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Abstract

In this work, we describe a new method for parallelizing the source
iterations in a Monte Carlo criticality calculation. Instead of having
one global fission bank that needs to be synchronized as is tradition-
ally done, our method has each processor keep track of a local fission
bank while still preserving reproducibility. In doing so, it is required
to send only a limited set of fission bank sites between processors,
thereby drastically reducing the total amount of data sent through the
network. The algorithm was implemented in a simple Monte Carlo
code and shown to scale up to hundreds of processors and furthermore
outperforms traditional algorithms by at least two orders of magnitude
in wall-clock time.
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1 Introduction

The ability to simulate complex transport phenomena using stochastic meth-

ods was recognized early on in the development of multiplying fission sys-

tems. Also recognized was the fact that while providing an elegant means

of computing functionals, such methods would require a great amount of

computation as well. The development of Monte Carlo methods has thus

gone hand-in-hand with the development of computers over the course of

the last half century.

Due to the computationally-intensive nature of Monte Carlo methods,

there has been an ever-present interest in parallelizing such simulations.

Even in the first paper on the Monte Carlo method [1], John Metropolis

and Stanislaw Ulam recognized that solving the Boltzmann equation with

the Monte Carlo method could be done in parallel very easily whereas the

deterministic counterparts for solving the Boltzmann equation did not of-

fer such a natural means of parallelism. With the introduction of vector

computers in the early 1970s, general-purpose parallel computing became

a reality. In 1972, Troubetzkoy et al. designed a Monte Carlo code to be

run on the first vector computer, the ILLIAC-IV [2]. The general principles

from that work were later refined and extended greatly through the work

of Forrest Brown in the 1980s [3]. However, as Brown’s work shows, the

single-instruction multiple-data (SIMD) parallel model inherent to vector

processing does not lend itself to the parallelism on particles in Monte Carlo

simulations. Troubetzkoy et al. recognized this, remarking that “the or-

der and the nature of these physical events have little, if any, correlation
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from history to history,” and thus following independent particle histories

simultaneously using a SIMD model is difficult.

The difficulties with vector processing of Monte Carlo codes led to the

adoption of the single-process multiple data (SPMD) technique for paral-

lelization. In this model, each different process tracks a particle indepen-

dently of other processes, and between source iterations the processes com-

municate data through a message-passing interface. This means of paral-

lelism was enabled by the introduction of message-passing standards in the

late 1980s and early 1990s such as PVM and MPI. The SPMD model proved

much easier to use in practice and took advantage of the inherent parallelism

on particles rather than instruction-level parallelism. As a result, it has since

become ubiquitous for Monte Carlo simulations of transport phenomena.

Thanks to the particle-level parallelism using SPMD techniques, ex-

tremely high parallel efficiencies could be achieved in Monte Carlo codes.

Until the last decade, even the most demanding problems did not require

transmitting large amounts of data between processors, and thus the total

amount of time spent on communication was not significant compared to the

amount of time spent on computation. However, today’s computing power

has created a demand for increasingly large and complex problems, requiring

a greater number of particles to obtain decent statistics (and convergence in

the case of eigenvalue calculations). This results in a correspondingly higher

amount of communication, potentially degrading the parallel efficiency.

As an example, we consider the simulation of a full-core PWR using

Monte Carlo methods. Hoogenboom and Martin recently proposed a full-

core benchmark problem [4] that will serve as a good example for our pur-
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poses. This benchmark model has 241 assemblies, with each assembly con-

taining a 17 by 17 square rod array. As a simplification, no control rods

are modeled and thus all 289 pins in an assembly are fuel. In Kelly et al.’s

analysis of the Hoogenboom-Martin benchmark problem using the MC21

Monte Carlo code, 100 evenly spaced axial nodes were used over the 400 cm

length of each fuel pin [5]. Thus, one would need 6 964 900 different materi-

als in order to deplete each fuel region individually. If we go one step further

and subdivide each axial node radially to resolve the difference in flux due

to spatial self-shielding, this would add proportionally many tally regions

and materials. With three radial zones, we would then need 20 894 700 ma-

terials. To obtain good statistics would require many more histories than

fuel regions, implying that we need to use hundreds of millions or possibly

billions of particles.

There are two problems that arise in such large problems. The first is

as such: the fact that we are simulating possibly hundreds of millions of

particles naturally means that we will want to use hundreds of thousands

of processors in parallel or else we will be waiting weeks for our results.

The binary tree-based algorithms used to transmit data collectively between

processors will generally scale as log2 p where p is the number of processors.

Thus, as we increase the number of processors, we also increase the amount

of communication. If we run 107 histories per cycle in an eigenvalue cal-

culation with 1024 processors, to broadcast 107 source points for the next

cycle will entail sending 280 GB of data through the network assuming each

source point contains 28 bytes of data! Thus, we see that for such prob-

lems, communication times may no longer be irrelevant when considering
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the parallel efficiency.

The second problem is that the problem data itself may not fit on a

single compute node. Let us again consider our PWR problem where we

have 20 894 700 fuel regions. For each fuel region, we will have associated

geometry, material, and tally data. In each material, let us also suppose

we want to track 20 isotopes. For each isotope, we need to know its ZAID

(4-byte integer), its cross section identifier (4-byte integer), and its number

density (8-byte float). For each fuel region, we also need to tally the fission

reaction rate, the (n, γ) reaction rate, the (n, 2n) reaction rate, the (n, α)

reaction rate, and the (n, p) reaction rate to solve the Bateman equations

and determine material compositions for the next time-step. Thus, we need

six pairs of 8-byte floats for each fuel region to store the tally data. When

you add up the material and tally data, the total comes out to at least 496

bytes for each region. Based on this estimate, we would need about 10 GB

of memory just to store the material and tally data for all the fuel regions.

Add in the cross-section and geometry data and this estimate gets larger.

In a typical distributed-shared memory environment where we have eight

or more processors sharing memory, the SPMD parallel model requires that

each process have its own copy of geometry, cross-section, material, and

tally data. So for a node with eight processors, our PWR model will need at

the bare minimum 80 GB of memory. Even without the addition of radial

zones in each fuel pin as we have done here, one would still need 28 GB

of memory. Indeed, Kelly et al. had to turn off variance calculation for

nuclide-level tallies to reduce memory usage to a point where they could

run the problem at all [5].
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For the purposes of the present analysis, we focus primarily on the first

problem, i.e. that existing parallel algorithms for Monte Carlo criticality

calculations do not scale past a few compute nodes for large-scale problems.

In Section 2, we describe the traditional parallel algorithm used in Monte

Carlo criticality calculations and present a new algorithm. In Section 3,

we present a theoretical analysis of several fission bank algorithms and a

summary of test cases that validate the theoretical analysis. In Section 4,

we discuss load balancing, ordering of the fission bank, and fault tolerance.

Finally, in Section 5, we conclude by reviewing the salient points of this

work as well as potential shortcomings of the method.

2 Algorithms

2.1 Traditional Algorithm

Monte Carlo particle transport codes commonly implement a SPMD model

by having one master process that controls the scheduling of work and the

remaining processes wait to receive work from the master, process the work,

and then send their results to the master at the end of the simulation (or

a source iteration in the case of an eigenvalue calculation). This idea is

illustrated in Figure 1.

Eigenvalue calculations are slightly more difficult to parallelize than fixed

source calculations since it is necessary to converge on the fission source

distribution and eigenvalue before tallying. In a Monte Carlo eigenvalue

calculation, a finite number of neutron histories, N , are tracked through their

lifetime iteratively. If fission occurs, rather than tracking the resulting fission
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neutrons, the site is banked for use in the subsequent cycle. At the end of

each cycle, N source sites for the next cycle must be randomly sampled from

the M fission sites that were banked to ensure that the neutron population

does not grow exponentially. To ensure that the results are reproducible,

one must guarantee that the process by which fission sites are randomly

sampled does not depend on the number of processors. What is typically

done is the following [6]:

1. Each compute node sends its fission bank sites to a master process;

2. The master process sorts or orders [7] the fission sites based on a

unique identifier;

3. The master process samples N fission sites from the ordered array of

M sites; and

4. The master process broadcasts all the fission sites to the compute

nodes.

The first and last steps of this process are the major sources of com-

munication overhead between cycles. Since the master process must receive

M fission sites from the compute nodes, the first step is necessarily serial.

This step can be completed in O(M) time. The broadcast step can ben-

efit from parallelization through a tree-based algorithm. Despite this, the

communication overhead is still considerable.

To see why this is the case, it is instructive to look at a hypothetical

example. Suppose that a calculation is run with N = 10 000 000 neutrons

across 64 compute nodes. On average, M = 10 000 000 fission sites will
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be produced. If the data for each fission site consists of a spatial location

(three 8 byte real numbers) and a unique identifier (one 4 byte integer), the

memory required per site is 28 bytes. To broadcast 10 000 000 source sites to

64 nodes will thus require transferring 17.92 GB of data. Since each compute

node does not need to keep every source site in memory, one could modify

the algorithm from a broadcast to a scatter. However, for practical reasons

(e.g. work self-scheduling [8]), this is normally not done in production Monte

Carlo codes.

2.2 Novel Algorithm

To reduce the amount of communication required in a fission bank synchro-

nization algorithm, it is desirable to move away from the typical master-slave

algorithm to an algorithm whereby the compute nodes communicate with

one another only as needed. This concept is illustrated in Figure 2.

Since the source sites for each cycle are sampled from the fission sites

banked from the previous cycle, it is a common occurrence for a fission site

to be banked on one compute node and sent back to the master only to get

sent back to the same compute node as a source site. As a result, much of

the communication inherent in the algorithm described previously is entirely

unnecessary. By keeping the fission sites local, having each compute node

sample fission sites, and sending sites between nodes only as needed, one

can cut down on most of the communication. One algorithm to achieve this

is as follows:

1. An exclusive scan is performed on the number of sites banked, and
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the total number of fission bank sites is broadcasted to all compute

nodes. By picturing the fission bank as one large array distributed

across multiple nodes, one can see that this step enables each compute

node to determine the starting index of fission bank sites in this array.

Let us call the starting and ending indices on the i-th node ai and bi,

respectively;

2. Each compute node samples sites at random from the fission bank

using the same starting seed. A separate array on each compute node

is created that consists of sites that were sampled local to that node,

i.e. if the index of the sampled site is between ai and bi, it is set aside;

3. If any node sampled more than N/p fission sites where p is the number

of compute nodes, the extra sites are put in a separate array and sent

to all other compute nodes. This can be done efficiently using the

allgather collective operation;

4. The extra sites are divided among those compute nodes that sampled

fewer than N/p fission sites.

However, even this algorithm exhibits more communication than nec-

essary since the allgather will send fission bank sites to nodes that don’t

necessarily need any extra sites.

One alternative is to replace the allgather with a series of sends. If ai is

less than iN/p, then send iN/p−ai sites to the left adjacent node. Similarly,

if ai is greater than iN/p, then receive ai−iN/p from the left adjacent node.

This idea is applied to the fission bank sites at the end of each node’s array
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as well. If bi is less than (i+1)N/p, then receive (i+1)N/p−bi sites from the

right adjacent node. If bi is greater than (i+1)N/p, then send bi−(i+1)N/p

sites to the right adjacent node. Thus, each compute node sends/receives

only two messages under normal circumstances.

The following example illustrates how this algorithm works. Let us sup-

pose we are simulating N = 1000 neutrons across four compute nodes. For

this example, it is instructive to look at the state of the fission bank and

source bank at several points in the algorithm:

1. The beginning of a cycle where each node has N/p source sites;

2. The end of a cycle where each node has accumulated fission sites;

3. After sampling, where each node has some amount of source sites

usually not equal to N/p;

4. After redistribution, each node again has N/p source sites for the next

cycle;

At the end of each cycle, each compute node needs 250 fission bank sites

to continue on the next cycle. Let us suppose that p0 produces 270 fission

banks sites, p1 produces 230, p2 produces 290, and p3 produces 250. After

each node samples from its fission bank sites, let’s assume that p0 has 260

source sites, p1 has 215, p2 has 280, and p3 has 245. Note that the total

number of sampled sites is 1000 as needed. For each node to have the same

number of source sites, p0 needs to send its right-most 10 sites to p1, and p2

needs to send its left-most 25 sites to p1 and its right-most 5 sites to p3. A

schematic of this example is shown in Figure 3. The data local to each node
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is given a different hatching, and the cross-hatched regions represent source

sites that are communicated between adjacent nodes.

3 Analysis of Communication Requirements

While the prior considerations may make it readily apparent that the novel

algorithm should outperform the traditional algorithm, it is instructive to

look at the total communication cost of the novel algorithm relative to the

traditional algorithm. This is especially so because the novel algorithm does

not have a constant communication cost due to stochastic fluctuations. Let

us begin by looking at the cost of communication in the traditional algorithm

3.1 Cost of Traditional Algorithm

As discussed earlier, the traditional algorithm is composed of a series of

sends and typically a broadcast. To estimate the communication cost of the

algorithm, we can apply a simple model that captures the essential features.

In this model, we assume that the time that it takes to send a message

between two nodes is given by α + (sN)β, where α is the time it takes to

initiate the communication (commonly called the latency), β is the transfer

time per unit of data, N is the number of fission sites, and s is the size in

bytes of each fission site.

The first step of the traditional algorithm is to send p messages to the

master node, each of size sN/p. Thus, the total time to send these messages

is

tsend = pα+ sNβ. (1)
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Generally, the best parallel performance is achieved in a weak scaling scheme

where the total number of histories is proportional to the number of proces-

sors. However, we see that when N is proportional to p, the time to send

these messages increases proportionally with p.

Estimating the time of the broadcast is complicated by the fact that dif-

ferent MPI implementations may use different algorithms to perform collec-

tive communications. Worse yet, a single implementation may use a different

algorithm depending on how many nodes are communicating and the size of

the message. Using multiple algorithms allows one to minimize latency for

small messages and minimize bandwidth for long messages.

We will focus here on the implementation of broadcast in the MPICH2

implementation [9]. For short messages, MPICH2 uses a binomial tree al-

gorithm. In this algorithm, the root process sends the data to one node in

the first step, and then in the subsequent, both the root and the other node

can send the data to other nodes. Thus, it takes a total of dlog2 pe steps to

complete the communication where dxe is the smallest integer not less than

x. The time to complete the communication is

tshort = dlog2 pe (α+ sNβ) . (2)

This algorithm works well for short messages since the latency term scales

logarithmically with the number of nodes. However, for long messages, an

algorithm that has lower bandwidth has been proposed by Barnett et al.

[10] and implemented in MPICH2. Rather than using a binomial tree, the

broadcast is divided into a scatter and an allgather. The time to complete
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the scatter is log2 pα+ p−1
p Nβ using a binomial tree algorithm. The allgather

is performed using a ring algorithm that completes in (p − 1)α + p−1
p Nβ.

Thus, together the time to complete the broadcast is

tlong = (log2 p+ p− 1)α+ 2p− 1
p

sNβ. (3)

The fission bank data will generally exceed the threshold for switching from

short to long messages (typically 8 kilobytes), and thus we will use the

equation for long messages. Adding Eq. 1 and 3, the total cost of the series

of sends and the broadcast is

told = (log2 p+ 2p− 1)α+ 3p− 2
p

sNβ. (4)

3.2 Cost of Novel Algorithm

With the communication cost of the traditional fission bank algorithm quan-

tified, we now proceed to discuss the communicatin cost of the proposed

algorithm. Comparing the cost of communication of this algorithm with

the traditional algorithm is not trivial due to fact that the cost will be a

function of how many fission sites are sampled on each node. If each node

samples exactly N/p sites, there will not be communication between nodes

at all. However, if any one node samples more or less than N/p sites, the

deviation will result in communication between logically adjacent nodes. To

determine the expected deviation, one can analyze the process based on the

fundamentals of the Monte Carlo process.

The steady-state neutron transport equation for a multiplying medium
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can be written in the form of an eigenvalue problem [11],

S(r) = 1
k

∫
F (r′ → r)S(r′) dr, (5)

where,

r = spatial coordinates of phase space

S(r) = source distribution defined as the expected number of neutrons

born from fission per unit phase-space volume at r

F (r′ → r) = expected number of neutrons born from fission per unit

phase space volume at r caused by a neutron at r′

k = eigenvalue.

The fundamental eigenvalue of Eq. (5) is known as keff , but for simplicity

we will simply refer to it as k.

In a Monte Carlo criticality simulation, the power iteration method is

applied iteratively to obtain stochastic realizations of the source distribution

and estimates of the k-eigenvalue. Let us define Ŝ(m) to be the realization of

the source distribution at cycle m and ε̂(m) be the deviation from the deter-

ministic solution arising from the stochastic nature of the tracking process.

We can write the stochastic realization in terms of the fundamental source

distribution and the fluctuating component as [12]

Ŝ(m)(r) = NS(r) +
√
Nε̂(m)(r), (6)
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where N is the number of particle histories per cycle. Without loss of

generality, we shall drop the superscript notation indicating the cycle as it

is understood that the stochastic realization is at a particular cycle. The

expected value of the stochastic source distribution is simply

E
[
Ŝ(r)

]
= NS(r) (7)

since E [ε̂(r)] = 0. The noise in the source distribution is due only to ε̂(r)

and thus the variance of the source distribution will be

Var
[
Ŝ(r)

]
= NVar [ε̂(r)] . (8)

Lastly, the stochastic and true eigenvalues can be written as integrals over

all phase space of the stochastic and true source distributions, respectively,

as

k̂ = 1
N

∫
Ŝ(r) dr and k =

∫
S(r) dr, (9)

noting that S(r) is O(1) since the true source distribution is not a function

of N (see Nease et al. [13] for a thorough discussion). One should note that

the expected value k calculated by Monte Carlo power iteration (i.e. the

method of successive generations) will be biased from the true fundamental

eigenvalue of Eq. 5 by O(1/N) [12], but we will assume henceforth that the

number of particle histories per cycle is sufficiently large to neglect this bias.

With this formalism, we now have a framework within which we can

determine the properties of the distribution of expected number of fission
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sites. The explicit form of the source distribution can be written as

Ŝ(r) =
M∑
i=1

wiδ(r− ri) (10)

where ri is the spatial location of the i-th fission site, wi is the statistical

weight of the fission site at ri (i.e. the weight of the neutron entering into

a fission reaction), and M is the total number of fission sites. It is clear

that the total weight of the fission sites is simply the integral of the source

distribution. Integrating Eq. 6 over all space, we obtain

∫
Ŝ(r) dr = N

∫
S(r) dr +

√
N

∫
ε̂(r) dr. (11)

Substituting the expressions for the stochastic and true eigenvalues from

Eq. 9, we can relate the stochastic eigenvalue to the integral of the noise

component of the source distribution as

Nk̂ = Nk +
√
N

∫
ε̂(r) dr. (12)

Since the expected value of ε̂ is zero, the expected value of its integral will

also be zero. We thus see that the variance of the integral of the source

distribution, i.e. the variance of the total weight of fission sites produced, is

directly proportional to the variance of the integral of the noise component.

Let us call this term σ2 for simplicity:

Var
[∫

Ŝ(r) dr
]

= Nσ2. (13)
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The actual value of σ2 will depend on the physical nature of the problem,

whether variance reduction techniques are employed, etc. For instance, one

could surmise that for a highly scattering problem, σ2 would be smaller

than for a highly absorbing problem since more collisions will lead to a more

precise estimate of the source distribution. Similarly, using implicit capture

should in theory reduce the value of σ2.

Let us now consider the case where the N total histories are divided up

evenly across p compute nodes. Since each node simulates N/p histories, we

can write the source distribution as

Ŝi(r) = N

p
S(r) +

√
N

p
ε̂i(r) for i = 1, . . . , p (14)

Integrating over all space and simplifying, we can obtain an expression for

the eigenvalue on the i-th node:

k̂i = k +
√
p

N

∫
ε̂i(r) dr. (15)

It is easy to show from this expression that the stochastic realization of the

global eigenvalue is merely the average of these local eigenvalues:

k̂ = 1
p

p∑
i=1

k̂i. (16)

As was mentioned earlier, at the end of each cycle one must sample N sites

from the M sites that were created. Thus, the source for the next cycle can

be seen as the fission source from the current cycle divided by the stochastic

realization of the eigenvalue since it is clear from Eq. 9 that k̂ = M/N .
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Similarly, the number of sites sampled on each compute node that will be

used for the next cycle is

Mi = 1
k̂

∫
Ŝi(r) dr = N

p

k̂i

k̂
. (17)

While we know conceptually that each compute node will under nor-

mal circumstances send two messages, many of these messages will overlap.

Rather than trying to determine the actual communication cost, we will

instead attempt to determine the maximum amount of data being commu-

nicated from one node to another. At any given cycle, the number of fission

sites that the j-th compute node will send or receive (Λj) is

Λj =

∣∣∣∣∣∣
j∑
i=1

Mi −
jN

p

∣∣∣∣∣∣ . (18)

Noting that jN/p is the expected value of the summation, we can write the

expected value of Λj as the mean absolute deviation of the summation:

E [Λj ] = E

∣∣∣∣∣∣
j∑
i=1

Mi −
jN

p

∣∣∣∣∣∣
 = MD

 j∑
i=1

Mi

 (19)

where MD indicates the mean absolute deviation of a random variable. The

mean absolute deviation is an alternative measure of variability.

In order to ascertain any information about the mean deviation of Mi,

we need to know the nature of its distribution. Thus far, we have said

nothing of the distributions of the random variables in question. The total

number of fission sites resulting from the tracking of N neutrons can be
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shown to be normally distributed via the Central Limit Theorem (provided

that N is sufficiently large) since the fission sites resulting from each neutron

are “sampled” from independent, identically-distributed random variables.

Thus, k̂ and
∫
Ŝ(r) dr will be normally distributed as will the individual

estimates of these on each compute node.

Next, we need to know what the distribution of Mi in Eq. 17 is or,

equivalently, how k̂i/k̂ is distributed. The distribution of a ratio of random

variables is not easy to calculate analytically, and it is not guaranteed that

the ratio distribution is normal if the numerator and denominator are nor-

mally distributed. For example, if X is a standard normal distribution and

Y is also standard normal distribution, then the ratio X/Y has the standard

Cauchy distribution. The reader should be reminded that the Cauchy dis-

tribution has no defined mean or variance. That being said, Geary [14] has

shown that, for the case of two normal distributions, if the denominator is

unlikely to assume values less than zero, then the ratio distribution is indeed

approximately normal. In our case, k̂ absolutely cannot assume a value less

than zero, so we can be reasonably assured that the distribution of Mi will

be normal.

For a normal distribution with mean µ and distribution function f(x),

it can be shown that

∫ ∞
−∞

f(x) |x− µ| dx =
√

2
π

∫ ∞
−∞

f(x) (x− µ)2 dx (20)

by substituting the probability distribution function of a normal distribution

for f(x), making a change of variables, and integrating both sides. Thus the
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mean absolute deviation is
√

2/π times the standard deviation. Therefore,

to evaluate the mean absolute deviation of Mi, we need to first determine

its variance. Substituting Eq. 16 in Eq. 17, we can rewrite Mi solely in

terms of k̂1, . . . , k̂p:

Mi = Nk̂i
p∑
j=1

k̂j

. (21)

Since we know the variance of k̂i, we can use the error propagation law to

determine the variance of Mi:

Var [Mi] =
p∑
j=1

(
∂Mi

∂k̂j

)2

Var
[
k̂j
]

+
∑
j 6=m

p∑
m=1

(
∂Mi

∂k̂j

)(
∂Mi

∂k̂m

)
Cov

[
k̂j , k̂m

]
(22)

where the partial derivatives are evaluated at k̂j = k. Since k̂j and k̂m are

independent if j 6= m, their covariance is zero and thus the second term

cancels out. Evaluating the partial derivatives, we obtain

Var [Mi] =
(
N(p− 1)
kp2

)2 pσ2

N
+
∑
j 6=i

(−N
kp2

)2 pσ2

N
= N(p− 1)

k2p2 σ2. (23)

Through a similar analysis, one can show that the variance of
∑j
i=1Mi is

Var

 j∑
i=1

Mi

 = Nj(p− j)
k2p2 σ2 (24)

Thus, the expected amount of communication on node j, i.e. the mean

absolute deviation of
∑j
i=1Mi is proportional to

E [Λj ] =
√

2Nj(p− j)σ2

πk2p2 . (25)

20



This formula has all the properties that one would expect based on intuition:

• As the number of histories increases, the communication cost on each

node increases as well;

• If p = 1, i.e. if the problem is run on only one compute node, the

variance will be zero. This reflects the fact that exactly N sites will

be sampled if there is only one node.

• For j = p, the variance will be zero. Again, this says that when you

sum the number of sites from each node, you will get exactly N sites.

We can determine the node that has the highest communication cost by

differentiating Eq. 25 with respect to j, setting it equal to zero, and solving

for j. Doing so yields jmax = p/2. Interestingly, substituting j = p/2 in Eq.

25 shows us that the maximum communication cost is actually independent

of the number of nodes:

E [Λjmax ] =

√
Nσ2

2πk2 . (26)

3.3 Validation

To ensure that any assumptions made in the foregoing analysis are sound,

several test cases were run to compare experimental results with the theo-

retical analysis. The algorithm described in section 2.2 was implemented in

a simple Monte Carlo code [15]. The number of compute nodes and histories

for each case are shown in Table I. Each case was run for 10 000 cycles and

at the end of each run, the standard deviation of the number of fission bank
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sites sent to neighboring nodes was determined for each node as a proxy

for the communication cost. For Case 1, the data was fit to the following

function (with the same dependence on j and p as in Eq. 25) using a least

squares regression:

f(j, p, β) = β

p

√
j(p− j) (27)

The fitting coefficient β was then used to predict the expected amount of

communication for the other three cases. Figure 4 shows the expected num-

ber of fission bank sites sent or received from neighboring compute nodes,

E [Λj ], for Cases 1 and 2 along with the least squares regression fit based on

Eq. 27 for Case 1 and the prediction for Case 2. Figure 5 shows the expected

number of fission bank sites sent or received from neighboring compute nodes

for Cases 3 and 4 along with the predicted fits.

A few observations can be made from these figures. Firstly, the data

from the four test cases demonstrates that the foregoing theoretical analysis

is indeed correct. Furthermore, one can observe from these two figures that

the maximum communication does occur for node jmax = p/2 and that this

maximum is indeed independent of p as predicted.

It is also instructive to check our assumption that
∑j
i=1Mi is normally

distributed. One way of doing this is through a quantile-quantile (Q-Q) plot,

comparing the observed quantiles of the data with the theoretical quantiles

of the normal distribution. If the data are normally distributed, the points

on the Q-Q plot should lie along a line. Figure 6 shows a Q-Q plot for the

number of fission bank sites sent or received on the first node for the Case

1. The data clearly lie along a straight line and thus the data are normally
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distributed. This conclusion was also confirmed using the Shapiro-Wilk test

for normality [16].

3.4 Comparison of Communication Costs

In section 3.1, the communication time of the traditional fission bank algo-

rithm was estimated using a simple model for the transfer time based on

latency and bandwidth. The same can be done for the novel algorithm. As

described earlier, each node should send or receive only two messages, one

to each of its neighbors. Moreover, we concluded that the maximum amount

of data will be transferred for node jmax = p/2. Thus, we can estimate the

communication time for the novel algorithm as

tnew = 2α+ s

√
2Nσ2

πk2 β (28)

To compare the communication time of the two algorithms, let us assume

that the size of the data is large enough that the latency is negligible. The

ratio of communication times is

told
tnew

=
(log2 p+ 2p− 1)α+ 3p−2

p sNβ

2α+ s
√

2Nσ2

πk2 β
≈ (3p− 2) k

√
Nπ/2

pσ
. (29)

In the limit of large p, this ratio becomes

lim
p→∞

told
tnew

=

√
Nπ

2 · 3k
σ
. (30)
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To fully appreciate what this means, we can infer values of σ and k from the

aforementioned test cases to determine what the ratio actually is. Recall that

σ tells us how much stochastic noise there is in the integrated fission source.

The sample standard deviation for our validation cases was σ = 1.73. Using

this value and k = 1, we estimate that the novel algorithm would be about

2000 times faster than the traditional algorithm for N = 1 000 000. Also

note that as N increases, the novel algorithm will outperform the traditional

algorithm by an even wider margin.

To determine the actual performance of the novel algorithm relative to

the traditional algorithm, both algorithms were implemented in the afore-

mentioned simple Monte Carlo code. A separate simulation using each of the

algorithms was run from a single compute node up to 88 compute nodes in

parallel. In each case, the number of histories was 40 000 times the number

of compute nodes so that each compute node simulates the same number of

histories. Each simulation was run for 20 cycles. Figure 7 shows the total

time spent on fission bank synchronization for the traditional and novel al-

gorithms. We see that the performance of the novel algorithm doesn’t quite

meet the predicted performance based on the above analysis, but this is not

surprising given the number of simplifying assumptions made in the course

of the analysis. Most importantly, we have ignored the time spent sampling

fission sites and copying data in memory which may become non-negligible

for large N . Notwithstanding, the new algorithm performs nearly two orders

of magnitude faster than the traditional algorithm for large p and large N .
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4 Other Considerations

A discussion of any parallel algorithm for Monte Carlo codes would not

be complete without considering how to achieve high parallel efficiency on

heterogeneous architectures and how to maintain reproducibility of results.

In this section, we will discuss how load balancing requirements may affect

the proposed algorithm and reproducibility as well as briefly mentioning the

impact of fault tolerance.

4.1 Load Balancing

One important requirement for a parallel Monte Carlo calculation is proper

load-balancing, i.e. it is undesirable to have a compute node sitting idle with

no work to do while other compute nodes are still busy working. This is

especially the case when the hardware architecture is heterogeneous (having

different types of processors in a single cluster). In the traditional paral-

lel algorithm, work self-scheduling is achieved by having each slave node

request small batches of work from the master, and as each batch is com-

pleted, the slave may request more work. By breaking up the problem into

smaller batches, this ensures that in a single source iteration, a processor

that is twice as fast as another processor will also be assigned twice as many

histories to compute, and thus all processors should finish their work at

approximately the same time (assuming that the time to complete a single

history is constant irrespective of its properties).

The novel algorithm we have presented here precludes the use of the

aforementioned self-scheduling algorithm since an important aspect of the
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algorithm is to assign histories sequentially to the nodes to preserve their

order. It should be noted that if one did not care to preserve reproducibility

in a calculation, the self-scheduling scheme could easily be applied for load-

balancing with the new fission bank algorithm.

When used on a homogeneous cluster, we don’t foresee a great loss in

efficiency due to the lack of load balancing in the novel algorithm. Studies

using MCNP on a homogeneous Linux cluster have shown a 5-10% loss in

parallel efficiency when not using any sort of load balancing [8].

It is also possible to employ a basic means of load balancing for heteroge-

neous architectures in the fission bank algorithm presented here by “tuning”

the algorithm to the specific characteristics of the cluster. If one were to

measure the performance of each type of processor on the cluster in terms

of particles processed per second, the number of histories on each proces-

sor could be adjusted accordingly instead of merely distributing particles

uniformly (N/p on each processor).

4.2 Ordering of the Fission Bank

The order of the fission sites produced at the end of a source iteration

will depend on the order in which the particle histories were processed.

Thus, if a calculation is run in parallel using the master-slave load balancing

scheme described above, the order of the fission sites is not guaranteed to

be reproducible since the order in which the particle histories are simulated

will depend on the actions of independent processors. It is thus necessary to

sort or re-order the fission sites since the sampling of source sites depends

on this ordering in order to obtain a reproducible result.

26



A traditional sorting of the fission bank would be done using a standard

quicksort that can be completed in O(N logN) steps. Brown and Sutton

developed a method of re-ordering the fission sites that can be done in

O(N) steps [7]. Anecdotally, we have observed that in systems using a high-

speed network interconnect such as InfiniBand, the sorting of the fission

bank is the major contributor to decreased parallel efficiency in fission bank

synchronization.

Using the fission bank algorithm we have developed herein, the order in

which particle histories are processed is always the same since we simply

allocate the first set of N/p particles to the first processor, the second set of

N/p particles to the second processor, etc. Thus, it is not necessary to sort

or re-order the fission bank in order to preserve reproducibility of results.

4.3 Fault Tolerance

On a parallel architecture with a large number of processors, network in-

terconnects, hard disks, and memory, it is desirable to have some means

of fault tolerance to ensure that not all results are lost in the event of a

hardware failure. In current Monte Carlo codes, this can be achieved by

having the slave nodes periodically rendezvous and having a single proces-

sor dump data to a file that can be used to restart the run. While providing

insurance against lost simulation time, performing fault tolerance this way

unfortunately degrades parallel performance since it entails collective com-

munication between all processors. Notwithstanding, the algorithm we have

presented here does not inhibit the use of fault tolerance in this manner.
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5 Conclusions

We have presented a new method for parallelizing the source iterations in a

Monte Carlo criticality calculation. This algorithm takes advantage of the

fact that many of the fission sites produced on one processor can be used as

source sites on that same processor and avoids unnecessary communication

between processors.

Analysis of the algorithm shows that it should outperform existing al-

gorithms for fission bank synchronization and that furthermore, the perfor-

mance gap increases for an increasing number of histories or processors. Test

results on a simple 3D structured mesh Monte Carlo code confirm this find-

ing. The analysis also shows that the maximum amount of communication

in the algorithm is independent of the number of processors and instead will

depend on the number of histories per cycle and the physical characteristics

of the problem at hand. Again, testing using our simple Monte Carlo code

confirm this prediction.

The reader should keep in mind that while the algorithm presented here

will significantly improve the time necessary to sample and distribute fission

sites between cycles, it has no effect on the actual transport simulation of

particles moving through a geometry. Thus, it will not improve smaller

simulations that would typically run on a workstation. However, for large

simulations that necessitate the use of a large cluster or supercomputer to

complete in a reasonable amount of time, this novel algorithm will improve

the parallel efficiency and is an important step in achieving scalability up to

thousands of processors.
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Potential shortcomings of the present algorithm include the inability to

provide load balancing using existing algorithms for heterogeneous computer

architectures. A basic method to provide load balancing in such situations

based on “tuning” the algorithm was suggested, although it has not be tested

as of yet.
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Table I: Four test cases for fission bank algorithm.
Case Compute Nodes (p) Histories (N)
1 8 80 000
2 8 160 000
3 16 80 000
4 16 160 000
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Figure 1: Typical master-slave algorithm.
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Figure 2: Desired communication topology with no master process.
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Figure 3: Example scenario illustrating new fission bank algorithm.
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Figure 4: Expected number of fission bank sites sent to neighboring nodes
using 8 compute nodes
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38



 0.01

 0.1

 1

 10

 100

 0  10  20  30  40  50  60  70  80  90

T
im

e
 (

s
)

Compute Nodes

Traditional
New

Figure 7: Execution time for fission bank algorithms
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