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ORDERED RULES FOR CLASSIFICATION:
A DISCRETE OPTIMIZATION APPROACH TO

ASSOCIATIVE CLASSIFICATION∗

By Dimitris Bertsimas, Allison Chang, and Cynthia Rudin

Massachusetts Institute of Technology

We aim to design classifiers that have the interpretability of asso-
ciation rules yet match the predictive power of top machine learning
algorithms for classification. We propose a novel mixed integer op-
timization (MIO) approach called Ordered Rules for Classification
(ORC) for this task. Our method has two parts. The first part mines
a particular frontier of solutions in the space of rules, and we show
that this frontier contains the best rules according to a variety of
interestingness measures. The second part learns an optimal ranking
for the rules to build a decision list classifier that is simple and in-
sightful. We report empirical evidence using several different datasets
to demonstrate the performance of this method.

1. Introduction. Our goal is to develop classification models that are
on par in terms of accuracy with the top classification algorithms, yet are
interpretable, or easily understood by humans. This work thus addresses a
dichotomy in the current state-of-the-art for classification: On the one hand,
there are algorithms such as support vector machines (SVM) [Vapnik, 1995]
that are highly accurate but not interpretable; for instance, trying to explain
a support vector kernel to a medical doctor is not likely to persuade him
to use an SVM-based diagnostic system. On the other hand, there are algo-
rithms such as decision trees [Breiman et al., 1984, Quinlan, 1993] that are
interpretable, but not specifically optimized to achieve the highest accuracy.
For applications in which the user needs an accurate model as well as an
understanding of how it makes predictions, we develop a new classification
model that is both intuitive and optimized for accuracy.

Our models are designed to be interpretable from multiple perspectives.
First, the models are designed to be convincing : for each prediction, the algo-
rithm also provides the reasons for why this particular prediction was made,
highlighting exactly which data were used to make it. To achieve this, we
use “association rules” to build “decision lists,” that is, ordered sets of rules.

∗Supported by NSF Grant IIS-1053407.
AMS 2000 subject classifications: Primary 68T05; secondary 90C11
Keywords and phrases: Association rules, associative classification, integer optimization
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2 BERTSIMAS, CHANG, AND RUDIN

The second way our models are interpretable involves their size: these mod-
els are designed to be concise. Psychologists have long studied human ability
to process data, and have shown that humans can simultaneously process
only a handful of cognitive entities, and are able to estimate relatedness of
only a few variables at a time [e.g. Miller, 1956, Jennings et al., 1982]. Thus
conciseness contributes to interpretability, and our formulations include two
types of regularization towards concise models. The first encourages rules
to have small left-hand-sides, so that the reasons given for each prediction
are sparse. The second encourages the decision list to be shorter. That is,
the regularization essentially pulls the default rule (the rule that applies if
none of the rules above it apply) higher in the list. We aim to construct a
convincing and concise model that limits the reasoning required by humans
to understand and believe its predictions. These models allow predictions to
more easily be communicated in words, rather than in equations.

The principal methodology we use in this work is mixed integer optimiza-
tion (MIO), which helps our classification algorithm achieve high accuracy.
Rule learning problems suffer from combinatorial explosion, in terms of both
searching through a dataset for rules and managing a massive collection of
potentially interesting rules. A dataset with even a modest number of fea-
tures can contain thousands of rules, thus making it difficult to find useful
ones. Moreover, for a set of L rules, there are L! ways to order them into
a decision list. On the other hand, MIO solvers are designed precisely to
handle combinatorial problems, and the application of MIO to rule learning
problems is reasonable given the discrete nature of rules. However, design-
ing an MIO formulation is a nontrivial task because the ability to solve an
MIO problem depends critically on the strength of the formulation, which
is related to the geometry of the feasible set of solutions. This is consider-
ably more challenging than linear optimization, which has a similar form
but without integrality constraints on the variables. We develop MIO for-
mulations for both the problem of mining rules and the problem of learning
to rank them. Our experiments show predictive accuracy on a variety of
datasets at about the same level as the current top algorithms, as well as
advantages in interpretability.

In Section 2, we discuss related work. In Section 3, we state our nota-
tion and derive MIO formulations for association rule mining. In Section 4,
we present a learning algorithm, also an MIO formulation, that uses the
generated rules to build a classifier. In Section 5, we show results on clas-
sification accuracy, and in Section 6, we demonstrate the interpretability of
our classifiers. In Section 7, we discuss the application of our methodology
to large-scale data. We conclude in Section 8.
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2. Related Work. Association rule mining was introduced by Agrawal
et al. [1993] to aid market-basket analysis, the purpose of which was to dis-
cover sets of items, or itemsets, that were often purchased together, such
as the well-known (though probably fictitious) correlation between sales of
beer and diapers [Büchter and Wirth, 1998]. To help increase store profit
and customer satisfaction, these easy-to-understand patterns could be used
to guide the management of store layout, customer segmentation, and items
for sale. Consider the rule {i, j} ⇒ k, where s% of customers purchased
items i, j, and k, and c% of customers who purchased items i and j also
purchased item k. In this case, {i, j} is the body of the rule, k is the head,
s is the support, and c is the confidence. In general, the most challenging
part of rule mining is to first generate all itemsets with support exceeding a
specified threshold, called frequent itemsets. Frequent itemsets have a down-
ward closure property, that is, any subset of a frequent itemset must also
be frequent. Even so, the problem of counting the number of maximal fre-
quent itemsets, or itemsets that are not subsets of other frequent itemsets,
is #P-complete, suggesting that the problem of enumerating all frequent
itemsets can in general be hard [Yang, 2004]. Since the introduction of the
Apriori method by Agrawal and Srikant [1994], researchers have proposed
many algorithms for frequent pattern mining that apply heuristic techniques
to traverse the search space, which grows exponentially with the number of
items in the dataset [Han et al., 2007, Hipp et al., 2000, Goethals, 2003].

Frequent itemset generation often leads to an overwhelming number of
rules, making it difficult to distinguish the most useful rules. To make sense
of such an enormous collection of rules, users typically rank them by a
measure of “interestingness,” which can be defined in many different ways.
There is a large body of literature on interestingness measures, such as
lift, conviction, Laplace, and gain [review articles include those of Tan and
Kumar, 2000, McGarry, 2005, Geng and Hamilton, 2006]. The existence of so
many interestingness measures introduces another problem of how to select
an interestingness measure for a particular task. Bayardo and Agrawal [1999]
showed that if the head of the rule is fixed, then a number of interestingness
metrics are optimized by rules that lie along the upper support-confidence
border, where a rule on this border has the highest confidence among rules
with equal or higher support. They proposed an algorithm to mine only
this border, which indeed produces a reduced set of rules. In this paper, we
extend the idea of an optimal border to general rules, not just the case of
rules with fixed heads, and we use MIO to find the border.

Association rules were originally designed for data exploration, and later
associative classification developed as a framework to use the rules for clas-
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sification, with algorithms such as CBA, CMAR, and CPAR [Liu et al.,
1998, Li et al., 2001, Yin and Han, 2003, Simon et al., 2011]. Reviews of
the different approaches are given by Thabtah [2007], Rückert [2008], and
Vanhoof and Depaire [2010]. Methods to build a classifier using a sorted set
of association rules fall into two categories: those that predict based on an
ensemble of rules, and those that predict based on a single rule in a ranked
list of rules. The first category uses more information by classifying based
on a sort of majority vote of rules, but typically has two disadvantages: first,
it ignores the dependency between rules, so even two rules that are almost
exactly the same have two separate votes instead of one; and second, the
model loses some interpretability by combining rules together. Boosted de-
cision trees share a related problem–they no longer have the interpretability
of single decision trees. Examples of rule ensemble classifiers are in Friedman
and Popescu [2008] and Meinshausen [2010]. These models are similar to the
Logical Analysis of Data (LAD) model [Boros et al., 2000], though the LAD
model uses only rules that have confidence equal to one, so that even rules
with confidence 0.99 are discarded, which could lead to overfitting. The sec-
ond category of sorted-rule-based classification algorithms produces decision
lists [see Rivest, 1987, Klivans and Servedio, 2006, Sokolova et al., 2003, An-
thony, 2005, Long and Servedio, 2007, Marchand and Sokolova, 2005, Rudin
et al., 2011]. These classifiers are simple to understand and use the highest
ranked rules for prediction. However, if the list is not properly ordered, it
may not yield an accurate classifier. Decision lists are commonly created
by ordering rules according to an interestingness measure. In this work, we
learn the ordering of rules from data instead. Learning the rule list has the
potential to be substantially more accurate in terms of misclassification er-
ror than ranking rules by an arbitrary choice of interestingness measure. As
far as we know, there are no other mathematical programming approaches
to creating decision lists in the literature.

3. Mining Optimal Association Rules. In this section, we describe
an MIO method to generate the rules that form the building blocks for
the classifier. First, we derive constraints that characterize the full set of
possible rules for a dataset. Then, we present an MIO algorithm to find a
set of general rules. Finally, we address the special case of mining rules for
binary classification, for which the rules have a particular form.

3.1. Interestingness and the Frontier. We use the following standard no-
tation: Let I = {1, . . . , d} be a set of items, and let D be a dataset in which
each observation is some subset of items in I. Let there be n observations in
D. An association rule has the form X ⇒ Y , where X,Y ⊆ I and X∩Y = ∅.
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We want to formulate a set of constraints that define the space P of
possible rules. In what follows, the ti are data, while b, h, xi, yi, and zi are
variables. The binary vector ti ∈ {0, 1}d represents observation i:

tij = 1[observation i includes item j], 1 ≤ i ≤ n, 1 ≤ j ≤ d.

The binary vectors b, h ∈ {0, 1}d represent the body and head respectively
of a given rule X ⇒ Y . That is, for j = 1, . . . , d,

bj = 1[j∈X] and hj = 1[j∈Y ].

We also use variables xi, yi, and zi, for i = 1, . . . , n, to represent

xi = 1[observation i includes X], yi = 1[observation i includes Y ], and

zi = 1[observation i includes X and Y ].

P is constrained by (1) through (10). Note that ed is the d-vector of ones.
Each constraint is explained below.

bj + hj ≤ 1, ∀j,(1)

xi ≤ 1 + (tij − 1)bj , ∀i, j,(2)

xi ≥ 1 + (ti − ed)
T b, ∀i,(3)

yi ≤ 1 + (tij − 1)hj , ∀i, j,(4)

yi ≥ 1 + (ti − ed)
Th, ∀i,(5)

zi ≤ xi, ∀i,(6)

zi ≤ yi, ∀i,(7)

zi ≥ xi + yi − 1, ∀i,(8)

bj , hj ∈ {0, 1}, ∀j,(9)

0 ≤ xi, yi, zi ≤ 1, ∀i.(10)

Since an item cannot be in both the body and head of a rule (X ∩ Y = ∅),
b and h must satisfy (1). To understand (2), consider the two cases bj = 0
and bj = 1. If bj = 0, then the constraint is just xi ≤ 1, so the constraint
has no effect. If bj = 1, then the constraint is xi ≤ tij. That is, if bj = 1
(item j is in X) but tij = 0 (item j is not in observation i), then xi = 0.
This set of constraints implies that xi = 0 if observation i does not include
X. We need (3) to say that xi = 1 if observation i includes X. Note that
tTi b is the number of items in the intersection of observation i and X, and
eTd b is the number of items in X. Constraint (3) is valid because

tTi b =
d
∑

j=1

tijbj ≤
d
∑

j=1

bj = eTd b,
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Table 1

The body X of the rule is in observation i since (2) and (3) are satisfied.

j
1 2 3 4 5

ti (1 if item j in observation i, 0 otherwise) 1 0 1 1 0
b (1 if item j in body of rule, 0 otherwise) 1 0 0 1 0

where equality holds if and only if observation i includes X and otherwise
tTi b ≤ eTd b− 1. Table 1 helps to clarify (2) and (3). Constraints (4) and (5)
capture the yi in the same way that (2) and (3) capture the xi. The zi are 1 if
and only if xi = yi = 1, which is captured by (6) through (8). Constraints (9)
and (10) specify that b and h are restricted to be binary, while the values of
x, y, and z are restricted only to be between 0 and 1.

Each point in P corresponds to a rule X ⇒ Y , where X = {j : bj = 1}
and Y = {j : hj = 1}. There are 2d binary variables and 3n continuous
variables. Computationally, it is favorable to reduce the number of integer
variables, and here we explain why x, y, and z are not also restricted to be
integral. There are two cases when deciding whether X is in observation i.
If it is, then (3) implies xi ≥ 1, so xi = 1. If it is not, then there exists j
such that tij = 0 and bj = 1, so (2) implies xi ≤ 0, or xi = 0. Thus, in either
case, xi is forced to be an integer, regardless of whether we specify it as an
integer variable. The argument is similar for yi. For zi, there are two cases
when deciding whether X and Y are both in observation i. If they are, then
xi = yi = 1, so (8) implies zi ≥ 1, or zi = 1. If they are not, then either (6)
or (7) implies zi ≤ 0, or zi = 0. Thus, zi is also always integral.

P grows exponentially in the number of items d = |I|. It includes the full
set of association rules, which is many more than we usually need or wish to
collect. In order to generate only the potentially interesting rules, we judge
each rule according to three of its fundamental properties, namely

sX =
1

n

n
∑

i=1

xi, sY =
1

n

n
∑

i=1

yi, and s =
1

n

n
∑

i=1

zi,

called coverage, prevalence, and support respectively. When we refer to these
measures for a particular rule r, we use the notation sX(r), sY (r), and s(r);
we omit the parenthetical “(r)” when referring to them in general. We now
define a partial order ≤p over the set of possible rules to rank them in order
of interestingness. Given two rules r and r∗, we have r ≤p r∗, or r∗ is at
least as interesting as r if and only if:

sX(r) ≥ sX(r∗), sY (r) ≥ sY (r
∗), and s(r) ≤ s(r∗).
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Moreover, r =p r∗ if and only if sX(r) = sX(r∗), sY (r) = sY (r
∗), and

s(r) = s(r∗). In words, “r ≤p r∗” means the coverage and prevalence of r∗

are no greater than that of r, but the support of r∗ is at least that of r. Let
F ∗ be the set of rules that are not dominated by any other rules, that is,

F∗ = {r : There does not exist any r̄ such that r <p r̄.}.

The rules r ∈ F∗ fall along a three dimensional frontier in sX , sY , and s.
For intuition on why this frontier reasonably captures interestingness,

consider the interestingness measure of confidence, which is the empirical
probability of Y given X. Refer to the data in Tables 2 and 3. Suppose we
have 20 observations, and we wish to compare the interestingness of two
rules: a {chips}⇒{guacamole} and b {cookies}⇒{milk}. In Case 1 in the
table, the two rules have equal coverage sX = 8

20 , but the support s is higher
for a ( 7

20 versus 5
20 ), so a has higher confidence (a is more interesting). In

Case 2, the rules have equal support s = 5
20 , but the coverage sX is lower

for b ( 8
20 versus 10

20), so b has higher confidence (b is more interesting).
This example shows that higher support and lower coverage increase the
confidence of a rule; for other measures, lower prevalence also often increases
the interestingness.

Table 2

Number of observations containing certain
items (assume 20 observations total in both

Case 1 and Case 2).

Case 1 Case 2

{chips} 8 10
{cookies} 8 8

{chips, guacamole} 7 5
{cookies, milk} 5 5

Table 3

Support, coverage, and confidence
of rules a {chips}⇒{guacamole}

and b {cookies}⇒{milk}.

Case 1 Case 2

supp 7/20 5/20
a cov 8/20 10/20

conf 7/8 5/10
supp 5/20 5/20

b cov 8/20 8/20
conf 5/8 5/8

The point is that many measures in addition to confidence, including
those in Table 4, increase with decreasing sX (holding sY and s constant),
decreasing sY (holding sX and s constant), and increasing s (holding sX
and sY constant). Thus, the rules that optimize each of these measures is in
the frontier F∗, and this is the set of rules that we focus on generating.

3.2. MIO Algorithm for General Association Rule Mining. We can find
each rule on the frontier F∗ corresponding to ≤p by putting upper bounds
on both sX and sY , and then maximizing s. We vary the bounds over all
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Table 4

Interestingness measures. The notation P (A) means the fraction, or empirical
probability, of observations containing set A.

Measure Definition

Confidence/Precision P (Y |X)
s

sX
Recall P (X |Y )

s

sY
Accuracy P (X ∪ Y ) + P (Xc ∪ Y c) 1− sX − sY + 2s

Lift/Interest
P (X ∪ Y )

P (X)P (Y )

s

sXsY

Conviction
P (X)P (Y c)

P (X ∪ Y c)

1− sY
1− s/sX

Laplace Correction
nP (X ∪ Y ) + 1

nP (X) + k
, k is # of classes

ns+ 1

nsX + k
Piatetsky-Shapiro P (X ∪ Y )− P (X)P (Y ) s− sXsY

possible values to produce the entire frontier. In particular, Formulation (11)
maximizes the “scaled support” (n ·s) for a certain choice s̄X and s̄Y , which
denote the user-specified upper bounds on the “scaled coverage” (n ·sX) and
“scaled prevalence” (n · sY ) respectively.

max
b,h,x,y,z

n
∑

i=1

zi −Rgen xy

(

n
∑

i=1

xi +
n
∑

i=1

yi

)

−Rgen bh





d
∑

j=1

bj +
d
∑

j=1

hj





(11)

s.t.
n
∑

i=1

xi ≤ s̄X ,

n
∑

i=1

yi ≤ s̄Y ,

(b, h, x, y, z) ∈ P.

The first term in the objective is the scaled support. The second set of
terms

∑n
i=1 xi +

∑n
i=1 yi correspond to the coverage sX and prevalence sY ;

if there are multiple rules with optimal support, we want those with smaller
coverage and prevalence since otherwise we would be generating rules not on
the frontier. The third set of terms

∑d
j=1 bj +

∑d
j=1 hj are for regularization,

and correspond to the sparsity of the rule; if there are multiple rules that
maximize s and have equal sX and sY , we want those with smaller bodies
and heads, that is, more zeros in b and h. The parameters Rgen xy and Rgen bh

control the weight of these terms in the objective, where the former ensures
that we properly trace out the frontier, and the latter could potentially trade
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off sparsity for closeness to the frontier.
Solving (11) once for each possible pair (s̄X , s̄Y ) does not yield the entire

frontier since there may be multiple optimal rules at each point on the
frontier. To find other optima, we add constraints making each solution
found so far infeasible, so that they cannot be found again when we re-solve.
Specifically, for each pair (s̄X , s̄Y ), we iteratively solve the formulation as
follows: Let (h∗, b∗) be the first optimum we find for (11). In each iteration,
we add the constraint

(12)
∑

j:b∗
j
=0

bj +
∑

j:b∗
j
=1

(1− bj) +
∑

j:h∗

j
=0

hj +
∑

j:h∗

j
=1

(1− hj) ≥ 1

to the formulation. This constraint says that in either the vector b or the
vector h, at least one of the components must be different from in the pre-
vious solution; that is, at least one of the zeros must be one or one of the
ones must be zero. The previous solution bj = b∗j and hj = h∗j is infeasible
since it would yield 0 ≥ 1 in (12). After adding this constraint, we solve
again. If the optimal value of s̄ =

∑n
i=1 zi decreases, then we exit the loop.

Otherwise, we have a new optimum, so we repeat the step above to generate
another constraint and re-solve.

3.3. MIO Algorithm for Associative Classification. As our main goal is
to use association rules to construct a decision list for binary classification,
we show in this section how to use MIO to mine rules for this purpose. In
this case, the rules are of a specific form, either X ⇒ 1 or X ⇒ −1. That is,
we prespecify the heads Y of the rules to be a class attribute, 1 or −1. Our
rule generation algorithm mines two separate frontiers of rules, one frontier
for each class.

Suppose we want rules on the frontier for a fixed class y ∈ {−1, 1}. Let
S = {i : observation i has class label y}. Then s = 1

n

∑

i∈S xi. Since sY =
|S| is equal for all rules of interest, we simplify the partial order (2) so that
given two rules r and r∗, we have r ≤p r

∗ if and only if:

sX(r) ≥ sX(r∗) and s(r) ≤ s(r∗).

Also, r =p r∗ if and only if sX(r) = sX(r∗) and s(r) = s(r∗). Each rule
on the corresponding two dimensional frontier in sX and s can be found by
upper bounding sX and maximizing s. Since Y is fixed, we do not need the
h, y, or z variables from (11). Formulation (13) finds a rule with maximum s
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for a given upper bound s̄X on n · sX .

max
b,x

∑

i∈S

xi −Rgen x

n
∑

i=1

xi −Rgen b

d
∑

j=1

bj(13)

s.t.
n
∑

i=1

xi ≤ s̄X ,

xi ≤ 1 + (tij − 1)bj , ∀i, j,

xi ≥ 1 + (ti − ed)
T b, ∀i,

bj ∈ {0, 1}, ∀j,

0 ≤ xi ≤ 1, ∀i.

The first term in the objective corresponds to support, and the others
correspond to coverage and sparsity, similar to the terms in (11). Solving (13)
once for each value of s̄X does not yield the entire frontier since there may
be multiple optima. Analogous to the general case, we solve the formulation
iteratively: Start by setting s̄X = n since the largest possible value of the
scaled coverage is n. Let b∗ be the first optimum. Add the “infeasibility
constraint”

(14)
∑

j:b∗
j
=0

bj +
∑

j:b∗
j
=1

(1− bj) ≥ 1

to the formulation, and solve again. If we find another optimum, then we
repeat the step above to generate another constraint and re-solve. If the
optimal value of s̄ =

∑

i∈S xi decreases, then we set the upper bound on s̄X
to a smaller value and iterate again. Note that we can set this new value to
be the minimum of

∑n
i=1 xi and s̄X−1 (previous bound minus one); we know

that no rule on the remainder of the frontier has scaled coverage greater than
∑n

i=1 xi, so using this as the bound provides a tighter constraint than using
s̄X − 1 whenever

∑n
i=1 xi < s̄X − 1.

Thus our rule generation algorithm, called “RuleGen,” generates the fron-
tier, one rule at a time, from largest to smallest coverage. The details are
shown in Figure 1. RuleGen allows optional minimum coverage thresholds
mincov−1 and mincov1 to be imposed on each of the classes of rules. Also,
iter lim limits the number of times we iterate the procedure above for a
fixed value of sX with adding (14) between iterates. To find all rules on the
frontiers, set mincov−1 = mincov1 = 0 and iter lim = ∞.

To illustrate the steps of the algorithm, Figure 2 shows the following
fictitious example:
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Set mincov−1, mincov1, iter lim.

For Y in {-1,1}

Initialize sX ← n, iter ← 1, s ← 0.

Initialize collection of rule bodies RY = ∅.

Repeat

If iter = 1 then

Solve (13) to obtain rule X⇒ Y.

s←
∑

i∈S

x[i]

iter← iter+ 1

RY ←RY ∪ X

Add new constraint (14).

If iter ≤ iter lim then

Solve (13) to obtain rule X⇒ Y.

If
∑

i∈S

x[i] < s then

sX← min

(

n
∑

i=1

x[i], sX− 1

)

iter← 1

Else iter← iter+ 1

Else

sX← sX− 1

iter← 1

While sX ≥ n · mincovY

Fig 1. RuleGen algorithm. (Note sX=s̄X and s=s̄.)

a. Suppose we are constructing the frontier for data with n = 100. Initial-
ize sX to n and solve (13). Assume the first solution has

∑

i∈S xi = 67.
Then the algorithm adds the first rule to RY and sets s to 67. It adds
the infeasibility constraint (14) to (13) and re-solves. Assume the new
rule still has

∑

i∈S xi = 67, so the algorithm adds this rule to RY, then
adds another infeasibility constraint to (13) and re-solves.

b. Assume the new rule has
∑

i∈S xi = 65 and
∑n

i=1 xi = 83 (correspond-
ing to the support and coverage respectively). Since

∑

i∈S xi decreased,
the algorithm sets sX to min (

∑n
i=1 xi, sX− 1) = min(83, 99) = 83 be-

fore re-solving to obtain the next rule and adding it to RY.
c. This process continues until the minimum coverage threshold is reached.
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Fig 2. Illustrative example to demonstrate the steps in the RuleGen algorithm.

4. Building a Classifier. Suppose we have generated L rules, where
each rule ℓ is of the form Xℓ ⇒ −1 or Xℓ ⇒ 1. Our task is now to rank
them to build a decision list for classification. Given a new observation, the
decision list classifies it according to the highest ranked rule ℓ such that Xℓ

is in the observation, or the highest rule that “applies.” In this section, we
derive an empirical risk minimization algorithm using MIO that yields an
optimal ranking of rules. That is, the ordering returned by our algorithm
maximizes the (regularized) classification accuracy on a training sample.

We always include in the set of rules to be ranked two “null rules:”
∅ ⇒ −1, which predicts class −1 for any observation, and ∅ ⇒ 1, which
predicts class 1 for any observation. In the final ranking, the higher of the
null rules corresponds effectively to the bottom of the ranked list of rules;
all observations that reach this rule are classified by it, thus the class it
predicts is the default class. We include both null rules in the set of rules
because we do not know which of them would serve as the better default,
that is, which would help the decision list to achieve the highest possible
classification accuracy; our algorithm learns which null rule to rank higher.

We use the following parameters:

piℓ =











1 if rule ℓ applies to observation i and predicts its class correctly,

−1 if rule ℓ applies to observation i but predicts its class incorrectly,

0 if rule ℓ does not apply to observation i,

viℓ = 1[rule ℓ applies to observation i] = |piℓ|,

Rrank = regularization parameter, trades off accuracy with conciseness,

and decision variables:

rℓ = rank of rule ℓ,

r∗ = rank of higher null rule,

uiℓ = 1[rule ℓ is the rule that predicts the class of observation i].
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The rℓ variables store the ranks of the rules; r∗ is the rank of the default
rule, which we want to be high for conciseness. The uiℓ variables help capture
the mechanism of the decision list, enforcing that only the highest applicable
rule predicts the class of an observation: for observation i, uiℓ = 0 for all
except one rule, which is the one, among those that apply, with the highest
rank rℓ. The formulation to build the optimal classifier is:

max
r,r∗,g,u,s,α,β

n
∑

i=1

L
∑

ℓ=1

piℓuiℓ +Rrankr∗(15)

s.t.
L
∑

ℓ=1

uiℓ = 1, ∀i,(16)

gi ≥ viℓrℓ, ∀i, ℓ,(17)

gi ≤ viℓrℓ + L(1− uiℓ), ∀i, ℓ,(18)

uiℓ ≥ 1− gi + viℓrℓ, ∀i, ℓ,(19)

uiℓ ≤ viℓ, ∀i, ℓ,(20)

rℓ =
L
∑

k=1

ksℓk, ∀ℓ,(21)

L
∑

k=1

sℓk = 1, ∀ℓ,(22)

L
∑

ℓ=1

sℓk = 1, ∀k,(23)

r∗ ≥ rA,(24)

r∗ ≥ rB ,(25)

r∗ − rA ≤ (L− 1)α,(26)

rA − r∗ ≤ (L− 1)α,(27)

r∗ − rB ≤ (L− 1)β,(28)

rB − r∗ ≤ (L− 1)β,(29)

α+ β = 1,(30)

uiℓ ≤ 1−
r∗ − rℓ
L− 1

, ∀i, ℓ,(31)

α, uiℓ, sℓk ∈ {0, 1}, ∀i, ℓ, k,

0 ≤ β ≤ 1,

rℓ ∈ {1, 2, . . . , L}, ∀ℓ.
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Table 5

Observation ti is represented by {1 0 1 1 0}, and its class is −1. The highest rule that
applies is the one ranked 8th (rℓ = 8) since {1 0 1 0 0}⊂{1 0 1 1 0} (the rules ranked
10th and 9th do not apply). Thus uiℓ = 1 for this rule. This rule has piℓ = 1 since the
rule applies to ti and correctly predicts −1, so the contribution of observation i to the

accuracy part of the objective in (15) is
∑L

ℓ=1
piℓuiℓ = 1.

Observation ti: {1 0 1 1 0}, class=−1
Ranked rules piℓ rℓ uiℓ

{0 1 0 0 1} ⇒ −1 0 10 0
{0 1 1 0 0} ⇒ 1 0 9 0
{1 0 1 0 0} ⇒ −1 1 8 1
{1 0 0 0 1} ⇒ −1 0 7 0
{0 0 0 0 0} ⇒ 1 1 6 0

...
...

...
...

{0 0 1 1 0} ⇒ −1 −1 1 0

The first term in the objective corresponds to classification accuracy.
Given an ordering of rules, the quantity ci =

∑L
ℓ=1 piℓuiℓ equals 1 if the

resulting decision list correctly predicts the class of observation i and −1
otherwise. Thus, the number of correct classifications is

n
∑

i=1

(

ci + 1

2

)

=
1

2

(

n+
n
∑

i=1

ci

)

.

So to maximize classification accuracy, it suffices to maximize

n
∑

i=1

ci =
n
∑

i=1

L
∑

ℓ=1

piℓuiℓ.

Table 5 shows an example of the parameters (piℓ) and variables (rℓ, uiℓ) for
a particular ranking of rules and observation to be classified.

Constraint (16) enforces that for each i, only one of the uiℓ variables
equals one while the rest are zero. To capture the definition of the uiℓ, we
also use auxiliary variables gi, which represent the highest rank of the rules
such that Xℓ is in observation i. Through (17) and (18), there is only one ℓ
such that uiℓ = 1 is feasible, namely the ℓ corresponding to the highest value
of viℓrℓ. Constraints (19) and (20) help improve the linear relaxation and
thus are intended to speed up computation. We assign the integral ranks rℓ
using (21) through (23), which imply sℓk = 1 if rule ℓ is assigned to rank k.
The matching between ranks and rules is one-to-one.

We add regularization in order to favor a shorter overall list of rules.
That is, our regularizer pulls the rank of one of the null rules as high as
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possible. If rA is the rank of ∅ ⇒ −1 and rB is the rank of ∅ ⇒ 1, then we
add r∗ to the objective function, where r∗ is the maximum of rA and rB .
The regularization coefficient of r∗ in the objective is Rrank. We capture r∗
using (24) through (30): Either α = 1 and β = 0 or β = 1 and α = 0. If
α = 1, then r∗ = rB . If β = 1, then r∗ = rA. Since we are maximizing, r∗
equals the higher of rA and rB . Note that if α is binary, then β need not be
binary because the constraint α + β = 1 forces integral values for β. If the
rank rℓ of rule ℓ is below r∗, then uiℓ = 0 for all i, so (31) is also valid, and
we include it to help speed up computation.

The Ordered Rules for Classification (ORC) algorithm consists of gener-
ating rules using the method shown in Figure 1, computing the piℓ and viℓ,
and then solving (15). The rule generation step could also be replaced by a
different method, such as Apriori [Agrawal and Srikant, 1994]. We use our
integer optimization approach in the experiments. Note that (13) and (15)
are not restricted to binary classification problems; both formulations can
be directly applied in the multi-class setting.

5. Computational Results. We used a number of publicly available
datasets to demonstrate the performance of our approach. Eight are from
the UCI Machine Learning Repository: Breast Cancer Wisconsin (Origi-
nal), Car Evaluation, Haberman’s Survival, Mammographic Mass, MONK’s
Problem 2, SPECT Heart, Tic-Tac-Toe, and Congressional Voting Records
[Asuncion and Newman, 2007]. Crime1 and Crime2 are derived from a study
funded by the US Department of Justice [Courtney and Cusick, 2010]. Ti-
tanic is from a report on the sinking of the “Titanic” [British Board of Trade,
1990]. For each dataset, we divided the data evenly into three folds and used
each fold in turn as a test set, training each time with the other two folds.
The training and test accuracy were averaged over these three folds. We
compared the ORC algorithm with six other classification methods—logistic
regression [see Hastie et al., 2001, Dreiseitl and Ohno-Machado, 2002], Sup-
port Vector Machines (SVM) [Vapnik, 1995, Burges, 1998], Classification
and Regression Trees (CART) [Breiman et al., 1984], C4.5 [Quinlan, 1993]
(J48 implementation), Random Forests [Breiman, 2001], and AdaBoost [Fre-
und and Schapire, 1995]—all run using R 2.15.0. We used the radial basis
kernel and regularization parameter C = 1 for SVM, and decision trees as
base classifiers for AdaBoost. The ORC algorithm was implemented using
ILOG AMPL 11.210 with the Gurobi solver.1

1For B.Cancer, Mammo, MONK2, and TicTacToe, we used Gurobi 3.0.0 on a computer
with two Intel quad core Xeon E5440 2.83GHz processors and 32GB of RAM. For the other
datasets, we used Gurobi 4.5.2 on a computer with an Intel quad core Xeon E5687 3.60GHz
processor and 48GB of RAM.
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Here we explain how we chose the parameter settings for the ORC exper-
iments; these parameters were the same for all datasets. In generating rules
with (13), we wanted to ensure that Rgen x was small enough that the solver
would never choose to decrease the scaled support

∑

i∈S xi just to decrease
the scaled coverage

∑n
i=1 xi. That is, Rgen x should be such that we would

not sacrifice maximizing s for lower sX ; this required only that this param-
eter be a small positive constant, so we chose Rgen x = 0.1

n
. Similarly, we

did not want to sacrifice maximizing s or lowering sX for greater sparsity,
so we chose Rgen b = 0.1

nd
. In order to not sacrifice classification accuracy for

a shorter decision list in ranking the rules with (15), we chose Rrank = 1
L
.

We also used a minimum coverage threshold of 0.05, and iterated up to five
times at each setting of s̄X (mincov−1 = mincov1 = 0.05, iter lim = 5);
these choices were based on preliminary experiments to determine parame-
ters that would yield a reasonable number of rules.

Table 6 shows the average training and test classification accuracy for
each dataset; corresponding standard deviations are in the appendix. Bold
indicates the highest average in the row. Table 7 shows the dataset sizes as
well as average number of rules generated by RuleGen and average runtimes
for our algorithms (±one standard deviation); runtimes for the other meth-
ods were too small to be a significant factor in assessment. Time1 is the total
time for generating all rules; Time2 is the time when the final solution was
found, either before solving to optimality or before being terminated after a
specified time limit. We generally terminated the solver before (15) solved
to provable optimality. The appendix includes more detail about the exper-
iments. Table 8 shows a pairwise comparison of the ORC algorithm to the
other algorithms; for each of the other methods, the table contains a count
of the number of datasets for which the method is more accurate, equally
accurate, or less accurate than ORC. These results show that in terms of
accuracy, the ORC algorithm is on par with top classification methods.

6. Interpretability. Interpretability is subjective, but in this section,
we aim to demonstrate that the ORC classifier performs well in terms of
being easy to understand. Classifiers generated by CART and C4.5 are in-
terpretable because of their decision tree structure. Other methods are not
as easily interpreted. For example, the logistic regression model is

p =
1

1 + e−β0+βT t
,

where p is the probability that the class of observation t is 1. The SVM
model is a hyperplane that maximizes the margin between the hyperplane
and the closest point to it from both classes; by using kernels, we can raise
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Table 6

Classification accuracy (averaged over three folds).

LR SVM CART C4.5 RF ADA ORC

B.Cancer train 0.9780 0.9846 0.9561 0.9671 0.9876 0.9693 0.9766
test 0.9502 0.9619 0.9488 0.9590 0.9575 0.9605 0.9532

CarEval train 0.9580 0.9821 0.9659 0.9907 0.9997 0.9959 0.9598
test 0.9485 0.9728 0.9618 0.9815 0.9826 0.9890 0.9508

Crime1 train 0.8427 0.8439 0.8380 0.8932 0.9918 0.8885 0.8897
test 0.7394 0.7394 0.7488 0.7465 0.7629 0.7723 0.7817

Crime2 train 0.6812 0.7477 0.6858 0.7409 0.8211 0.7156 0.7133
test 0.6722 0.6354 0.6171 0.5941 0.6239 0.6630 0.6699

Haberman train 0.7712 0.7876 0.7680 0.7745 0.7892 0.7712 0.7680
test 0.7582 0.7386 0.7418 0.7386 0.7386 0.7320 0.7582

Mammo train 0.8482 0.8687 0.8422 0.8596 0.8837 0.8560 0.8536
test 0.8374 0.8217 0.8301 0.8301 0.8289 0.8422 0.8337

MONK2 train 0.6470 0.6736 0.7500 0.9317 0.9907 0.7940 0.8299
test 0.6019 0.6713 0.6690 0.8866 0.6528 0.6389 0.7338

SPECT train 0.8783 0.8633 0.8390 0.8801 0.9363 0.8839 0.8970
test 0.7978 0.8464 0.7828 0.7940 0.8090 0.8052 0.7753

TicTacToe train 0.9833 0.9494 0.9348 0.9796 1.0000 0.9917 1.0000
test 0.9823 0.9165 0.8873 0.9259 0.9781 0.9770 1.0000

Titanic train 0.7783 0.7906 0.7862 0.7906 0.7906 0.7862 0.7906
test 0.7783 0.7847 0.7846 0.7906 0.7833 0.7797 0.7906

Votes train 0.9816 0.9747 0.9598 0.9724 0.9954 0.9701 0.9747
test 0.9586 0.9563 0.9540 0.9586 0.9586 0.9586 0.9563

Table 7

Number of observations (n), number of items (d), average number of rules generated,
average time to generate all rules (Time1), average time to rank rules (Time2).

Dataset n d #Rules Time1 (sec) Time2 (sec)

B.Cancer 683 27 198.3 ± 16.2 616.3 ± 57.8 12959.3 ± 1341.9
CarEval 1728 21 58.0 706.3 ± 177.3 7335.3 ± 2083.7
Crime1 426 41 100.7 ± 15.3 496.0 ± 88.6 12364.0 ± 7100.6
Crime2 436 16 27.3± 2.9 59.3 ± 30.4 2546.0 ± 3450.6

Haberman 306 10 15.3± 0.6 14.7± 4.0 6.3± 2.3
Mammo 830 25 58.3± 1.2 670.7 ± 34.5 3753.3 ± 3229.5
MONK2 432 17 45.3± 4.0 124.0 ± 11.5 5314.3 ± 2873.9
SPECT 267 22 145.3 ± 7.2 71.7± 9.1 8862.0 ± 2292.2

TicTacToe 958 27 53.3± 3.1 1241.3 ± 38.1 4031.3 ± 3233.0
Titanic 2201 8 24.0± 1.0 92.0 ± 15.1 1491.0 ± 1088.0
Votes 435 16 266.0 ± 34.8 108.3 ± 5.0 21505.7 ± 1237.2

the dimension of the model and achieve high accuracy, but not interpretabil-
ity. Though there is work devoted to interpreting SVMs, the result is usually
a smaller set of nonlinear features, still within a linear combination [Sonnen-
burg et al., 2005]. AdaBoost combines weak classifiers—decision trees in our
experiments—by minimizing an exponential loss function; thus, even though
the base classifiers may be interpretable, the final model is not necessarily
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Table 8

Number of datasets for which each algorithm exceeded, tied, or fell below ORC in
classification accuracy.

>ORC =ORC <ORC

LR 4 1 6
SVM 3 1 7
CART 2 0 9
C45 5 1 5
RF 4 0 7
ADA 5 0 6

Table 9

Average number of leaves for CART and C4.5, average length of decision list for ORC.

CART C4.5 ORC

B.Cancer 5 5.3 12.7
CarEval 14 27.7 12.7
Crime1 11.3 16.3 21
Crime2 8.3 16.3 9.3
SPECT 6.3 7.7 18
Haber 4.7 3.7 4.3
Mammo 4 8.7 12.3
MONK2 14.7 29.3 19.7
TicTacToe 21 34.7 9
Titanic 3.7 5 3.3
Votes 3 4.7 7.3

Average 8.7 14.5 11.8
Standard Deviation 5.8 11.3 5.9

as interpretable. Random Forests also combines trees.
Recall that we want our models to be concise because simpler models

are easier to understand. Though we cannot exactly compare conciseness
among different types of models, one reasonable measure for decision trees
and lists is the number of rules. Table 9 shows the number of rules in the
models generated by CART, C4.5, and ORC for each dataset, averaged over
the three folds. For CART and C4.5, the number of rules is the number of
leaves; for ORC, it is the number of rules above and including the default.
In general, the ORC decision lists are larger models than those produced by
CART, but can be significantly smaller than those produced by C4.5. The
standard deviations in the bottom row of Table 9 also indicate that ORC
produces a more consistently small model compared to C4.5.

In the remainder of this section, we show the decision lists for a few of the
datasets from Section 5 as examples of the interpretability of the decision
lists produced by ORC.
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Table 10

Rules for predicting whether a patient survived at least five years (+5) or not (<5).

s̄ s̄X Rule

1 80 93 Number of nodes = 0 ⇒ 5+
2 53 83 1 ≤ Number of nodes ≤ 9 ⇒ 5+
3 18 55 40 ≤ Age ≤ 49 ⇒ <5
4 20 71 50 ≤ Age ≤ 59 ⇒ <5
5 147 204 Default ⇒ 5+

6.1. Haberman’s Survival. In this dataset, each “observation” represents
a patient who underwent surgery for breast cancer. The goal is to predict
whether the patient survived at least five years (5+) or not (< 5). Table 10
shows the ORC classifier from training on Folds 1 and 2. We can easily state
in words how this classifier makes predictions:

1. If the patient has no more than nine positive axillary nodes, then she
is classified as 5+.

2. If she has more than nine nodes and is in her 40s or 50s, then she is
classified as <5.

3. Otherwise, she is classified as 5+.

6.2. Crime. The Crime1 and Crime2 datasets were derived from a study
of crime among youth as they transition to adulthood. There were three
waves of interviews—the first when the youth were between 17 and 18 years
of age, the second when they were between 19 and 20, and the third when
they turned 21. Table 11 shows some of the binary variables from the first
two waves. Using the data, we can design a number of prediction problems.
The two problems corresponding to Crime1 and Crime2 are:

• Crime1: Based on the 41 binary variables fromWaves 1 and 2, predict
whether or not a youth is arrested between the Wave 2 and Wave 3 in-
terviews. There were 426 observations after removing those with miss-
ing values.

• Crime2: Based on the 16 variables in the top half of Table 11 that
describe the background of the youth, predict whether a youth reports
a violent offense at any of the Wave 1, 2, or 3 interviews. There were
432 observations after removing those with missing values.

As an example of the kind of interpretable result we can obtain from the
Crime2 data, Table 12 shows the decision list from training on Folds 1 and 3.
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Table 11

Variable descriptions.

Variable Description

Female Respondent is female
Male Respondent is male

Hispanic Respondent is hispanic
White Respondent is white
Black Respondent is black

OtherRace Respondent is mixed or other race
AlcoholOrSubstanceAbuse Alcohol or substance abuse diagnosis
MentalHealthDiagnosis Mental health diagnosis

TeenageParent Respondent is a teenage parent
SexAbuseVictim Victim of sex abuse
InFosterCare W1 In foster care at Wave 1
InKinshipCare W1 In kinship care at Wave 1
InGroupCare W1 In group care at Wave 1

IndependentOtherCare W1 Independent living or other care at Wave 1
NoMomOrStepmom No mom or stepmom
NoDadOrStepdad No dad or stepdad

PropertyDamage W1 Deliberately damaged property at Wave 1
StoleOver50 W1 Stole something worth >$50 at Wave 1

SoldMarijuanaOrDrugs W1 Sold marijuana or other drugs at Wave 1
BadlyInjuredSomeone W1 Badly injured someone at Wave 1

UsedWeapon W1 Used or threatened to use a weapon at Wave 1
ViolentOffense W1 Violent offense at Wave 1

NonviolentOffense W1 Nonviolent offense at Wave 1
ViolentOffense W2 Violent offense at Wave 2

NonviolentOffense W2 Nonviolent offense at Wave 2
ArrestedBetweenW1andW2 Arrested since Wave 1 at Wave 2

InSchool W1 In school at Wave 1
Employed W1 Employed at Wave 1
InSchool W2 In school at Wave 2
Employed W2 Employed at Wave 2

Table 12

Rules for predicting whether there is a violent offense in any wave (1) or not (−1).

s sX Rule

1 29 41 InGroupCare W1 ⇒ 1
2 13 19 Female, SexAbuseVictim, IndependentOtherCare W1 ⇒ −1
3 13 16 AlcoholOrSubstanceAbuse, MentalHealthDiagnosis ⇒ 1
4 14 26 Female, Black, InFosterCare W1 ⇒ −1
5 103 154 Black ⇒ 1
6 32 53 Female, White ⇒ −1
7 41 58 AlcoholOrSubstanceAbuse ⇒ 1
8 119 291 Default ⇒ −1



ORDERED RULES FOR CLASSIFICATION 21

6.3. Titanic. Each row of this dataset represents one of the 2201 passen-
gers aboard the Titanic, a passenger liner that sank in 1912 after striking
an iceberg. The features of the dataset are: social class (first, second, third,
crew), age (adult, child), and gender (male or female). We want to predict
whether or not each passenger survived. Table 13 shows the decision list from
training on Folds 2 and 3. This result makes sense in light of the “women
and children first” policy and the fact that little effort was made to help the
third-class passengers.

Table 13

Rules for predicting whether a passenger survived the Titanic sinking (1) or not (−1).

s sX Rule

1 341 462 Third Class ⇒ −1
2 888 1108 Adult, Male ⇒ −1
3 477 1467 Default ⇒ 1

6.4. Tic-Tac-Toe. Our final example is the Tic-Tac-Toe dataset. Each
data point represents a board configuration at the end of a Tic-Tac-Toe
game where player x played first, and the classification problem is to identify
whether player x won. This is an easy task for a human, who needs only
to determine if there are three x’s in a row. There are nine features in
the original data, each representing a square on a Tic-Tac-Toe board. The
possible values for each feature are: x, o, or b (player x, player o, or blank).

This example demonstrates that for certain datasets, the ORC algorithm
may have a substantial advantage by optimizing both accuracy and concise-
ness. Figure 3 shows the CART classifier from training on Folds 1 and 2.
The notation o.5 means ‘o’ in box 5, x.7 means ‘x’ in box 7, etc. Figure 4
shows the C4.5 classifier. The ORC classifier, shown in Figure 5, decides
the class of a board the same way a typical human would: if the board has
three x’s in a row, which can occur in eight different configurations, then
player x wins; otherwise, player x does not win. It achieves perfect accuracy
in training and testing; the accuracies of CART and C4.5 are about 0.94
and 0.99 respectively for training and 0.88 and 0.93 respectively for testing.
The ORC classifier is much more concise than either of those produced by
CART or C4.5. It has only nine rules, versus 21 for CART and 36 for C4.5.

7. Large-Scale Models. MIO is computationally intensive, as illus-
trated in Table 7. Nevertheless, even for large datasets, our MIO approach
has the potential to order rules into an accurate decision list. The runtimes
in the Time2 column of Table 7 could in fact be substantially shorter if we
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Fig 3. CART Classifier for Tic-Tac-Toe dataset (predicted class in parentheses).

Fig 4. C4.5 Classifier for Tic-Tac-Toe dataset (predicted class in parentheses), left branch
always means ‘no’ and right branch always means ‘yes.’
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1

win x

s̄=54 x

s̄X=54 x

2

win x

s̄=61 x

s̄X=61 x

3

win x x x

s̄=42

s̄X=42

4

win

s̄=54

s̄X=54 x x x

5

win x

s̄=57 x

s̄X=57 x

6

win x

s̄=61 x

s̄X=61 x

7

win x

s̄=54 x

s̄X=54 x

8

win

s̄=55 x x x

s̄X=55

9

no win

s̄=215

s̄X=638

Fig 5. Rules for predicting whether player x wins a Tic-Tac-Toe game.

were seeking just a good solution rather than an optimal solution. The MIO
solver typically finds a good solution quickly, but takes longer to improve
upon it and to finally prove optimality. As it was not our goal to obtain a
solution in the shortest time possible, we allowed the solver to search for the
best solution it could find in a reasonable amount of time. For larger datasets
than those shown in Section 5, we can run (15) just until we obtain a good
solution, or let it run for a longer period of time to obtain better solutions.
As the speed of computers continues to advance exponentially, and also as
cloud computing becomes more accessible, we expect our MIO approach to
produce high quality solutions with decreasing computing effort.

In this section, we show results on an additional dataset from the UCI
Repository, Wine Quality, which has n = 4898 observations and d = 44
items, yielding a data table with nd = 215, 512 entries. The largest dataset
in Section 5 was CarEval, which had nd = 36, 288. The large size of the
Wine dataset caused long runtimes for (13), which we did want to solve to
optimality to obtain rules on the frontier. Thus we used Apriori to generate
the rules instead. We ran Apriori using R, and specified minimum support
thresholds of 0.006 and 0.1 for the positive and negative class rules respec-
tively to generate a reasonable number of rules. Otherwise, our experimental
setup was the same as for the other datasets; we divided the data into three
folds, and to rank the rules, we used (15) with Rrank = 1

L
. We let (15) run

for approximately 20 hours. Figure 6 shows the accuracy of the solutions
found by the solver over time. (Train12 refers to training on Folds 1 and 2,
Train13 refers to training on Folds 1 and 3, and Train23 refers to training
on Folds 2 and 3.) The figure illustrates how a good solution is often found
relatively quickly but then improves only slowly. Averaged over three folds,
we generated 71.3 rules, and the time to find the final solution of (15) be-
fore termination was 57258.3 seconds. Table 14 shows the accuracy of the
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algorithms. ORC achieves about the same accuracy as SVM and AdaBoost,
though Random Forests achieved the highest accuracy for this dataset.

In terms of interpretability, ORC produces a much more concise model
than C4.5. Averaged over three folds, the C4.5 trees have 184.7 leaves,
whereas the ORC lists have 25.3 rules in addition to higher test accuracy
than C4.5. (CART was even more concise, with an average of 4.7 leaves,
but it lost accuracy.) This is another example of the consistency of the ORC
algorithm in producing classification models that have interpretability ad-
vantages and compete well against the best methods in accuracy.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Accuracy Along Solution Paths

Time (hours)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Train12
Train13
Train23

Fig 6. Accuracy of solutions found by ORC algorithm over time for Wine data.

Table 14

Classification accuracy for Wine dataset (averaged over three folds).

LR SVM CART C4.5 RF ADA ORC

Wine train 0.8040 0.8460 0.7850 0.9129 0.9918 0.8432 0.8304
test 0.7987 0.8105 0.7842 0.8085 0.8608 0.8105 0.8103

8. Conclusion. In this work, we developed algorithms for producing
interpretable, yet accurate, classifiers. The classifiers we build are decision
lists, which use association rules as building blocks. Both of the challenges
addressed in this work, namely the task of mining interesting rules, and the
task of ordering them, have always been hampered by “combinatorial ex-
plosion.” Even with a modest number of items in the dataset, there may
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be an enormous number of possible rules, and even with a modest num-
ber of rules, there are an enormous number of ways to order them. On the
other hand, MIO methods are naturally suited to handle such problems;
they not only encode the combinatorial structure of rule mining and rule
ordering problems, but also are able to capture the new forms of regular-
ization introduced in this work, that is, favoring more compact rules and
shorter lists. Our computational experiments show that ORC competes well
in terms of accuracy against the top classification algorithms on a variety of
datasets. In our paper, we used only one setting of the parameters for all of
the experiments to show that even an “untuned” version of our algorithm
performs well; however, by varying these parameters, it may be possible to
achieve still better predictive performance. Since our paper is among the
first to use MIO methods for machine learning, and in particular to create
decision lists using optimization-based (non-heuristic) approaches, it opens
the door for further research on how to use optimization-based approaches
for rule mining, creating interpretable classifiers, and handling new forms of
regularization.

APPENDIX A: DETAILS FROM COMPUTATIONAL EXPERIMENTS

As explained in Section 3, each observation in our data is represented
by a binary vector. Six of the datasets used in our experiments had only
categorical variables: CarEval, MONK2, SPECT, TicTacToe, Titanic, and
Votes. Thus it was straightforward to transform them into binary features.
Here we describe how we transformed the other datasets:

1. Breast Cancer Wisconsin (Original). The dataset has 699 rows.
There are 683 remaining observations after removing rows with missing
values. There are nine original features, each taking integer values
between 1 and 10. We used categorical variables to capture whether
each feature is between 1 and 4, 5 and 7, or 8 and 10.

2. Crime1 and Crime2. The derivation of these datasets is described
in Section 6.

3. Haberman’s Survival. The dataset has three features: age, year of
operation, and number of positive axillary nodes. We removed the
second feature since it did not seem to be predictive of survival and
thus would not contribute to interpretability. We split the age feature
into five bins by decades: 39 and under, 40 to 49, 50 to 59, 60 to 69,
and 70 and over. We also split the nodes feature into five bins: none,
1 to 9, 10 to 19, 20 to 29, and at least 30.

4. Mammographic Mass. The dataset has 961 rows, each representing
a patient. There are 830 remaining observations after removing rows
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with missing values. The only feature that is not categorical is patient
age, which we split into seven bins: 29 and under, 30 to 39, 40 to 49,
50 to 59, 60 to 69, 70 to 79, and 80 and over.

5. Wine Quality. We used the data for white wine. All features were
continuous, so we binned them by quartiles. A wine was in class 1 if
its quality score between 7 and 10, and class −1 if its quality score
was between 1 and 6.

Table 15 shows the standard deviations that correspond to the averages in
Table 6. Table 16 shows the following results for each dataset (Train12 refers
to training on Folds 1 and 2, Train13 refers to training on Folds 1 and 3, and
Train23 refers to training on Folds 2 and 3): L−1 and L1 are the numbers of
rules generated by RuleGen for class −1 and class 1 respectively. Time1 is
the total time for generating all L−1+L1 rules; Time2 is the time when the
final solution was found, either before solving to optimality or before being
terminated after a specified amount of time. Table 16 also shows the time
limit we used for each of the different datasets. For some datasets, the time
limit was significant longer than Time2, illustrating how it can take a long
time for the solver to reach provable optimality even though the solution
appears to have converged. Note that in running (15) for the TicTacToe
dataset, Train12 solved to optimality in 1271 seconds; Train12 and Train23
had optimality gaps of about 0.02% and 0.01% respectively when the final
solutions were found.

Table 17 shows the average classification accuracy for three methods, two
of which are SVM and ORC from Table 6. The other is a tuned version of
SVM, where we varied the C parameter and chose the one with the best
average test performance in hindsight. The overall performance of the un-
tuned ORC algorithm is still on par with that of the tuned SVM algorithm.
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