeed, the sample of Fe"2-NrdF exposed to H2 0 2 had

surprisingly high activity given the low amount of Y- detected by EPR. One possible

explanation for this result is that Fell' in diferric cluster or on the surface of the protein was

reduced to Fe" by the DTT used in the assay and then assembled diferric-Y- cofactor. Further

experiments should be carried out to test this hypothesis. However, even though this sample

contained 4 Fe/p2 compared to the FeMn sample, which contained 2 Fe/p2, its activity was still

only half that the FeMn sample. Because the earlier EPR and UV-vis experiments to monitor Y-

stability had suggested that ~50% of the Ye present 1 min after reconstitution with H20 2 decays,

the fact that both the 1 min and 120 min samples are similarly active suggests that the unstable

Y- does not contribute to enzyme activity.

Finally, a similar sample of FeMn-Y- NrdF was treated with a 200-fold excess of HU for

20 min at room temperature. The treated and untreated proteins were then assayed for CDP

reduction 1 h after H2 0 2 addition. The specific activities of the proteins were 209 U/mg (as

reconstituted) and 30 U/mg (HU-treated), demonstrating that HU is able to inactivate 90% of

NrdF under these conditions. However, HU reduces both Y- and a putative FeIMnIv cluster

(section 7.3.2 and ref. 33), complicating interpretation of this result.
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Therefore, although the data are complicated and these experiments need to be

reproduced, the results suggest that the FeMn-Y. cofactor is active and the unstable population

of Y- is not active.

7.3.5. The Ye is formed at Y105. To gain insight into the position(s) of the Yos observed in

NrdF, the x-ray structure of E. coli Fer 2-NrdF (Figure 7.2) was examined. The two Tyr residues

closest to the metal site are Y105 (6.7 A from Fel, the position of the stable Y- in the Fe" 2-Y*

and Mn" 2-Y* cofactors) and Y142 (8.1 A from Fe2, absolutely conserved among NrdFs). The

analogous position to Y142 was observed to be crosslinked to an adjacent Val (perhaps formed

via a Y- intermediate) in the crystal structure of a putative MnFe protein structurally related to

the class Ic RNR but of unknown function. 24,34 Y105F and Yl42F mutants of His6-tagged NrdF

were constructed, expressed, and purified as apoproteins by Ni-NTA affinity chromatography

(Figure 7.12), and cluster assembly experiments were carried out.

75

50

Figure 7.12. SDS-PAGE analysis (10%) of the purified apo-Y105F and Y142F NrdFs (4 g
each).

Apo-Y105F- and apo-Yl42F-NrdFs were incubated with 4 Fe"/p2 and 2 02/p2 (Figure

7.13) and with 2 Mn", 2 Fe", and 4 H20 2 per p2, as described above for wt NrdF (Figures 7.3
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and 7.4). Figure 7.13 demonstrates that while both mutants form approximately the same

amount of diferric cluster, only the Y142F mutant forms stable Y-. The specific activity of the

reconstituted Y142-NrdF was 193 U/mg, ~30% lower than for a similar reconstitution of wt

NrdF. As the experiment was only done once, we cannot conclude that the activity of Y142F-

NrdF reconstituted with Fe' 2-Y* was significantly lower than wt. The Y105F mutant had no

detectable activity.

1.6-

1.2-

9 0.8-

0.4-

0.0 - .1.
300 400 500 600.

Wavelength (nm)

Figure 7.13. UV-visible absorption spectra of 100 pM apo-Y105F (black) and apo-Y142F NrdF
(red) reconstituted with 4 Fe"/P2 and 2 02/2.

Figure 7.14 shows that upon reconstitution with Mn", Fe", and H20 2, the Y105F mutant

forms no detectable Y-, in contrast to Y142F. The initial spectra of the two reconstituted

mutants differ slightly, with less absorption in the 320-400 nm range in Y142F than in Y105F.

Spectra were monitored every minute for 8-12 min, in which time broad features centered at

~350 and 450 nm grow in in both proteins, as in wt NrdF (Figure 7.9). It is not known what

species these slow-forming features are, but it is worth noting that in Y142F, an isosbestic point

is apparent at 375 nm, suggesting the features at 350 and 450 nm are formed concomitant with

decay of the Y-. The Y142F mutant again had lower than wt activity (63 U/mg, assay initiated
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20 min after H20 2 addition), and the Y105F mutant had no detectable activity. If the difference

in wt and Y142F activities is real, it could mean that Y142 helps absorb excess oxidizing

potential during cluster assembly by being transiently oxidized. It is also possible that the

Y142F substitution changes the hydrogen bonding to E158 and thereby affects the efficiency of

cluster assembly. Regardless, these data suggest that the two populations of Y. generated by

reaction of the Fe"Mn" cluster with H20 2 are both at Y105 and indicate that Y105 is essential for

activity for FeMn-loaded NrdF.
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Figure 7.14. Reconstitution of 100 pM Y105F (A) and 100 gM Y142F (B-D) NrdF with 2
Mn"/p2, 2 Fe1/p2, and 4 H20 2/p2. Traces are denoted by the time following H20 2 addition at
which they were acquired. (C) and (D) are expansions of (B) to clarify the time-dependent
spectral changes and highlight the apparent isosbestic point at ~375 nm.
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7.3.6. Determination of the active cofactor by reaction of FeMn-Y- NrdF with N3CDP,

NrdE, and dATP. Treatment of FeMn-Y- NrdF with HU largely inactivated the protein and led

to both Y- reduction and an apparent increase in the Fe"'Mn"' cluster signal, suggesting the

presence of MnvFeII cofactor as well. Therefore, these data do not discriminate between

Fe"MnIv or Fel"Mn"-Y- as being the active form of FeMn-Y* NrdF. This issue was addressed

by incubation of the FeMn-Y- NrdF assembled in section 7.3.2 (30 pM, 4 pM Y-) with 30 pM

NrdE, effector dATP (0.3 mM), DTT (10 mM), and 250 pM of either the mechanism-based

inhibitor 2'-azido-2'-deoxycytidine diphosphate (N3CDP) or CDP as a control, at 25 'C. The

reactions were quenched at 1 min and analyzed by EPR spectroscopy. Class Ia RNRs are

inactivated by N3CDP, accompanied by rapid loss of ~50% Y- and formation of ~50% of a

nitrogen-centered radical (N-) in a2 within 30 s.35 In class Ic, RNRs, N- formation accompanies

reduction of EPR-silent MnivFeII to EPR-active MninFel" state.1 Detection of N- thus indicates

that RNR is active in nucleotide reduction and gives insight into the active cofactor.

The EPR spectrum of the sample incubated with N3CDP was acquired at 77 K, 50 pW

power. At this microwave power, the coupled Y- signal does not contribute significantly to the

signal and can be ignored in the quantification of N-. Spin quantification gave 4 pM N-,

approximately the same as the concentration of Y- in the FeMn-Y* NrdF. The EPR spectra of

the two samples were also obtained at 14 K (Figure 7.15). Figure 7.15A shows that the signal

from the Fei"Mn"' cluster is only slightly changed upon incubation, but the presence of the low

and high field hyperfine features (indicated with arrows) in the difference spectrum (Figure

7.15B) suggests that Y- loss accompanies N- formation. (N- does not have features at 3300 and

3400 G.) The low and high field features are similar to those obtained in the HU treatment

difference spectrum (Figure 7.8B). This suggests that the Y- is associated with activity of the
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protein, and therefore that the Fe"'Mn"'-Y- cofactor is the active form of NrdF reconstituted with

Mn, Fe, and H202.

A B
N- from N-

2800 3000 3200 3400 3600 3800 2800 3000 3200 3400 3600 3800

Field (G) Field (G)

Figure 7.15. X-band EPR spectra (14 K) of active MnFe-Y- NrdF (30 jM) reacted with 30 pM
NrdE, 0.3 mM dATP, 10 mM DTT, and either 250 pM N3CDP (black) or 250 gM CDP (red) at
25 *C for 1 min followed by quenching in liquid N 2. The 3350 G signal is from N-. Arrows
indicate the 3300 and 3400 G wing features of the Y-, which are clearly lost upon incubation
with N3CDP, as seen in the difference spectrum (red - black) (B). Acquisition parameters are
the same as in Figure 7.8.

7.3.7. Nrdlhq and 02 can replace H20 2 in generation of Fel"Mn"' cofactor and YO. In order

for a Fe"'Mn"'-Y- cofactor to be formed in vivo, the cell would have to provide a specific source

of H20 2 . The near-equivalence of NrdI's redox potentials initially suggested to us that Nrdlhq

might react with 02 to predominantly form H202 and led us to attempt FeMn cofactor assembly

with Nrdlhq and 02 in place of H202. NrdI was reduced by titration with sodium dithionite in an

anaerobic cuvette as described in Chapter 3 and brought back into the anaerobic box. For

subsequent experiments, the resulting Nrdlhq was either used as is or after passage through a

Sephadex G25 column inside the anaerobic box, to remove oxidation products of dithionite

(mainly bisulfite, which reacts with H202).36 ApoNrdF (50 pM) was preincubated anaerobically

with 2 Mn"/p2 (20 min, added first) and 2 Fe"/p2 (5 min), and mixed with either 1 or 2
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Nrdhq/02, or 2 Nrdhq/$2 that had been passed through the G25 to remove bisulfite. The samples

were removed from the box, mixed with 1 02/Nrdlhq as O2-saturated buffer, transferred to EPR

tubes, and immediately frozen in liquid N2.

The EPR spectra at 10 K of these samples, shown in Figure 7.16, demonstrate formation

of Fe"'Mn"' cluster and Ye. The three spectra are nearly superimposable, consistent with the

observation that in vitro Mn"12-Y- assembly in E coli NrdF also yields similar Y- contents with

both 1 NrdI/NrdF and 2 NrdI/NrdF (Figure 4.3). Oxidant channeling likely explains why the

presence of bisulfite in the reaction does not affect cluster assembly either.

A B

2800 3000 3200 3400 3600 3800 3200 3300 3400 350

Field (G) Field (G)

Fiaure 7.16. X-band EPR spectra (10 K) of 50 pM NrdF reconstituted using 2 Mn"/$2, 2
Fe /f2, Nrdlhq, and 02: black - 2 Nrdhq/32 (bisulfite removed anaerobically by gel filtration),
red - 1 Nrdhq/$2, and blue - 2 Nrdhq/02 (bisulfite not removed in the latter two cases).

Activity assays of the FeMn-Y* NrdFs reconstituted using NrdIhq and 02 were not carried

out, nor was quantitation of Y- or Mn"'Fe"' cofactor formation with NrdIhq and 02 versus with

H20 2 carried out. These results are complicated by the possibility that Mn" 2 and Fe"2 clusters

exist in this preparation, which can form Mnr12-Y* and Fei" 2-Y- along with any FeMn-Y-

cofactor. This possibility needs to be investigated further. However, the low intensity of the
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wing features at 3300 and 3400 G (Figure 7.16B) suggests that, despite formation of Fe1Mn'

cluster and Y-, little Y- is coupled to the FeMn clusters and therefore most of the Y- is likely

associated with Mn" 2-Y- and Fel"2 -Y- cofactor. Finally, it is not known how the stability of the

Y- formed in this experiments compares with that formed in the experiments with H20 2 and

without NrdI. If our model for the instability of Y- is correct (Scheme 7.2), and if E. coli NrdI

produces similar amounts of 02'~ as B. subtilis NrdI does, with optimization, this experiment may

enable formation of higher amounts of Mnl"Fe"'-Y- cofactor for biophysical characterization

because an extra oxidizing equivalent will not be present at the metal site (Scheme 7.3).

Scheme 7.3. Proposed model for Fel"Mn"'-Y- cofactor formation using Nrdlhq and 02.

02- (from Nrdlhq + 02)
Y105 Y105 Y105-

Fe" Mn"l Fel"' Mniv g Fell' Mn'

site 1 site 2 active

7.3.8. Crystal structures of apo- and Mn"Fe"-NrdF. Finally, we were interested in

determining crystallographically the placement of Mn and Fe in the active cofactor under our

experimental conditions in collaboration with Amie Boal and Amy Rosenzweig. Efforts to

obtain the crystal structure of the oxidized form of the protein are in progress, but here we report

crystal structures of the untagged apo- and FerMnn- forms of NrdF. Studies of the class Ia

RNRs have shown that the affinities of their two metal sites in those proteins for Fe" are

different, with site 2 suggested to have the higher affinity.12,2 8,3 7,38 Although similar studies have

not been reported for class lb RNRs, our working hypothesis was that metal loading into NrdF

would be similar to in class Ia, and that when NrdF is loaded first with Mn" and then with Fe",

Mn" will primarily occupy site 2.

409



Y1 42

S154

UC E1 58

2.72

Figure 7.17. The metal binding site of E. coli apo-NrdF. See Figure 7.2 for further residue
numbering.

The crystal structure of apoNrdF was solved to 2.0 A resolution (Table 7.2) and

exhibited no significant changes relative to Mn"2-NrdF (Chapter 5) except at the metal binding

site, which is shown in Figure 7.17. This site is very similar to that of C. ammoniagenes NrdF,

the only other apo-P structure that exists for a class lb RNR 39 (Figure 7.18). Both are similar to

E. coli apoNrdB in exhibiting a clustering of the metal-binding carboxylate residues, at least two

of which (E108 and E202, C. ammoniagenes numbering) are likely protonated (along with the

N8 atoms of the histidines) in order to neutralize the overall -4 charge of the site in the absence

of metals. In E. coli apoNrdF, a water molecule occupies the approximate position of the Mnr at

site 2. E158 is splayed out with only one oxygen atom (O-1) bound to the water, and OE2 is

within hydrogen bonding distance of the hydroxyl group of S154, 3.0 A away, in a position

similar to that in E. coli Fel"2-NrdB (PDB code: 1MXR) or MnI"'2-NrdF (PDB code: 3MJO).

Additionally, there is a water molecule hydrogen bonded to Y105 and D67, at the same position
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as in the structures of E. coli and S. Typhimurium Fe112-NrdFs.40' 4 1 The presence of this water

molecule in the E. coli apo and Fe"2 structures but not the Mn"2-NrdF structure (which has a

water bound to Mnl instead) suggests that it is this water molecule that ends up binding to Mnl

in Mn"2-NrdF.

H90

Y115Y -2.

E2021 
E6c E168 \

%3.0 -

2.3 -

3'H.4 £

H111

Figure 7.18. The metal binding site of C. ammoniagenes apoNrdF at 1.63 A resolution, with
interatomic hydrogen bonding distances shown. Figure reproduced from H6gbom et al.39

Table 7.2. Data collection statistics for E. coli apoNrdF.

Data collection
Wavelength
Space group
Cell dimensions

a, b, c (A)
Resolution (A)
Rsym or Rmerge

I/ cTI
Completeness (%)
Redundancy

_______________________________________________________________________________ I

I E. coli apoNrdF

0.979 A
P6522

78.511, 78.511, 267.294
30.00-2.00 (2.03-2.00)
0.086 (0.673)
25.6 (2.4)
98.7 (96.5)
10.6 (8.8)

E. coli apoNrdF (Mn ano)

1.856 A
P6522

78.440, 78.440, 267.360
50.00-2.30 (2.34-2.30)
0.124 (0.540)
27.1 (3.7)
96.1 (92.9)
19.3 (11.0)

Our strategy to obtain the crystal structure of Fe"Mn"-NrdF was to co-crystallize with a

defined amount of Mn" and soak anaerobically with Fe". However, co-crystallization with 1-2

Mn"/g2 leads to crystals in which the occupancy of both metal sites is similar (as assessed by Mn
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anomalous diffraction data), or in which occupancy of site 2 is only slightly higher than site 1.

Therefore, lower amounts of Mn" were attempted. Co-crystallization with 0.7 Mn"/$2 for 24 h

yields few crystals, but after soaking anaerobically with Fe", the crystal structure of Fe"Mn"-

NrdF was obtained to 2.1 A resolution (Table 7.3). If trays are left for longer periods of time

before harvest, more and larger crystals form but Mn" occupies both sites, which may suggest

cooperativity of metal binding at the two sites in NrdF and selective crystallization of Mn 2-

NrdF. This is consistent with titrations of E. coli NrdF with Mn" monitored by EPR

spectroscopy (Chapter 6).

Table 7.3. Data collection statistics for E. coli FerMn"-NrdF.

E. coli Fe"Mn"-NrdF (Fe ano) E. coli Fe"Mn"-NrdF (Mn ano)
Data collection
Wavelength 1.722 A 1.856 A
Space group P6522 P6522
Cell dimensions

a, b, c (A) 78.867, 78.867, 245.943 78.633, 78.633, 245.75
Resolution (A) 50.00-1.99 (2.02-1.99) 50.00-2.25 (2.29-2.25)
Rsym or Rmerge 0.136 (0.571) 0.128 (0.515)
I/ aT 25.4 (2.4) 26.7 (3.0)
Completeness (%) 99.3 (89.3) 99.8 (97.2)
Redundancy 16.6 (8.8) 16.2 (9.9)

Table 7.4. E. coli Mn"Fe"-NrdF anomalous peak heights.

Metal site Mn absorption (s) Fe absorption (s)

1 4.1 23.3

2 16.6 14.3
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IS 11

Figure 7.19. Anomalous difference electron density for data collected at the Fe absorption edge
(7.2 keV, green mesh) and the Mn absorption edge (6.65 keV, purple mesh) contoured at 15.Oa
(Fe, green mesh) and 6.Oa (Mn, purple mesh) (A) or 7.5a (Fe, green mesh) and 4.Oa (Mn, purple
mesh) (B) . The Fe absorption dataset was processed to remove residual absorpion from Mn at
7.2 keV. The map shown in green represents the contribution from Fe alone.

The metal site of Fe"Mn-NrdF is shown in Figure 7.19, along with anomalous

difference electron density maps at the Fe and Mn absorption edges (tabulated in Table 7.4).

Interestingly, the metal site looks very similar to that of Fe"2-NrdF (Chapter 5). Mn anomalous

data (Figure 7.19, purple mesh) indicates the Mn is predominantly present at site 2 in the crystal.

An Fe anomalous signal (Figure 7.19, green mesh) is present at both metal sites, although higher

at site 1 after subtraction of the contribution of the Mn signal to the Fe anomalous signal.

Because NrdF was cocrystallized with only 0.7 Mn/p2, a large fraction of site 2 positions are
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unoccupied in the crystal, and these can be loaded with Fe" during the ferrous soak. Therefore,

some set of the electron density is likely attributable to diferrous clusters. However, the Mn

anomalous density maps indicate that, where Mn and Fe are both present, Mn is located mostly

at site 2 and Fe at site 1, as expected based on the loading conditions. This suggests that the

initial metal-loaded state in solution is Fe" at site 1 and Mn" at site 2, but these experiments do

not tell us the thermodynamically most stable state, or the metal placement in the oxidized form

of the protein.

Interestingly, despite the likely existence of both Fe"2 and FenMn" clusters in the

crystals, E158 is well ordered, suggesting that both Fe"2 - and Fe"Mn"-NrdF have very similar

structures at the metal site. This contrasts with Mn"2-NrdF and suggests that binding of Mn"

specifically to site 1 leads to the p-1,3 coordination mode of E158 observed in the Mn"2-NrdF

structure. Furthermore, the ordered water between Y105 and D67 present in apoNrdF has not

moved. Therefore, it appears that both the conformational change of E158 and the presumptive

movement of the water to metal site 1 are dependent on specifically Mn" binding at that site, not

Fe" binding. As mentioned in Chapter 4, the conformational changes leading to solvent

coordination at the metal site may be driven by a preference of Mn" for higher coordination

numbers than of Fe".

7.3.9. Model for Fe"'Mn"'-Y- cofactor assembly in NrdF. The data presented here indicate

that K coli NrdF, when loaded with a heterodinuclear Fe"Mn" cluster (with Mn" proposed to be

at site 2 based on our crystallographic results), reacts with H20 2 to form a Y- that is weakly

exchange coupled to a metal cluster, which we propose to be Fe"Mn', based on EPR

spectroscopy. A large proportion of the Y- formed is unstable (>0.2 Y-/p2), but a stable

population (0.1-0.2 Y-/p2) exists. Site-directed mutagenesis experiments suggest that both
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populations of Y- are at Y105. Reduction of FeMn-Y- NrdF with HU scavenges Y- and also

increases the amount of Fe"'Mn" cluster, suggesting that some amount of a higher-valent

cofactor (such as Fel"MnI ) is also present. However, studies using N3CDP suggest that the Y-

is responsible for the observed activity of FeMn-Y- NrdF. Because the Y- is proposed to be

coupled to the Fel"Mn"I cluster, we suggest the Fe1"Mn"'-Y- form of the cofactor is the one

active in nucleotide reduction.

A proposed explanation for the instability of much of the Y- generated is shown in

Scheme 7.1. The model proposes formation of a FeiVMnv intermediate by reaction of two

equivalents of H20 2 through a Fel"'Mn" intermediate, as observed in C. trachomatis NrdB.5 The

instability of a large amount of the Y- generated suggests a situation similar to that observed in

K coli W48F NrdB, in which transfer of the "extra" electron to form the reactive FeIFeI

intermediate X is blocked. As a result, an extra oxidizing equivalent is present at the metal site

and ~1 equivalent of an X-Y- species develops. 42,43 Most of the Ye decays by an unknown

pathway, forming altered Fe"' 2 products. Interestingly, cluster assembly in the presence of

dithionite rescues most of the Y- from decay.43 The mechanism by which this occurs is also

unknown, but electron transfer to X directly seems unlikely given that reduction of the diferric

cluster by dithionite requires a cationic mediator. An alternative proposal is that reaction of

dithionite with 02 will produce 02'~, which could conceivably be the oxidant in cluster assembly,

although whether it could access the metal cluster before disproportionating is unknown.

Reduction of the MnvFeIv intermediate in C. trachomatis NrdB is extremely slow (kobs -

0.021 s-1 in the absence of ascorbate in the buffer). Therefore, it might be expected that the

pathway in Scheme 7.1 that includes W31 oxidation will not contribute significantly in NrdF,

but it is possible that a different positioning of Mn and Fe could affect whether the intermediate
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could oxidize W3 1. If W31 is unable to act as a source of an extra electron, 44 a similar

mechanism as in E. coli W48F NrdB may apply in FeMn-loaded NrdF.

Another issue is whether putative oxidation of Y105 by the FeIVMnv would result in

reduction of the FeIV or the Mnv. The higher-valent metal site is proposed to be site 2 in X3 7 in

class Ia RNRs and in the MnIIIMnv intermediate in class lb RNRs (Chapter 6), yet Fev is

expected to have a higher reduction potential than MnV, and FeIv is the ion reduced in

conversion to the active MnLvFe cofactor in the class Ic RNR.3 Either way, the presence of an

extra oxidizing equivalent at the metal site might destabilize the Y- and could lead to decay of

most of this species. Interestingly, the activity assay data suggest that only the stable population

of Y- is able to carry out multiple turnovers. Further study is necessary to answer these

questions.

7.4. FUTURE DIRECTIONS

7.4.1. Optimization of cofactor assembly. Further experiments are necessary to maximize

cofactor formation and provide suitable samples for further spectroscopic characterization. The

mechanisms shown in Scheme 7.1, previous work in E coli W48F NrdB,42,4 3 and studies of the

assembly of MnI Fein cofactor in C. trachomatis NrdB all suggest the likelihood of substantial

heterogeneity in the assembled metal sites.7 One important experiment would to be to

investigate whether, like in W48F NrdB, addition of dithionite during cluster assembly would

prevent or significantly attenuate Y- decay. If dithionite prevents most of the Y- decay, the

resulting cofactor should be more homogeneous, have higher Y-, higher activity, and therefore

be more easily characterized. A similar experiment using ascorbate or thiols, which can act as a

source of the extra electron in diferric-Y- cofactor assembly, 45 could also be carried out. Using

Nrdlhq and 02 as a potential source of 02'~ for cluster assembly is another approach that could be

416



pursued to increase the amount of stable Y- generated. Finally, there are a number of variables

in metal loading that might be changed to increase the amount of Fe"Mn" cofactor generated,

which would also help increase Y- yield. These include: the concentration of NrdF, the relative

ratios and absolute amounts of Mn" and Fe", the incubation time and temperature during metal

loading, and the glycerol concentration.46 Determination of the Kds for Mn" and Fe" binding

would help inform the metal loading studies.

7.4.2. Characterization by x-ray crystallography. Studies by Amie Boal are in progress to

crystallize the oxidized form of FeMn-Y* NrdF. The results would help establish the position of

the metal in the active cofactor. Metal placement in the oxidized protein is expected to be more

homogeneous than in the reduced protein because unreacted metal clusters can be removed by

chelation with Chelex or EDTA. It would be of great interest to compare to the crystal structures

of the MnFe form of C. trachomatis NrdB with that of E. coli NrdF.

7.4.3. Characterization by Mssbauer spectroscopy. The FerrMnl"-Y- cofactor should be

spectroscopically rich. M6ssbauer spectroscopy will be essential to answering several questions

regarding the cofactor. Comparison of the FeMn-Y* NrdF sample to a sample of diferric-Y-

NrdF will enable determination of whether diferric cofactor is present in our FeMn-Y- NrdF

samples, how much is present, and potentially at which metal site the Fe is located (because of

the lower symmetry of metal site 1 due to its coordination by Asp3 7'4 7). Field-dependence of the

Mbssbauer spectra will yield information about the coupling between the Y- and the metal site,

and the M6ssbauer spectrum of the Fe"Mn'll cluster(s) would help determine the simulation

parameters for the EPR spectra.
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7.4.4. Characterization by EPR spectroscopy. As with M6ssbauer spectroscopy, EPR

spectroscopy will be essential to fully describe the electronic structure of the exchange-coupled

Y- and the active cluster.

7.4.5. Why can NrdF assemble FeMn cofactor only using H2 0 2 but C. trachomatis NrdB

assembles MnWFeml' cofactor with both 02 and H20 2 ? Key unresolved questions regarding

cluster assembly in class I RNRs are: 1) the route of metal access (and, in class Ic, how the

formation of a heterodinuclear cofactor is orchestrated without producing the incorrect

metallated state of the protein), 2) the mode of oxidant binding, and, 3) given the formation of

three different active metallocofactors in similar protein scaffolds, what the relative reduction

potentials of the active cofactors and intermediates involved in forming them are. Regarding the

first question, if a single metal access route is assumed, the available data on class Ia RNRs

indicating that site 2 is loaded with Fe" first'2,28,37,38 would suggest that metal loading occurs via

site 1, from which the metal is then transferred to site 2. We suggest that we can gain substantial

insight into the second of these issues for all class I RNRs by study of the FeMn-cofactored NrdF

(the third issue is treated in the next section). We propose that the answer to this question lies in

which metal is at which site and structural subtleties of the active site.

Given the unreactivity of biological Mn" with 02, for a Mn"Fe" cluster to be able to react

with 02, the site containing Fel would likely have to be accessible to the 02. Dassama et al.7

have suggested that the both the Mn"Fe" and Fe"Mn" forms of C. trachomatis NrdB can react

with 02, and that the resulting MnIVFel/Fel"MnI clusters have different activities. If this is

true, it suggests that 02 may bind initially to the metal site in a symmetrical mode. In the case of

NrdF, however, we have proposed (Chapter 6) on the basis of crystallographic evidence that the

oxidant access route encounters the site 2 metal first, and by mechanistic considerations, that 02'

418



binding should be asymmetric (to site 2 first), to ensure that the Mnlv is localized to the correct

site for tyrosine oxidation. In the case of 02'~, this binding to site 2 can be simply conferred by

the oxidant channel being directed at site 2. But this preference may apply to the heterodinuclear

cofactor as well. If the oxidant had equal access to either metal site in NrdF, one would expect

that either oxidant, 02 or H2 0 2 , should be able to oxidize the reduced Fe"Mn" cofactor,

regardless of the positioning of the metal. If the oxidant accesses metal site 2 first, one would

expect that if Fe" were localized here, it would also lead to FeMn cofactor formation (we

exclude the possibility that the oxidant could access site 1 first as unreasonable based on the

crystal structures of j2 subunits).

Therefore, we suggest that H2 0 2 is reactive with the cluster because it can bind to Mn" at

site 2 whereas 02 cannot. How then does the metal site prevent symmetrical oxidant binding in

NrdF? We suggest that the position of F 162 in NrdF occludes site 1 from symmetrical oxidant

access (Figure 7.2). The close packing of the metal site is suggested by the fact that the

mutation of the corresponding residue in E. coli NrdB (F208) is necessary for crystallization of a

complex with azide.48 Therefore, mutation of F 162 to L or A should provide enough room for

02 to bind to the metal cluster, which would then allow formation of Fel"Mni'-Y- cofactor with

02 and H2 0 2 (these studies have been initiated). Of course, this mutation could affect metal

binding affinities and alter the ability of the protein to form the heterodinuclear cofactor, and

these possibilities will have to be considered. Furthermore, if the crystallographic studies

suggest that Mn is found at site 1 in the oxidized FeMn-Y- NrdF, an alternative explanation for

the inability of 02 to form the cofactor would have to be sought.

Presumably, 02~ should also be able to oxidize the Fe"Mn" form of NrdF as well such

that an extra oxidizing equivalent would not be present at the metal site and possibly allowing for
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formation of a greater amount of stable Y- than with H2 0 2 . Therefore, the reaction of Fe"Mn"-

NrdF with Nrdlhq and 02 in this or another system would be interesting. Furthermore, it would

allow simple assessment of whether the reduction potential of MnvFeIr is high enough to

oxidize tyrosine to Y- (we predict that it should be if MnI"MnW is of sufficient potential).

However, unless a way to carefully control metal loading is discovered, this study would be

complicated by the formation of active Mnr12 -Y- cofactor as well.

7.4.6. Comparing the mechanism of assembly of class I RNRs in a single protein

framework. The unique capacity of NrdF to form three different active cofactors from three

different oxidants makes it an ideal system for further studies aimed at obtaining a detailed

understanding of the effects of the protein environment on reactivity of metals. It would be

interesting to investigate whether other NrdFs, such as that of B. subtilis, can form the putative

Fe"Mnl"-Y- cofactor as well. Once the right system is found - one that has high amounts of

cofactor assembly and is kinetically tractable - we should be able to obtain information about the

relative reduction potentials of the Y--oxidizing intermediates of all class I RNRs by studies in

NrdF. A combination of incorporating several fluorotyrosines with a range of reduction

potentials at Y105 49 and studying the kinetics of assembly of the three active cofactors in NrdF

may enable us to extract relative values for the reduction potentials of the three Y--oxidizing

intermediates. The chemistry that NrdF carries out is surprisingly and exquisitely nonspecific,

and this can be exploited to help understand cluster assembly in all class I RNRs.
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Appendix 1

Clustal W2 alignment of 457 (355 non-redundant) NrdI sequences. Sequences were drawn
from the RNR database (rnrdb.molbio.su.se) (Lundin et al., BMC Genomics 2009, 10, 589-596).
Some organisms contain multiple annotated Nrdls (NrdIl, NrdI2, etc.); in these cases, the
physiologically important NrdI has not been established.
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B_thuring Al _Hakam NrdI
B weihenstephKBAB4 NrdI
B-bacilliform KC583_-NrdI
B-henselae HoustonlNrdI
B_quintana Toulouse NrdI
B tribocoruml05476_NrdI
B cavernael2333 NrdI
B anim lactisHN019_NrdI
B breve202l3 NrdI
Bcatenulatuml6992 NrdI
B longum DJOl0A NrdI
B longum NCC2705 NrdI
BlongumInfantisl5697 NrdI
Binfantis52486 NrdI
B hermsii NrdI
B hermsii DAH NrdI
B recurrentisAl NrdI
B turicatae NrdI
B faecium4810 NrdIl
B-faecium4810 NrdI2
B-brevis NBRC100599 NrdI
B linens BL2 NrdIl
Babortus 1_9_941_NrdI
B melitensis 16M NrdI
B ovis 25840 NrdI
B suis_1330_NrdI
Brucella suis23445_NrdI
CarnobacteriumAT7 NrdI
C-morbi51271 NrdI
C flavigena20109_NrdI
CsalexigensDSM3043_NrdI
C koseriBAA895_NrdI
C ramosuml402 NrdI
C accolens49725 NrdI2
C accolens49725_NrdIl
Cammoniagenes NrdI
C amycolatumSK46_NrdI
C aurimucosum700975 NrdI2
C aurimucosum700975 NrdIl
C diphtNCTC13129_NrdI2
C_dipht NCTCl3129 NrdIl
C efficiens YS314_NrdI
C_glut ATCC13032 _NrdI
C glutamicum_ R NrdI
Cjeikeium K411_NrdI2
C_jeikeium K411 NrdIl
C_kroppenstedti44385 NrdIl
C kroppenstedti44385_NrdI2
C_pseudogenital33035 NrdI2
C_pseudogenital33035 NrdIl
C-striatum 6940 NrdIl
C-striatum 6940 NrdI2
C urealyticum7lo9_NrdIl
C_urealyticum7lO9_NrdI2
D-radiodurans1_ NrdI
Ecancerogenus35316_NrdI
ESsakazakiiBAA894_NrdI

---------------------------------- ML------------ 2
---------------------------------- MN----------- 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
-------------------------- -- ML -------------- 2
---------------------------------- ML------------ 2
--------------------------------- MMN-------------- 3
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML-------------- 2
---------------------------------- ML----------- 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
---------------------------------- ML------------ 2
--------------------------------------------------
-------------------------------------------- - -
--------------------------------------------------
------------ ---- -------------------------------
-- ------ - -- - -------------------------------
----------- -------------------------------------
----------------------- MSQTESGIAAESVPGASQPEFAATSNV 27
--------------------------------------------------
------------------------------------ MSLSQPEFAAEGKT 14
--------------------------------------------------
-------------------------------------- MSQAEFAAEGKT 12

MSLSOQPEFAAEGKT 14
---------------------------------------------- MLGD 4
---------------------------------------------- MLGD 4
--------------------------------------------------
---------------------------------------------- MKV 4
-------------------------------------------- -- ----
----------------------------- MTTWGAEIERQSPPRVRAAPA 21
---------------------------------- ML------------ 2
--------------------------------------------------
--------------------------------------------- MS--- 2
--------------------------------------------- MS--- 2
--------------------------------------------- MS--- 2
--------------------------------------------- MS--- 2
--------------------------------------------- MS--- 2
--------------------------------------------------
----------------------------------------- MLKNLLKEV 9
--------------------------------------------------
------ - ---------------------------------------
------ -- --------------------------------------
------ - ---- -----------------------------------
--------------------------------------------------
---------- - - ---------------------------------
---------------------- -------------------------
--------------------------------------------------
----------------------------------------------- MSD 3
--------------------------------------------------
--------------------------------------------- MEAST 5
------ --------------------------------------------
--------- MSFSTRGRGKSFREYPQQGISSPGRPHRRTRCEFFRREVSS 41
--------------------------------------------------
--------------------------------------------------
------------------------------ MQQTTVSQPR-------- 10
--------------------- --------------------------
--------------------------------------------------
------------------------------- MPSSSSAPG-------- 9
------------------------------------- MAKARMSRIAMSD 13
--------------------------------------------------
--------------------------------------------------
----------------------------------------------- -
------------------------------ MYYGAMTSTSTPG --- AEEE 17
----------------------------------------------- -
------------------------------------ -------------
--------------------------------------------------
------------------------------------- - ---------

0O

2



Enterobactersp_638_NrdI
EfaecalisHH22_NrdI
EfaecalisTX0104_NrdI2
EfaecalisTX0104 _NrdI
EfaecalisTX1332 NrdI
E faecalis V583 NrdI2
E faecalis_V583 NrdI
E faeciumDONrdI
E car_atSCRI1043_NrdI
E tasmaniensisEti_99_NrdI
E albertiiTW07627 NrdI
E_coli 101 1 NrdI
E coli 536_NrdI
E coli 53638 NrdI
E coli_83972_NrdI
E_coliAPEC 01 NrdI
E coli 8739 NrdI
E_coli B171 NrdI
E coli CFT073 NrdI
E coli E110019_NrdI
E coli E22 NrdI
E coli E24377A NrdI
E coli HS NrdI
E coli 0157H7EDL933 NrdI
E coli 0157H7EC4024 NrdI
E_coli 0157H74045 NrdI
E coliO157 H7EC4206_NrdI
E coliOl57 H7EC4501NrdI
E coli SakaiNrdI
E coli SMS35 NrdI
E coli K12 MG1655 NrdI
E coliUTI89 NrdI
Escherichial 1 43 NrdI
Ebiforme3989_NrdI
Gvaginalis14019 NrdI
Gobronchialis43247_NrdI
J-denitrificans20603 NrdI
K radiotSRS30216 NrdI
Klpneumoniae342 NrdI
K_pneumoniae_78578_-NrdI
K_rhizophilaDC2201_NrdI2
K rhizophilaDC2201 _NrdIl
Lacidophilus4796_NrdI
L acidophilus NCFM NrdI
L brevis ATCC 367 NrdI
L casei ATCC334 NrdI
L caseiBL23 NrdI
LcrispatusJVV01 NrdI2
LcrispatusJVV01 NrdIl
Lfermentuml4931_NrdI2
Lfermentum14931 NrdI?
L fermentum3956_NrdI1
L_fermentum3956 NrdI2
L_gasseri_33323 NrdI
LgasseriJVV03_NrdI2
LgasseriJVVO3_NrdIl
LgasseriMV22_NrdI2
LgasseriMV22 NrdIl
L_helveticus4571_NrdI
L johnsonii NCC 533 NrdI
Lplantarum14917 NrdI
L_plantarumWCFS1_NrdI
L reuteri_10023 NrdIl
L reuteri_10023 NrdI2
L reuteriCF483ANrdIl
L reuteriCF483A NrdI
L reuteriDSM20016 NrdI2
L reuteriDSM20016__NrdIl
LreuteriJCM1112 NrdIl
LreuteriJCMil12_NrdI
LreuteriMM23 NrdI
LreuteriMM23_NrdI2
LreuteriMM41_NrdlIl
LreuteriMM41_NrdI2
L reuteriSD2112 NrdIl

--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----- ------------ ---------- -- -------- ------- ------
----------------- ---------------------- -----------
--------------- -- ------------ -------- -- ----- ------
--------------- ---------------------- -- -----------
--------------------------------------------------
------------------- ------------ -------------------
----- ------------------------ -- -------- -----------
----- ---- ---- ---- -------------- -------- -----------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----------------------------- MCDQENMSQPSEPEARAQGES
--------------------------------------------- MSATP
--------------------------------------------- MVAVR
----------------------------------- MK-------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----------------------------------------------- MQP
---------------------------------------------- MTEP
---------------------------------------------- MTEP
--------------------------------------------------
------------------------------------------- MMTGISK
----------------------------------------------- MAK
----------------------------------------------- MTT
----------------------------------------------- MTT
----------------------------------------------- MAK
--------------------------------------------------
------------------------------------------- MMTGISK
--------------------------------------------------
--------------------------------------------------
-------------------------------------------- MTGISK
------------------------------------------- MMTGISK
--------------------------------------------------
--------------------------------------------- MSEST
--------------------------------------------- MSEST
----------------- ------ -- -------------------- MDNKR
----------------------------------------------- MAP

----------------------------------------------- MAP
--------------------------------------------- MDNKR
-------------------------------------------- -MDNKR

------------------------------------------------ MAP
----------------------------------------------- MAP
--------------------------------------------- MDNKR
----------------------------------------------- MAP
--------------------------------------------- MDNKR
----------------------------------------------- MAP
--------------------------------------------- MDNKR
--------------------------------------------- MDNKR

L reuteriSD2112_NrdI
L rhamnosusHN001_NrdI
Laakeicarnosus15831_NrdI2
Lsakeicarnosusl5831 NrdI

L sakei_23K NrdI
Lsalivarius11741_NrdI
L salivariusUCC118_NrdI
L ultunensisl6047_NrdI

L lactis_pGdh442 NrdI
L cremoris MG1363_NrdI
L lactis_cremSK11NrdI

L lactis 1 I11403_NrdI

L buccalis1135 NrdI
L citreumKM20_NrdI
Lcremoris19254 NrdI
L-mese_ m ATCC8293 NrdI
L sphaericusC341 NrdI
M_caseolyticJCSC5402_NrdI
Mruber1279 NrdI
M silvanus9946 NrdI
M florum_Li NrdI
M luteusNCTC2665 NrdI
M curtisii43063 NrdI
M mulieris35243_NrdI2
MNabscessus NrdI
Mycob avium 104 NrdI
M_paratuberculosisK1_NrdI
M aviumparat__kl_NrdI
M bovisAF212297 NrdI
M bovis1173P2 NrdI
MbovisBCGTokyol72 NrdI
M-bovis b AF2122_97 NrdI
M gilvum PYR GCK NrdI
M lepraeBr4923 NrdI
M_lepraeTN NrdI
M marinumeMNrdI
Mycobacterium JLSNrdI
Mycobacterium KMSNrdI
Mycobacterium MCSNrdI
M tuberculosio2_1987 Nrdl
M tuberculo94 M4241A NrdI
M_cuberculosis C NrdI
M_tubercCDCl55lNrdI
MNtuberculosisEAS054 NrdI
M tuberculosis Fll NrdI
M tuberculosis1503 NrdI
M tuberculosisH37Ra NrdI
M tubercul H37Rv NrdI
MtuberculosisHaarlem NrdI
M-tuberculosisT17_NrdI
M tuberculosisT85 NrdI
M tuberculosisT92_NrdI
M ulceransAgy99_NrdI
M vanbaaleniiPYR_1_NrdI
M_capricolum _27343 NrdI
M_gallisepticum _RNrdI
MgenitaliumG37_NrdI
M_hyopneumoniae_232_NrdI
M_hyopneumoni_7448_NrdI
M hyopneumoniae_J NrdI
M_mycoidesGM12 NrdI
M_mycoides m SCPGlNrdI
M_penetrans NrdI
M_pneumoniae M129 NrdI
M_pulmonis NrdI
M_synoviae 53 NrdI
N farcin IFM10152_NrdI
o anthropi ATCC49188 NrdI
o oeni BAA1163 NrdI
o oeni PSU NrdI
PaenibacillusJDR2_NrdI
P denitrifPD1222_NrdI
P atrosepticuml043 _NrdI
P_carotovorumPBR1692 NrdI
P carotovorumWPP14 NrdI

----------------------------------------------- MAP 3
MQQIHLIKKSRGAISDSTATSFSNRLTLTISRIIVIFKTLMKEAGHMTEP 50
--------------------------------------------------
---------------------------------------------- MITN 4
---------------------------------------------- MMTN 4
--------------------------------------------------
-------- -- -------------------------------------
--------------------------------------------------
----------------------------------------------- MQV 3
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----------------------------------- MKSNNFEYIFIKKIKV 16
--------- -- ---------------------------------------
--------- -- ------ -------------------- ---------- MTT 3
-- --------------- ------------ ---------- -------- MTT 3
----------------------------- ---------- -----------
---------------------------------- ML---- 2
----------------------------------------------- MQRE 4
--------- -- ------ ------ ------ -------- -- -----------
-------------------------------- MHDDIKLVSGEEIVKPTG 18
----------------------------- MTVAADPGHIRSAEAQGLVPT 21
--------------------------------------------------
-------------- MLRYKTNRRNSDPVGKESKAMAKGAPIEYYDLPESE 36
--------------------------------------------------
---------------------------------------------- MDST 4
---------------------------------------------- MDST 4
---------------------------------------------- MDST 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
--------------------------------------------------
------------------------------------------------ MQ 2
------------------------------------------------ MQ 2
---------------------------------------------- MVEP 4
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MDIA 4
---------------------------------------------- MVEP 4
--------------------------------------------------
-------------------------------- MHSNVKKVTDKDVIKPVG 18
---------------------------------- MENTPKLNVPKRKPTG 16
-------------------------------- MHKDIKLVKETEIRKPIG 18
------------------------- MKIGSFKMTNDEK-YDIINKSKLRG 24
-------------------------------- MTNDEK-YDIINKSKLRG 17
-------------------------------- MTNDEK-YDIINKSKLRG 17
-------------------------------- MHSNVKKVTDKDVIKPVG 18
-------------------------------- MHSNVKKVTDKDVIKPVG 18
--------------------------------------------- ME--NK 4
-------------------------------- MHKDIKIVDASAIVKPTG 18
--------------------------------- MHEDLIKVSSNTIKKPTG 18
------------------------------------------ MIELKKPKG 9
------------------------------- MSMAVSPEGVASRGTEAFG 19
---------------------------------------------- MS- -- 2
----------------------------------------------- MKK 3
----------------------------------------------- MKK 3
------------------------------ ML-------------- 2
-------------------- ---------------------------
--------------------------------------------------
---------------------- --------------------------
------------------------------------------ - - -

t-j



Ppentos ATCC25745 NrdI
Pedobacter BAL39 NrdI
Plumine-lau T'T01ONrdI
Pmirabilis29906NrdI
P mirabilisHI4320 NrdI
P penneri35198 NrdI
PalcalifaciensDSM301 NrdI
P rettgerill3l NrdI
P stuartii25827 NrdI
PseudovibrioJE062 NrdI
Rsalmoninarum33209_NrdI2
Rsalmoninarum33209 NrdI
RetliBrasil5_NrdI
R etli_CFN 42_NrdI
RetliCIAT652_NrdI
Retli_GR56_NrdI
Retli_IE4771_NrdI
Rleguminosaruml325_NrdI
L trifoliiWSM2304_NrdI
R lemuminosarum_3841 NrdI
R_erythropolisPR4_NrdI
R erythropolis_ SK121 NrdI
R jostiiRHAl NrdI
O opacusB4 NrdI
RhodococcusRHAl NrdI
RoseobacterGAI101_NrdI
Roseovarius_HTCC2601 NrdI

_ arizonae62z4z23_NrdI
S e eCh SCB67 NrdI
SentGallinarumNrdI
SentericaHadar NrdI
S_entKentuckyl9l NrdI
S-e eP ATCC9150_NrdI
S ParatyphiBSPB7 NrdI
SentericaParatyphiC NrdI

S entericaSARA23 NrdI
S ente_e_TyCT18 NrdI
Senterica_e_Ty2 NrdI
SentericaVirchow NrdI
Styphimurium LT2 NrdI
S termitidis33386_NrdI
S_proteamaculans_568 NrdI
S_boydii308394 NrdI
S boydii_Sb227 NrdI
SOdysenteriae_Sd197 NrdI
Sflexneri_2a_2457T NrdI
S flexneri_2a_301_NrdI
Sflexneri_5_8401 NrdI
Silicibacter TM1040_NrdI
S_spiritivorum 33300 NrdI
SaureusRF122_NrdI
Saureus BB NrdI
Saureusa _COLNrdI
Saureus JH9 NrdI
S a a MRSA252_NrdI
SOaureus a MSSA476 NrdI
Saureus a Mu5o0NrdI
Saureus aureusMW2 NrdI
SOaureus a N315_NrdI
Saureus_NCTC8325 NrdI
SOaureus Newman NrdI
S_epid ATCC12228 NrdI
S_epidermidisRP62A NrdI2
S_epidermidisRP62A NrdIl
Shaemolyt JCSC1435 NrdI
S_saprophyticusl5305 _NrdI
S_agalactiae_18RS21 NrdI2
S agalactiae_18RS21 NrdIl
S_agalact_2603VR NrdI2

S_agalact_2603VRNrdIl
Sagalactiae 515 NrdIl
S_agalactiae_515_NrdI2
Sagalactiae A909 NrdI2
S_agalactiaeA909_NrdIl
S_agalactiaeCJB111 NrdIl

--------------------------------- MFFEVNSRQGVFNMENQ
-------------------------------- MAMT--------------
----------------------------------------------- MN-
----------------------------------------------- MQS
----------------- ---------- ----------------- --- MQS
----------------------------------------------- MQ-
----------------------------------------------- MT-
----------------------------------------------- MK-
----------------------------------------------- MQ-
--------------------------------------------------
------- ------------------------ ----------- -- ------
---------------------------------------- MAEG-AMNPT
--------------------------------------------- MG ---
--------------------------------------------- MG ---
--------------------------------------------- MG ---
--------------------------------------------- MG ---
--------------------------------------------- MG---
--------------------------------------------- MA ---
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - -- --- - --- --- -MG- ---
--------------------------------------------- MG ---

17
4
2
3
3
2
2
2
2

9
2
2
2
2
2
2
2
2

--------------------------------------------------

--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
------------------------------------------------ ME 2
--------------------------------------------------
--- ---------- -------- -- ----------------- -- --------
------- ------ ---------------- ----------- ----------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
------- -------- ------ -- -------- ------ ------- -- ----
------------- ------------------------ ------- ------
--------------- ------ -- -------- ------ --------- ----
--------------------------------------------------
---------------------------------- MK -------------- 2
--------------------------------------------------
--------------------------------------------------
----------------- -------------- -- ------ --------- --
------------------------------- -- ------ --------- --
------- ------------------ -------- ------- ----------
--------------------------------------------------
------- ------------------ -- ------------- ----------
------------- ------ ---------------- ----- ----------
---------------------------------- MV------------ 2
------------------------------------ MK------------ 2
---------------------------------- MK------------ 2
----------------------------------- MK------------ 2
------------------------------------ MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK -------------- 2
---------------------------------- MK -------------- 2
---------------------------------- MDKRES------ISVP 10
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
---------------------------------- MK------------ 2
----------------------------------------------- MDS 3
----------------------------------------------- MPK 3
----------------------------------------------- MPK 3
----------------------------------------------- MDS 3
----------------------------------------------- MPK 3
---------- ---------------------- ------ -- ------- -MDS 3
----------------------------------------------- MDS 3
---------- ------------ -------- ----------------- -MPK 3
----------------------------------------------- MPK 3

S_agalactiae_CJB111 NrdI2
S_agalactiae_COH1_NrdI
S_agalactiaeH36BNrdI2
S_agalactiaeH36BNrdIl
SOagalactiae NEM316_NrdIl
S_agalactiaeNEM316 NrdI2
S_dysg equisimilis NrdI
Streptococcequi4047 NrdIl
Streptococcequi4047 NrdI2
SzooepidemicusH70_NrdIl
SzooepidemicusH70_NrdI2
SOzooepidemicusl0565 NrdI2
S_zooepidemicusl0565 NrdIl
S_gordoniiChallis NrdI
SOinfantariusBAA102_NrdIl
S infantariusBAA102_NrdI2?
S mutansUA159_NrdI
Spneumoniae7O585 NrdI
SpneumoniaeCGSP14 NrdI
S pneumoniae D39_NrdI
SpneumoniaeJJA NrdI

Spneumoniae _R6NrdI
S_pneumoniaeSP3BS71 NrdI
S_pneumoniaeSP6BS73 NrdI
S_pneumoniae TIGR4 NrdI
S_pyogenes Ml GASNrdIl
S_pyogenes Ml GAS NrdI2
S_pyogenes M49_591_NrdIl
S_pyogenes M49_591 NrdI2
S_pyogenes 10270 NrdIl
S_pyogenes 10270 NrdI2
S_pyog_MGAS10394 NrdI2
S_pyog MGAS10394_Nrd!l
Spyogenes MGAS10750 _NrdI2
Spyogenes_MGAS10750_NrdIl
S_pyogenesMGAS2096 NrdIl
SOpyogenes MGAS315 NrdI2
S_pyogenesMGAS315_NrdIl
S_pyogenes MGAS5005_NrdIl
S_pyogenes MGAS5005 NrdI2
S_pyogenes MGAS6180_NrdIl
S_pyogenesMGAS6180_NrdI2
S_pyogenesMGAS8232_NrdIl
S_pyogenes MGAS8232 NrdI2
Spyogenes _MGAS9429 NrdI2
Spyogenes MGAS9429 NrdIl
S_pyogenesNZl31 _NrdIl
S_pyogenesNZl31 _NrdI
S_pyogenes_SSI1_NrdIl
S_pyogenes_SSIl NrdI2
SpyogenesManfredoNrdI2
S_pyogenesManfredo NrdIl
S_sanguinis_SK36 NrdI
S suis 05ZYH33 NrdI
SOsuis_891591 NrdI
S_thermop CNRZ1066 NrdI
SOthermophilus LMD9_NrdI
SOthermoph 18311 NrdI
Tpaurometabola20162 NrdI
VibrioLGP32_NrdI
Vibrio MED222_NrdI
W glossinidiaGb NrdI
Xcellulosilytil5894 NrdI
Y bercovieri 43970 NrdI
Y enterocolitica8081 _NrdI
Y-frederiksen 33641 NrdI
Y intermedia 29909_NrdI
Y mollaretii_43969 NrdI
Y_pestisAngola_NrdI
YpestisMediaeK197302 NrdI
Y p Mediev 91001_NrdI
Y pestisC092 NrdI
Y_pestis_FV1 NrdI
Y_pestis Nepal5l6_NrdI
Y_pestisPestoidesA NrdI

----------------------------------------------- MDS 3
----------------------------------------------- MDS 3
----------------------------------------------- MDS 3
----------------------------------------------- MPK 3
------------------------------- -- ----------- --- MPK 3
----------------------------------------------- MDS 3
----------------------------------------------- MSD 3
----------------------------------------------- MTD 3
----------------------------------------------- MAA 3
----------------------------------------------- MTD 3
-- --------------------------- ------------- ----- MALA 3
----------------------------------------------- MTD 3
----------------------------------------------- MAA 3
----------------------------------------------- MAK 3
----------------------------------------------- MTE 3
----------------------------------------------- MQT 3
---------------------------------------------- MTKT 4
----------------------------------------------- MKT 3
- -- MATTrESLGRRRGNRRACLS IDKKELSRYNLGSCFLI IDKIMEVHMKT 47
----------------------------------------------- MKT 3
----------------------------------------------- MKT 3
- -- MATTESLGRRRGNRRAYLSIDKKELSRYNLGSCFLIIDKIMEVHMKT 4 7
----------------------------------------------- MKT 3
----------------------------------------------- MKT 3
----------------------------------------------- MKT 3
------------------------------------------------ MA 2
----------------------------------------------- MPQ 3
----------------------------- ----------- -------- MA 2
----------------------------------------------- MPQ 3
------------------------------------------------ MA 2
----------------------------------------------- MPQ 3
----------------------------------------------- MPQ 3
------------------------------------------------ MA 2

----------------------------------------------- MPQ 3

------------------------------------------------MAI 2
------------------------------------------------ MA 2
-- --------------------------------------------- MPQ 3
-- --- ---- -- -------------- ----------------------- MA 2
------------------------------------------------ MA 2
----------------------------------------------- MPQ 3
------------------------------------------------ MA 2
----------------------------------------------- MPQ 3
------------------------------------------------ MA 2
----- -- ------ ---------------------------------- MTD 3
--- -- -- ------ ---------------------------------- MPQ 3
--- -- ----------------------------------- -------- MA 2
------------------------------------------------ MA 2
--- -- ------------------------ ------------------ MPQ 3
----- ---------------------- ------------------- -- MA 2
----- -- ------------------ -- ------------- ------- MPQ 3
------- -- ---------------- ------------ -- -------- MPQ 3
----------- ---------------- --------------------- MA 2
--------- -- -------------------------------- MENKMTK 7
------------------------- -- ------------------- MKKK 4
---------------------------------------------- MKKK 4
------------------------ MKNTTSCVRMIEQTQDIDRKRTLMSQ 26
----------------------------------------------- MSQ 3
------------------------ MKNTTSCVRMIEQTQDIDRKRTLMSQ 26
--------------------------------------------- MSA-- 3
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
------------------------------------------ - ----
------------------------------------------- MPDEGNG 7
---------------------------------------- -------
------------------------------------------- MLDEGNQ 7
--------------------------------------------------
------------------------------------------- MPDEGNG 7
------------------------------------------- MFDEVDD 7
------------------------------------------- MFDEVDD 7
------------------------------------ MHWFRRSVFDEVDD 14
----- -- ------------ -- -----------------------------
--------------------------------------------------
----- -- ---------- -- ----- MSIGQASTRIRLMHWFRRSVFDEVDD 26
--------------- -- ---------- ---- -- ----- ------ ----

C0



Y_pestisPestoidesF NrdI
Y_pseudotuber 31758_NrdI
Y_pseudot_32953
Aster-yellows witches broom_ph
Onionyellowsshytoplasma
Candidatusphytoplasma austral
Candidatus_phytoplasma mali

------------------------ MSIGQASTRIRLMHWFRRSVFDEVDD 26
--------------------------------------------------
--------------------------------------------------
------------------------------------------- MPALFPK 7
--------------------------------------------------
---------------------------------------------- MLEQ 4
---------------------------------------------- MLEQ 4

Aw



A laidlawiiPG8A
A coleocanis DSM1543
A odontolyticus17982
A urogenitalisl5434
A radiobacterK84
A tumefaciens C58
A aurescens TCl
A chlorophenol icusA6
A chlorophenolicusA6 NrdI2
Arthrobact_spFB24
B_amyloliquef_FZB42
BanthracisA024 8
B anthracisA2012
B anthracis _Ames
B anthr Ames Anc
Banthracis684
B antracisSterne
B cereus 03BB102
B cereus03BB108
B-cereus03BB108 NrdI2
B cereusl7256oW
B cereus958201
B cereusAH1271
B cereusAH1272
B cereus AH1273
B cereusAH187
B cereusAH603
B cereusAH621
B cereusAH676
B-cereusl0876
B cereusATCC_10987
B cereus11778
B cereus ATCC 14597
B cereus_4342
B cereusBDRDCer4
B cereus BDRDST196
B cereusBDRDST24
B cereus BDRDST26
B cereus BGSC6E1
B cereusE33L
B cereus E33L NrdI2
B cereusF65185
B cereusG9241_NrdI2
B cereus G9241
B_cereusml293
B cereus ml550
Bacilluscereus_MM3
B cereusNVH059799
B cereusR309803_NrdI
B cereusRock115_NrdI
B cereusRockl3 NrdI
B cereusRock328_NrdI
B cereusRock329_NrdI
B cereusRock342_NrdI
B cereusRock344 NrdI
B cereusRock42_NrdI
B c cytotoxis_39_9 8__NrdI
B clausii _KSMK16 NrdI
B_lichenATCCl458O NrdI
Bmycoides2048_NrdI
B_mycoidesRockl4 NrdI
B_mycoidesRock3l7 _NrdI
B_pseudomycoide12442 NrdI
B_pumilus706l NrdI1
B_pumilus706l NrdI2

B_pumi lusSAFR032 NrdI
BacillusspB14905_NrdI
B subtilis-s_168 NrdI2
B subtiliss_168 NrdIl
B subtilis JH642 Nrd12
B subtilis_3610 Nrd12
B subtilis 3610_NrdIl
B_subtilisSMY NrdI2
B subtilisSMY NrdI1
B thuringiensisBt407 NrdI

-MTIIFDSLT-GQTKRFATSLG ---------- FDAIHIKLYE -------- 30
--- VVYFSSATENTKRFVEKLGFD ---------- AERIPLRP ------- R 33
-- -VVYFSSATGNTRRFVEKLGLP ---------- AARIPLLP ------- K 33
GPFLVYFSSTSENTHRFVTKLGYP ---------- SARIPLRP ------- K 57
TERIVYFSSRSENTHRFIGKLG ---------- LDAVRIPVR -------- P 37
- -LIVYYSSRSENTHRFLLKLE ---------- RRLFRLPLG ------- A 32
RSHLIYFSSTSENTKRFVRKLGRDD--------- AARIPLYA - 0----- Q 54
GSQLIYFSSTSENTGRFVAKLGRE ---------- VARIPLYA ------- K 51
TGNLIYFSSVSDNTHRFVQKLGLT---------- AHRLPLRT ------- S 38
SSH LIYFSSASENTRRFVEKLGRD ---------- AARIPLHQ ------- R 57
---- IIFDSKTGNVQRFVNKTDFQL --------- IRKVDET--------- 31
---- VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29

- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- --VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- - - - IIWESKTGNVSRFIEKLPKEL-KRN ----- ALRISQIN -------- 34
- -- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
--------- MTGNVKRFIHKLNMP ---------- AVQIGED --------- 22
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVOIDEA --------- 29
- - VAYDSMTGNVKRFIHKLNMP ---------- AVOIDEA -- --- 29
- -- -VAYDSMTGNVKRFIHKLNMP - -AVQIGED--------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIDEA --------- 29
-- -- VAYDSMTGNVKRFIHKLNMP --------- AVQIDEA --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29

- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29

--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDEA --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- -AVQIDED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- -- -VAFASKTSNVERFIKSFPDIK- ----- -- SVKITDN --------- 30
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
---- VAFASKTSNVERFIKSFPAIK---------SVKITDN--------- 30
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
---- VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- --VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
---- VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
- --VAYDSMTGNVKRFIHKLNMP --------- AVQINED --------- 38
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
---- IAYDSMTGNVKRFINKLNML ---------- AVQISED --------- 29
---- IVFDSKTGNVKRFVAKLPFDD --------- IEQIDDM --------- 30
- --- IVFDSKTGNVQRFVDKTPFRN --------- KRKVSTE --------- 31
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIDEA --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQINDN --------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQINDN --------- 29
---- VAYDSMTGNVKRFIHKLNMP --------- AVQINDD --------- 29
---- IVFDSKTGNVQRFLDKTPFTD --------- KRKLTGE --------- 33
- -MNVYFYSLTGNVRRFIAKTGLG- -------- GQAREIKTG -------- 31
- - - - IVFDSKTGNVQRFLDKTPFTD --------- KQKLTGE --------- 33
--- MIVYASRTGNVRNVVSKLRAES----------IELS----------- 26
- -- -ITYESKTGNVKRFVKALQQEF-DVE ----- AIEITDD --------- 33
- -- -IIFDSKTGNVQRFVNKTGFQQ --------- IRKVDEM --------- 31
---- ITYESKTGNVKRFVKALQQEF-DVE-----AIEITDD--------- 33
- - - - ITYESKTGNVKRFVKALQQEF-DVE ----- AIEITDD --------- 33
---- IIFDSKTGNVQRFVNKTGFQQ --------- IRKVDEM --------- 31
- - - - ITYESKTGNVKRFVKALQQEF-DVE ----- AIEITDD --------- 33
---- IIFDSKTGNVQRFVNKTGFQQ --------- IRKVDEM --------- 31
- -- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29

Bthuringiensis200 NrdI
Bthuringiensis4222 NrdI2
Bthuringiensis4222 NrdIl
B_thuringiensAizawai NrdI
B_thuringiensis4AW _NrdI
B thuringiensisl0792 NrdI
BthuHuazhongensis4BD_ NrdI
B-thurin israel NrdIl
B thurin israel NrdI2

B thur konk_9727 NrdI
BthuKurstakiTO3aool NrdI
BthuMonterrey4AJ1_NrdI
BthuPakistaniT1300l NrdI
BthuPondicheriensis NrdI
BthuPulsiensis4CCl NrdI
BthuSottoT400 _NrdI

B_thuringiensiTO100 1 NrdI
Btochigiensis4Yl NrdI

B_thuringAl Hakam_ NrdI
B weihensteph KBAB4 NrdI
B bacillifform KC583 NrdI

B henselaeHoustonlNrdI
B_quintanaToulouse NrdI
B tribocoruml05476 NrdI
B cavernael2333_NrdI
B anim lactisHNO19 NrdI
Bbreve202l3_NrdI
Bcatenulatum16992 NrdI
B longum DJO10A NrdI
B_longum_NCC275 NrdI

BlongumInfantisl5697 NrdI
Binfantis52486 NrdI
B-hermsii NrdI
B hermsii DAH NrdI
B recurrentisAl NrdI

B turicatae NrdI
B f aecium4810NrdIl
B_ faecium4lo _NrdI2
B brevis NBRC100599 NrdI
B linens BL2 NrdIl
B abortus 1 9 941 NrdI
B melitensis_16M NrdI

B-ovis_25840 _NrdI
B-suis_1330_NrdI
Brucella-suis23445 NrdI
CarnobacteriumAT7 NrdI
C_ morbi51271_NrdI
C flavigena20109 NrdI
CsalexigensDSM3043 NrdI
C-koseriBAA895 NrdI
C ramosum1402 NrdI
C-accolens49725_NrdI2
C accolens4972s NrdIl
C ammoniagenes NrdI
C amycolatumSK46_NrdI
Caurimucosum700975 NrdI2
C aurimucosum700975 NrdIl
C dipht NCTC13129_NrdI2
C diphtNCTC13129_NrdIl
C efficiensYS314_NrdI
C glut ATCC13032__NrdI
CglutamicumRNrdI
C_ jeikeium K411 NrdI2
C_ jeikeiumK411 NrdIl
C_kroppenstedti44385 NrdIl
C_kroppenstedti44385 _NrdI2
C_pseudogenital33035 NrdI2
C_pseudogenital3303s 5_NrdIl
C striatum_ 6940 NrdIl
C-striatum 6940 NrdI2
C_urealyticum7lo9_NrdIl
C_urealyticum7lO 9_NrdI2
D radioduransR1 NrdI
E_cancerogenus35316 NrdI
E_sakazakii BAA894 NrdI

- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
--- MIVFDSKGNVKRFIKKLGI P--------- AVQITPD --------- 30
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
- -- VAYDSMTGNVKRFIHKLNMP --------- AVQIDED -------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
--- MIVFDSKTGNVKRFIKKLGIP ---------- AVQITPD --------- 31
---- LAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
---- VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
---- VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
---- VAYDSMTGNVKRFIHKLNMP --------- AVQIDED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED -------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP --------- AVQIGED --------- 29
--- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIGED --------- 29
- -- -VAYDSMTGNVKRFIHKLNMP ---------- AVQIDEA --------- 29
MGLIVYYSSATGNTEHFVSQLG- --------- QRFFKIDKK --------- 31
MGLIVYYSSATGNTEYFVSQLD ---------- QRLFKIDKK --------- 31
MGLIVYYSSATGNTEYFVSQLG ---------- QRLFKIDKK --------- 31
MGLIVYYSSATGNTEHFVSQLG- --------- QRLFKIDKR -------- 31
MSRLVYFSSVSENTHRFVAKL ---------- GLAADRIPLR -------- P 32
MSAVVYFSSASRNTERFVEHCDFPSC - -- GVNVFRIPLQ -------- P 37
IGALVYFSSASENTARFVASCRLQDE ----- GINVYRIPLR ------- A 64
MSALVYFSSASGNTARFVEGCRLDEF - --GIHVMRIPLR -------- P 37
IGALVYFSSASENTARFVAGCRLQDE ----- GINVYRIPLR ------- A 51
-- -MVYFSSASENTARFVAGCRLQDE ----- GINVYRIPLR ------- A 34
IGALVYFSSASENTARFVSGCRLQDE ----- GINVYRIPLR -------- A 49
IGALVYFSSASENTARFVAGCRLQDE ----- GINVYRIPLR -------- A 51
RYILVVYASKTGNIERFIAKrGLK --------- DTFRIVTGS -------- 37
RYILVVYASKTGNIERFIAKTGLK -------- DTFRIVTGS -------- 37
-- - MVYASKTGNIGRFISKTGLG- -------- NIFRIVTGD-------- 29
KYILVVYASKTGNVSRPFIAKTGLK --------- DIFRVVTGD -------- 37
MTNLVYFSSVSGNTKRFIEKLGMP ---------- AARIPLYP ------- K 33
EADLVYFSSVSGNTRRFVEKLDRP ---------- AAQIPLRP ------- R 54
---- IAYDSKTGNVRRFVNKINLP ---------- HVEIDQD --------- 29
-MLLVYYSSSSEYTDRFVSKLRHP ----------SRRLPLLT ------ K 32
- -LIVYFSSRSGNTHRFVERLG- --------- VRSSRIPLE - - A 32
- - LIVYFSSRSGNTHRFVERLG- --------- VRSSRIPLE ------- A 32
-- LIVYFSSRSGNTHRFVERLG----------VRSSRIPLE -------- A 32
--LIVYFSSRSGNTHRFVERLG- --------- VRSSRIPLE -------- A 32
--LIVYFSSRSGNTHRFVERLG ---------- VRSSRIPLE -------- A 32
- -MKVVYISLTGQTRKFVKKL- -DMDSLELTPTNPYLALN ---------- 36
LKLLVVYLSITGQTRKFVHKL- -DYPLLEITPDSVFTEVQ ---------- 47
MAQLVYFSSTSDNTHRFVQKL ---------- GLPAHRIPLR -------- P 32
MCDVVYFSTQSGNTRRFVEK- -LDVP -------- AQRIPRSR ------- N 33
MSQLVYFSSSSENTHRFMQRLG- - - LPAIRIPLN --------- 31
- -MKVVFASRTGNVQSIVDRLS ---------- VDALEISSGD -------- 30
---- MYFSSVSENTHRFVHK--LGFP -------- AARIPLRP------- K 29
-MLVVYFSSTTENTHRFVQKLG ---------- FPSARIPLR -------- R 31
-MLVVYSSSVTDNTHRFVQKLD ---------- LPNVRIPLR -------- L 31
-MLVVYFSSATGNTHKFVEKLG ---------- IKNARIPIR -- K----- R 31
SPDLVYFSSVSENTKRFVERLDRP---------- AVRIPLRP ------- K 36
-MLVVYFSSATENTHRFVEKLG ---------- LPSARIPLR -------- L 31
SPQVIYFSSVSENTHRFIQK--TKLT-------- HQRIGLRT ------- R 38
-MLVVYFSSATENTKRFVEKLG ---------- FPSQRIPLT -------- K 31
GMLVVYFSSATDNTHRFVQKLG ---------- LPNVRIPLT-------- R 73
-MLIVYFSSATDNTHRFVQKLD ---------- LPNVRIPLT -- - --R 31
-MLIVYFSSATDNTHRFVQKLD ---------- LPNVRIPLT - K------ R 31
- - - IVYFSSASENTRRFVDK- -LDIP -------- ARRIPLRR------- K 40
-MLITYFSSTTENTHRFVRKLG ---------- LPSSRIPLK - K------ R 31
-MYLVYFSSATNNTQRFVDKLG ---------- MRADRIPLR -------- R 31
-THLVYFSSASGNTARFVDK- -LHLP -------- AARIPMKL ------- K 41
SPDLVYFSSVSENTKRFVERLDRP----------AVRIPRP-------K 46
-MLVVYFSSATENTHRFVQKLG ---------- FPSARIPLR -------- R 31
-MLVVYFSSATENTRRFVDKLG ---------- LPSARIPLY -------- K 31
--------------------------------------------- -----
TPDLLYFSSASENTHRFIQRLERP---------- ALRIPLRP ------- R 50
-MLITYFSSTTNNTHRFVQKLG ---------- LPNKRIPIY - K------ R 31
-MLRLVYDSLTGNVRHFAETLAAE ----------- LHVSPMR -------- 30
MSGLVFFSSSSENTLRFMARVG ---------- LPAVRIPLN --------- 31
MTRLIYFSSRSENTHRFIARLG ---------- LPAARIPLE --------- 31



Enterobactersp6 38 NrdI
EfaecalisHH22 NrdI
EfaecalisTX0104 NrdI2
EfaecalisTX0104 NrdI

EfaecalisTX1332 NrdI
E faecalis V583 NrdI2
E faecalis V583 NrdI
E faecium DO NrdI
E car atSCRI1043 NrdI
E tasmaniensisEtl99 NrdI
E albertiiTWO7627 NrdI
E coli 101 1 NrdI
E coli_536 NrdI
E coli 53638 NrdI
E coli 83972 NrdI
E coli APEC 01 NrdI
E coli 8739 NrdI
E coli B171 NrdI
E coli CFT073 NrdI
E coli E110019 NrdI
E coli E22 NrdI
E coli E24377A NrdI
E coli HS NrdI
E coli 0157H7EDL933 NrdI
E coli 0157H7EC4024 NrdI
E coli 0157H74045 NrdI
E cliO157 H7EC4206 NrdI
E coliO157 H7EC4501 NrdI
E coli Sakai NrdI
E coli SMS35 NrdI
E coli K12 M1655 NrdI
E coli UTI8 9 NrdI
Eccherichial 1 43_NrdI
Ebiforme3989_NrdI
G vaginalic4019 NrdI
G bronchialis43247_NrdI
J denitrificans206O3_NrdI

(j K radiot_SRS30216 NrdI
14 K_pneumoniae342 NrdI

K_pneumoniae_78578_NrdI
K rhizophilaDC2201 NrdI2
K rhizophilaDC2201^NrdIl
Lacidophilus4796 NrdI
L acidophilus NCFM NrdI
L brevisATCC 367 NrdI
L casei ATCC334_NrdI
L caseiBL23 NrdI
LcrispatusJV01 NrdI2
LcrispatusJVVOlNrdIl
Lfermentuml4931 NrdI2
Lfermentuml4931 NrdI?
L fermentum3956 NrdIl
L fermentum3956 NrdI2
L gasseri_ 33323_NrdI
LgasseriJVVO3 NrdI2
LgasseriJVVO3 NrdIl
LgasseriM4V22 NrdI2
LgasseriMV22 NrdIl
L helveticus4571NrdI
Ljohnsonii NCC 533_NrdI
Lplantaruml4917 NrdI
Lsplantarum WCFS1 NrdI
L reuteri 10023_NrdIl
L reuteri 10023_NrdI2
L reuteriCF483A^NrdIl
L reuteriCF483A NrdI
L reuteriDSM20016 NrdI2
L reuteriDSM20016 NrdIl
LreuteriJCM1112 NrdIl
LreuteriJCM1lll2 NrdI
LreuteriMM23 NrdI
LreuteriMM23 NrdI2
LreuteriMM41 NrdIl
LreuteriMM41_NrdI2
L_reuteriSD2112 NrdIl

MSVLVYFSSSSENTLRFIERVG ---------- LPAVRIPLN ---------

-- MKLVYFSVTGQTRRFIKKL--DLPAYELEPANPFFEIN----------
-- MNIRYISISGNTRSFVQRLTTYSEEQHQHNEKNPTITFKEISENSP--
-- MKLVYFSVTGQTRRFIKKL--DLPAYELEPANPFFEIN----------
-- MKLVYFSVTGQTRRFIKKL--DLPAYELEPANPFFEIN----------
-- MNIRYISISGNTRSFVQRLTTYSEEQHQHNEKNPTITFKEISENSP--
- -MKLVYFSVTGQTRRFIKKL- -DLPAYELEPANPFFEIN ----------
-- MNILYISISGNTRAFAKHLAEYAEKMHAEDPVNPEVTLKEIHENSD--
MNPLVYFSSQSENTHRFICRVD ---------- LPALRIPIAT --------
MATLVYFSSLSENTHRFIVRLN ---------- LPARRIPLD ---------

MSLIVYFSSRSENTQRFIERLG----------LPAVRIPLN---------
MSQLVYFSSSSENTQRFIERLG----------LPAVRIPLN---------
MSQLVYFSSSSENTQRFIERLG----------LPAVRIPLN---------
MSQLVYFSSSSENTQRFIERLG- --------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG----------LPAVRIPLN---------
MSQLVYFSSSSENTQRFIERLG --------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG --------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG----------LPAVRIPLN---------
MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG----------LPAVRIPLN---------
MSQLVYFSSSSENTQRFIERLG --------- LPAVRIPLN ---------

MSQLVYFSSSSENTORFIERLG --------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN- -- - ---
MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG -- -------- LPAVRIPLN ---------
MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN ---------

- -MKYAYASRTGNVEEIVNSLG ---------- IDALRIDDGS --------

IGAVVYFSSVSENTLRFVKN- -CDFPSN- - - NVNVYRIPLRP ------- K
- PLIVYFSSVSENTHRFVEKLG ---------- SAAVRIPLT-------- D
QVPVYFYSSKSGMVRQFANALG ---------- RPVFDIGERD --------

- PGVVYFSSVSGNTHRFVGKLQLERP-------- ALRIPLRP ------- R

MSLIVYFSSRSENTHRFVQRLG ---------- LPAVRIPLN ---------

MSLIVYFSSRSENTHRFVQRLG ---------- LPAVRIPLN ---------
----------------- MERLERE----------AVRIPLRP-------R
-- -- MVYFSSVTRNTDRFIAKLPVR ---------- SIRLPLRT------- S
-MVAIAFYSITGQTERFIDKI--QLKAHQISDANPKYDMG----------
-MVAIAFYSITGQTERFIDKI--QLKAHQISDANPKYDMG ----------

- - IRILFISIEGNTRNFVENLTAYAAKQHASQPELPEITATEISETSD --
-- IHVLFISISGNTRAFAHRLAVYAQTQHDQNAANPTIVLKEISDATQ--
-- IHVLFISISGNTRAFAHRLAAYAQTQHDQNAANPTIVLKEISDATQ--
-MVAIAFYSITGQTERFIKKT- -QLSAHQIDDANPKYDMG ----------

KPLVVYYSSTSNNTARFVEKLD ---------- CNSIRIPIKL --------

-EINILYISLSGNTRDFVRRLTDY-YQDL--GVVVNSINVREKPDRQ---
-- INVLYISIEGNTRSFLKRLQTYANQMNSINPANPTINLKEITAQTI--
-- INVLYISIEGNTRSFLKRLQTYANQMNSINPANPTINLKEITAQTI--
-EINILYISLSGNTRDFVRRLTDY-YQDL--GVVVNSINVREKPDRQ---
-MVKIAFYTITGQTQRFINKT- -GLDAHRIEDAHPQYQMN---------
KPLVVYYSSTSNNTARFVEKLD ---------- CNSIRIPIKL --------
-MVKIAFYTITGQTQERFINKT- -GLDAHRIEDAHPQYQMN ----------

-MVKIAFYTITGQTQERFINKT--GLDAHRIEDAHPQYQMN----------
KPLVVYYSSTSNNTARFVEKLD----------CNSIRIPIKL--------
KPLVVYYSSTSNNTARFVEKLD ---------- CNSIRIPIKL --------

-MVKIAFYTITGQTQRFIDKT- -GLDAHRIEDAHPQYQMN ----------

-- INIIYISIEGNTRSFVTGMQDYAKTQHAADDSNPLITLKEITEQSD- -
-- INIIYISIEGNTRSFVTGMQDYAKTQHAADDSNPLITLKEITEQSD--
-- IKIVYMSFSGNVRSFTHRLQEYATQQHHLNNENPLIELLEISEETL- -
-- MNIIYISLEGNTRSFLTRMQGYAKQQHSISEDRPLLELKEVSDQTL--
-- MNIIYISLEGNTRSFLTRMQGYAKQQHSISEDRPLIELKEVSDQTL--
- - IKIVYMSFSGNVRSFTHRLQEYATQQHHLNNENPLVDLLEISEETL- -
- - IKIVYMSFSGNVRSFTHRLQEYATQQHHLNNENPLIDLLEISEETL- -
- -MNIIYISLEGNTRSFLTRMQGYAKQQHSISEDRPLLELKEVSDQTL- -
-- MNIIYISLEGNTRSFLTRMQGYAKQQHSISEDRPLLELKEVSDQTL--
-- IKIVYMSFSGNVRSFTHRLQEYATQQHHLNNENPLIDLLEISEETL--
- -MNIIYISLEGNTRSFLTRMQGYAKQQHSISEDRPLLELKEVSDQTL- -
- - IKIVYMSFSGNVRSFTHRLOEYATOQH HLNNENPLIDLLEISEETL- -
-- MNIIYISLEGNTRSFLTRMQGYAKQQHSISEDRPLLELKEVSDQTL--
- - IKIVYMSFSGNVRSFTHRLQEYATQQHHLNNENPLIDLLEISEETL- -
- - IKIVYMSFSGNVRSFTHRLQEYATQQHHLNNENPLVDLLEISEETL- -

L_reuteriSD2112_NrdI
L rhamnosusHN001_NrdI
Lsakeicarnosus15831_NrdI2
Lsakeicarnosus15831 NrdI

L_sakei_23K NrdI
Lsalivariusl1741 NrdI

LsalivariusUCC118 NrdI
L_ultunensis16047 NrdI

L lactis_pGdh442 NrdI

L cremor is MG1363_NrdI
L lactis__cremSK11_NrdI
L lactis1 Il1403_NrdI
L buccalisll35NrdI
L_citreumKM20 NrdI

Lcremorisl9254_NrdI
L mese-m ATCC8293 NrdI
LcsphaericusC341 NrdI
M caseolyticJCSC5402_NrdI
M ruberl279_NrdI
M8s1ilvanus9946 NrdI
M_fiorumLl NrdI
MluteusNCTC266S NrdI
M8curtisii43063 NrdI
M mulieris35243 NrdI2
M abscessusNrdI
Mycob avium_ 104 NrdI
M_paratuberculosisKl NrdI
M avium_parat_k10 NrdI
M_ bovisAF212297_NrdI
M_bovill73P2_NrdI
MbovisBCGTokyol72 NrdI
Mbovic b AF2122_97 NrdI
M_gilvumPYRGCK NrdI

M lepraeBr4923 NrdI
M lepraeTN_NrdI
MmarinumMNrdI
Mycobacterium JLS_NrdI
Mycobacterium KMS_NrdI
Mycobacterium MCSNrdI
M_tuberculosi02_1987_NrdI
M tuberculo94 M4241A NrdI
M cuberculosisCNrdI
MtubercCDC1551_NrdI
MtuberculosisEASO54 NrdI
Mtuberculosis_Fl1_NrdI
Mtuberculosisl503_NrdI
MtuberculosisH37RaNrdI
M_ tuberculH37Rv NrdI
MtuberculosisHaarlem NrdI
MtuberculosisT17 NrdI
M _tuberculosisT85 NrdI
MtuberculosisT92 NrdI
M_ulceransAgy99_NrdI
M vanbaaleniiPYR 1 NrdI
M capricolum_ 27343 NrdI
M gallisepticum R NrdI
MgenitaliumGo37 NrdI
M_hyopneumoniae232 NrdI
Mbhyopneumoni_744 8NrdI
M hyopneumoniae_J NrdI
M_mycoidesGM12_NrdI
M_mycoidesmSCPG1 NrdI
M8penetransNrdI
M_pneumoniae M129_NrdI
M_pulmonisNrdI
Mosynoviae_53 NrdI
N_ farcin_ IFM10152 NrdI
Oanthropi ATCC49188_NrdI
0 oeni BAA1163 NrdI
O0oeni PSU1_NrdI
Paenibac illusJDR2 NrdI
P denitrif PD1222_NrdI
P atrosepticumlo43_NrdI
P carotovorumPBR1692 NrdI
P carotovorumWPP14_NrdI

- -1MNI IYISLEGNTRSFLTRMQGYAKQQHSISEDRPLIELKEVSDQTL-- 49

-- IRILFISISGNTRAFAKRLAEYAQTEHDQNPENPAIVLKEISEATQ-- 96
-MVAIAFYSITGQTKRFIDKT--RLKAHQISDANPKYDMG---------- 37

--LSILYISLAGNTRSFVSDLQDYAQQQHTTNPALPTISLTEISDATP-- 50

-- LSILYISLAGNTRSFVTDLQDYAQQQHTTNPALPTIKLTEISDATP-- 50

-- MKIVYFTVTGQTKRFIKKLGSNYEYFEIDAANPFFEVN---------- 38
- -MKIVYFrVTGQTKRFIKKLGSNYEYFEIDAANPFFEVN ---------- 38
-MVAIAFYSITGQTKRFIDKT--RLKAHQISDANPKYDMG---------- 37
- - IRIYYISLSGNTTNFLEILDHY-LQKE-LQEKLDYVNVKDLVKNNE-- 47

- -8MKLAYFSVTGQTRRFVSKT- -DLPNVEITPDD-DLEMD ---------- 35
-- MKLAYFSVTGQTRRFVSKT--DLPNVEITPDD-DLEMD---------- 35
-- MKLAYFSVTGQTRRFVSKT--NLPNVEISPDD-DIEMN---------- 35
KTMFIYYDSKTGNVHRFTKKMOSQRPDWH-----FIKINPT--------- 52
- -MTVLYASTEGNTKSFVEKLQRVAAQYGDK ------ VDARMIGEETD- - 40

- - INILYASTEGNTKAFIEKLAAVAESNGDG ------ FSARLIGDETE - - 43

-- INILYASTEGNTKAFIEKLAAVAESNGDG------FSARLIGDETE-- 43
-- -MIVYASRTGNVRNVVSKLRAES ---------- IELS ----------- 26
---- IVYYSLTGNVKRFIQKTKYTN --------- TLTLDQA --------- 30
ALLLVVYTSKTGNVARFVARLGL ---------- PALRLGDGT -------- 36
-- MWIVYASRTGNVERFVQQLPLW -------- PRLRLRSGE -------- 31
EVHVVYFSSISNNTHRFIQKLS--------- VKNSRIPYEL -------- 50
DAGLIYFSSASNYTHRFVEKLELPED ------- RVARLPLIT ------- R 57
--------------------------------------------------
CPDVVYFSSVSQNTHRFVQK- -LERP-------- ALRLPLHP - K----- R 69
MAHLVYFSSVSENTHRFVQKLARASEARGEGPCPAIRIPLRG-------D 43
GRNLVYFSSVSENTHRFVQKLG ---------- IPAIRIPLHG ------- R 37
GRNLVYFSSVSENTHRFVQKLG ---------- IPAIRIPLHG - K----- R 37
GRNLVYFSSVSENTHRFVQKLG ---------- IPAIRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37
MANIVYFSSVSENTHRFVQKLE ---------- LPAIRIPLKD - - --R 33

AHNLVYFSSVSENTHRFVQKLG--------- VPAMRIPLHS ------- R 35
AHNLVYFSSVSENTHRFVQKLG --------- VPAMR IPLHS ------- R 35
-CNLVYFSSVSENTHRFVQKLG ---------- LPATRIPLHG ------- R 36
MGNIVYFSSVSENTHRFVEKLE ---------- LPATRIPILG ------- R 33
MGNIVYFSSVSENTHRFVEKLE ---------- LPATRIPILG ------- R 33
MGNIVYFSSVSENTHRFVEKLE ---------- LPATRIPILG ------- R 33
GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37

GRSLVYFSSVSENTHRFVQKLGG---------- IPATRIPLHG ------- R 37
GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37

GRSLVYFSSVSENTHRFVQKLG ---------- IPATRIPLHG ------- R 37

GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

GRSLVYFSSVSENTHRFVQKLG----------IPATRIPLHG-------R 37

-CNLVYFSSVSENTHRFVQKLG----------FPATRIPLHG-------R 36

MSNLVYFSSVSENTHRFVEKLG ---------- LPATRIPIHG ------- R 33
VPFVVYFSSISNNTHRFIQKLE ---------- IENLRIPYEI -------- 50
EMRVVYFSSTTENTKKFCDKLG ---------- LPATRIPIKL -------- 48
SPFIVYFSSISNNTHRFIEKLG----------FQHKRIPVDI-------- 50
EIFVVYFSSISNNTHRFVEKLN----------FEKARIPVEI-------- 56
EIFVVYFSSISNNTHRFVEKLN ---------- FEKARIPVEI -------- 49
EIFVVYFSSISNNTHRFVEKLN ---------- FEKARIPVEI -------- 49
IPFVVYFSSISNNTHRFIQKLE ---------- IENIRIPYEL -------- 50
IPFVVYFSSISNNTHRFIQKLE----------IENIRIPYEL-------- 50
RFFIVYYSSKSNNTHRFMLKLN --------- CKCLRLPIEQKDEPDEIL 44
TPYVVYFSSISNNTHRFIEKLE---------- FEHTRIPVNL-------- 50
QVFVVYFSSISNNTHRFIQKLN----------YENLRIPVNM-------- 50

EKHIVYFSSETGNTKKFVDKLK ---------- INSSRIPIDL -------- 41

DTALVYFSSASENTHRFVEKLG ---------- LPATRIPLH --------- 50

--LIVYFSSRSENTHRFVERLG ---------- MRSNRIPMD -------- G 32
-- VRVLYISIEGNSRNFMERVEKYSKQKKEQNTNNIEIEAVEVSDSTD-- 49

-- VRVLYISIEGNSRNFMERVEKYSKQKKEQNTNNIEIEAVEVSDSTD-- 49
- -- -VVYDSRTGNVKRFINKLNMR- --------- AVPIGEL --------- 29

MGGLVYFSSGSGNTARFVTRLG ---------- LPAGRIPISP -------- 32

MNPLVYFSSQSENTHRFICRVD----------LPALRIPIAT-------- 32

MNPLVYFSSQSENTHRFISRVG- --------- LPALRIPIAT -------- 32

MNPLVYFSSQSENTHRFISRVG ---------- LPALRIPIAT -------- 32



Ppentos ATCC25745 NrdI
Pedobacter BAL39 NrdI
P luminelauTT01_NrdI
Pmirabilis29906 NrdI
P-mirabilisHI4320 NrdI
Ppenneri3519 8NrdI
PalcalifaciensDSM301 NrdI
P rettgerill3l NrdI
Ps tuartii2582 7NrdI
PseudovibrioJE062 NrdI
Rsalmoninarum3320 9NrdI2
R salmoninarum33209_NrdI
R etli_Brasil5_NrdI
R etli_CFN 42_NrdI
RetliCIAT652_NrdI
R etliGR56 NrdI
R0etliIE4771 NrdI
R leguminosaruml325_NrdI
L trifoliiWSM2304 NrdI
R0lemuminosarum 3841 NrdI
R erythropolis_ PR4NrdI
R erythropolis SK121 NrdI
R jostiiRHAl NrdI
R opacus_B4 NrdI
RhodococcusRHA1_NrdI
RoseobacterGAI101 _NrdI
Roseovarius _HTCC2601 NrdI
SOarizonae62z4z23_NrdI
S e eCh SCB67 NrdI
S entGallinarum NrdI
SentericaHadar NrdI
S entKentuckyl91 NrdI
S e eP _ATCC9150 NrdI
S ParatyphiBSPB7 NrdI
SentericaParatyphiC NrdI
S entericaSARA23 NrdI
S ente e Ty CT18 NrdI
S enterica_e_Ty2 NrdI
SOentericaVirchow NrdI
S_typhimurium LT2_NrdI
Stermitidis33386 NrdI
S_proteamaculans_568 NrdI
S_boydii308394 NrdI
S_boydii_Sb227 NrdI
S_dysenteriae_Sd197 NrdI
S flexneri 2a_2457T NrdI
SO flexneri_2a_301 _NrdI
Sflexneri_5_8401 NrdI
Silicibacter TM104 0NrdI
S_spiritivorum 33300_NrdI
S aureus RF122_NrdI
SOaureusBBNrdI
Saureus-aCOL NrdI
SOaureus_JH9 NrdI
S a_a MRSA252_NrdI
S_ aureusa _MSSA476 NrdI
S_aureus a _Mu50_NrdI
SOaureus aureusMW2 NrdI
SOaureus_a N315_NrdI
Saureus NCTC8325 NrdI
S aureus Newman NrdI
S epid_ATCC12228 NrdI
S_epidermidis RP62A NrdI2
S_epidermidis RP62A NrdIl
S haemolyt JCSC1435 NrdI
S saprophyticusl53os NrdI
S agalactiae_18RS21_NrdI2
S_agalactiae_18RS21 NrdIl
S_agalact_2603VR NrdI2
S_agalact_2603VR NrdIl
S_agalactiae_ 515_NrdIl
S _agalactiae_515 NrdI2
SOagalactiae A909 NrdI2
SOagalactiae A909_NrdIl
S_agalactiaeCJB111 NrdIl

-- IYIIYISVAGNTQSFVDDLADYAEKMHQNDTSNPLIISKEVTDQTD-- 63
-- -CIYYDSKTGNVERFINRLRLQR-DWD ----- IQKIDQI --------- 36
INPLIYFSSSSSNSHRFVQKLEIP---------- AFRIPINQ ------- S 35
TAPLIYFSSRSENCHRFVQKLNLQ----------ATRIKEDE-------P 36
TAPLIYFSSRSENCHRFVQKLNLQ----------ATRIKEDE-------P 36
TAPLIYFSSRSENCHRFVQKLNLK ---------- ATRIFEDE ------- T 35
TQPLIYFSSHSGSCHRFIEKLQLP----------ATRIPIGH-------L 35
TESLIYFSSRSGNCHRFIEKLGVP----------ATRLPIGS-------H 35
TESLIYFSSRSGNCHRFVEKVGLP ---------- ATRLPIGE ------- Q 35

MSRLVYFSSVSENTRRFVEKLE ---------- TPADRIPLRP--- ---- R 33
DSRVIYFSSVSGNTHRFVDKLDVG----------AARLPVKT-------Q 42
-- LIVYYSSRSENTHRFVARLG ---------- LRAARIPAS -------- G 32
-- LIVYYSSRSENTHRFVARLG ---------- LRAARIPAS -------- G 32
-- LIVYYSSRSENTHRFVARLG----------LRAARIPAS--------G 32
-- LLVYYSSRSENTHRFVARLG----------LRAARIPSS--------G 32
-- LIVYYSSRSENTHRFVAKLG----------LRAARIPAG--------G 32
-- LIVYYSSRSENTHRFVAKLG----------LRAARIPPN--------G 32
-- LIVYYSSRSENTHRFVARLG----------LRAARIPAG--------G 32
-- LIVYYSSRSENTHRFVAKLG ---------- LRAARIPPS -------- G 32
MTSLVYFSSVSENTHRFVQRLG ---------- LPATRIPIHD ------- R 33
MTSLVYFSSVSENTHRFVQRLG ---------- LPATRIPIHD ------- R 33
MTSLVYFSSASENTHRFVQRLG----------LPATRIPIHD-------R 33
MTSLVYFSSASENTHRFVQKLG----------VPATRIPLHD----R 33
MTSLVYFSSASENTHRFVQRLG----------LPATRIPIHD-------R 33
KGGLVYYSSATGNTARLVAALG ---------- GNAMRIPIRP -------- 34
MPGIVYFSSASGNTARFVDGLG ---------- MLASRIPVSP -------- 32
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG----------LPATRIPLN--------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFIQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSRSENTHRFIQRLG ---------- LPATRIPLN --------- 31
MSALVYFSSSSENTHRFMQRLG----------LPATRIPLN--------- 31
--- YIYYDSKTGNVERFINKIRPLK-NWI-----FIKINEE--------- 34
MNPLVYFSSSSENTHRFVEKLS----------LPAMRIPIAG-------- 32
MSQLVYFSSSSENTQRFIERLG --------- LPAVRIPLN --------- 31
MSQLVYFSSSSENTQRFIERLG----------MPAVRIPLN--------- 31
MSQLVYFSSSSENTQRFIERLG----------LPAVRIPLN--------- 31
MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN -------- 31
MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN -------- 31
MSQLVYFSSSSENTQRFIERLG ---------- LPAVRIPLN --------- 31
MVGLVYYSSRSGNTARLMERLG ---------- LEALRLPQT--------- 31
--- HIYYDSKTGNVQRFMDKLTQIT-GWQ ----- GHKITED--------- 34
---- IIYFSFTGNVRRFIKRTELEN---------TLEITAENCM------ 33
---- IIYFSFTGNVRRFIKRTELEN--------- TLEITAENCM- ----- 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM ------ 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM ------ 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM ------ 33
--- -IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM------ 33
---- IIYFSFTGNVRRFIKRTELEN---------TLEITAENCM------ 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM------ 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM ------ 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM ------ 33
---- IIYFSFTGNVRRFIKRTELEN --------- TLEITAENCM ------ 33
--- -VVYYSFSGNVRRFISRAGIKD --------- TFEITQDNCN ------ 33
SKLSLAYYSRTRQTERFMEKVLEQIQID------VHRIKDEP-------- 46
--- -VVYYSFSGNVRRFISRAGIKD --------- TFEITQDNCN ------ 33
---- VVYFSFSGNVRRFIKRSEISD---------VMEITKDNCT------ 33
- -- -VVYFSFSGNVRRFIKKAEITN --------- TMEITQNNCT ------ 33
TVKVVYFSSKSNNTHRFVQKLA ---------- CSNQRIPSD --------- 34
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT --- 46
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT--- 46
TVKVVYFSSKSNNTHRFVQKLA ---------- CSNQRIPSD --------- 34
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT- -- 46
TVKVVYFSSKSNNTHRFVQKLA ---------- CSNQRIPSD--------- 34
TVKVVYFSSKSNNTHRFVQKLG ---------- CSNQRIPSD --------- 34
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT --- 46
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT --- 46

S_agalactiae_CJB111 NrdI2

S_agalactiae_COH1_NrdI
S_agalactiaeH36B NrdI2

S_agalactiaeH36B NrdIl
SOagalactiaeNEM316 NrdIl
S_agalactiaeNEM316 NrdI2

S_dysg_equisimilis NrdI
Streptococcequi4047_NrdIl
Streptococcequi4047_NrdI2
SzooepidemicusH70_ rdIl
SzooepidemicusH7 0_NrdI2

SOzooepidemicuslO565 NrdI2

S_ zooepidemicus10565 NrdIl
S_gordoniiChallis NrdI

SOinfantariusBAA102_NrdIl
S infantariusBAA102 NrdI2?

S mutans UA159 NrdI
Spneumoniae70585 NrdI

S_pneumoniaeCGSPl4 NrdI

S_pneumoniae D35 NrdI

SpneumoniaeJJA NrdI
S_pneumoniae_R6_NrdI

S_pneumoniaeSP3BS71NrdI
S_pneumoniaeSP6BS73 NrdI

S_pneumoniae TIGR4 NrdI
Sjpyogenes MlGASNrdIl

S_pyogenes MlGAS_NrdI2
S_pyogenesM49_591 NrdIl

S_pyogenes M49_591 NrdI2

S_pyogeneo 10270 _NrdIl

S_pyogenes 10270 _NrdI2

Spyog MGAS10394 Nrd12
S_pyog MGAS103 94NrdIl
Spyogenes MGAS107 50_NrdI2

SpyogenesMGAS10750 NrdIl

S_pyogenes MGAS2096 NrdIl
S_pyogenes MGAS315 NrdI2
SOpyogenes MGAS315 NrdIl

S_pyogenes_MGAsOS5 NrdIl
S_pyogenes MGAS5005_NrdI2
S_pyogenes MGAS6180 NrdIl
S_pyogenes MGAS6180 NrdI2

Spyogenes MGAS8232 NrdIl
S_pyogenes MGAS8232_NrdI2
Spyogenes MGAS9429 NrdI2
SpyogenesMGAS9429 NrdIl
S_pyogenesNZ13 lNrdIl
S_pyogenesNZ 131 _NrdI
S_pyogenes_SSIl _ NrdIl
S_pyogenes_SSIl NrdI2
S_pyogenesManfredo NrdI2

S_pyogenes Manfredo_NrdIl
S_sanguinis_SK36 NrdI

SOsuis_05ZYH33 NrdI

S_sui s_891591 NrdI
S_thermopCNRZ1066 NrdI
S_thermophilus_LMD9_NrdI
SOthermoph_18311 NrdI
T_paurometabola20162 NrdI
Vibrio LGP32 NrdI
Vibrio MED222_NrdI

W gloossinidia Gb NrdI
X cellulosilytil5894_NrdI
Y bercovieri_43970 NrdI

Y enterocolitica8081_NrdI
Y frederiksen 33641_NrdI
Y intermedia 29909 NrdI
Y mollaretii 43969 NrdI
Ypestis AngolaNrdI
YpestisMediaeK197302 NrdI
Y_p_Mediev 91001 NrdI
Y_pestis_C092 NrdI
Y_pestis_FVlNrdI
Y pestis Nepal516 NrdI

YspestisPestoidesA NrdI

TVQVVYFSSKSNNTHRFVQKLA----------WSNQORIPSD---------
TVKVVYFSSKSNNTHRFVQKLA ---------- CSNQRIPSD ---------
TVKVVYFSSKSNNTHRFVQKLG ---------- CSNQRIPSD ---------
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT---
-- LTLVYISLSGNTQSFVKRLSEQ-LSTW-HNCQVSTINIKEQNHQT---
TVKVVYFSSKSNNTHRFVQKLA---------- WSNQRIPSD ---------
-- LTIVFISLSGNTLSFVKRLSLY-LTEN-HECHVKQINIKDLKHET---
-- LTLVFISLSGNTLSFVRRLSQY-LAEK-HHIQTKAINIKELHHET---
RVMLVYFSSRSNNTHRFVQKLD ---------- VRALRIPVT ---------
-- LTLVFISLSGNTLSFVRRLSQY -LAEK-HHIQTKTINIKELHHET- - -
RVMLVYFSSRSNNTHRFVQKLD ---------- VRALRIPVT ---------
-- LTLVFISLSGNTLSFVRRLSQY-LAEK-HHIQTKAINIKELHHET---
RVMLVYFSSRSNNTHRFVQKLD ---------- AKALRIPIS --------
- -VSLVYISLSGNTASFIKRLTAY- LQEGHADLEVEQVNIKDLVKEGQ- -
KTLTIVYISLSGNVQSFVRRLGEY-LQNH-YQLSSKAINIKDLNHET---

-- IQVYYISLSGNTTSFLERLDRY-LQKE-FQESLNYINVKDLVNSGE--
-- ITLIYISLSGNTKSFVARLTNY-LQSK-TDLTIHSVNVKDLIKDQA--
-- ISLVYISLSGNTESFVTRLKDY-LLSQYKGIEVQKIHIKDLVKEGK--
-- ISLVYISLSGNTESFVTRLKDY-LLSQYKGIEVQKIHIKDLVKEGK--
- - ISLVYISLSGNTESFVTRLKDY-LLSQYKRIEVQKIHIKDLVKEGK- -
- - ISLVYISLSGNTESFVTRLKDY- LLSQYKGIEVQKIHIKDLVKEGK- -
- - ISLVYISLSGNTESFVTRLKDY- LLSQYKRIEVQKIHIKDLVKEGK- -
-- ISLVYISLSGNTESFVTRLKDY-LLSQYKGIEVQKIHIKDLVKEGK--
-- ISLVYISLSGNTESFVTRLKDY-LLSQYKGIEVQKIHIKDLVKEGK--
-- ISLVYISLSGNTESFVTRLKDY-LLSQYKGIEVQKIHIKDLVKEGK--
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
- - ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINI KDLKHET - --
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
-- ITLVFISLSGNTLSFVKRLFLY-LADI-YHYHVTQINITDLKHET---
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
- - ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINIKDLKHET- - -
- - ITLVFISLSGNTLSFVKRLSLY- LADN -YDYHVKQINIKDLKHET- - -
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
- - ITLVFISLSGNTLSFVKRLSLY- LADN-YDYHVKQINIKDLKHET- - -
ELIIVYFSSKSNNTHRFVQKLG- - - -LPAQRIPVD - -- ---
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
- - ITLVFISLSGNTLSFVKRLSLY- LADN -YDYHVKQINIKDLKHET- - -
ELIIVYFSSKSNNTHRFVQKLG --------- LPAQRIPVD --------
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
-- ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINIKDLKHET---
ELIIVYFSSKSNNTHRFVQKLG----------LPAQRIPVD---------
-- ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINIKDLKHET---
ELIIVYFSSKSNNTHRFVQKLG --------- LPAQRIPVD --------
-- LTLIFISLSGNTLSFVRRLSQY-LAEK-HHIQTKTINIKELHHET---
-- ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINIKDLKHET---
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD --------
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
- - ITLVFISLSGNTLSFVKRLSLY- LADN-YDYHVKQINIKDLKHET- - -
ELIIVYFSSKSNNTHRFVQKLG ---------- LPAQRIPVD ---------
-- ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINIKDLKHET---
-- ITLVFISLSGNTLSFVKRLSLY-LADN-YDYHVKQINIKDLKHET---
ELIIVYFSSKSNNTHRFVQKLG --------- LPAQRIPVD --------
- -VSLVYISLSGNTESFVRRLTDY- LLEQHPSLEVEKIHIKDLVKERQ- -
- - IYLVYISLSGNTESFVKRLKSF- FQFQ-TDWEIELVHVKDLVKQAI - -
- - IYLVYISLSGNTESFVKRLKSF- FQFQ- TDWEIELVHVKDLVKQDI - -
-- LTLVYISLSGNTQSFVKRMSDY-LSLN-HGINCRQINIKELNHET- --
-- LTLVYISLSGNTQSFVKRMSDY-LSLN-HGINCRQINIKELNHET---
-- LTLVYISLSGNTQSFVKRMSDY-LSLN-HGINCRQINIKELNHET---
-PLVVYFSSVSENTHRFVKKLG ---------- LRAKRIPVA - 0------ R
- -MIVYYSSASGNTKRFVEQLG ---------- LPAIRLPTEA -------
- -MIVYYSSASGNTKRFVEQLG --------- LPAIRLPTEA -------
MSVLVYFSSSSENTHRFVKKLC ---------- IPAKRIPLID --------
MPALVYFSSVSENTHRFVGKLRLDEL-----GTAVHRIPLR--------P
MNPLVYFSSSSQNTHRFIGKLE ---------- LPAIRIPIAG --------
MNPLVYFSSSSQNTHRFVEKLE----------LPAIRIPIAG--------
MNPLVYFSSSSENTHRFVGRLE ---------- LPAIRIPIAG --------
MNPLVYFSSSSENTHRFVKKLA ---------- LPAIRIPIAG --------
MNPLVYFSSSSENTHRFVGKLE----------LPAIRIPIAG--------
MNPLVYFSSSSENSHRFVEKLQ----------LPAIRIPIAG--------
MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG --------
MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG -------
MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG -------
MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG --------
MNPLVYFSSSSENSHRFVEKLQ----------LPAIRIPIAG--------
MNPLVYFSSSSENSHRFVEKLQ----------LPAIRIPIAG--------



Y_pestisPestoidesF NrdI
Ypseudotuber 31758_NrdI
Y_pseudot_32953
Aster yellowswitches broomsph

Onionyellowsphytoplasma
Candidatusphytoplasma austral

Candidatusphytoplasma-mali

MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG -- - --

MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG --------
MNPLVYFSSSSENSHRFVEKLQ ---------- LPAIRIPIAG --------
KIKVIYDGLLQGQVYEMAQSLG ---------- FSFQHIQDVP --------
--------------------------------------------------
KIKIIYDGLKNGQVYNMAQSLG ---------- FDFKHISECQ --------

KIKIIYDGLKNGQVYNMAQSLG ---------- FDFKHISECQ --------

58
32
32
39

36
36



A laidlawiiPG8A
A coleocanis DSM1543
Aodontolyticusl7982
A urogenitalisl5434
A radiobacterK84
A tumefaciensC58
A aurescens TCl
A chlorophenolicusA6
A_chlorophenolicusA6 Nrd12
ArthrobactspFB24
B amyloliquef_FZB42
BanthracisAO248
B anthracisA2012
B anthracisAmes
B anthr Ames_Anc
Banthracis6 84
B antracisSterne
B cereus 03BB102
B cereus03BB108
B cereus03BB108 NrdI2
B-cereusl72560W
B cereus958201
B cereusAH1271
B cereusAH1272
B cereus AH1273
B cereusAH187
B cereusAH603
B cereusAH621
B cereusAH676
B cereuslo876
B cereus ATCC 10987
B cereusll778
B cereus ATCC 14597
B cereus 4342
B-cereus BDRDCer4
B cereusBDRDSTl96
B-cereusBDRDST24
B cereusBDRDST26
B cereus BGSC6E1
B cereus_E33L
B cereus E33L NrdI2
B cereusF65185
B cereusG9241 NrdI2
B cereusG9241
B cereusm1293
B cereus m1550
Bacillus-cereus MM3
B cereusNVH059799
B cereusR309803 NrdI
B cereusRockl5_NrdI
B cereusRockl3 _NrdI
B cereusRock328_NrdI
B cereusRock32s NrdI
B cereusRock342 NrdI
B cereusRock344 NrdI
B cereusRock42_NrdI
B c cytotoxis_391 _98 NrdI
B clausii_KSMK16 NrdI
Blichen ATCC1458 0NrdI
Bmycoides204 8 NrdI
B_mycoidesRockl4_NrdI
B_mycoidesRock3l7 NrdI

B_pseudomycoidel2442_NrdI
B_pumilus706l NrdIl
B_pumilus7o6l NrdI2

B_pumilusSAFR032_NrdI
BacillusspB14905 NrdI
B subtilis s 168 NrdI2
B subtilisS 168 NrdIl
B subtilis JH642 NrdI2
B subtilis 3610 NrdI2
B subtilis 3610 NrdIl
B subtilisSMYNrdI2
B subtilisSMY NrdIl
B thuringiensisBt4o7 NrdI

--- GEPKD-NLFLVTRSINFG -------------- QIPErTTKNFLDS 59
-EEELRVHEPYVLITPTYGGGTTKG ------------- AVPKQVIKFLNV 69
-DEPLRVTDEYVLIVPTYGGGNLKG ------------- AVPKQVIKFLND 69
-EEPLTVDREYVLVVPTYGGGSIRG ------------- AVPKQVIKFLNN 93
NE-LFRVHQPFVLVVPTYSGDSGKG ------------- AVPKQVIRFLNE 73
EEDVPQVSEPYVLVTPTYGGGGTKG ------------- AVPKPVIRFLNE 69
-DAPLQALEPFVLVLPTYGGTNGEG - --- SVPKQVIRFLND 90
-DAPLLAARPFVLVVPTYGGTGGEG ----------- SVPKQVIRFLNN 87
-DDTLLATEPFVLVTPTYGGGPEGG-------------AVPKQVIKFLNV 74
-EAELVASEPFVLVVPTYGGTGGEG ----------- SVPKQVIRFLNN 93
--- -DHVDTPFVLVTYTTNFG --------------- QVPASTQSFLEK 60
- -- -LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
---- LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
---- LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
---- LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
- -- -LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
-- - -LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
---- LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
- -- -LVIDEDFILITYTTGFG --------------- NVPERVLEFLER 58
- -- -NKIREKFVLITYTTGFG --------------- AIPEEVNSFLEK 63
---- LVIDEDFILITYTTGFG --------------- NVPERVLDFLER 58
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-Y- -ANETAPFIAIVPTYLTGGTGTGPEVT ------- EIFTNALGEYIAF 80
-Y- -ANETQPYVAFVPTYLTGGTGTGPEVK ------- EIFTNALGDYIAF 83
-Y--ANETQPYVAFVPTYLTGGTGTGPEVK------- EIFTNALGDYIAF 83
-- EELSLNKPYLLITYTDGLG -------------- DIPAKVQRFLDK 57
---- EGINEPYIIVTGTIGFG --------------- EIPDPVRQFLDR 59
---- EKIAEPCLLITYTGFG -------------- QVPPEVLRFVE- 64
---- ERLEEPLVLVTYTTGFG --------------- EVPPEVWRFAQ- 59
-EEEINVDSDYVLITPTYSGGGEFTSG ----------- AVPKQVIKFLNK 88
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IE - -- VDEPYVLILPTYGGGRAN- -- PGL - -- DAGGYVPKQVIAFLNN 76
IE - - -VDEPYVLILPTYGGGRAN- -- PGL --- -DAGGYVPKQVIAFLNN 76
IE --- -VDEPYVLILPTYGGGRAN- -- PGL- -- -DAGGYVPKQVIAFLNN 76
IR- - - -VEEPYVLILPTYGGGHANGPDP------ DRGGYVPKQVIAFLND 73
IE --- -VSDPYVLVLPTYGGGRTA- -- PDL- - - -QAGGYVPKQVIAFLNN 74
IE ---- VSDPYVLVLPTYGGGRTA --- PDL ---- QAGGYVPKQVIAFLNN 74
IE ---- VDEPYVLILPTYGGGRAN---PDLDLGSNAGGYVPKQVIAFLNN 79
IQDPDFVREPYVLVL PTYGGGHANGPDP------ DAGGYVPKQVIAFLNN 77
IQDPDFVREPYVLVL PTYGGGHANGPDP------ DAGGYVPKQVIAFLNN 77
IQDPDFVREPYVLVL PTYGGGHANGPDP ------ DAGGYVPKQVIAFLNN 77
IE ---- VDEPYVLILPTYGGGRAN--- PGL---- DAGGYVPKQVIAFLNN 76
IE ---- VDEPYVLILPTYGGGRAN --- PGL---- DAGGYVPKQVIAFLNN 76
IE ---- VDEPYVLILPTYGGGRAN--- PGL- --- DAGGYVPKQVIAFLNN 76
IE --- -VDEPYVLILPTYGGGRAN- - - PGL- --- -DAGGYVPKQVIAFLNN 76
IE - --VDEPYVLILPTYGGGRAN- - - PGL- --- -DAGGYVPKQVIAFLNN 76
IE---- VDEPYVLILPTYGGGRAN--- PGL ---- DAGGYVPKQVIAFLNN 76
IE ---- VDEPYVLILPTYGGGRAN --- PGL ---- DAGGYVPKQVIAFLNN 76
IE ---- VDEPYVLILPTYGGGRAN --- PGL---- DAGGYVPKQVIAFLNN 76
IE - -VDEPYVLILPTYGGGRAN- -- PGL - - DAGGYVPKQVIAFLNN 76
IE ---- VDEPYVLILPTYGGGRAN--- PGL---- DAGGYVPKQVIAFLNN 76
IE----VDEPYVLILPTYGGGRAN --- PGL ---- DAGGYVPKQVIAFLNN 76
IE - - VDEPYVLILPTYGGGRAN --- PGL ---- DAGGYVPKQVIAFLNN 76
IE- - - -VDEPYVLILPTYGGGRAN- -- PGL----DAGGYVPKQVIAFLNN 76
IE - --VDEPYVLILPTYGGGRAN- -- PDLDLGSNAGGYVPKQVIAFLNN 79
IQ --- -VDEPYVLVLPTYGGGHANGPDP ------ DRGGYVPKQVIAFLND 73
-EQSISVDRDYVLVTPTYSGGGEYVEG-----------AVPKQVIKFLNN 88
-SEEIEVDYDYVLICPTYAGGLDDFKG ----------- SVPRQVIKFLNK 86
-TQSITVSNEYVLICPTYSGGGNQVEG ----------- AVPKQVIQFLNN 88
-DQELVVDKDYVLFCPTYSGGKGLRSG ----------- AVPKQVIKFLNN 94
-DQELVVDKDYVLFCPTYSGGKGLRSG ----------- AVPKQVIKFLNN 87
-DQELVVDKDYVLFCPTYSGGKGLRSG ----------- AVPKQVIKFLNN 87
-DQSISVNRDYVLVT PTYSGGGEYVEG ----------- AVPKQVIKFLNN 88
-DQSISVNRDYVLVTPTYSGGGEYVEG-----------AVPKQVIKFLNN 88
ESKIPTVNHPFILLTPTYAGGLGKLKG-----------AVPKPVKKFLNN 83
-DEQIEVNQEYVLFCPTYSGGGEYTSG ----------- AVPKQVIHFLNN 88
-EESVFVDKDYVIFVPTYSGGGEFTQG ----------- AVPKQVIKFLNN 88
-NASLEISQDYVLFCPTYSGGFGEVKG ----------- SVPKQVIKFLNK 79
TADSLRVGEPYVLIVPTYGGGRHVLGGARSDKE-----FVPRQVAKFLND 95
SGGL-QVREPFVIVTPTYGGGGSKG ------------- AVPKPVIRFLND 68
-L--VEEEKPFFINVPTYLEGGTGIGPEIH-------EIFTNALGDYLDY 89
-L--VEEEKPFFINVPTYLEGGTGIGPEIH-------EIFTNALGDYLDY 89
---- DIVDEPYVLVTYTTGFG -------------- QVPERVMNFLNR 58
RDEMPAPALPYVLICPTYADGMGRG-------------AVPKQVIRFLND 69
EQPALKVDRPYILVVPSYGGGSTKG-------------AVPRQVIIFLND 69
EQPALKVDRPYILVVPSYGGGSTKG ------------- AVPRQVIIFLND 69
EQPALKVDRPYILVVPSYGGGSTKG ------------- AVPRQVIIFLND 69

.-



Ppentos ATCC25745 NrdI
Pedobacter BAL39 NrdI
P lumine-lau TTO1 NrdI
Pmirabilis29906_NrdI
P-mirabilisHI4320 NrdI
Ppenneri35198 NrdI
PalcalifaciensDSM301 NrdI
P rettgeril131_NrdI
P stuartii25827 NrdI
PseudovibrioJE062_NrdI
R salmoninarum33209 NrdI2
ROsalmoninarum33209 NrdI
ROetli Brasil5_NrdI
ROetliCFN 42 NrdI
ROetliCIAT652 NrdI
Retli GR56_NrdI
RetliIE4771 NrdI
R leguminosaruml325_NrdI
L trifoliiWSM2304_NrdI
Rlemuminosarum 3841 NrdI
O erythropolis_PR4 NrdI
O erythropolis_SK121 NrdI
R_jostiiRHAl NrdI
R opacusB4 NrdI
Rhodococcus RHA1 NrdI
RoseobacterGAI10 lNrdI
Roseovarius _HTCC2601 NrdI
S arizonae62z4z23 NrdI
S e eCh SCB67_NrdI
SOentGallinarum NrdI
S entericaHadar NrdI
SOentKentuckyl~i NrdI
S e ePATCC9150_NrdI
S ParatyphiBSPB7 NrdI
SentericaParatyphiC _NrdI
S entericaSARA23 NrdI
S ente e _Ty_ CT18 NrdI
S enterica e_Ty2 NrdI
S entericaVirchow NrdI
S typhimurium LT2 NrdI
Stermitidis33386_NrdI
S_proteamaculans_568 NrdI
S_boydii308394 NrdI
S boydii_Sb227 NrdI
S_dysenteriae_Sd197_NrdI
S flexneri_2a_2457T NrdI
S flexneri_2a_301_NrdI
Sflexneri_5_8401 NrdI
Silicibacter TM1040 NrdI
S_spiritivorum_ 33300 NrdI
SaureusRF122_NrdI
Saureus BB NrdI
S _aureus-aCOLNrdI
SaureusJH9 NrdI
Saa MRSA252 NrdI
Saureus-a MSSA476 NrdI
Saureus aMu5 0NrdI
Saureus aureus MW2_NrdI
S aureus a N315_NrdI
SOaureusNCTC8325_NrdI
S aureus Newman NrdI
SOepid ATCC12228_NrdI
S_epidermidis_RP62A NrdI2
S_epidermidis RP62A NrdI1
Shaemolyt JCSC1435_NrdI
S_saprophyticusl5305 NrdI
S_agalactiae_18RS21 NrdI2
S_agalactiae_18RS21 NrdIl
S_agalact_2603VR NrdI2
S_agalact_2603VR NrdIl
S agalactiae 515 NrdIl
SOagalactiae_ 515 NrdI2
SOagalactiae A909 NrdI2
S_agalactiae A909 _NrdIl
S_agalactiaeCJBlll NrdIl

-F--ADETQPYFAFVPTYLDGGNGIDNGVK-------ELMTNTLGEYIAY
---- SQPLQEGHLITYTTGIG-----------------EIPAATLRFLEE
-DSPLNITSPYILLTPSYGGGSTKG------------- AVPPQVIRFLNI
---- LQATQPFVLLCPTYGGGGVKG ------------- AVPKAVIQFLNI
---- LQATQPFVLLCPTYGGGGVKG-------------AVPKAVIQFLNI
- --- LLATQPFVLLCPTYGGGSTKG ----------- AVPKAVIQFLNI
PENAILATQPYVLLLPTYGGGSSHG ------------- AVPKEVVHFLNI
-ENSLIATKPYVLLLPTYGGGGSKG-------------AVPKEVIQFLNI
-QSSIIATTPFVLLLPTYGGGGSRG-------------AVPKEVIRFLNI
------ MTHPFVLISPTYADGEGRG ------------- AVHKQVIRFLND
SEAALYAVEPYILTVPTYGGGEPCG ------------- AVPKQVVSFLNV
-DETLKATEPFVLVLPTYGGETGHG-------------AVPKQVIKFLNV
AD-AFHIREPFVLVVPTYSDGDGKG-------------AVPKQVIRFLND
AD-AFHIREPFVLVVPTYSGGDGKG-------------AVPKQVIRFLND
AD-AFHIREPFVLVVPTYSSGDGKG-------------AVPKQVIRCLND
AE-AFHIREPFVLIVPTYSGDGGKG-------------AVPKQVIRFLND
AE-AFRIREPFVLVVPTYSGDGGKG-------------AVPKQVIRFLND
AD-AFHIREPFVLIVPTYSGDGGKG-------------AVPKQVIRFLND
AD-AFHIREPFVLVVPTYSDGDGKG-------------AVPKQVIRFLND
AAGAFHIREPFVLIVPTYSGDGGKG-------------AVPKQVIRFLND
DGS-FRVDEPYVLILPTYGGGVTV--- TO----- RDTSYVPKPVIRFLNN
DGS-FRVDEPYVLILPTYGGGVTV --- TG ----- RDTSYVPKPVIRFLNN
EGT- FEVREPYVLIVPTYGGGTTA -- MG ----- RDTSYVPKPVIRFLNN
AGT-FEVDEPYVLILPTYGGGITA --- TG ----- RDTSYVPKQVIRFLNN
EGT-FEVREPYVLIVPTYGGGTTA- -- MG ----- RDTSYVPKPVIRFLNN
SDPMPLPAGPFVLICPTFADGAGRG- ------------ AVPKQVIGFLNA
KAVLGRIPEEFVLICPTYADGEGRG ------- AVPKQVIRFLND
ERERIRVDEPYILVVPSYGGGGMAG ------------- AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ----------- AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGG-MAG ------------- AVPRQVIRFLND
ERERIRVDEPYILVVPSYGGGGMAG-------------AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ----------- AVPRQVIRFLND
ERERIRVDEPYILVVPSYGGGGMAG ----------- AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ----------- AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ----------- AVPRQVIRFLND
ERERIRVDEPYILVVPSYGGGGMAG ------------- AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ------------- AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ------------ AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG-------------AVPRQVIRFLND
ERERIQVDEPYILVVPSYGGGGMAG ------------- AVPRQVIRFLND
---- TVAENKGHLVTFTTNFG-----------------EVSKTTEKFLLK
ARSKLLMETPYILIVPSYGGGSAVG ------------- AVPIQVIRFLND
ERERIQVDEPYILIVPSYGGGGTAG --------- -- AVPRQVIRFLND
ERERIQVDEPYILIVPSYGGGGTAG ----------- AVPRQVIRFLND
ERKQIQVDEPYILIVPSYGGGGTAG-------------AVPRQVIRFLND
ERERIQVDEPYILIVPSYGGGGTAG ------------- AVPRQVIRFLND
ERERIQVDEPYILIVPSYGGGGTAG ------------- AVPRQVIRFLND
ERERIQVDEPYILIVPSYGGGGTAG-------------AVPRQVIRFLND
-EPSPEVDAPYVLVTPTFADGEGRG------------- AVPKPVIKFLNN
- -- -LEVTEPGHLVTFTTNFG --------------- QVPEQTLLFMKR
---- EPVHEPFIIVGTIGFG --------------- EVPEPVQSFLEV
---- EPVNEPFIIVTGTIGFG --------------- EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG --------------- EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG-----------------EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG --------------- EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG-----------------EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG --------------- EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG-----------------EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG-----------------EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG ----------------- EVPEPVQSFLEV
---- EPVHEPFIIVTGTIGFG --------------- EVPEPVQSFLEV
- - -- ESVNEPYILVTGTIGFG ----------------- EVPQPVQSFLNV
- - -- LEINNSYVLITPTYDFG ----------------- EVPAPVETFLKN
- -- -ESVNEPYILVTGTIGFG --------------- EVPQPVQSFLNV
--- -DPFEEPYILVTGTIGFG --------------- EVPKEVQSFLEI
---- EKIEEPFILVTGTIGFG-----------------EVPQPVQSFLDI
-GSSILVTEDYILIVPTYAGGGDDTKG ----------- AVPKQVVQFLNV
---- FPVDQPFVALLPTYLEGGNGIDNGDQ-------EILTIPLGDFIAA
---- FPVDQPFVALLPTYLEGGNGIDNGDQ-------EILTIPLGDFIAA
-GSSILVTEDYILIVPTYAGGGDDTKG-----------AVPKQVVQFLNV
---- FPVDQPFVALLPTYLEGGNGIDNGDQ-------EILTIPLGDFIAA
-GSSILVTEDYILIVPTYAGGGDDTKG ----------- AVPKQVVQFLNV
-GSSILVTEDYILIVPTYAGGGDDTKG-----------AVPKQVVQFLNV
---- FPVDQPFVALLPTYLEGGNGIDNGDQ-------EILTIPLGDFIAA
--- FPVDQPFVALLPTYLEGGNGIDNGDQ ------- EILTIPLGDFIAA

S agalactiae_CJBll NrdI2
S agalactiaeCOH1 NrdI
SagalactiaeH36B NrdI2
S_agalactiaeH36B NrdIl
S agalactiae NEM316 NrdIl

S_agalactiae NEM316 NrdI2
S_dysgequisimilis NrdI

Streptococcequi4047_NrdIl
Streptococcequi4047 NrdI2

SzooepidemicusH70 NrdIl

SzooepidemicusH7 0NrdI2

SOzooepidemicus10565 NrdI2

SOzooepidemicusl0565 NrdI1
S_gordoniiChallis NrdI
SOinfantariusBAA102 NrdIl
SOinfantariusBAA102 NrdI2?
S mutans UA159 NrdI
Spneumoniae70585 NrdI

S_pneumoniaeCGSP14 NrdI
S_pneumoniae D39 NrdI
SpneumoniaeJJA NrdI
S_pneumoniae R6_NrdI

S_pneumoniaeSP3BS71_NrdI
S_pneumoniaeSP6BS73_NrdI
S_pneumoniae TIGR4 NrdI

SOpyogenesMl_GAS_NrdIl
S_pyogenes MlGAS_NrdI2
S_pyogenes M49_591 NrdI1
S_pyogenes M49_591 NrdI2

S_pyogenes_10270 _NrdI1

S_pyogenes_10270 NrdI2

S_pyog MGAS10394 NrdI2
S_pyog MGAS10394 NrdIl
Spyogenes MGAS10 750_NrdI2
Spyogenes MGAS1075 0_NrdIl

S_pyogenes MGAS2096_NrdIl
S_pyogenes MGAS315 NrdI2
S_pyogenes MGAS315 NrdIl
S_pyogenes MGAS5005_NrdIl
S_pyogenes MGASS 005_NrdI2
S_pyogenes MGAS6180 NrdIl

S_pyogenes_ MGAS618O _NrdI2
S_pyogenesMGAS8232_NrdIl
S_pyogenes MGAS8232 NrdI2

SpyogenesMGAS9429 NrdI2
SpyogenesMGAS9429 NrdIl

S_pyogenesNZ13 1 NrdI1
S_pyogenesNZl31_NrdI
S_pyogenes SSIlNrdIl
S_pyogene s_SSIl NrdI2
S_pyogenes Manfredo NrdI2

S_pyogenes Manfredo NrdIl

S_sanguinis_SK36 NrdI

SOsuis_05ZYH33 NrdI
S suis_ 891591_NrdI
S thermopCNRZl066_NrdI
SOthermophilus LMD9 NrdI

SOthermoph 18311 NrdI
T_paurometabola20l62_NrdI
Vibrio LGP32_NrdI
VibrioMED222_NrdI
W_glossinidia_Gb _NrdI

X_cellulosilytil5894 NrdI

Y_bercovieri_43970_NrdI
Y enterocolitica8081_NrdI
Y frederiksen 33641 NrdI
Y intermedia 29909 NrdI
Y mollaretii_43969_NrdI
Y_pestis Angola NrdI
YpestisMediaeK197302 NrdI

Y_p_Mediev 91001 NrdI

Y_pestis_C092_NrdI
Y_pestis_FVl NrdI

Y_pestis Nepal5l6_NrdI
Y_pestis PestoidesA NrdI

-GSNILVTEDYILIVPTYAGGGDDTKG-----------AVPKQVVQFLNV 72
-GSSILVTEDYILIVPTYAGGGDDTKG-----------AVPKQVVQFLNV 72
-GSSILVTEDYILIVPTYAGGGDDTKG ---------- AVPKQVVQFLNV 72
---- FPVDQPFVALLPTYLEGGNGIDNGDQ-------EILTIPLGDFIAA 85
---- FPVDQPFVALLPTYLEGGNGIDNGDQ-------EILTIPLGDFIAA 85
-GSNILVTEDYILIVPTYAGGGDDTKG ----------- AVPKQVVQFLNV 72
---- FPVEEDFVAMLPTYLEGGNGIDSGEV-------EILTNPLGDFIAA 85
---- FPVKESFVAILPTYLEGGNGIDSGEV ------- EILTNPLGDFIAA 85
-GEPLLVDEDYILIVPTYAAGGSDSKG-----------AVPKQVIHFLNK 72
- - - - FPVKESFVAILPTYLEGGNGIDSGEV ------- EILTNPLGDFIAA 85
-GEPLLVDEDYILIVPTYAAGGSDSKG ----------- AVPKQVIHFLNN 72
---- FPVKESFVAILPTYLEGGNGIDSGEV-------EILTNPLGDFIAA 85
-GEPLLVDEDYILIVPTYAAGGSDSKG-----------AVPKQVIHFLNN 72
-D-FFAMDNQFVAFLPTYLEGGNGVDSGDV-------EILTNDLAAFIEY 89
---- FPVASPFVAILPTYLEGGNGIDSGDV-------EILTTPLGDFIAA 87
-PSTFKINDPYFAFLPAYLEGGNGLDTGDV-------EILTTPLRRLIAH 89
-D-YFALSDYFVAFLPTYLEGGNGLDSGDI-------EILTTPLREFIAF 89
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV-------EILTTPVGDFIAY 89
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV ------- EILMTPVGDFIAY 133
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV-------EILTTPVGDFIAY 89
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV------- EILTTPVGDFIAY 89
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV ------- EILTTPVGDFIAY 133
-N-FYEIDHPYVAFLPTYLEGGNGVDSGDV ------- EILTTPVGDFIAY 89
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV ------- EILTTPVGDFIAY 89
-N-FYEMDHPYVAFLPTYLEGGNGVDNGDV ------- EILTTPVGDFIAY 89
-NRPLEVSTHYLLIVPTYAAGGSDAKG -------- - -AVSKQVIRFLNN 71
- - - - FPVKEEFVAILPTYLEGGNGVDSGDV ------ EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
---- FPVKEEFVAILPTYLEGGNGVDSGEV ------- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
---- FPVKEEFVAILPTYLEGGNGVDSGEV-------EILTTPLGEFIAA 85
---- FPVKEEFVAILPTYLEGGNGVDSGEV ------- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
---- FPVKEEFVAILPTYLEGGNGVDSGEM ------- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
- - - -FPVKEEFVAILPTYLEGGNGVDSGEA - ---- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ---------- AVPKQVIRFLNN 71
-NRPLEVSTHYLLIVPTYAAGGSDAKG-----------AVSKQVIRFLNN 71
-- -- FPVKEEFVAILPTYLEGGNGVDSGDV ------- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG-----------AVPKQVIRFLNN 71
- - - - FPVKEEFVAILPTYLEGGNGVDSGEV ------- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
---- FPVMESFVAILPTYLEGGNGIDSGKV ------- EILTNPLGDFIAA 85
---- FPVKEEFVAILPTYLEGGNGVDSGEV-------EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG-----------AVPKQVIRFLNN 71
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
---- FPVKEEFVAILPTYLEGGNGVDSGEV ---- EILTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG-----------AVPKQVIRFLNN 71
- - -- FPVKEEFVAILPTYLEGGNGVDSGEA ------- EILTTPLGEFIAA 85
---- FPIKEEFVAILPTYLEGGNGVDSGEV- ------ ESLTTPLGEFIAA 85
-NRPLEVSTHYLLIVPTYAAGGSDAKG ----------- AVPKQVIRFLNN 71
- P- FFEMDNPFIAFLPTYLEGGNGVDNGDV ------- EILTTDVGDFIAY 93
-P-FYQLDAPFVAFLPTYLEGGNGVDNGDV-------EILTNPLGDFIAL 89
-P-FYQLDAPFVAFLPTYLEGGNGVDNGDV ------- EILTNPLGDFIAL 89
---- FQVDEPFVALLPTYLEGGNGVDNGDV ------- EILTNPLGDFIAA 108
-- - -FQVDEPFVAILPTYLEGGNGVDNGDV ------- EILTNPLGDFIAA 85
---- FQVDEPFVALLPTYLEGGNGVDNGDV-------EILTNPLGDFIAA 108
AGEPITVDEPFVLITPTYGGGKQATAVSGGG-------YVPKQVIRFLND 77
NERALEIEQPFVLICPTYADGEGRG-------------AVPNSVISLLNN 67
NERTLEIEQPFVLICPTYADGEGRG ----------- AVPNSVISLLNN 67
-KKEFQIKSPYILVIPSYN--NGILDT ----------- AVPHQVTNFLNT 68
ADGFLTVDEPYVLMVPTYGGGNEGG ----------- AVPRQVRRFLGD 74
ARGKLRVEQPYILLVPSYGGGSPVG ----------- TVPIQVIRFLND 76
TREKLRVEQPYILLVPSYGGGSPVG ------------- AVPIQVIRFLND 69
AREKLRIEQPYILLVPSYGGGSPVG-------------AVPIQVIRFLND 76
ARGKLQLEQPYILLVPSYGGGSPIG ------------- AVPIQVIRFLND 69
AREKLRVEQPYILLVPSYGGGSPVG-------------AVPTQVIRFLND 76
AREKLRVEQPYILLVPSYGGGSPVG-------------AVPIQVIRFLND 76
AREKLRVEQPYILLVPSYGGGSPVG-------------AVPIQVIRFLND 76
AREKLRVEQPYILLVPSYGGGSPVG-------------AVPIQVIRFLND 83
AREKLRVEQPYILLVPSYGGGSPVG ----------- AVPIQVIRFLND 69
AREKLRVEQPYILLVPSYGGGSPVG-------------AVPIQVIRFLND 69
AREKLRVEQPYILLVPSYGGGSPVG-------------AVPIQVIRFLND 95
AREKLRVEQPYILLVPSYGGGSPVG ------------ AVPIQVIRFLND 69

00



Y_pestisPestoidesF NrdI
Y_pseudotuber 31758_NrdI
Y_pseudot_ 32953

Aster-yellows witches_broomph
Onionyellows_phytoplasma
Candidatusphytoplasma_austral
Candidatus_phytoplasma mali

AREKLRVEQPYILLVPSYGGGSPVG ------------- AVPIQVIRFLND 95
AREKLRVEQPYILLVPSYGGGSPVG ------------ AVPIQVIRFLND 69
AREKLRVEQPYILLVPSYGGGSPVG ------------ AVPIQVIRFLND 69
- - - SKLTDENVFLLTRSVKFG -------------- QVSDDAKTFLEK 69
----------------------------------------------- -
-- -ANAIDNDVFLLTRSVKFG -------------- EVSQEAKLFLDQ 66
-- -ANAIDNDVFLLTRSVKFG -------------- EVSQEAKLFLDQ 66

uJ



A_laidlawiiPG8A
A coleocanis DSM1543
A odontolyticusl7982
A urogenitalisl5434
A radiobacterK84
A tumefaciensC58
A aurescens TCl
A chlorophenolicusA6
A_chlorophenolicusA6 NrdI2
Arthrobact_sp_FB24
B amyloliquefFZB42
BanthracisA0248
B anthracisA2012
B anthracisAmes
B anthr Ames Anc
Banthracis684
B antracisSterne
B cereus_03BB102
B_cereus03BB108
B-cereus03BB108 NrdI2
B_cereusl72560W
B cereus958201
B cereusAH1271
B cereusAH1272
B cereusAH1273
B cereusAH187
B cereusAH603
B cereusAH621
B cereusAH676
B cereuslO876
B cereusATCC_10987
B cereusll778
B cereusATCC_14597
B cereus_4342
B cereus BDRDCer4
B cereus BDRDST196
B cereusBDRDST24
B_cereus BDRDST26
B-cereus BGSC6El
B cereus E33L
B cereus E33LNrdI2
B cereusF65185
B cereusG9241_NrdI2
B cereus G9241
B cereusm1293
B cereus m1550
Bacillus_cereus_MM3
B cereusNVH059799
B cereusR309803_NrdI
B cereusRockl15_NrdI
B cereusRockl3 NrdI
B cereusRock328NrdI
B cereusRock329 NrdI
B cereusRock342 NrdI
B_cereusRock344_NrdI
B cereus Rock42_NrdI
B c cytotoxis 391 98 NrdI
B clausii KSMK16_NrdI
B lichenATCC14580_NrdI
Bmycoides2048_NrdI

B mycoidesRockl4_NrdI
B_mycoidesRock3l7_NrdI
B_pseudomycoidel2442 NrdI
B_pumilus7061_NrdIl
B_pumilus706lNrdI2
B_pumilusSAFR032 NrdI
Bacillus_sp_B14905 NrdI
B subtilis-s_168 NrdI2
B subtilis s 168NrdIl
B subtilis JH642 NrdI2
B subtilis 3610 NrdI2
B subtilis 3610_NrdIl
B subtilisSMY NrdI2
B subtilisSMY NrdIl
B-thuringiensisBt407 NrdI

--YKDHVVGVAVSGNKNWGEN-YGKAGDKIEAQYKIPLILKFEGSGFKSD 106
EANRNHCVGVISSGNTNFGTA-FCLAGDIISAKLKVPHMYKYELLGTPED 118
PDNRALCRGVISSGNTNFGKA-YCIAGDIIAAKLGVPHMYKFELLGTPED 118
PDNRALCRGVVSSGNTNFGEA-YCIAGDIISAKLKVPFLYRYELLGTPTD 142
TENRSNIRGVIAAGNSNFGAT-FGIAGDIISAKCQVPYLYRFELIGTEED 122
PSNRNLIRGVIAAGNTNFGAA-FASAGDIVSRKCAVPFLYRFELLGTEED 118
PRNRELIRGVIGAGNTNFADN-YCAAGDIISVKCKVPHLYKFELMGTPED 139
PQNRQLLRGVIGAGNTNFGDN-YCLAADIIAAKCQVPHLYRFELMGTPED 136
PGNRELIRGVIAAGNTNFHDS-YCLAGDVIAAKCRTQLLYRVELMGTPED 123
PQNRALIRGVIGAGNTNFGDN-YCMAGDIIAFKCQIPHLYRFELMGTPED 142
-- YAHLLLGVAASGNKVWGDN-FAKSADTISRQYQVPILHKFELSGTSKD 107
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NYEYLLGVSASGNKNLGDN-YAASADKIAAQYAVPILTKFELSGTKNN 110
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 98
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNKHLRGVAASGNRNWGDM-FTKSADVISDKYNVPVLMKFELSGMIND 106
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NTKHLRGVAASGNRNWGDM-FAKSADVISDKYNVPVLMKFELSGTIND 106
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNDKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNDKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNDKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNDKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNANLKGVSASGNRNWGDM-FGASADKISTRYEVPIVSKFELSGTNKD 114
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNANLKGVSASGNRNWGDM-FGASADKISMKYEVPIVSKFELSGTNKD 105
-- NHEQLQGVAASGNRIWGDR-FARSADTIANMYNVPVLHKFELSGTSRD 106
-- NAHLLLGVAASGNRVWGDN-FAKSAEKISKQYQVPILGKFELSGTAKD 107
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNANLKGVSASGNRNWGDM-FGASADKISSRYEVPIVSKFELSGTNKD 105
-- NNANLKGVSASGNRNWGDM-FGASADKISSRYEVPIVSKFELSGTNKD 105
-- NNANLKGVSASGNRNWGDM-FGASADKISSRYEVPIVSKFELSGTNKD 105
-- NAHLLLGVAVSGNKVWGDN-FAKSADTISKQYQVPILHTFELSGTKRD 109
-DNGDWMVGIAASGNRNWGDG-FGAAADVIATLYDVPVIGKFELAGTEED 107
-- NAHLLLGVAVSGNKVWGDN-FAKSADTISKQYQVPILHTFELSGTKRD 109
-- NRDFCKGVVASGNSNFGHHVFGAAGEKIATrYHVPLVRKLDLRGNQTD 105
-- NKNKIRGVAVSGNKVWGDN-YGLAGDKLSAKFHTPLLLKFELSGTKQD 109
-- YAHLLLGVAASGNKVWGDN-FAKSADTISRQYQVPILHKFELSGTSKD 107
-- NKNKIRGVAVSGNKVWGDN-YGLAGDKLSAKFHTPLLLKFELSGTKQD 109
-- NKNKIRGVAVSGNKVWGDN-YGLAGDKLSAKFHTPLLLKFELSGTKQD 109
-- YAHLLLGVAASGNKVWGDN-FAKSADTISRQYQVPILHKFELSGTSKD 107
-- NKNKIRGVAVSGNKVWGDN-YGLAGDKLSAKFHTPLLLKFELSGTKQD 109
-- YAHLLLGVAASGNKVWGDN-FAKSADTISRQYQVPILHKFELSGTSKD 107
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105

Bthuringiensis200 NrdI
Bthuringiensis4222 NrdI2
Bthuringiensis4222 NrdIl

B_thuringiensAizawai NrdI
Bthuringiensis4AW1NrdI

B_thuringiensisl0792 NrdI
BthuHuazhongensis4BD NrdI
B thurin israel NrdIl

B thurin israelNrdI2
B thur konk_9727_NrdI
BthuKurstakiT03aool NrdI
BthuMonterrey4AJ1_NrdI
BthuPakistaniTl300lNrdI
BthuPondicheriensis NrdI
BthuPulsiensis4CCl NrdI
BthuSottoT04001NrdI

B_thuringiensiTO1001 NrdI
Btochigiensis4Yl NrdI

B thuringAlHakam NrdI
B weihenstephl_KBAB4 NrdI
B bacilliform KC583 NrdI

B-henselaeHoustonl NrdI

B quintanaToulouseNrdI
B tribocoruml05476 NrdI
B-cavernael2333 NrdI
Banim lactisHN019 NrdI

B breve20213 NrdI
Bcatenulatuml6992 NrdI
B longum DJOl0A NrdI
B longum NCC2705_ NrdI
BlongumInfantisl5697 NrdI
Binfantis52486 NrdI

B_hermsiiNrdI
B-hermsiiDAHNrdI
B recurrentisAl NrdI
B turicatae NrdI
B faecium4e8o NrdIl
B faecium4810 NrdI2
B-brevis NBRC100599_NrdI
B-linens BL2 NrdIl

B-abortus 1 9941_NrdI
B-melitensis_16M NrdI
B-ovis_25840 NrdI

B-suis_1330_NrdI
Brucella-suis23445 NrdI
CarnobacteriumAT7 NrdI
C morbi5l271_NrdI
C flavigena20109 NrdI
CsalexigensODSM3043 NrdI
C-koseriBAA895 NrdI

C_ramosuml402_NrdI
C accolens49725 NrdI2

C accolens49725 NrdIl

C ammoniagenes NrdI

C amycolatumSK46 NrdI
C-aurimucosum700975_NrdI2
C aurimucosum700975 NrdIl
C diphtNCTCl3129 NrdI2

C_dipht NCTCl3129 NrdIl
C-efficiensYS314_NrdI
C_glutATCC13032 NrdI
C glutamicum R NrdI
C jeikeiumK411_NrdI2
C_jeikeium K411 NrdIl
C_kroppenstedti44385 NrdIl

C_kroppenstedti44385NrdI2
C_pseudogenital33035 NrdI2

C_pseudogenital3303s NrdIl

C-striatum 6940_NrdIl
C-striatum 6940_NrdI2
C urealyticum7109 NrdIl
C urealyticum7109 NrdI2
D_radiodurans_R 1 NrdI
E_cancerogenus35316 NrdI
EBsakazakiiBAA894 NrdI

-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNSFLQGVASSGNRNWGEH-FAAAGRIISEQYHVPLIHQFELSGTRKD 106
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNSFLQGVASSGNRNWGEH-FAAAGRIISEQYHVPLIHQFELSGTRKD 107
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISAKYEVPIVSKFELSGTNND 105
-- NNEKLKGVSASGNRNWGDM-FGASADKISTKYEVPIVSKFELSGTNND 105
VENRKLMRGVIGGGNRNFGRN-YSLASKIIAEKCSVPCLYNFELRGTDED 116
DENRKLIRGVIGGGNRNFGRY-YSLASKIIAEKCFVPCLYRFELRGTEED 116
CENRKLIRGVIGGGNRNFGCY-YNLASKIIAEKCFVPCLYRFELRGTNED 116
AENRKLIRGVIGSGNRNFGRY-YSLASKIIAEKCGVPCLYRFELRGTDED 116
PGNRSLVRGVIAAGNTNFGEA-FCIAGDIIAAKCDVPYLYRFELLGTDQD 118
PANREWIRGVIASGNTNFGEA-YAAAGPIISRKCHVPLMYRFELMGTRED 123
PDNRAWIRGVIASGNTNFGEA-YCAAGDIIAAKCHVPYLYRYELMGTPED 150
ERNRSGIIGVIASGNTNFGEA-YGIAGDIIAAKCRVPLLYRFELMGTPED 123
PANREWIRGVIASGNTNFGEA-YCAAGDIIAAKCKVPYLYRYELMGTPED 137
PANREWIRGVIASGNTNFGEA-YCAAGDIIAAKCKVPYLYRYELMGTPED 120
PANREWIRGVIASGNTNFGEA-YCAAGDIISAKCHVPYLYRYELMGTPED 135
PANREWIRGVIASGNTNFGEA-YCAAGDIIAAKCKVPYLYRYELMGTPED 137
-HNFKLMVGVAGSGNRNWGDS-FCNAVNLIRNEYNVEEILKFELSGTSHD 113
-HNFKLMVGVAGSGNRNWGDS-FCNAVNLIRNEYNVEEILKFELSGTSHD 113
-HNFKLMIGVAGSGNKNWGDS-FCNAVNLIKDKYGVPEILKFELSGTSHD 105
-HNFKLMVGVAGSGNRNWGGS-FCNAVNLIKNEYNVCEILKFELSGTSHD 113
ERNRKHIRGVIGAGNTNFGEA-YCLAGDIIARKCEVPHMYRFELFGTPRD 118
PDNRQLLRGVIAAGNTNFGED-YCLAGPVVSAKCRVPVLYRFELLGTPAD 140
-- NHVHLRGVSASGNRNWGTS-FAKSADTIASQYGVPVISKFELSGTGRD 105
ESNRRHLVGVIGAGNTNFGEE-YCRAAHKVAAKCNVPVLYRVELLGTPED 117
ADNRALIRGVIAAGNSNFGEA-FCIAGNIISAKCGVPYLYRFELLGTAED 117
ADNRALIRGVIAAGNSNFGEA-FCIAGNIISAKCGVPYLYRFELLGTAED 117
ADNRALIRGVIAAGNSNFGEA-FCIAGNIISAKCGVPYLYRFELLGTAED 117
ADNRALIRGVIAAGNSNFGEA-FCIAGNIISAKCGVPYLYRFELLGTAED 117
ADNRALIRGVIAAGNSNFGEA-FCIAGNIISAKCGVPYLYRFELLGTAED 117
ADNKTYFKGVAGGGNLNFGKL-FAFTAIDLANEYHVPLLHTFEFQGNDED 109
GNNRHYFKGVAGGGNRNFNTL-FGFTAKDLARDYQVPLLHLFEFQGSEND 120
EGNRALIRGVIAAGNTNFGEA-YCIAGDIIAAKCKVPYLYAFELMGTSED 118
PRNRALIQGVVAGGNTNFGAA-FGLAGRVVAHKCEVPLLHRFELMGTPED 118
EHNRALIRGVIASGNRNFGEA-YGRAGEVISQKCGVPWLYRFELMGTQSD 117
-SNGDHLKGVIVSGDQGYGEA-FCKAGDVIAEQYNVPCLYKVENDGTDED 106
PENRALLRGVITSGNTNFGEA-YCCAGPQIARKCGVPELYRFELLGTDRD 115
EHNRSFIRAVIAGGNSNFGAD-FGKAGDVISAKCKVPYVYRFELLGNDED 122
EHNRSFIRAVVAGGNSNFGAD-FGKAGEVISAKCKVPYVYRFEMMGNEDD 122
EHNRSFIRGVIAAGNINFGED-FCKAGDVISYKCKVPYLYRFELMGTDHD 122
PINRSFIRGVITSGNTNFGSA-YCVAGRIISAKCHVPELYHFELLGTQKD 122
EHNRSFIRAVVAGGNSNFGSD-FGKAGDVIAAKCKVPYVYRFELLGTEED 122
EQNRHFLAGVITSGNRNFGPA-FCFAGTTIAHKCNVPELHRFELLGTNAD 123
EHNRSFIRAVISGGNSNFGLD-FGKAGDVISQKCSVPYVYRFELMGNDED 122
KRNRSLIRAVVAGGNSNFGAD-FGLAGDVISRKCKVPYVYRFELMGNEED 164
EHNRSFIRAVVAGGNSNFGSD-FGLAGEIISKKCKVPYVYRFELMGNEED 122
EHNRSFIRAVVAGGNSNFGSD-FGLAGEIISKKCKVPYVYRFELMGNEED 122
PHNRTFIRGVITSGNRNFGTA-YCCAGPTIAAKCRVPELYRFELLGTARD 125
EQNRKWLRGVIGAGNINFGSD-FAKAGEVISAKCQVPYLYRFELMGTEED 122
EQNRSLIRGVIASGNTNFGPD-YGVAGDIIAEKCHVPYLYRFELMGTQED 122
EQNRRLLRGVITSGNTNFGAA-FCCAGPVIASKCHVPELYRFELLGTSRD 126
PINRSFIRGVITSGNTNFGSA-YCVAGRIISAKCHVPELYHFELLGTQIKD 132
EHNRSFIRAVIAGGNSNFGAD-FGKAGDVISAKCKVPYVYRFELLGNDDD 122
EHNRGLIRAVISGGNSNFGAD-FGKAGDVISAKCKVPYVYRFELMGSDED 122
PINRSFIRGVISSGNTNFGNA-YCVAGQIISAKCHVPELYHFELLGTQKD 83
PENRALIRGVITSGNTNFGEH-YCIAGPVISRKCGVPELYRFELLGTDED 136
KQNRDYLRGVIAAGNINFGPD-FCLAGDVISAKCQVSYLYRFEMMGTEHD 122
-- HGHLLRGVVASGSYHWGHN-FARAADVIAAEYRVPVVAKLNKGGTAAD 109
PQNRQLICGVIAAGNRNFGDA-FGRAGDVISQKCGVPYLYRFELMGTQQD 117
EHNRALLRGVIAAGNRNFGEG-FCRAGDIIAHKCQVPFLYRFELMGTGQD 117

.C



Enterobacter sp_638 NrdI
EfaecalisHH22 NrdI
EfaecalisTX014 NrdI2
EfaecalisTX0104 NrdI
EfaecalisTX1332 NrdI

E faecalis V583 NrdI2

E faecalis V583 NrdI
E faeciumDO NrdI
E car at SCRI1043 NrdI
E tasmaniensisEtl_99 NrdI
E albertiiTWO7627 NrdI

E coli 101 1 NrdI
E coli 536 NrdI
E coli 53638 NrdI
E coli 83972 NrdI
E coli APEC 01 NrdI

E coli 8739 NrdI
E coli B171 NrdI
E coli CFT073 NrdI
E coli E110019 NrdI
E coli E22 NrdI
E coli E24377A NrdI
E coli HS NrdI
E coli 0157H7EDL933 NrdI
E coli 0157H7EC4024 NrdI
E coli 0157H74045 NrdI
E coli157 H7EC4206 NrdI
E coliOl57 H7EC4501 NrdI
E coli SakaiNrdI
E coli SMS35 NrdI
E coli K12 910655 NrdI
E coli UTIII9 NrdI
Escherichial 1 43 NrdI
Ebiforme3989 NrdI
G vaginalis14019 NrdI
G bronchialis43247 NrdI

.. J denitrificans206O3_NrdI
K radiot SRS30216 NrdI
K_pneumoiae342 NrdI
K_pneumoniae_78578 NrdI
K rhizophilaDC2201 Nrd12
K rhizophilaDC2201 NrdIl
Lacidophilus4796 NrdI
L acidophilusNCFM NrdI
L brevis ATCC 367 NrdI
L caseiATCC334 NrdI
L caseiBL23 NrdI
LcrispatusJVVO1 NrdI2
LcrispatusJVV01_NrdIl
Lfermentum14931 NrdI2
Lfermentum14931 NrdI?
L fermentum3956 NrdIl
L fermentum3956_NrdI2
L gasseri_33323 NrdI
LgasseriJVV03 NrdI2
LgasseriJVVO3 NrdIl
LgasseriMV22 NrdI2
LgasseriMV22 NrdIl
L helveticus4571 NrdI
L johnsonii NCC 533_NrdI
Lplantaruml4917 NrdI
Lplantarum 5WCF01 NrdI
L reuteri 10023 NrdIl
L reuteri 10023_NrdI2
L reuteriCF483A NrdIl
LreuteriCF483A NrdI
L reuteriDSM20016_NrdI2
L reuteriDSM20016 NrdIl
LreuteriJCM1112 NrdIl
LreuteriJCM1112_NrdI
LreuteriMM23 NrdI
LreuteriMM23 NrdI2
LreuteriMM41 NrdIl
LreuteriMM41 NrdI2
L reuteriSD2112_NrdIl

PHNKALIRGVIAAGNRNFGDA-FCRAGDLISQKCGVPYLYRFELMGTQQD 117
KSNQELLVGVAGGGNRNFAEL-FVYTAKDIARDYHVPLLYSFEFSGTDED 109
ENNYRYCSGVVGSGNKNFNHQ-YCLTAKQYAEQFNFPFLADYELRGTQAD 135

KSNQELLVGVAGGGNRNFAEL-FVYTAKDIARDYHVPLLYSFEFSGTDED 109

KSNQELLVGVAGGGNRNFAEL-FVYTAKDIARDYHVPLLYSFEFSGTDED 109
ENNYRYCSGVVGSGNKNFNHQ-YCLTAKQYAEQFNFPFLADYELRGTQAD 135
KSNQELLVGVAGGGNRNFAEL-FVYTAKDIARDYHVPLLYSFEFSGTDED 109
EDNHKLCLGVVGSGNKNFNNO-YCLTAKQYAQTFGFPFLADYELRGTPSD 135
PHNRAYLRGVIAAGNTNFGAA-YCIAGDIIAQKCQVPYLYRFELLGTAED 118
INNRQLIRGVIAAGNRNFGEA-FCLAGDIIARKCHVPYLYRFELMGTSDD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCSVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIAQKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIAQKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCSVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
-ANGTLIQGVVCSGDTGYGDA-YCQAADKISDDYGCEILYKVENSGTPED 106
RENRSFIRGVISSGNTNFGDA-YCAAGGQIAGKCAIPNMYSFELTGTAED 144
THNRSLIRGVIAAGNTNFGAE-FCHAGDIISRKCEVPYLYRFELMGTVDD 126
PQTRRRLVGVMGSGNRNFGSH-YQAAARDIARRSGRPVLFEFELQGTQWD 123
PAHRALIRGVIGAGNTNFGEH-YAAAGDVVAAKCRVPHLYRFELFGTPDD 121
VHNRQLIRGVIAAGNRNFGDA-WGRAGEVIAQKCAVPYLYRFELMGTPDD 117
VHNRQLIRGVIAAGNRNFGDG-WGRAGDVIAQKCAVPYLYRFELMGTPDD 117
PVNRSLLRGVITSGSTNFGEH-YCIAGPIVSAKCRVPELYRFELLGTDRD 102
APSRAHLKGVIGAGNTNFGPL-FCVAAEKVAAKCQVPLLYKFELMGTDED 115
KDNKKNIIGIIGCGNRNFNDL-FAQTAKKIAATLKVPILYLLEFSGTNQD 110
KDNKKNIIGIIGCGNRNFNDL-FAQTAKKIAATLKVPILYLLEFSGTNQD 110
HHNAQQLLGVVGSGNRNFNEQ-YCLTAKRYATTFGVPFIADYELRGVPRD 138
GENADQCIGIIGSGNRNFNEQ-YCLTAKRYAKEFDAPFLADYELRGTPSD 139
GESADQCIGIIGSGNRNFNEQ-YCLTAKRYAKEFDAPFLADYELRGTPSD 139
KDNKKNIIGIIGCGNRNFNDL-FAQTAKKITATLKVPILYLLEFSGTNQD 110
LANRQKCIGVIASGNTNFGNS-FALAGDVISKKLHVPYLYKFELLGTTED 125
EGNYHRCYGIIGSGNRNFNRQ-FALTAKQYAKRFGFPYLTDFELRGSDND 133
GKNADNLIGVVGSGNKNFNEQ-YCLTARMYAKAFDAPFVADYELRGTNED 138
GKNADNLIGVVGSGNKNFNEQ-YCLTARMYAKAFDAPFVADYELRGTNED 138
EGNYHRCYGIIGSGNRNFNRQ- FALTAKQYAKRFGFPYLTDFELRGSDND 133
KDNKENLLGLIGCGNRNFNDL-FAQTAKKISVTLHVPILYLLELSGNSTD 110
LANRQKCIGVIASGNTNFGNS-FALAGDIISKKLHVPYLYKFELLGTTED 125
KDNKENLLGLIGCGNRNFNDL-FAQTAKKISVTLHVPILYLLELSGNSAD 110
KDNKENLLGLIGCGNRNFNDL-FAQTAKKISVTLHVPILYLLELSGNSTD 110
LANRQKCIGVIASGNTNFGNS-FALAGDVISKKLHVPYLYKFELLGTTED 124

LANRQKCIGVIASGNTNFGNS-FALAGDVISKKLHVPYLYKFELLGT'TED 125
KDNKKNLLGLIGCGNRNFNDL-FGQTAKKISVTLHVPILYLLELSGNSTD 110
DQNSRFCLGVVGSGNRNFNDQ-YCLTARRYAEQLDTDMIADYELRGTAVD 140
DQNSRFCLGVVGSGNRNFNDQ-YCLTARRYAEQLDTDMIADYELRGTAVD 140

YDNVKRCAGIIGSGNLTLGKM-YVITAKTYAKKYDLPLLAAFESRGTTQD 140
NDNAKQCVGVVGSGNKNFNEQ-YCLTARKYARDFDAPFLADYELRGTSQD 138
NDNAKKCVGFVGSGNKNFNEQ-YCLTARKYARNFDAPFLADYELRGTSQD 138
YDNVKCCAGIIGSGNLTLGKM-YVITAKTYAKKYGLPLLDAFESRGTTWD 140
YDNVKRCAGIIGSGNLTLGKM-YVITAKTYAKEYGLPLLDAFESRGTTRD 140
NDNAKQCVGVVGSGNKNFNEQ-YCLTARKYARDFDAPFLADYELRGTSQD 138
NDNAKQCVGVVGSGNKNFNEQ-YCLTARKYARDFDAPFLADYELRGTSQD 138
YDNVKRCAGIIGSGNLTLGEM-YVITAKTYAKEYGLPLLDAFESRGTTRD 140
NDNAKQCVGVVGSGNKNFNEQ-YCLTARKYARDFDAPFLADYELRGTSQD 138
YDNVKRCAGIIGSGNLTLGKM-YVITAKTYAKEYGLPLLDAFESRGTTRD 140
NDNAKQCVGVVGSGNKNFNEQ-YCLTARKYARDFDAPFLADYELRGTSQD 138
YDNVKRCAGIIGSGNLTLGKM-YVITAKTYAKEYGLPLLDAFESRGTTRD 140
YDNVKCCAGIIGSGNLTLGKM-YVITAKTYAKKYGLPLLDAFESRGTIWD 140

L_reuteriSD2112_NrdI
L-rhamnosusHN001 NrdI
Lsakeicarnosusl5831_NrdI2
Lsakeicarnosusl5831_NrdI
Lsakei_23K NrdI
Lsalivariusll741 NrdI

L_salivariusUCC118 NrdI
L ultunensisl6047 NrdI
L lactis_pGdh442 NrdI
L cremorisMG1363 NrdI
L lactiscrem SK11 NrdI
L_ lactis 1I11403 NrdI

L buccalis1135 NrdI
L_citreumKM20_NrdI
Lcremorisl9254 NrdI
L mesem ATCC8293_NrdI
LcsphaericusC341_NrdI
M_caseolyticJCSC5402 NrdI
M ruberl279 NrdI
M silvanus9946_NrdI
91 florum_ L1 NrdI
M luteusNCTC2665 NrdI
M9curtisii43063_NrdI
M mulieris35243 NrdI2
M abscessus NrdI
Mycob avium 104_NrdI
M_paratuberculosisKl NrdI
M_avium_parat_k10 NrdI
M_bovisAF212297_NrdI
M_bovisll73P2 NrdI
MbovisBCGTokyol72_NrdI
M bovis b AF2122_97 NrdI
M gilvum PYRGCKNrdI
M lepraeBr4923 NrdI
MlepraeTNNrdI
M_marinumM NrdI
Mycobacterium JLS NrdI
Mycobacterium_KMS NrdI
MycobacteriumMCS _NrdI
Mtuberculosio2_1987_NrdI
Mtuberculo94 M4241A NrdI
M cuberculosisCNrdI
M__tubercCDC1551 NrdI

M9tuberculosisEASO54 NrdI
M tuberculosisFll NrdI
M tuberculosisl503_NrdI
M tuberculosisH37Ra NrdI
M tuberculH37Rv NrdI
MtuberculosisHaarlem NrdI
M9tuberculosisTl7 NrdI
M tuberculosisT85 NrdI
M tuberculosisT92_NrdI
Mulcerans_Agy99 NrdI
M_vanbaaleniiPYR 1 NrdI
M capricolum 27343 NrdI
M gallisepticum R NrdI
MgenitaliumG37_NrdI
M_hyopneumoniaec232_NrdI
M_hyopneumoni_7448 NrdI
Mhyopneumoniae J NrdI
M_mycoidesGM12 NrdI
M_mycoides_ m _SCPG1 NrdI

Mspenetrans NrdI
M_pneumoniae M129 NrdI
M_pulmonis NrdI
Mcsynoviae 53 NrdI
N_farcin IFM10152 NrdI
o anthropiATCC49188 NrdI
ooeni_BAAll63 NrdI
ooeni_PSU1_NrdI
PaenibacillusJDR2 NrdI
P_denitrifPD1222 NrdI
P atrosepticum1043 NrdI
P carotovorumPBR1692 NrdI
P carotovorumWPP14 NrdI

NDNAKKCVGFVGSGNKNFNEQ-YCLTARKYARNFDAPFLADYELRGTSQD 138
GDNAKLCLGIIGSGNRNFNEQ-YCLTAKRYAKEFDAPFLADYELRGTPSD 185
KDNKKNIIGIIGCGNRNFNDL-FAQTAKKIAATLKIPILYLLEFSGTDQD 110
GHNADLCYGVIGSGNRNFNEQ-YCLTAKRYAEQFNVPFIADYELRGNSRD 139
GHNADLCYGVIGSGNRNFNEQ-YCLTAKRYAEQFNVPFIADYELRGNSRD 139
QNNSHYLKGIVGTGNRNFAEL-FIFTAKNLSYEYHVPLIYAFEFNGTPTD 111
QNNSHYLKGIVGTGNRNFAEL-FIFTAKNLSYEYHVPLIYAFEFNGTPTD 111

KDNKKNIIGIIGCGNRNFNDL-FAQTAKKIAATLKIPILYLLEFSGTDQD 110
KKNSKYCMGIIGSGNRNFNKQ-FCLTAHQYSEEFGFPVLDEFELRGTEED 138

NDNYKHCRGIIGTGNRNFAGI-YIFTAKEVSAKYQIPLLYDFEFNGTPAD 117
NDNYKHCRGIIGTGNRNFAGI -YIFTAKEVSAKYQIPLLYDFEFNGTPAD 117
NDNYKHCLGIIGTGNRNFAGI -YIFTAKELSAKYQIPLLYDFEFNGTPAD 117

ENNSKLLKSVSSSGNRNWGQF-FALAADKIQQKYGIPVLMKFELSGTSTE 130

GNNRRYLRGIVGSGNRNFNVQ-FNLTGKRYAEQFDVPMLFAYELRGSKFD 129

GNNARYLKGVVGSGNRNFNIQ-FNLTAIRYGKNFDVPMIAAYELRGSKFD 132

GNNARYLKGVVGSGNRNFNIQ-FNLTAIRYGKNFDVPMIAAYELRGSKFD 132
-- NRDFCKGVVASGNSNFGHHVFGAAGEKIATTYHVPLVRKLDLRGNQTD 105
-- HSANLLAVAASGNRNWGQN-YARAGDLISSTYHVPLLMKFELHGNDND 106
-NNRHLIVGVAASGNRNWGAN-FARAADLLAERYGIRVIHKFELSGTARD 112
-AHRSWVRGVAASGNRNWGSN-FARAADRLAAALNVPLLHKFELSGWPED 107
ENNRNYCRGVIASGNTNFGNT-FAMAGPILSKKLNVPLLYQFELLGTQND 137
PENRHWIRGVIASGNTNFHEG-YCLAGYIISRKCQVPLMYKFELMGTPDD 142
EHNRNLCRGVISSGNTNFGEA-YCIAGKVLSNKLKVPFLYKFELLGTPED 73
PQNRSLIRGVIVSGNTNFGEH-YCIAGPIIAQKCNVPILYRFELLGTPRD 155
ENNRSLIRGVIAAGNTNFGAE-YCYAGKVISAKCDVPYLYRFELMGTAED 130
EHNRSLIRGVIAAGNNNFGAE-FAYAGNVVSRKCGVPYLYRFELMGTQDD 125
EHNRSLIRGVIAAGNNNFGAE-FAYAGNVVSRKCGVPYLYRFELMGTQDD 125
EHNRSLIRGVIAAGNNNFGAE-FAYAGNVVSRKCGVPYLYRFELMGTQDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
EHNRSLIRGVIAAGNTNFGAE-FGYAGVVVSRKCDVPFLYRFELMGTTDD 122

EYNRALICGVVAAGNTNFGAE-FCYAGDVVARKCGVPYLYRFELMGTEDD 123
EYNRALICGVVAAGNTNFGAE-FCYAGDVVARKCGVPYLYRFELMGTEDD 123
EHNRSLIRGVIAAGNNNFGAE-FAYAGNVVSRKCGVPYLYRFELMGTADD 128

EHNRSLIRGVIAAGNTNFGAE-FGYAGDVVSRKCGVPYLYRFELMGTTDD 126
EHNRSLIRGVIAAGNTNFGAE-FGYAGDVVSRKCGVPYLYRFELMGTTDD 126
EHNRSLIRGVIAAGNTNFGAE-FGYAGDVVSRKCGVPYLYRFELMGTTDD 126
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
DHNRAQLRGVIAAGNTNFGAE-FCYAGDVVSRKCSVPYLYRFELMGTEDD 125
EHNRSLIRGVIAAGNNNFGAE-FAYAGNVVSRKCGVPYLYRFELMGTADD 128
EHNRSLIRGVIAAGNTNFGAE-FGYAGVIVSRKCGVPFLYRFELMGTTDD 122
KQNRSFCRGVISSGNTNFGDT-FGIAGPIISKKLNVPFLYQFELLGTQHD 137

VQNREHCVGVVASGNTNFGET-FGLAGHVLRAKLHVPLLHVFELIGTKYD 135

KHNRELCRGVIASGNTNFGDT-FCLAGTVISKKLNVPLLYQFELLGTKND 137
EQNRRFCKAVIASGNTNFGDT-FALAGTIISQKLKVPFLYSFELLGTNDD 143
EQNRRFCKAVIASGNTNFGDT-FALAGTIISQKLKVPFLYSFELLGTNDD 136
EQNRRFCKAVIASGNTNFGDT-FALAGTIISQKLKVPFLYSFELLGTNDD 136
KENRSFCRGVISSGNTNFGDT-FGIAGPIISKKLNVPFLYQFELLGTQYD 137
KENRSFCRGVISSGNTNFGDT-FGIAGPIISKKLNVPFLYQFELLGTQHD 137
PVNRNNCKAVIASGNTNFNDT-YCIAGDIISQKLQIPFLYKFELLGTNSD 132
KHNRDLCRGVISSGNTNFGNT-FAIAGPILSKKLNVPLLYQFELLGTKND 137
EKNRSFCRGVIASGNTNFGNT-FAIAGPILSKKLNVPLLYQFELLGTSED 137
KKNRDHCMAIVASGNTNFGDT-YGLAGNVLQAKLKVPLLHVFELLGTKHD 128
PHNRSLLRGVIAAGNTNFGDT-YCYAGEVISRKCGVPYLYRFELMGTAQD 144
ESNRSFIRGVIAAGNSNFGEA-FCIAGNIISAKCQVPYLYRFELLGTDED 117
HDNFKKLIGIFGSGNRNFNVQ-FVLTAKRYASKYNKPLLYTYELSGIQKD 138
HDNFKKLIGIFGSGNRNFNVQ-FVLTAKRYASKYNKPLLYTYELSGIQKD 138
-- NSNNLQGVSASGNRNWGDG-FAKSADTISSLFNVPVLSKFELSGTNQD 105
PDRRALLRGVIATGNRNFGAT-YALAGRVISDKCNVPVLYRFELAGTDLD 118
PHNRAYLRGVIAAGNTNFGAA-YCIAGDI IAQKCQVPYLYRFELLGTAED 118
PHNRAYLRGVIAAGNTNFGAA-YCIAGDIIAQKCQVPYLYRFELLGTAED 118
PHNRAYLRGVIAAGNTNFGAA-YCIAGDIIAQKCQVPYLYRFELLGTAED 118



Ppentos ATCC25745 NrdI
PedobacterBAL39_NrdI
P lumine-lau TT01 NrdI
Prirabilis29906_NrdI
P-mirabilisHI4320_NrdI
P_penneri35198 NrdI
PalcalifaciensDSM301 NrdI
P rettgerill3l NrdI
P stuartii25827_NrdI
PseudovibrioJE062 NrdI
R salmoninarum33209_NrdI2
R salmoninarum33209 NrdI
Retli Brasil5 NrdI
RNetliCFN 42 NrdI
RNetliCIAT652_NrdI
RNetli GR56_NrdI
RNetliIE4771 NrdI
RNleguminosaruml325 NrdI
L trifoliiWSM2304 NrdI
RNlemuminosarum_3841 NrdI
R erythropolisPR4 _NrdI
R erythropolis_SK121_NrdI
R jostiiRHAl_NrdI

R opacus_B4_NrdI
Rhodococcus_RHAl NrdI
RoseobacterGAI101 NrdI
Roseovarius HTCC2601 NrdI
S arizonae62z4z23_NrdI
S e e Ch SCB67 NrdI
S entGallinarum NrdI
S entericaHadar NrdI
S entKentuckyl9l NrdI
SOe e_PATCC9150 NrdI
SParatyphiBSPB7 NrdI
SentericaParatyphiC_NrdI
SOentericaSARA23 NrdI
s ente_e_Ty_CT18 NrdI
S _enterica_e_Ty2 NrdI
s entericavirchow NrdI
S typhimurium LT2_NrdI
S termitidis33386 NrdI
S_proteamaculans_568 NrdI
S_boydii308394 NrdI
S_boydii_Sb227 NrdI
S_dysenteriae_Sdl97_NrdI
S flexneri 2a 2457TNrdI
S flexneri 2a 301 NrdI
Sflexneri_5_8401_NrdI
Silicibacter TM1040 NrdI
S_spiritivorum33300 NrdI
SOaureus_RF122 NrdI
S aureus BB NrdI
S aureus a_COL NrdI
SOaureusJH9_NrdI
S a a MRSA252_NrdI
S_aureus_a MSSA476 NrdI
S aureus a Mu50 NrdI
S aureus aureus MW2 NrdI
S aureus a N315 NrdI
SOaureus NCTC8325_NrdI
S aureusNewman NrdI
SOepid ATCC12228 NrdI
Sepidermidis RP62A NrdI2
SOepidermidis RP62ANrdIl
Shaemolyt JCSC1435 NrdI
S saprophyticusl5305 NrdI
S_agalactiae_18RS21 NrdI2
S_agalactiae_18RS21_NrdIl
S agalact_2603VRNrdI2
S_agalact 2603VR NrdIl
S_agalactiae_515 NrdIl
SOagalactiae_515 NrdI2
SOagalactiaeA909 NrdI2
SOagalactiae A909 NrdIl
S_agalactiaeCJBlllNrdIl

HDNRKFCLGVIGSGNRNFNEQ-YCLTARRYAQDYGFEMIDDYELRGNSSD 152
-- NSSMIKSVSSSGNKNWGPN-FAMAATKIAAKFKLPVLMQFELSGTGED 112
AENRAFIRGVIAAGNTNFGEA-YGIAGRIISEKCRIPLLYRFELLGTEED 120
PENRQLIRGVIASGNTNFGSA-YGLAGDIIAQKCQVPFLYRFELLGTPED 118
PENRQLIRGVIASGNTNFGSA-YGLAGDIIAQKCQVPFLYRFELLGTPED 118
YENRQLIRGVIASGNTNFGTA-YGLAGDIIAQKCQIPFLYRFELLGTPED 117
PTNRALIRGVIAAGNTNFGEA-YALAGSIIAQKCAIPFLYRFELLGTERD 121
EVNRTLIRGVIAAGNTNFGDA-YAIAGNIIAQKCHVPYLYRFELLGTDKD 120
ESNRRLIRGVIAAGNTNFGEA-YAIAGDIIATKCQVPYLYRFELLGTERD 120
AANRNLLRGVIASGNRNFGAF-FAHAGTIIAAKCNCPCLYKFELAGTETD 80
PQNRKLLRGVIAAGNTNFGAA-YCLAGAVIAAKCAVPLLYRFELLGTPSD 119
AENRSLIRGVIAAGNTNFGET-YCLAGDIIATKCKVPLLYQFELMGTPED 127
AENRGHIRGVIAAGNSNFGET-YGLAGDVISRKCQVPYLYRFELMGTEED 117
AENRGHIRGVIAAGNSNFGET-YGLAGDVISRKCQVPYLYRFELIGTAED 117
AENRKHIRGVIAAGNSNFGET-YGLAGDVISRKCQVPYLYRFELMGTEED 117
AENRGHIRGVIAAGNSNFGET-YGLAGDVISRKCQVPYLYRFELMGTAED 117
AENRGHLRGVIAAGNSNFGET-YGLAGDVISQKCRVPYLYRFELLGTEDD 117
TENRGHIRGVIAAGNSNFGET-YGLAGDVISKKCQVPYLYRFELLGTEAD 117
AENRGHIRGVIAAGNSNFGET-YGLAGDVISQKCRVPYLYRFELIGTEED 117
AENRGHIRGVIAAGNSNFGET-YGLAGDVVSQKCQVPYLYRFELLGTEAD 118
PHNRSLIRAVIAAGNTNFGES-FCYAGNIISQKCHVPFLYRFELMGTAED 123
PHNRSLIRAVIAAGNTNFGES-FCYAGNIISQKCHVPFLYRFELMGTAED 123
THNRSLIRAVIAAGNTNFGES-YCFAGNIISQKCHVPYLYRFELMGTAED 123
THNRSLIRGVIAAGNTNFGES -YCYAGNVISQKCRVPYLYRFELMGTAED 123
THNRSLIRAVIAAGNTNFGES-YCFAGNIISQKCHVPYLYRFELMGTAED 123
PANRALLRGVIGAGNRNFGAT-FALAGDVIAQKCNVPVLTRFELAGTDMD 120
PDHRRRLRGVIGGGNRNFGAT-YGLAADVIAKKCSVPLLYKFELAGTLTD 118
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 116
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKYGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
EHNRARIRGVIASGNRNFGDA-WGCAGDVIAQKCGVPWLYRFELMGTQRD 117
-NNEKIL-SVSSSGNMNWGKL-YALAADKISEHYNIPVILKFELAGLNSE 110
PQNRAFLRGVIAAGNTNFGAA-YGIAGDIIAKKCQVPFLYRFELLGTTQD 118
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
EHNRALLRGVIASGNRNFGEA-YGRAGDVIARKCGVPWLYRFELMGTQSD 117
SRNRALLRGVIAGGNRNFGDT-FALAGDVIAKKCNVPVLYRFELAGTETD 116
-- ASAMISSVTSSGNRNWGRN-FGLAADKIAADFDIPLAFKFELSGTMED 110
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
- -NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHQYIRGVAASGNRNWGLN-FAKAGRTISEEYNVPLLMKFELHGKNKD 109
-- NHTQLQAVAASGNRNWGQN-FAKAGHTISEEYKVPLMMKFEVQGTNKD 109
ETNQNNLIAVMSSGNRNWGTN-FAIAGDTISKRFNVELIGKYELAGNMVD 124
-- NHTQLQAVAASGNRNWGQN-FAKAGHTISEEYKVPLMMKFEVQGTNKD 109
-- NHHNLRAVAASGNRNWGQN-FAKAGRTISEEYHVPLLMKFEVQGSNKD 109
-- NHDLLRGVAASGNRNWGQN-FAKAGRSISEKYQVPLLMKFEVQGTQND 109
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGED 121
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134

SOagalactiaeCJB111_NrdI2

SOagalactiae COH1 NrdI
S_agalactiaeH36B NrdI2

S_agalactiaeH36B NrdIl

S_agalactiae NEM316_NrdIl

S_agalactiaeNEM316 NrdI2

S_dysg_equisimilis NrdI

Streptococcequi4047 NrdIl

Streptococcequi4047 NrdI2
SzooepidemicusH70_NrdIl
SzooepidemicusH70 NrdI2

S_zooepidemicus10565 NrdI2

S_zooepidemicusl0565 NrdIl
S_gordoniiChallis_NrdI
SOinfantariusBAA102 NrdIl
SOinfantariusBAA102 NrdI2?

S mutans UA159 NrdI

Spneumoniae70585 NrdI
S_pneumoniaeCGSP14 NrdI

S_pneumoniaeD39_NrdI
SpneumoniaeJJANrdI
S_pneumoniae R6_NrdI

S_pneumoniaeSP3BS71_NrdI
S_pneumoniaeSP6BS73 NrdI

S_pneumoniae TIGR4 NrdI

S_pyogenes MlGASNrdIl
S_pyogenes MlGAS NrdT2

SOyogenes M49_591 NrdIl

S_pyogenes M49_591 NrdI2
S_pyogenes 10270 NrdIl
S_pyogenes 10270 NrdI2

S_pyogMGAS10394 NrdI2

S_pyog MGAS10394 NrdIl
SpyogenesMGAS10750_NrdI2
Spyogenes MGAS10750_NrdIl

S_pyogenes MGAS2096 NrdIl
S_pyogenesMGAS315 NrdI2
S0pyogenes MGAS315 NrdIl
SOpyogenes MGAS5005 NrdIl
S_pyogenes MGAOSOOS NrdI2
S_pyogenes MGAS6180_NrdIl
S_pyogenesMGAS6180 NrdI2
S_pyogenes MGAS8232 NrdIl
S_pyogenes MGAS8232 NrdI2

SpyogenesMGAS9429 NrdI2
SpyogenesMGAS9429 NrdIl
SOpyogenesNZ131 NrdIl
S_pyogenesNZl31 NrdI
S_pyogenes_SSIl NrdIl

S pyogenes_SSIl NrdI2
S_pyogenesManfredo NrdI2
S_pyogenes Manfredo NrdIl
S_sanguinis_SK36 NrdI
S suis_05ZYH33 NrdI
SOsuis_891591_NrdI
SthermopCNRZl066 NrdI
SOthermophilus LMD9_NrdI
Sthermoph 18311 NrdI

T_paurometabola20162 NrdI
Vibrio LGP32 NrdI
VibrioMED222 NrdI

W glossinidiaGb NrdI
X cellulosilytil5894 NrdI
Y bercovieri_43970 NrdI
Y enterocolitica8081 NrdI
Y frederiksen 33641 NrdI
Y intermedia 29909 NrdI
Y mollaretii 43969 NrdI
Y_pestisAngola NrdI
YpestisMediaeK197302 NrdI
Y_p_Mediev 91001 NrdI

Ypestis C092 NrdI
Y_pestisFV1_NrdI
Ypestis Nepal5l6_NrdI
Y_pestisPestoidesANrdI

RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134
HNNVKNCIGIVGSGNRNFNNQ-YCLTAKQYSERFGFPMLGDFELRGTSSD 134
RQNREHCQGVISSGNTNFGDT-YAIAGPIIARKLNVPLLHQFELLGTQED 121
HDNYKHCMGIIGSGNKNFNNQ-YCLTAKQYAKRFGFPMLGDFELRGTNDD 134
HDNAKRCLGIIGSGNKNFNHQ-YCLTAKQYAKRPGFPMLGDFELRGTSAD 134
ANNRRHCKGVISSGNTNFGDT-FAIAGPIIAQKLQVPLLHQFELLGTQRD 121
HDNVKHCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPMLGDFELRGTSAD 134
ANNRRHCKGVISSGNTNFGDT-FAIAGLIIAQKLQVPLLHQFELLGTQRD 121
HDNAKRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPMLGDFELRGTSAD 134
ANNRRHCKGVISSGNTNFGDT-FAIAGPIIAQKLQVPLLHQFELLGTQRD 121
EENYKKCFGIVGSGNRNFNNQ-YCLTAKQYSQRFGFPLLDTFELRGLQND 138
HDNDKHCFGIIGSGNRNFNEQ-YCLTAKQYANRFGFPMLGDFELRGTSSD 136
KDNSKHCLGIIGSGNRNFNKQ-FCLTAHQYSEEFGFPVLDEFELRGTEED 138
ADNYRYCYGIVGSGNKNFNNQ-YCLTAKQYAEQFGFPVLDNFELRGLADD 138
GNNASKCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 138
GYNASKCSGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 182
GNNASKCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 138
GNNASKCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 138
GNNASKCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADPEMRGMLED 182
GNNASKCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 138
GNNASRCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 138
GNNASKCFGVVGSGNRNFNNQ-YCLTAKQYSQRFGFPVLADFEMRGMLED 138
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISRKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HDNVKHCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPMLGDFELRGTNAD 134
HGNAQHCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
HGNAQRCLGIIGSGNKNFNHQ-YCLTAKQYAKRFGFPLLGDFELRGTPDD 134
PNNRKHCKGVISSGNTNFGDT-FALAGPIISQKLQVPLLHQFELLGTATD 120
GQNASKCLGVIGSGNRNFNNQ-YCLTAKQYSERFGFPVLADFEMRGMLGD 142
GTNAELCLGVVGSGNRNFNNQ-YCLTAKQYAERFNFPVIDTFELRGMQND 138
GTNTELCLGVVGSGNRNFNNQ-YCLTAKQYAERFNFPVIDTFELRGMQND 138
HDNHKRCFGIIGSGNRNFNNQ-YCLTAKQYSQRFGFPMLGDFELRGTQSD 157
HDNHKRCFGIIGSGNRNFNNQ-YCLTAKQYSQRFGFPMLGDFELRGTQOSD 134
HDNHKRCFGIIGSGNRNFNNQ-YCLTAKQYSQRFGFPMLGDFELRGTQSD 157
AHNRSLIRAVIAAGNTNFGEE-FCYAGDVISRKCKIPYLYRFELMGTAED 126
PNNRALIKGVIASGNRNFGAL-FARGGAIVAEKCNVPLLYRFELSGTQOSD 116
PNNRALIKGVIASGNRNFGAL-FARGGAIVAEKCNVPLLYRFELSGTQSD 116
LHNKFFLKGVIGSGNKNFGVN-FCIAGNIISKKYKVPLLYKFELLGTNKD 117
EHNRSLIRGVIAAGNTNFGAA-YCIAGDIVSAKCRVPYLYAFELLGTAED 123
PHNRSLIRGVIAAGNTNFGDA-YCLAGKIISQKCQVPYLYRFELLGTAED 125
PHNRSLIRGVIAAGNTNFGDA-YCLAGKIISQKCQVPYLYRFELLGTAED 118
PHNRSLIRGVIAAGNTNFGDA-YCLAGKIISQKCQVPYLYRFELLGTAED 125
PHNRSLIRGVIAAGNTNFGDA-YCLAGKIISQKCQVPYLYRFELLGTAED 118
PHNRSLIRGVIAAGNTNFGDA-YCLAGKIISQKCQVPYLYRFELLGTAED 125
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 125
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 125
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 132
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 118
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 118
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 144
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED 118



Y_pestisPestoidesFNrdI
Y_pseudotuber 31758_NrdI
Y_pseudot 32953
Aster yellowswitches broom_ph
Onion yellowsphytoplasma
Candidatusshytoplasma_austral
Candidatusphytoplasma-mali

VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED
VHNRSLIRGVIAAGNTNFGDA-YCLAGDIISHKCQVPYLYRFELLGTAED
-- NATKVIGVAVSGNKNWGKN-YGKAGDTIASNYNVPLVLKFEGSGMPEE
----------- MSGNKNWGKN-YGKAGDTIASTYNVPLVLKFEGSGMPEE

-- NRDKVIGVAVSGNKTWGQN-YGKAGDIIASTYNIPLVLKFEGSGIQEE
-- NRDKVIGVAVSGNKTWGQN-YGKAGDIIASTYNIPLVLKFEGSGIQEE

144
118
118
116
38
113
113

-4



A laidlawiiPG8A
A coleocanis DSM1543
Aodontolyticusl7982
A urogenitalisl5434
A radiobacterK84
A tumefaciensC58
A aurescensTCl
A chlorophenolicusA6
A chlorophenolicusA6 NrdI2
ArthrobactspFB24
B amyloliquefFZB42
BanthracisA0248
B anthracisA2012
B anthracisAmes
B anthr Ames Anc
Banthracis684
B antracisSterne
B cereus_03BB102
B_cereus03BB108
B-cereus03BB108_NrdI2
B cereusl72560W
B cereus958201
B cereusAH1271
B cereusAH1272
B cereus AH1273
B cereusAH187
B cereusAH603
B cereusAH621
B cereusAH676
B cereusl0876
B cereusATCC_10987
B-cereus11778
B_cereusATCC_14597
B cereus_4342
B cereus BDRDCer4
B cereusBDRDST196
B-cereusBDRDST24
B cereus BDRDST26
B cereus BGSC6E1
B cereusE33L
B cereus E33L NrdI2
B cereusF65185
B cereus G9241 NrdI2
B cereus G9241
B cereusm1293
B cereus m1550
Bacillus cereus 5MM3
B cereusNVH059799
B cereusR309803_NrdI
B cereusRockl15 NrdI
B cereusRockl3 NrdI
B cereusRock328 NrdI
B cereusRock329_NrdI
B cereusRock342 NrdI
BocereusRock344_NrdI
B cereus Rock42 NrdI
B c cytotoxis_391_98 NrdI
B_clausiiKSMK16_NrdI
B lichen ATCC14580 NrdI
Bmycoides2 048_NrdI
B mycoidesRockl4_NrdI
B_mycoidesRock317 NrdI
B_pseudomycoidel2442oNrdl
B_pumilus706l NrdIl
Bypumilus7061 NrdI2
B_pumilusSAFR032 NrdI
Bacillus_sp_B14905 NrdI
B subtilis s 168 8rd12
B subtilis s 168NrdIl
B subtilis JH642 NrdI2
B subtilis 3610 NrdI2
B subtilis 3610 NrdIl
B subtilisSMY NrdI2
B subtilisSMYNrdIl
B thuringiensisBt407 NrdI

KETVKNWLLRQQEGKRSK -------------------------------
VTKVQEGLRKFWQKI -----------------------------------
VSRVREGLEQFWQKT -- TPTQA ---------------------
VARVKEGLDTFWQTR -----------------------------------
VVNVRDGLERFW ------------ TRSH -----------------
VANVKHGLERFW------- TR------------------------
VQRVNEGLEKFWTQL -------- SQKQK ----------------
VTRVNQGLDTFWTRL -------- SQTQK ---------------------
VERVRTGLETFWKRT -------- PSRLNA--------------------
VRLVNQGLDKFWTLL --------- SQTQK--------------- ---
VELFTQEVERVVTKSSAKMDPVK---------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH -------------------------------
VEYFKERVREIATH -------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ----------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH ------------------------------------
IIEFMNKINQLKL-------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH-------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ------------------------------------
VKYFKERVREIATH ------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ------------------------------------
RKKFESIYSQII--------------------------------------
VEYFKERVREIATH ------------------------------------
RKKFESIYSQIV --------------------------------------
VEYFKERVREIATH -------------------------------
VEYFKERVREIATH -----------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH -------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ---------------------------------
VEYFKERVREIATH -----------------------------------
VEYFKERVREIATH ----------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH -------- ------- ------- - ---------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH ------------------------------------
VDAFLQGVNSIGT--SSKVGSA --------------------------
VELFTQEVERVVTKSSAKMDPVKQ ------------------------
VEYFKERVREIATH ----------------------------------
VEYFKERVREIATH ----------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH------------------------------------
VELFTQEVERIVTKSGSKVDTIK -------------------------
VKQFTERVK--ALG------------------------------------
VELFTQEVERIVTKSGSKVDTIK -------------------------
YEAIQMF----------YETRVMG--------------------------
LQKIIQEVQLIDKHNTKLDQAQ --------------------------
VELFTQEVERVVTKSSAKMDPVK -------------------------
LQKIIQEVQLIDKHNTKLDQAQ --------------------------
LQKIIQEVQLIDKHNTKLDQAQ --------------------------
VELFTQEVERVVTKSSAKMDPVK -------------------------
LQKIIQEVQLIDKHNTKLDQAQ --------------------------
VELFTQEVERVVTKSSAKMDPVK -------------------------
VEYFKERVREIATH------------------------------------

Bthuringiensis200 NrdI
Bthuringiensis4222_NrdI2
Bthuringiensis4222 NrdIl

B_thuringiensAizawai NrdI
B_thuringiensis4AW1_NrdI
B_thuringiensisl0792 NrdI
BthuHuazhongensis4BDNrdI

B thurin israel NrdIl

B thurin israelNrdI2
B thur konk 9727 NrdI
BthuKurstakiT03a0ol NrdI
BthuMonterrey4AJ1_NrdI
BthuPakistaniT13001 NrdI
BthuPondicheriensis NrdI
BthuPulsiensis4CC1_NrdI
BthuSottoT04001_NrdI

B_ thuringiensiTO1001 NrdI
Btochigiensis4YlNrdI

B_thuringAl Hakam NrdI
B weihenstephKBAB4 NrdI
B bacilliform KC583_NrdI
B henselaeHoustonlNrdI

B_quintana Toulouse_NrdI
B tribocoruml05476_NrdI
B cavernael2333_NrdI
B anim lactisHN019_NrdI
B breve20213 NrdI
Bcatenulatuml6992_NrdI

B longum DJO10A NrdI
B_longum _NCC2705 NrdI
BlongumInfantisl5697_NrdI
Binfantis52486_NrdI

B_hermsii NrdI
B_hermsii DAHNrdI
B recurrentisAl NrdI
B turicatae NrdI
B faecium481o NrdIl
B faecium4810 NrdI2
B brevis NBRC100599_NrdI
B linens BL2_NrdIl
B abortus_1_9_941_NrdI
B melitensis 16M NrdI
B ovis_25840 NrdI
B suis_1330_NrdI
Brucella suis23445 NrdI
CarnobacteriumAT7 NrdI
Cumorbi51271_NrdI
C flavigena20109 NrdI
CsalexigensDSM3043 NrdI
C koseriBAA895 NrdI
Coramosuml402_NrdI
C accolens49725 NrdI2
C accolens49725_NrdIl

C ammoniagenesNrdI
C amycolatumSK46 NrdI
C aurimucosum700975_NrdI2
C aurimucosum700975_NrdIl
C dipht NCTC13129_NrdI2
CdiphtNCTCl3129 _NrdIl
C efficiensYS314_NrdI
C glut ATCCl3032 NrdI
C glutamicum RNrdI
C jeikeiumK411_NrdI2
C jeikeium K411_NrdIl
C_kroppenstedti44385 NrdIl
C kroppenstedti443ss NrdI2
Cspseudogenital33035_NrdI2
C_pseudogenital3303s NrdIl
C-striatum 6940 NrdIl
C-striatum 6940_NrdI2
C urealyticum7l 9_NrdIl
C_urealyticum7lo 9_NrdI2
D radiodurans R1 NrdI
Ecancerogenus35316 NrdI
E sakazakii BAA894 NrdI

VEYFKERVREIATH ---------------------------------
IQIAKERIEELCLTLH ----------------- -- ------ ----
VEYFKERVREIATH ---------------------------- ----
VEYFKERVREIATH -----------------------------------
VEYFKERVREIATH -----------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH ---------------------------------
VEYFKERVREIATH- - -- ---- --- - ---- - - - ---- -- ----- --- ----

IQIAKERIEELCLTLH ----------------------------------
VEYFKERVREIATH -------------------------- - --------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------- --------
VEYFKERVREIATH --------------------------------
VEYFKERVREIATH -----------------------------------
VEYFKERVREIATH ------------------------------------
VEYFKERVREIATH -------------------------------
VEYFKERVREIATH ---------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH------------------------------------
VEYFKERVREIATH -----------------------------------
VICVKKGLEKFWKQ------------------------------------
IICVKKGLERFWKQLV----------------------------------
VICVKKGLERFWKQLV----------------------------------
VICVKKGLERFWKQLG----------------------------------
VLRVREGLGRFWL-----------QRSQIPA-------------------
VHAVREGVRRFFS-----------DTPTD---------------------
TAAVRNGLVRFFA-----------QQQ-----------------------
TTAVREGLRRFFD-----------EYTQQEQR------------------
TAAVRNGLVRFFT ----------- EQ------------------------
TAAVRNGLVRFFT------ EQ------------------------
TAAVRNGLVRFFT------ EQ------------------------
TAAVRNGLVRFFT ----------- EQ------------------------
VESFVERIKNEALRVK----------------------------------
VESFVERIKNEALRVK-------------------------------
VKNFMERISDETLRVK--------------

VENFVERIKNEALRVK-------------------------------
VTRVHDGLEEFWRH------------------------------
VHRVEEGLARFWAGTGRDVPEASAHPVSA---------------------
VEQFTSGVAAIAAY---------------------------------
VEAVNLGLDKLCASS --------- LKTAM -------------------
VGNVRNGMEQFW ----------- TRQTQA -------------------
VGNVRNGMEQFW ----------- TRQTQA ------------------
VGNVRNGMEQFW ----------- TRQTQA -------------------
VGNVRNGMEQFW ----------- TRQTQA --------------------
VGNVRNGMEQFW ------------ TRQTQA --------------------
VAQLKKAVNEIG ---------------------------- - --------
VNKLKEQVEQLG ------------------------------------
VTRVREGWGRFWQ-----------RQSQIPA-------------------
VAKVRACLAMEMT ------ -- ----OVG - - -- -
IDNVRKGVSEFWQ ---------- RQP--QNV ------------------
IEEIKKIINNQ ---------------------------- - ----
VARVREGLQDFFAH ------- HLYPTAHASIA ----- ----- --
IKICREGLLANA------------ SQLGLDEAA-----------------
VRICRGGLVQNA ------------ AKLGLEK----- QAS ----------
VQRVREGLEEFF ------- HGRASA- -------------------
IAAVKQGLQKFWEQQ-------- KQLTMTPH----------------
VTICREGLLANA---------- AALGLAA----------- --
AHHVHDAVIDILQ ----------- ERTTK -------- -------
VRLVRDGLRENA----------- AALGLEK- -----------------
VRILRGGLIQNA----------- EALGLGPVPESLQELVGS --------
VSILRGGLTQNA----------- QALGLEP ----- QEPVTSR
VSILRGGLTQNA----------- QALGLEP ----- QEPVTSR-
VARVREGIREFWD-----------RTGGEM--------------------
VHRVREGLAEFE ------------ ASLRHEGRWDLAS ------------
VAIVKQGLTAFE------------ANGMRRHAA-----------------
VEKVRNGLTDFWK ------ -- RVEEKETL ------------------
IAAVKQGLQKFWEQQ--------KQLTMTPH------------------
IKICREGLLANA----------- AELGLEAAA --- ---------
VKICREGLISQA ----------- AALGLDAAA ---------------
IDTVKQGLHKFWEQQ -------- EHVKR --------------------
VEKVRNGLDAFWAQQ --------- GKENA---------------------
VERVKEGLAEFK- ----------- QAMIAEGTWQ --------------
RAAVRRWLLHYAESAPPFPTSCTGEPTPWNAG- -- - --
VENVRKGVNEFWQ ----------- RQP--QNHP------------------
IDNVRKGVSEFWQ- ---- RQH--- - - - -----



Enterobacter sp_6 3 8_NrdI
EfaecalisHH22 NrdI
EfaecalisTX0104_NrdI2
EfaecalisTX0104_NrdI
EfaecalisTX1332_NrdI
E faecalis V583 NrdI2
E_faecalisV583_NrdI
E faecium DO NrdI
Ecar_at_SCRIl043_NrdI
E tasmaniensisEtl99_NrdI
E albertiiTWO7627_ NrdI
E coli 101 1 NrdI
E_coli_536_NrdI
E coli 53638 NrdI
E coli 83972_NrdI
E coli APEC 01 NrdI
E_coli 8739 NrdI
E coli B171 NrdI
E coli CFT073 NrdI
E coli E110019 NrdI
E coli E22 NrdI
E coli E24377A NrdI
E_coli_HSNrdI
E coli 0157H7EDL933 NrdI
E coliOl57H7EC4024 NrdI
E coli 0157H74045 NrdI
E coliOl57 H7EC4206 NrdI
E coliO157 H7EC4501 NrdI
E_coliSakai NrdI
E coliSMS35 NrdI
E coliK12 MG1655 NrdI
E coli UTI89 NrdI
Escherichial_1_43 NrdI
Ebiforme3989 NrdI
G vaginalis14019_NrdI
G bronchialis43247 NrdI
J-denitri ficans206O3_NrdI
K radiot_SRS30216_NrdI
K_pneumoniae342 NrdI
K_pneumoniae_78578 NrdI
K rhizophilaDC220 1 NrdI2
K rhizophilaDC2201 NrdIl
Lacidophilus4796_NrdI
L acidophilus _NCFM NrdI
L brevisATCC_367_NrdI
L casei_ATCC334_NrdI
L caseiBL23 NrdI
LcrispatusJVVO1 NrdI2
LcrispatusJVVO1_NrdIl
Lfermentuml4 931_NrdI2
Lfermentuml4931 NrdI?
L fermentum3956_NrdIl
L fermentum3b956_NrdI2
L_gasseri_33323_NrdI
LgasseriJVVO3 _NrdI2
LgasseriJVVO3_NrdIl
LgasseriMV22 NrdI2
LgasseriMV22 NrdIl
L helveticus4571_NrdI
L johnsonii NCC 533 NrdI
Lplantaruml4917 NrdI
Lplantarum 0WCFS1 NrdI
L reuteri_10023 NrdIl
L reuteri_10023_NrdI2
L reuteriCF483ANrdIl
L_reuteriCF483A NrdI
L reuteriDSM20016 NrdI2
L reuteriDSM20016 NrdIl
LreuteriJCMlll2 NrdIl
LreuteriJCM1112_NrdI
LreuteriMM23 NrdI
LreuteriMM23 NrdI2
LreuteriMM4 NrdIl
LreuteriMM4 lNrdI2
L reuteriSD2112 NrdIl

VENVRKGVNEFWQ ---------- RQP-- QNA- -I--------------
VETFKKVVEEIESKRN----------------------------------
IERIYAILKENQ ---------------------------- -------
VETFKKVVEEIESKRN----------------------------------
VETFKKVVEEIESKRN- --------- ----------------------
IERIYAILKENQ--------------------------------------
VETFKKVVEEIESKRN- ------- ------------------------
VTRIYQILAENNK ----------------------------------
VANVRKGVTEFWQ ---------- QQT--T -----------------
IANIYKGVTEFWQ ---------- RQT- -AH S ---------------
IENVRKGVTEFWQ----------- RQP- -QNA------------------
IENVRKGVTEFWQ--------2-- RQP--QNA--- - --

IENVRKGVTEFWQ----------- RQP--QNA------------------
IENVRKGVTEFWQ------- RQP--QNA ------------------
IENVRKGVTEFWQ ----------- RQP- -QNA ------ -- ----
IENVRKGVTEFWQ ----------- RQP--QNA ---------------
IENVRKGVTEFWQ-----------RQP--QNA------------------
IENVRKGVTEFWQ-----------RQP--QNA------------------
IENVRKGVTEFWQ ----------- RQP--QNA------------------
IENVRKGVTEFWQ ----------- RQP--QNA------------------
IENVRKGVTEFWQ------RQP--QNA------------------
IENVRKGVTEFWQ-----------RQP--QNA------------------
IENVRKGVTEFWQ-----------RQP--QNA------------------
IENVRKGVTEFWQ-----------PQNA------------------
IENVRKGVTEFWQ------- RQP--QNA ------------------
IENVRKGVTEFWQ -------- RQ- -QNA- ------------------
IENVRKGVTEFWQ------- RQP--QNA ------------------
IENVRKGVTEFWQ ------ RQP--QNA ------------------
IENVRKGVTEFWQ---------- -RQP- -QNA ------------------
IENVRKGVTEFWQ ---------- RQP- - ----6--------
IENVRKGVTEFWQ ----------- RQP--QNA ---------------
IENVRKGVTEFWQ ---------- RQP-- QNA ------------------
IENVRKGVTEFWQ ----------- RQP- - ----6--------
IENIKKVIGA------------------------------ -----
IEKVAQGIPKFLR -------- QLKETEETK -------------------
VDRVRAGLAEFA ----------- ASAAFADPASVQLAGMPA --------

VEDARDMLEQLDAR --------- FAERAAAQ ----------------
VRRVRDGLDSL ---------------------------- --------
IDNVRKGVSEFWQ --------- - -08- - ---------
INTVRKGVSEFWQ ----------- RQP--QNV- ----------------
VTRVTEGLREFWSAQ - - -- PPPPTHRKDTG -----------------
VEKVTQGLEEFWPAF --------- TKPRE ------------------
VKNVRKIVHDLSAGQSTKEVQKPKE- -LRGNISFLSDYRD ----------
VKNVRKIVHDLSAGQSTKEVQKPKE- -LRGNISFLSDYRD ----------
ETRIYDALINRLKEVTPAS --------------------- -------
AEKIYAILKRVAATNAAQ -O----------------------------
AEKIYAILKRVAATNAAQ --------------------------------
VKNVRKIVHDLSAGESTKQVQKPKE -- LRGNISFLSDFRD ----------
VNNVNKI IADAGEDND- ----------------------------------
ITRIGQLLLERSQAFEEEQA ------------------------------
LEVVYRRLKD-VAEKQG -------------------------- ----
LEVVYRRLKD-VAEKQG ------------------------------
ITRIGQLLLERSQAFEEEQA ---------------------------
VKNVRQIVKEARKKERGAQKDLPVQNPSLSNISFLSDFRQKNE -------
VNNVNKI IADAGEGND -------------------------------
VKNVRQIVKEACKKERGAQKDLPVQNPSLSNISFLSDFRQKNE -------
VKNVRQIVKEARKKERGAQKDLPVQNPSLSNISFLSDFRQKNE -------
VNNVNKI IADAGEDND -------------------------------
VNNVNKIIADAGEDND --------------I-2----------------
VKNVRQIVMEARKKEKGAQKDLPIQNPALSNISFLSDFRQKNE -------
TERVYNVMKDRLAAYLDNQTF --------------------------
TERVYNVMKDRLAAYLDNQTF --------------------------
IEHIYKILTDKANKNSLM -------------------------- ---
IERIYTILAKRWSEINA ------------------------------
IERIYTILAKRWSEVNA ---------------------------------
IERVYKILTDKVNENSLM- ---------- -------------------
IERIYKILTDKANEDSLM- ---------- -------------------
IERIYTILAKRWSEINA ------------------------------
IERIYTILAKRWSEINA ------------------------------
IERIYKILTDKANEDSLM- ---------- -------------------
IERIYTILAKRWSEINA ------------------------------
IERIYKILTDKANEDSLM- ---------- -------------------
IERIYTILAKRWSEINA ------------------------------
IERIYKILTDKANEDSLM- ---------- -------------------
IERVYKILTDKVNENSLM- ---------- -------------------

L_reuteriSD2112 NrdI
L rhamnosusHN001_NrdI
Lsakeicarnosusl5831 NrdI2

Lsakeicarnosusl5831_NrdI
L_ sakei_23K NrdI
Lsalivarius11741_NrdI
L salivariusUCC118_NrdI
L ultunensisl6047_NrdI
L lactisjGdh442 NrdI
L cremoris MG1363_NrdI
L lactiscrem SKll NrdI
L lactis lI11403 NrdI
L buccalis1135_NrdI
L citreumKM20 NrdI
Lcremorisl9254_NrdI
L_mese m_ ATCC8293 NrdI
L sphaericusC341 NrdI
M_caseolyticJCSC5402_NrdI
M ruberl279_NrdI
M silvanus9946 NrdI
M8florum Ll NrdI
M8luteusNCTC2665_NrdI
M curtisii43063 NrdI
M8mulieris35243 NrdI2
M8abscessus NrdI
Mycob_avium _104 NrdI
M_paratuberculosisKl NrdI
M avium_paratkl ONrdI
M__bovisAF212297 NrdI
M bovisll73P2 NrdI
MbovisBCGTokyol7 2_NrdI
M bovisb _AF2122_97_NrdI
M gilvumPYRGCK_NrdI
M_lepraeBr4923_NrdI
M lepraeTN NrdI
M_marinumM_NrdI
MycobacteriumJLSNrdI
Mycobacterium_KMS NrdI
Mycobacterium _MCS NrdI
M_ tuberculosi02_1987 NrdI
M_ tuberculo94 _M4241A NrdI
M cuberculosisC NrdI
M tubercCDC1551 NrdI
M_ tuberculosisEASO54 NrdI
M tuberculosisF11 NrdI
M tuberculosisl503 NrdI
M tuberculosisH37Ra NrdI
M tuberculH37RvNrdI
MtuberculosisHaarlemNrdI
M tuberculosisT17 NrdI
M tuberculosisT85 NrdI
M8tuberculosisT92_NrdI
M_ulceransAgy99_ NrdI
M8vanbaalenii PYR_1_NrdI
M8capricolum 27343 NrdI
M_gallisepticum R NrdI
MgenitaliumG37 NrdI
M_hyopneumoniae_232 NrdI
M_hyopneumoni_7448 NrdI
M_hyopneumoniae_J NrdI
M mycoidesGM12 NrdI
M_mycoides m SCPGl NrdI
M_penetrans NrdI
M_pneumoniae M129 NrdI
M_pulmonis NrdI
M_synoviae_5 3_NrdI
N farcinIFM10152 NrdI
O _anthropi _ATCC49188 NrdI
O-oeni BAA1163 NrdI
O oeni PSUlNrdI
PaenibacillusJDR2 NrdI
P denitrif PD1222_NrdI
P atrosepticum1043 NrdI
P carotovorumPBR1692 NrdI
P carotovorumWPP14 NrdI

IERIYTILAKRWSEVNA ------------------------------
AKKIYTVLTRVAHTATH---------------------------------
VRNVRKIVHDLSAGQSTKKVQKPKE- - LRGNISFLSDFRD----------
VGRIYMLLVANAQKHA----------------------------------
VGRIYMLLVANAQKHA- -------------------------------
VSNFKKAVKELESKGH----------------------------------
VSNFKKAVKELESKGH -------------------------------
VRNVRKIVHDLSAGQSTKKVQKPKE- -LRGNISFLSDFRD ----------
VIRISNRLNTRLIEWRYSSELVPYRHLPNMTPPHMPHTLRHSHHIKDGTW
VAAVEKLAAQLDQGAKVTFKNPL ------------------------
VAAVEKLAAQLDQGAKVTFKNPL------------------- ----
VAAVEKLATQLDKGAKVTFKNPL------------------- ----
VENYIKYLENN -------------------------------------
AEKVYNLMKPLFGE ----------------------------------
AEKIYNKIKPYFGE ------------------------- ----- --
AEKIYNKIKPYFGE ----------------------------------
YEAIQTF----------YETRVMG--------------------------
VKEFNIKVEEISEYHTRETVQSY---------------------------
IEIIKEAIHALSGTEQCAVA------------------------------
LQVFVKGVNDLALP------------------------------------
VEKINEILKEFWGK------------------------------------
VERVRGGLEGLWT-------------------------------------
VTAVRKGLEEFWANL---------HSQQADLDSPASPES-----------
VQTVRDLLDDFWQ-- - K- - - -----------
VEQVLDGLDEFW ------- KDTPWRQPRQLQNQ ------------
VDAVRAGLAEFW ------------ KEQTCHQPS-LQSL------------
VDAVRAGLAEFW ------- KEQTCHQPS-LQSL -----------
VDAVRAGLAEFW ------- KEQTCHQPS-LQSL- -- ----
VAAVRTGLAEFW ------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW----------- KEQTCHQPS-LQSL -----------
VAAVRTGILAEFW ----------- KEQTCHOPS-LQSL -----------
VFAVRAGLQDFW- ----------- KDQSCPQPSQLQNR~ -----------
VTAVRAGLANLW------------KEH-----------------------
VTAVRAGLANLW ----------- KEH --------------------
VAAVRAGLADFW ----------- KEQTCHQPS-LQSL ------------
VLAVRAGLENFW ----------- KEQTCHPPSQLQSL -----------
VLAVRAGLENFW ----------- KEQTCHPPSQLQSL- -----------
VLAVRAGLENFW ----------- -KEQTCHPPSQLQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW- ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ------------ KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ------------ KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LOSL -----------
VAAVRTGLAEPW----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ----------- KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ------------ KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ------------ KEQTCHQPS-LQSL -----------
VAAVRTGLAEFW ------------ KEQTCHQPS-LQSL -----------
VAAVRAGLADFW -- ------- KEQTCHQPS-LQSL -----------
VFAVRQGLTDFWA -------- DARKDQTCHQPSQLQNL -----------
VSQIKQILFKFWEDGNNERK ---------------------------
EELVRERIHKLWNWEE -------------------------------
VEQTQKIIANFFQNSN -------------------------------
VKKVRQILEDFWGK ---------------------------------
VKKVRQILEDFWGK ---------------------------------
VKKVRQILEDFWGK ---------------------------------
VSQIKQILLKFWEDGNNERK ---------------------------
VSQIKQILFRFWEDGNNERK ------------------------
VENVIKIGNEFWEKNNF --------- ------------------
VEQVQTIITNFFGKAK -------------------------------
VKNVQNILETFWKT ---------------------------------
EEVVHQKINQLWNNK --------------------------------
VERVREGLGLFWQ --------- - -QRRPESRPA -----------
IGNVKNGMERFW ----------- TRQTRP -----------------
IENFYEKIVDNLPKDYK ------------------------------
IENFYEKIVDNLPKDYK ------------------------------
MEYFVERVRNIETHRAEQRIDATRSGRLLSIG ---------------
ISRVQAGLAKFWGTE ---- CLTMA- ------ -----------------
VANVRKGVTEFWQ ---------- QQT--T -----------------
VANVRKGVTEFWQ ----------- QQT- --T-----------------
VANVRKGVTEFWQ ----------- QQT--T -----------------



Ppentos ATCC25745 NrdI
Pedobacter BAL39 NrdI
P luminelau TTO1 NrdI
Pmirabilis29906 NrdI
P_mirabilisHI4320 NrdI

P_penneri35198 NrdI
PalcalifaciensDSM3Ol NrdI
P rettgerill3l NrdI
P stuartii25827 NrdI
PseudovibrioJE062 NrdI
RKsalmoninarum332O 0NrdI2
RKsalmoninarum332OS NrdI
RKetli Brasil5 NrdI
RKetliCFN_42 NrdI
RetliCIAT652 NrdI
R etliGR56 NrdI
RetliIE4771 NrdI
R leguminosaruml325 NrdI
LtrifoliiWSM2304_NrdI
R lemuminosarum 3841 NrdI
R erythropolis_PR4 NrdI
R erythropolis_SK121 NrdI
R jostiiRHAl NrdI
R_opacus B4 NrdI
RhodococcusRHAl_NrdI
RoseobacterGAI01_NrdI
RoseovariusHTCC26Ol NrdI

S arizonae62z4z23 NrdI
S eeCh SCB67 NrdI
S entGallinarum NrdI
S entericaHadar NrdI
S entKentuckyl91 NrdI
See_ P ATCC9150 NrdI
SParatyphiBSPB7 NrdI
SentericaParatyphiC NrdI

S entericaSARA23 NrdI
S_ente_eTyCT18 NrdI

4 S_enterica_e_Ty2 NrdI
O Sentericavirchow NrdI

S typhimurium LT2 NrdI
Stermitidis33386 NrdI
S_proteamaculans_568 NrdI
S boydii308394 NrdI
S boydii_Sb227 NrdI
S dysenteriae_Sd197 NrdI
SO flexneri_2a_2457T NrdI
S flexneri_2a_301 NrdI
Sflexneri 5 _8401 NrdI
Silicibacter TM104 0_NrdI
S_spiritivorum_ 33300 _NrdI
SaureusRF122_NrdI
Saureus BB NrdI
SOaureus aCOL NrdI
SaureusJH9 NrdI
Saa MRSA252 NrdI
Saureus a_MSSA476 NrdI
S aureus-a Mu50 NrdI
Saureus aureus MW2 NrdI
Saureus aN315_NrdI
Saureus NCTC8325 NrdI
Saureus Newman_NrdI
S_epid ATCC12228 NrdI
S_epidermidis_RP62A NrdI2
S_epidermidis_RP62A NrdIl
S haemolytJCSC1435_NrdI
S_saprophyticusl5305 NrdI
Sagalactiae_18RS21 NrdI2
S_agalactiae 18RS21 NrdIl

S_agalact_2603VR NrdI2
S_agalact_2603VR NrdIl
Sagalactiae 515 NrdIl
S agalactiae_515_NrdI2
Sagalactiae A909_NrdI2
Sagalactiae A909_NrdIl
S_agalactiaeCJB111_NrdIl

CKRIYDNMANRVKNNI --------------------------------
IRKFIENIEG --------------------------------------
VQRVROGIQRFWQHD --------- SLENM -------------------
VKRVKTGLSTFWSAS---------K-------------------------
VKRVKTGLSTFWSAS --------- K-------------------------
VNRVKTGLSAFWSSL --------- TDQCAMR -- ---

VQSVKQGLKTFWESA--------- HTKEPING ------------------
VQSVQQGLKTFWQRT --------- NN ----------------------
VQRVRDGLNAFWQQR--------- HN-----------------------
IVRVRQGLDLFWKQH ---- -------------------
IAAVNTGLEIFWQ ---------- RQLGLHTA ----------------
VDRFHQGLEQFWTRQ --------- LQAQ --------------------
VANVKHGMERFW------------TREQL---------------------
VAKVKHGLERFW------------TRQQL---------------------
VANVKHGMERFW------------TREQL---------------------
VANVKHGMERFW ----------- TREQL -------------------
VANVKHGMERFW------------IREQL---------------------
VANVKHGMERFW ----------- TREFSNAL ----------------
VANVKHGMERFW ----------- TREQL -------------------
VANVKHGMERFW ----------- TREHL -------------------
VDRVREGLGEFWNHLE ----- TEKEHGQWRQPSLTRSRQEA ------
VDRVREGLGEFWNHLE ----- TEKEHGQWRQPSLTRSRQEA - - - ----
VERVRAGLGEFWDHLD ----- DE-EHEKWRRPSQTPSTRGA---------
VVAVLDGLEQFM ------------ ESEQWHRQSQTQPRLGV ---------
VERVRAGLGEFWDHLD --- DE-EHEKWRRPSQTPSTRGA---------
IARIRDGLDKFWRTQ --- CLMTV --------------------------
IARVKDGLHAFWGTE ---- CLTA ---------------------------
IDHVRKGVNEFWR ----------- QQT--RSA ----------------
IDNVRKGVNEFWQ ----------- QLP--RSA----------------
IDNVRKGVNEFWQ-----------QLS--RSA------------------
IDNVRKGVNEFWQ-----------QLP--RSA------------------
IDNVRKGVNEFWQ-----------QLP--RSA------------------
IDNVRRGVNEFWQ ----------- QLP--RSA----------------
IDNVRKGVNEFWQ ----------- QLS--RSA ----------------
IDNVRKGVNEFWQ ---------- QLP--RSA- ---------------
IDNVRKGVNEFWQ ----------- QLS-- RSA -----------------
IDNVRKGVNEFWQ ----------- QSP - ---RSA ----------

IDNVRKGVNEFWQ ----------- QSP--RSA----------------
IDNVRKGVNEFWQ ---------- QLS--RSA-- -----------------
IDNVRKGVNEFWQ ----------- QLP -- RSA----------------
VETFIRKVEEIR ------------------------------------
VANVRQGVTAFWQ ----------- RQN ---------------------
IENVRKGVTEFWQ ----------- RQP--QNA ------------------
IENVRKGVTEFWQ ----------- RQP--QNA ----------------
IENVRKGVTEFWQ ----------- RQP--QNA ------------------
IENVRKGVTEFWQ ----------- RQP--QNA ------------------
IENVRKGVTEFWQ ----------- RP -- QNA ----------------
IENVRKGVTEFWQ -------- RP- -QNA ----------------
IARMRAGLARFWAAQEQQTCLTQA ------------------------
INQFIDIIKNHNYDSERGSKKLDIA ---------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY ------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY- --- -----------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
VIEFKNKVGNFNENHGREKVQSY -------------------------
IIEFKDKVGNFNENHGRKEIQSY -------------------------
VNKLVDYIKGRVM ------------------------------------
IIEFKDKVGNFNENHGRKEIQSY---------------------------
VIEFKNKVGHFNENYEREKVQSY------- --------------
ISEFKDKVGQFNEDYGREEIQSY---------------------------
VTRVKELLCQFTRK- -DK ---------------------- --------
VERIANIIVETLSNFKA---------------------------------
VERIANIIVETLSNFKA---------------------------------
VTRVKELLCQFTRK--DK --------------------------------
VERIANIIVETLSNFKA---------------------------------
VTRVKELLCQFTRK--DK--------------------------------
VTRVKELLCQFTRK--DK--------------------------------
VERIANIIVETLSNLKA---------------------------------
VERIANIIVETLSNFKA---------------------------------

S agalactiaeCJB111 NrdI2
SOagalactiae COHl NrdI

S_agalactiaeH36B NrdI2
S_agalactiaeH36B_NrdIl
Sagalactiae NEM316 NrdIl

SOagalactiae NEM316 NrdI2
S_dysg_equisimilis NrdI
Streptococcequi44 7_NrdIl

Streptococcequi4047_NrdI2
SzooepidemicusH7 _NrdIl
SzooepidemicusH7 _NrdI2
S zooepidemicusl0565 NrdI2
S_zooepidemicus10565_NrdIl
S_gordoniiChallisNrdI
S infantariusBAA102 NrdIl
S infantariusBAA102 NrdI2?

SOmutansUA159 NrdI
Spneumoniae70585 NrdI
S_pneumoniaeCGSP14 NrdI
S_pneumoniae D39 NrdI
SpneumoniaeJJA NrdI
S_pneumoniae _R6_NrdI
S_pneumoniaeSP3BS71_NrdI
S_pneumoniaeSP6BS73_NrdI
S_pneumoniae_TIGR4_NrdI
S_pyogenesMlGAS_NrdIl
S_pyogenes_ M1 GAS NrdI2

Spyogenes M4 9 591 NrdIl
SOyogenes _M49_591 NrdI2

S0yogenes 10270 NrdIl
S_pyogenes_10270 NrdI2
S_pyog MGAS10394 NrdI2
S_pyog MGAS10394 NrdIl
Spyogenes_MGAS10750_NrdI2
SpyogenesMGAS10750 NrdIl

S_pyogenes _MGAS2096 NrdIl
S_pyogenes MGAS315 NrdI2
S_pyogeneo MGAS315 NrdIl

S_pyogeneo MGAS5005_NrdIl
S_pyogenes MGAS5005 NrdI2
S_pyogenesMGAS6180_NrdIl
S_pyogenes MGAS6180 NrdI2
S_pyogenes MGAS8232 NrdIl
S_pyogenes MGAS8232 NrdI2
Spyogenes_MGAS9429 NrdI2
Spyogenes MGAS9429 NrdIl

S_pyogenesNZ13 1 NrdIl
S_pyogenesNZ13 1 NrdI
S_pyogenes SSI1 NrdIl
S_pyogenes SSI1 NrdI2
S_pyogenes Manfredo NrdI2

S_pyogenes Manf redo_NrdIl

SOsanguinis SK36 NrdI

SOsuis_05ZYH3 3_NrdI

S suis 891591 NrdI
SOthermopCNRZ1066 _NrdI
S_thermophilus_ LMD9 NrdI
SOthermoph 18311 NrdI
Tpaurometabola2 0162 NrdI

Vibrio LGP32_NrdI
Vibrio MED222_NrdI
W_glossinidiaGb NrdI
X_cellulosilytil5894 NrdI
Y bercovieri_43970_NrdI
Y enterocolitica8081 NrdI
Y frederiksen 33641 NrdI

Y intermedia_29909 NrdI
Y_mollaretii_43969 NrdI
Ypestis Angola NrdI
YpestismediaeK197302 NrdI
Y_pMediev 91001 NrdI

Ypestis_C092 NrdI
Y_pestisFV1 NrdI
Y_pestis Nepal516_NrdI
Y_pestis_PestoidesA_NrdI

VTRVKELLCQFTRK--DK -----------------------------
VTRVKELLCQFTRK--DK -----------------------------
VTRVKELLCQFTRK--DK ---------------------------
VERIANIIVETLSNLKA---------------------------------
VERIANIIVETLSNFKA ------------------------------
VTRVKELLCQFTRK--DK -------------------------------
IERLAKII ------------------------------------------
IERLAQVIVARLTDDQQS -----------------------------
VIKVQAILAGDEAL ---------------------------------
IERLAQVIVARLTANQQS -----------------------------
VIKVQAILAGDEAL ---------------------------------
IERLAQVIVTRLTADQQS ----------------------------
VLKVQAILAGDWLSY-----------------------------------
ISRVGDKIAELYRL------------------------------------
IERLAEVIVDHFQNFTPQSK------------------------------
IKRIAHRLNMRMIEWRYSSELVSYRRLPNMTATTILHALRHRHNTKSGTW
VERIGDKILALYAAN-----------------------------------
IKHVAAIIADLYELEK-EN --------------------- -------
IKHVAAIIADLYELEK-EN -------------------------------
IKHVAAIIADLYELEK-EN ------------------------- ----
IKHVAAIIADLYELEK-EN ---- ---------------------
IKHVAAIIADLYELEK-EN --------------------- -------
IKHVAAIIADLYELEK-EN-------------------------------
IKHVAAIIADLYELEK-EN ----------------------------
IKHVAAIIADLYELEK-EN ---------------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH - ---
ISRLAQVIMEASSRHSSNDTQTLPNS ----------------- --
VKKVQAIFVRLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH ----
ISRLAQVIMEASSRHSSNDAQTLPNS ---------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH--------
ISRLAQVIMEASSRHSSNDTQTLPNS------------------------
ISRLAQLIMEASSRHSSNDTQTLPNS------------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
ISRLAQVIMEASSRHSSNDTQTLPNS ---------------------
VKKVQAIFARLKHHTHDKQ ------------ NKPTT-----------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
ISRLAQVIMEASSRHSSNDTQTLPNS ---------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
ISRLAQVIMEASSRHSSNDTQTLPNS ---------------------
VKKVQAIFARLKHHTHDKQKQINNLITERTHPCHKPMRHTSH --------
ISRLAQVIMEASSRHSSNDTQTLPNS ---------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
IERLAQVIVARLTADQQS -----------------------------
ISRLAQVIMEASSRHSSNS -------------------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
ISRLAQVIMEASSRHSSNDAQTLPNS ------------------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH- -------
ISRLAQVIMF.ASSRHSSNDTQTLPNS -----------------------
ISRLAQLIMEASSRHSSNDTQTLPNS ----------------
VKKVQAIFARLKHHTHDKQKQTNNLITERTHPCHKPMRHTSH --------
IKKVAGIIEELYHIEKNENQ ---------- ----------
IERIGRKIMELM ---------------------------- -------
IERIGRKIMELM --------------------------------- -

IERLAPIILE.AQKNFIQL -----------------------------
IERLAPIILEAQKNFIQL ----------------------------
IERLAPIILEAQKNFIQL ---- ---------------------
VDRVRSGLTDFF ----------- AAPEHRTTDRKETARS ---------
IDIVTNGLEQFWKHHG -- ----------------------
IDIVTNGLEQFWKHHG -------------------------------
VINVKNGINKFWKKLNLEKKNQNA -------------------------
VQRVRDGWGRFWQ----------- RQSLKSA- --- --------
VANVRKGVTEFWQ ----------- R --- ---
VVNVRKGVTEFWQ---------- -RQN----- ---- ---
VANVRKGVTEFWQ----------- RQQ -------- ---
VANVRMGVTEFWQ----------- RQN ------- -----
VANVRKGVTEFWQ------ RQN-----------------------
VANVRKGVTEFWQ------- RQN-----------------------
VANVRKGVTEFWQ --------- RN- -------- -----
VANVRKGVTEFWQ------ RQN-----------------------
VANVRKGVTEFWQ------ RQN-----------------------
VANVRKGVTEFWQ------ RQN-----------------------
VANVRKGVTEFWQ------ RQN-----------------------
VANVRKGVTEFWQ------ RQN-----------------------



Y_pestis_PestoidesF_NrdI
Ypseudotuber 31758_NrdI
Y_;seudot 32953
Aster yellowswitches broom_ph
Onion yellows phytoplasma
Candidatus_phytoplasma austral
Candidatus_phytoplasma mali

SOinfantariusBAA102 NrdI2?

Aster-yellows witches broomph
Onion yellowsphytoplasma
Candidatusphytoplasmaaustral
Candidatusphytoplasma mal i

S infantariusBAA102_NrdI2?
Onion yellowsphytoplasma
Candidatus_phytoplasma_austral
Candidatusphytoplasmamali

Onion-yellows phytoplasma

VANVRKGVTEFWQ------- RQN-----------------------
VANVRKGVTEFWQ-----------RQN-----------------------
VANVRKGVTEFWQ------ RQN-----------------------
RVFLKKWLACYCNNQKLPSYQFKTQPQMP------TSKKT---------V
RAFLKKWLACYCNDQKLPSYQSQTQAQLQT- - - -LTPKKT --------- V
RLFLKKWLLSYKK-EKNSSFSFKKPLQNDSNFSDVTVKNTNEPTPPTQKI
RLFLKKWLLSYKK-EKNSSFSFKKPLQNDSNFSDVTVKNTNEPTPPTQKI

GKMTILSGELKFYELKEDGQVIAEHVFNCENQPPFVEPQAWHKINPLSED
LPPWIILNNQIIDEQGKIKDLNKDKEALQ ------------------
LPPWITLTNQIIDEQGNIKDLNKDKEALQSFLQEGVLPKLKRFATLQEKL
LPPWILLNNQIIDENGNI--------------------------------
LPPWILLNNQIIDENGNI -----------------------------

160
134
134
151
75
162
162

238
180
125
180
180

LEFYIEFYCKKEDLLAKQSEYSPLGGARI ------------------- 267
TFLQENEYYESAFLQKYTHSQIKEIYQIAYQKNFTFPTFMGAFKFYHDYA 175
--------------------------------------------------

LKTRD 180



448



Appendix 2

Clustal W2 alignment of 114 representative NrdF sequences. Sequences were drawn from
the RNR database (rnrdb.molbio.su.se) (Lundin et al., BMC Genomics 2009, 10, 589-596).
Organisms in the Bacillales group are in blue, those in the E. coli group are in black, and those in
the Lactobacillales group are in green (see section 5.4.3 for a brief description of the
phylogenetic groups, and Johansson et al., FEBS J. 2011, 277, 4265-4277 for a phylogenetic
tree).
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E.coli_nrdF
A laidlawiiPG8A_NrdF
A_odontolyticus17982_NrdF
A_tumefaciensC58_NrdF
A_aurescensTC1_NrdF
A_chlorophenolicusA6_NrdFl
ArthrobactspFB24_NrdF
A_phytoplasma AYWBNrdF

B_amyloliquefFZB42_NrdF
B anthracis AmesNrdF
B cereusB4264_NrdF
B_clausii KSMK16 NrdF
B lichenATCC14580_NrdF

B_pumilus706lNrdFl

BacillusspB14905_NrdF
B subtilis s5168_NrdFl
B_thuringiensAizawaiNrdF
B_weihenstephKBAB4_NrdF
B_bacilliform_KC583_NrdF
B_henselae_Houston1_NrdF
B_quintana_ToulouseNrdF
B_tribocoruml05476_NrdF
B_longum_DJO10A NrdF
B_hermsiiNrdF
B-recurrentisAl NrdF

B turicataeNrdF

B_linens_BL2_NrdFl

B-melitensis_16MNrdF
B_ovis_25840_NrdF
B_suis_1330_NrdF
P-australiense NrdF

Phytoplasmamali_NrdF

CarnobacteriumAT7 NrdF
csalexigens_DsM3043_NrdF

C_koseriBAA895_NrdF
C_bartlettiiDSM16795 NrdF

C difficile_630_NrdF
C_ammoniagenesNrdF
C_glutATCC13032_NrdF
C_jeikeium_K411_NrdFl
D_geothermal_1130_NrdF
D radiodurans_RlNrdF
E_cancerogenus35316_NrdF
E_sakazakii_BAA894_NrdF
Enterobactersp_638_NrdF
EfaecalisV583_NrdF
E faeciumDONrdF
E_car_at_SCRI1043_NrdF
E-tasmaniensisEtl/99_NrdF
E_albertiiTW07627_NrdF
K_radiot_SRS30216_NrdF
K_pneumoniae342_NrdF
K_rhizophilaDC2201_NrdF
L_brevisATCC_367 NrdF
L caseiATCC334_NrdF
L-fermentum3956_NrdFl
L_plantarumWCFS1_NrdF
L-reuteri_10023_NrdF
L-rhamnosusHN001_NrdF
L_sakei_23KNrdF
L_salivariusUCC118_NrdF
L_lactis_pGdh442_NrdF

L_citreumKM20_NrdF

L_meseBATCC8293_NrdF
L_sphaericusC341_NrdF
M_luteusNCTC2665_NrdF
M_abscessusNrdF
Mycob-avium_104_NrdF

------------------------- MKLSR--------------------
--------------------------------------------------
MPAEAVSAGHGLDVTTVTGIFTHNLKGIEDGQGRAVVVEGEGLVNVGEGG
-------------------- MNIAVKPASR--------------------

-------------------- MTEKVKLLTH--------------------
-------------------- MTSALKLINR--------------------
-------------------- MTEKVKLLSH--------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
---------------------- MTQITTKNSV ------------------

---------------------- MTKITTKNPV ------------------

---------------------- MTKITTKNPV ------------------

---------------------- MTKITTKNPI ------------------

-------------- MAPISIPRKPLKLIDR --------------------
--------------------------------------------------

5

50
10
10
10
10

10
10
10

10
16

--------------------------------------------------
-------------------------- MASH------------------ 4
-------------- MTEESFMNMQHKTATKGRPAS------------- 21
-------------------- MNMQYKTATKGRPAS------------- 15
-------------------- MNMQYKTATKGRPAS------------- 15
--------------------------------------------------
--------------------------------------------------
-------------------------- MTTN-------------------- 4
------------------ MTATATPRHLTR-------------------- 12
------------------------- MKLSR------------------ 5
--------------------------------------------------
--------------------------------------------------
----------- MSNE-----YDEYIANHTDP----------------- 15
----------- MAADSDLSVHDAYLKEHVAP----------------- 20
----------- MSAHAP---HTPVHRVDGDP----------------- 17
--------------------------------------------------
---------- MRGVNIQPDRVFGSPQPINNEVP--------------- 23
------------------------- MKLSR------------------ 5
------------------------ MIRLSR------------------ 6
------------------------- MKLSR------------------ 5
-------------------------- MATY------------------ 4
------------------------- MSETY-------------------- 5
------------------------ MTALAR------------------ 6
------------------------- MKLNK-------------------- 5
------------------------- MKLSR------------------ 5
--------------------- MEKLKLVDR------------------ 9
------------------------ MTHLTR------------------ 6
------------------- MTTEQVELLRHP----------------- 12
------------------------ MARIEN------------------ 6
-------------------------- MAKQ------------------ 4
------------------------- MAIKN-------------------- 5
-------------- MATDLAYYQKLLSNGN-------------------- 16
------------------- MKLEEFKPVNQ--- --------------- 11
-------------------------- MVKQ-------------------- 4
-------------------------- MTEN-------------------- 4
--------------------- MTKS-------------------- 4
-------------------------- MLN --------------------- 3
---------------------- MKHIKDNS -------------------- 8
---------------------- MAHINNGS -------------------- 8
--------------------------------------------------
----------------- MCPAVTETQQSHL------------------ 13
-------------------- MSEKLKLVSR------------------ 10
-------------------- MSENMKLIDR------------------ 10

M_bovis_b_AF2122_97_NrdFl
M_gilvum_PYRGCKNrdF
M_lepraeTNNrdF
M_marinumM_NrdF
M_smegmatisMC2_155_NrdF
Mtuberc_CDC1551_NrdFl
MulceransAgy99_NrdF
M_vanbaaleniiPYR_1_NrdF
N_farcinIFM10152_NrdF
O_anthropi ATCC49188_NrdF
O oeni BAAll63_NrdF
Onion yellowsphytoNrdF
PaenibacillusJDR2_NrdF
P_denitrif_PD1222_NrdF
P_pentos ATCC25745 NrdF
PedobacterBAL39_NrdF
P_luminelau_TT01_NrdF
P_mirabilisHI4320_NrdF
P_stuartii25827_NrdF
PseudovibrioJE062_NrdF
Retli_CFN_42_NrdF
R_leguminosaruml325_NrdF
S typhimuriumLT2_NrdF
S_proteamaculans_568_NrdF
S_boydii3o8394_NrdF
S_dysenteriae_1012_NrdF
S_flexneri_2a_2457TNrdF

SilicibacterTM1040_NrdF
S-aureus BBNrdF
S_epidermidis_RP62ANrdFl
S_haemolytJCSC143SNrdF
S_saprophyticusl5305_NrdF

S_gordoniiChallis_NrdF
SmutanS_UA159 NrdF

S_pneumoniaeSP14BS69_NrdF
S_pyogenesMlGAS_NrdF2
S sanguinisSK36_NrdF
SBsuis_891591_NrdF
S_thermophilusLMD9 NrdF
Vibrio_MED222_NrdF
W_glossinidiaGbNrdF
Y_bercovieri_43970_NrdF
Y_frederiksen_33641_NrdF
Y_mollaretii_43969_NrdF
Y_p_Mediev_91001_NrdF
Y_pseudotuber_31758_NrdF

-------------------- MTGNAKLIDR--------------------
------------------------ MKLIDR--------------------
------------------- MLTGKMKLIDR ------------------
-------------------- MTGNAKLIDR--------------------
-------------------- MSDGIKLIDR--------------------
-------------------- MTGNAKLIDR--------------------
-------------------- MTGNAKLIDR--------------------
-------------------- MSDGMKLIDR--------------------
------------------------ MKLIDR--------------------
-------------------- MNIQVKTKNP-KPAA---------------

-MADKKNQFTH--------------------
--------------------------------------------------
--- ----------------------------------------------
--------- MKG-------VLRMKDH-AMRTP------------------
--------------------------- MEN--------------------
--------------------------------------------------
-------------------------- MISNP-------------------
---------------------- MSASYLSR--------------------
---------------------- MTTHISSAP-------------------
---------------------- MTLHSAIHPV------------------
-------------------- MNIALKPISR--------------------
-------------------- MNMQLKPASR--------------------
------------------------- MKLSR--------------------
--------------------- MNSIKPAOL--------------------
------------------------- MKLSR--------------------
------------------------- MKLSR--------------------
------------------------- MKLSR--------------------
--------- MKGPCPQAAEIECMKDMTQARAV------------------
--------------------------------------------------
--------------------------------------------------
-------- - ------------------ - --- ---------
------------------------------------------------ -
-------------------------- METY-----------------
-------------------------- MTTY-------------------

-------------------------- METY --------------------
-------------------------- MTTY ------------- -----
-------------------------- MQTY--------------- -
------------------------- MMETY-------------- -
-------------------------- METY ------------ -
--------------------------- MESGP-- - ------

-------------------- MKNKLEKSNN--------------------
--------------------- MNAVKPITR--------------------
--------------------- MNTVKLITP--------------------
--------------------- MNAVKPITR--------------------
--------------------- MNVVKPITR--------------------
--------------------- MNVVKPITR--------------------



E.colinrdF
A_laidlawiiPG8ANrdF
A_odontolyticus17982_NrdF
A_tumefaciensC58_NrdF
A_aurescensTC1_NrdF
A_chlorophenolicusA6_NrdFl
Arthrobactsp_FB24_NrdF
AyphytoplasmaAYWBNrdF
B_amyloliquefFZB42_NrdF
B anthracisAmesNrdF
B_cereusB4264_NrdF
B clausiiKSMK16_NrdF
B_lichenATCC14580_NrdF
B_pumilus7o6lNrdFl
Bacillussp B14905 NrdF
B subtilis s 168 NrdFl
B_thuringiensAizawaiNrdF
B weihensteph_KBAB4_NrdF
B_bacilliformKC583_NrdF
B_henselaeHouston1_NrdF
B_quintanaToulouseNrdF
B_tribocorumlO5476_NrdF
B_longum_DJO10ANrdF
B hermsiiNrdF
B recurrentisAlNrdF

B_turicataeNrdF

B_linens_5L2_NrdF1
B_melitensis_16MNrdF
B_ovis_25840 NrdF
B_suis_1330_NrdF
P_australienseNrdF
Phytoplasma mali_NrdF
CarnobacteriumAT7 NrdF

.E Csalexigens_DSM3043_NrdF
/ C_koseriBAA895_NrdF

C bartlettiiDSM16795_NrdF
Cdifficile_630_NrdF
C_ammoniagenesNrdF
C_glutATCC13032_NrdF
C_jeikeiumK411_NrdFl
D_geothermal 1130_NrdF
DradioduransRINrdF
E_cancerogenus35316_NrdF
E_sakazakiiBAA894_NrdF
Enterobacter-sp_638_NrdF
E faecalisV583_NrdF
E_faeciumDONrdF
EScar atSCRI1043_NrdF
E_tasmaniensisEtl/99_NrdF
E_albertiiTWO7627_NrdF
K_radiot_SRS30216_NrdF
K_pneumoniae342_NrdF
K-rhizophilaDC2201_NrdF
L_brevisATCC_367_NrdF
L_casei_ATCC334_NrdF
L fermentum3956_NrdF1

L-plantarum_WCFS1_NrdF
L_reuteri_10023_NrdF
L rhamnosusHN0OINrdF
L_sakei_23KNrdF
L salivariusUCC118_NrdF

L_lactispGdh442BNrdF
L_citreumKM20 NrdF
L_ mese m_ATCC8293_NrdF
L_sphaericusC341 NrdF
M_luteusNCTC2665_NrdF
M_abscessusNrdF
Mycob-avium_104NrdF

--------------------------------------------------
----------------------------------------- MDKKATKQS 9
RRHGEHDTrAPAFTEVTSSTKHGSPASSRASHPLSWTLYARPPRPRPSDTA 100
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----------------------------------------- MKTKNPQP- 8
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----------------------------------------- MEKK ----- 4
----------------------------------------- MKNK ----- 4
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
-------------------------------------- -- -- - -
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
------------------------ - - - - - --------------
------------------- - -- - ----------------------
------------------------- -- -- - --------------
------ -- ------------- - --------------------
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------------------------- - - -- ----------------
--------------------------------------------------
------------------------------ - - --------------
-------------------------- - - - -----------------
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------------------------------------- ------------
------------------------------- -- - ------------
------------------------------------- ------------
--------------------------------------------------
--------------------------------------------------

M_bovis_b_AF2122_97_NrdF1
Mgilvum_PYRGCKNrdF
M-lepraeTNNrdF
M_marinumM_NrdF
M_smegmatisMC2_155_NrdF
M_tubercCDC1551_NrdFl
M_ulceransAgy99_NrdF
M_vanbaalenii PYR 1 NrdF
N_farcinIFM10152_NrdF
O_anthropi ATCC49188_NrdF
O_oeniBAA1163_NrdF
Onionyellows_phytoNrdF
PaenibacillusJDR2_NrdF
P_denitrif_PD1222_NrdF
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PedobacterBAL39 NrdF
P_luminelauTT01_NrdF
P_mirabilisHI4320_NrdF
P_stuartii25827_NrdF
PseudovibrioJE062_NrdF
RetliCFN_42_NrdF
Rleguminosaruml325_NrdF
S_typhimuriumLT2_NrdF
S_proteamaculans_568_NrdF
S-boydii308394_NrdF
S_dysenteriae_1012_NrdF
S flexneri_2a_2457TNrdF
SilicibacterTM1040_NrdF
S-aureusBB NrdF
S_epidermidis_RP62ANrdF1
S_haemolyt_JCSC1435 NrdF

S_saprophyticusl5305 NrdF
S_gordoniiChallis NrdF
S mutansUA159 NrdF
S_pneumoniaeSP14BS69 NrdF
S_pyogenes_MlGAS NrdF2
S_sanguinis SK36 NrdF
Ssuis_891591_NrdF
S_thermophilus LMD9 _NrdF
VibrioMED222_NrdF
W_glossinidiaGbNrdF
Y_bercovieri_43970_NrdF
Y_frederiksen_33641_NrdF
Y_mollaretii_43969_NrdF
Y_p_Mediev_91001_NrdF
Y_pseudotuber_31758_NrdF

--------------------------------------------------
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--------------------------------------------------
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--------------------------------------------------
--------------------------------------------------
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--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
----------------------------------------- MKTKNSQP- 8
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
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--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
--------------------------------------------------
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E.coli nrdF

A laidlawiiPG8A NrdF

A7odontolyticusl7982-NrdF

A-tumefaciens-CS8-NrdF

A-aurescens-TC1-NrdF

A-chlorophenolicusA6-NrdFl

ArthrobactspFB24-NrdF

Aphytoplasma-AYWB-NrdF

BamyloliquefFZB42 -NrdF

B-anthracis-AmeS-NrdF

B cereusB4264 NrdF

B clausii - KSMK16-NrdF

B-lichen-ATCC14580-NrdF

B_pUMilus706l-NrdFl

BacillusspBl4905 -NrdF

B - subtilis-s-168 - NrdFl

B-thuringienSAizawai -NrdF

B -weihenstephKBAB4 - NrdF

B bacilliform KC583 NrdF
B-henselae-Houstonl-NrdF

Bquintana-Toulouse-NrdF

B-tribocorumIO5476-NrdF

BlongurRDJ010A-NrdF

B hermsii NrdF

B-recurreiitisAl -NrdF

B-turicatae-NrdF

B-linens-BL2-NrdFl

B-melitensis -16M-NrdF

B-ovis-25840-NrdF
B-suis - 1330 - NrdF

P australiense NrdF

Phytoplasma I mali - NrdF
CarnobacteriumAT7 NrdF
Csalexigens-DSM3043 -NrdF

C koseriBAA895 NrdF

C bartlettiiDSM16795 NrdF

C difficile 630 NrdF

C-ammoniagenes-NrdF

Cglut-ATCC13032-NrdF

Cjeikeium - K411 -NrdFl

Dgeothermal-1130-NrdF

D -radiodurans-RI - NrdF

E-cancerogenus35316-NrdF

E -sakazakii-BAA894-NrdF

Enterobacter-Sp_638-NrdF

E faecalis V583 NrdF

E-faecium-DO-Nr7F

E - car - at I SCRI1043-NrdF

E-tasmaniensisEtl/99 -NrdF
E-albertiiTWO7627-NrdF

K-radiot-SRS30216-NrdF

Kpneumoniae342 -NrdF

K -rhizophilaDC2201-NrdF

L -brevis - ATCC-367-NrdF

L -caseiATCC334 - NrdF

L fermentum3956 NrdFl
L-Plantarum-WCFS1 -NrdF

L-reuteri-10023-NrdF

L-rhamnosusHNOOI-NrdF

L sakei 23K NrdF

L-salivariusUCC118-NrdF

L -lactispGdh442 - NrdF

L-citreumKM20-NrdF

L - mese - m-ATCC8293 - NrdF

L-sphaericusC341_NrdF

M luteusNCTC2665 NrdF
m-abscessus-NrdF

Mycob-avium-104-NrdF

WQ-TLTVVEQQLTMRVFTGLTLLDTLQNVIGAPSLMPDALT--PHEEAVL

WS-VLPENIQDAYAKNLLVLTFLDTHQGDIGMPVVSRSLDDHFHQRKAVL

WK-TLTKDEQLMTNRVFTGLTLLDTLQGTVGAVSLIPDART--PHEEAVY

WG-TLKPEEQELTIRVFTGLTLLIYrIQNGVGAVRLMPDSAT--PHEEAVL

WH-TLTPDEQQLTMRVFTGLTLLDTIQGTVGAVSLIPDAIT--PHEEAVY

WA-TLTPEEQLLTMRVFTGLTLLDTIQGTVGAVSLIPDAIT--PHEEAVL

WA-TLTPDEQQLTMRVFTGLTLLrYrIQGTVGAVSLIPDAIT- -PHEEAVY
WS-ELTIEEKTAYSRNLLVLTFLDTYQGDLGMPIIARSLEEHEHQKKATL

WK-YLGKNEQDTYMKVLAGLTLLDTEQGNTGMPIVAEHVEG--HQRKAVL

WV-QLSKEEQIAYKRVLGGLTLLDTKQGGEGMPLVLVHLEN--LQAKSVL

WV-QLSKEEQIAYKRVLGGLTLLDTKQGGEGMPLVLVHLEN--LQAKSVL

WK-YLTPAEKDTYMKVLAGLTLLDTEQGNTGMPLVAEHVQG--HQRKAVL

WK-YLGKNEQDTYMKVLAGLTLLDTEQGNTGMPLVAEHVEG--HQRKAVL

WK-YLGEKERDTYMKVLAGLTLLDTEQGNTGMPIVAEHVEG--HQRKAVL

WK-SF--EHQDTYKKVFAGLTLLDTVQTNIGMNRVAAYTDD--LQEKAVL

WK-YLGKNEQDTYMKVLAGLTLLDTEQGNTGMPIVAEHVDG--HQRKAVL

WV-QLSKEEQIAYKRVLGGLTLLDTKQGGEGMPLVLVHLEN--LQAKSVL

WA-QLSKEEQIAYKRVLGGLTLLDTKQGGEGMPLVLVHLEN--LQAKSVL

WE-SLTEEEKKLTIRVFTGLTLLDTVQNTVGAVSLMADAVT--EHEEAVL

WA-SLTEEERKLTIRVFTGLTLLDTIQNTVGA-TSLMADAIT--EHEEAVL

WA-SLTEEERKLTVRVFTGLTLLIYrIQNTVGAISLMADAIT--EHE-AVL

WS-SLTEEERKLTIRVFTGLTLLIYrIQNTVGAISLLADAIT--EHEEAVL

WQ-KMTEDEHTLTMRVFTGLTLLDTIQGTVGAVSLIPDALT--PHEF.AVY

WN-TLDGEERDVYEKVLGGLTLLIYrEQGSVGMPRIALAIDN- -LDYKPVL
WN-TLSVDERDVYEKVLGGLTLLDTEQGSVGMPRIALAIDN--LDYKPIL

WN-SLDIDERDVYEKVLGGLTLLDTEQGSVGMPRIALAIDN--LLAYKPVL

WA-TLTEEEKTLTMRVFTGLTLLDTIQGTVGAISLIPI)AVT--PHEEAVM

WE-TLKPQEKQLTTRVFTGLTLLDTIQNAVGAVKLMDDALT--PHEEAVL

WE-TLKPQEKQLTIRVFTGLTLLDTIQNAVGAVKLMDDALT--PHEEAVL

WE-TLKPQEKQLTIRVFTGLTLLDTIQNAVGAVKLMDDALT--PHEEAVL

WN-HLSDEEKTTYTRNLLVLTFLDTYQGDLGIPVIANSMDENKHQKKATL

WK-DLSKFEKNVYSKNLLILTFLDTYQGDSGMFIISSSFKKEEHQKKATL

WA-RLPK-EKDMVGKVFGGLTLLDTLQSQDGVQALKPFIRT--QHEEAVY

WN-TLTEQEQTLTIRVFTGLTLLIYrIQGTIGAPTLIEDAVT- -PHEEAVF
WQ-TLSAAEQQLTIRVFTGLTLLDTIQNIAGAPALMQDALT--PHEEAVL

WS-ELSPEERNLYKKVLGGLTLLIYrKQANNGIPSMMSLTDN--LQRKAVL

WN-ELSNKEKELYKKVLGGLTLLDTKQGNNGIPSMMSLTEN--LQRKAVL

WN-KMTPQEQLATMRVFTGLTLLIYrIQGTVGAISLLPDAET--MHEEAVY

WG-TLNEVEKAATMRVFTGLTLLIYrIQGTVGAISLLPDADS- -LHEEAVL
WS-TLNDMEKQATMRVFTGLTMLIYTIQGTVGAVKLIEDAAT--PHEEAVF

WR-ALSPAERTCYTRVSAGLNAMDTLQGEVGMPLLAAGEDD--HQRKATL

WK-TLSDEERWTYIHASAGLNALDTLQGEVGMPRLRDLVDG--HIRKATL

WQ-TLSHAEQQLTIRVFTGLTLLDTIQNTVGAPALMSDALT--PHEEAVM

WQ-TLTPGEQQLTIRVFTGLTLLDTIQNAVGAPALMADALT--PHEEAVL

WQ-TLSHAEQQLTIRVFTGLTLLDTIQNSVGAPALMGDSLT--PHERAVM

WR-TLSDLEKTTVGYVFGGLTLLDTVQSESGMDQLRNDVRT--PHEEAVL

WR-TLSQLEKDTVGHVFGGLTLLDTVQSESGMDQLRKDVRT--PHEEAVL

WS-TLNTRERQLTIRVFTGLTLLIYrIQNTLGAPTLMPDAVT--PHEMAVL

WN-SLNAEEQQLTIRVFTGLTLLDTIQNTLGAPAU4ADALT--PHEEAVM

WQ-TLSAAEQQLTMRVFTGLTLLDTLQNVIGAPSLMPDALT--PHEEAVL

WQ-NLGAQERTLTLRVFTGLTLL]YrIQGTVGAVSLIPDALT--PHEEAVY

WQ-TLSAAEQQLTIRVI-rGLTLL]YrIQNTVGAPALKADSLT--PHEEAVL

WK-TLTAEEQDLTMKVFTGLTLLDTIQGTVGAVSLIPDAKT--LHEEAVY

WR-TLD'rDHQWVVGHVFGGLTLLDTLQSQDGMAALRRDIRT--PHETAVL

WR-SLNHDEQWVVGHVFGGLTLLDTLQSQDGMASLRQNIRT--QQETAVL

WR-ELDDDHKWTVGHVFGGLTLLDTLQSEAGLTALKQDVKT--PHETAVL

WR-ELDDDHRWVVGHVFGGLTLLDTLQSQDGLQALRRNVLT--SHETAVL

WR-ELDDDHQWTVGHVFGGLTLLDTVQSEAGLTALKEDVKT--PHETAVL

WR-SLSPDEQWVVGHVFGGLTLLDTLQSQDGMASLRQNIRT--QQETAVL

WR-SLPDNEKWIVGHVFGGLTLLDTLQSQDGMASLKANIRT--PHEEAVL

WR-EFNEDDKDVVGKVFGGLTLLDTLQSQDGMSSLKKDVRT--QHEEAVM

WR-KLSDMEKEVVKKAVGGLALLDTLQSEEGLYALKKNART--LKERAVL

WRGNMSDQERQTLNLVFGGLTTLDTLQSQDGMASLKLDVVN--QKEEAVL

WRGNMSEQERQTMNLVFGGLTTLDTLQSQDGMAQLKLDATN--QKEEAVL

WK-SF--EHQDTYKKVFAGLTLLDTVQTNIGMNRVAAYTDD--LQEKAVL

WS-HLTDEERLLSMRVFTGLTLLDTIOGTVGAVSLIPDAMT--PHEEAVL

WN-TLTDHEKQLTMRVFTGLTLLDTIOGTVGAVSLIPDAIT--PHEEAVY

WA-TLTAHEKQMTMRVFTGLTLL]YrIQGTVGAVSLIPDALT--PHEEAVY

M-bovis - b - AF2122-97-NrdFl

b __gilvuTrLPYR-GCI --NrdF
M-lepraeTN-NrdF

M-marinumM-NrdF

M-Smegmatis-MC2_155-NrdF

M-tubercCDC1551-NrdFl

M-ulceransAgy99-NrdF

M-vanbaalenii - PYR - 1 - NrdF

N-farcin - IFM10152 I NrdF

0--thropi-ATCC49188-NrdF
O-oeniBAA1163-NrdF

Onionyellowsphyto -NrdF

PaenibacillusJDR2 NrdF

P-denitrif-PD1222-NrdF

Ppentos - ATCC25745 - NrdF

PedobacterBAL39-NrdF

P-lumine -lau -TT01-NrdF

p mirabilisH14320 NrdF

P -stuartii25827-NrdF

PseudovibrioJE062 NrdF

R-etli-CFN-42-NrdF

R -leguminosaruml325-NrdF

S-typhimurium -LT2 -NrdF

Sproteamaculans - 568 - NrdF

S - boydii308394-NrdF

Sdysenteriae_1012-NrdF

S-flexneri - 2a -2457T-NrdF

Silicibacter _TM1040-NrdF

S-aureus-BB-NrdF

SepidermidisRP62A NrdFl

S -haemolytJCSC1435_NrdF

S-saprophyticusl5305_NrdF

SgordoniiChallisNrdF

S -mutans-UA159-NrdF

SpneumoniaeSP14BS69-NrdF

Spyogenes -MlGASNrdF2

Ssanquinis -SK36_NrdF

S - suis -891591NrdF

S-thermophilusLMD9_NrdF

Vibrio-MED222-NrdF

Wglossinidia - Gb -NrdF

Y-bercovieri - 43970 1 NrdF

Y-frederiksen -33641 -NrdF

Y-mollaretii-43969-NrdF

YpMediev 91001 -NrdF

Ypseudotui;er-31758-NrdF

WG-TLTAGEKQLTMRVFTGLTMLDTIQGTVGAVSLIPDALT--PHEEAVL

WN-TLTAHEKQLTMRVFTGLTLLIYrIQGIVGAVSLIPDALT--PHEEAVY

WG-TLTASEKQLTMRVFTGLTLLDTIQGTVGAVSLIPDALT--PHEEAVY

WG-TLTAGEKQLTMRVFTGLTMLDTIQGTVGAVSLIPDALT--PHEEAVL

WH-TLTDNEKQLTMRVFTGLTLLDTIQGTVGAVSLIPDAVT--PHEEAVL

WG-TLTAGEKOLTMRVFTGLTMLDTIQGTVGAVSLIPDALT--PHEEAVL

WG-TLTAGEKQLTMRVFTGLTMLDTIQGTVGAVSLIPDALT--PHEEAVL

WN-TLTAHEKQLTMRVFTGLTLLDTIQGTVGAVSLIPDALT--PHEEAVY

WN-TLTPHEQQLTMRVFTGLTLLDTIOGTVGAVSLIPDALT--PHEEAVL

WE-TLKPQEKQLTIRVFTGLTLLDTIQNAVGAVKLMDDAAT--PHEEAVL

WR-SLGLVEHKLYDHVFGGLTMLDTLQSQDGMASLLDAAVT--PHERAVL

WS-ELTLEEKTAYSRNLLVLTFLDTYQGDLGMPVIARSLEEHEHQKKATL

WM-EMSDTERTVYKNVLGGLTLLDTIQGGVGMPKILEHVDG--LQRKAVL

WA-TLRPEERELTIRVFTGLTLLDTIQNTVGAPAMMPDALT--PHEEAVL

WR-ELDEDHKWVVGHVFGGLTLLDTLQSQDGMAALRKDIRT--PHETAVL

WK-SLSPEIQQVYKRALGGLTLLDTLQSHTGMPKLLDHIDG--LQNKAVL

WN-TLTTEEKKLTIRVFTGLTLLDTIQNTVGAPALMEDALT--PHEEAVM

WN-TLTQAEKQLTIRVFTGLTLLDTIQNTVGAPTLMPDAQT--PHERAVL

WN-TLTAAEQQLTIRVFTGLTLLDTIQNTVGAPSLMSDALT--PHEEAVL

WA-SLTPEEQQLTIRVFTGLTLLDTIQNTVGAPALMADAVT--PHEEAVL

WA-TLTAAEQQLTIRVFTGLTLLDTIQNGVGAVGLMEDAVT--PHEEAVL

WA-TLTAAEQQLTIRVFTGLTLLDTIQNGVGSIRLMEDAAT--SHEEAVL

WQ-TLSAAEQQLTIRVFTGLTLLDTIQNIAGAPSLMADAIT--PHEEAVL

WA-TLTPKEQQLTIRVFTGLTLLDTIQNTVGAPALIADAIT--PHEEAVY

WQ-TLTVVEQQLTMRVFTGLTLLIYrLQNVIGAPSLMPDALT--PHEEAVL

WQ-TLTVVEQQLTMRVFTGLTLLDTLQNVIGAPSLMPDALT--PHEEAVL

WQ-TLTVVEQQLTMRVFTGLTLLDTLQNVIGAPSLMPDALT--PHEEAVL

WS-QLTPDEQTLTIRVFTGLTLLDTIQNAVGAPTLMQDAIT--PHEEAVL

WK-TLSEAEQDTFKKALAGLTGLDTHQADDGMPLVMLHTTD--LRKKAVY
WK-TLTDSEKNTFKKALAGLTGLDTHQADDGMPLIMLH = --LRKKAVY
WK-TLTEDEKNTFKRALAGLTGLDTHQADDGMPLIMLHTTD--LRKKAVY

WK-TLTDPEKEAFKKALAGLTGLDTHQADDGMPLIMLHTTD--LRKKAVY

WR-KLSHKEKDLVGKVFGGLTLLDTLQSESGVDALRKDVRT--AHEEAVF

WR-KLSAAEKDLVGKVFGGLTLLDTMQSQSGVEAIRGDVRT--PHEEAVL

WR-KLSNKEKDLVGKVFGGLTLLDTMQSETGVQALRADIRT--PHEEAVF

WR-KLSLQEKDLVGKVFGGLTLLDTMQSETGVEAIRADVRT--PHEEAVL

WR-KLSHKEKDLVGKVFGGLTLLDTLQSESGVDALRKDVRT--AHEEAVF

WR-KLTAEEKDLVGKVFGGLTLLDTLQSETGVQALRNDIRT--PHEEAVY

WR-KLSAEEKDLVGKVFGGLTLLDTMQSQTGVEAIRADVRT--PHEEAVL

WK-QLTEEEQTLTIRVFTGLTLLIYrIQNTVGAPAL&4EDART- -PHEEAVL
WK-MLSKEEKKLTIRIFTGLTLLDTLQNIIGAPSIMMDAKT--MHEKAVI

WA-TLTPNEQQLTIRVFTGLTLLDTIQNTLGAPALIKDAMT--PHEEAVF

WA-TLAPNEQQLTIRVFTGLTLLDTIQNTLGAPALIKDAIT--PHEKAVF

WA-TLTPNEQQLTIRVFTGLTLLDTIQNTLGAPALIKDAIT--PREEAVF

WA-TLTPHEQQLTIRVFTGLTLL]YrIQNTLGAPALIKDAIT--PHEZAIF

WA-TLTPHEQQLTIRVFTGLTLLDTIQNTLGAPALIKDAIT--PHEKAIF



M-bovis-b-AF2122-97-NrdFl

Mgilvum-PYR-GCK-NrdF

M-lepraeTN-NrdF

M-marinumM-NrdF
M-smegmatis-MC2_155-NrdF

M-tuberc-CDC1551-NrdFl

M-ulceransAgy99-NrdF

M-vanbaalenii-PYR-I-NrdF

N-farcin-IFM10152-NrdF

0-anthropi-ATCC49188-NrdF

0 -oeni-BAA1163-NrdF

onionyellowsphyto-NrdF

PaenibacillusJDR2-NrdF

p denitrif PD1222 NrdF

P-Pentos.ATCC25745-NrdF

Pedobacter-BAL39-NrdF

P -lumine-lau-TT01-NrdF

P-mirabilisH14320-NrdF

P-stuartii25827-NrdF

PseudovibrioJE062-NrdF

R-etliCFN-42_NrdF
R.leguminosaruml325-NrdF

S typhimurium - LT2-NrdF

S: Proteamaculans-568-NrdF
S-boydii308394 -NrdF
Sdysenteriae-1012-NrdF

S-flexneri -2a2457T -NrdF

Silicibacter-TM1040-NrdF

S-aureus-BB-NrdF

Sepidermidis-RP62A-NrdFl

S-haemolytJCSC1435-NrdF

Ssaprophyticusl5305-NrdF

SgordoniiChallis NrdF
S-mutanSUA159-Nr5F

SpneumoniaeSP14BS69-NrdF

SpyogenesMlGASNrdF2

SsanquinisSK36_NrdF

S-suis-891591-NrdF

StherTnophilusLMD9 NrdF

Vibrio MED222 NrdF
wqlossinidia-Gb-NrdF

Y__bercovieri-43970-NrdF

Y-frederiksen-33641-NrdF

Y-mollaretii-43969-NrdF

Ypj4ediev - 91001 -NrdF

Ypseudotuber_31758-NrdF

TNIAFME-SVHAKSYSQIFSTLCSTAEIDDAFR-WSEENRNLQRKAEIVL

TNIAFME-SVHARSYSNIFSTLCSTSEIDDAFR-WSEENPNLQRKAEIVM

TNIAFME-SVHAKSYSSIFSTLCSTAEIDEAFR-WSEENNNLQRKAKIVM

TNIAFME-SVHAKSYSQIFSTLCSTAEIDDAFR-WSEENSNLQRKAEIVL

TNIAFME-SVHAKSYSNIFSTLCSTAEIDDAFR-WSEENPNLQRKAAIVM

TNIAFME-SVHAKSYSQIFSTLCSTAEIDDAFR-WSEENRNLQRKAEIVL

TNIAFME-SVHAKSYSQIFSTLCSTAEIDDAFR-WSEENSNLQRKAEIVL

TNIAFME-SVHARSYSNIFSTLCSTAEIDDAFR-WSEENPNLQRKAEIVM

TNIAFME-SVHAKSYSSIFSTLCSTKEIDEAFR-WSEENRNLQRKAEIVL

SNISFME-AVHARSYSSIFSTLCLTPDVDDAYR-WSEENEFLQRKSVLIL

NNIKFME-SVHAKSYSSIFETLDTPAEIDEIFD-WASKNEQLQYKANKIN

NFMGAMENAVHAKSYSNIFMSYLTNKEINQLFL-WGNQQTSLQTMMQVIV

AFMSMME-QIHAKSYSSIFTTLASTEEIDAIFQ-WVETNEQLQKKATLVS

SNIAFME-AVHARSYSSIPSTLCLTPEVDAAFR-WAEENPHLQQKARLVL

NNIQFME-SVHAKSYSSIFETLNTPSEIDEIPA-WSDSEEFLQNKTKRIY

SFMCMME-AIHAKSYSTIFTTVNSTPEINELFD-WVENNKLLQFKASTID

SNISFME-AVHARSYSSIFSTLCLTTDVDDAYR-WSEKSFSLQNKAKIIL

SNICFME-AVHARSYSSIFSTLCLTTDVDDAYR-WSEENTYLQKKSDIIL

SNISFME-AVHARSYSSIFSTLCSTSDVDDAYR-WSEENSALQNKAKIIM

TNIAPME-AVHARSYSSVFSTLCRTAEVDDAFR-WSEENEFLQAKSRLIL

SNVSFME-AVRARSYSSIFSTLCSTPDVDDAYR-WSEENEFLQRKSALIM

SNVSFME-AVHARSYSSIFSTLCSTPDVDDAYR-WSEENEFLQRKSALIM

SNISFME-AVHARSYSSIFSTLCQTKEVDAAYA-WSEENPPLQRKAQIIL

SNISFME-AVHARSYSSIFSTLCQTPDVDDAYR-WSEENRALQKKASIIL

SNISFME-AVHARSYSSIFSTLCQTKDVDAAYA-WSEENAPLQRKAQIIQ

SNISFME-AVRARSYSSIPSTLCQTKDVDAAYA-WSEENAPLQRKAQIIQ

SNISFME-AVHARSYSSIFSTLCQTKDVDAAYA-WSEENAPLQRKAQIIQ

SNISFME-AVHARSYSSVFSTLCQTTEVDEAFR-WSAENEHLQAKSRLIL

SFMAMME-QIRAKSYSHIFTTLLPSSETNYLLDEWVLEEPHLKYKSDKIV

SFMAME-QIHAKSYSHIFTTLLPSSETNYLLDTWVIEEPHLKYKSDKIV

SFMAMME-QIHAKSYSHIFTTLLPSSETNYLLDTWVIEEPHLKYKSDKII

SFMAMME-QIHAKSYSHIFTTLLPSSETNYLLDKWVIEEPHLKYKSDKII

NNIQFME-SVHAKSYSSIFSTLNTKSEIDEIFA-WTNTNPYLOKKAEIIN
NNIQFME-SVHAKSYSSIFSTLNTKSEIEGIFE-WTNNNEYLQKKAKIIN

NNIQFME-SVHAKSYSSIFSTLNTKTEIEEIFE-WTNTNPYLQKKAEIVN

NNIQFME-SVHAKSYSSIFSTLNTKKEIEEIFE-WTNNNEFLQEKARIIN

NNIQFME-SVHAKSYSSIFSTLNTKSEIDEIFA-WTNTNPYLQKKAEIIN

NNIQFME-SVHAKSYSSIFSTLNTKSEIEDIFE-WTNSNEYLQRKAKIIN

NNIQFME-SVHAKSYSSIFSTLNTKSEIEEIFE-WTNSNKYLQTKAKIIN

TNIAFME-AVHARSYSSVFSTLCTTPQIDEAFR-WAEENPLLQKKAQIIL

SNIGFME-AVHARSYSSIPSTLCSTTEVDSAYF-WSEKNKFLQNKVNIIS

SNISFME-AVHARSYSSIFSTLCMTSDVDDAYR-WSEENGPLQKKADIIL

SNISFME-AVHARSYSSIFSTLCMTSDVDDAYR-WSEENGPLQYXADIIL

SNISFME-AVHARSYSSIFSTLCMTSDVDDAYR-WSEENGPLQKKADIIL

SNISFME-AVHARSYSSIFSTLCLTSDVDDAYR-WSEDNGPLQKKADIIS

SNISFME-AVHARSYSSIFSTLCLTSDVDDAYR-WSEDNGPLQKKADIIL

E.coli nrdF

A-laidlawiiPG8A -NrdF

A-odontolyticusl7982-NrdF

A-tumefaciens-C58-NrdF

A-aurescens-TC1-NrdF

A-chlorQphenolicusA6-NrdFl

ArthrobactspFB24 -NrdF

Aphytoplasma -AYWB -NrdF

Bamyloliquef - FZB42 - NrdF

B-anthracis-Ames-NrdF

B cereusB4264-NrdF

B clausii - KSMK16-NrdF

B-lichen-ATCC14580-NrdF

B_pumilus706l I NrdFl

BacillusspBl4905 -NrdF

B subtilis - s - 168-NrdFl

B thuringienSAizawai - NrdF

B weihenstephKBAB4-NrdF

B-bacilliform-KC583-NrdF

B-henselae-Houstonl-NrdF

Bquintana-Toulouse-NrdF

B-tribocoruml05476-NrdF

Blongun _DJO10A -NrdF

B-hermsii-NrdF

B recurrentisAl NrdF

B-turicatae -NrdF

B - linens-BL2 - NrdFl

B-melitensis - 16M - NrdF

B ovis 25840 NrdF

B-suis-1330-NrdF
P -australiense-NrdF

Phytoplasma -mali-NrdF

CarnobacteriumAT7 NrdF
Csalexigens-DSM3043 -NrdF

C koseriBAA895 NrdF

C bartlettiiDSM16795-NrdF

C-difficile-630_NrdF

C-aTmnoniagenes-NrdF
Cglut-ATCC13032-NrdF

Cjeikeium - K411 -NrdFl

DgeotherTnal - 1130 - NrdF

D-radiodurans-Rl-NrdF

E-cancerogenus353l6-NrdF

E-sakazakii - BAA894 NrdF

Enterobacter -sp_63i -NrdF

E faecalis V583 NrdF

E-faecium-DO-NrdF

E-car-at-SCRI1043-NrdF

E-tasmaniensisEtl/99 -NrdF

E-albertiiTWO7627 -NrdF

K-radiot-SRS30216-NrdF

Kpneumoniae342 -NrdF

K-rhizophilaDC2201-NrdF

L-brevis-ATCC-367-NrdF

L-casei - ATCC334 - NrdF

L-fermentum3956-NrdFl

Lplantarum - WCFS1 -NrdF

L reuteri 10023 NrdF

L-rhamnosusHN001-NrdF

L sakei 23K NrdF

L salivariusUCC118 NrdF

L lactispGdh442 - NrdF

L-citreumKM20-NrdF

L-mese-m-ATCC8293-NrdF

LsphaericusC341 -NrdF

M-luteusNCTC2665-NrdF

M-abscessus-NrdF

mycob-avium-104-NrdF

SNISFME-AVHARSYSSIFSTLCQTKDVDAAYA-WSEENAPLQRKAQIIQ

NFMGAMENAVRAKSYSNIFMTYMSNQKIDELFH-WGEKHTNLQNIMSLIV
TNIAFME-SVHAKSYSSIFSTLLSTEEINESFR-WSNENEALQKKAEIVK

SNISFME-AVHARSYSSIFSTLCSTPDVDDAYR-WSEENEFLQRKSAIIM

TNIAFME-SVHAKSYSSIFSTLCSTKEIDDAFR-WSLENENLQKKAQIVM

TNIAFME-SVHAKSYSSIFSTLCSTKEIDEAFR-WSEENVHLQKKAQIVM

TNIAFME-SVHAKSYSSIFSTLASTKEIDEAFR-WSTENANLQKKAQIVM

NFMGAMEMAVHAKSYSNIFMSYLTNKEINQLFL-WGNQQKSLQTMMQVIV

NFMAMMENAVHAKSYSNIFMTLAPTETINEVFE-WVKQNKYLQKKAQMIV

AFMGAME-EVHAKSYSHIFTTLATEEEIDEIFD-WVDTHPLLEKKAGIIT

AFMGAME-EVHAKSYSHIFTTLATEEEIDDIFD-WVDNHPLLEKKAGIIT

NFMAMMENAVHAYSYSNIFMTLATSEEINDLFE-WVKVNPRLQKKANTIV

NFMAMMENAVRAKSYSNIFMTLAPTETINEVFE-WVKQNKYLQKKAQIIV

NFMAMMENAVHAKSYSNIFMTLAPTETISEVFE-WVKKNKFLQKKADMIV

TVFDAFE-AIHAKSYSYIFTTLCTNEEIDELFE-WVKI(NEYLQYKANKIA

NFMAMMENAVHAKSYSNIFMTLAPTETINEVFE-WVKQNKYLQKKAQMIV

AFMGAME-EVHAKSYSHIFTTLATEEEIDDIFD-WVDNHPLLEKKAGIIT

AFMGAME-EVHAKSYSHIFTTLATEEEIDDIFE-WVDNHPLLEKKAGIVT

TNIAFME-AVHARSYSSIFSTLCLTVDVDDAFR-WSEENVYLQKKAKLVL

TNIAFME-AVHARSYSSIFSTLCSTVEVDDAFR-WSEENIHLQKKARLVL

TNIAFME-AVHARSYSSIFSTLCSTVEVDDAFR-WSEENIHLQKKARLVL

TNIAFME-AVHARSYSSIFSTLCSTVEVDDAFR-WSEENSHLQKKARLVL

TNIAFME-SVHAKSYSSIFSTLCSTEQIDAAFD-WSENNEFLQKKAEIVL

GFMGAME-HMHAKSYSSIFSSLSNIDRIDHIFG-WVKTYRNFQDKLDLIL

GFMGAME-HMHAKSYSSIFSSLSNIDRIDYIFD-WVKTYRNYQEKLELIL

GFMGAME-HMRAKSYSSIFSSLSNIERIDYIFD-WVKTYRNFQDKLDLIL

TNIAFME-SVHAKSYSSIFSTLCSTKEIDEAFR-WSRENTYLQSKADIIL

SNISFME-AVHARSYSSIFSTLCLTPDVDDAYR-WSEENEFLQRKSTLIL

SNISFME-AVHARSYSSIFSTLCLTPDVDDAYR-WSEENEFLQRKSTLIL

SNISFME-AVHARSYSSIFSTLCLTPDVDDAYR-WSEENEFLQRKSTLIL
NFMGAMENAVHAKSYSNIFTSYLSNEDINQLFV-WGEKQVNLQNIMKIIF

NFMGAMENAVHAKSYSNIFMTLLNSKETDDLFV-WGGNQKYLQNIIGKII

NNIQFME-SMHAKSYSAIFSTLNSKVEIDEIFQ-WTNTUDLLQIKASTIN
TNISFME-SVHARSYSSIFSTLCATRDVDDAYR-WSEENPHLQNKAELIL

SNISFME-AVHARSYSSIFSTLCQTKDVDAAYA-WSEENAPLQRKAQIIL

SFMGTME-EIHAKSYSSIFTTLLTVPEIDEIFE-WIESEPTLQKKAEIVL

SFMGTME-EIHAKSYSSIFMTLLSNLEIDELFE-WIETEPTLQRKADLVL

TNIAFME-SVHAYSYSNIFMTLASTPQINEAFR-WSEENENLQRKAKIIM

TNIAFME-SVHAYSYSNIFMTIASTABINDAFR-WSEENENLQRKAKIIL
TNISFME-SVHAKSYSSIFMTLASTPEINDAFR-WSEENEKLQNKAKIIL

AMFAFME-NVHARSYSMANKTFLSASEEREAFE-WIEMQPHLQRKITVFR

QFQGMME-DIHARSYSLMNKTFLTASEEREVFE-WVRTQPQLQHKIAVIQ

SNISFME-AVHARSYSSIFSTLCQTKDVDTAYD-WSEECESLQRKANLVL

SNVSFME-AVHARSYSSIFSTLCQTPDVDAAYA-WSEENAPLQRKAQIIL
SNISFME-AVHARSYSSIFSTLCQTKDVDAAYS-WSEASTSLQRKAQLVL

NNIQFME-SVHAKSYSSIFSTLNTKKEIDDIFE-WTNTNKHLQYKAERIN

NNIQFME-SVHAKSYSSIFSTLNTKKEIEEIFD-WTNTNPYLQKKAERIN

SNISFME-AVHARSYSSIFSTLCLTSEVDDAYR-WSEENPALQKKSDIIL

SNISFME-AVHARSYSSIFSTLCHTSDVDAAYA-WSEENAPLQAKAQIIL

SNISFME-AVHARSYSSIFSTLCQTKDVDAAYA-WSEENAPLQRKAQIIQ

TNIAFME-SVHARSYSSIFSTLATTREIDEAFA-WSEDNEALQRKASIVL

SNISFME-AVHARSYSSIFSTLCHSKEVDAAFA-WSESCEPLQRKAQLML

TNIAFME-SVHAKSYSSIFSTLSSMKQIDEAFR-WSKENEHLQRKADIVL

NNIQFME-SVHAKSYSTIFSTLNTPDEIDEIFQ-WSDSEEFLQNKTKRIY

NNIQFME-SVHMSYSSIFSTLNTPAEIDEIFD-WTNHNEHLQYKANKIN

NNIQFME-SVHAKSYSTIFSTLNTPDEIDEIFS-WSDSEEYLQSKAVKIG

NNIQFME-SVHAKSYSTIFETLNTPDEINEIFD-WSDSEEFLQAKAQWIY

NNIQFME-SVHAKSYSTIFSTLNTPDQIKEIFE-WSDTEEYLQNKAVKIA

NNIQFME-SVHAKSYSSIFSTLNTPAEIDEIFD-WTNHNEHLQYKANKIN

NNIQFME-SVHAKSYSSIFSTLNTPNEIDEIFD-WTNTNEYLQYKANKIN

NNIEFME-SVHAKSYSSIFSTLNTPKEIEEIFD-WTNSNEILQYKANRIN

SDFTFME-SIHAKTYGTILISLNTFKDIEEIYT-WMNNDRRMQFKAKKIN

NNIQFME-SVHAKSYSSiFETLNEKSEIEAIFD-WADSNEFLQYKANRIN

NNIQFME-SVHAKSYSSIFETLNEKVEIEKIFE-WADSNEFLQYKANRIN

TVFDAFE-AIHAKSYSYIFTTLCTNEEIDELFE-WVKKNEYLQYKANKIA

TNIAFME-SVHAKSYSSIFSTLASTPEIDEAFR-WSRENRNLQAKARLIV

TNIAFME-SVHAKSYSSIPSTLCSTREIDDAFR-WSEENPNLQRKAEIVM

TNIAFME-SVHARSYSNIFSTLCSTAEIDDAFR-WSEENPNLQRKAEIVM



E.coli nrdF
A laidlawiiPG8A NrdF
A odontolyticus17982 NrdF
A tumefaciens C58 NrdF
A aurescensTC1_NrdF
A chlorophenolicusA6 NrdFl
Arthrobact spFB24 NrdF
A_phytoplasma AYWB NrdF

B_amyloliquefFZB42 NrdF
B anthracisAmes NrdF
B cereusB4264_NrdF
B clausiiKSMK16 NrdF

B_lichenATCC14580_NrdF
B_pumilus7061 NrdFl
Bacillussp_Bl4905_NrdF
B_subtilis_s 168_NrdFl
B_thuringiensAizawai NrdF

B_weihenstephKBAB4_NrdF
B_bacilliformKC583_NrdF
B_henselaeHouston1_NrdF
B_quintanaToulouseNrdF
B_tribocoruml05476_NrdF
B_longum_DJO10A_NrdF
B_hermsiiNrdF
B recurrentisAlNrdF
B turicataeNrdF
B_linensBL2_NrdFl
Bmelitensis_16MNrdF
Bovis_25840_NrdF
Bsuis_1330_NrdF

P australienseNrdF
Phytoplasma_maliNrdF
CarnobacteriumAT7 NrdF
Csalexigens_DSM3043_NrdF
C_koseriBAA895_NrdF
CbartlettiiDSM16795_NrdF

Cdifficile_630_NrdF

C_ammoniagenesNrdF
C_glutATCC13032_NrdF
C_jeikeiumK411_NrdFl
D_geothermal_1130_NrdF

Dradiodurans_RiNrdF
E_cancerogenus35316_NrdF
E_sakazakiiBAA894_NrdF
Enterobacter-sp_638_NrdF
E_faecalisV583_NrdF
E_faeciumDONrdF
E_caratSCRI1043_NrdF
E_tasmaniensisEtl/99_NrdF
E_albertiiTWO7627_NrdF
K_radiotSRS30216_NrdF
K_pneumoniae342_NrdF
K-rhizophilaDC2201_NrdF
L_brevisATCC_367_NrdF

L casei ATCC334_NrdF
L_fermentum3956_NrdFl
Lplantarum WCFS1_NrdF
L_reuteri_10023_NrdF
L rhamnosusHNOONrdF

L_sakei_23KNrdF
L_salivariusUCC118_NrdF
L lactis pGdh442_NrdF
L_citreumRM20_NrdF
L_mese_m_ATCC8293_NrdF

LsphaericusC341_NrdF
MluteusNCTC2665_NrdF

M_abscessusNrdF
Mycob-avium_104_NrdF

QHYRG ----------------------- DDPLKKKIASVFLESFLFYSGF

GYYKELDRYNYLKQFESNDPGYSETDFNIAQFKAMVASVYLETWLFYSGF
SYYDG-----------------------NDPEKRKVASTMLESFLFYSGF
REYDS-----------------------GDPLKKKIASVFLESFLFYSGF

DYYQG -------------------- DDPLKRKVASTLLESFLFYSGF

DYYQG -------------------- DDPLKRKVASTLLESFLFYSGF

DYYQG -------------------- DDPLKRKVASTLLESFLFYSGF

KVYEALEDQIYLKKQTSLQ- - FIELEFKKTQWKAMAVSVFLETWLFYSGF

GLYKAIQK --------- DD--------EISLFKAMVASVYLESFLFYSGF

SYYRRLLKPEVTK---------------KELYMAMVASVFLESYLFYSGF

SYYRRLLKPEVTK --------------- KELYMAMVASVFLESYLFYSGF

SIYKDIKR --------- GD--------DISLFKALVASVYLESFLFYSGF

GLYEKIRQ---------GD--------KISLFKAMVASVYLESFLFYSGF

SLYRSIQK---------DD--------PISLFKAMVASVYLESFLFYSGF
DIYNSIEEGDS-----------------ESLWKAMFSSVMLESFLFYSGF

GLYKAIQK---------DD--------EISLFKAMVASVYLESFLFYSGF

SYYRRLLKPEVTK --------------- KELYMAMVASVFLESYLFYSGF

SYYRRLLKPEVTK --------------- KELYMAMVASVFLESYLFYSGF

EHYEA-----------------------NDPLKKKIASTFLESFLFYSGF
ERYEG -------------------- NDPLKKKIASTLLESFLFYSGF

ERYEA-----------------------SDPLKKKIASTLLESFLFYSGF
ERYEA-----------------------NDPLKKKIASTLLESFLFYSGF
DYYEG -------------------- DNPYKRKVASTLLESFLFYSGF

GKY ---- NSIHDR---------------MSLYKALCTSVFLETFLFYSGF
GKY ---- NNIHDR --------------- MSLYQALCTSVFLETFLFYSGF
GKY ---- NNIHDR---------------MSLYKALCTSVFLETFLFYSGF

SYYRG-----------------------DDPLKRKVASTLLESFLFYSGF
DQYKA-----------------------DDPLKKKIASVFLESFLFYSGF
DQYHA----------------------- DDPLKKKIASVFLESFLFYSGF
DQYRA-----------------------DDPLKKKIASVFLESFLFYSGF
RVYEDLEYNIYLKKYQLSE--FSELQYQKNQWKAMAISVFLETWLFYSGF
DVYEDLEKKIFQRKYNDEN--ITDLIFKKYQWKAMVTSVFLETWLFYSGF

DIYQN----------------------- GTELQRKVASVMLESFLFYSGF
NRYRM-----------------------DDPLMRKVASVFLESFLFYSGF
QHYTA-----------------------DNPLKKKIASVFLESFLFYSGF
AQY ---- ENTDDR --------------- YGLYMSMATSVFLESFLFYSGF

AQY----ENTTNQ---------------EGLYLSMVTSVFLESFLFYSGF
SYYNG-----------------------DDPLKKKVASTLLESFLFYSGF
SYYEG-----------------------DDPLKRKIASVILESFLFYSGF
DFYEG -------------------- DDPMKKKIASVLLESFLFYSGF
RLYEEGDA ----------------------- LTRMLASCLLETALFYSGF
GVYRDPDVSD --------------- LGVWKKLVVSCMLETALFYSGF

EYYQA-----------------------DDPLKKKIASVFLESFLFYSGF

AHYRD-----------------------DDPLKKKIASVFLESFLFYSGF
EYYHA-----------------------DDPLKKKIASVFLESFLFYSGF

EIYKN ----------------------- GTPLEKKIASVFLETFLFYSGF
EIYKH-----------------------GTPLEKKIASVFLETFLFYSGF

SHYRS ------------------- -DDPLMKKVASVFLESFLFYSGF

QHYYH-----------------------DDALKKKIASVFLESFLFYSGF
QHYRG-----------------------DDPLKKKIASVFLESFLFYSGF
EYYHG -------------------- DDPLKRKVASTLLESFLFYSGF

GYYQA -------------------- DEPLKKKIASVFLESFLFYSGF
RYYKG -------------------- DDPLKKKVASTLLESFLFYSGF

DLYHD ---------------------- DEHPLKKKISSVFLETFLFYSGF
DIYHN-----------------------GSALQKKIASVFLETFLFYSGF
NLYLDA---------------------QEDPLKKKVANVFLETFLFYSGF
KLYDNI --------
NMYLDP--------
DIYHN ---------

SIYQN---------
EIYQN---------
EIYQN ---------
DIYQT---------
DIYHN---------
DIYNSIEEGDA---
ERYDG---------

------------- DEDPLKQKVANVFLETFLFYSGF
------------- SQDPLKKKVANVFLETFLFYSGF
-------------- GSALQKKIASVFLETFLFYSGF
-------------- GSPLQQKIASVFLETFLFYSGF
-------------- GSPLQKKVASVFLETFLFYSGF

--------------GTPMQVKVASVFLEGILYYSNF
--------------GTPLEKKIASVFLETFLFYSGF
--------------GSALQKKIASVFLETFLFYSGF

-------------- ESLWKAMFSSVMLESFLFYSGF
-------------- QDPYKKKIASTLLESFLFYSGF

EYYRG-----------------------DEPLKRKVASTLLESFLFYSGF

QYYKG -------------------- DEPLKRKVASTLLESFLFYSGF

Mbovis_b_AF2122_97_NrdFl
Mgilvum_PYRGCKNrdF
M-lepraeTNNrdF
M_marinumMNrdF
MsmegmatisMC2_155_NrdF
M_tubercCDC1551_NrdFl
M_ulceransAgy99_NrdF
MvanbaaleniiPYR_1_NrdF
N_farcinIFMl10152_NrdF
oanthropiATCC49188_NrdF
Oo eni BAA1163_NrdF
Onion_yellowsphyto NrdF
PaenibacillusJDR2_NrdF
P_denitrifPD1222_NrdF
P-pentosATCC25745 NrdF
PedobacterBAL39_NrdF
P_luminelauTT01_NrdF
P_mirabilisHI4320_NrdF
P_stuartii25827_NrdF
PseudovibrioJE062_NrdF
R_etli_CFN_42_NrdF
R-leguminosaruml325_NrdF
S_typhimuriumLT2_NrdF
S_proteamaculans_568_NrdF
S boydii308394_NrdF
S_dysenteriae_1012_NrdF
S_flexneri_2a_2457TNrdF
Silicibacter_TM1040_NrdF
S-aureusBBNrdF
S_epidermidis_RP62ANrdFl

S_haemolytJCSC1435_NrdF

S_saprophyticusl5305_NrdF
S gordoniiChalliS NrdF
S mutans UA159 NrdF
S_pneumoniaeSP14BS69 NrdF
S_pyogenesMlGASNrdF2

S_sanguinisSK36_NrdF
S suis_891591_NrdF
S-thermophiluS_LMD9_NrdF
VibrioMED222_NrdF
W_glossinidiaGbNrdF
Y_bercovieri_43970_NrdF
Y_frederiksen_33641_NrdF
Y_mollaretii_43969_NrdF
YpMediev_91001_NrdF
Y_pseudotuber_31758_NrdF

QYYRG----------------------- -DEPLKRKVASTLLESFLFYSGF
QYYKG----------------------- -DEPLKRKVASTLLESFLFYSGF

EYYRG-----------------------DEPLKRKVASTLLESFLFYSGF

EYYRG-----------------------DDPLKRKVASTLLESFLFYSGF

QYYRG -------------------- DEPLKRKVASTLLESFLFYSGF

QYYRG -------------------- DEPLKRKVASTLLESFLFYSGF

EYYRG -------------------- DDPLKRKVASTLLESFLFYSGF

QYYKG -------------------- DEPLKRKVASTLLESFLFYSGF

DYYQG-----------------------DDPLKRKVASTLLESFLFYSGF

DQYRA-----------------------DDPLKRKIASVFLESFLFYSGF
SVYHD ----------------------- PDPLKRKIASVFLETFLFYSGF
KVYEALEDQIYLKKQSSLQ--FSELEFKKTQWQAMAVSVFLETWLFYSGF

SWY- --- QGIETK --------------- QQLYKAMAASVFLESYLFYSGF

EEYKAG----------------------SDPLKRKIASVFLESFMFYSGF
ELYHD ---------------------- DEHPLKKKISSVFLETFLFYSGF

KYYRALDVPKVSN --------------- EVLFMGLAASVLLESFLFYSGF

NYYSY-----------------------HHPLKKKIASVFLESFLFYSGF
RYYQD-----------------------SDPLKKKIASVFLESFLFYSGF
SYYCD-----------------------SHPLKKKVASVFLESFLFYSGF
EEYNAT ------------------- SSPLKKKIASVFLESFLFYSGF

EQYAS-----------------------GDALKKKVASVFLESFLFYSGF
EQYRS-----------------------GDPLKKKVASVFLESFLFYSGF
AHYVS -------------------- DEPLKKKIASVFLESFLFYSGF

AHYRS-----------------------DDPLMKKVASVFLESFLFYSGF
QHYRG-----------------------DDPLKKKIASVFLESFLFYSGF
QHYRG-----------------------DDPLKKKIASVFLESFLFYSGF
QHYRG-----------------------DDPLKKKIASVFLESFLFYSGF
GEYDAT----------------------ASPLRKKIASVFLESFLFYSGF
ANYHKLWGKEASI----
ENYHKLWGKEASI ----

ENYHKLWGKEASI - -

NNYHKLWGKEASI----

EIYLN------------
EIYEN------------
EIYLN ------------
DIYAN------------
EIYLN------------

---------- YDQYMARVTSVFLETFLFFSGF
---------- YDQYIARVSSVFLETFLFYSGF
---------- YDQYIARVSSVFLETFLFYSGF
-------- YDQYIARVSSVFLETFLFYSGF
---------- GTALEKKVASVFLETFLFYSGF
---------- GNALQKKVASTFLETFLFYSGF
------ GSPLEKKVASVFLETFLFYSGF
---------- GDALQKKVASTYLETFLFYSGF
---------- GTALEKKIASVFLETFLFYSGF

EIYET-----------------------GTPLEKKVASVFLETFLFYSGF

DIYEN-----------------------GTALQKKVASTYLETFLFYSGF
DDYLAE ---------------------- -GDPLKKKVASVFLESFLFYSGF
KIYLE-----------------------KNSLKKKIASVFLESFLFYSGF

QHYHN----------------------- -DDPLKKKIASVFLESFLFYSGF

QHYHN-----------------------DDPLKKKIASVFLESFLFYSGF
QHYHN-----------------------DDPLKKKIASVFLESFLFYSGF
QHYHN-----------------------DDPLKKKIASVFLESFLFYSGF
QHYHN-----------------------DDPLKKKIASVFLESFLFYSGF

171
167

172
171
171
171
171
171
167
175
171
200

165
177
165
172
166
169
170
172
171
171
166
170
166
166
166
185
169
169
169
169
165
165
165
165
165
166
165
167
171
170
170
170
170
170
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E.coli nrdF

A-laidlawiiPG8A-NrdF

A-odontolyticusl7982-NrdF

A-tumefaciens-CS8-NrdF

A-aurescens-TCI-NrdF

A-chlorophenolicusA6-NrdFl

ArthrobactspFB24-NrdF

Aphytoplasma-AYKBNrdF

B amyloliquefFZB42 - NrdF

B -anthracis-Ames-NrdF

B -cereusB4264-NrdF

B -clausii-KSMK16-NrdF

B -lichen-ATCC14580-NrdF

B_pumilus706l-NrdFl

BacillusspBl4905 NrdF

B subtilis s 168 NrdFl

B -thuringiensAizawai-NrdF

B -weihenstephKBAB4-NrdF

B-bacilliform-KC583-NrdF

B-henselae-Houstonl-NrdF

Bquintana-Toulouse-NrdF

B-tribocoruml05476-NrdF

Blongurr _DJOIOA-NrdF

B-hermsii-NrdF

B recurrentisAl NrdF

B turicatae NrdF

B-linenS -BL2 -NrdFl

B -melitensis-16M-NrdF

B-ovis -25840 - NrdF

B-suis-1330-NrdF

P-australiense-NrdF

Phytoplasma-mali-NrdF

CarnobacteriUMAT7 NrdF
CsalexigensDSM3043_NrdF

C-koseriBAA895 -NrdF

C bartlettiiDSM16795 NrdF

C -difficile-630_NrdF

C -ammoniagenes-NrdF

Cglut-ATCC13032-NrdF

Cjeikeium-K411-NrdFl

._geothermal- 1130 NrdF
D-radioduransRl-NrdF

E -cancerogenus35316-NrdF

E-Sakazakii-BAA894-NrdF

Enterobacter -sp_638-NrdF

E-faecalis - V583 - NrdF

E-faecium-DONrdF

E-car-at-SCRI1043-NrdF

E-tasmaniensisEtl/99-NrdF

E-albertiiTW07627 - NrdF

K-radiot-SRS30216 7 NrdF

Kpneumoniae342_NrdF

K-rhizophilaDC2201-NrdF

L-brevis-ATCC-367-NrdF

L casei - ATCC334-NrdF

L fermentum3956 NrdFl

L-Plantarum-WCFS1-NrdF

L reuteri 10023 NrdF

L rhamnosusHN001 NrdF

L-sakei -23K - NrdF

L-salivariusUCC118 -NrdF

L -lactispGdh442_NrdF

L-citreumKM20_NrdF

L-mese - m 7 ATCC8293 - NrdF

L-sphaerl CUsC341-NrdF

M luteusNCTC2665 NrdF

P4-abscessus-NrdF

Mycob-avium-104-NrdF

WLPMYFSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKNMEKISLGQRE

YYPLFFYGQGKLMQAGEIINLILRDESIHGLYVGRLAQEVFETFSNELQE

YAPMYWSSHAKLTNTADLIRLIIRDEAVHGYYIGYKYQLAVNESSQERQD

YLPMFWSSRAYLTNTADLIRLIIRDEAVHGYYIGYKFQRALDRLGEAQRQ

YLPMYWSSRAKLTNTADLIRLIIRDP-AVHGYYIGYKFQKGLEKVSEARKQ

YLPMYWSSRAKLTNTADLIRLIIKDEAVHGYYIGYKPQRGLEKETAERRE

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQKGLEKVSEEKRQ

YYPLYFYGQGKLMQSGEIINLIIRDESIHGVYVGRLATELYQLFDKPTKQ

YYPLYFYGQGKLMQSGEIINLILRDEAIHGVYVGLLAQEIYNKQTEEKKA

FYPLYLAGQGKLTASGEIINLIIRDESIHGVFVGILAQQIFAELSAEDQQ

FYPLYLAGQGKLTASGEIINLIIRDESIHGVFVGILAQQIFAELSAEEQQ

YYPLYFYGQGKLMQSGEIINLILRDEAIHGVYIGLLAQEIYNKQSPDTQK

YYPLYFYGQGKLMQSGEIINLILRDEAIHGVYVGLLAQEIYNQQTPEKKE

YYPLYFYGQGKLMQSGEIINLILRDEAIHGVYVGLLAQEIYNKQTPDVQK

FYPLYLGGQGFLRNSAEIISLILRDESIHGVAVGFFAQNLYKQFSKEKQE

YYPLYFYGQGKLMQSGEIINLILRDEAIHGVYVGLLAQEIYNKQTEEKKA

FYPLYLAGQGKLTASGEIINLIIRDESIHGVFVGILAQQIFAELSVEEQQ

FYPLYLAGQGKLTASGEIINLIIRDESIHGVFVGILAQQIFTELSAEEQQ

YLPMYWSSRAKLTNTADLIRLIIRDKAIHGYYIGYKFQLGFAKLNEAQKQ

YLPMYWASRAKLTNTADLIRLIIRDEAVHGYYIGYKFQLGFAKLDETKKK

YLPMYWASRAKLTNTADLIRLIIRDEAVHGYYIGYKFQLGFAKLNESKKQ

YLPMYWA.SRAKLTNTADLIRLIIRDEAVHGYYIGYKFQLGYAKLEEAKRQ

YLPMYFSAHAKLTNTADVIRLIIRDEAVHGYYIGYKYQKGIAQLSDAERL

FYPLYLA(!;OGKMVNSGEIINLILRDESVHGVFVGLLAQEEFNKMTFKEQA

FYPLYLAGQGKMVNSGEIINLILRDESVHGVFVGLLAQEEFDKMTMKEQE

FYPLYLAGQGKMINSGEIINLILRDESVHGVFVGLLAQEEFNKMTSREQE

YLPMYWSAHAKLTNTADLIRLIIRDEAVHGYYIGYKYQKGLESQSEERKQ

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQRALEVLSEEKRQ

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQPALEVLSEEKRQ

YLPMYWSSRAKLTNTADLTRLTIRDEAVKGYYIGYKFORALEVLSEEKRQ

YYPLYFYGQGKLMQAGEIINLIIRDESIHGVYIGRLATELYHLFDDDTKK

YYPLFFYSQGKLMQSGEIINLIIRDESVHGVYIARLALNIYNSFDKLIKD

FAPLHYLGNNKLPNVAEIIKLILRDESVHGTYIGYKFQIAYNQLPDNEKE
YLPMYWASRGKLTNTADLIRLIIRDEAVHGYYIGYKFQQALARESAERQQ
WLPMYFSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKGLEKLSESERD

FYPLFLAGQGKMMASGEIISLILRDESLHGKYIGLLAQEIFKDFSKEEQK

FYPLYLSGQGKMVASGEIISLILRDESLHGKYIGLLAQEIYDSFDKMDKE

YLPMYLSSRAKLTNTADIIRLIIRDESVHGYYIGYKYQQGVKKLSEAEQE

YLPMYWSSHSKLTNTADVIRLIIRDEAVHGYYIGYKYQKAVAKETPERQE

YLPMYWSSHAKLTNTADIIRLIIRDESVHGYYIGYKYQRALENETPERQE
FYPLYLAGQGKMSHMGEVFTLICADEALHGSYVGLLFQERFAALPQGEQA

FYPLYLAGQGQMVSAGEIFNLIILDEALHGVYVALLAQEKFATMNAAEQA

WLPMYWSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKGLEIVSEARRE
YLPMYWSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQQALAQVDDARRE

WLPMYWSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKGLEKISKAKRE

YTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEDEQD

YTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEAEQE

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQRALAKADPARQQ

YLPMYWSSRGKLTNTADLIRLIIKDEAVHGYYIGYKYOKSLEKETAPRKE

WLPMYLSSRGKLTNTADLIRLIIRDEAVHGYYIGYKHQKNQEKISLTQRE

FLPMHFSSRAQLTNTADLVRLIIRDEAVHGYYIGYKFQRGLELVDQAKRD

WLPMHFSSRGKLTNTADLIRLIIRDKAVHGYYIGYKYQKGLEIVSPGKRE

YLPMYFSSHAKLTNTADLIRLIIRDEAVHGYYIGYKYQKGLLQESPQRQQ

FTPLYYLGHNKLNNVAEIIKLILRDESVHGTYIGYKFQLGMKELTDAEQQ

FTPLYYLGNNKLTNVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEAEQQ

YTPLYYLGHNKLNNVAEIIKLILRDESVHGTYIGYKFQVGMNQLTEKQQQ

YTPLYYLGHNQLPNVAEIIKLILRDESVHGTYIGYKFQLGFKDRSEKQQA

YTPLYYLGHNKLNNVAEIIKLILRDESVHGTYIGYKFQVGLRDRTEKQQQ

FTPLYYLGNNKLTNVAEIIKLIIRDESVHGTYIGYKFQLGFNELPAAEQQ

YTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELAKAEOE

YTPLYWLGHNKLANVAEIIKLILRDESVHGTYIGYKFQLGFNELSDDEQE

FIPLWYRGQNKLANLAELIKLVIRDESVHGTYLGYKFRQDFNELSITEQE

YTPLYFLGHNKMLNVAEIIKLIIRDESVHGTYIGYKFQIGFNKLPESEST

YTPLYFLGHNKMLNVAEIIKLIIRDESVHGTYIGYKFQIGFNKISAEERT

FYPLYLGGQGFLRNSAEIISLILRDESIHGVAVGFFAQNLYKQFSKEKQE

YWPMYLSAHARLTNTADLIRLIIRDEAVHGYYIGYKYQRSIETLPEEKRE

YLPMYWSSRAKLTNTADMIRLIIRD-AVHGYYIGYKFQRGLERVDEAKRA

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKYQRGLALVDDAKRQ

M-bovis-b-AF2122-97-NrdFl

Mgilvum-PYR-GCK-NrdF

M-lepraeTN-NrdF

M-marinumM -NrdF

K__smegmatis -MC2_155-NrdF

M-tuberc - CDC1551 - NrdFl

M-ulcerans__,Agy99 -NrdF

M-vanbaalenii-PYR-1-NrdF

N-farcin-IFM10152-NrdF

O-anthropi I ATCC49188 - NrdF
0 oeni BAA1163 NrdF

Onionyellowsphyto -NrdF

PaenibacillusJDR2 NrdF

P-denitrif - PD1222 -NrdF

PpentosATCC25745 -NrdF

Pedobacter BAL39 NrdF

P-luminelauTTOi-NrdF

P-mirabilisH14320-NrdF

P-stuartii25827-NrdF

PseudovibrioJE062 NrdF

R-etli - CFN - 42 - Nr F

R leguminosaruml325-NrdF

S typhimurium - LT2 - NrdF

S-Proteamaculans-568 -NrdF

S - boydii308394 I NrdF

Sdysenteriae -1012 - NrdF

S-flexneri - 2a - 2457T-NrdF

Silicibacter -TM1040-NrdF

S-aureus - BE NrdF

Sepidermid7.s - RP62A - NrdFl
S-haemolytJCSC1435-NrdF

Ssaprophyticusl5305_NrdF

SgordoniiChallis NrdF
S mutans UA159 NraF
SpneumoniaeSP14BS69-NrdF

Spyogenes -MlGAS -NrdF2

SsanguinisSK36 -NrdF

S - suis -891591NrdF

S thermophilusLMD9-NrdF

Vibrio MED222 NrdF

W _glossinidia-Gb-NrdF

Y-bercovieri - 43970 - NrdF

Y-frederiksen -33641-NrdF

Y-mollaretii-43969-NrdF

Yp__Mediev 91001 - NrdF

Ypseudotu er-31758-NrdF

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLALVDDVTRA

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQKGLALADDATRQ

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLVLVDDARRA

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLAAADEARRT

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKYQRGLALVDEEKKQ

YLPMYWSSRAKLTWTADMIRLIIRDEAVHGYYIGYKFQRGLALVDDVTRA

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLAAADEARRT

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQKGLALESKATRQ

YLPMHWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKYQRGLEQVSEAERE

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQRGLERLNEEQKQ

YTPLYFVGHNKMANVAEIIKLIIRDESVHGTYIGYKFQLAYKELTEQEQK

YYSLYFYGQGKLMQSGEIINLIIRDESIHGVYVGRLATEIYQLFDKPTQQ

FYPLYLAGQGKMTSSGEIIDLILRDESIHGLYVGVLAQELFNQFTPEEQA

YLPMYWSSRAYLTNTAI)LIRLIIRDEAVHGYYIGYKYQRGLERLGEAERA

FTPLYYLGHNQLNNVAEIIKLILRDESVHGTYIGYKFQLGLKELGENEQQ

FMPLWLAGQGQMVASADIIKKIVADESIHGVFVGLLAQDVYKKLPNPEKC

YLPMYWSSRGILTNTADLIRLIIRDEAIHGYYIGYKFQQSLKKHSTLEQK

YLPMYWSSRGKLTNTADLIRLIIRDEAVHGYYIGYKFQNQLLNKSSLEKQ

YLPMYWSSRGKLTNTADLIRLIIRDEA-THGYYIGYKFQKSLLKYDEKTQK

YLPMHWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQRGLERLSEAERT

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLETLSEERRQ

YLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLERLGDERKQ

WLPMYFSSRGKLTNTADLIRLIIRDKAVHGYYIGYKYQIALQKLSAIERE

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQKGLEKVDAARRQ

WLPMYFSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKNMEKISLGQRE

WLPMYFSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKNMEKIPLGQRE

WLPMYFSSRGKLTNTADLIRLIIRDEAVHGYYIGYKYQKNMEKISLGQRE

YLPMHWSSRARLTNTADLIRLIIRDEAIHGYYIGYKFQRGLERASEAERK

YYPLYLAGQGKMTTSGEIIRKILLDESIHGVFTGLDAQHLRNELSESEKO

YYPLYLAGQGKMTTSGEIIRKILLDESIHGVFTGLDAQSLRNELSESEKQ

YYPLYLAGQGKMTTSGEIIRKILLDESIHGVFTGLDAQSLRNELSENEKQ

YYPLYLAGQGKMTTSGEIIRKILLDESIHGVFTGMDAQSLRNELSESEKL

FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEEEQE
FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELSEEEQS

FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEEEQE

FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEDEQE

FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLAFNELPEDEQE

FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELSEEEQD

FTPLYYLGNNKLANVAEIIKLIIRDESVHGTYIGYKFQLGFNELPEKEQE

YLPMHWSSRAKLTNTADLIRLIIRDEAIHGYYIGYKFQLAYQSLSEEEQA

YLPMFYSSRGKLTNTSDLIRLIIRDEAVHGYYIGYKFQKDLISLNEKEKK
YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQKGLERVDNSRRQ

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQKGLERVDNNRRQ

YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQKGLEKVDNNRRQ
YLPMYWSSRAKLTNTADLIRLIIRDEAVHGYYIGYKFQKGLGKIDSAHRQ

YLPMYWSSRAKLTNTADLIRLIIRDRAVHGYYIGYKFQKGLEKVDSVHRQ
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M-bovis-b-AF2122-97-NrdFl

M-gilvUM-PYR-GCK-NrdF

M-lepraeTN-NrdF

M-marinUMM-NrdF

M-smegmatis-MC2_155-NrdF

M-tuberc-CDC1551-NrdFl

M-ulcerans_ Lgy99-NrdF

M-vanbaalenii PYR 1 - NrdF

N-farcin-IFM10152-WrdF

0-anthropi-ATCC49188-NrdF

0 oeni BAA1163 NrdF

Onion-Yellowsphyto -NrdF

PaenibacillusJDR2 NrdF

P - denitrif - PD1222-NrdF

P-Pentos-ATCC25745_NrdF

Pedobacter BAL39-NrdF

P-lumine-lau-TT01-NrdF

P-mirabiliSH14320-NrdF

P-stuartii25827-NrdF

PseudovibrioJE062 NrdF

R-etli-CFN-42-NrdF

R -leguminosaruml325-NrdF

S-typhimurium - LT2 -NrdF

Sproteamaculans - 568 - NrdF

S - boydii308394 - NrdF

Sdysenteriae-1012 -NrdF

S-flexneri - 2a - 2457T - NrdF

Silicibacter -TM1040-NrdF

S -aureus-BB-NrdF

S-epidermidis - RP62A - NrdFl

S-haemolytJCSC1435-NrdF

SsaprophyticusIS305_NrdF

SgordoniiChallis NrdF

S - mutans-UA159 - Nr F

S-PneumoniaeSP14BS69-NrdF

SpyogenesMlGAS NrdF2

Ssanguinis - SK36 -NrdF
S - suis -891591NrdF

S-thermophilusLMD9_NrdF

Vibrio-MED222-NrdF

Wglossinidia-Gb-NrdF

Y-bercovieri - 43970 - NrdF

Y-frederiksen -33641 -NrdF

Y-mollaretii-43969-NrdF

Yp_.Mediev -91001-NrdF

Y-Pseudotuber-31758-NrdF

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMUL

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMNL

ELKEYTYELLFELYDNEVEYTQDLYDRVG-LTEDVKKFLRYNANKALMNL

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMNL

ELKDYTYELLFELYDNEVEYTQDLYDSVG-LTEDVKKFLRYNANKALMNL

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMNL

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMNL

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMNL

ELKNYTFELLYELYENEVEYTQDLYDEVG-LTEDVKTFLRYNANKALMNL

AIKDFAFELLLELYDNEVRYTEALYDGVG-LTEDVKKFLHYNANKALMNL

ELNSWAYDLLYDLYDNEEKYTHQLYDEID-WFDDVMIFLRYNGNKALMNL

TLKTWLDDLMQQLYQAQTSLVHAIYHKLN-LEDDVNKFVRYNANKALMNL

QLKEEVFALLNTLYENEVVYTDNLYSPIG-LQEDVKAYVRYNANKALMNL

ALKDFAFSLIFDLYDIEAKYTAELYDGIG-LTEDVKSFLHYNANKALQNL

EIKDWMYNFLYDLYDNEEKYVHTLYDQVG-WTDEVLTFTRYNANKALMNL

KAKLEA--LLMELYENELKYTDELYTEVG-LTAEVKEYVRYNANKAMMNL

EIKEFTFSLLLELYENEIKYTEELYDIVG-WTEDIKKFLHYNANKALMNL

NIKDFAFSLLLDLYDNEVKYTEDLYDSVG-WTEDVKKFLHYNANKALMNL

EIKDFTFSLLFDLYENEVNYTQELYDTVG-WTEDVKKFLHYNANKALMNL

EIKDFAFTLLFDLYDLETKYTEDLYDPLG-LTEDVKHFLHYNGNKALQNL

EIKYFAFDLLLELYDNEAKYTEALYDGVG-LSEDVKKFLHYNANKALMNL

EIKDFAFELLLELYDNEAKYTEALYDGVG-LTEDVKKFLHYNANKALMNL

ELKLFALDLLMELYDNEIRYTEALYAETG-WVNDVKAFLCYNANKALMNL

QVKNFAFDLLQDLYDNEVRYTEELYDGVG-WTEDVKTFLHYNANKALMNL

ELKSFAFDLLLELYDNELQYTDELYAETS-WADDVKAFLCYNANKALMNL

ELKSFAFDLLLELYDNELQYTDELYAETP-WADDVKAFLCYNANKALMNL

ELKSFAFDLLLELYDNELQYTDELYAETP-WADDVKAFLCYNTNKALMNL

ELKDFAFGLLFDLYDIEARYTEQLYDGLG-LTEDVKNFLHYNANKALQNL

KADQEMYKLLNDLYLNEESYTKMLYDDLG-ITEDVLNYVKYNGNKALSNL
KADQEMYKLLNELYDNEVSYTHLLYDDIG-LAEDVLNYVRYNGNKALSNL

KADKEMYKLLEDLYANEVSYTHMLYDDIG-LSEDVLNYVQYNGNKALSNL

QADQEMYKLLDDLYKNEVAYTHSLYDDTG-LAEDVLNYVRYNGNKALSNL

KLKEWMYDLLYTLYENEEGYTETLYDGVG-WTEEVKTFLRYNANKALMNL

EFRDWMYDLLYQLYENEELYTQTLYDPVG-WTEEVMTFLRYNANKALMNL

KLKEWMYDLLYTLYENEEGYTESLYDGVG-WTEEVKTFLRYNANKALMNM

NFRDWMYDLLYQLYENEEKYTKTLYDGVG-WTEEVMTFLRYNANKALMNL

KLKEWMYDLLYTLYENEEGYTESLYDTVG-WTEEVKTFLRYNANKALMNL

KLRDWMYDLLYQLYENEEGYTRSLYDAVG-WTEEVLTFLRYNANKALMNL

SFREWMYDLLYQLYENEELYTKSLYDGVG-WTEEVMTFLRYNANKALMNL

RVKDEAYSLMFSLYEIETQYTESLYDPVG-LTEDVKHFLHYNANKALMNL

NIKDFAFNLLYKLYENEINYSYSLYKDII-PIKNIISFLNYNANKSLMNL

EIKNFAFDLLQDLYDNEVRYTEDLYDKVG-WTEDVKKFLHYNANKALMNL

EIKNFAFDLLQDLYDNEVRYTEDLYDDVG-WTEDVKKFLHYNANKALMNL

EIKNFAFDLLQDLYDNEVRYTEDLYDKVG-WTEDVKKFLWMANKALMML

EIKNFAFDLLODLYDNEVRYTEDLYDHVG-WTEDVXKFLHYNANKAU4NL

EIKNFAFDLLQDLYDNEVRYTEDLYDHVG-WTEDVKKFLHYNANKALMNL

E.coli nrdF

A-laidlawiiPG8A-NrdF

A-odontolyticusl7982-NrdF

A-tumefaciens-C58-NrdF

A-aurescens-TC1-NrdF

A-chlorophenolicusA6-NrdFl

ArthrobactspFB24 -NrdF

Aphytoplasma -AYWB -NrdF

Bamyloliquef -FZB42-NrdF

B-anthracis-Ames-NrdF

B cereusB4264 NrdF

B clausii KSMK16 NrdF

B-lichen-ATCC14580-NrdF

BpuMilUS7061 I NrdFl

BacillusspBl4905 -NrdF

B - subtilis - s - 168-NrdFl

B-thuringienSAizawai-NrdF

B-weihenstephKBAB4_NrdF

B -bacilliform-KC583-NrdF

B-henselae-Houstonl-NrdF

Bquintana-Toulouse-NrdF

B-tribocoruml05476-NrdF

BlongurrkDJO10A -NrdF

B-hermsii -NrdF

B-recurrentisAl-NrdF

B-turicatae -NrdF

B linens-BL2 - NrdFl

B7melitenSiS-16M-NrdF

B-ovis -25840 -NrdF
B-suis-1330-NrdF
P-australiense-NrdF

Phytoplasma -mali-NrdF

CarnobacteriumAT7 NrdF

CsalexigenS-DSM3043 -NrdF

C koseriBAA895 NrdF

C-bartlettiiDSM16795 -NrdF

C-difficile-630-NrdF

C-ammoniagenes-NrdF

C _glut-ATCC13032_NrdF

Cjeikeium -K411-NrdFl

Dgeothermal - 1130 -NrdF

D radiodurans Rl NrdF

E-cancerogenus353l6-NrdF

E-sakazakii-BAA894-NrdF

Enterobacter -sp_638 -NrdF

E faecalis V583 NrdF

E faecium DO NrdF

E-car - at kRI1043-NrdF

E-tasmaniensisEtl/99-NrdF

E-albertiiTW07627-NrdF

K-radiotSRS30216-NrdF

Kpneumoniae342 -NrdF

K rhizophilaDC2201 - NrdF

L brevis ATCC 367 NrdF

L casei ATCC334 NrdF

L fermentuin3956-NrdFl

Lplantarum-WCFS1-NrdF

L -reuteri-10023-NrdF

L -rhamnosusHN001-NrdF

L -sakei_23K - NrdF

L salivariusUCC118 NrdF

L lactispGdh442 - NrdF

L-citreumKM20-NrdF

L-mese-m I ATCC8293 - NrdF

L-sphaericuSC341-NrdF

M luteusNCrC2665 NrdF

? -absceSSuS-NrdF

Mycob-avium-104-NrdF

ELKSFAFDLLLELYDNELQYTDELYAETP-WADDVKAFLCYNANKALMNL

QLTQWVHDFLLELYHEQNELVESIYDAVE-LSHDVKIFVRYNANKALMNL

DLRDYTYSLLYELYENEEQYTEDLYDPLG-LTEDVKKFLRYNANKALMNL

EIKDFAFDLLLELYDNEAKYTEDLYDGVG-LTEDVKQFLHYNANKALMNL

EIKDYTFELLFELYENEVQYTHDLYDGVG-LAEDVKKFLHYNANKALMNL

ELQAYAYELLDELYEMVQYTHDLYDGVG-LAEDVKKFLHYNANKALMNL

EIKDYTFELLFELYENEVQYTHDLYDSVG-LAEDVKKFLHYNANKALMNL

TLKTWLDDLMQQLYQTKTSLVNAIYHKLN-LEDDVNKFVRYNANKALMNL

ELREFAIDLLNQLYENELEYTEDLYDQVG-LSHDVKKFIRYNANKALMNL

EVQKETQELLMELYEIEMAYTEEIYTSIG-LVEDVNRFVRYNANKGLMNL

EVQKETQDLLMELYEIEMAYTEEIYTSIG-LVEDVNRFVRYNANKGLMNL

ELHQFAIELLDELYKNELLYTEDLYDQVG-LSHDVKKFIRYNANKALMNL

ELYAFSIDLLKELYENELEYTEDLYDQVG-LSHDVKKFIRYNANKALMNL

ELYDFSIDLLNELYENELHYTEDIYDQVN-LSHDVKKFIRYNANKALMNL

SLQLWGYELLLDLYQNEMKYTEDIYAETG-LSPEVKAYVRYNANKALMNV

ELREFAIDLLNQLYENELEYTEDLYDQVG-LSHDVKKFIRYNANKALMNL

EVQKETQELLMELYEIEMAYTEEIYTSIG-LVEDVNRFVRYNANKGLMNL

EVQTETQELLMELYEIELAYTEEIYTSIG-LVEDVNRFVRYNANKGLMNL

EMKDFTFNMLFDLYNIECKYTEDLYDSLG-LTEDVKVFLHYNANKALMNL

EVKDF"NLLFDLYNIECKYTEDLYDALG-LTEDVKIFLHYNANKALMUL

EIKDFSFNLLFDLYNIECKYTEDLYDALG-LTEDVKVFLHYNANKALMNL
EVKDFAFNLLFDLYNIECKYTEDLYDSLG-LTEDVKIFLHYNANKALMNL

DLQDYTYDLLNELYDNEVEYTQSLYDRVD-LTDDVEKFLRYNGNKALMNL

FAQREATLILERLYYLESAYTKDLYSSIG-LEGAVDVFVRYNADKAL14NL

LAYKEMLLILEKLYSLEREYTKELYSCVG-LESAVDVFVRYNADKALMNL

FAYKEAMFILDRLYDLEKAYTKDLYSSIG-LESAVDVFVRYNADKALMNL

ELKDY7MNLMFELYENEVAYTHDLYDSVG-LAEDCKMFLHYNANKALMNL

EIKDFAFELLLELYDNEVRYTEALYDGVG-LTEDVKKFLHYNANKALMNL

EIKDFAFELLLELYDNEVRYTEALYDGVG-LTEDVKKFLHYNANKALMNL

EIKDFAFELLLELYDNEVRYTEALYDGVG-LTEDVKKFLHYNANKALMNL

ELKTWLDATMKTLYKEQMELVKEVYSKLSYLEEDVQKFVRYNANKALMNL

ELSKWMYDLLKYFYQEQIALVKSVYNEHY-LINDVNKFVRYNANKALMNL

EMKNWTYELLFKLYQNEVKYAEYLYDEIG-WTERVKVFLRYNANKALQNL

EIKDATFDLLLELYDNEVHYTESLYDDVG-LTEEVKAFLHYNANXALMNL

ELKHFALDLLMELYDNESRYTEELYAETG-WVADVNAFLCYNANKALMNL

EYKSKVMDVFDRLMENEINYTNTIYEGTG-LADEVINFLKYNANRAMENL

MLEEKMYSILYSLMENEIEYTNVIYRESG-LEKEVVNFLKYNANRALENL

EYY.AYTFDLMYDLYENEIEYTEDIYDDLG-WTEDVKRFLRYNANKALNNL

ELKEYTFDLLYDLYDNETQYSEDLYDDLG-WTEDVKRFLRYNANKALNNL

ELY ERTFDLLLELYDNEAQYTEDLYDEIG-WTEDVKRFLRYNANKALNNL

AVRARFEQLAREFYENECAYTDEVYAEVG-LASEVKTFVRYNFNICCDNL

DAQAWFDDTLQALYSNELAYTEQLYANVG-LTGEVKKFIRFNFNVLADNL

ELKGFALDLLMDLYDNELSYTEALYAGSG-WEDEVKAFLCYNANKALMNL

SLKTFSLDLMMELYDNELAYTEALYRDVG-WVDDVSAFLCYNANKALMNL

ELKGFALDLLMDLYDNELSYTEELYAGTS-WETDVKAFLCYNANKALMNL

KLKDWMYNLLYELYENEERYTEELYDDLG-WTEEVKTFLRYNANKALMNL

TLKDWMYNLLYELYENEERYTEELYDPIG-WTEEVKTFLRYNANKALMNL

QVKNFAYDLLQDLYDNEVLYTQELYDGVG-WTEDVKKFLHYNANKALMNL

ELQQFAIDLLLELYENEVAYTEALYAGVG-WQEDVKKFLHYNANKALMNL

ELKRFAFDLLLELYDNELQYTDELYAE7T-WADDVKAFLCYNANKALMUL

EIKDYAFELLYELYDNECKYTADLYDGVG-LTEDVKTFLHYNANKALMUL

ELKNFALDLLMDLYDNELAYSRELYGESG-WFDDVSAFLCYNANKALMUL

ELKDYTYDLLDELYENEVAYAEALYDSVG-WTEDVKKFLHYNANKALNNL

QMKDWMYDFLYQL)(DNEEKYTHTLYDQIG-WTEKVLTFIRYNANKALMNL

TLKDWMYDLLFDLYENEEKYTNDLYAKTN-WTDEVLTFLRYNANKALMNL

DMKRWMYDFLYELYDNEEKYTHVLYDQIG-WTDDVLVFIRYNANKALMNL

EFKDWMFDFLYKLYENEENYIHLVYDQIG-WSDEVLTFSRYNANKALMNL

DMKDWMYNFLYELYDNEEKYTHLLYDQVG-WTDDVLTFIRYNANKALMNL

QLQDWMYDLLYDLYENEEKYTNDLYAKTK-WTDEVLTFLRYNANKALMNL

ELQNWMYDLLYDLYANEEKYTHEVYDGTG-WTEEVLTYLRYNANKALMNL

EFTSWMYDLLYELYENEEKYTHLLYDKVG-WTDDVLVFLRYNANKALMNL

NFTNWMYSFLEELLDNEFAYTEEVYSEIG-LVEDIKTFVKYNANKSLQNM

ALQSWMYDLLYELYENEEKYTHELYDDLG-WTEQVLTFLRYNANKALMNL

ELQSWMYDLLYELYENEEKYTHELYDDLG-WTEQVLTFLRYNANKALMNL

ALQLWGYELLLDLYQNEMKYTEDIYAETG-LSPEVKAYVRYNANKALMNV

ELKAFTFELLFELYENEVEYTHDLYDAVG-LAEDVKKFLHYNANKALMNL

EIKEYTYDLLYELYENETDYTEDLYDEVG-LTEDVKKFLRYNANKALMNL

ELKDYTYELLFELYDNEVEYTQDLYDEVG-LTEDVKKFLRYNANKALMNL

-P.-



E.colinrdF

A_laidlawiiPG8ANrdF

A_odontolyticusl7982_NrdF

A tumefaciensC58_NrdF

A_aurescensTC1_NrdF

A_chlorophenolicusA6_NrdFl

Arthrobactsp_FB24_NrdF

A_phytoplasma AYWB NrdF

B_amyloliquef FZB42 NrdF

B anthracis Ames NrdF

B cereusB4264 NrdF

B clausii KSMK16 NrdF

B_lichenATCCl4S80_NrdF

B_pumilus706lNrdFl

Bacillussp Bl4905_NrdF

B subtilis_s_168_NrdFl

B_thuringiensAizawaiNrdF

B weihenstephKBAB4_NrdF

B_bacilliformKC583_NrdF

B_henselae_Houston1_NrdF

B_quintanaToulouseNrdF

B_tribocoruml05476_NrdF

B_longum_DJO10A_NrdF

B hermsii NrdF

B recurrentisAl NrdF

B turicataeNrdF

B_linens_BL2_NrdFl

B_melitensis_16M_NrdF

B_ovis_25840_NrdF

B_suis_1330_NrdF

P australienseNrdF

PhytoplasmamaliNrdF

CarnobacteriumAT7_NrdF
csalexigens_DSM3043_NrdF

1I C koseriBAA895_NrdF
00 CbartlettiiDSM16795_NrdF

C difficile_630_NrdF
C_asmoniagenesNrdF

CglutATCCl3032_NrdF

C_jeikeiumK411_NrdFl

D_geothermal_1130 NrdF

DradioduransRlNrdF
E cancerogenus35316 NrdF
E_sakazakii_BAA894_NrdF
Enterobacter sp_638_NrdF
E_faecalisV583_NrdF

E_faeciumDONrdF

E_caratSCRI1043_NrdF

E_tasmaniensisEtl/99_NrdF

E_albertiiTWO7627_NrdF

K_radiot_SRS30216_NrdF

K_pneumoniae342_NrdF

K-rhizophilaDC2201_NrdF

L brevis ATCC_367_NrdF

L_casei ATCC334 NrdF

L_fermentum3956_NrdFl

L_plantarumWCFSlNrdF

L_reuteri 10023 NrdF

L_rhamnosusHN001 NrdF

L sakei 23KNrdF

L salivariusUCCl18_NrdF

L_lactis_pGdh442_NrdF

L_citreumKM20_NrdF

L_mese_m_ATCC8293 NrdF

L sphaericusC341_NrdF

MluteusNCTC2665_NrdF

Mabscessus_NrdF

Mycob-avium_104_NrdF

GYEPLFPA-EMAEVNPAILAALSPNADENHDFFSGSGSS-YVMG--- KAV

GFDPYF---EPEDVNPVVLNGLNTET-KTMDNFSMKGNG-YQKMK --- SE
GYEALFPA-DATDVNPAILAALSPNADENHDFFSGSGSS-YVMG--- EVV

GYEALFPA-EACRVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV

GYEAMFPA-SVTDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GLDPVFAQ-DATNVNPAILSALSPNADENHDFFSGSGSS-YIVGS-SKAV
GYEAMFPA-SVTDVNPAILSALSPNADENHDFFSGSGSS-YVIG---KAV
GFDAFF---PSENVNPVIINGLNTET-KTMDNFSMKGNG-YQKMR--- SE
GFDPYF --- EEEDINPIVLNGLNTKT-KSHDFFSMKGNG-YKKAT- - -VE

GLEPKF --- EEEEINPIVLNGLRTDT-KNHDFFSVKGNG-YVKATN--VE
GLEPKF--- EEEEINPIVLNGLRTDT-KNHDFFSVKGNG-YVKATN--VE
GFDPYF--- EDEDINPIVLNGLNTKT-KSHDFFSMKGNG-YKKAT --- VE
GFEAYF --- EEEEINPIVLNGLNTKT-KSHDFFSMKGNG-YKKAT--- VE
GFAPYF---EEEEINPIVLNGLNTKT-KSHDFFSMKGNG-YKKAT --- VE

GFEAMF---PEEEVNPIVMNGIRNEG-STYDFFSQKGAT-YAKAK --- VA

GFDPYF ---EEEDINPIVLNGLNTKT-KSHDFFSMKGNG-YKKAT --- VE
GLEPKF -- EEEEINPIVLNGLRTDT-KNHDFFSVKGNG-YVKATN--VE

GLEPKF--- EEEEINPIVLNGLRTDT-KNHDFFSVKGNG-YVKATN--VE

GFESLFPS-EVCRVNPAILAALSPNSDENHDFFSGSGSS-YVIG--- KAV
GFEALFPS-EVCRVNPAILAALSPNSDENHDFFSGAGSS-YVIG--- KAV

GFEPLFPP-EVCRVNPAILAALSPSSDENHDFFSGAGSS-YVIG--- KAV
GFEALFPP-EVCHVNPAILASLSPNSDENHDFFSGAGSS-YVIG--- KAV

GYPALFPA-EICDVNPAILAALSPNADENHDFFSGSGSS-YVMG- - -KAE
GFDSAFNI-RDIDVNPLVLNGLRTNT-KTHDFFSTKGNG-YIKPMK--VE
GFDTKFNI-KDTDVNPLVLNGLRTDT-KTHDFFSTKGNG-YIKPMR- -VE
GFEPTFNI-QDIDVNPLVLNGLRTDT-KTHDFFSTKGNG-YIKPMK--IE
GYEAMFPK-EVTEVNPAILAALSPNSDENHDFFSGSGSS-YVIG--- KAE
GYEALFPA-EACKVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV

GYEALFPA-EACKVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPA-EACKVNPAILSALSPNADENHDFFSGSGSS-YVIG- -- KAV
GFDAFF---PEENVNPVVLNGLNTET-KTMDNFSMKGNG-YQKM L---SE
GFNPYF--- EKEEVNPVILNGLNTET-KTMDNFSMKGNG-YQKMR --- SE
GFDPLFPDT-ANDVDPVIMNGISTGT-SNHDFFSQVGNG-YLLG- -- MVE
GYEPLFPG-ATEAVNPAILAALSPGAEENHDFFSGSGSS-YVIG--- RSE
GYEALFPA-EMAEVNPAILAALSPNADENHDFFSGSGSS-YVMG---KAI

GYDNRL--- EVDPVNPIVLNGLSTET-KTHDFFSTKGNG-YQKGV---YE

GFEKLY ---TVDAINPIVLNGLSTET-KTHDFFSTKGNG-YQKGV- -YE
GYEGLFPT-DETKVSPAILSSLSPNADENHDFFSGSGSS-YVIG--- KAE

GYEGLFPA-DETKVSPNILSALSPNADENHDFFSGSGSS-YVIG--- KAE

GYEGLFPA-DETRVSPAILSALNPGGDENHDFFSGSGSS-YVIG--- KAE

GLERLFPE- - EEVNPLVLNGIRATGGTTHDFFSIKGAGGYAKIT - AE
ALPRPFGD-- -EDINPIVQNGIQARG-TTHDFFSAKGSS-YSKMT --- VE
GYEALFPP-DMADVNPAILAALSPNADENHDFFSGSGSS-YVMG--- KAV

GYEALFPP-EMAQVNPSILAALSPGADENHDFFSGSGSS-YVMG--- KAV

GYEALFPP-EMADVNPAILAALSPNADENHDFFSGSGSS-YVMG--- KAV

GMDPLFAD-TANDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG---TVE

GMDPLFPD- TANDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG -- HVE

GYEALFPA- SMTDVNPAILSALSPNADENHDFFSGSGSS-YVIG- - -KAV
GYQALFPS-YMTDVNPAILAALSPNADENHDFFSGSGSS-YVMG- -- KAV
GYEPLFPA- EMAKVNPAILAALSPNADENHDFFSGSGSS-YVMG- - - KAV
GYEGMFPS -DMTKVDPSILSALSPNADENHDFFSGSGSS-YVIG- - -KAV
GYEALFPA-EMAAVNPAILAALSPNADENHDFFSGSGSS-YVIG- - -KTE
GYEALFPR-EMTDVSPAILSSLSPNADENHDFFSGSGSS-YVIG--- KAV

GQDPLFPD-TAEDVDPVVMNGISTST-ANHDFFSQVGNG-YLLG---NVE
GQETAFPD-TADDVNPIVMNGISTST-ANHDFFSQVGNG-YRLG---QVE
GQDPLFPD-TASDVNPVVMNGISTTT-SNHDFFSQVGNG-YRLG --- AVE

GQDALFPD-TAEDVNPVVMNGISTGT-SNHDFFSQVGNG-YRLG --- QVE

GQDPLFPD-TASDVNPVVMNGISTST-SNHDFFSQVGNG-YRMG--- AVE

GQETAFPD-TADDVNPIVMNGISTST-ANHDFFSQVGNG-YRLG--- QVE

GQGALFPD-TAEDVNPVVLNGMSTST-ANHDFFSQVGNG-YRLG --- NVE
GMDPLFADGYAQNVNPVVMNGISTST -SNHDFFSQVGNG- YLLG-- -DVE

GFDIYFKDASANDVNPIVMNGISIET-ANHDFFSQVGAG-YLMG--- EAE

GQEPMFPD-GAEDVNPVVMNGISTST-ANHDFFSGVGNG-YLLG--- AVE

GQEPMFPD-GAEDVNPVVMNGISTST-ANHDFFSGVGNG-YLLG---EVE

GFEAMF---PEEEVNPIVMNGIRNEG-STYDFFSQKGAT-YAKAK--- VA

GYEPMFPA-ETTNVNPAILSALSPNSDENHDFFSGSGSS-YVIG--- KAE
GYEALFPR-EETDVNPAILSALSPNADENHDFFSGSGSS -YVIG- - -KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV

M_bovis_b_AF2122_97_NrdFl

MgilVum_PYR_GCK_NrdF

M_lepraeTNNrdF

MmarinumMNrdF

MsmegmatisMC2_155_NrdF

M_tubercCDC1551_NrdFl

M_ulceransAgy99_NrdF

MvanbaaleniiPYR_1_NrdF

N_farcinIFM10152_NrdF

O_anthropi ATCC49188_NrdF

O oeni BAAll63_NrdF

OnionyellowsphytoNrdF

PaenibacillusJDR2_NrdF

P_denitrif_PD1222_NrdF

PypentosATCC25745_NrdF

PedobacterBAL39 NrdF

P_luminelau_TT01_NrdF

P_mirabilisHI4320_NrdF

P_stuartii25827_NrdF

PseudovibrioJE062_NrdF

Retli_CFN_42_NrdF

R_leguminosaruml325_NrdF

S-typhimuriumLT2_NrdF
S_proteamaculans_568_NrdF

S_boydii3o8394_NrdF

S_dysenteriae_1012_NrdF

S_flexneri_2a_2457TNrdF

Silicibacter_TM1040_NrdF

S-aureus BB NrdF

S_epidermidis RP62A NrdFl

S_haemolytJCSC1435 NrdF

S_saprophyticusl5305_NrdF

S_gordoniiChallisNrdF
SmutansUA159_ NrdF
S pneumoniaeSP14BS69_NrdF

S_pyogenes_MlGASNrdF2

S _sanguinis SK36_NrdF

Ssuis_891591_NrdF

S thermophilusLMD9 NrdF

VibrioMED222_NrdF

W_glossinidiaGbNrdF
Y_bercovieri_43970_NrdF

Y_frederiksen_33641_NrdF

Y_mollaretii_43969_NrdF

Y_p_Medie_91001_NrdF

Y_pseudotuber_31758_NrdF

GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG---KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPR-DETDVNPAILSALAPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG---KAV
GYEALFPR-DETDVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEGLFPA-DETRVNPAILSALSPNADENHDFFSGSGSS-YVIG- - -KAV
GYEALFPA-EACKVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GLEPMFAD-GAEDVNPVVMNGISTST-ANHDFFSQVGNG-YRLG---QVE
GFDAFF--- PSENVNPVIINGLNTET-KTMDNFSMKGNG-YQKMR--- SE
GFEPYF --- PEEPVNPIVFNGISTHT-KQHDFFSKKGNG-YVRTVH--IE
GYEALFPP-QACEVNPAILAALSPDS-ENHDFFSGSGSS-YVIG--- KAV
GQDPLFPD-TEADVNPIVMNGISTGT-SNHDFFSQVGNG-YRLG---NVE

GFEELF--- EVKPINAIVLNGLNVET-TQHDFFSKKSTN-YEKSME--VV

GYETLFPP-EITNVSPTILSALSPNANENHDFFSGSGSS-YVIG--- KAV

GYEALFPD-EITNVSPAILSSLSPDANENHDFFSGSGSS-YVIG---KTI

GYEALFPD-VVTDVSPAILSALSPDANENHDFFSGSGSS-YVIG---KAV
GFEGLFPE-TICQVNPAIMASLSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPA-EACKVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPA-EACKVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPP-EMADVNPAILAALSPNADENHDFFSGSGSS-YVMG- -- KTV
GYEALFPP-SMAEVNPAILSALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEPLFPA- EMAEVNPAILAALSPNADENHDFFSGSGSS-YVMG-- -KAV
GYEPLFPA-EMAEVNPAILAALSPNADENHDFFSGSGSS-YVMG---KAV
GYEPLFPA-EMAEVNPAILAALSPNADENHDFFSGSGSS-YVMG-- -KAV
GFEALFPE-ETCRVNPAIMAALSPGSDENHDFFSGSGSS-YVIG--- KAV
GFEPYF- - - EEREFNPIIENALDTTT-KNHDFFSVKGDG-YVLALN- -VE
GFEPYF--- EEREFNPIIENALDTST-KNHDFFSVKGDG-YTLALN--VE
GFEPYF--- EEKEFNPIIENALDTT-KNHDFFSVKGDG-YTLALN--VE
GFDPYF --- EEREFNPIIENALDTTT-KNHDFFSVKGDG-YTLALN--VE
GQDPLFPD-TADDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG --- EVE
GQDPLFPD-TANDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG---SVE

GQDPLFPD-SAEDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG---EVE

GQDPLFPD-TANDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG --- SVE
GQDPLFPD-SADDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG--- EVE
GQDPLFPD-SADDVNPIIMNGISTGT-SNHDFFSQVGNG-YLLG--- EVE
GQDPLFPD-SANDVNPIVMNGISTGT-SNHDFFSQVGNG-YLLG--- TVE

GFEALFPD-ELCQVNPAIMAALSPNADENHDFFSGSGSS-YVIG--- KAV

GYEQYFPD-DESLVNPDILSALTPNSNENHDFFSGSGSS-YVMG--- KTV
GYEALFPA-SQAAVSPAILAALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPA-SQAAVSPAILAALSPNADENHDFFSGSGSS-YVIG--- KAV

GYEALFPS-SQAAVSPAILAALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPA-SQAAVSPAILAALSPNADENHDFFSGSGSS-YVIG--- KAV
GYEALFPA-SQAAVSPAILAALSPNADENHDFFSGSGSS-YVIG--- KAV



E.colinrdF
A_laidlawiiPG8ANrdF
A_odontolyticusl7982_NrdF
A_tumefaciensC58_NrdF
A_aurescensTC1_NrdF
A_chlorophenolicusA6_NrdFl
ArthrobactspFB24_NrdF
A_phytoplasma AYWB NrdF

B_amyloliquef FZB42 NrdF
B anthracisAmesNrdF
B cereusB4264_NrdF

B clausii_KSMK16_NrdF

B_lichen_ATCC14580_NrdF
B_pumilus7O6lNrdFl
Bacillussp_B14905 NrdF

B_subtilis__168_NrdFl
B_thuringiensAizawaiNrdF
B weihensteph_KBAB4_NrdF
B_bacilliformKC583_NrdF
B_henselaeHouston1_NrdF
B_quintanaToulouseNrdF
B_tribocorum105476_NrdF
B_longum_DJO1OA_NrdF
B hermsiiNrdF
B recurrentisAl NrdF
B_turicataeNrdF
B_linens_BL2_NrdFl
B_melitensis_16M_NrdF
B_ovis_25840_NrdF

B_suis_1330_NrdF
P australienseNrdF

Phytoplasma_maliNrdF
CarnobacteriumAT7 NrdF
CsalexigensDSM3043_NrdF
C_koseriBAA895_NrdF
C bartlettiiDSM16795_NrdF

C difficile_630_NrdF

C_ammoniagenesNrdF
C_glutATCC13032_NrdF
C_jeikeiumK411_NrdF1
D_geothermal 1130 NrdF

Dradiodurans_RlNrdF
E_cancerogenus35316_NrdF
E_sakazakiiBAA894_NrdF
Enterobacter sp_638_NrdF
E_faecalisV583_NrdF
E faecium DO NrdF
E car atSCRI1043_NrdF
E_tasmaniensisEtl/99_NrdF
EalbertiiTWO7627_NrdF
K_radiotSRS30216_NrdF

K_pneumoniae342_ NrdF
KrhizophilaDC2201_NrdF

L brevis ATCC 367 NrdF
L_casei_ATCC334_NrdF
L fermentum3956_NrdFl
L_plantarumWCFS1 NrdF
L reuteri 10023_NrdF
L rhamnosusHNOONrdF
L_sakei_23KNrdF
L_salivariusUCC118 NrdF
L_lactisJpGdh442_NrdF
L citreumKM20_NrdF

L_mese_m_ATCC8293_NrdF
LsphaericusC341_NrdF
M_luteusNCTC2665_NrdF
M_abscessusNrdF
Mycob-avium_104_NrdF

ETEDEDWNF--------------

MLKDSDFVFDREKIITFGGKK--
DTEDEDWDF ------------
ATEDEDWDF--------------
NTEDEDWEF--------------
STLDGDWDF ------------
NTEDEDWDF--------------
ALQDEDFYF--------------
PIKDEDFYFGQDEEQI -------

KLSDDDFVFNF------------
KLADDDFVFNF------------
PLRDEDFFFPEAEEKAKQEQR--
PLKDDDFYFDDK -----------
PLKDDDFFFGDES----------

PITDDTFNFNR------------
PLKDDDFYFEDEKEQI -------

KLADDDFVFNF ------------
KLADDDFVFNF------------
ATTDEDWEF--------------
ATTDDDWEF--------------
ATTDDDWEF--------------
ATTDDDWEF--------------
ETDDDDWDF--------------
PLQDDDFA---------------
PLHDDDFM---------------
PLQDDDFA ---------------
NTEDDDWDF--------------
ATEDEDWAF--------------
ATEDEDWAF--------------
ATEDEDWAF--------------
ALKDEDFYF--------------
SLQDSDFVFVEPKIN --------
SMETDDYEKWTV-----------
RTEDEDWAF--------------
ETEDEDWNF--------------
SLQDSDFVFDREI----------
ELEDEDFII--------------
DTTDDDWDF--------------
NTEDDDWDF--------------
NTVDDDWDF--------------
PLTDAVVREAWNA----------
PLTDADIETLWHEPAQVTVHE--

ETEDEDWDF--------------
ETEDEDWDF--------------
ETEDADWDF--------------
AMKDDDYLYGLDK----------
AMKDDDYLIGLE -----------
NTEDEDWDF--------------
ETEDEDWDF--------------
ETEDEDWNF--------------
ATEDEDWEF--------------
ETDDDDWDF--------------
NTEDEDWDF--------------
AMSSDDYTIGEPADPQDPSK---

AMQDDDYQFSTEDEDHDK-----
AMSDSDYHVADPNAGKDINAKD-

AMQDTDYDIGNPDD---------

AMNDSDYNVKDPNAGKDLNARD-
AMEDDDYSFSTEDKGHKD -----

AMNDSDYDFD-------------
AMEDSDYLFNFDDNSDK------
EMLDDDYIF--------------
AMDDSDYTIGQ ------------
AMNDDDYNIGLD ----------
PITDDTFNFNR------------
NTEDEDWDF--------------
NTEDEDWDF--------------
VTEDEDWDF ------------

M_bovis_b_AF2122_97_NrdF1
M_gilvumPYRGCKNrdF
M-lepraeTNNrdF
M_marinumM_NrdF
M_smegmatisMC2_155_NrdF
M_tuberc_CDC1551NrdFl
M_ulceransAgy99_NrdF
M_vanbaaleniiPYR_1_NrdF
N_farcinIFM10152_NrdF
O_anthropi ATCC49188_NrdF
O oeni BAA1163_NrdF
Onion-yellows_phyto NrdF
PaenibacillusJDR2_NrdF
P_denitrifPD1222_NrdF
P_pentosATCC25745_NrdF
Pedobacter_BAL39_NrdF
P_luminelauTrONrdF
P_mirabilisHI4320_NrdF
P_stuartii25827_NrdF
PseudovibrioJE062_NrdF
Retli_CFN_42_NrdF

R leguminosaruml325_NrdF
S-typhimuriumLT2_NrdF
S_proteamaculans_568_NrdF
S-boydii308394_NrdF
S_dysenteriae_1012_NrdF
S_flexneri_2a_2457TNrdF
Silicibacter_TM1040_NrdF
S-aureus_BB_NrdF
S epidermidisRP62ANrdFl

S_haemolytJCSC1435_NrdF

S saprophyticusl5305_NrdF
S_gordoniiChallis NrdF
S mutansUA159_NrdF
S_pneumoniaeSP14BS69_NrdF
S_pyogenes MlGAS NrdF2

S_sanguinis SK36_NrdF
S suis 891591_NrdF
S thermophilusLMD9_NrdF
VibrioMED222_NrdF
W_glossinidiaGbNrdF
Y_bercovieri_43970_NrdF
Y_frederiksen_33641_NrdF
Y_mollaretii_43969_NrdF
Y_p_Mediev_91001_NrdF
Y_pseudotuber_31758_NrdF

VTEDDDWDF--------------
ITEDEDWDF--------------
VTEDEDWDF --------------

VTQDEDWDF--------------
NTEDEDWDF--------------
VTEDDDWDF --------------
ATQDEDWDF--------------
NTEDEDWDF--------------
NTEDEDWDF--------------
ATEDEDWSF--------------
NLSPDDYNVGKSTQAGLDSSKEE

ALQDEDFYF--------------

QLRDEDFVFNM------------

ATEDEDWDF--------------
TMSDEDYNI--------------

YLHDEDFQMDADPIF--------

NTEDEDWNF--------------
NTEDDDWDF--------------
STEDDDWDF--------------

ATEDEDWDF--------------

ATEDEDWDF--------------

ATEDEDWDF--------------
ETEDEDWNF--------------

NTEDDDWDF--------------

ETEDEDWNF--------------
ETEDEDWNF--------------
ETEDEDWNF--------------
ATEDDDWDF--------------
ALQDDDFVFDNK-----------
PLRDEDFVFDN------------
ALQDEDFIFDN------------
ALKDEDFVFDE ------------
AMQDEDYDYGL------------
AMHDDDYLMGK ------------
AMQDDDYNYGLD-----------
AMSDDDYNYGL------------
AMQDDDYNYGL------------
AMTDDDYLYGL------------
AMQDDDYNYGLK-----------
ATEDDDWDF--------------
LTKDEDWTF--------------
NTEDEDWDF--------------
STEDEDWNF--------------
NTEDEDWDF--------------
NTEDEDWDF--------------
NTEDEDWDF--------------

324
320
325
324
324
324
324
324
320
328
337
350
318
329
317
327
319
322
323
325
324
324
319
323
319
319
319
338
323
322
322
322
319
319
320
319
319
320
320
320
324
323
323
323
323
323

........ .....
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Appendix 3

Strains, plasmids, and plasmid maps
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Table A3.1. E. coli strains discussed in this thesis

Strain
K-12

W3110

GR536

GR536A

GR536-N-S-nrdF

GR538

JW2649

JW2651

TOP 10

Genotype/description
F*

F ~ IN(rrnD-rrnE)1 rph- I

W3 110 AfecABCDE::kan AzupT: :cat AmntH AfeoABC AentC

W3 110 AfecABCDE Azup T AmntH AfeoABC AentC

Sequence encoding MAWSHPOFEKGA (StreplI-tag,

underlined, with GA linker) inserted before nrdF start codon

in GR536A genome. N denotes N-terminal, S denotes the

Strepll tag)

W31 10 AfecABCDE::kan AzupT::cat AentC AfeoABC

BW25113 AnrdJ755::kan

BW25113 AnrdF757::kan

F mcrA A(mrr-hsdRMS-mcrBC) p80lacZAM15 AlacX74

deoR nupG recAl araD139 A(ara-leu)7697 ga/U galK

rpsL(StrR) endA I?-

462

Source or reference
Yale E. coli genetic stock

center (CGSC catalog

no. 7296)

1

2

Chapter 5

Chapter 5

2

3

3

Invitrogen



Table A3.2. Plasmids used in this thesis

Plasmid Description Source or reference
pCR2.1-TOPO TOPO cloning vector; Amp and Km resistance Invitrogen

pKO3 Gene replacement vector; confers Cm resistance, sucrose 4

sensitivity

pKO3-N-S-nrdF N-terminally StreplI-tagged nrdF (GA linker), with the 599 nt Chapter 5

upstream and 299 nt downstream of nrdF, ligated into pKO3

pCP20 Helper plasmid for excision of antibiotic resistance cassettes 6

introduced using the Wanner method of gene replacement5

pBAD-mycHisA Titrable L-arabinose (ara) induction of the gene of interest, Invitrogen

Amp resistance

pBAD-N-S-x-nrdF N-terminally StreplI-tagged nrdF in pBAD (x = linker length: Chapter 5

0, 2, 5, or 6 amino acids)a

pET3a General expression vector, Amp resistance Novagen

pET14bb General expression vector, Amp resistance Novagen

pET24a General expression vector, Km resistance Novagen

pET28ab General expression vector, Km resistance Novagen

pET3a-nrdH E. coli nrdH cloned into the NdeI and BamHI sites of pET3a Chapter 2

pET3a-nrdI E. coli nrdI cloned into the Ndel and BamHI sites of pET3a Chapter 3

pET14b-nrdF B. subtilis nrdF cloned into the NdeI and XhoI sites of pETl4b 7

pET14b-nrdF pET 14b-nrdF containing a W3OQ mutation Chapter 6

pET14b-nrdF pET 14b-nrdF containing a YI05F mutation Chapter 6

pET14b-nrdI B. subtilis nrdI cloned into the NdeI and XhoI sites of pETl4b 7

pET24a-nrdF E. coli nrdF cloned into the NdeI and BamHI sites of pET24a Chapter 2

pET28a-nrdE E. coli nrdE cloned into the NdeI and BamHI sites of pET28a Chapter 2

pET28a-nrdF E. coli nrdF cloned into the NdeI and BamHI sites of in Chapter 2

pET28a

pET28a-nrdF(Y105F) pET28a-nrdF containing a Y105F mutation Chapter 7

pET28a-nrdF(Y142F) pET28a-nrdF containing a Y142F mutation Chapter 7

pET28a-nrdI E. coli nrdI cloned into the NdeI and BamHI sites of pET28a Chapter 3

pET28a-nrdI(N83D) pET28a-nrdI containing a N83D mutation Chapter 3

a See Table 5.1 for definition of N-S-nrdF. For x = 2, linker: GA. For x = 5, linker: SLGGH. For x = 6, linker:
GSGGSG
b Genes cloned into pET14b and pET28a contain N-terminal His6 tags. The sequence of these tags is
MGSSH 6 SSGLVPRGSH.
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Figure A3.1. Plasmid map of pKO3.4 Not all restriction sites are shown. The features of the
vector are described in section 5.3.2.

-EcoRI (435)

-cat

repA(ts)NcoI (736)

XmaI (1047)

SmaI (1049)

BamHI (1070)
pKO3

5681 bpSall (1101)
5681 bp

M 1(3ori

NdeI (3848)

HindIII (3464)

sacB
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Figure A3.2. Plasmid map of pKO3-N-S-nrdF. Not all restriction sites are shown. Construction
of the plasmid is described in sections 5.2.4 and 5.3.2 and Scheme 5.1.

EcoRI (435)

NdeI (5720)

HindIII (5336)

-1)

M13ori

Base coordinates:

UR (-585 to -1): 1075-1659
Strep-GA: 1660-1698
nrdF: 1699-2658
DR (*1-*281): 2659-2940
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Figure A3.3. Nucleotide sequence of (A) wt E. coli K-12 (same as GR536) and (B) GR536-N-
S-nrdF in the nrdE-nrdF intergenic region. Part of nrdE is shown in red (TAA stop codon
bolded) and part of nrdF is shown in blue (start codon bolded). In (B), the inserted NdeI site
(CATATG) is bolded, the StrepI tag is underlined, and the nucleotides added to the nrdF coding
sequence are shown in green.

(A) Wild-type E. coli K- 12

GATCAGGGGC
AAAGCGCAGA
CAGATGGCGC
TCTATGAAAC
CTGGAGGTGT
AACGATATTC
TTTACTGGCC
CCCGATGCAC
GTTCATGCCC

TGTCGCTGAC
TTTACGCCTG
TGGAAGGCAC
TCTCACGTAT
GGAATCGCCT
CTGCCTGGCA
TGACGCTGCT
TCACGCCTCA
GCTCTTACAG

GCTTTTTTTC
GCGCAAGGGT
TGAAATTGAA
CAGCGCCATC
GACCAGCAAT
GACATTAACT
CGACACGCTG
TGAAGAAGCG
TTCGATTTTC

CCCGATACCG
ATCAAAACGC
GGCTGCGTCT
AACTGGAACA
TTCTGGCTAC
GTCGTAGAAC
CAAAATGTTA
GTATTATCGA
TCGACGCTAT

CCACCACTCG
TCTATTACAT
CCTGTGCACT
AGATATCTGA
CAGAAAAGGT
AACAACTGAC
TCGGCGCGCC
ATATCAGCTT
GCCAGACCAA

CGATATCAAC
CCGCCTGCGT
TTAAGGAATA
CGATAAAGAT
GCCGCTGTCG
GATGCGCGTT
TTCTCTGATG
TATGGAAGCG
AGATGTCGAT

(B) E. coli GR536-N-S-nrdF

GATCAGGGGC
TTTACGCCTG
TGAAATTGAA
GAAAAAGGCG
CTGGAGGTGT
CTGCCTGGCA
CGACACGCTG
GTATTATCGA
GCCAGACCAA

TGTCGCTGAC GCTTTTTTTC CCCGATACCG CCACCACTCG CGATATCAAC AAAGCGCAGA
GCGCAAGGGT ATCAAAACGC TCTATTACAT CCGCCTGCGT CAGATGGCGC TGGAAGGCAC
GGCTGCGTCT CCTGTGCACT TTAAGGAATA TCTCATATGG CGTGGAGCCA CCCGCAGTTC
CGATGAAAC TCTCACGTAT CAGCGCCATC AACTGGAACA AGATATCTGA CGATAAAGAT
GGAATCGCCT GACCAGCAAT TTCTGGCTAC CAGAAAAGGT GCCGCTGTCG AACGATATTC
GACATTAACT GTCGTAGAAC AACAACTGAC GATGCGCGTT TTTACTGGCC TGACGCTGCT
CAAAATGTTA TCGGCGCGCC TTCTCTGATG CCCGATGCAC TCACGCCTCA TGAAGAAGCG
ATATCAGCTT TATGGAAGCG GTTCATGCCC GCTCTTACAG TTCGATTTTC TCGACGCTAT
AGATGTCGAT
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