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Degree Fluctuations and the Convergence Time of

Consensus Algorithms

Alex Olshevsky John N. Tsitsiklis

Abstract

We consider a consensus algorithm in which every node in a time-varying undirected connected graph

assigns equal weight to each of its neighbors. Under the assumption that the degree of any given node is

constant in time, we show that the algorithm achieves consensus within a given accuracy ε on n nodes

in time O(n3ln(n/ε)). Because there is a direct relation between consensus algorithms in time-varying

environments and inhomogeneous random walks, our result also translates into a general statement on

such random walks. Moreover, we give simple proofs that the worst case convergence time becomes

exponentially large in the number of nodes n under slight relaxations of the above assumptions. We

prove that exponential convergence time is possible for consensus algorithms on fixed directed graphs,

and we use an example of Cao, Spielman, and Morse to give a simple argument that the same is possible

if the constant degrees assumption is even slightly relaxed.

I. INTRODUCTION

Consensus algorithms are a class of iterative update schemes that are commonly used as

building blocks for the design of distributed control laws. Their main advantage is robustness

in the presence of time varying environments and unexpected communication link failures.

Consensus algorithms have attracted significant interest in a variety of contexts such as distributed

optimization [17], [16] coverage control [11], and many other contexts involving networks in

which central control is absent and communication capabilities are time-varying.
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While the convergence properties of consensus algorithms in time-varying environments are

well understood, much less is known about the corresponding convergence times. An inspection

of the classical convergence proofs ([3], [12]) leads to convergence time upper bounds that grow

exponentially with the number of nodes. It is then natural to look for conditions under which

the convergence time only grows polynomially, and this is the subject of this paper.

In our main result, we show that a consensus algorithm in which every node assigns equal

weight to each of its neighbors in an undirected, connected graph (where the graph can be time-

varying) has polynomial convergence time if the degree of any given node is constant in time.

Because there is a direct relation between consensus algorithms in time-varying environments

and nonhomogeneous random walks, our result also translates into a general statement on such

random walks.

A. Model, notation, and background

In this subsection, we define our notation, the model of interest, and some background on

consensus algorithms.

Given a directed graph G, we will use Ni(G) to denote the set {j | (i, j) is an edge} of direct

successors of node i in G, and di(G) to denote the cardinality of Ni(G). Given a sequence of

directed graphs G(0), G(1), . . . , G(k− 1), we will use the simpler notation Ni(t), di(t) in place

of Ni(G(t)), di(G(t)), and we will make a similar simplification for other variables of interest.

We are interested in analyzing a consensus algorithm in which a node assigns equal weight

to each one of its neighbors. We consider n nodes and assume that at each discrete time t,

node i stores a real number xi(t). We let x(t) = (x1(t), . . . , xn(t)). For any given sequence of

directed graphs G(0), G(1), G(2), . . ., and any initial vector x(0), the algorithm is described by

the update equation

xi(t+ 1) =
1

di(t)

∑
j∈Ni(t)

xj(t), i = 1, . . . , n, (1)

which can also be written in the form

x(t+ 1) = A(t)x(t),

for a suitably defined sequence of matrices A(0), A(1), . . . , A(t− 1). The graphs G(t), which

appear in the above update rule through di(t) and Ni(t), correspond to information flow among
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the agents; the edge (i, j) is present in G(t) if and only if agent i uses the value xj(t) of

agent j in its update at time t. To reflect the fact that every agent always has access to its own

information, we assume that every graph G(t) contains all the self-loops (i, i). Note that we

have [A(t)]ij > 0 if and only if (i, j) is an edge in G(t).

It is well known ([17], [12]) that, subject to some natural conditions on the graph sequence,

every component of x(t) converges to a common value. In this paper, we focus on the conver-

gence rate of this process in some natural settings. To quantify the progress of the algorithm

towards consensus, we will use the function S(x) = maxi xi −mini xi. For any ε > 0, we will

say that a sequence of graphs G(0), G(1), . . . , G(k − 1) (alternatively, a sequence of matrices

A(0), A(1), . . . , A(k − 1)) results in ε-consensus if S(x(k)) ≤ εS(x(0)) for all initial vectors

x(0).

We will focus on graph sequences in which every graph G(t) is bidirectional, meaning that

if (i, j) is an edge in G(t), then so is (j, i). In practice, graphs that capture information flows

are often bidirectional. For example, G(t) is bidirectional if: (i) G(t) contains all the edges

between agents that are physicaly within some distance of each other; (ii) G(t) contains all the

edges between agents that have line-of-sight views of each other; (iii) G(t) contains the edges

corresponding to pairs of agents that can send messages to each other using a protocol that relies

on acknowledgements.

It is an immediate consequence of existing convergence proofs ([3], [12]) that any sequence of

Cnnln(1/ε) connected bidirectonal graphs, with self-loops at every node, results in ε-consensus.

Here, C is a constant that does not depend on the problem parameters n and ε. We are interested

in simple conditions under which the undesirable O(nn) scaling becomes polynomial in n.

B. Our results

Our contributions are twofold. First, in Section II, we prove our main result.

Theorem 1: Consider a sequence G(0), G(1), . . . , G(k − 1) of connected bidirectional graphs,

with self-loops at each node. Suppose, furthermore, that the degree of each node stays constant

in time, i.e., di(t) = di(t
′), for all i, t, and t′. If the length k of the graph sequence is at least

n3ln2n
ε

, then ε-consensus is achieved.
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To put Theorem 1 in perspective, we note that polynomial convergence times were only known

for the cases where:

(a) the graphs G(t) are the same at each time t, bidirectional, connected, with all self-loops

present [13]; or

(b) in addition to some natural connectivity assumptions, the underlying iteration matrices

are doubly stochastic, which, for the consensus algorithms considered here amounts to

an assumption that each graph G(t) is regular [15].

Theorem 1 can be viewed as a generalization of the above two results.

In Section III, we give an interpretation of our results in terms of Markov chains. Theorem

1 can be interpreted as providing a sufficient condition for a random walk on a time-varying

graph to forget its initial distribution in polynomial time.

In Section IV, we capitalize on the Markov chain interpretation and show through examples

that relaxing the assumptions of Theorem 1 even slightly can lead to a convergence time which

is exponential in n. Specifically, we show the following.

(i) If we do not require the graphs G(t) to be bidirectional, exponential convergence time is

possible, even if the graphs G(t) do not change with time;

(ii) If we replace the assumption that each di(t) is independent of t with the weaker assumption

that the sorted degree sequence (say, in non-increasing order) is independent of t (thus

allowing nodes to “swap” degrees), exponential convergence time is possible. While this

fact was known (although unpublished) [5], our contribution is to provide a simple proof.

In summary: for connected bidirectional graphs with self-loops, unchanging degrees is a

sufficient condition for polynomial time convergence, but relaxing it even slightly by either

allowing the nodes to “swap” degrees or by losing link symmetry leads to the possibility of

exponential convergence time.

C. Previous work

There is considerable and growing literature on the convergence time of consensus algorithms.

We only mention papers that are closest to our own work, omitting references to the literature on

various aspects of consensus convergence times that we do not address here, such as topology

design, performance in geometric random graphs, etc.
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Worst-case upper bounds on the convergence times of consensus algorithms have been estab-

lished in [8], [6], [7], [1], [2], [9]. The papers [8], [6], [7] considered a setting slightly more

general than ours, and established exponential upper bounds. The papers [1], [2] addressed the

convergence times of consensus algorithms in terms of spanning trees that capture the information

flow between the nodes. It was observed that in several cases this approach produces tight

estimates of the convergence times. Reference [9] takes a geometric approach, and considers

the convergence time in a somewhat different model, involving interactions between geographic

nearest neighbors. It finds that the convergence time is quite high (either singly exponential or

iterated exponential, depending on the model). The original papers [17], [12] also considered

the effect of delays on convergence; some more recent work on this subject may be found in

[7] and [4].

Our work differs from these papers in that our convergence time bounds are polynomial in

n. To the best of our knowledge, polynomial bounds on the particular consensus algorithm

considered in this paper had been derived earlier only in [13] and [15]. Our work encompasses

a much wider class of situations than [13], which required the graphs G(t) to be constant in

time. Moreover, our results may be viewed as complementary to those in [15], which proved

a polynomial convergence time bound for averaging algorithms, involving doubly stochastic

matrices.

II. PROOF OF THEOREM 1

As in the statement of Theorem 1, we assume that we are given a sequence of bidirectional

connected graphs G(0), G(1), . . ., with self-loops at each node, and such that di(t) is the same

in each G(t). We will thus drop the parameter t and refer to the degree of node i simply as di.

Observe that di > 0 due to the presence of the self-loops.

We will use G to refer to the class of bidirectional connected graphs with self-loops at every

node such that the degree of node i is di. We let D be the n × n diagonal matrix whose ith

diagonal entry is di. We will use E ′(G) to denote the edge set of a graph G. We will sometimes

find it convenient to use the notation E(G) to refer to the set of unordered pairs (i, j) such that

the ordered pairs (i, j) and (j, i) belong to E ′(G).

Definition: We define the inner product 〈 · , · 〉d by 〈x, y〉d =
∑n

i=1 dixiyi. Note that because

di > 0 for all i, ı[x]y is a valid inner product.

January 26, 2012 DRAFT



6

Definition: Given a directed graph G, we define the update matrix A(G) by

[A(G)]ij =

1/di(G), if j ∈ Ni(G),

0, otherwise.

We use A(t) as a shorthand for A(G(t)), so that Eq. (1) can be written as

x(t+ 1) = A(t)x(t). (2)

Conversely, given an update matrix A of the above form, we will use G(A) to denote the graph

G whose update matrix is A. We use Ni(A) as a shorthand for Ni(G(A)); the quantities di(A),

E(A), and E ′(A) are defined similarly. Finally, we use A to denote the set of update matrices

A(G) associated with graphs G ∈ G.

Note that DA is the adjacency matrix associated with the graph corresponding to A. Given

that we restrict to bidirectional graphs, DA is symmetric for every A ∈ A.

Lemma 2: For any A ∈ A, we have ı[x]Ay =
∑

(i,j)∈E′(A) xiyj .

Proof: We have

ı[x]Ay = xTDAy =
n∑
i=1

∑
j∈Ni(A)

xiyj =
∑

(i,j)∈E′(A)

xiyj.

Lemma 3: Each A ∈ A is self-adjoint with respect to the inner product ı[·]·.

Proof: Using the fact that DA is symmetric and D is diagonal, we have

ı[x]Ay = xTDAy = xT (DA)Ty = xTATDy = ı[Ax]y.

Lemma 3 is the reason for introducing the inner product ı[·]·. The fact that matrices in the set A

are self-adjoint plays a central role in the analysis of the algorithm (2). One of its consequences

is that matrices in A have real eigenvalues. We use the notation λi(A) to denote the ith largest

eigenvalue of a matrix A ∈ A. Note that every A ∈ A is a stochastic matrix, and therefore

λ1(A) = 1.

Next, we identify a weighted average that is preserved by the iteration x(t + 1) = A(t)x(t).

For any x, we let

x̄ =
ı[x]1

ı[1]1
=

n∑
i=1

dixi /
n∑
i=1

di.

January 26, 2012 DRAFT



7

We observe that for any A ∈ A,

ı[x]1 = xTD1 = xTDA1 = xTATD1 = ı[Ax]1,

where the second equality used the fact that A is a stochastic matrix. Therefore,

Ax = x̄, ∀ A ∈ A.

With these preliminaries in place, we now proceed to the main part of our analysis, which is

based on the Lyapunov function

V (x) = ı[x− x̄1]x− x̄1=
n∑
i=1

di(xi − x̄)2.

The next lemma quantifies the decrease of V (·) when a vector x is multiplied by some matrix

A ∈ A.

Lemma 4: For any A ∈ A and any vector x, we have

V (Ax) ≤ λ2(A2)V (x).

Proof: Fix some A ∈ A and some vector x. Since Ax = x̄, the lemma asserts that

ı[Ax− x̄1]Ax− x̄1 ≤ λ2(A2)ı[x− x̄1]x− x̄1.

Let y = x− x̄1, and note that ı[y]1 = 0. It therefore suffices to show that

ı[Ay]Ay ≤ λ2(A2)ı[y]y,

for all y with ı[y]1 = 0; or, equivalently, that

ı[y]y − ı[Ay]Ay

ı[y]y
≥ 1− λ2

2(A), if ı[y]1 = 0 and y 6= 0 (3)

To establish Eq. (3), we note that

min
ı[y]1=0

ı[y]y − ı[Ay]Ay

ı[y]y
= min

ı[y]1=0

ı[y]y − ı[y]A2y

ı[y]y
= min

ı[y]1=0

ı[y](I − A2)y

ı[y]y
,

where in the minima above we only consider nonzero vectors y; note that these minima are

attained — it suffices to consider vectors y on the unit ball, a compact set. Now, observe that

I−A2 is also self-adjoint under the inner product ı[·]·. Moreover, since A (and, therefore, A2 as

well) is stochastic, the smallest eigenvalue of I − A2 is 0, with an associated eigenvector of 1.
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Consequently, by the Courant-Fischer variational characterization of eigenvalues, the expression

on the right is the second smallest eigenvalue of I − A2:

min
ı[y]1=0

ı[y]y − ı[Ay]Ay

ı[y]y
= λn−1(I − A2) = 1− λ2(A2),

which concludes the proof.

Thus, to bound how much V (x) decreases at each step, it suffices to obtain an upper bound

on λ2(A2), for matrices A ∈ A. This can be done using the next lemma, which is the main

result of [13]. We include a short proof for completeness.

Lemma 5: Let A ∈ A, and let ` be the diameter of the graph G(A). Then,√
λ2(A2)= max{|λn(A)|, λ2(A)} ≤ 1− 1

ndmax`
,

where dmax is the largest of the degrees di.

Proof: The first equality follows because the eigenvalues of A2 are the squares of the

eigenvalues of A. For the second inequality, using again the Courant-Fisher characterization,

and some easy algebra, we have

λ2(A) = max
ı[x]1=0
ı[x]x=1

ı[x]Ax = max
ı[x]1=0
ı[x]x=1

∑
(i,j)∈E′(A)

xixj = 1− min
ı[x]1=0
ı[x]x=1

∑
(i,j)∈E(A)

(xi − xj)2.

Thus, it suffices to show that

min
ı[x]1=0
ı[x]x=1

∑
(i,j)∈E(A)

(xi − xj)2 ≥ 1

ndmax`

Towards this purpose, we carry out a variation of an argument first used in [13]. Fix some x

that satisfies ı[x]1 = 0 and ı[x]x = 1. Without loss of generality, we assume that (i) node 1 has

the largest value of dix2
i , (ii) node k has the smallest value of xi, and (iii) the shortest path from

node 1 to k is (1, 2), (2, 3), . . . , (k − 1, k). The condition ı[x]x = 1 implies that d1x
2
1 ≥ 1/n,

and consequently that x1 ≥ 1/
√
ndmax; the requirement ı[x]1= 0 implies that xk < 0. Thus,

x1 − xk ≥ 1/
√
ndmax, which we write as

(x1 − x2) + (x2 − x3) + · · ·+ (xk−1 − xk) ≥
1√
ndmax

.

Applying the Cauchy-Schwarz inequality, we get

k

k−1∑
i=1

(xi − xi+1)2 ≥ 1

ndmax

.
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We then use the fact that k ≤ `, to obtain the claimed bound on λ2(A).

As for λn, we observe that the diagonal entries of A are at least 1/n and the row sums are

1. The Gershgorin circle theorem immediately gives λn ≥ −1 + 1/n, which is stronger than the

bound we have claimed.

We can now complete the proof of Theorem 1. Lemma 4 describes the decrease in the variance

V (x(t)) in terms of λ2(A2(t)), and Lemma 5 gives us a way to upper bound the latter quantity.

Proof of Theorem 1: Using Lemmas 4 and 5, and the bounds dmax ≤ n, ` ≤ n, we see

that for every A ∈ A, and every x, we have

V (Ax) ≤ λ2(A2)V (x) = max{|λn(A)|2, λ2
2(A)}V (x) ≤

(
1− 1

n3

)2

V (x).

Because the definition of ε-consensus is in terms of S(x) rather than V (x), we need to relate

these two quantities. On the one hand, for every x, we have

V (x) =
n∑
i=1

di(xi − x̄)2 ≤ n
n∑
i=1

(xi − x̄)2 ≤ n2S2(x).

On the other hand, for every x, we have

V (x) ≥ max
i

(xi − x̄)2 ≥ 1

4
(max

i
xi −min

i
xi)

2 =
1

4
S2(x).

Suppose that t ≥ n3 ln(2n/ε). Then,

S(x(t)) ≤
√

4V (x(t)) ≤ 2
(

1− 1

n3

)2n3 ln(2n/ε)(1/2)√
V (x(0)) ≤ 2ne− ln(2n/ε)S(x(0)) = εS(x(0)).

(We have used here the inequality (1− c/n)n ≤ e−c, for c > 0.)

A. Slowly-varying degree sequences.

We observe that the guarantees of Theorem 1 hold if we replace the assumption of constant

degrees with the alternative assumption that the graph sequence is slowly varying.

Indeed, suppose that the graph sequence equals a single graph G from time t1 to time t2 with

t2 − t1 ≥
1

1−max{|λn(A(G))|, λ2(A(G))}
(2 + 2 log n)

iterations. Then, applying Lemma 4 as well as the relation S2(x) ≤ 4V (x) ≤ 4n2S2(x) (where

V (x) is defined using the degrees di of the vertices of G) derived in the proof of Theorem 1,

S2(t2) ≤ 4V (t2) ≤ 4V (t1)λ2(A2(G))t2−t1 ≤ 4V (t1)e−2−2 logn ≤ 0.55V (t1)/n2 ≤ 0.55S2(t1).
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Thus, the Lyapunov function S2(t) shrinks by a constant factor between t1 and t2.

Combining this with Lemma 5, we can deduce the following general statement. Suppose

that the graph sequence G(0), G(1), . . . has the following property of slow variation: each graph

change is followed by n3(2+2 log n) time steps without graph changes. Then, this graph sequence

achieves ε-consensus in O(n3 log(n/ε)) time steps.

The above statement is of potential interest in situations where the agents can control the

time scale at which they update. For example, suppose that graph changes happen at a certain

natural, exogenously determined, rate, and that the agents can speed up their update rate so that

n3(2 +2 log n) updates take place between graph changes. In such a case, a polynomial speedup

of the update rate results in an exponentially large reduction of the convergence time guarantees.

Better bounds can be derived for graph sequences for which sharper upper bounds on the

eigenvalues max{|λn(A(G))|, λ2(A(G))} are available. For example, fix some d and consider a

sequence of random d-regular graphs. It is known that ([10]), max{|λn(A(G))|, λ2(A(G))} ≤

1/
√
d with high probability. Thus, provided the time between graph changes is at least

√
d(2 +

2 log n), such a sequence achieves ε-consensus in O(log(n/ε)) iterations with high probability.

III. MARKOV CHAIN INTERPRETATION

In this section, we give an alternative interpretation of the convergence time of a consensus

algorithm in terms of inhomogeneous Markov chains. In the next section, we will use this

interpretation to give some examples of graph sequences that do not satisfy Theorem 1 and

which have exponentially large convergence times.

We consider an inhomogeneous Markov chain whose transition probability matrix at time k

is A(k). We fix some time t and define

P = A(0)A(1) · · ·A(t− 1).

This is the associated t-step transition probability matrix: the ij-th entry of P , denoted by pij ,

is the probability that the state at time t is j, given that the initial state is i. Let pi be the vector

whose kth component is pik; thus pTi is the ith row of P .

We address a question which is generic in the study of Markov chains, namely, whether the

chain eventually “forgets” its initial state, i.e., whether for all i, j, pi−pj converges to zero as t

increases, and if so, at what rate. We will say that the sequence of matrices A(0), A(1), . . . , A(t−
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1) is ε-forgetful if for all i, j, we have

1

2

∑
k

|pik − pjk| ≤ ε.

The above quantity, 1
2

maxi,j ‖pi − pj‖1 is known as the coefficient of ergodicity of the matrix

P , and appears often in the study of consensus algorithms (see, for example, [8]).

The matrix P can also be interpreted in terms of consensus updates: an initial vector x is

multiplied by the matrices A(t− 1), A(t− 2), . . . , A(0), to produce the vector Px; note that the

different matrices are now applied in the reverse order. The result that follows relates the times

to achieve ε-consensus or ε-forgetfulness, and is essentially the same as Proposition 4.5 of [14].

Proposition 6: The sequence of matrices A(0), A(1), . . . , A(t−1) is ε-forgetful if and only if the

sequence of matrices A(t− 1), A(t− 2), . . . , A(0) results in ε-consensus (i.e., S(Px) ≤ εS(x),

for every vector x.)

Proof: Suppose that the matrix sequence A(0), A(1), . . . , A(t − 1) is ε-forgetful, i.e., that
1
2

∑
k |pik− pjk| ≤ ε, for all i and j. Given a vector x, let c = (maxk xk + mink xk)/2. Note that

‖x− c1‖∞ = (maxk xk −mink xk)/2 = S(x)/2. We then have

|[Px]i − [Px]j| =
∣∣∣∑

k

(pik − pjk)(xk − c)
∣∣∣ ≤ ‖pi − pj‖1 · ‖x− c1‖∞ ≤ εS(x).

Since this is true for every i and j, we obtain S(Px) ≤ εS(x), and the sequence A(t−1), A(t−

2), . . . , A(0) results in ε-consensus.

Conversely, suppose that the sequence of matrices A(t − 1), A(t − 2), . . . , A(0) results in ε-

consensus. Fix some i and j. Let x be a vector whose kth component is 1/2 if pik ≥ pjk and

−1/2 otherwise. Note that S(x) = 1. We have

1

2
‖pi − pj‖1 = (pTi − pTj )x = [Px]i − [Px]j ≤ εS(x) = ε,

where the last inequality made use of the ε-consensus assumption. Thus, the sequence of matrices

A(0), A(1), . . . , A(t− 1) is ε-forgetful.

We will use Proposition 6 for the special case of Markov chains that are random walks. Given

a directed graph G(t), we let, as before, Ni(t) be the set of nodes j for which the edge (i, j)

is present. In the random walk associated with this graph, if the state at time t is i, the state at

time t+ 1 is chosen to be one of the elements of Ni(t), with equal probability. We let A(t) be

the associated transition probability matrix. We will say that a sequence of graphs is ε-forgetful
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whenever the corresponding sequence of transition probability matrices is ε-forgetful. Proposition

6 allows us to reinterpret Theorem 1 as follows: random walks on time-varying bidirectional

connected graphs with self-loops and fixed degree sequences forget their initial distribution in a

polynomial number of steps.

Proposition 6 also has a corollary which we will use later. It is based on the following

observation: concatenating two sequence of graphs, each of which achieves ε-consensus, results

in a sequence which achieves ε2-consensus.

Corollary 7: Suppose that a sequence of graphs is ε-forgetful. Then, concatenating this sequence

with itself k times results in a sequence which is εk-forgetful.

IV. SOME COUNTEREXAMPLES

A. The bidirectionality requirement in Theorem 1 cannot be relaxed

Fig. 1. The graph used in Proposition 8.

In this subsection, we show that it is impossible to drop the assumption that the graph is

bidirectional, even when the graph does not change with time.

Proposition 8: Let G be the graph shown in Figure 1. Consider the graph sequence consisting

of G, repeated t times. For this graph sequence to result in (1/8)-consensus, we must have

t ≥ 2n/2/6.

Proof: Suppose that this graph sequence of length t results in ε-consensus. By Proposition

6, it is (1/8)-forgetful. In particular, |p11 − pn1| ≤ 1/4 (recall that pij stands for the t-step

transition probability from i to j).
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For i ≤ n/2, let Ti be the first time that a random walk that starts at state i visits the bottom

part of the graph, and let δi be the probability that Ti is less than or equal to t. Note that

conditional on starting at 1 and never transitioning to the bottom half, the probability of being

at state 1 at time t is 1/2; thus, p11 ≥ 1
2
(1− δ1). Furthermore, pn1 ≤ δ1 by symmetry. Therefore,

1

4
≥ |p11 − pn1| ≥

1

2
(1− δ1)− δ1 =

1

2
− 3

2
δ1,

which yields δ1 ≥ 1/6.

Using a straightforward coupling argument, we have δi ≥ δ1 ≥ 1/6, for i = 2, . . . , n/2. By

viewing periods of length t as a single attempt to get to the bottom half of the graph, with each

attempt having probability at least 1/6 to succeed, we conclude that E[T1] ≤ 6t.

On the other hand, T1 is just the first time until the walk moves to the right n/2 consecutive

times. Each time that the random walk returns to state 1, we have a new trial with probability

of success equal to 2−n/2. Thus, 2n/2 ≤ E[T1] ≤ 6t, which yields the desired result.

Remark: It is not hard to see that if we add a self-loop to each node in Figure 1, the result

holds with minor modifications.

B. The unchanging degrees condition in Theorem 1 cannot be relaxed

In this subsection, we show that it is impossible to relax the condition of unchanging degrees

in Theorem 1. In particular, if we only impose the slightly weaker condition that the sorted

degree sequence (the non-increasing list of node degrees) does not change with time, the time

to achieve ε-consensus can grow exponentially with n. This is an unpublished result of Cao,

Spielman, and Morse [5]; we provide here a simple proof.

Proposition 9: Let n be even and let t be an integer multiple of n/2. Consider the graph

sequence of length t = kn/2, consisting of periodic repetitions of the reversal of the length-n/2

sequence described in Figure 2. For this graph sequence to result in (1/4)-consensus, we must

have t ≥ 2(n/2)/8.

Proof: Suppose that this graph sequence of length t results in (1/4)-consensus. Then

Proposition 6 implies that the sequence of length kn/2 consisting of periodic repetitions of

the length n/2 sequence described in Figure 2 is (1/4)-forgetful. Let pij be the associated t-step

transition probabilities.
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Fig. 2. The top-left figure shows graph G(0); top-right shows G(1); bottom-left shows G((n/2)− 2); bottom-right shows

G((n/2)− 1). As these figures illustrate, G(t + 1) is obtained by applying a circular shift to each half of G(t). All edges

are bidirectional, and every node has a self-loop which is not shown. For aesthetic reasons, instead of labeling the nodes as

1, . . . , n, we label them with 1, . . . , n/2 and 1′, . . . , (n/2)′.

Let T be the time that it takes for a random walk that starts at state n/2 to cross into the

right-hand side part of the graph. Let δ be the probability that T is less than or equal to t. Let

R = {1′ . . . (n/2)′}. We have
∑

j′∈R p(n/2),j′ ≤ δ and, using symmetry,
∑

j′∈R p(n/2)′,j′ ≥ 1− δ.

Using the fact that the graph sequence is (1/4)-forgetful in the first inequality below, we have

1

2
≥
∑
j′∈R

|p(n/2)′,j′ − p((n/2),j′ | ≥
∑
j′∈R

p(n/2)′,j′ −
∑
j′∈R

p(n/2),j′ ≥ (1− δ)− δ = 1− 2δ,

which yields δ ≥ 1/4. Arguing as in the proof of Proposition 8 (node n/2 is the least favorable

“non-central” starting state in the left-hade side of the graph), we obtain E[T ] ≤ 4t.

Note that for a walk that starts at state n/2 to cross into the right-hand side part of the graph,

it must first take a self-loop (n/2)− 1 consecutive times. Consequently, 2(n/2)−1 ≤ E[T ] ≤ 4t,

which yields the desired result.

V. CONCLUSIONS

The main contribution of this paper is Theorem 1, which shows that consensus algorithms

converge in polynomial time for a large class of graph sequences. We also gave simple proofs

showing that this finding is fragile, and even slight relaxations of the hypotheses cause the

conclusion to fail.
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A similar result is available for the case of doubly stochastic update matrices A(t), and

our result can be viewed as complementary [15]. Interestingly, both results rely on a suitable

quadratic Lyapunov function as well as on the fact that all update matrices share a common left

eigenvector.
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