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Abstract—The problem of designing policies for in-network
function computation with minimum energy consumption subject
to a latency constraint is considered. The scaling behaviorof
the energy consumption under the latency constraint is analyzed
for random networks, where the nodes are uniformly placed
in growing regions and the number of nodes goes to infinity.
The special case of sum function computation and its delivery
to a designated root node is considered first. A policy which
achieves order-optimal average energy consumption in random
networks subject to the given latency constraint is proposed.
The scaling behavior of the optimal energy consumption depends
on the path-loss exponent of wireless transmissions and the
dimension of the Euclidean region where the nodes are placed.
The policy is then extended to computation of a general class
of functions which decompose according to maximal cliques of
a proximity graph such as thek-nearest neighbor graph or the
geometric random graph. The modified policy achieves order-
optimal energy consumption albeit for a limited range of latency
constraints.

Index Terms—Function computation, latency-energy tradeoff,
Euclidean random graphs, minimum broadcast problem.

I. I NTRODUCTION

A host of emerging networks are pushing the boundaries
of scale and complexity. Data centers are being designed to
distribute computation over thousands of machines. Sensor
networks are being deployed in larger sizes for a variety
of environmental monitoring tasks. These emerging networks
face numerous challenges and the threat of a “data deluge”
is an important one. The data collected by these networks
typically scale rapidly as their size grows. Routing all theraw
data generated in these large networks is thus not feasible and
has poor scaling of resource requirements.

In this paper, we consider the scenario where only a function
of the collected raw data is required at some specific node in
the network. Many network applications fall into this category.
For instance, in astatistical inferenceapplication, where a
decision has to be made based on the collected data, the
likelihood function suffices to make the optimal decision [1].
Such functions can have significantly lower dimensions than
the raw data and can thus considerably reduce the resource
requirements for routing.
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fourth authors are sponsored in part by a MURI funded throughARO Grant W911NF-
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In this paper, we analyze the scaling behavior of energy and
latency for routing and computation of functions in random
networks, where the nodes are placed uniformly in growing
regions and the number of nodes goes to infinity. In particular,
we address the following questions: how can we exploit the
structure of the function to reduce energy consumption and
latency? What class of functions can be computed efficiently
with favorable scaling of energy and latency requirements?
How do the network properties such as the signal propagation
model affect the scaling behavior? What is the complexity for
finding the optimal policy with minimum energy consumption
under a given latency constraint for function computation?
Are there simple and efficient policies which achieve order
optimal energy consumption? The answers to these questions
provide important insights towards engineering in-network
computation in large networks.

A. Summary of Contributions

The contributions of this paper are three-fold. First, we
propose policies with efficient energy consumption which
compute any function belonging to a certain structured class
subject to a feasible latency constraint. Second, we prove
order-optimality of the proposed policies in random networks.
Third, we derive scaling laws for energy consumption in
different regimes of latency constraints for different network
models. To the best of our knowledge, this is the first work
to analyze energy-latency tradeoff for function computation in
large networks. These results provide insight into the nature
of functions which are favorable for in-network computation.

We analyze the scaling laws for energy and latency in
random networks, wheren nodes are placed uniformly in a
region of volume (or area)n in R

d, and we letn → ∞. We
consider (single-shot) function computation and its delivery
to a designated root node. We first consider the class of sum
functions, which can be computed via an aggregation tree. We
characterize the structural properties of the minimum latency
tree and propose an algorithm to build an energy-efficient min-
imum latency tree based on successive bisection of the region
of node placement. However, minimum latency comes at the
expense of energy consumption and we relax the minimum
latency constraint. Our modified algorithm achieves order-
optimal energy consumption for any given latency constraint.
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It is based on the intuition that long-range communication
links lower latency but increase energy consumption and the
key is to strike a balance between having long-range and short-
range communications to achieve the optimal tradeoff.

We then consider the more general class of functions that
decompose as a sum of functions over the maximal cliques
of a proximity graph, such as thek-nearest neighbor graph
or the random geometric graph. These functions are relevant
in the context of statistical inference of correlated measure-
ments which are drawn from aMarkov random field. See
[1] for details. We extend the proposed sum-function policy
to this case and prove that it achieves order-optimal energy
consumption (up to logarithmic factors) albeit under a limited
range of latency constraints. In this range of feasible latency
constraints, the energy consumption is of the same order as
sum function computation. Hence, functions based on locally-
defined proximity graphs can be computed efficiently with
optimal scaling of energy and latency requirements.

We analyze the scaling behavior of energy consumption
under different regimes of latency constraints and for different
signal propagation models. We assume that the energy con-
sumed scales asRν whereR is the inter-node distance and
ν is the path-loss exponent and consider nodes placed in a
region inR

d. We prove that in the regime1 ≤ ν < d, order-
optimal energy consumption and minimum latency can both
be achieved simultaneously. On the other hand, in the regime
ν > d, there is a tradeoff between energy consumption and
the resulting latency of computation, and our policy achieves
order-optimal tradeoff.

B. Prior and Related Work

There is extensive literature on in-network processing. Some
of the earliest arguments for in-network processing for scal-
ability are presented in [2], [3]. The work of Giridhar and
Kumar [4] provides a theoretical framework for in-network
computation of certain functions such as sum function and an-
alyze scaling of capacity as the network size grows. However,
the work in [4] is concerned with the rate of information flow
when the function is computed an infinite number of times,
while we consider latency of single-shot function computation.
Single-shot computation is relevant in applications involving
one-time decision making based on a set of measurements.
Moreover, we consider a richer class of functions which
decompose according to some proximity graph. These are
relevant in statistical inference applications with correlated
measurements.

For the special case of sum-function computation, the min-
imum latency is the same as that for the minimum broadcast
problem, where the root has information that needs to be
disseminated to all the nodes. Most of the previous work
on minimum broadcast problem, e.g., [5], [6], have focused
on obtaining good approximations for minimum latency in
arbitrary networks, but do not address the issue of scaling
behavior of latency-energy tradeoff in random networks. These
works also assume that only short-range communication may
be feasible for communication. On the other hand, we allow

for a few long-range links but focus on obtaining favorable
scaling of overall energy consumption. Works considering
latency-energy tradeoff in multihop networks are fewer. For
instance, the works in [7]–[9] consider energy-latency tradeoff
for data collection but without the possibility of in-network
computation, which can be significantly more expensive. The
work in [10] considers latency-energy tradeoff but during the
deployment phase of the network.

With respect to analysis of energy scaling laws in randomly
placed networks, the work in [11] derives scaling laws for
multihop routing without in-network computation. In [12],the
minimum energy policy for graph-based function computation
is first analyzed in the context of statistical inference of corre-
lated measurements and is shown to be NP-hard. An efficient
policy is derived based on the Steiner-tree approximation.
In [1], scaling laws for energy consumption are derived for
computation of graph-based functions in random networks.
When the function decomposes according to the cliques of
a proximity graph, such as thek-nearest neighbor graph or
the random geometric graph, it is shown that the function
can be computed with1 Θ(n) energy consumption in random
networks, wheren is the number of nodes. A simple two-stage
computation policy achieves this scaling and is shown to have
asymptotically a constant approximation ratio, compared to
the minimum energy policy. In this paper, we extend the work
to incorporate latency constraints and design policies which
minimize energy consumption under the constraints.

II. SYSTEM MODEL

A. Communication and Propagation Model

In a wireless sensor network, there are communication
and energy constraints. We assume that any node cannot
transmit and receive at the same time (half duplex nodes).
We assume that a node cannot receive from more than one
transmitter at the same time and similarly, a node cannot
transmit simultaneously to more than one receiver. We assume
that no other interference constraints are present. This isvalid
if nearby nodes transmit in orthogonal channels or when
they have idealized directional antenna which can focus the
transmissions within a narrow region around the receiver (e.g.,
[13], [14]). We also assume that nodes are capable of adjusting
their transmission power depending on the location of the
receiver leading to better energy efficiency.

We assume unit propagation delays along all the communi-
cation links and negligible processing delays due to in-network
computation at nodes. For a transmission along edge(i, j)
(from node i to nodej), the energy consumption2 is equal
to Rν

i,j , whereRi,j is the Euclidean distance and typically
ν ∈ [2, 6] for wireless transmissions. In this paper, we allow
for any ν ≥ 1.

1For any two functionsf(n), g(n), f(n) = O(g(n)) if there exists a
constantc such thatf(n) ≤ cg(n) for all n ≥ n0 for a fixed n0 ∈ N.
Similarly, f(n) = Ω(g(n)) if there exists a constantc′ such thatf(n) ≥
c′g(n) for all n ≥ n0 for a fixedn0 ∈ N, andf(n) = Θ(g(n)) if f(n) =
Ω(g(n)) andf(n) = O(g(n)).

2Since nodes only communicate a finite number of bits, we use energy
instead of power as the cost measure.
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B. Stochastic model of sensor locations

Let Qn ⊂ R
d denote the d-dimensional hypercube

[0, n1/d]d of volumen, and typicallyd = 2 or 3 for sensors
placed in an Euclidean region. We assume thatn sensor nodes
(including the root) are placed uniformly inQn with sensori
located atVi ∈ R

d. We denote the set of locations of then
sensors byVn:={V1, . . . , Vn}. For our scaling law analysis,
we let the number of sensorsn → ∞. Denote the root node
by r, where the computed function needs to be delivered, and
its location byVr.

C. Function Computation Model

Each sensor nodei collects a measurementYi ∈ Y, where
Y is a finite set, and letYn = {Y1, . . . , Yn} be the set of
measurements ofn nodes. We assume that the goal of data
aggregation is to ensure that a certain deterministic function3

Ψ : (Yn,Vn) 7→ R is computable at the rootr at the end of
the aggregation process. The set of valid aggregation policies
π is thus given by

F(Vn; Ψ):={π : Ψ(Yn,Vn) computable atr}. (1)

Using the propagation model discussed in Section II-A, the
total energy consumption of the aggregation process under a
policy π ∈ F(Vn; Ψ) is

Eπ(Vn) :=
∑

e∈Gπ
n

Rν
e , (2)

whereGπ
n is the set of links used for inter-node communication

by the policy. The latency4 of function computation is

Lπ(Vn; Ψ):= inf[t : Ψ(Yn,Vn) computable atV1 at time t],
(3)

where the aggregation process starts att = 0. Let L∗(Vn; Ψ)
be the minimum latency over the set of valid policies.

If no further assumptions are made on the functionΨ,
then all the measurementsYn need to be delivered to the
root without any in-network computation. This is expensive
both in terms of latency and energy consumption. Typically,
the functionΨ decomposes into sub-functions involving only
subset of measurements. In this case, in-network computation
can be carried out to enable efficient tradeoff between energy
consumption and latency of computation. We assume that the
functionΨ has the form,

Ψ(Vn,Yn) =
∑

c∈C

ψc((Yi)i∈c), (4)

whereC is the set ofmaximal cliques5 on some graphGΨ.
See Fig.1 for an example. Note that this graphGΨ is related
to the functionΨ and not with communication links. We refer
to GΨ as thefunction dependency graph.

3In general, the function can depend on the locations where the measure-
ments are collected.

4We consider one-shot function computation.
5A clique is a complete subgraph and is maximal if it is not contained in

a bigger clique.

Root r

Fig. 1. Example of a function dependency graphG and the function
decomposes in terms of the maximal cliques of the graph, as represented
by dotted lines.

We consider the case when the graph6 G is either ak-
nearest neighbor graph (k-NNG) or theρ-random geometric
graph (ρ-RGG) with threshold radiusρ, wherek, ρ are some
fixed constants, independent of the number of nodesn. These
graphs are relevant choices since many functions are based
on proximity of the nodes. For instance, in the context of
statistical inference, this corresponds to node measurements
being locally dependent according to aMarkov random field
with the given graphG(Vn). See [1] for details.

D. Energy-Latency Tradeoff

Denote the minimum latency for function computation over
the set of valid policies byL∗, i.e.,

L∗(Vn;GΨ) := min
π∈F

Lπ(Vn;GΨ). (5)

The policy achieving minimum latencyL∗ can have large
energy consumption and similarly, policies with low energy
consumption can result in large latency. Hence, it is desirable
to have policies that can tradeoff between energy consumption
and the latency of function computation. We consider findinga
policy with minimum energy consumption subject to a latency
constraint,

E∗(Vn; δ,GΨ) := min
π∈F
Eπ(Vn;GΨ), s.t. Lπ ≤ L∗ + δ, (6)

whereδ (which can be a function ofn) is the additional latency
suffered in order to reduce energy consumption. In general,
finding (6) is NP-hard for nodes placed at arbitrary locations
(since the special case of this problem of finding minimum
energy policy with no latency constraints is NP-hard [16]).
We instead propose a policy which has energy consumption
of the same order as the optimal policy for randomly placed
nodesVn, asn→∞, and for any given latency constraint.

III. SUM FUNCTION COMPUTATION

A sub-class of functions in (15) is the set of sum functions

Ψ(Vn,Yn) =
n
∑

i=1

ψi(Yi), (7)

which have the maximum extent of decomposition over the
set of nodes. Computing sum functions is required in vari-
ous network applications, e.g., to find the average value, in

6In fact, our results hold for a general class of graphs satisfying a certain
stabilization property. See [15] for details and examples.
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Root r

1 2 k

T1
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T2 Tk

(a) The latency for an aggrega-
tion tree can be obtained iter-
atively by considering subtrees.
See Proposition 1.

Root r
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(b) The min. latency treeT ∗

with edge level labels. See
Alg.1.

Fig. 2. Latency of aggregation along a tree.

Algorithm 1 Min. latency treeT ∗(n).

Input: nodesN = {1, . . . , n}, root noder. C(i;T ) denotes
children of nodei. S(k;T ) denotes levelk edges inT .
For any setA, let A

∪
← {r} denoteA← A ∪ {r}.

Output: T ∗(n).
1: Initialize setA = {r} andT ∗ = {r}.
2: for k = 1, . . . , dlog2 ne do
3: B ← A.
4: for each i ∈ B do
5: if N \A 6= ∅ then
6: For somej ∈ N \ A, C(i;T ∗)

∪
← j (j is now a

child of i), S(k;T ∗)
∪
← (i, j) (level k edges) and

A
∪
← j.

distributed statistical inference with statistically independent
measurements [1], and so on.

A. Preliminaries

We first discuss the policy to achieve minimum latency
L∗(Vn; Ψ) in (5) for sum function computation without con-
sidering the energy consumption. In this case, the minimum
latency does not depend on the position of the nodesVn but
only on the order of scheduling of the various nodes, i.e.,
L∗(Vn; Ψ) = L∗(n). Moreover, the minimum latencyL∗(n)
can be achieved via data aggregation along a spanning tree
T ∗(n), directed towards rootr.

For data aggregation along any directed spanning treeT ,
each node waits to receive data from its children (via incoming
links), computes the sum of the values (along with its own
measurement) and then forwards the resulting value along
the outgoing link. See Fig.2b for an example. LetLT be
the resulting latency along treeT . We now make a simple
observation. See also Fig.2a.

Proposition 1 (Latency along a tree):For a spanning tree
T with root r, the latencyLT is given by

LT = max
i=1,...,k

{i+ LTi}, (8)

whereTi is the subtree rooted at nodei, and1, . . . , k are the
childrenC(r;T ) of the root noder ordered such thatLT1

≥
LT2

. . . ≥ LTk
.

Proof: Indeed, after timeLTi , information from1, . . . , i has
still not been sent to the root, and this will take at least time

Algorithm 2 Min. lat. treeT ∗(Vn) with order opt. energy

Input: Locations of nodes:Vn = {V1, . . . , Vn}, root node
r, Qn ⊂ R

d: region where the nodes are placed.C(i;T )
denotes children of nodei. S(k;T ) denotes levelk edges
in T . For a rectangular regionQ and a nodei with Vi ∈ Q,
let B1(Q; i) and B2(Q; i) be the two halves withVi ∈
B1(Q; v). For any setA, let A

∪
← {r} denoteA ← A ∪

{r}.
Output: T ∗(Vn).

1: Initialize A← {r}. Rr ← Qn.
2: for k = 1, . . . , dlog2 ne do
3: B ← A.
4: for each i ∈ B do
5: if Vn ∩ B2(Ri; i) 6= ∅ then
6: For some nodej s.t.Vj ∈ B2(Ri; i), C(i;T ∗)

∪
← j,

S(k;T ∗)
∪
← (i, j), A

∪
← {j}, Rj ← B2(Ri; i) and

Ri ← B1(Ri; i).

Root r 1

2

2

33

3 3

4

4

44

4
4

4

Fig. 3. The min. latency treeT ∗(Vn) over 15 nodes with edge level labels
placed in square region. See Alg.3.

i, soLT ≥ i+LTi for all i = 1, . . . , k. Conversely, there is a
simple policy with latency in (8) which aggregates along the
subtreesTi with latencyLTi and then nodei sends its data to
the rootr at time slotLT − i. 2

Using (8) we can thus effectively compute the latency
of any given rooted treeT . We now provide the result on
the minimum latencyL∗(n) and the construction of the tree
T ∗(n) achieving it. This has been previously analyzed in the
context of minimum broadcast problem [5], where the root has
information that needs to be disseminated to all the nodes.

Lemma 1 (Minimum Latency Tree):The minimum latency
for sum function computation overn nodes isL∗(n) =
dlog2 ne. Equivalently, the maximum number of vertices in
a tree with latency at mostL is 2L.
Proof: See Appendix A. 2

There is a unique minimum latency tree7 T ∗(n) up to a
permutation on the nodes. The minimum latency tree can
be constructed recursively as explained in Algorithm 1. The
algorithm runs forL∗(n) steps and in each step, a child is
added to each node already in the tree. An example of the
minimum latency tree is shown in Fig.2b.

7Note that the balanced binary tree onn nodes has latency2dlog2(n +
1)e − 2, which is about twiceL∗(n).
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B. Policies for Energy Latency Tradeoff

We now propose a policy for sum-function computation
with order-optimal energy consumption subject to a given
latency constraint in (6). Note that the minimum latency tree
T ∗(n) does not depend on the node locations and any permu-
tation of the nodes on the tree (with the root fixed) results in
the same latency. On the other hand, the energy consumption
depends on the node locations. We propose an energy-efficient
minimum-latency treeT ∗(Vn) in Algorithm 3, depending on
the node locations. This will be later proven to achieve order-
optimal energy consumption for uniformly placed nodes. We
first note some definitions used in the sequel.
Definitions:For a rooted treeT and a nodei, letC(i;T ) denote
the children ofi. Thelevell(e;T ) of a link e in an aggregation
treeT is given byLT−te, wherete is the time at which data is
transmitted along linke (time 0 is the start of the aggregation
process). Note that the level depends on both the tree structure
and the transmission schedule on the tree. Let

S(k;T ) := {e : l(e;T ) = k, e ∈ T }. (9)

be the set of levelk edges in treeT . See Fig.2b. Let
SPl(i, j;Vn) denote the least-energy path8 betweeni and
j with at most l ≥ 0 intermediate nodes when the node
locations areVn. For a rectangular regionQ ⊂ R

d containing
a subset of nodes and a reference nodei such thatVi ∈ Q,
let B1(Q; i),B2(Q; i) be the two halves when bisected along
the coordinate with the largest extent such thatB1(Q; i) and
B2(Q; i) have equal number of nodes withVi ∈ B1(Q; i).

We propose an energy-efficient minimum-latency tree
T ∗(Vn) in Algorithm 3, and, prove in Section III-C that
T ∗(Vn) achieves order-optimal energy consumption for uni-
formly placed nodes subject to the minimum latency con-
straint. In Algorithm 3, every added node in the tree picks a
new child, as in Algorithm 1, but now the children are chosen
based on the node locations. Specifically, in the first iteration,
the region of node placement is bisected (with equal number
of nodes in each half), and the root chooses a child in the other
half. The region assigned to the root is now the half-region
(where it is located), while the added child node is assigned
the other half-region. The subsequent iterations proceed in a
similar manner and each node bisects its assigned region into
two halves and picks a child in the other half, and updates the
assigned regions.

The algorithm 3 considered energy-efficient policy under the
minimum latency constraint. We now present the policyπAGG

for any given latency constraint in Algorithm 4. The difference
between the two cases is that in the latter case, a lower energy
consumption is achieved by exploiting the relaxed latency con-
straint. Intuitively, long-range (direct) communicationentails
more energy consumption than multi-hop routing, especially
when the path-loss exponentν is large. On the other hand,
latency is increased due to multihop routing. The key is to
carefully convert some of the long-range links inT ∗(Vn)

8Note that the least-energy path depends on the path-loss exponentν and for
largerν, multi-hop routing is more energy efficient than direct transmissions.

Algorithm 3 Min. lat. treeT ∗(Vn) with order opt. energy

Input: Locations of nodes:Vn = {V1, . . . , Vn}, root node
r, Qn ⊂ R

d: region where the nodes are placed.C(i;T )
denotes children of nodei. S(k;T ) denotes levelk edges
in T . For a rectangular regionQ and a nodei with Vi ∈ Q,
let B1(Q; i) and B2(Q; i) be the two halves withVi ∈
B1(Q; v). For any setA, let A

∪
← {r} denoteA ← A ∪

{r}.
Output: T ∗(Vn).

1: Initialize A← {r}. Rr ← Qn.
2: for k = 1, . . . , dlog2 ne do
3: B ← A.
4: for each i ∈ B do
5: if Vn ∩ B2(Ri; i) 6= ∅ then
6: For some nodej s.t.Vj ∈ B2(Ri; i), C(i;T ∗)

∪
← j,

S(k;T ∗)
∪
← (i, j), A

∪
← {j}, Rj ← B2(Ri; i) and

Ri ← B1(Ri; i).

into multi-hop routes to lower the energy consumption and
take advantage of the additional allowed latency.

In Algorithm 4, the regions are bisected and new nodes are
chosen as children, as in Algorithm 3. But instead of directly
linking the nodes in the two hops, the least-energy route is
chosen with at mostwk intermediate routes, wherewk is a
fixed weight. The nodes that are already added in this manner
are not considered for addition as children in the subsequent
iterations. In general, the resulting set of communicationlinks
is not a tree, since the least-energy paths constructed in
different iterations may share the same set of nodes. But the
sum function computation can be carried out on similar lines,
as on an aggregation tree. We now relate the weights(wk)
with the latency of the resulting policyπAGG in Algorithm 4.

Proposition 2 (Latency under Algorithm 4):The aggrega-
tion policy πAGG in Algorithm 4 for a given set of weights
w achieves a latency of

LπAGG

(n) ≤ L∗(n) +

dlog
2
ne−1

∑

k=0

wk.

Proof: There are at mostdlog2 ne iterations and the total
delay is

dlog
2
ne−1

∑

k=0

(1 + wk) = L∗(n) +

dlog
2
ne−1

∑

k=0

wk.

2

Thus, the weights(wk) can be chosen to satisfy any given
latency constraint and we have a policyπAGG for sum function
computation given any feasible latency constraint. The analysis
of energy consumption underπAGG for a given set of weights
is not straightforward to analyze and forms the main result of
this paper. This is discussed in the next section.

C. Order-Optimality Guarantees

To achieve optimal energy-latency tradeoff according to
(6), we choose weightswk in Algorithm 4, for k =
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Algorithm 4 Latency-energy tradeoff policyπAGG(Vn;w).

Input: Locations of nodes:Vn = {V1, . . . , Vn}, root node
r, and set of weightswk for k = 0, . . . , dlog2 ne − 1.
For a rectangular regionQ and nodev ∈ Q, let B1(Q; v)
andB2(Q; v) be the two halves withv ∈ B1(Q; v). Let
SPl(i, j;Vn) bel-hop least-energy path.Qn ⊂ R

d: region
where the nodes are placed. For any setA, let A

∪
← {r}

denoteA← A ∪ {r}.
Output: GπAGG

: communication links used by policyπAGG.
1: Initialize A1, A2 ← {r}. Rr ← Qn.
2: for k = 0, . . . , dlog2 ne − 1 do
3: B ← A1

4: for each i ∈ B do
5: if (Vn ∩ B2(Ri; i)) \A2 6= ∅ then
6: Pick j s.t. Vj ∈ B2(Ri; i) \A2, A1

∪
← {j},

GπAGG ∪
← SPwk

(i, j;Vn), A2
∪
← SPwk

(i, j;Vn),
Rj ← B2(Ri; i) andRi ← B1(Ri; i).

0, . . . , dlog2 ne − 1, as

wk =

{

bζδ2k(1/ν−1/d)c if ν > d,

0 o.w. (10)

where δ is the additional latency allowed in (6),ν is the
path-loss factor for energy consumption in (2) andd is the
dimension of Euclidean space where the nodes are placed.
The normalizing constantζ is chosen as

ζ =

{

1− 21/ν−1/d, if ν ≥ d,

dlog2 ne
−1, ν = d, (11)

so that
∑dlog

2
ne−1

k=0 wk ≤ δ. Hence, from Lemma 2, the
weights in (10) result in a policyπAGG with latencyL∗(n)+ δ.
We now provide the scaling behavior of optimal energy
consumption as well the order-optimality result forπAGG.

Theorem 1 (Energy-Latency Tradeoff):For a given addi-
tional latency constraintδ = δ(n) ≥ 0 and fixed path-loss
factor ν > 1 and dimensiond ≥ 1, as the number of nodes
n → ∞, the minimum energy consumption for sum function
computation satisfies

E(E∗(Vn; δ))=











Θ(n) ν < d,

O
(

max{n, n(logn)(1 + δ
logn )

1−ν}
)

ν = d,

Θ
(

max{n, nν/d(1 + δ)1−ν}
)

ν > d,

where the expectation is over the locationsVn of n nodes
chosen uniformly at random in[0, n1/d]d and is achieved by
the policyπAGG in Algorithm 4 for weights given by (10).
Remarks:
(i)The policyπAGG in Algorithm 4 thus achieves order-optimal
energy consumption under any feasible latency constraint
whenν 6= d. For the caseν = d, we show thatE[E∗n(Vn; δ)] =
Ω(n) while the energy consumption underπAGG is the upper
bound in Theorem 1, given byO(n log n), i.e., the energy
consumption is at most only logarithmically worse than the
lower bound.

n

E∗

ν < d
ν > d

Fig. 4. Scaling of minimum total energyE∗ in different regimes of path
lossν and dimensiond. See Theorem 1.

(ii)The result of Theorem 1 holds even if the latency constraint
is relaxed to an average constraint, i.e.,

E[Lπ(Vn)] ≤ L
∗(n) + δ.

From Theorem 1, the energy consumption has different
behaviors in the regimesν < d and ν > d, as represented
in Fig.4, and we discuss this below.
Caseν < d: In this regime, the path-loss factor is low, and
hence, long-range transmission does not suffer a high penalty
over multihop routing. This is also favorable for latency
performance and hence, in this regime minimum latency of
dlog2 ne can be achieved withΘ(n) energy consumption.
Note that the aggregation tree with the minimum energy
consumption is the minimum spanning tree (MST) and the
expected energy consumption for MST under uniform node
placement is alsoΘ(n). Hence, our policyπAGG achieves both
order-optimal energy and minimum latency simultaneously in
the regimeν < d.
Caseν > d: In this regime, multihop routing is much more
favorable over direct transmissions with respect to energy
consumption while direct transmissions are favorable for low
latency. Hence, both low energy and low latency cannot
be achieved simultaneously in this regime. Our policyπAGG

achieves order-optimal energy consumption subject to a given
latency constraint in this regime. Note that typically, for
sensor networks placed in two-dimensional area(d = 2) with
wireless transmissions(ν ∈ [2, 6]), this regime is of interest.
Comparison withMST: If the minimum spanning tree (MST)
is used for aggregation, it results in minimum energy consump-
tion which isΘ(n) under random node placement. However,
the expected latency of aggregation along the MST is at least
the depth of the MST and hence, the latency and energy satisfy,

E[LπMST

(Vn)] = Ω(n1/d), E[Eπ
MST

(Vn)] = Θ(n). (12)

In contrast, under our policyπAGG, we can obtain, whenν < d,

E[LπAGG

(Vn)] = dlog2 ne, E[Eπ
AGG

(Vn)] = Θ(n). (13)

For the case whenν > d, our policy achieves

E[LπAGG

(Vn)] = Θ(n
ν/d−1

ν−1 ), E[Eπ
AGG

(Vn)] = Θ(n), (14)

by settingδ = n
ν/d−1

ν−1 in Theorem 1 Thus, our policyπAGG

is especially advantageous over using the MST when the path
loss ν is small. Moreover, the policyπAGG can be designed
based on the latency requirements while the MST cannot be
easily modified to satisfy them.
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IV. GENERAL FUNCTION COMPUTATION

We now extend the latency-energy tradeoff policy to under-
take general function computation. Recall that we considerthe
class of functions of the form

Ψ(Vn,Yn) =
∑

c∈C(Vn)

ψc((Yi)i∈c), (15)

whereC(Vn) is the set ofmaximal cliqueson a graphG(Vn),
known as the function dependency graph and the functionsψc

are clique functions. We consider the case when the graph9 is
either ak-nearest neighbor graph (k-NNG) or theρ-random
geometric graph (ρ-RGG) with threshold radiusρ, wherek, ρ
are some fixed constants, independent of the number of nodes
n.

Note that the functionΨ in (15) now depends on the
location of the nodesVn which is not the case with the sum
function. Hence, the latency-energy analysis has to take this
into account. We propose modifications to the latency-energy
tradeoff policyπAGG to enable general function computation
and then prove its order-optimality for latency-energy tradeoff.

A. Preliminaries

The extent of decomposition of functionΨ depends on
the sparsity (number of edges) of the function dependency
graphG. We first make a simple observation that the energy
consumption and latency increase with more edges inG.

Proposition 3 (Energy consumption and sparsity ofG):
The minimum energy in (6) required to compute functions of
the form in (15) under a fixed additional latency constraint
δ ≥ 0 with dependency graphsG andG′ satisfies

E∗(Vn; δ,G) ≥ E
∗(Vn; δ,G

′), whenG ⊃ G′. (16)

Proof: Let C (resp.C′ be the set of maximal cliques in
G (resp. G′). Since G′ ⊂ G, each new cliquec ∈ C \ C′

replaces a smaller set of cliquesc′ ⊂ c, c′ ∈ C′. The latency
and energy consumption for any valid policy in computing
the clique functionψc((Yi)i∈c) is at least that of computing

∑

c′⊂c,c′∈C′

ψc′(Yc′), since this is a further decomposition of

ψc. Hence, the result. 2

Hence, the ability to obtain efficient scaling of latency and
energy consumption for function computation depends on the
sparsity of the function dependency graphG. The extreme case
of a trivial graph(G = ∅) is the sum function, analyzed in the
previous section, while the other extreme is the complete graph
(G = Kn), where there is no decomposition of the function. In
the latter case, no in-network computation is possible and all
the measurementsYn need to be routed to the root via least-
energy paths. We have the following scaling in this scenario.

Proposition 4 (Scaling Under No Computation):The min-
imum latency and minimum energy (with no latency con-
straint) for computation of a function with dependency graph
Kn satisfies

E[E∗(Vn;∞,Kn)] = Θ(n1+1/d), E[L∗(Vn;Kn)] = Ω(n).

9In fact, our results hold for a general class of graphs satisfying a certain
stabilization property. See [15] for details and examples.

Algorithm 5 Policy πCLQ(Vn;w,C) for general functions.

Input: Locations of nodes:Vn = {V1, . . . , Vn}, root noder,
C: set of maximal cliques of function dependency graph
G(Vn). For eachc ∈ C, P(c) is the processor (node
computing clique functionψc). For any setA, letA

∪
← {r}

denoteA← A ∪ {r}.
Output: πCLQ policy with data forwarding linksFπCLQ

and
aggregation linksGπAGG

.
1: for each clique c ∈ C do
2: For nodei ∈ c with smallest label,P(c)← i.
3: For all nodesj ∈ c, j 6= i, FπCLQ ∪

← (j, i).
4: Let le be the color for edgee ∈ FπCLQ

under proper edge
coloring with colorsl = 1, 2, . . .∆+ 1.

5: for t = 0 to ∆ do
6: Send measurements using links inFπCLQ

of color t+1.
7: Find sum of clique functions usingπAGG from Algorithm 4.

The result on minimum energy follows from the scaling
behavior of energy for least-energy path routing to the root
under uniform node placement [17]. The latency of function
computation is at leastn since the root can receive at most
one measurement value at each time step and there is no ag-
gregation of the measurements. Hence, we can expect efficient
scaling of energy and latency only in case of computation of
functions with sparse dependency graphsG.

Moreover, the energy consumption also depends on the edge
lengths of the function dependency graphG. Intuitively, when
the graphG has local edges, the clique functionsψc can be
computed locally resulting in low energy consumption. This
holds for the proximity graphs such as thek-NNG and the
ρ-RGG ensure under consideration. We propose policies for
latency-energy tradeoff which are efficient for such locally-
defined dependency graphs.

B. Policy for Latency-Energy Tradeoff

We now extend the policyπAGG in Algorithm 4 for general
function computation as a two-stage policyπCLQ. In the first
stage known as the data forwarding stage, the clique functions
ψc are computed locally within each maximal cliquec ∈ C

of the graphG as follows: aclique processoris chosen as a
clique member with the smallest label (under arbitrary label-
ing of nodes) and other clique members communicate their
measurements to the processor via direct transmissions. The
transmissions are scheduled as follows: the set of forwarding
links FπCLQ

are assigned colorsl = 1, 2, . . . ,∆ + 1 under a
proper edge coloring. At timest = 0, 1, . . . ,∆, transmissions
along links of colort+1 are scheduled simultaneously. In the
second stage, the aggregation policyπAGG in Algorithm 4 is
used for computing the sum of the clique function values at
the processors (and nodes other than processors do not have
their own values for aggregation but participate in the process).
This is summarized in Algorithm 5.
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We obtain the following result for energy-latency tradeoff10

for general function computation. Let∆(G) denote the maxi-
mum degree of the function dependency graphG in (15), which
is either thek-NNG or theρ-RGG, wherek andρ are fixed
constants.

Theorem 2 (Energy-Latency Tradeoff):For a given addi-
tional latency constraintδ ≥ ∆(G) + 1 in (6), the energy
consumption for function computation of the form (15) with
dependency graphG under the two-stage policyπCLQ satisfies

E(Eπ
CLQ

(Vn; δ,G)) = Θ(E(E∗(Vn; δ − (∆ + 1), ∅))),

where the expectation is over the locationsVn of n nodes
chosen uniformly at random in[0, n1/d]d and the right-hand
side is the minimum energy consumption for sum function
computation under latency constraint ofδ− (∆+ 1) which is
given by Theorem 1.
Proof: See [20]. 2

Remarks:
(i) The policyπCLQ achieves order-optimal energy consumption
for casesν < d, δ ≥ ∆ + 1 and ν > d, δ � ∆. This
is because the minimum energy consumptionE∗(Vn; δ,G)
is lower bounded by the minimum energy for sum function
computation from Proposition 3. Theorem 1 provides the
scaling for minimum energy for sum function computation.
Comparing it with the energy underπCLQ policy in Theorem 2,
we note that they are bothΘ(n) when ν < d. For the case
ν > d, they are still of the same order if the maximum degree
∆(G) is small compared to additional latency constraintδ.
(ii) The maximum degrees ofk-NNG andρ-RGG satisfy

∆(k-NNG) = (cd+1)k, ∆(ρ-RGG) = Θ(
logn

log logn
), (17)

wherecd is a constant (depending only ond). See [18, Cor.
3.2.3] and [19, Thm. 6.10]. Hence, for these graphs,πCLQ

policy is order-optimal (up to logarithmic factors) for anypath-
loss factorν 6= d and under any additional latency constraint
δ ≥ ∆(G) + 1. The above discussion also implies that the
minimum energy for sum function computation and general
function computation are of the same order fork-NNG andρ-
RGG dependency graphs. Hence, these functions are amenable
to efficient latency-energy tradeoff.
(iii) The policyπCLQ can achieve a latency ofdlog2 ne+∆(G)+
1. Finding the policy with minimum latencyL∗ in (5) for
general function computation is NP-hard. However, we have
L∗ ≥ dlog2 ne, since the minimum latency cannot be smaller
than that required for sum function computation. We ensure
that an additional latency constraint ofδ is satisfied in (6) by
relaxing the constraint asL ≤ dlog2 ne + δ. SinceπCLQ can
only achieve latencies greater thandlog2 ne + ∆(G) + 1, we
can only ensure that constraintsδ ≥ ∆(G) + 1 are met.

V. CONCLUSION

In this paper, we considered energy-latency tradeoff for
function computation in random networks. While designing

10The latency constraintLπ ≤ L∗ + δ is required a.s. over the realization
of pointsVn.

optimal tradeoff policies in arbitrary networks is intractable,
we proposed simple and easily implementable policies which
have order-optimal performance and are relevant in large net-
works. We analyzed the scaling behavior of energy consump-
tion under a latency constraint for computation and showed
that it depends crucially on the path-loss exponent of signal
propagation, the dimension of the Euclidean region where
the nodes are placed and the extent to which the function
is decomposable. For functions which decompose according
to cliques of a proximity graph such as thek nearest-neighbor
graph or the random geometric graph, efficient tradeoff can be
achieved and the energy and latency having optimal scaling
behaviors.

This work opens up an array of important and challeng-
ing questions which warrant further investigation. While,we
considered exact computation of a deterministic function,
we expect that relaxing these assumptions will lead to a
significant improvement of energy and latency scaling. We
assumed single-shot data aggregation. Extensions to the set-
ting of continuous monitoring and collection, where block
coding is possible is of interest. We considered a single root
node as the destination for the computed function, while in
reality different nodes may require different functions tobe
computed. An extreme case of this scenario is thebelief
propagation (BP) algorithm which requires computation of
maximum a posteriori(MAP) estimate at each node based
on all the measurements, which are drawn from a Markov
random field. Considering scenarios between these extremes
and designing efficient schemes for energy-latency tradeoff is
extremely relevant to many network applications.

APPENDIX

A. Proof of Lemma 1

We prove by induction onL that the maximum number of
vertices in a tree of latency at mostL is exactly2L. This is
clear forL = 0 as such a tree must consist of just the root.
Now assumeL > 0 and supposeT is a tree with latencyL.
Consider the edges that transmit information at the last time
stepL. Clearly these must transmit to the rootr. But the root
can only receive information from one child at a time. Thus
there is precisely one edge(r, i) along which information is
transmitted at timeL. Removing the edge(r, i) splits the tree
T into two treesTr and Ti rooted atr and i respectively.
For all the data to be received atr in time L, all the data
must be received at eitherr or i by time L − 1. Thus both
Tr and Ti are trees of latency at mostL − 1. By induction
Tr and Ti have at most2L−1 vertices. ThusT has at most
2L−1 + 2L−1 = 2L vertices. Conversely, given two copies of
a rooted tree on2L−1 vertices with latencyL − 1, one can
construct a tree with latencyL on 2L vertices by joining the
rootsr, i of these two trees with an edge(r, i), and declaring
one of the two roots, sayr, to be the root of the resulting tree.
The transmission protocol to achieve latencyL is simply to
follow the protocols on each tree for the firstL− 1 steps, and
then transmit all data ati from i to r at time stepL.
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As any rooted subtree of a treeT has latency at mostLT , it
is clear that the minimum latency of any tree onn vertices is
L = dlog2 ne, and this can be achieved by taking any rooted
subtree of the tree on2L vertices constructed above.

B. Proof of Lower Bound in Theorem 1

Note that for ν < d, since the MST has energyΘ(n),
the result follows. For the caseν > d, consider an arbitrary
spanning tree with rootr. Consider the pathPu from r to u
in the tree. LetR(Pu) be the length ofPu, i.e., the sum of
the lengths of the edges ofPu. Then with high probability

∑

u

R(Pu) ≥
∑

u

‖u− r‖ ≥ cn1+1/d. (18)

for some constantc > 0. Indeed, with high probability, at least
one half of the nodes lie at distance at least1

4n
1/d from r.

Let ne be the number of pathsPu that go throughe, sone is
the number of vertices belowe in the tree. Then

∑

R(Pu) =
∑

e

Rene.

Indeed,
∑

R(Pu) counts the length ofe exactly ne times.
Now ET =

∑

Rν
e , so by Hölder’s inequality

(

∑

Rν
e

)1/ν(∑

nν/(ν−1)
e

)(ν−1)/ν

≥
∑

e

Rene ≥ cn
1+1/d.

(19)
Thus it is enough to find an upper bound on

∑

n
ν/(ν−1)
e . If

e is at distancei from r then the latency of the tree frome
onwards is at mostL∗ + δ − i. But this means it has at most
2L

∗+δ−i ≤ (2n)2δ−i vertices. Hencene ≤ n2
1+δ−i. Also, for

eachi we have
∑

e:dist(e,r)=i

ne ≤ n

as each vertex can be counted in at most onene with d(e, r) =
i. Thus

∑

dist(e,r)=i

nν/(ν−1)
e =

∑

dist(e,r)=i

nen
1/(ν−1)
e ≤ n(n21+δ−i)1/(ν−1)

for i > δ, and
∑

dist(e,r)=i

nν/(ν−1)
e ≤ n1+1/(ν−1)

for i ≤ δ as we always havene ≤ n. The first sum is
decreasing geometrically ini, so
∑

e

nν/(ν−1)
e = (δ +O(1))nn1/(ν−1) = O(1 + δ)nν/(ν−1).

Thus by (19),

E
1/ν
T (1 + δ)(ν−1)/νn ≥ c′nn1/d.

Hence
ET = Ω(nν/d(1 + δ)1−ν)

as required.
The proof of the upper bound for energy consumption under

Algorithm 4 is given in [20].
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