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Abstract

Ambulation is a very important part of everyday life and its absence has a detri-
mental effect on an individual's quality of life. While much is understood about
the neurobiological systems involved in locomotion through detailed anatomical
connectivity and lesion studies, it is not well understood how neurons across dif-
ferent regions of the nervous system share information and coordinate their firing
activity to achieve ambulation. Moreover, while it is clear that understanding the
processes involved in healthy ambulation are essential to understanding how dis-
eases affect an individual's ability to walk, diseases such as stroke tend to "take
out" large portions of the underlying system. Until technologies are developed
to allow restoration of damaged neural tissue back to its original state, physical
therapy (which aims to restore function by establishing new motor-cortical con-
nections among the remaining neurons) remains the most viable option for pa-
tients. The aim of this thesis is to elucidate some of the underlying neurobiological
mechanisms of walking and to develop tools for rehabilitation robotics that allow
finer quantification of patient improvement. To elucidate the neural mechanisms
of locomotion, we studied how task relevant information (e.g. positions, veloci-
ties, and forces) modulate single unit neural activity from hindlimb/trunk region of
the rat motor cortex during adaptations to robot-applied elastic loads and closed-
loop brain-machine-interface (BMI) control during treadmill locomotion. Using
the Point Process-Generalized Linear Model (PP-GLM) statistical framework we
systematically tested parametric and non-parametric point process models of in-
creased complexity for 573 individual neurons recorded over multiple days in six
animals. The developed statistical model captures within gait-cycle modulation,
load-specific modulation, and intrinsic neural dynamics. Our proposed model ac-
curately describes the firing statistics of 98.5% (563/573) of all the recorded units
and allows characterization of the neural receptive fields associated with gait phase
and loading force. Understanding how these receptive fields change during training
and with experience will be central to developing rehabilitation strategies that opti-
mize motor adaptations and motor learning. The methods utilized for this analysis
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were developed into an open source neural Spike Train Analysis Toolbox (nSTAT)

for Matlab (Mathworks, Natick MA). Systematic analyses have demonstrated the

effectiveness of physical therapy, but have been unable to determine which ap-

proaches tend to be most effective in restoring function. This is likely due to the

multitude of approaches, diseases, and assessment scales used. To address this is-

sue, we develop an extension of the Force Field Adaptation Paradigm, originally

developed to quantitatively assess upper extremity motor adaptation, to the lower

extremity. The algorithm is implemented on the Lokomat (Hocoma HG) lower

extremity gait orthosis and is currently being utilized to assess short-term motor

adaptation in 40 healthy adult subjects (ClinicalTrials.gov NCT01361867). Estab-

lishing an understanding of how healthy adults' motor systems adapt to external

perturbations will be important to understanding how the adaptive mechanisms in-

volved in gait integrate information and how this process is altered by disease.

Thesis Supervisor: Emery N. Brown, M.D., Ph.D.

Thesis Supervisor: Paolo Bonato, Ph.D.
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4.5 Lower Extremity Force Field Adaptation Paradigm (LE-FFAP)

Control System Diagram. As the subject walks freely in the

Lokomat, a step counter is used to determine the current experi-

mental condition. Left and right legs are controlled independently

and the desired leg to be perturbed needs to be specified at the

beginning of the experiment. There are five possible modes of op-

eration: Baseline (1), Baseline Error Clamp (2), Force Field (3),
Force Field Error Clamp (4), and Error Clamp (5). Table 4.3 sum-

marizes which blocks are enabled during which experimental con-

dition. See text for a description of each of the main modules. . . 92

4.6 Condition Vectors for After-Effect and Error-Clamp Experi-

ments. A) After-Effect Experiment Condition Vector. Sub-
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changes in kinematic error within the Force Field and After-Effects

portion of the experiment using a measure of the perpendicular de-

viation from the baseline path (d" (n) or d" M (n)). B) Error-

Clamp Experiment Condition Vector. Subjects are allowed to
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their original baseline path using error-clamp trials for a total of

100 steps. The adaptation coefficient, cadapt, from Equation 4.11

is used to assess the adaptive changes in force generation observed
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4.7 Single Subject After-Effect Experiment Results. A) Joint tra-

jectories during Baseline, Force Field, and After-Effect phases of
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4.8 Single Subject Assessment of Motor Adaptation. A) Nominal
viscous disturbance. The nominal perpendicular disturbance that
is applied during the Force Field block is proportional to the move-
ment velocity parallel to the baseline movement path, vIlact. B)
Subject response within and across steps. Forces during non
error-clamp steps were estimated by interpolation for ease of vi-
sualization only and are not used in computation of the adapta-
tion coefficient. C) Subject response within each experimental
segment vs. nominal response. During the Baseline condition,
the subject-applied torque perpendicular to the movement path (in
blue) is approximately zero since the subject is moving along their
baseline path. During the Force Field condition the subject-applied
torque (in green) becomes closer to the disturbance being applied,
indicating that the subject is adapting to the expected perturbation.
During the last experimental block consisting of all error-clamp
trials, the subject-applied torque (in red) slowly returns to towards
zero. D) Adaptation Coefficient. The adaptation coefficient was
computed according to Equation 4.11 by using the perpendicular
torque during swing phase (within 20%-80% of the gait cycle as
measured in the device; mid-stance is defined as 0%). The expo-
nential model fit to the adaptation coefficient data yielded an R2 of
88.9% and time constants for the rise and fall of 11 and 23 steps
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Aggregate After-Effect and Error Clamp experiment responses.
A) Maximal perpendicular deviation, d"' (n), during an After-
Effect experiment (N=7). Dark line indicates the meantSEM
across subjects. Note that initial exposure to the force fields leads
to a large deviation from the baseline path and that subjects quickly
correct for the perturbation (time constant -6 step). Removal of
the force field results in an after-effect. Note that the time con-
stant associated with the after-effects is quite similar to the time
constant of adaptation during force field. B) Adaptation coeffi-
cient, cadapt (n) (meaniSEM), obtained from Error-Clamp ex-
periment (N=4). Note that the adaptation coefficient observed dur-
ing the last portion of Error-Clamp experiment shows a decay time
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5.2 Decoding Movement Intent Information during Locomotion
using simulated data. A) Simulated Gait Data and Neural Rasters.
From top to bottom: Joint Angles for hip (Ohip (t)) and knee (Oknee (t)),

gait phase (0 (t)), cell raster, and conditional intensity functions
(Xi(t)) for each of the 50 cells simulated according to 5.2 using
the point process thinning algorithm. B) Gait cycle in Joint Co-
ordinates. $ (t) is defined as the angle of the vector pointing to
the current location in joint space during the gait cycle. The ori-
gin of the coordinate system corresponds to the mean hip and knee
coordinates over the gait cycles shown. Red circles indicate the
location of maximal firing along the gait cycle for each simulated
neuron (e.g. the preferred gait phase of each cell). C) Probabilis-
tic Graphical Model. In general the graphical model for decoding
latent state variables from point process observations allows for
previous neural firing to affect the probability of current cell fir-
ing (e.g. cell refractoriness, bursting, etc.) (Eden et al., 2004a,
Srinivasan et al., 2007). For simplicity, in this example, we do not

include this effect (denoted by gray lines). In this case, the latent

state variable is the vector xk = x(tk) = [cos (0 (t)) ,sin (0 (t))]T.

D) Point Process Decoding Results. Actual $ (t), Ohip (t), and

Oknee (t) are denoted by solid black lines. Solid blue line denotes

the estimated gait phase 0 (t) - tan- +/- one standard

deviation computed based on the estimated latent state variables
reconstructed from the point process observations. The solid blue

lines for the joint angles denote 0 hip (t) and Oknee (t) defined as

Oi (t) = 6; (tmin) where t,,in = argmin, ((4 (x) - . . . . . . 107
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Introduction

Ambulation, Quality of Life, and Disease

Ambulation crucial activity of daily living (Quinn et al., 2011, Collin et al., 1988).
Being such a basic component of our everyday lives, most of us take little time to
think about what life would be like if we were unable to walk. It is only when our
own mobility or that of friends, relatives, or colleagues is affected that we notice
the tremendous importance that walking plays in our lives.

Unfortunately, many diseases and injuries can affect an individuals' ability
to walk independently. For example, in the US alone, there are approximately
800,000 new cases of stroke each year and over 30% of ischemic stroke survivors
are unable to walk at six months without assistance (Lloyd-Jones et al., 2009). Ac-
cording to one study by the Christopher & Dana Reeve Foundation, it is estimated
that approximately 1.9% of the U.S. population, or some 5,596,000 people, cur-
rently suffer from some form of paralysis - largely due to stroke (29%), spinal cord
injury (23%), and multiple sclerosis (17%). Limb loss, resulting from trauma or
amputation, is another major contributor to loss of ambulation. In the US alone,
over 1.7 million people are estimated to have lost a limb (Ziegler-Graham et al.,
2008).

The ability to walk independently is a major determinant of favorable survival
prognosis post stroke (Chiu et al., 2012). As such, the goal of treatment, regard-
less of the underlying pathology should aim to restore an individual's ability to
ambulate independently.

Restoration of Gait in Disease

Understanding Neural Function

Gait results from the coordinated activity of numerous components of the ner-
vous system. The fields of neuroscience, neurophysiology, and neuroanatomy have
yielded much insight into how individual components at the level of the brain (mo-
tor cortex, basal ganglia, and cerebellum), interact with modules within the spinal
cord (central pattern generators, intra-spinal circuits, and alpha motor neurons), to
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Restoration of Gait in Disease

drive muscles and move the body. Also, much is known about how sensory infor-

mation from muscles (from spindles and Golgi tendon organs), joints (mechanore-

ceptors), and vision are integrated to correct ongoing movements within the brain

(within the cerebellum and sensory cortices). Much of this systems-level knowl-

edge was derived from anatomical connectivity studies, lesion studies, and from

ex-vivo and in-vivo physiology. At the same time, there have been tremendous

advances in understanding neural function and the changes (plasticity) that oc-

curs within single cells as a result of experience and changes in the local micro-

environment. Orlovsky et al. (1999) and Kandel et al. (2000) provide detailed

introductions regarding the neural control of locomotion.

We are at the cusp of beginning to understand how the information gathered

across the various levels of motor system is represented and integrated by indi-

vidual cells, groups of neurons, and across brain regions in real-time to results

in coordinated movement. Understanding how changes in the body and the envi-

ronment affect neural plasticity will be important for understanding that processes

involved in task acquisition in health, and also how brain networks are reorga-

nized after changes in the body (such as traumatic limb loss or spinal cord injury).

In particular, understanding how information is represented within neural circuits

and individual cells, and how this representation changes within experience and

the properties of the environment will be informative for the development of pros-

thetics devices for patients where the underlying upstream neural systems are still

intact.

Brain Machine Interfaces

Brain machine interfaces (BMIs) hold promise for the restoration of gait. Over

the last 15 years there has been a surge in the number of successful applications

of BMIs for the control of reaching (Chapin et al., 1999, Velliste et al., 2008,
Black et al., 2003). Numerous investigators have recently begun to apply tech-

niques to the lower extremity (Presacco et al., 2011, Fitzsimmons et al., 2009).

Current approaches have suffer from major problems such as the constant need to

recalibrate(Carmena, 2012). Additionally, in order to make BMI systems widely

clinically viable, significant improvements in reliability (lifetime usability of the

interface) and performance (achieving control and dexterity comparable to natural

movements) need to be achieved (Orsborn et al., 2012). One main limitation of

current approaches is based on the limited knowledge of how information about a

task is represented by an ensembles of neurons. Researcher currently "bypass" this

problem by treating the relationship between neural firing and variables of interest

as a "black box" and using regression based methods to obtain linear predictors

that can be used to decode movement variables in real-time (Carmena et al., 2003,
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Presacco et al., 2011, Fitzsimmons et al., 2009, Black et al., 2003). Developing
an understanding of information processing at the individual neuron and popula-
tion level (see Moran and Schwartz (1999), Georgopoulos et al. (1986)) is likely
to lead to insights about the control of locomotion in health and will allow for im-
proved information extraction from neural ensembles. Deriving models of neural
function that capture how task-relevant information is represented together with
an understanding of how these representations change with time, experience, and
pathology will help address the current limitations of BMI reliability, performance,
and calibration.

Gait Rehabilitation

Until technologies are developed to allow restoration of damaged neural tissue
back to its original state (the goal of stem cell research) or for lesion sites to be
bypassed (e.g. using BMIs, see Hochberg et al. (2012)), physical therapy (which
aims to restore function by establishing new motor-cortical connections among
the remaining neurons) remains the most viable option for patients. In stroke, for
example, 80% of the nearly 800,000 new stroke survivors each year require some
sort of rehabilitation, and of these only 10% regain full function(Lloyd-Jones et al.,
2009).

Functional recovery during rehabilitation is the result of learned compensatory
strategies and the development of new motor cortical connections, each constitut-
ing forms of motor learning. Currently, a multitude of physical therapy paradigms
are practiced throughout the country, each based on a variety of underlying theo-
retical principles (e.g. neurophysiologic, motor learning, orthopedic) or technolo-
gies (e.g. functional electrical stimulation (Marsolais and Kobetic, 1987, Peck-
ham and Knutson, 2005, Yan et al., 2005, Subramanya et al., 2012), interactive
robotic therapy(Veneman et al., 2007, Colombo et al., 2001, Reinkensmeyer et al.,
2004, Banala et al., 2009)). Given the unfortunate lack of conclusive clinical
evidence on how to best implement any one approach, even when two hospitals
adopt the same paradigm for physical therapy, the actual implementation is likely
to vary. Moreover, given the number of clinical assessment scales currently used
to determine patient progress (Barthel Index (Collin and Wade, 1990), Fugl-Meyer
scale(Fugl-Meyer AR, 1975), etc.), inter-rater and intra-rater variability with use
of such scales, and the varied anatomy of pathologies such as stroke, it becomes
nearly impossible to discern the specific benefit of any one physiotherapeutic ap-
proach versus another from the literature. This is exemplified by a recent meta-
analysis (Pollock et al., 2007) which found that compared with placebo, any type
of rehabilitation after stroke does better than none at all, but no one rehabilitation
paradigm could be shown to be superior to any other in a statistically significant
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Summary of Aims

manner. Thus, current physiotherapeutic strategies do have a significant benefit in

the functional recovery of the patient, but current limitations do not allow us to un-

derstand how each does relative to one another or how to modify a single approach

to achieve the best possible results for a given patient. It is likely that these limi-

tations are the result of: 1) varied theory or application driven paradigms applied

without uniform implementation or assessment of the rate of patient progress, and

2) varied clinical assessment scales each using distinct sets of surrogate variables

to determine "patient recovery."

Motor Adaptation

Motor adaptation refers to the trial-by-trial alternation of motor commands in re-

sponse to error feedback (Martin et al., 1996b), and has been extensively studied

in the upper arm over the last 20 years utilizing common experimental paradigms,

such as the Force Field Adaptation Paradigm (Shadmehr and Mussa-Ivaldi, 1994,
Scheidt et al., 2000b). Under the hypothesis that long-term skill relearning dur-

ing rehabilitation (termed motor learning) results from a series of short term motor

adaptations, the relevance of motor adaptations within the context of rehabilitation

becomes clear. Additionally, as Reisman and Bastian (2010) note, "adaptation al-

lows us to determine whether the nervous system is still capable of a more normal

pattern of movement." It is therefore not surprising that numerous researchers have

begun to study motor adaptation in the lower extremity (Emken and Reinkens-

meyer, 2005, Lam et al., 2006, Fortin et al., 2009, Reisman et al., 2007, Banala

et al., 2009). Unfortunately, many of the approaches have been implemented on

devices that are not commercially available and even in the case where devices

have been comparable, the approaches have been varied. The end result is that the

outcomes of these studies are quite difficult to compare.

Summary of Aims

This thesis aims to yield methods for improved lower extremity rehabilitation. We

believe that improved patient outcomes will be achieved via the successful integra-

tion of knowledge about the underlying neural control of locomotion under a range

of conditions and via the uniform characterization of the motor adaptations that

result during gait retraining. More specifically, the aims of this thesis are detailed

below.
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Development tools for systematic analysis of neural function

Current approaches to BMI design treat the relationship between task-relevant vari-
ables and neural firing as a "black box." These methods have shown that BMIs
hold great promise for the restoration of function in patients but performance, re-
liability, and calibration issues are likely to be minimized if more detailed models
of neural information encoding are used. Over the last decade there has been a
tremendous advance in the analytical tools available to neuroscientists to under-
stand and model neural function. In particular, the Point Process - Generalized Lin-
ear Model (PPGLM) framework has been successfully applied to problems ranging
from neuro-endocrine physiology to neural decoding. However, lack of availabil-
ity of published PP-GLM algorithms together with problem-specific modifications
required for their use, limit wide application of these techniques. In an effort to
make existing PP-GLM methods more accessible to the neuroscience community,
we have developed nSTAT - an open source neural spike train analysis toolbox for
Matlab@. nSTAT allows for the systematic testing and analysis of point process
models over a large number of neurons. It is our hope that developing an easy to
use and open-source implementation will assist neurophysiologists in developing
accurate models of neural function that will someday yield more robust and reliable
BMI implementations.

Adaptation of neural dynamics of locomotion under changes in
environmental conditions

To elucidate the neural mechanisms of locomotion, we studied in collaboration
with Dr. Weiguo Song and Dr. Simon Giszter, how task relevant information
(e.g. positions, velocities, and forces) modulate single unit neural activity from
hindlimb/trunk region of the rat motor cortex during adaptations to robot-applied
elastic loads and closed-loop brain-machine-interface (BMI) control during tread-
mill locomotion. Using the Point Process-Generalized Linear Model (PP-GLM)
statistical framework we systematically tested parametric and non-parametric point
process models of increased complexity for 573 individual neurons recorded over
multiple days in six animals. The developed statistical model captures within gait-
cycle modulation, load-specific modulation, and intrinsic neural dynamics.

Development of tools to assess motor adaptation during gait
rehabilitation

We develop an extension of the Force Field Adaptation Paradigm, originally de-
veloped to quantitatively assess upper extremity motor adaptation, to the lower
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Thesis Outline

extremity. The algorithm is implemented on the Lokomat (Hocoma HG) lower

extremity gait orthosis and is currently being utilized to assess short-term motor

adaptation in 40 healthy adult subjects (ClinicalTrials.gov NCT01361867). Estab-

lishing an understanding of how healthy adults' motor systems adapt to external

perturbations will be important to understanding how the adaptive mechanisms in-

volved in gait integrate information and how this process is altered by disease.

Thesis Outline

In Chapter 2, we introduce our open source neural spike train analysis toolbox

(nSTAT), discuss the PP-GLM framework, and provide examples of how nSTAT

can be used to address 5 common problems in neuroscience. In Chapter 3, we stud-

ied how task relevant information (e.g. positions, velocities, and forces) modulate

single unit neural activity from hindlimb/trunk region of the rat motor cortex during

adaptations to robot-applied elastic loads and closed-loop brain-machine-interface

(BMI) control during treadmill locomotion. Using the Point Process-Generalized

Linear Model (PP-GLM) statistical framework we systematically tested paramet-

ric and non-parametric point process models of increased complexity for 573 in-

dividual neurons recorded over multiple days in six animals. Lastly, in Chapter

4, we introduce our extension of the Force Field Adaptation Paradigm (FFAP) to

the lower extremity. We describe our algorithm, its corresponding implementation

within the Lokomat lower extremity gait orthosis, and perform some preliminary

analysis from our ongoing clinical trial.
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nSTAT: Open-Source Neural
Spike Train Analysis Toolbox for
Matlab

Abstract

Over the last decade there has been a tremendous advance in the analytical tools
available to neuroscientists to understand and model neural function. In particular,
the Point Process - Generalized Linear Model (PPGLM) framework has been suc-
cessfully applied to problems ranging from neuro-endocrine physiology to neural
decoding. However, lack of availability of published PP-GLM algorithms together
with problem-specific modifications required for their use, limit wide application
of these techniques. In an effort to make existing PP-GLM methods more acces-
sible to the neuroscience community, we have developed nSTAT - an open source
neural spike train analysis toolbox for Matlab@. nSTAT adopts an Object-Oriented
Programming (OOP) approach to allow the user to easily manipulate data by per-
forming operations on objects that have an intuitive connection to the experiment
(spike trains, covariates, etc.), rather than by dealing with data in vector/matrix
form. The algorithms implemented within nSTAT address a number of common
problems including computation of peri-stimulus time histograms, quantification
of the temporal response properties of neurons, and characterization of neural plas-
ticity within and across trials. nSTAT provides a starting point for exploratory data
analysis, allows for simple and systematic building and testing of point process
models, and for decoding of stimulus variables based on point process models of
neural function. By providing an open-source implementation, we hope to estab-
lish a platform that can be easily used, modified, and extended by the neuroscience
community to address limitations of current techniques and to extend available
techniques to more complex problems.
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Introduction

Understanding how neurons represent information is a central problem in neuro-
science. Whether it involves understanding how the concentration of a particular
chemical present within the bath solution of an isolated neuron affects its spon-
taneous firing activity (Phillips et al., 2010) or how a collection of neurons en-
code arm movement information (Georgopoulos et al., 1986), the neurophysiol-
ogist aims to decipher how the individual or collective action potentials of neu-
rons are correlated with the stimulus, condition, or task at hand. Due to the
stereotypic all-or-none nature of action potentials, neural spiking activity can be
represented as a stochastic point process, a time series that takes on the value 1 at
the times of an action potential and is 0 otherwise (Daley and Vere-Jones, 1988).
Point processes are completely characterized by their conditional intensity function
(CIF), a generalization of the "rate" for a Poisson process (Daley and Vere-Jones,
1988). Many other common phenomena can be described as a point process rang-
ing from geyser eruptions (Azzalini and Bowman, 1990) to data traffic within a
computer network (Barbarossa et al., 1997).

Generalized Linear Models (GLMs) (McCullagh and Nelder, 1989), a flexible
generalization of ordinary least squares regression, can be used in concert with
point process models to yield a robust and efficient framework for estimating the
conditional intensity function of a point process. This Point Process - Generalized
Linear Model (PP-GLM) framework has been successfully applied to a broad range
of problems including the study of cardiovascular physiology (Chen et al., 2011 a,
2010c,d, 2009b, Brown and Barbieri, 2008, Chen et al., 2008, Barbieri and Brown,
2004, Barbieri et al., 2005a, Barbieri and Brown, 2006ba), neuro-endocrine physi-
ology (Brown et al., 2001a), neurophysiology (Frank et al., 2002, 2004, 2006, Eden
et al., 2004b), and neural decoding (Barbieri et al., 2004b, 2008, Eden et al., 2004a,
Srinivasan et al., 2006, 2007). Truccolo et al. (2005) provide a broad overview of
the PP-GLM framework.

While much progress has been made in the development and application of PP-
GLM methods within neuroscience, the use of these methods/algorithms typically
requires in-depth knowledge of point process theory. Additionally, while there
are widely available implementations for the estimation of GLMs within software
packages such as Matlab@ (The Mathworks, Natick, MA), S, or R programming
languages, their use to analyze neural data requires problem specific modifications
and the implementation of a number of non-trivial analysis routines. These adap-
tations require much work on the part of the experimentalist and detract from the
goal of neural data analysis. These barriers are exacerbated by the fact that even
when software implementations are made publicly available they vary greatly in
the amount of documentation provided, the programming style used, and in the
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problem-specific details.
Numerous investigators have successfully addressed common problems within

neuroscience (such as spike sorting, data filtering, and spectral analysis) via the
creation of freely available software toolboxes that encapsulate the implementa-
tion details from the user with the aim of allowing widespread adoption of these
methods by the neuroscience community. Chronux (Bokil et al., 2010), FIND (pre-
viously MEA-Tools) (Meier et al., 2008, Egert et al., 2002), STAToolkit (Goldberg
et al., 2009), and SPKtool (Liu et al., 2011) are a few examples of such tools.
Chronux offers several routines for computing spectra and coherences for both
point and continuous processes along with several general purpose routines for ex-
tracting specified segments from data, or binning spike time data with bins of a
specified size. STAToolkit offers robust and well-documented implementations of
a range of information-theoretic and entropy-based spike train analysis techniques.
The FIND toolbox provides analysis tools to address a range of neural activity
data, including discrete series of spike events, continuous time series and imaging
data, along with solutions for the simulation of parallel stochastic point processes
to model multi-channel spiking activity. SPKtool provides a broad range of tools
for spike detection, feature extraction, spike sorting, and spike train analysis. How-
ever, a simple software interface to PP-GLM specific techniques is still lacking.

Fortunately, the method for systematic analysis of data within the PP-GLM
framework is remarkably consistent and amenable to implementation as software
toolbox. Broadly speaking there are two main types of analysis that can be per-
formed: 1) encoding analysis and 2) decoding analysis. In encoding analysis, the
experimenter seeks to build the simplest model that describes the firing properties
of the neurons under consideration. This type of analysis requires comparison of
the "goodness" of competing models while penalizing model complexity with the
goal of arriving at the simplest model that describes the data. Decoding analysis,
on the other hand, builds on prior knowledge of neural function (such as could be
gained from encoding analysis) to estimate the value of stimuli responsible for the
neural firing activity being observed. An example of this type of analysis would
aim to estimate arm movement velocity given the population firing activity of a col-
lection of M1 neurons and a model of their firing properties such as that developed
by Moran and Schwartz (1999).

We leverage the consistency of the data analysis process within the PP-GLM
framework in the design of our neural spike train analysis toolbox (nSTAT). Our
object-oriented software implementation incorporates knowledge of the standard
encoding and decoding approaches together with knowledge of the common ele-
ments present in most neuroscience experiments (e.g. neural spike trains, covari-
ates, events, and trials) to develop code that can be used across a broad range of
problems with few changes. Object-oriented programming (OOP) represents an at-
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tempt to make programs more closely model the way people think about and deal

with the world. By adopting an OOP approach for the software development within

nSTAT we hope to allow the user to easily manipulate data by performing opera-

tions on objects that have an intuitive connection to the experiment and hypothesis

at hand, rather than by dealing with raw data in matrix/vector form. Additionally,
by building the toolbox for MATLAB@, we make sure that users can easily trans-

fer their data and results from nSTAT to other freely or commercially available

software packages, and develop their own extensions for nSTAT with relative ease.

The algorithms implemented within nSTAT address a number of problems of

interest to the neuroscience community including computation of peri-stimulus

time histograms, quantification of the temporal response properties of neurons

(e.g. refractory period, bursting activity, etc.), characterization of neural plastic-

ity within and across trials, and decoding of stimuli based on models of neural

function (which can be pre-specified or estimated using the encoding methods in

the toolbox). It should be noted that while all of the examples presented in the

paper focus on the PP-GLM framework, nSTAT contains methods for analyzing

spike trains when they are represented by their firing rate and treated as a Gaus-

sian time-series instead of a point process. These include time-series methods such

as Kalman Filtering (Kalman, 1960a), frequency domain methods like multi-taper

spectral estimation (Thomson, 1982), and mixed time-frequency domain methods

such as the spectrogram (Cohen and Lee, 1990, Boashash, 1992a). For brevity,

and because these methods are also available in other toolboxes, we do not discuss

these elements of the toolbox herein.

This paper is organized as follows: Section summarizes the general theory

of point processes and generalized linear models as it applies to our implementa-

tion. We include brief descriptions of some of the algorithms present in nSTAT to

establish consistent notation across algorithms developed by distinct authors. Sec-

tion describes the software classes that make up nSTAT, the relationships among

classes, and relevant class methods and properties. Section describes five ex-

amples that highlight common problems addressed using the PP-GLM framework

and how they can be analyzed using nSTAT. Lastly, results for each of the dif-

ferent examples are summarized in Section . nSTAT is available for download

at http://www.neurostat.mit.edu/nstat/. All examples described herein (including

data, figures, and code) are contained within the toolbox help files. The software

documentation also includes descriptions and examples of the time-series methods

not discussed herein.
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Material and Methods

Summary of the PP-GLM Framework

In this section, we describe the PP-GLM framework and describe several model
selection and goodness of fit techniques that can be applied within the framework
to select between competing hypotheses or between models of varying complexity.
The peri-stimulus time histogram (PSTH) and its PP-GLM analogue, the GLM-
PSTH, are then presented together with extensions of the GLM-PSTH that allow
for estimation of both within-trial and across-trial neural dynamics (SS-GLM). We
then discuss how point process models can be used in decoding applications, where
neural firing information is used to estimate a driving stimulus.

Point Process Theory

Due to the stereotyped all-or-none nature of action potentials or spikes, neural spik-
ing activity can be represented as a stochastic point process, a time series that takes
on the value 1 at the time of an action potential and is 0 otherwise. A point process
is completely characterized by its conditional intensity function (CIF) (Daley and
Vere-Jones, 1988) defined as

X(tIHt) limP(N(t+A) -N(t) =1 H) (2.2)
A-40 A

where H is all the history information from 0 up to time t and N (t) is a count-
ing process denoting the sum of all spike events up to time t. For any finite A,
the product A. (tIH,) A is approximately equal to the probability of a single spike in
the interval (t, t + A] given the firing history up to time t. The conditional inten-
sity function can be considered a generalization of the "rate" for a homogeneous
Poisson process.

If the observation interval is partitioned into {tj} and individual time steps
are denoted by At1 = tj - tj_ i, we can refer to each variable by its value within the
time step. We denote Nj= N (tj) and refer to ANj = Nj -Nj_ 1 as the spike indicator
function for the neuron at time tj. If Atj is sufficiently small, the probability of more
than one spike occurring in this interval is negligible, and ANj takes on the value 0
if there is no spike in (tj_1, tj] and 1 if there is a spike. In cases where fine temporal
resolution of the count process, N (t), is not required we define AN (tA, tB) to equal
the total number of spikes observed in the interval (tA, tB].
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Generalized Linear Models

The Generalized Linear Model (GLM) framework is a flexible generalization of

ordinary least squares regression developed byMcCullagh and Nelder (1989) as

a way of unifying various statistical models (including linear, logistic, and Pois-

son regressions) under one common framework that allowed efficient maximum

likelihood parameter estimation. If the conditional intensity function is modeled

as a member of the exponential family (i.e. the family of distributions covered

by GLMs), we have an efficient algorithm for estimating CIF model parameters.

Additionally, this approach will allow us to effectively select between competing

models via the likelihood-criteria described below. In particular, we will use two

main types of GLMs for the conditional intensity functions herein:

1) Poisson regression models where we write log (X (tjIHtj) A) as a linear func-

tion of relevant covariates, e.g.

log (X (tjIHt) A) = x# <-z A (tjIH) A = exp (x#) (2.3)

and 2) Binomial regression models where we write the inverse of the logistic func-

tion, logit (A (t|Ht) A), as a linear function of covariates, e.g.

exp (
logit (A (tjH) A) = xIp = A (tj|H)A= exp (2.4)

\j1 +exp x#

where x is the jh row of the design matrix X and # is the vector of model parame-

ters to be estimated. The spike indicator function, ANj, is taken as the observation,
termed yj, and is modeled either as a Poisson or Binomial random variable. That

is yj=ANjexp x # oryj exp(x)
'J i+exp(xjp)~

Model Selection

Goodness of fit measures currently implemented in nSTAT include the time rescal-

ing theorem for point processes (Brown et al., 2002), Akaike's information criteria

(AIC) (Akaike, 1973), and Bayesian information criteria (BIC) (Schwarz, 1978).

Briefly, the time rescaling theorem states that given the true conditional intensity

function of a point process, A, and a sequence of spike times 0 < ti < t2 < ... <

ts < ... < ts < T, the rescaled spike times defined as

us = 1 - exp (f X(r|H,)dr) (2.5)
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s = 1, ..., S are independent, identically distributed, uniform random variables on
the interval (0,1). To use the time-rescaling theorem to test the model goodness
of fit, one can apply Equation 2.5 to each candidate model, X', to obtain a set of
candidate rescaled spike times us that can then be tested for independence and their
closeness (to be made precise below) to an uniform distribution.

The Kolmogorov-Smirnov (K-S) test can be used to compare how close the
empirical distribution of rescaled spike times, us's, are to a reference uniform dis-
tribution on the interval (0,1). The visual representation of this test, termed a
K-S plot (Truccolo et al., 2005, Brown et al., 2002), together with corresponding
confidence intervals (Johnson and Kotz, 1970) allows for comparison of multiple
models simultaneously. If candidate model is correct, the points on the K-S plot
should lie on a 450 line (Johnson and Kotz, 1970). The K-S statistic is the largest
deviation from the 450 line. Application of the time-rescaling theorem to sampled
data produces some artifacts within K-S plots since the actual spike times could
have occurred anywhere within the finite-sized time bins. These artifacts are ad-
dressed within nSTAT using the discrete time rescaling theorem (Haslinger et al.,
2010).

Independence of the rescaled spike times can be assessed by plotting us 1 vs. U
(Truccolo et al., 2005). In this case, a correlation coefficient statistically different
from zero casts doubt on the independence of the rescaled spike times. This test
is equivalent to determining if the lag-I coefficient of the auto-correlation function
for the ui's is statistically different from zero. A stronger test for independence
uses the fact that uncorrelated Gaussian random variables are also independent. If
the ui's are uniform random variables on the interval (0, 1), then

D-1 (u) (2.6)

where CD- 1 (-) is the inverse of the standard normal distribution cumulative dis-
tribution function (CDF), will be normally distributed with zero mean and unit
variance. Significant non-zero coefficients of the auto-correlation function of the
xs's at non-zero lags cast doubt on the independence of the rescaled spike times
(Truccolo et al., 2005). The 95% confidence interval for the non-zero lag coeffi-
cients of the auto-correlation function is i 1.96/vfi where n is the total number of
rescaled spike times.

Goodness of fit can also be assessed by examining the structure of the point
process model residual (Andersen, 1997, Truccolo et al., 2005) defined over non-
overlapping moving time windows of size B as

t -tj

M' = M(ti) = AN tN) - 6 (TIH,, 09) dr (2.7)
n=j-B fj-
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for j- B > 1. Strong correlations between covariates absent from the model for A

and M' are indicative of potentially important un-modeled effects.

The AIC, BIC, rescaled spike times, and the point process residuals are auto-

matically computed within the nSTAT Analysis class for each candidate model,

A, and stored within the returned FitResult object (see Section for more details).

The FitResult method plotResults displays the K-S plot, the plot of ui+1 vs. ui and

corresponding correlation coefficient, the auto-correlation function of the x''s, and

the point process residual for each of the candidate AX's.

Simulating Point Processes

Validation and testing of new algorithms requires generating spiking activity ac-

cording to know prior behavior. Given an integrable conditional intensity function

A (t|Ht) for 0 < t < T, a realization of the point process compatible with this CIF

can be generated via time rescaling (Brown et al., 2002) as follows:

1. Set to = 0; Set s = 1.

2. Draw zs an exponential random variable with mean 1.

3. Find ts as the solution to zs = fs A (r|H) dr.

4. If t, > T, then stop.

5. s=s+1

6. Go to 2.

In instances where the CIF is independent of history (e.g. a homogenous or inho-

mogenous Poisson process), the more computationally efficient point process thin-

ning algorithm (Lewis and Shedler, 1978, Ogata, 1981) can be used. The nSTAT

CIF class contains static methods (e.g. CIF.simulateCIF, CIF.simulateCIFByThinning,

and CIF.simulateCIFByThinningFromLambda) to generate a realizations of a point

process based on either time rescaling or the point process thinning algorithm.

PSTH and the GLM Framework

In neurophysiology, the peri-stimulus time histogram and post-stimulus time his-

togram, both abbreviated PSTH or PST histogram, are histograms of the times at

which neurons fire. These histograms are used to visualize the rate and timing of

neuronal spike discharges in relation to an external stimulus or event. To make a

PSTH, a spike train recorded from a single neuron is aligned with the onset, or

a fixed phase point, of an identical repeatedly presented stimulus. The aligned
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sequences are superimposed in time and then combined to construct a histogram
(Gerstein and Kiang, 1960, Palm et al., 1988).

According to Czanner et al. (2008), the PSTH is a special case of the condi-
tional intensity function defined by the following GLM

R
log (X (k, nA|e)A) = I Orgr (nA) (2.8)

r=1

fork= 1, ...,K and n = 1, ...,N. Here k and n are the trial number and bin within a
trial respectively, and

(1 ifn=(r-1)NR-1+1,...,rNR-(

gr(n) = 0 otherwise (2.9)

are the unit pulse functions in the observation interval (0, T] (equivalently [1,NA]).
This conditional intensity function is the same for all trials k = 1, .., K. Note that
since there are R unit pulse functions over the N observed samples, the width of
each unit pulse function is NR- 1 . For the bin in which gr (nA) = 1, the spik-
ing activity obeys a homogenous Poisson process with mean rate exp (Or) /A, and
since the basis functions in Equation 2.9 are orthogonal, the values exp (Or) /A
r = 1, ..., R can be estimated independently of each other. The maximum-likelihood
estimate of exp (Or) /A is the number of spikes that occur in the bin in which

gr (nA) = 1 , summed across all trials, and divided by the number of trials and
the bin width (e.g. equal to the value of the PSTH). Within nSTAT, the PSTH and
the GLM-PSTH can be computed for any collection of neural spike trains (rep-
resented by the class nstColl) by specifying the bin width A. The GLM-PSTH
routine (psthGLM method) also allows for the estimation of firing history effect of
the same form as described in Section below.

State Space GLM Framework

The standard PSTH treats each trial as independent to produce an estimate of the
firing rate. In many experiments it is of interest to not only capture the domi-
nant variation in firing rates within a trial, but also to examine changes that might
be occurring from one trial to the next (for example to examine neural plastic-
ity or learning). Czanner et al. (2008) formulated the state-space generalized linear
model (SS-GLM) framework to allow for this type of analysis. Briefly the SS-GLM
framework proposes that the neural conditional intensity function be modeled as

R J
log (X (k,nA|1) A) = O Ok,rgr (nA)+ I yjANk (tn - tj_ 1, tn - tj) (2.10)

r=1 j=1
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where k is the current trial index and ANk (tA, tB) equals the total number of spikes

observed in the interval (tA,tB] of the kth trial. The stochastic trial-to-trial depen-

dence between the parameters 6k = [ 6k,1 ... Ok,r Ok,R ] is described by
the random walk model

Ok Ok-1 + Ek (2.11)

for k= 1, ..., K, where K is the total number of trials, Ek is an R-dimensional Gaus-

sian random vector with mean 0 and unknown covariance matrix X. The initial

vector 60 is also assumed to be unknown. Because the parameters Ok and yj of the

GLM and the covariance parameter, 1, of the random walk model are unknown, an

iterative Expectation-Maximization algorithm (Dempster et al., 1977) is employed

to estimate them.
The expected number of spikes in trial k within the time interval [ti , t2 ] can be

computed as
t2

Ak (t, t2) = A (k, r k, y, Hk,,) d' (2.12)

ti

and used to define spike rate function on the interval [ti , t2 ] as

t2

(t2 -ti)- Ak (t1 ,t 2 ) = (t2 - t 1)- fA (k,T I Oky, Hk,,) dr (2.13)
ti

The corresponding maximum likelihood estimates of the expected number of spikes

and the spike rate function are obtained by evaluating Equations 2.12 and 2.13

with the estimated conditional intensity function. Confidence intervals can be con-

structed via the Monte Carlo methods described by Czanner et al. (2008). Sta-

tistical comparisons of the spike rate function between trials can be performed in

order to examine experience dependent changes or learning across trials. In partic-

ular, for a given interval [ti, t2] and trials m and k we can compute the maximum-

likelihood estimates of Equation 2.13 and use Monte Carlo methods to compute

Pr [(t 2 -t)1m (ti,t 2) > (t 2 -tl)~I ^ (tit 2) (2.14)

for any k = 1, ..., K - 1 and m > k. The smallest m such that probability in Equation

2.14 is greater than or equal to 95% is denoted as the learning trial with respect to

trial k (i.e. the first trial where the spike rate function in the time interval [tit 2 ] is
significantly different than the spike rate function in trial k).

The SSGLM routine is implemented by the nstColl class and requires specifi-

cation of the number of J + 1 time points ([to, ti, ..., tj]) that are used to construct

20



Material and Methods

J time windows of prior spiking activity, along with the number of within-trial
bins, R, to be used. The routine returns estimates of Ok for k = 1, ..., K, Y, and

y = [yi,..., y].

Point Process Adaptive Filter

In some situations, one has prior knowledge of the form of the conditional inten-
sity function, AC (tIx (t) , 0,H,) for c = 1,..., C, where C is the number of individual
neurons being observed, x (t) is a vector of stimuli/covariates of interest, 0 is a vec-
tor of parameters (typically obtained via GLM), and H is all of the relevant history
up to time t. The decoding problem is then, given a collection of CIFs, to estimate

the stimuli/covariates x(t) = [ X1 (t) ... xN (t) ] Tbased on the firing activity of
the ensemble AN1:C (t). It is customary to discretize time and adopt the notation

Xk = x(t) |=kT. We denote the spiking activity in the kth time step by the vector

ANI:c-[ ANI AN2 ANC ] of binned spike counts. The cth element of
AN :Ccontains the total number of of spikes generated by the cth neuron in the kth
time step. Spike history is represented by Hk [ AN 1:C AN2:C -.. -.

The system of equations for the state (stimuli) vector are defined as

xk+1 = Akxk + Ok

where Ak is the state transition matrix and cok is a zero mean Gaussian random
vector with covariance Qk. The effect of the stimuli is only observed via the firing
of each of the individual cells, i.e.,

p (ANJxk, Hk) ~4 AA (2.15)

for c = 1,..., C, where p (ANj Ixk, Hk) denotes the conditional probability distribu-
tion function of a spike in the kth time bin by the cth cell conditioned on the current
stimulus, xk, and history. Decoding is then equivalent to estimating the posterior
density

:c ~ ~~ p N)cxk, Hk ) p (xk |Hk )
P (XkIAN C, H) = :c (2.16)

k ~P (AN) |:Hk)

Eden et al. (2004a) proposed a Gaussian approximation to this posterior and demon-
strated that the recursive estimates for the stimulus mean and covariance at time k
are given by the point process adaptive filter (PPAF) equations

Prediction:

Xk+lk = Akxkk (2.17)
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Wk+lk = AkWkkAT + Qk (2.18)

Update:

(Wk~~k<' ( (Wdl 1  [(dlog(kcA) )T (ANkc - kA(Wklk)-l = (Wlk-I_1|I - E -
c=1 Ox Xk Xk . xl- _

(2.19)

C(dlog(2LkA) )T (A~k-XA -220

Xklk = Xklk-1 +Wkjk c 1 k A A) (2.20)

If the final state xK is known (e.g. reaching to a known target), the point process

adaptive filter can be modified according to Srinivasan et al. (2006) so that the

final state estimate matches the known final state. Decoding of both discrete and

continuous states, Sk and xk respectively, from point process observations termed

the Point Process Hybrid Filter (PPHF) was derived bySrinivasan et al. (2007). The

equations for the PPHF are not reproduced here for brevity but are implemented

within nSTAT.
The PPAF is implemented by the PPDecodeFilter and PPDecodeFilterLinear

methods of the DecodingAlgorithms class. It requires the specification of the

state transition matrix, Ak, the covariance matrix, Qk, a description of the CIF for

each cell, the observed firing activity, AN':C for k = 1, ... ,K, and optionally target

specific information. The method returns estimates of states xkIk and Xk+1lk, and

the corresponding covariances WklIk and Wk± lk. The PPHF is implemented by the

PPHybridFilter and PPHybridFilterLinear methods of the DecodingAlgorithms

class. It requires the specification of the matrices, Ak and Qk for each pos-
sible value of the the discrete state, sk, a description of the CIF for each cell under

for each value of sk, the observed firing activity, AN :C for k = 1,...,K, a matrix of

state transition probabilities p(s1s-1), and optionally target specific information.

The method returns estimates of Sklk , Xklk and WklI.

Object Oriented Program Structure

Object oriented programming (OOP) is a programming language model that is

organized around "objects" - data structures consisting of data fields and meth-

ods. Objects are specified by their class definitions which specify the fundamental

properties of the object and how the data within the object can be manipulated.

This programming approach allows for inheritance - the notion that a more so-

phisticated class can reuse the properties and methods of elementary classes. The
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PP-GLM framework consists of some fundamental elements that lend themselves
directly into this model. While the specific applications/experiments might range
widely, encoding and decoding analysis within the framework always consists of
the same basic elements: spike trains, covariates, trials, and events (within trials).
The benefits of this approach are

1. Data Encapsulation: Once an object is created, it can be manipulated only
in the ways pre-specified by the class. The helps maintain the consistency
of the data as the object is manipulated during the analysis process. This
encapsulation is essential for complex problems where specific implementa-
tion details might become overwhelming. For example, when manipulating
an object of the Trial class, users need not focus on the implementation de-
tails of spike trains (class nspikeTrain), covariates (class Covariate), and
events (class Event), but can rather perform operations on trials as a whole
via the methods provided by the Trial class.

2. Method access: Each class has methods that are relevant to it and the type of
information that it contains. This helps users know what kinds of operations
can be performed on different types of objects.

3. Code reuse: Due to inheritance, methods need not be implemented for each
new object. This leads to organization of methods across classes and sim-
plified code maintenance. Additionally, this property can allow for decrease
programming complexity. For example, consider the computation of the time
rescaling theorem. Suppose we have a collection of spike times, 0 < ti <
t2 < ... < ts < ... < ts < T, represented as a vector called spikeTimes, and
a conditional intensity function, A (tIH,), represented as a SignalObj called
lambda. The rescaled spike times, us, from the time rescaling theorem are
computed by the following code:

%% Time Rescaling Theorem

t_s = spikeTimes(2:end); % t,..., tS
t_sMinusl = spikeTimes(1:end-1); % 0,tl ,.. .,t_{S-1}

lambdaInt = lambda.integral;
% lambdaInt(t) = integral from 0 to t of lambda(t)
z_s=lambdaInt.getValueAt(t_s) -

lambdaInt. getValueAt ( tsMinus1);
u_s=1-exp(z_s);

where the integral method of class SignalObj returns a SignalObj object.
Since lambdalnt is an object of class SignalObj it has a getValueAt method
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that can be used to obtain the value of the integral at each of the spike times

in the vectors ts and t_sMinus1.

Figure 2.2 highlights how the standard PP-GLM workflow is related to the nSTAT

classes, and how a particular problem can be analyzed using nSTAT. In this case,
the included code corresponds to the first portion of Example 1. Figure 2.3 uses

unified modeling language (UML) formalism (Booch et al., 2005, Bdzivin and

Muller, 1999) to show how the classes that make up nSTAT are related.

nSTAT Classes

1. SignalObj - a class representing a signal abstraction. In general, a signal is

any time-varying or spatial-varying quantity (e.g. a time-series). This im-

plementation of the signal abstraction consists of the pair (t, x (t)), where t

is a one-dimensional indexing variable (time, space, etc.) and x(t) is the

corresponding data specified at each value of the indexing variable. A sig-

nal can be multivariate if at every value of the indexing variable, a vector of

data is specified (the size of this vector determines the dimension of the sig-

nal). SignalObj's have a number of methods that facilitate the manipulation

of their data such as maxima, minima, frequency spectra, etc. SignalObj's

can be integrated, differentiated, filtered, shifted, scaled, added, and sub-

tracted among other operations and the result of these operations is also a

SignalObj.

2. Covariate - a class representing the explanatory variables used in the con-

struction of conditional intensity function models within the PP-GLM frame-

work. Covariates are SignalObj's with mean yt and a standard deviation a-.

3. CovColl - a container for multiple Covariate objects. This container ensures

that all the covariates have the same sampling rate, start time, and end time.

CovColl has a covMask field that allows some Covariates to be masked or

effectively hidden. Additionally, the CovColl can be converted to a matrix

by the dataToMatrix method. Only covariates that are currently selected in

the covMask field are used in the creation of the matrix representation of the

CovColl. This matrix representation is used to generate part of the design

matrix, X , for GLM analysis (see Equations 2.3 and 2.4).

4. nspikeTrain - a neural spike train object consists of a set of spike times. The

spike train can be represented as a signal of class SignalObj with a particular

sampling rate. If the bin size resulting from the specified sample rate is larger

than the difference between any two spike times, the neural spike train will

24



Material and Methods

not have a binary SignalObj representation. Effectively, specification of
sample rate for an object of class nspikeTrain specifies how the spike train
will be binned.

5. nstColl -a container for objects of class nspikeTrain that ensures that all the
contained spike trains have the same start time, end time, and sample rate.
Similar to covColl, nstColl has a neuronMask field that allows selection of
a subset of all the spike trains in the collection. nstColl includes methods
for the generation of inter-spike interval (ISI) histograms and peri-stimulus
time histograms (PSTH). The method dataToMatrix can be used to obtain a
matrix representation of the spike trains that is used by the Analysis class to
obtain the observations, yj = AN (tj), used in GLM analysis.

6. Event - consists of a collection of pairs of times and labels, (tk, 4), that are
used to identify important points within Trial objects.

7. History - defines a collection of time window edges/boundaries within which
the spiking activity of a nspikeTrain is to be analyzed. For example the
vector of window times, [0,0.002,0.01], specifies one window from 0 to
2ms and another from 2ms to lOms. Calling the computeHistory method
on a spike train using the previously mentioned window times would yield
a Covariate object with two dimensions. The first dimension would be a
time-series that at time t has the value of the summed spiking activity in the
interval [t - 2, t) and the second a time-series that at time t equals the sum of
the spiking activity in the interval [t - 10, t - 2).

8. Trial - Consists of covColl, nstColl, and Event objects and implements
the abstraction of an experimental trial by keeping all of the corresponding
data together. The trial data can be visualized using the plot method. This
class ensures that the spike trains and covariates are all properly sampled and
aligned in time.

9. TrialConfig - A class that specifies the manner in which a Trial object
should be analyzed. Each TrialConfig object specifies the name of the co-
variates to be included in the analysis, the sample rate to be used for all of
the covariates and spike trains, the history windows to be used, and the time
window for analysis (i.e. can perform analysis on a subset of all the trial
data).

10. ConfColl - A container for multiple TrialConfig objects.

11. Analysis - A collection of static methods for analyzing a Trial according to
the specifications included in a ConfigColl. Given a Trial and ConfigColl
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object, the method RunAnalysisForAilNeurons returns a FitResult object for

each spike train in the trial. Each FitResult object contains the results of all

the different configurations specified in the ConfigColl as applied to each

spike train.

12. FitResult - Contains the GLM coefficients (with corresponding standard er-

rors), AIC, BIC, KS statistics, rescaled spike times, and point process resid-

ual for each of the specified configurations in ConfigColl. Includes methods

to visualize the results of each of the different configurations to assist in the

model selection process. For example, the plotResults method overlays the

KS plot, the autocorrelation function of the u's, the lag-I correlation coeffi-

cient of the us's, the GLM fit coefficients with 95% confidence intervals, and

the point process residual for each of the models specified in the ConfigColl.

13. FitResSummary - given a collection of FitResult objects (one for each neu-

ron, each containing the results of multiple regressions), computes summary

statistics across all neurons and all configurations in the ConfigColl. This

class allows visualization of commonalities in the data across multiple neu-

rons.

14. CIF - Conditional Intensity Function abstraction. Allows a conditional in-

tensity function to be defined symbolically. Symbolic differentiation of the

CIF can be performed to compute the Jacobian and Hessian of log (Ac (tIx (t) , 0, H) A)

and X ' (tIx (t) , 0,H) A required for computation within the point process

adaptive filter or the point process hybrid filter. The CIF class also contains

static functions that allow simulating point processes based on specification

of the conditional intensity function via time rescaling or the point process

thinning algorithm.

15. DecodingAlgorithms - Includes static methods that implement the point

process adaptive filter (PPAF), the state-space GLM (SSGLM) filter, and the

point process hybrid filter (PPHF) among others. In particular, this class

also implements non-point process algorithms such as the Kalman Filter

(Kalman, 1960a) and the Kalman Smoother (Rauch et al., 1965).

Examples

Example 1 - Homogeneous/Inhomogenous Poisson Models - The Miniature

Excitatory Post-Synaptic Current

Miniature excitatory post-synaptic currents (mEPSCs) have become a primary mea-

sure of synaptic modification during development, plasticity, and disease. These
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Workflow

Load Data

Define SpikeTrains
&

Covariates

Create Trials

Specify Data Analysis

Run Analysis

Visualize Results

Classes

Problem Specific

nspikeTrain
nstColl
Covariate
CovColl
Event

Trial

TrialConfig
ConfigColl

Analysis

FitResult
FitResSummary

Code

% Load Data
spikeTimes = importdata('spikeData.txt');

% Define Spike Trains
nst = nspikeTrain(spikeTimes);
time = 0:(1/sampleRate):nst.maxTime;
spikeColl = nstColl(nst);

% Define Covariates
baseline = Covariate(time,ones(length(time),1),'Baselinetimes',",{\mu'});
covarColl = CovColl({baseline});

% Create the trial structure
trial =Trial(spikeColl,covarColl);

% Specify how to analyze data
tc{l} = TrialConfig({{'Baseline,\mu'}},sampleRate,);
tc{1 I.setName('Constant Baseline');
tcc = ConfigColl(tc);

% Perform Analysis
results =Analysis.RunAnalysisForAllNeutonstrialtccO);

%Vizualize Results
h=results.plotResults;

Figure 2.2: Visual overview of the data analysis workflow, relevant classes,
and code using nSTAT. This particular example shows the typical workflow in
the testing of candidate conditional intensity functions. For brevity, the workflow
for decoding stimuli using the Point Process Adaptive Filter or the Hybrid Point
Process Filter is not shown (see the Matlab help files for these examples for the
corresponding code).
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post-synaptic currents (or "mini's" ) represent the response of postsynaptic recep-
tors to the spontaneous fusion of vesicles in the pre-synaptic membranes. Recent
work by Phillips et al. (2010) has shown that the arrival of mEPSCs under a con-
stant concentration of magnesium is well described as a homogenous Poisson pro-
cess (i.e. the time between mEPSCs is exponentially distributed). Additionally, as
the magnesium magnesium concentration is decreased, the rate of mEPSC arrivals
begins to increase.

We illustrate the use of nSTAT to analyze the arrival of mEPSCs under two
distinct experimental conditions. First, we confirm homogeneous poisson behavior
under constant magnesium conditions by fitting a constant conditional intensity
function model to the data in Figure 2.4, e.g.

log (A (t|H) A) = y (2.21)

and refer to this CIF as ACONST -
As seen in Figure 2.4 C, when the magnesium concentration in decreased, the

rate of mEPSC arrivals increases over time. There are many potential ways to
analyze how the underlying firing rate changes with time. For example, under the
assumption that the form of the conditional intensity function remains the same as
Equation 2.21 we could decode the rate parameter, p (t), using the Point Process
Adaptive Filter described in Section and used in Example . However, in this
example we take a simpler approach. The spike train is visually separated into
three distinct epochs where the baseline firing rates are assumed to be constant
within each epoch (shown in Figure 2.4). Under this assumption, we fit a piecewise
constant conditional intensity function

Y'p To<t<Ti
log (A, (t|H) A) = p2 T 1 < t < T2  (2.22)

ps T2 < t < T5

We refer to this CIF as ACONST-EPOCH since it is constant within each time epoch.
For comparison, we also fit the constant baseline model of Equation 2.21 this data.

Example 2 - Neural Responses in the presence of a known external stimulus
(Whisker Stimulus/Thalamic Neurons)

In many experimental settings, the stimulus is directly controlled. In these cases it
is of interest to understand how the stimulus modulates the neural firing. To illus-
trate we use a sample data set that has been previously summarized (Temereanca
et al., 2008, Temereanca and Simons, 2003). Briefly, a piezoelectric stimulator
was used to caudally deflect the principal whisker (e.g. the whisker that evoked
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Figure 2.4: Example 1 Data - A) Experimental Setup B) mini Excitatory PoSO
Synaptic Currents under a constant Magnesium concentration. C) mEPSCs as the
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Marnie Phillips, PhD)
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Neural Raster

Stimulus - Whisker Displacement

E
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Figure 2.5: Example 2 Data - Thalamic neuron discharge during periodic whisker
displacement. (top) Spiking activity of a single unit in the Ventral posteromedial
nucleus (VPm) of the thalamus during periodic deflection of its principal whisker
(PW). (middle) Whisker deflection and (bottom) whisker deflection velocity. Note
that the unit tends to show firing activity that is in-phase with the applied stimulus
and short bursts of activity when the stimulus is absent.

the most robust response from an isolated thalamocortical unit in the ventral pos-
teromedial nucleus). In the data shown here, the whisker was deflected 1mm in the
caudal direction beginning from the whisker's neutral position at a velocity of 80
mm/s for 2 sec with interstimulus interval of 1.5 sec.

Given such a data set, several important neurophysiologic questions become of
interest: 1) Is there a significant modulatory effect of the stimulus on the neural
firing? 2) What is the temporal relationship (lead vs. lag) of the neural response to
the applied stimulus? 3) Does the neural firing behave as a simple inhomogenous
Poisson process or is there a significant history effect (refractoriness, etc.)? 4) If
there is a significant history effect, over what time period is this effect important?
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In order to address these questions, we proceed as follows

1. We fit a constant baseline conditional intensity function, ACONST , as in Equa-

tion 2.21.

2. We look at the cross-correlation between the point process residual MCONST (tk)

(see Equation 2.7)for the )CONST fit and the known stimulus, s(t), to deter-

mine the stimulus lag, rlag.

3. We fit a baseline plus stimulus model

log (A (t|H,)A) = y + bis(t - T'Fag) (2.23)

and refer to this CIF as ACONST+STIM.

4. We use model selection techniques to determine the number of history win-

dows to include in a model with 30 logarithmically spaced history windows

in the past 1 sec. That is

J

log (A(t|Ht)A) = y + bis(t - Tlag) + yjAN(t -t-1I,t -tj) (2.24)
j=1

where AN (t - t;_1, t - tj) is the total number of spikes that occurred in the

time interval [t - t;_1, t - t;) and J is the number of history windows to be

determined via model selection. The time windows are defined such that

ti = 0, t3o = 1, and tj for 2 < j < 29 are logarithmically spaced between 0

and 1. We refer to this CIF as ALCONST+STIM+HIST -

5. Having determined the "optimal" number of history windows (via AIC, BIC,

and K-S statistics), we compare the three candidate conditional intensity

functions ACONST , )LCONST+STIM, and ACONST+HIST+STIM using the time-rescaling

theorem (KS statistic and rescaled spike times), GLM regression coefficients

and their significance, and the point process residuals for each model.

Example 3 - Neural Responses to an unknown/implicit stimulus

Recording single-neuron activity from a specific brain region across multiple tri-

als in response to the same stimulus or execution of the same behavioral task is a

common neurophysiology protocol. In order to capture the effective neural stimu-

lus that results from the applied physical stimulus, many investigators turn to the

peri-stimulus time histogram. To illustrate the construction of PSTH based on a

neural raster using nSTAT, we use both simulated and actual data. In Figure 2.6 A,
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Figure 2.6: Example 3 PSTH Data - Simulated and Actual Data for PSTH Com-
putation. A) (top) A graph of X (t) from Equation 2.25 (bottom) Raster of 20
"cells" obtained from the conditional intensity function in Equation 2.25 via the
Point Process Thinning Algorithm. B) 9 trials of stimulus exposure to a single cell.
C) Same as B) with different cell.

the point process thinning algorithm was used to generate 20 realizations of a point
process governed by the conditional intensity function

logit (X (t) A) = sin (27rft) + y (2.25)

where f = 2 and y = -3.
Figure 2.6 B and C show the response of two VI neurons when a visual stimu-

lus was shown to an adult monkey during a fixation period in response to a moving
bar. This data has been published previously (Pipa et al., 2009, 2011).

SGLM-PSTH To demonstrate how the SSGLM framework described in Section
can be applied to estimate both within-trial and across-trial effects we simulate the
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following conditional intensity function

logit (X (ktn|H,,)A) + bksin (2xftn) + jyjANk (tn - tj_,tn - tj) (2.26)
j=1

3k
bk = - (2.27)

K

where A (k, tn| Ht,,) is the CIF in the nth time bin of the kth trial, p = -3 (corresponds

to a baseline firing rate of approximately 50 Hertz), A = .001 s, f = 2, K = 50

is the total number of trials, J= 3, t3 =j milliseconds for j= 0,...,J, and 'y=

71 72 3 ]T= [ -4 -1 -0.5 ]T . The inclusion of the history term models

the refractory period of the cell. We refer to sin (2rft) as the within-trial stimulus

(since it is consistent across all trials) and bk as the across-trial stimulus. The aim

of the SSGLM framework is to estimate the history parameter vector, y, and the

non-history dependent stimulus parameters. The SSGLM framework returns an

estimate of the stimulus-dependent component of the CIF, e.g.

logit (Ast im (k, t IHt) A) = p + bksin (21rft) (2.28)

fork= 1,...,50.

Example 4 - Neural Responses to a continuous stimulus - Hippocampal place

cells

In the rat hippocampus (a region of the brain important for long-term memory for-

mation) pyramidal neurons known as place cells form spatial receptive fields as the

animal forages in its environment (O'Keefe and Dostrovsky, 1971, O'Keefe, 1976,
O'Keefe and Conway, 1978). In order to show how the spatial receptive fields can

be estimated using nSTAT, we reproduce the analysis of Barbieri et al. (2005b)

which compared the accuracy of receptive fields constructed using a Gaussian ker-

nel versus Zernike polynomials. Briefly, a Long-Evans rat was allowed to freely

forage in a circular environment 70 cm in diameter with 30 cm high walls and a

fixed visual cue. A multi-electrode array was implanted into the CA1 region of

the hippocampus. The simultaneous activity of 49 place cells was recorded from

the electrode array while the animal foraged in the open circular environment for

25 min. Simultaneous with the recording of the place cell activity, the position

was measured at 30 Hz by a camera tracking the location of two infrared diodes

mounted on the animal's head stage. Figure 2.8 shows the response of 4 randomly

selected cells.
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Figure 2.7: Example 3 SSGLM Data - Time varying stimulus response. The
within-trial stimulus is modulated by the across-trial stimulus gain in order to sim-

ulate neural plasticity across trials. The simulated neural raster is generated via the

time rescaling algorithm described in Section using the nSTAT CIF class. The true

conditional intensity function is obtained from Equation 2.28.
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Figure 2.8: Example 4 Data - Hippocampal neural firing during free foraging.
Four cells recorded while a rat was freely foraging in a circular environment. The

x-y position at which the cell fires is denoted in red and superimposed on the path of
the freely foraging rat in blue. Note that each cell tends to fire near certain locations

more than others. The goal in experiments such as this one is to estimate the

receptive field or "place" field of each cell based on the recorded spiking activity.
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Estimation of the spatial receptive fields using a Gaussian kernel is equivalent
to finding the mean, covariance, and baseline firing rate for the conditional intensity
function, AG, defined as

log (AG (tx (t), 6G) A) = a - (x (t) - )T Q- (x (t) -- 1) (2.29)

where a is the baseline firing rate, x (t) = [x (t) ,y (t)]I is the normalized position
vector of the rat consisting of the x and y coordinates of the rat within the circular
environment, and y the mean and Q the covariance of the two-dimensional Gaus-
sian kernel respectively. Here 6 G represents the parameters on the right hand side
of Equation 2.29. In order to perform the model fits we need to specify the covari-
ates that will be used in the GLM regression. We expand Equation 2.29 and rewrite
in standard matrix notation as

~bo ~
b1

log(;lo(tjx(t),OG)A) = 1x(t) x(t)2 Y~)Yt2 Xtt) b2

b4

_ bs _j
= XGPG (2.30)

where 1 is a vector with every element equal to 1 and of appropriate length. We
define each of the columns of the design matrix, XG, as a covariate for the fitting
of the GLM in Equation 2.30. The second model for the conditional intensity
function, corresponding to the Zernike polynomial basis, Az, is defined as

L I
log(Az(tjx(t), Oz)A) = p + 1O,mzi (p(t)) (2.31)

I=Om=-l

where zf is the mth component of the lth order Zernike polynomial, p (t) = [p (t),<p (t)]
is the polar coordinate representation of the Cartesian position vector x (t) and

0z = {{6l,m}_ 1} . We rewrite the equation in matrix notation

M 1=1

log (Az (tx (t), IOz) A) = [ zi (p (t)) ... zio (p (t)) [ . (2.32)

_210
= Xz Pz (2.33)
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where the notation has been replaced by an ordered numbering of the 10 unique

non-zero Zernike polynomials for L = 3 as used by Barbieri et al. (2005b). We

define each of the columns of the design matrix, Xz, as a covariate for the fitting of

the GLM in Equation 2.32

Example 5 - Decoding Continuous Stimuli based on Point Process Models

Decoding a driving stimulus from Point Process Observations

Suppose we have a collection of c = 1,...,C cells with conditional intensity

function

logit (Ac (t) A) = bc + bcsin (27rft) (2.34)

as shown in Figure 2.9. We define the stimulus x (t) = sin (21rft) and aim to obtain

an estimate x (t) of the true stimulus x (t) based on the ensemble firing activity

AN1:c (t) and knowledge of each A c (t). For this example we choose, C = 20, f =2,
bo ~ A (p = -4.6, a = 1), and bi ~ 4 (p = 0, a = 1). A value of bo = -4.6
corresponds to a baseline firing rate of approximately 10 spikes/sec. Simulated

spike trains for each cell, obtained via the point process thinning algorithm, are

shown in Figure 2.9.
Decoding a movement trajectory from Point Process Observations

Suppose that we have a collection of cells c = 1, ..., C with condition intensity

function adapted from a model of primary motor cortex (Moran and Schwartz,

1999, Srinivasan et al., 2006)

log(c(tlvx,vy)A) = #-+#f (v.+ v2)1/2 cos (0 -- gc)

= #+aevx+Cavy (2.35)

where vs and vy are velocities of the arm end-effector in orthogonal directions. An

arm reach from an initial position, xo = {0,0]T, to a target at xo = [-35,20] Tcm

was simulated using the reach-to-target equation in (Srinivasan et al., 2006). The

resulting velocities were used to generated a CIF according to Equation 2.35 and

neural rasters were generated using the point process thinning algorithm. The final

and initial state covariances were Axo = AxT = e x I4x4, where E = 10-6 and I4x4

is the 4 x 4 identity matrix. The corresponding receptive field parameters were

selected so that each cell had preferred direction uniformly distributed between

- r and 7r, and 0 f4(p = -4.6, a = 1). The same velocity information was

used to simulate the firing of C = 20 distinct cells a total of 20 times to show how

the algorithm performed in the presence of varying cell responses.
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Figure 2.9: Example 5 Driving Stimulus Data - (top) Driving stimulus, (middle)
conditional intensity function for each cell, (bottom) raster of simulated cells begin
driven by a sinusoidal stimulus.
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Figure 2.10: Example 5 Movement Trajectory Data - Reach-to-target simulated
data

Results

Example 1 - Constant and piece wise constant Poisson process - The
Miniature Excitatory Post-Synaptic Current

Figure 2.11 summarizes the results of mEPSC data in Example 1. Under constant
magnesium concentrations, the mEPSC data is well fit by the constant conditional
intensity function in Equation 2.21, suggesting that the inter-spike-interval (ISI)
distribution for the mEPSC events is well described by an exponential distribution.
The KS plot for ACONST lies within the 95% confidence bands indicating that the
us's do not significantly differ from a uniform distribution on the interval (0,1).
The autocorrelation function of the xs's help us determine that the transformed
times are also independent. Together, these results indicate that ACONST is a good
approximation to the true underlying conditional intensity function describing the
mEPSC process under constant magnesium concentrations.

Figure 2.11 B shows a comparison of the constant rate model in Equation
2.21 and the piecewise constant rate model in Equation 2.22. Since both the K-
S plot and the autocorrelation function of the xs's for the piecewise constant model
lie within the 95% confidence interval, we conclude ACONST-EPOCH more ade-
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Figure 2.11: Example 1 Results. A) nSTAT results summary for the constant base-
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Results

quately approximates the true underlying conditional intensity function describing

the mEPSC activity under varying magnesium concentrations.

Example 2 - Neural Responses in the presence of a known external
stimulus Whisker Stimulus/Thalamic Neurons

Figure 2.12 summarizes the results of the analysis presented in Section . Analysis

of the cross-correlation function between the point process residual from the model

in Equation 2.21 and the whisker-deflection stimulus demonstrates that the neural

firing lags the stimulus by 119 ms. Changes in AIC, BIC and KS statistic are

shown in Figure 2.12 B for increasing values of J and indicate that J = 9 history

windows is most consistent with the data (red star). Figure 2.12 D demonstrates

how this length of history captures important temporal properties of the neuron

including the refractory period and bursting (i.e. increased firing probability when

last spike occurred in the last 1-5ms). Additionally, the GLM regression coefficient

for the baseline firing rate indicates that the neuron has a baseline rate of 6.5 Hz

(exp (-5) /A) and that the increased whisker displacement (positive stimulus) has

an excitatory effect on the neural firing. Lastly, Figure 2.12 demonstrates that

LCONST+STIM+HIST yields a K-S plot that lies within the 95% confidence interval
and thus is an adequate description of the true underlying CIF according to the time

rescaling theorem.

Example 3 - Neural Responses in the presence of an unknown/implicit
stimulus

PSTH

Figure 2.13 compares estimation of PSTH via the standard approach (Gerstein and

Kiang, 1960, Palm et al., 1988) and using the GLM formulation of Czanner et al.

(2008). Note that the standard PSTH and the PSTH-GLM match exactly. Confi-

dence bands for the PSTH-GLM are indicated by the opaque black lines.

SSGLM-PSTH

Figure 2.14 summarizes the application of the standard PSTH and SSGLM frame-

works to the data in Figure 2.7. As shown in Figure 2.14 A and B, the SSGLM

estimate of the stimulus effect with 40ms bins is in close agreement with the true

underlying stimulus effect. The standard PSTH method (also using 40ms bins)

fails to capture the across-trial dynamics (because of its assumption that all of the

trials are identical and independent) but is able to capture the within-trial dynam-

ics grossly. Figure 2.14 C shows the spike rate function, (t2 - t 1)~1 Ak (ti, t2 ), for
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Figure 2.12: Example 2 Results. A) Cross-correlation of the constant baseline
model residual, MCONST (t), with the stimulus, s (t) . The peak at 0.119 seconds
suggests that the neural activity lags the stimulus by just over 100ms. B) Model
selection for number of history windows. The model in Equation 2.22 was fit for
J= 1, ..., 30. A minimum in the AIC, BIC, and KS-statistic is observed when J =9
(9 logarithmically spaced time windows over the interval [0, 12ms]), suggesting this
as the best choice for the length of history dependence. C) K-S Plot comparison

of LCONST, 2'CONST+STIM, and ;LCONST+STIM+HIST . Inclusion of the stimulus effect
yields an improvement in the K-S plot but the resulting model does not fall within
the 95% confidence bands. Addition of the history dependence produces a K-S plot
that does fall within the 95% confidence bands. D) GLM coefficients for all three
candidate models. Note that the history coefficients capture an initial refractory pe-
riod (within the first ims of firing), a region of increased firing probability shortly
thereafter (from 1ms-5ms) corresponding to the bursting seen in the absence of the
stimulus, and a subsequent period of decreased firing probability.
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Figure 2.13: Example 3 PSTH Results. A) (top) Raster of 20 cells obtained
from the conditional intensity function in Equation 2.25via the point process thin-
ning algorithm. (bottom) Comparison of PSTH (red) and PSTH-GLM (black) with
50ms seconds bins to the actual conditional intensity function (blue). Note that
the standard PSTH and the PSTH-GLM match exactly. Confidence bands for the
PSTH-GLM are shown by the opaque black lines. B) Neuron #6 raster (top) with
corresponding PSTH and PSTH-GLM (bottom). C) Neuron #1 raster (top) and
corresponding PSTH and PSTH-GLM (bottom).
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History GLM PSTH SSGLM Estimates
Coefficient Actual Estimates(meanse)

(mean±se)

y -4 -3.4047 i 0.2671 -3.4047±0.0024

y2 -1 -0.9044±0.0734 -0.9044±0.0085
72 -0.5 -0.3568 ± 0.0643 -0.3568 ± 0.0094

Table 2.1: History Dependence Parameter Estimates. Note that both the GLM
PSTH and SSGLM methods estimate the same parameters but SSGLM yields es-
timates with a smaller standard error. This is likely due to more stringent conver-
gence criteria for the SSGLM algorithm (i.e. given additional iterations the GLM
PSTH estimates would also yield estimates with smaller standard errors).

k = 1, . . .,50 and the learning trial estimate obtained by computation of the prob-
ability in Equation 2.14 (shown in 2.14 E for all trials). Figure 2.14 D shows the
within-trial stimulus effect for trial 1 and trial 9 (the learning trial) for comparison.

Example 4 - Neural Responses in the presence of a continuous
stimulus - Hippocampal place cells

As demonstrated by Barbieri et al. (2005b), the Zernike polynomial model gave a
more accurate and parsimonious description of the individual place fields accord-
ing to both Akaike and Bayesian Information Criterion (see Figure 2.15 D). The
Zernike place field estimates were concentrated in a smaller area and had a wider
range of asymmetric shapes (Figure 2.15 A versus Figure 2.15 B).

Example 5 - Decoding Continuous Stimuli based on Point Process
Models

Decoding a driving stimulus from Point Process Observations

Figure 2.16 shows the results of decoding the sinusoidal stimulus in Equation 2.34
using 20 cells. Note that even though the original neural raster in Figure 2.9 showed
very little correspondence to the driving stimulus, the aggregate information across
the population of cells was sufficient to yield an adequate estimate of the stimulus.
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Figure 2.14: Example 3 SSGLM Results. A) SSGLM Estimated versus actual
stimulus response. Both the PSTH and SSGLM estimates partitioned the time axis
using 40ms time bins. B) Comparison of PSTH, SSGLM, and actual stimulus
response. C) Plot of the spike rate function, (12 - ti)-I Ak (t1,t2), for k = 1, ...,50.
The learning trial, trial 9, is indicated by the vertical red line. D) Comparison of
the within-trial spike firing rate (stimulus effect) between the baseline (first) trial
and the learning trial. E) Spike rate function comparison matrix. The probability
in Equation 2.14 was computed for k = 1, ... ,49 and m > k. For each trial k on the
vertical axis, the * indicates which trials m > k (on the horizontal axis) have an
estimated spike rate function that is greater than the spike rate function at trial k
with probability greater than 95%. 46
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Figure 2.15: Example 4 Results - Hippocampal place cell receptive field esti-

mates. A) Gaussian Place fields. B) Zernike place fields. Note that the place fields

estimated with the Zernike polynomial basis are able to capture receptive field

asymmetries better than the Gaussian estimates. C) Comparison of Zernike and

Gaussian receptive field for cell #25. The Gaussian fit is in blue and the Zernike

polynomial fit is in green. D) Box plot of change in KS statistics, AIC and BIC

across all 49 cells computed as value of statistic in the Gaussian fit minus the value

in the Zernike polynomial fit. Note that while the median KS statistics using Gaus-

sian or Zernike basis are similar, the model corresponding to the Zernike receptive

fields yield an improvement in terms of the change in AIC and BIC - indicating

that the Zernike polynomial models are better fits to the data. Note that for some

cells (the outliers marked in red), the improvement is quite dramatic with the use

of the Zernike polynomials.
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Figure 2.16: Example 5 Results. A) Stimulus decoding using the point process
adaptive filter. The firing activity of the 20 simulated cells was used with the PPAF
in order to decode the stimulus in Equation 2.25. The estimated stimulus is shown
in black with the corresponding 95% confidence intervals illustrated by surround-
ing lines in black. The actual stimulus is shown in blue. B) Decoded movement
trajectory using the PPAF (green) and the PPAF with target information (blue).
For each trace, the true velocity information was used to simulate the firing of
20 distinct cells according to Equation 2.35 using the point process thinning al-
gorithm. Each cell had a randomly chosen preferred direction. This process was
repeated 20 times to show how the algorithms performed in the presence of dif-
ferent cell populations. (top) The PPAF+Goal estimated path in a more faithful
reconstruction of the true movement path and shows significantly less variability
in across the 20 simulations. Note, however, that comparison the actual movemqg
trajectories shows that the PPAF without goal information is more closely able to
track the actual movement dynamics (albeit with significant variability). As the
covariance of the final target increases (i.e. certainty in the final target decreases),
the PPAF+Goal estimated trajectories become more similar to the PPAF estimates
(data not shown).



Discussion

Decoding a movement trajectory from Point Process Observations

Figure 2.16 B shows the results of decoding a simulated reach using the point pro-
cess adaptive filter (green) and the point process adaptive filter with the addition
of target information (blue). Note that inclusion of target information causes de-
viation from the actual movement trajectories, but results in improved estimates
of the true movement path and ensures arrival at the final target. When the target
information is not present, the PPAF tracks the true trajectories more reliably (al-
beit with larger variability) but rarely reaches the true final target. As the degree of
certainty in the final target is decreased (i.e. the final target covariance increases),
the decoded trajectories become more similar to the standard PPAF without target
information.

Discussion

We have developed the neural Spike Train Analysis Toolbox (nSTAT) for Matlab@
to facilitate the use of the Point Process -Generalized Linear Model framework by
the neuroscience community. By providing a simple software interface to PP-GLM
specific techniques within the Matlab@ environment, users of a number of exist-
ing open source toolboxes (i.e. Chronux, STAToolkit, etc.) will be able to easily
integrate these techniques into their workflow. It is our hope that making nSTAT
available in an open-source manner will shorten the gap between innovation in the
development of new data analytic techniques and their practical application within
the neuroscience community. For the neurophysiologist, we hope the availability
of such a tool will allow them to quickly test the range of available methods with
their data and use the results to both inform the quality of their data and refine the
protocols of their experiments.

Via a series of examples we have demonstrated the use of the toolbox to solve
many common neuroscience problems including: 1) systematic building of models
of neural firing, 2) characterization of explicit experimental stimulus effects on
neural firing, 3) spike rate estimation using the PSTH and extensions of the PSTH
(SSGLM) that allow quantification of experience-dependent plasticity (across-trial
effects), 4) receptive field estimation, and 5) decoding stimuli such as movement
trajectories based on models of neural firing. All of the data, code, and figures used
here are included as part of the toolbox. We hope that users will be able to easily
modify these examples and use them as a starting point for analysis of their own
data.

While the current release of nSTAT contains many commonly used algorithms
for analysis of neural data within the PP-GLM framework, there are many avenues
for future improvement. In particular, optimization of current algorithm imple-
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Characterization Of Motor
Neuronal Responses During
Locomotion Under Elastic Load
and BMI Conditions

Abstract

While much is known about the anatomy and neural regions involved in the reg-
ulation of walking, the realtime adaptations required to handle the ever-changing
environment are not well understood. To elucidate the neural mechanisms of lo-
comotion, we studied how task relevant information (e.g. positions, velocities,
and forces) modulate single unit neural activity from hindlimb/trunk region of
the rat motor cortex during adaptations to robot-applied elastic loads and closed-
loop brain-machine-interface (BMI) control during treadmill locomotion. Using
the Point Process-Generalized Linear Model (PP-GLM) statistical framework we
systematically tested parametric and non-parametric point process models of in-
creased complexity for 573 individual neurons recorded over multiple days in six
animals. The developed statistical model captures within gait-cycle modulation,
load-specific modulation, and intrinsic neural dynamics. Our proposed model ac-
curately describes the firing statistics of 98.5% (563/573) of all the recorded units
and allows characterization of the neural receptive fields associated with gait phase
and loading force. Understanding how these receptive fields change during train-
ing and with experience will be central to developing rehabilitation strategies that
optimize motor adaptations and motor learning.

Introduction

Ambulation crucial activity of daily living (Quinn et al., 2011, Collin et al., 1988).
Unfortunately, many diseases and injuries can affect an individuals' ability to walk
independently. For example, in the US alone, there are approximately 800,000 new
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cases of stroke each year and over 30% of ischemic stroke survivors are unable

to walk at six months without assistance (Lloyd-Jones et al., 2009). According

to one study by the Christopher & Dana Reeve Foundation, it is estimated that

approximately 1.9% of the U.S. population, or some 5,596,000 people, currently

suffer from some form of paralysis - largely due to stroke (29%), spinal cord injury

(23%), and multiple sclerosis (17%). Limb loss, resulting from trauma or amputa-

tion, is another major contributor to loss of ambulation. In the US alone, over 1.7

million people are estimated to have lost a limb (Ziegler-Graham et al., 2008).

Brain machine interfaces (BMIs) hold promise for the restoration of gait. Over

the last 15 years there has been a surge in the number of successful applications

of BMIs for the control of reaching (Chapin et al., 1999, Velliste et al., 2008,
Black et al., 2003). Numerous investigators have recently begun to apply tech-

niques to the lower extremity (Presacco et al., 2011, Fitzsimmons et al., 2009).

Current approaches have suffer from major problems such as the constant need to

recalibrate(Carmena, 2012). Additionally, in order to make BMI systems widely

clinically viable, significant improvements in reliability (lifetime usability of the

interface) and performance (achieving control and dexterity comparable to natural

movements) need to be achieved (Orsborn et al., 2012). One main limitation of

current approaches is based on the limited knowledge of how information about a

task is represented by an ensembles of neurons. Researcher currently "bypass" this

problem by treating the relationship between neural firing and variables of interest

as a "black box" and using regression based methods to obtain linear predictors

that can be used to decode movement variables in real-time (Carmena et al., 2003,

Presacco et al., 2011, Fitzsimmons et al., 2009, Black et al., 2003). Developing

an understanding of information processing at the individual neuron and popula-

tion level (see Moran and Schwartz (1999), Georgopoulos et al. (1986)) is likely

to lead to insights about the control of locomotion in health and will allow for im-

proved information extraction from neural ensembles. Deriving models of neural

function that capture how task-relevant information is represented together with

an understanding of how these representations change with time, experience, and

pathology will help address the current limitations of BMI reliability, performance,
and calibration.

In an effort to elucidate the neural mechanisms involved during a closed loop

BMI task, we studied how task relevant information (e.g. positions, velocities,

and forces) modulate single unit neural activity from hindlimb/trunk region of the

rat motor cortex during adaptations to robot-applied elastic loads and closed-loop

brain-machine-interface (BMI) control during treadmill locomotion. Using the

point process - GLM framework we apply simple parametric models to the neural

activity in order to determine the range of neural behaviors present in a population

of cells being recorded. From the observed behaviors we posit a single paramet-
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ric model that is able to capture the activity of 558/573 cells. Observation of how
parameters in this model change over each experimental condition yields insight
into the types of changes that occur over the course of minutes and days. Impor-
tantly, the proposed model structure is able to capture neural firing dynamics even
in the presence of short and long term plasticity. The development of models that
capture relevant neural dynamics and information processing in the face of neural
plasticity will serve as a stepping stone towards developing BMIs that can track the
relevant changes in parameters and thus remain effective of the course of days and
hopefully even years.

Methods

Experiment Details

Animals and Surgical Procedures

The experimental setup used herein has been previously described in detail (Song
and Giszter, 2011). Briefly, seven adult Sprague Dawley rats, weighing 250-300g,
were used in these experiments. Care and treatment of the animals conformed
to protocols approved by the University Laboratory Animal Resources and Insti-
tutional Animal Care and Use Committee of the College of Medicine of Drexel
University.

Two implantations were performed in each rat consecutively in a single surgery.
A pelvic orthosis implantation was performed first, followed by a cortical recording
electrode implantation. After anesthesia induction, pelvic implants were placed
under the bone of the pelvis on each side separately. The sides of the implant
were pressed together as tightly as possible without bone trauma and fastened with
screws. Finally, epoxy cement (J-B Weld) was applied to the joint were the pelvic
implant parts were conjoined to fix the structure. This made it rigid and prevented
any displacement as the animal moved after screw release. Implants integrated
with the pelvic bone and provided a rigid frame for force application. This setup
ensured that the phantom robot (Phantom, SensAble Technologies) was able to
apply forces effectively and directly to the skeleton as seen in Figure 3.2.

After the pelvic implantation, the rats' heads were mounted in a stereotaxic
frame and a round hole (3mm in diameter) was drilled in the skull. A tetrode
array, which consisted of 6 tetrode wires positioned around a spike-shaped tung-
sten shaft, was implanted stereotaxically (and later verified histologically) in the
hindlimb/trunk area of the motor cortex (2.0mm lateral of the midline, 1.6mm cau-
dal to the bregma, and ~ 1.5mm in depth, to give recording sites at -1.1 mm depth).
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Neural Recordings and Spike Sorting

Neural data were recorded using a Cerebrus system (Cyberkinetics/Blackrock Mi-
crosystems) commencing 1 week after animals recovered from surgery. In each

recording session, rats were first lightly anesthetized with isoflurane gas, and a

unity gain preamplifier headstage (Neuralynx MS-27 micro) was connected with

the tetrode array via flexible wire cables. After animals fully recovered on the

treadmill surface, recordings began. Neural signals were bandpass filtered (300 Hz

to 7.5 kHz) and digitized at a sampling frequency of 30 kHz. Spikes were detected

on-line when above or under thresholding levels. The detected spikes could be

automatically classified on-line after after setting the templates of each waveform.

The on-line sorted spikes were used in the closed loop condition described below.

The detected spike trains, as well as the thresholded spike waveforms, were saved

for off-line analysis.
Multiple single unites were isolated off-line using a commercial off-line sorter

(Plexon Neurotechnology Research Systems) using the t-distribution expectation

maximization sorting from features of the tetrode waveforms (an implementation

of the approach of Shoham et al. (2003). The threshold inter-spike interval for a

single unit was set at > 1.6 ms. Only single units that were isolated by these criteria

are presented here. Up to 24 channels of neural activity at a time in a single array

could be recorded, and one or two individual cells from most wires of the tetrodes

could be recorded. A total of 573 well isolated cells from seven rats recorded

across 23 sessions from the Mi/SI trunk hindlimb area was used in our analysis.

As there is no assurance that the spike recorded on different days were the same,
we did not track cells across days. We simply isolated cells afresh each day. We

treated these isolations as different cells, although some of the them had the same

waveforms across days.

Robot Control and Virtual Forces

The detailed robotic system has been described previously (Giszter et al., 2005).

Briefly, a Phantom 1.0 model A or T robot interacts with the rat as it walks on

the treadmill. Mechanical interaction occurs though an implanted pelvic orthosis.

The robot actions at the pelvis in this study were determined by the combination of

two independent (stable) controllers, each of which emulates a passive viscoelastic

system at any instance in time.

Baseline

During experiments termed "Baseline", the rat is allows to walk freely on the tread-

mill with the robot passively attached to the pelvic implant. Movement kinematics
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Figure 3.2: Experimental Setup Summary. A) Rats were trained to walk on
treadmill. Pelvic kinematics and kinetics were recorded from the robot endpoint.
24 channels of neural spiking data were recorded during baseline, open loop
(loaded), and closed loop trials as described. B) Experimental Conditions. C)
Sample Neural Raster. D) Single unit activity representation in terms of step
number and gait phase.

at the pelvis are recorded by the position of the robot endpoint together with 24
channels of neural activity.

Virtual Elastic Load

In experiments termed here "Virtual Elastic Load" or simply "Elastic Load," the
robot tip position along the vertical z-axis was used to compute a downward elastic
load according to Equation 3.2

fw = -Kw (Z - zw ) (3.2)

where the virtual load stiffness, Kw, was set between 50-90 [N/m] and the load
equilibrium position, zw, was set 13 mm below the mean pelvic height observed
during the baseline period (see Figure 3.2 B for an illustration).

Closed-Loop

During "Closed-Loop" experiments, a virtual lift field is attached to pelvis with
an equilibrium point, zLF, located 50 mm above the mean pelvic height observed
during normal the baseline period, e.g.

fLF = -- KLF (Z - ZLF) (3.3)
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Unlike the load field, the lift field stiffness was allows to be modulated by the neural
activity being recorded. The actual stiffness of this lift field, KLF, was computed as

KLF = KLF ' fspikes (3.4)

where the nominal stiffness, KLF, was set between 200-450 [N/m] and fspikes is the
average firing rate computed across all recorded units in a moving 100 ms window
(e.g. the total number of spikes observed in the previous 100ms across all channels
normalized by the number of channels being recorded, C, and divided by 100 ms).
More specifically

1 C
fspikes (t) =0.1 *c (NC (t) - N'(t - .1)) (3.5)

C=1

where NC (t) is a counting process denoting the sum of all spike events up to time t
in the cthchannel. The total force applied to the pelvis at time t during Closed-Loop
experiments was

fT = AD(t) + fLF (t) (3.6)

Experimental Design

The rats were trained to walk on the treadmill. The robot position and force data
were recorded simultaneously at 1 kHz for off-line analysis, together with synchro-
nized recordings of neural activity (at 30 kHz). The speed of the treadmill, which
was adjusted depending on the normal preferred walking speed of individual rats
was set in the range of 0.1-0.14 m/s, within which all rats preferred speed lay. One
daily experimental session was divided into three trials: (1) Baseline Trial, in which
the rats walked on the treadmill with the robotic tip attached to the pelvic implant
but without any forces being applied; (2) Virtual Elastic Load trial, in which an
elastic load force, fLD, was applied according to Equation 3.2; (3) Closed-Loop
trial, in which a neural driven elastic lift force, fLF, was applied in combination
with the above elastic load force, fw, according to Equation 3.6. The speed of the
treadmill was held constant throughout. The experimental setup and protocol at
shown in Figure 3.2 A and B respectively. Each session consisted of three 2 min
trials of treadmill walking (~120 steps) and 5 min intervals of rest that occurred be-
tween each trial. In total, 23 sessions or data sets were obtain in seven normal rats
during the recording sessions. Figure 3.2 C shows one sample data set consisting
of 21 channels of neural activity recorded over the three trial types. Note that for
simplicity the 5 minute rest intervals are not included in the raster. To understand
the step to step changes in the neural firing, we transformed each neural spike train
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time series as shown in Figure 3.2 D. The step cycle was derived from the robot
position parameter py, which corresponds to pelvic lateral motion. This movement
is precisely synchronized with step phase during normal walking. To identify step
cycles from interactive robot motion, the parameter py was first bandpass filtered
(2nd order Butterworth, passband 0.3 -5Hz). One step cycle was then identified by
two consecutive peaks or valleys of the filtered py. In the work herein we chose the
identify step cycles by consecutive minima in py, thus our gait cycle start (0% or
0 degrees of gait phase) corresponds to toe off on the right side and 50% or 180%
of gait phase corresponds to toe off on the left. Song and Giszter (2011) showed
that this estimate of step phase matched well with foot marker motion and toe off
when checked with the video tracking system (95% step cycles from video match
with step cycles from robot with an accuracy of 0.01 step cycle).

Our rationale for this experimental design was that rats will adapt their locomo-
tion during the Elastic Load condition, thus expressing some differences in neural
activity compared to Baseline. In the Closed-Loop condition, the lift force was
provided in parallel with the elastic load. The rat must adapt to both in order to
continue locomotion. Moreover, we wished to examine, it the rats would be able
to modulate neural firing in order to compensate for the elastic load.

Point Process - Generalized Linear Model Framework

Unlike prior analysis of this data set in Song and Giszter (2011), we treat single unit
neural activity as a stochastic point process. Briefly, a point process is completely
characterized by its Conditional Intensity Function (CIF) (Daley and Vere-Jones,
1988) defined as

X t _ lim P(N(t + A) - N(t ) = 1 | H)(37
A-*O A

where H is all the history information from 0 up to time t and N (t) is a counting
process denoting the sum of all spike events up to time t. The conditional inten-
sity function can be considered a generalization of the "rate" for a homogeneous
Poisson process. For any finite A, the product A. (t|Ht) A is approximately equal to
the probability of a single spike in the interval (t, t + A] given the firing history up
to time t. We term this probability, pspike. Because in any time interval, a spike
can only be present or absent, 1 - A (t|H) A approximates the probability of not
observing a spike in (t,t + A] given the firing history up to time t. We term this
probability qspike =1 -- Pspike. The ratio pspike/qspike is typically referred to as the
''event odds" or simply the "odds" for a binomial stochastic process and captures
the intuitive notion of the relative probability of observing the presence of an event
compared to its absence.
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Modeling the distribution of the random variable A (t |H) A as a member of the

exponential family allows the use of the Generalized Linear Model (GLM) frame-

work (McCullagh and Nelder, 1989)to fit statistical models for the conditional in-

tensity function. Here in we model A (t|Ht) A using a Binomial GLM regression

model where we write the inverse of the logistic function, logit (A (t |H) A), as a

linear function of covariates, e.g.

ep (x[#)
logit (A (tN IH) A) = x -> A (tn IH.) A = (3.8)

1+ -exp (xf#) (38

where xn is the nth row of the design matrix X and P is the vector of model parame-

ters to be estimated. The spike indicator function, ANn, is taken as the observation,

termed yn. That is yn = ANn ~ A (t,, H) A = exp(x3 . The inverse of the logistic1±Texp (xn p)~
function can also be though of as the logarithm of the odds of observing a spike in

(t, t + A] given the firing history up to time t. That is,

logit (AA) = log A log Pspike (3.9)
1 - A A) qspike )

where pspike and qspike have been defined previously. Thus exp (xn) is a measure

of instantaneous odds of observing a spike given the covariates, x., and the param-

eters, P. Truccolo et al. (2005) provides an excellent summary of the Point Process

- Generalized Linear Model (PP-GLM) framework.

Goodness of Fit

AIC (Akaike, 1973), BIC (Schwarz, 1978), and time-rescaling theorem (Brown

et al., 2002) were used to assess how well point process models fit the data. In par-

ticular, we used the Kolmogorov-Smirnov statistic, defined as the largest deviation

between the empirical and actual CDFs of the rescaled spike times from the time

rescaling theorem to determine if a model adequately describes the data. Specif-

ically, we accept a model as "adequate" if its K-S statistics falls within the 95%

confidence bounds (Johnson and Kotz, 1970). Application of the time-rescaling

theorem to sampled data produces some artifacts within K-S plots since the actual

spike times could have occurred anywhere within the finite-sized time bins. These

artifacts are addressed using the discrete time rescaling theorem (Haslinger et al.,

2010).

Point Process Models for Single Unit Activity

In order to investigate the range of single unit activity within the 573 cells recorded,

we proposed parametric models of increased complexity and used the time-rescaling
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theorem and K-S statistic to determine if the proposed model provided an "ade-
quate" description of the observed firing activity in a statistical sense. Once an
adequate model was obtained for a single unit, it was excluded from further analy-
sis.

Model 1 - Homogenous Poisson Model

The simplest model for the activity of a given single unit is one where the firing rate
is constant and unrelated to the any of the experimental conditions or covariates.
This corresponds to modeling each spike train as the result of a Poisson process
with constant rate parameter, po, e.g.

logit (X (tnHt) A) =po (3.10)

where t, refers to un-normalized real-time or normalized time within a gait cycle.
All subsequent models use t, as normalized time within a gait cycle. Model 1 was
applied first to all of the 573 cells with respect to actual experimental time and
cells that were well described by this model were not included in the subsequent
analysis. This was done to avoid introduction of any artificial structure into the
normalized spike trains as purely a result of the normalization process.

Model 2 - Constant Baseline with History Dependence

Current spiking activity is also related to its past activity, reflecting biophysical
properties such as refractoriness and rebound excitation or inhibition (Hille, 2001,
Wilson, 1999, Keat et al., 2001). Thus, Model 1 from Equation 3.10 was aug-
mented to allow prior spiking activity to modulate the current probability of firing,
e.g.

Q
logit (A (tn|Ht.) A) = po + qAN (tn - tq1I, tn - tq) (3.11)

q=1

where t, refers to normalized time within a gait cycle, AN (t - tq_1, t - tq) is the to-
tal number of spikes that occurred in the time interval [t - tq_1,t - tq), and Q is the
number of history windows to be determined via model selection. The time win-
dows are defined such that to = 0, t3 2 = 1, and tq for 1 < j < 31 are logarithmically
spaced between 0 and 1. To determine the best value of Q, all cells that were not
well described by Model 1 were fit by Model 2 with the value of Q ranging from 1
to 32 and the AIC, BIC, and K-S statistics computed for every cell and for each fit.
Analysis of the median and mean of these statistics across all cells were compared
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for each value of Q. The value of Q that led to the minimum value across the infor-

mation criteria was selected as optimum, and termed Q. All subsequent models use

this value of Q for the total number of history window times. Note that Q window

times corresponds to Q - 1 history windows.

Model 3 - Condition Dependent Background Firing Rate with History

Having accounted for neurons whose dynamics were well described as unrelated

to the task (Model 1) or modulated by their previous firing history (Model 2), we

sought to identify any neurons whose activity was Poisson within any condition,

but whose rate varied across conditions, e.g.

logit (X (tn|H) A) = -COND + qANk (tn - tq_1, tn - tq) (3.12)
q=1

ABL tn E 0, TBL

PCOND = JLD tn E(TBL, TLD (3.13)
pCL in E(LD, 7CL

where the history dependence terms, yq, were required to be the same across all

three experimental conditions, and TBL, TLD, and TCL indicate the end of Baseline,

Elastic Load, and Closed-Loop conditions respectively.

Model 4 - Peri-Stimulus Time Histogram with History

Next we considered models that capture the dynamics of neurons that showed firing

rate modulation within a step but that showed no changes across conditions. In

order to avoid constraining the form of the within-step modulation, we used a peri-

stimulus time histogram (PSTH) method to estimate the within-step effect. PSTH

histograms are used to visualize the rate and timing of neuronal spike discharges in

relation to an external stimulus or event. To make a PSTH, a spike train recorded

from a single neuron is aligned with the onset, or a fixed phase point, of an identical

repeatedly presented stimulus. The aligned sequences are superimposed in time

and then combined to construct a histogram (Gerstein and Kiang, 1960, Palm et al.,

1988). In our case, the external stimulus is the beginning of a step.

According to Czanner et al. (2008), the PSTH is a special case of the condi-

tional intensity function defined by the following GLM

R Q
logit (A (k, tn|1) A) = O Brgr (nA) + 2 yqANk (tn - tq_ ,t- tq) (3.14)

r=1 q=1
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for k 1, ... ,K and n = 1, ...,N. Here k is the trial (step) number, n the temporal
index corresponding the time within a step tn, and

gr (nA) ifn=(r-)NR+1,...,rNR' (3.15)0 otherwise

are the unit pulse functions in the observation interval (0, T] (equivalently [1,NA]).
Note that the resolution of the PSTH estimate is governed by the number of time
bins R. Additionally, note that this conditional intensity function is the same for all
trials k = 1, .., K and thus satisfies the invariance across conditions that we sought.
Herein we always used R = 10.

Model 5 - State Space GLM Lastly, we wanted to identify neurons that showed
within-step and across-condition dynamics without constraining the form of the
dynamics. To achieve this, we applied the State Space GLM (SS-GLM) framework
of Czanner et al. (2008) which extends the standard PSTH to allow for across-step
or across-condition dependence. Briefly the SS-GLM framework proposes that the
neural conditional intensity function be modeled as

R Q
logit (A (k, nA| 6) A) = Ok,rgr (nA) + I yqANk (tn - tq_1, tn - tq) (3.16)

r=1 q=1

where k is the current step index and ANk (tA, tB) equals the total number of spikes
observed in the interval (tA,tB] of the kth trial. The stochastic trial-to-trial depen-
dence between the parameters Ok = [ Ok,1 ... Ok,r ... 6k,R ] is described by
the random walk model

O Ok -1+ Ek (3.17)

for k = 1, ..., K, where K is the total number of trials, ek is an R-dimensional Gaus-
sian random vector with mean 0 and unknown covariance matrix 1. The initial
vector 60 is also assumed to be unknown. Because the parameters Ok and y of the
GLM and the covariance parameter, 1, of the random walk model are unknown, an
iterative Expectation-Maximization algorithm (Dempster et al., 1977) is employed
to estimate them. Herein we always used R = 10.

Parametric Model

Application of Models 1-5, suggested that the range of behaviors observed in these
experiments were well captured by a model with the following properties: (1) a
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condition-dependent background firing rate, pCOND; (2) a within-step sinusoidal

variation in firing rate; (3) load-magnitude dependent modulation; and (4) prior

spiking activity modulation. The following parametric model captures aforemen-

tioned properties:

logit ( (k,tn|Ht)A) pCOON+alcDCOs (y (t)) + 2COND (o (tn))

0
+a3CONDfLD(tn) + y qANk(tn-tq_1,tn -tq)( 3 .18 )

q=1

where all parameters are held constant within an experimental condition but al-

lowed to vary between conditions so that the relative effects of the conditions can

be explored. Here <y ranges from 0 at the beginning of a step to 27r at the end

of the step and is denoted by the subscript y since each step is identified from the

robot tip position, py. The phase angle of maximal firing is determined by taking

the derivative of Equation 3.18 with respect to <y and equals

OymaxCOND = tan-1 a2COND (3.19)
'\a1COND /

We term this angle the "preferred gait phase" or "preferred direction" of a cell con-

sistent with the terminology applied other motor cortical cells that exhibit direction

selectivity (see Moran and Schwartz, 1999, Georgopoulos et al., 1986 for example).

To quantify changes across the entire population of neurons, we report the median

values of the preferred directions under each of the three experimental conditions

within a trial. The 95% confidence intervals for the medians are computed using

Monte Carlo methods.

Receptive Field Reconstruction From Conditional Intensity Function
Models

The parametric model proposed in Equation 3.18 can be used to reconstruct the

receptive fields of individual cells as a function of load magnitude, fD, and gait

phase, <y. To generate a receptive field for the cthcell, we solve Equation 3.18 for

Ac. Note that Ac is a a function of the current condition, COND, the current gait

phase, <py, the load magnitude, fLD, and the prior spiking activity, ANk, e.g.

XAc (k Itn|IH.) = f (COND, 7py (tn) , fLD (in) , ANk (tn)) (3.20)

Fixing t, the value of the current condition, COND, and setting ANk = 0, we can

treat Equation 3.20 as function of the load force magnitude, fLD, and the gait phase,

68



Methods

$y. By ranging the load magnitude from 0 to 1 and the gait phase from 0 to 27r we
obtain a surface that describes how the cth cell responses over a range of loads and
gait phases.

Comparing Condition Effects via Odds Ratios

As mentioned in Section Equation 3.9, the binomial GLM regression model yields
an estimate of the log odds as a linear function of the covariates. Given the para-
metric model in Equation 3.18, it is of interest to examine how load-dependent
modulation, a3COND, and background firing rates, pCOND, change over condition.
The odds ratio for the background firing rates with respect to the baseline (all other
terms held fixed) is

OR PCOND,P PCO IPBP exp ( pCOND - IBL) -> log (ORpCOND,pBL) = COND - yBL
OCOND/qBL

(3.21)
and between the Load and Closed-Loop condition

log (ORpcL,pL) = pCL - yLD (3.22)

Similarly, the odds ratio for load-dependent modulation is

log (ORa3COND, a3BL) = log (ORa3COND, 0) = (c. - 0)-fLD (3.23)

In order to make conclusions independent of the load magnitude, we consider the
change in the log odds ratio for a change in 1 unit of the load force (in Newtons).
Thus, we report

Alog (ORa 3 COND a3BL 3COND (3.24)

and the corresponding change in the log odds ratio from the Load to the Closed-
Loop condition

Alog (ORa3CLas = a3CL - 3LD (3.25)

To quantify changes across the entire population of neurons, we report the median
values of the aforementioned log odds ratios and change in log odds ratios per
Newton. The 95% confidence intervals for the medians are computed using Monte
Carlo methods.
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Results

Models of Single Unit Firing Activity

Figure 3.3 A shows representative rasters for neurons that were well described by

Models 1-5. Neurons well fit by Model 1 is characterized by a constant spike

rate that is independent of the experimental condition and of prior spiking activity.

Neurons characterized by Model 2 show a decreased propensity to fire immediately

after a spike. Neurons well explained by Model 3 showed a broad range of behavior

ranging from decreased firing in the Load and Closed-Loop conditions with respect

to baseline or as seen in Figure 3.3 a marked increase in the firing rate during the

Closed-Loop condition. Neurons that were well described by Model 4 showed

sinusoidal variation in the the firing rate within the gait cycle. This type of behav-

ior had been previously reported by numerous investigators (Armstrong and Drew,

1984b, Beloozerova and Sirota, 1993a, Song and Giszter, 2011). Lastly, Model 5

identified neurons that showed load-magnitude dependent modulation. For exam-

ple, the sample neuron in Figure 3.3 was strongly inhibited by the increasing load

magnitudes across both the Elastic load and Closed-Loop conditions.

History Dependence

Figure 3.3 B summarizes the changes in AIC, BIC, and K-S statistics (relative to

the no-history model in Equation 3.10) as the number of history window times, Q,
was increased from 1 to 32 (corresponding 1 to 31 history windows) for N=333

cells. Both AIC and K-S statistics show a minimum at 31 history windows or

Q = 32. However, the maximum decrease in BIC was observed at Q = 23, which

corresponds to 16.1% of the gait cycle. We select Q = 23 for all subsequent anal-

ysis.
Figure 3.4 shows the median conditional odds of spiking, exp (yq), for q =

1.. .23 across all cells. The gray area encompasses the empirical 95% confidence

interval for the conditional odds across all cells. Thus approximately 95% of the

cell responses fell within the gray area. The short term history effect reveals that

the median refractory period (defined here as the time to return to and odds ratio

of 1) of the 333 cells fit by Model 2 was approximately 0.85% of the gait cycle

(-5.6ms for a typical 700ms gait cycle).

Model Selection of History Dependence

Having fit the parametric model from Equation 3.18 to all 573 cells, we asked

whether the number of history windows selected previously remained optimal for

this model. The intuition being that in the absence of relevant covariates, maybe the
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Figure 3.3: A. Range of Neural Responses. Representative neurons identified
for each of the five proposed models in Section . B. Model Selection via AIC,
BIC, and Kolmogorov-Smirnov Statistics. Both AIC and K-S statistics show a
minimum at 31 history windows or Q = 32 (red dot). However, the maximum
decrease in BIC was observed at Q = 23, which corresponds to 16.1% of the gait
cycle.

Model Type Number of Cells Fit Percent of Total (%)
Model 1 240 42.0
Model 2 298 52.0
Model 3 6 1.1
Model 4 8 1.4
Model 5 6 1.1

All Models 559 97.6
Equation 3.18 558 97.4

Table 3.2: Parametric Model Fit Results. Number of cells (out of a total of 573)
that were well described by each of the models presented in Section . The last line
shows how the parametric model from Equation 3.18 is able to capture the same
range of dynamics as Models 1-5.
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Long Term History Effects Short Term History Effects
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Figure 3A: History Effect Summary. Visual summary of the median conditional
odds of spiking given spiking history. This plot shows how prior spiking activity
modulates the probability of firing at the current gait cycle phase.

history terms had been selected to be long enough to capture dynamic effects that

were in fact due to the extrinsic covariates absent form the model. Interestingly,

the Q = 23 was once again determined to optimal in terms of yielding the largest

decrease in the BIC (data not shown).

Changes in Background Firing Rates

Figure 3.5 (top) summarizes the range of background firing rates (QcOND 1+ &P(oN)
A 1+exp(PCOND)

under each of the three experimental conditions. Loading led to an increase in

background firing rates across cells from 3.24 spikes per step (95% CI [2.94,3.771)

to 4.46 spikes/step (95% CI [4.05,5]). During the Closed-Loop conditions, cells re-

turned towards their baseline firing rate 2.81 spikes per step (95% CI [2.27, 3.19]).

Note that the median firing rate during Closed-Loop firing is not statistically differ-

ent (p>0.05) than the median background firing rate during the Baseline Condition.

Changes in Preferred Gait Phase

Figure 3.5 (top) shows a polar histogram of the preferred gait phase as determined

from Equation 3.19 across the Baseline, Elastic Load, and Closed-Loop conditions.
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The median preferred phase is indicated by the solid black arrow and the 95% con-
fidence intervals for the median (computed via Monte Carlo) are indicated by the
red bands around the median. During the Baseline condition, the median preferred
direction was -33 degrees (95% CI [-39.8 -27.1]) and shifted to -8.38 degrees (95%
CI [-15.4, -2.4]) during the Elastic Load condition. During the Closed-Loop con-
dition the median preferred direction was 16.5 degrees (95% CI [9.13, 25.7]). In
summary, (1) during Baseline ambulation cells showed maximal to firing just prior
the toe off on the right side (0 degrees); (2) exposure to the Virtual Elastic Load
condition caused a significant shift in the preferred gait phase towards toe-off on
the right; and (3) during Closed-Loop ambulation cells showed a preferred gait
phase just after toe-off on the right.

Changes in Load Dependent Firing Rate

Elastic Load versus Baseline

Elastic loading led to increased odds ratio of background firing versus baseline (see
Equation 3.21) - median log odds ratio 0.25 (95% CI [.19, .30]). This corresponds
to an odds ratio of e0 .25  1.284 or an increase of 28.4%. However, cells became
inhibited by a unit increase in load magnitude - median change in log odds ratio per
Newton of -0.25 (95% CI [-0.40, -0.08]) from Equation 3.24. This corresponds to
change in odds ratio of .7788 per Newton or decrease of 22.1% from the Baseline
condition.

When load-dependent changes in firing odds ratio from Equation 3.24 were
compared to the log odds ratio of background firing Equation 3.21, a linear trend
was observed (R2 = 67.2%). The linear slope regression coefficient was -1.92 (95%
CI [-2.02 -1.801) indicating that a one unit increase in the log odds of background
firing was accompanied by a 1.9 unit decrease in the load-dependent firing odds. A
decrease of 1.9 units in log odds ratio per Newton corresponds to a 85% decrease

in Alog (ORa 3LDa 3BL) (e19 .149). Conversely a decrease in log (OR9LD,YBL) is

accompanied by a 1.9 unit increase in Alog (ORa3LDa3BL) , which corresponds to a

570% increase from Baseline. In summary during the Elastic Load condition, (1)
the background firing rates of cells increased from baseline; (2) cells became more
negatively modulated by the load force magnitude; and (3) increases in background
firing rate were accompanied by an decrease in load modulation and vice-versa.
Figure 3.6 A (data in blue) summarizes the changes observed between the Load
condition and Baseline.
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Figure 3.5: (top) Background Firing rate distributions across conditions. The
parameter, pCOND, was used to compute the background firing rate for all 573 cell
across conditions. Loading led to a significant increase in the background firing
rate with respect to baseline (p<0.0 5 ). During the Closed-Loop condition, back-
ground firing rates returned towards the median levels observed during Baseline.
(bottom) Distribution of preferred gait phases across conditions. Polar his-
togram of the preferred gait phase as determined from Equation 3.19 across the
Baseline, Elastic Load, and Closed-Loop conditions. The median preferred phase
is indicated by the solid black arrow and the 95% confidence intervals for the me-
dian (computed via Monte Carlo) are indicated by the red bands around the median.
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Figure 3.6: A) Changes Load-dependent modulation vs. changes in back-
ground firing rates

Closed-Loop versus Baseline

The Closed-Loop condition led to a decreased odds ratio of background firing (see
Equation 3.21) - median log odds ratio -0.1 (95% CI [-.18, -0.02]). This corre-

sponds to an odds ratio of .905 or a relative decrease in odds of 9.5% from Baseline.
Interestingly, cells became strongly modulated by load magnitude - median change
in log odds ratio per Newton of 0.35 (95% CI [0.18, 0.60]). This corresponds to a
change in odds ratio of 1.42 or a an increase of 42% from Baseline.

When load-dependent changes in the firing odds ratio were compared to back-
ground firing rate changes, a linear trend was observed (R2 = 66.5%). The linear
regression coefficient was -2.0 (95% CI [-2.09 -1.95]) indicating that a one unit in-
crease in the log odds of background firing was accompanied by a 2 unit decrease in
the load-dependent firing odds. A decrease of 2 units in log odds ratio corresponds
to an 86% decrease in the odds with respect to baseline (e-2.0 ~ 0.135). Con-
versely, a unit decrease in log (ORp,,yeL) was accompanied by a 2 unit increase in-

crease in Alog (OR 03 a3BL) or approximately an increase on 640% increase from

Baseline. In summary during the Closed-Loop condition, (1) the background firing
rates of cells returned near baseline levels; (2) cells became more strongly mod-
ulated by the load force magnitude; and (3) decreases in the background firing
rate were accompanied by an increase in load-dependent modulation and vice-
versa. Figure 3.6 A (data in green) summarizes the changes observed between the
Closed-Loop condition and Baseline.
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Closed-Loop versus Elastic Load

Transition from the Elastic Load condition to the Closed-Loop condition led to a

decreased odds ratio of background firing (see Equation 3.22) - median log odds

ratio of -0.20 (95% CI [-0.31, -0.15]). This decrease corresponds to a relative

decrease in odds of 18.1% (e-o.2 ~ .819). Additionally, there was an increase

in Alog (ORasCLaLD ) from Equation 3.25 - median change in log odds ratio per

Newton of 0.56 (95% CI [0.47,0,78]). When load-dependent changes in the firing

odds ratio were compared to background firing rate changes between the Closed-

Loop and Load conditions, a linear trend also observed (R2 = 64.5%). The linear

regression slope coefficient was -2.10 (95% CI [-2.16, -2.051) and indicate that cells

that increased their background firing rate from the load condition to the closed

loop condition did so at the expense of decreased sensitivity to load. In particular,

given the negative median shift in the log odds of background firing from Load to

Closed-Loop conditions, most cells became more positively modulated by changes

in the load force.
In summary, transition from Elastic Load to the Closed-Loop condition led

to: (1) decreased background firing rate relative to the Load condition background

firing rate; (2) increased load-dependent modulation (cells became more strongly

modulated by the magnitude of the load), and (3) decreases in the background

firing rate were accompanied by an increase in load-dependent modulation and

vice-versa. Figure 3.6 B (data in blue) summarizes the changes observed between

the Closed-Loop and Elastic Load condition.

Neural Receptive Fields

Receptive fields for individual cells were constructed as described in Section

Figure 3.7 A shows the load and gait phase receptive fields of 45 simultaneously

recorded neurons from animal 4 on day 1 (only Closed-Loop condition is shown

for brevity). Figure 3.7 B shows the receptive fields reconstructed from the same

animal on day 4. Because neurons were isolated afresh on each day, there is no

guarantee of neuron correspondence across days. However, the consistency of re-

ceptive fields across days suggests that similar units were indeed isolated across the

four days. If neuron are tracked over multiple days, this methodology will allow

exploration of receptive field changes as function of experience and experimental

condition. As an example, if neuron 2 is treated as the same in both Figure 3.7

A and B, one could say that at any given gait phase, this neuron has (1) become

more highly tuned to the load magnitude (note the different scale ranges for the

color codes); (2) the preferred gait phase has been maintained across days; and

(3) width around the preferred gait phase has become wider with time (indicating
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Figure 3.7: Neural Receptive fields obtained from parametric conditional in-
tensity function models. The gait phase, $y was swept from 0 -+ 27r and the load
force, fo, from 0 -+ 1 Newton. Gait phases of 0, 7r, and 27r correspond to 0, 50%,
and 100% of the gait cycle respectively. phase of A) Receptive fields of 45 neurons
from Animal 4 on day 1. B) Receptive fields of 45 neurons from Animal 4 on day
4.

"wider" tuning characteristics"). Detailed analysis of the changes in the receptive
field structure of single neurons between conditions and across days is not included
herein due to the study limitations previously mentioned.

Discussion

Using the Point Process-Generalized Linear Model (PP-GLM) statistical frame-
work we systematically tested five simple parametric models that allowed us to
identify the range of neural dynamics present across a large collection of neurons.
Taken together these models were able to explain the statistical properties of 559
out of 573 neurons (97.6%). The systematic application of these models required
identification of the appropriate length of self-history that most consistent with the
available data. Using well-established information criteria (AIC and BIC) together
with the time-rescaling theorem for point process, we determined that firing activ-
ity up to 16% of the gait cycle in the past was an important modulator of the current
spiking probability and yielded the most succinct model all neurons not well fit by
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homogeneous Poisson models. Characterization of the neural dynamics observed

across the population also allowed us to propose a single parametric model (con-

sisting of a background firing rate, gait phase modulation, load force modulation,

and self-history) that was able to adequately describe the behavior of 97.4% of

all cells (558/573). Re-assessment of the appropriate amount of self-history using

this model once again revealed that 16% of the gait cycle was the best fit for this

data. The proposed parametric model allowed us to characterize the effects of Elas-

tic Loading and Closed-Loop ambulation on background firing rate, preferred gait

phase of firing, and load-dependent modulation. Lastly, once the proposed para-

metric model was applied to individual cells, we were able to explore the neural

receptive fields associated with this ambulatory task.

Implications of Brain-Machine Interfaces

Traditional approaches used in Brain-Machine Interfaces (BMIs) for decoding neu-

ral information from populations of neurons use linear or non-linear regression

models to characterize the relationship between variables of interest and the avail-

able neural activity. Unfortunately, in practice, these decoders need to be recali-

brated with every session in order to maintain decoding accuracy(Carmena, 2012).

Constant recalibration is a major issue that needs to be addressed before BMIs can

become widely used by a range of individuals and patients.

Given our findings here such results are to be expected. We observed changes

in the neural dynamics that occurred within the duration of single experimental

conditions that approximately lasted for 90 seconds or several hundred steps. Our

proposed parametric model allowed us to characterize the changes that occurred

over three distinct experimental conditions with a single model structure. This

result suggests that while there is significant plasticity within a population of neu-

rons, the types of changes that will be observed are in fact constrained to a small

set of degrees of freedom. Utilizing the proposed parametric model together with

point process specific decoding algorithm such as the Point Process Adaptive Filter

(Eden et al., 2004a) or the Hybrid Point Process Filter (Srinivasan et al., 2007) may

allow for continuous decoding of gait phase and load forces even in the presence

of ongoing adaptations.

Characterization of short and long term plasticity via receptive fields

The receptive fields of neurons are dynamic; that is their responses to relevant stim-

uli change with experience. Experience dependent-change or plasticity has been

documented in a number of brain regions Donoghue (1995), Weinberger (1993),
Jog et al. (1999), Pettet and Gilbert (1992), Mehta et al. (1997). We have shown
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that our proposed point process model captures the receptive fields of individual
cells during different conditions and over the course of days. Understanding how
the receptive fields associated with locomotion change during training and with
experience will be central to understanding the physiology of cortical locomotion
control and the changes observed with pathology.
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Assessment of Lower Extremity
Motor Adaptation via an
Extension of the Force Field
Adaptation Paradigm

Abstract

Lower extremity rehabilitation has seen recent increased interest. New tools are
available to improve gait retraining in both adults and children. However, it re-
mains difficult to determine optimal ways to plan interventions due to difficulties
in continuously monitoring outcomes in patients undergoing rehabilitation. In this
paper, we introduce an extension of the Force Field Adaptation Paradigm, used
to quantitatively assess upper extremity motor adaptation, to the lower extremity.
The algorithm is implemented on the Lokomat lower extremity gait orthosis and
is currently being utilized to assess short-term motor adaptation in a group of 40
healthy adult subjects (ClinicalTrials.gov NCT01361867). We described some of
our initial findings from this clinical trial. Establishing an understanding of how
healthy adults' motor systems adapt to external perturbations will be important to
understanding how the adaptive mechanisms involved in gait integrate information
and how this process is altered by disease.

Introduction

The field of lower extremity rehabilitation has recently witnessed a surge in inter-
est. Devices such as the PAM/POGO (Reinkensmeyer et al., 2006), the LOPES
(Veneman et al., 2007) and the LOKOMAT (Colombo et al., 2000) have played a
key role in this trend. Robots allow highly repeatable interventions and serve as
instruments to quantify the rehabilitation progress. Despite the current high cost of
many of these devices, the introduction of FDA-registered robotic gait retraining
devices in the clinic is an important step toward assessing the efficacy of these tools
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via randomized multi-centered clinical trials.
Initial studies of robotic technologies for lower extremity rehabilitation interven-

tions show high variability in individual responses (Hidler et al., 2009, Hornby

et al., 2008, Husemann et al., 2007, Mayr et al., 2007). Many aspects of robot-

assisted gait training could contribute to the differences seen in motor gains across

subjects. The level of patient engagement during the rehabilitation session is a fac-

tor associated with the magnitude of the observed motor gains following rehabilita-

tion (Koenig et al., 2011). Several researchers have hypothesized that the patient's

baseline condition (i.e. pre-rehabilitation functional state and impairment level)

correlates with the magnitude of observed motor gains. Additionally, mechanical

constraints imposed by the robotic system itself (e.g. limitations in the degrees-

of-freedom imposed at the pelvis) during functional rehabilitative tasks may play

an important a role in the observed variability in rehabilitation outcomes across

patients. Since motor adaptation refers to learning through the alteration of motor

commands in response to changes in the environment, by quantifying the adaptive

process during rehabilitation one can gain insight into the factors that govern this

variability. One would anticipate that adaptations observed during performance of

the training session in response to forces generated by the robotic system would be

predictive of rehabilitation outcomes.
The goal of the work herein presented is to develop a platform to quantify the

motor adaptations that occur during gait retraining. Specifically, we developed a

methodology to characterize the rates of lower extremity motor adaptation in a

group of healthy adults. The proposed methodology is an extension of a paradigm

originally used to test motor adaptation in the upper extremities by Shadmehr and

Mussa-Ivaldi (1994). The basis for this paradigm is the introduction of velocity-

dependent force perturbations perpendicular to the direction of movement that in-

duce trajectory errors to which the subjects must then adapt. Measurement of a

subject's adaptive compensatory forces and restoration of movement kinematics

during and after the removal of these perturbations can be used to determine the

rates of motor adaptation. The results presented here are preliminary results of an

ongoing clinical trial (ClinicalTrials.gov NCT01361867) to assess the rates of mo-

tor adaptation in healthy adults. In future studies, we plan to establish a method-

ology for comparing motor adaptations between healthy individuals and patients

based on the work herein presented. The methodology will also provide a potential

tool for assessing the efficacy of different rehabilitation methodologies, in terms of

the rates of adaption and the retention of motor skills. An abbreviated version of

this chapter has been previously published (Cajigas Gonzdlez et al., 2010b).
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Methods

The Force Field Adaptation Paradigm

Shadmehr and Mussa-Ivaldi (1994) studied how the central nervous system adapts
to changing environment dynamics as the hand interacts with a novel mechanical
environment, i.e. an applied force field, using the force field adaptation paradigm
(FFAP). In their experimental methodology, a practice period allowed subjects to
practice reaching to a target while holding the end-effector of a robotic arm in a
force free condition (termed Baseline/Null-Field Movement). After this practice
period, a perturbing velocity-dependent force was applied perpendicular to the di-
rection of motion. That is,

F(t)= Fx(t) 0 -B' vx(t) (4.2)
Fy (t) 0 0 vy t

where F (t) is the vector of end-effector forces, Fx and F are the x and y compo-
nents of the force, B is the viscous damping coefficient, and v, and vy are the x and
y components of the end-effector velocity. During straight line movements, vx = 0
and vy is approximately bell-shaped. Thus, according to Equation 4.2, bell-shaped
force proportional to vy is applied in the negative x-direction. During force field
movements, subjects were are instructed to continue performing straight line move-
ments at their original movement velocity. Over time, subjects adapted to the force
field and re-achieved the baseline trajectory by generating compensatory forces.
Upon removal of the force field and return to the baseline condition, the compen-
satory forces that subjects had learned to apply drove their arms along trajectories
that mirrored the path their limbs would have followed had they not compensated
for the applied force field. This mirroring, or after-effect, suggests the develop-
ment of an internal model during the process of adaptation. The time course of the
after-effect can be quantified by the perpendicular displacement from the baseline
path at the point of maximum velocity/force. Let i and j be unit vectors in the x
and y directions respectively, then the maximum perpendicular deviation from the
baseline path is

d1 (t) = l',p(t)-P0 (t)) =x(t)-x0 (4.3)

where (xi , X2) = xix2 is the standard Cartesian inner product, xdenotes the trans-
pose of the vector xi, p,, (t) is the position vector of the end-effector at time t during
the nth trial, and p0 is the position vector at time t during the mean of the baseline
trials. Later experiments by Scheidt et al. (2000b) introduced error-clamp (EC)
movements (termed there as force-channel movements) during which the subject's
arm is limited to move along the original straight line trajectory. The result of
error-clamp trials is a minimization of the trajectory error between the original and
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current movement paths. Error-clamp movements, interspersed during the force

field condition, offer a window into the time course of the adaptive process by

measuring the subject's lateral compensatory forces during imposed straight reach-

ing movements. These measured forces can be compared against the applied force

field, to determine how well the subject has adapted to the applied force field dur-

ing the learning block condition. The coefficient of adaptation, a measure of the

subject's current level of adaptation, is defined as

Fn (t) ideal ()(4.4)
Fxt = cadapt Fda

where Fn (t) is the force measured during the nth error clamp trial, Fdeal (t) is

the ideal compensatory lateral force computed from Equation 4.2 using the average

velocity in the y-direction during baseline trials, and cadapt, is the coefficient of

adaptation. Figure 4.2 (top) summarizes the four conditions for the upper extremity

FFAP.

Lower Extremity Force Field Adaptation Paradigm

Extension of the FFAP is a natural approach for testing motor adaptation in the

lower limb. Yet the implementation of this paradigm carries a number of intrinsic

difficulties for a lower limb system. For example, how does the cyclical nature of

the gait cycle correspond to a point-to-point reaching movement or what constitutes

a perpendicular perturbation? Our extension of the FFAP to the lower extremity

(LE-FFAP) relies on the following observations:

1. The cyclical gait pattern can be considered a point-to-point movement where

the start and end points coincide. With this observation, in any coordinate

system (joint, end-effector/ankle, Cartesian coordinates, etc.), the standard

gait pattern is the curvilinear equivalent to the upper extremity straight line

movements.

2. In the lower extremity, the subject's baseline gait pattern defines which move-

ments are parallel to the baseline path. At each point along the gait pattern, a

perpendicular direction to the path can be determined and perturbations can

be applied in this direction. We define

uil (k) = [ul, (k), uil, (k) ] (4.5)

and
uiL (k) = [uios, (k), u-Lok (k) ] T(4.6)
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MovementTypes
Baseline I ~ Force Field After-Effect Error-Clamp

Figure 4.2: Comparison between the lower and upper extremity FFAP. (left-
most) Baseline Movements: In the upper extremity FFAP, subjects are asked to
make rapid point-to-point movements to a target. In the lower extremity, sub-
jects are asked to walk normally at a specified treadmill speed. The gait cycle
can be considered a point-to-point movement where the beginning and end points
coincide. (left of center) Force Field: In the upper extremity FFAP, a velocity
dependent force field is applied perpendicular to the direction of movement. In
the lower extremity FFAP, unit vectors along the baseline path can be used to de-
fine instantaneous coordinate systems oriented parallel and perpendicular to the
path. Velocity-dependent force/torque perturbations are then applied along the in-
stantaneous perpendicular direction. (right of center) After-Effect: In the upper
and lower extremity FFAP removal of the force field results in a movement that is
the mirror image of the path their limbs would have followed had they not com-
pensated for the applied force field. (right) Error Clamp Movements: Upper
Extremity FFAP/Lower Extremity FFAP - measurement of the interaction forces
while the subject is forced to move along their original baseline path allows the
adaptive forces to be assessed over time. These compensatory forces/torques can
be compared to the ideal compensatory force (defined by the baseline velocity
of the subject during baseline movements). Error clamps can be randomly inter-
spersed within the baseline, force field, and unlearning phases at an occurrence of
20% in order to measure forces prior, during, and after adaptation.
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as the parallel and perpendicular unit vectors, respectively, at the kth point

along the gait cycle. Then

T - uiloh (k) uill, (k) (4.7)

is the transformation matrix from hip and knee coordinates to path coordi-

nates at the kthpoint along the gait cycle. For example, Tk can be used to

project the instantaneous velocity vector in joint coordinates at kthpoint of

the current gait cycle into the corresponding parallel and perpendicular com-

ponents with respect to the baseline path. A velocity dependent perturbation

torque can then be generated as,

(k= Thip (k) _ T 0 0 ] 4[4(k)(48(k) [knee(k) I TkT[B 0 4k(k) (4.8)

T (k) TBT4 (k) (4.9)

where Thip and Tknee are the hip and knee components of the joint torque

vector T(k), B is the viscous damping coefficient, and 4h and 4k are the hip

and knee components of the joint velocity vector, 4(k).

3. Compensation to the applied perturbations can be assessed by forcing the

subject to walk along their baseline gait trajectory and measuring the gener-

alized interaction forces perpendicular to the baseline path. This is accom-

plished through implementation of error-clamp trials. During error-clamp

trials, the joint torques r(k) required to maintain the subject moving along

their baseline path is equal and opposite to the torques applied by the sub-

ject. Because the perturbing force field is oriented perpendicular to the

baseline path, the perpendicular component of the interaction torque during

the nth trial, r"n , represents the current adaptive compensatory force. This

component,T"n, is obtained by projecting the joint torques onto the instanta-

neous perpendicular direction along the baseline path, i.e.

TI (k) = (ui , -r(k)) (4.10)

The adaptation coefficient is defined analogously to Equation 4.4, e.g.

t'] (k) = Cadapt T_Leal 4.11)

where Tideal(k) = B- vfL(k) is determined from the viscous coefficient B and

the parallel velocity component during mean baseline locomotion. The time

course of the after-effect can be quantified by the perpendicular displacement
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from the baseline path at the point of maximum velocity. We define the
perpendicular deviations from the baseline path as

d"L (k) (k) , q,, (k) - q0 (k)) (4.12)

where qn (k) = [ Ohip (k) 6knee (k) ] T is the joint position vector at the
kth gait cycle point during the nth trial, and q0 (k) is the position vector at
the kth during the mean baseline trials. Figure 4.2 shows a comparison be-
tween lower and upper extremity FFAP. We derive two summary measures
from Equation 4.12. First we define the point within the gait cycle with the
maximal deviation across trials as

kmax = arg max Id"I (k)| (4.13)
n,k

and define the perpendicular error at the point of maximal deviation as

d"' (n) = dnI (kmax) (4.14)

Equation 4.14 turns out to be informative for looking at individual subject
responses. However, kmax tends to change across subjects. Thus when com-
paring across subjects we sum d'L (k) between 40% and 65% of the gait cycle
(0% corresponds to mid-stance on the perturbed leg), which roughly corre-
sponds to swing phase on the perturbed leg, e.g.

KP2 %

di""'(n =k ("L4-15)
k=Kpl %

where Kp,% in the sample within a step corresponding to pith percentile of
the gait cycle. If the gait cycle is normalized to 500 points, as in our current
implementation, K40% = 200 and K65% = 325. d"' (n) is a more robust
measure to use when comparing effects across subjects.

Assistance along the movement path

In the long term, we hope to use the LE-FFAP to test motor adaptation in patients
with a range of locomotor deficits such as stroke, spinal cord injury, and cerebral
palsy. In this case, it is possible that subjects may require assistance along the
direction of movement in order to complete a baseline gait cycle. Given a de-
sired torque along the movement direction, r1 (k), the path-assistive hip and knee
torques, rhip (k) and 'rknee (k) respectively can be computed using as
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Joint Path
Path'

+

joint

Tpa

Figure 4.3: Path Assistance Block Diagram. Assistance along the movement

path is accomplished via the use of a proportional-derivative-constant architecture.

4, = Vr is the reference or desired joint velocity vector and 4a = Va the current

instantaneous joint velocity vector.

Tra (k) = hip (k) r T T1 (k) ~(4.16)
TIknee (k) k 0

= up (k) Til (k) (4.17)

where Trpa (k) is the vector of path-assistive torques in joint coordinates at the

kthpoint along the gait cycle and T is as defined in Equation 4.7. Note that because

Tk is orthonormal, then the transformation matrix from path to joint coordinates,

T-' , equals the transpose of Tk. We allow for a broad range of path assistive

torques using a proportion-derivative-constant architecture, e.g.

TI I (k) = Cpa (k) + Ppa (k) (VIIa, (k) - vle, (k)) + Dpa (k) ( iia, (k) -91, (k)

(4.18)
where Cpa (k), Ppa (k), and Dpa (k) are the constant, proportional, and derivative

gains at the kth point along the gait cycle; v1,2,, and vt,f are the current and reference

movement velocities along the path respectively and are obtained via projection of

the current and reference joint velocities, 4a and 4r respectively, onto the current

parallel unit vector. Figure 4.3 graphically summarizes Equations 4.17 and 4.18.
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Outer Position Error Loop Inner Force Loop s ubject

toFrcD Lokomat
[ControllerjCneso

Figure 4.4: Standard Lokomat Impedance Control System. The clinical version
of the Lokomat uses an impedance control architecture. A PD controller generates
corrective torques that aim to minimize the error between the desired joint position,

q, and the current joint position, qa- An inner force loop is used to minimized
the apparent device inertia - thereby improvement the systems back-drivability.
Adapted fromRiener et al. (2005).

Implementation

The FFAP of Shadmehr and Mussa-Ivaldi (1994) was extended to the lower ex-
tremity and implemented on the Lokomat lower extremity gait orthosis (Hocoma
AG, Switzerland) (Colombo et al., 2000, 2001, Riener et al., 2005). The standard
Lokomat impedance control system is shown in Figure 4.4. For clinical applica-

tions, a reference joint trajectory, q, (t), is pre-specified and compared to the actual
joint trajectory, qa (t), obtained from the exoskeleton potentiometers to generate a
joint position error signal. This joint position error is processed by a proportional-
derivative (PD) controller to generate a corrective torque, 're, that aims to reduce
the joint position error. An inner force loop is used to reduce the apparent inertia
of the robotic exoskeleton and improve the back-drivability of the system. This
impedance control architecture is due to Hogan (1985).

The LE-FFAP begins with the collection of pre-baseline data with the Lokomat
in a highly back-drivable state, which allows the subject to move freely within the
Lokomat. Implementation of a new Lokomat mode of operation, termed Path Con-
trol (Duschau-Wicke et al., 2010), allows subjects to naturally control the timing of
their gait. The path control algorithm relies on the synchronization of the current
gait cycle with a normalized reference gait cycle. This synchronization is accom-
plished via the algorithm of (Aoyagi et al., 2007) (See Figure 4.5 top right). The
baseline condition of the LE-FFAP requires subjects to walk as freely as possible
while attached to the Lokomat. Device loading of the subject was minimized via
the generalized elasticity method of Vallery et al. (2009b). This procedure utilizes
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Figure 4.5: Lower Extremity Force Field Adaptation Paradigm (LE-FFAP)
Control System Diagram. As the subject walks freely in the Lokomat, a step
counter is used to determine the current experimental condition. Left and right
legs are controlled independently and the desired leg to be perturbed needs to be
specified at the beginning of the experiment. There are five possible modes of
operation: Baseline (1), Baseline Error Clamp (2), Force Field (3), Force Field

Error Clamp (4), and Error Clamp (5). Table 4.3 summarizes which blocks are
enabled during which experimental condition. See text for a description of each of
the main modules.

the subject's own pre-baseline gait cycle and a model of the Lokomat dynamics to
generate an conservative (stable) force field that minimizes subject effort required
to move the orthosis along the gait trajectory while maintaining passivity of the
control system. Lastly, assistive torques along the movement path (as described
in Section ) might need to be provided to individuals needing assistance while

walking within the Lokomat or to help minimize the effects of the increased sub-

ject/device inertia during error clamps in health subjects. Figure 4.5 summarizes
all of the major components of Lokomat control system used to implement the

Lower Extremity Force Field Adaptation Paradigm (LE-FFAP). (Goldsmith, 2010)

provides an in depth description of the first implementation of the LE-FFAP. No-

tably, assistance along the movement path (Path Assistance) and subject-specific

generalized elasticities were absent from our prior implementation.
There are five possible modes of operation required for the implementation of

the LE-FFAP - Baseline (1), Baseline Error Clamp (2), Force Field (3), Force Field
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. Condition PD Viscous Path
Number Controller Perturbation Assistance

Pre-Baseline 0 - -

Baseline 1 - -

Baseline
Error Clamp

Force Field 3 -_+ -

Force Field
Error Clamp

Error Clamp 5 + - +

Table 4.3: LE-FFAP Control Modules Active within each Experimental Con-
dition. Note that path assistance is only present during error clamp trials for our
current work with healthy subjects. We envision that this technique can be used in

all trial conditions when used with impaired subjects.

Error Clamp (4), and Error Clamp (5). Table 4.3 summarizes which blocks are
enabled during which experimental condition.

Subject Recruitment

This clinical trial (ClinicalTrials.gov NCT01361867) is currently being conducted
by the Motion Analysis Laboratory at Spaulding Rehabilitation Hospital, Boston,
MA. IRB approval has been obtained to recruit 40 healthy adult volunteers (males
and females, age 18-55 years, with normal gait). Relevant exclusion criteria in-
clude:

1. Lower extremity fractures

2. Current or previous history of orthopedic injury that would prevent safe use
of the Lokomat gait orthosis

3. Body/femoral length size beyond the limits of Lokomat robotic legs (femur
length between 350-470mm)

4. Body weight > 135kg (-298 lb.) maximum limit of the body weight support
system

5. Skin lesions on the lower extremities

6. Cardiovascular or pulmonary contraindications
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7. Motor system or proprioceptive impairments

8. Severe cognitive impairments that would prevent the use of the Lokomat gait

orthosis

Experimental Procedures

We distinguish between two types of experiments that allow us to study distinct

features of the adaptation process of subjects and one type that allows for cus-

tomization of the robotic exoskeleton to the particularities of each individual's gait

pattern. In all experiments a metronome with a period of .7 sec per beat is used to

pace the subjects. The treadmill is set to a speed of 3.0 km per hour. The viscous

damping coefficient, B, was set to 3.5 Newton-sec/rad.

Pre-Baseline Experiments

During the pre-baseline experiments, a generic gait pattern is used as the template

within the lookup tables of the Aoyagi synchronization algorithm. The Generalized

Elasticities block is also optimized to the same generic gait pattern. Subject are

allowed to walk freely within the device with no applied perturbation forces and

joint kinematics are recorded via potentiometers on the Lokomat. From this pre-

baseline data, an average trajectory in joint space is obtained for the current subject.

This information is used to generate a new template (baseline path) for the Aoyagi

synchronization algorithm and the Generalized Elasticities block is optimized to

this new gait pattern. Lastly, unit vectors parallel, ull, and perpendicular, u1 , to

the path are computed and used to determine the perturbation torques to be applied

according to Equation 4.9.

After-Effect Experiments

After-Effects experiments allow for the assessment of motor adaptation via the

observation of the changes in kinematic error during exposure to the force-field

and after removal of the force-field. Theses experiments consist of three blocks:

- Baseline: For 100 steps subjects are allowed to walk freely in a force-free

condition.

- Force Field: For 100 steps subjects are able to walk freely but with the

addition of a velocity-dependent force field that is applied perpendicular to

the path of motion.
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- After-Effect: For 100 steps subjects are allowed to walk in force-free con-
dition.

Figure4.6 A shows the condition vector specifying the mode of operation of the
Lokomat during each portion of an After-Effects experiment. Maximal perpendic-
ular deviation from the baseline path (d' (n) or d"' (n)) as described in Section
is used to assess the adaptive changes observed during these experiments.

Error Clamp Experiments

Error-Clamp experiments allow for the assessment of motor adaptation via the ob-
servation of the changes in force generation during exposure to the force-field and
the decay observed once the force field is removed and motor error is maintained
at zero. These experiments consist of three blocks:

- Baseline: For 100 steps subjects are allowed to walk freely in a force-free
condition. Error-clamp trials are interspersed at random with frequency of
20% (e.g. 1 out of 5 steps is an error clamp).

- Force Field: For 100 steps subjects are able to walk freely but with the
addition of a velocity-dependent force field that is applied perpendicular to
the path of motion. Error-clamp trials are interspersed at a frequency of 20%
(e.g. 1 out of 5 steps is an error clamp).

. Error-Clamp: For 100 steps subjects are forced to walk along their baseline
path.

Figure4.6 B shows the condition vector specifying the mode of operation of the
Lokomat during each portion of an Error-Clamp experiment. The adaptation coef-
ficient, cadapt, from Equation 4.11 is used to assess the adaptive changes in force
generation observed during these experiments.

Results

After-Effects Experiment

Figure 4.7 shows the results for a single subject during an After-Effect Experiment.
Figure 4.7 A shows the joint trajectories during Baseline, Force Field, After-Effect
portions of the experiment. There were 100 steps in each phase. Figure 4.7 B
shows the mean baseline curve from A, the mean of the first 10 steps in Force Field,
and the mean of the first 10 steps in the After-Effects portion of the experiment.
Figure 4.7 C shows the maximal perpendicular deviation from the mean baseline
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A After-Effect Experiment
Condition Basene

-Force Field
Error-Clamp (5) - Alter-Effect

Force Field Error-Clamp (4) -

Force Field (3) -

Baseline Error-Clamp (2) -

Baseline (1)-

Pro-Baseline (0) -

End (-1) 0 1122 0

Step Number [n]

B Error-Clamp Experiment
Condition -- selne

Force ieldError-Clap (5) - -Ca

Force Field Error-Clamp (4)

Baseline Error-Clamp (2) 
-

Baseline()

Pre-Baseline (0) 
-

End (-1)11 1 20 2Eo 300
Step Number [n]

Figure 4.6: Condition Vectors for After-Effect and Error-Clamp Experiments.
A) After-Effect Experiment Condition Vector. Subjects are allowed to walk in
the Baseline condition for 100 steps, followed by exposure to a velocity-dependent
force field for 100 steps. After exposure to the force-field, the force field is turn
off. Adaptive changes during these experiments are observed via the changes in
kinematic error within the Force Field and After-Effects portion of the experiment
using a measure of the perpendicular deviation from the baseline path (d' (n)
or dj" (n)). B) Error-Clamp Experiment Condition Vector. Subjects are al-
lowed to walk in the Baseline Condition for 100 steps, followed by exposure to a
velocity-dependent force field for another 100 steps. Error-clamp trials are inter-
spersed at random with frequency of 20% within both the Baseline and Force Field
conditions. After the end of the Force Field condition, the subject forced to walk
along their original baseline path using error-clamp trials for a total of 100 steps.
The adaptation coefficient, caa1 , from Equation 4.11 is used to assess the adaptive
changes in force generation observed during these experiments.
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path, d" (n) . The dark curves represent an exponential decay model applied to
the data to illustrate the trends and identify relevant time constants. The estimated
exponential model was

0 1 < n< 100
d7"(n) = 2.6-x 10-2e 101 < n < 200

3.0 x 10-2-ei 201 < n < 300

where n is the step number. This piecewise regression on d" (n) yields an R 2of
77%. While the time constants associated with the Force Field and After-Effects
portions of the experiment phases are suggestive that the after-effect process decays
at a slightly slower rate than the adaptation process in this subject, the confidence
intervals for these coefficients are extremely large (i60 steps). Therefore, the ap-
parent difference between the decay rates observed in this subject is not statistically
significant.

Error-Clamp Experiment

Figure 4.8 shows the results of a single subject during an Error-Clamp experiment.
Use of a metronome during all experiments helped make the movement velocity
along the baseline path consistent across steps and across different portions of the
experiment as seen in Figure 4.8 A. The exponential model fit to the adaptation
coefficient data yielded an R2 of 88.9% and time constants for the rise and fall of
11 and 23 steps respectively.

Figure 4.9 shows preliminary aggregate data for both the After-Effect (Panel
A) and Error-Clamp (Panel B) experiments.

Discussion

The work herein presented demonstrates how the LE-FFAP can be used to assess
lower extremity motor adaptation. The theoretical extension of the FFAP to the
lower extremity consisted of viewing the closed loop gait cycle in joint coordi-
nates (equivalently end-effector coordinates) as a point-to-point movement where
the beginning and end points coincide. With this analogy made, all portions from
the standard FFAP experiments had natural analogues in the lower extremity case.
Implementation of the LE-FFAP within the Lokomat lower extremity gait ortho-
sis required the use of various recently published control models for the Lokomat,
namely the Path Control algorithm (Duschau-Wicke et al., 2010) and the General-
ized Elasticities method of Vallery et al. (2009b). In practice, a robotic exoskeleton
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Figure 4.7: Single Subject After-Effect Experiment Results. A) Joint trajecto-
ries during Baseline, Force Field, and After-Effect phases of experiment. B) Mean
trajectories during baseline, force field, and after-effects trajectories. C) Perpendic-
ular deviation from the baseline path at the point of maximum deviation, d' (n)
(point indicated in B).
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Figure 4.8: Single Subject Assessment of Motor Adaptation. A) Nominal vis-
cous disturbance. The nominal perpendicular disturbance that is applied during
the Force Field block is proportional to the movement velocity parallel to the base-
line movement path, vii.,. B) Subject response within and across steps. Forces
during non error-clamp steps were estimated by interpolation for ease of visualiza-
tion only and are not used in computation of the adaptation coefficient. C) Subject
response within each experimental segment vs. nominal response. During the
Baseline condition, the subject-applied torque perpendicular to the movement path
(in blue) is approximately zero since the subject is moving along their baseline
path. During the Force Field condition the subject-applied torque (in green) be-
comes closer to the disturbance being applied, indicating that the subject is adapt-
ing to the expected perturbation. During the last experimental block consisting
of all error-clamp trials, the subject-applied torque (in red) slowly returns to to-
wards zero. D) Adaptation Coefficient. The adaptation coefficient was computed
according to Equation 4.11 by using the perpendicular torque during swing phase
(within 20%-80% of the gait cycle as measured in the device; mid-stance is defined
as 0%). The exponential model fit to the adaptation coefficient data yielded an R2

of 88.9% and time constants for the rise and fall of 11 and 23 steps respectively.
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Figure 4.9: Aggregate After-Effect and Error Clamp experiment responses.
A) Maximal perpendicular deviation, di"" (n), during an After-Effect experi-
ment (N=7). Dark line indicates the mean±SEM across subjects. Note that initial
exposure to the force fields leads to a large deviation from the baseline path and
that subjects quickly correct for the perturbation (time constant -6 step). Removal
of the force field results in an after-effect. Note that the time constant associated
with the after-effects is quite similar to the time constant of adaptation during force
field. B) Adaptation coefficient, cadaM (n) (meantSEM), obtained from Error-
Clamp experiment (N=4). Note that the adaptation coefficient observed during
the last portion of Error-Clamp experiment shows a decay time constant of approx-
imately 5 times the time constant seen during exposure to the force field. Due to
the large standard errors on these estimates, this result is only suggestive - a larger
number of subjects will needed to make a conclusive statement on the adaptation
dynamics during these two segments.
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with lower inertia would be ideal for these types of experiments. However, we se-
lected the Lokomat since there are currently more than 300 devices being used

around the world. Implementation of the LE-FFAP on this platform thus opens
the possibility for developing large scale clinical trials to understand the adaptive

processes involved in healthy locomotion and how these processes are affected by
diseases like stroke, traumatic brain injury, and spinal cord injury.

A uniform framework for studying upper and lower extremity motor
adaptation

Numerous investigators have aim to study motor adaptation in the lower extrem-
ity(Emken and Reinkensmeyer, 2005, Reisman et al., 2007, Banala et al., 2009,
Lam et al., 2006, Reisman et al., 2005). Unfortunately, the wide range of distinct

devices used to conduct these studies make experiments difficult to validate. More-

over, the measures of adaptation reported change across studies. Taken together,
these current limitations make it difficult if ot to easily compare results across ex-

periments or to perform meta-analysis of the data available from various studies.

We hope that by developing the LE-FFAP for a platform that is standardized and

becoming widely available will help to produce study outcome measure that are

more easily compared. Additionally, we hope that study protocols can become

easily transferrable across institutions so that large scale trials can be undertaken.

Potential uses

Incorporating the LE-FFAP into clinical systems available around the world would

open up a number of interesting possibilities. First, the LE-FFAP could be used as
an assessment tool within current gait retraining strategies. Being able to under-

stand the effects of distinct rehabilitation strategies on adaptation rates may allow
for the identification of strategies that are more effective (e.g. yield larger adapta-

tion rates or longer retention rates). In the long term, such assessment tools might

allow clinicians to monitor the adaptation rates of individual patients and design
interventions to maximize individual outcomes. Slightly less ambitious, but still

insightful, would be the ability to track an individuals' adaptation rate over time.
Much like hemoglobin A IC is a useful marker of blood sugar control in a diabetic

patient, rates of adaptation may be indicative of the ability of the nervous system

acquire new motor behaviors via rehabilitation. Lastly, because the LE-FFAP is

analogous to its upper extremity counterpart, an extremely rich set of experimental

protocols developed over the last 20 years can be directly applied to lower extrem-

ity research. Conversely, the LE-FFAP algorithm, suggests a natural approach for

studying cyclical tasks (such as target tracking) in the upper extremity.
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Future Work

Future work will include the analysis of aggregate After-Effect and Error-Clamp
experiments from 40 healthy adult subject at the conclusion of the ongoing clinical
trial. Establishing an understanding of how healthy adults' motor systems adapt
to external perturbations will be an important step towards understanding how the
adaptive mechanisms involved in gait are altered by disease.
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Discussion

This thesis aimed to yield methods for improved lower extremity rehabilitation.
We believe that improved patient outcomes will be achieved via the successful
integration of knowledge about the underlying neural control of locomotion under
a range of conditions and via characterization of the motor adaptations that result
during gait retraining.

Neural Spike Train Analysis Toolbox (nSTAT)

We have developed the neural Spike Train Analysis Toolbox (nSTAT) for Matlab@
to facilitate the use of the Point Process - Generalized Linear Model framework by
the neuroscience community. By providing a simple software interface to PP-GLM
specific techniques within the Matlab@ environment, users of a number of exist-
ing open source toolboxes (i.e. Chronux, STAToolkit, etc.) will be able to easily
integrate these techniques into their workflow. It is our hope that making nSTAT
available in an open-source manner will shorten the gap between innovation in the
development of new data analytic techniques and their practical application within
the neuroscience community. For the neurophysiologist, we hope the availability
of such a tool will allow them to quickly test the range of available methods with
their data and use the results to both inform the quality of their data and refine the
protocols of their experiments.

Via a series of examples we have demonstrated the use of the toolbox to solve
many common neuroscience problems including: 1) systematic building of models
of neural firing, 2) characterization of explicit experimental stimulus effects on
neural firing, 3) spike rate estimation using the PSTH and extensions of the PSTH
(SSGLM) that allow quantification of experience-dependent plasticity (across-trial
effects), 4) receptive field estimation, and 5) decoding stimuli such as movement
trajectories based on models of neural firing. All of the data, code, and figures used
here are included as part of the toolbox. We hope that users will be able to easily
modify these examples and use them as a starting point for analysis of their own
data.
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Decoding Movement Intent Information during Locomotion

Decoding Movement Intent Information during
Locomotion

In Chapter 3, we showed that the parametric model in Equation 3.18, was able to

describe the firing activity of 558/573 neurons over three distinct walking condi-

tions and over multiple days across 6 different animals. In order to demonstrate

how such a model can be used to decode movement information for the control of

prosthetic via brain machine interface (BMI) we provide a brief simulation exam-

ple.
Figure 5.2 A shows the stereotypic hip and knee angles observed during bipedal

human gait over the course of 2 steps. The gait phase, # (t), is defined as the angle

of the vector pointing to the current location in joint space during the gait cycle

(see Figure 5.2 B). The origin of the coordinate system corresponds to the mean

hip and knee coordinates over the gait cycles shown. We simulated an ensemble of

N = 50 neurons with the following conditional intensity function

logit (AX (tn) A) = pi+ ai cos (0y (tn)) + c4sin (#y (t,)) (5.2)

using the point process thinning algorithm (Lewis and Shedler, 1978, Ogata, 1981).

The coefficients a' and C4 were randomly selected from a uniform distribution

on the interval [-2,2] (e.g. ac - U (-2,2]) for k = 1,2 and i = 1.. .N ) and

yi ~ U ([0, -4]) for i = 1.. .N. This corresponds to a population of neurons whose

preferred gait phase is uniformly distributed from 0 to 21r. The red circles in Figure

5.2 A and B indicate the preferred gait phase for each simulated neuron.

As shown in Figure 5.2 C, the graphical model for decoding latent state vari-

ables from point process observations allows for previous neural firing to affect

the probability of current cell firing (e.g. cell refractoriness, bursting, etc.) (Srini-

vasan et al., 2007). For simplicity, in this example, we do not include the history

effect (denoted by gray lines). In this case, the latent state variable is the vector

Xk = X (tk) = {cos (0 (t)) , sin (0 (t))]T.

Figure 5.2 D (top) shows the results of decoding the gait phase from the simu-

lated spiking activity using the Point Process Adaptive Filter (PPAF) of Eden et al.

(2004a). The actual gait phase, 0 (t), and hip and knee angles (Ohip (t) and eknee (t)

respectively) are denoted by solid black lines. Solid blue line denotes the esti-

mated gait phase 4 (t) = tan 1  " )along with the 95% confidence intervals

for the estimate. The solid blue lines for the joint angles denote Ohip (t) and Oknee (t)

defined as 6i (t) = 6; (tmin) where tmin = argminx (($ (X) - (t))).

Our work in Chapter 3 showed that the preferred gait phase, background firing

rate, and load-dependent firing coefficients show adaptation across loading condi-

106



Decoding Movement Intent Information during Locomotion

A B D

F777 -305 o1
.......... Y f I N ~ /I7

n, nk,

o os Is t 2 e2s time [s] a
time [s]tt s

Figure 5.2: Decoding Movement Intent Information during Locomotion us-
ing simulated data. A) Simulated Gait Data and Neural Rasters. From top to
bottom: Joint Angles for hip (Ohip (t)) and knee (Oknee (t)), gait phase (0 (t)), cell
raster, and conditional intensity functions (A6'(t)) for each of the 50 cells simulated
according to 5.2 using the point process thinning algorithm. B) Gait cycle in Joint
Coordinates. # (t) is defined as the angle of the vector pointing to the current
location in joint space during the gait cycle. The origin of the coordinate sys-
tem corresponds to the mean hip and knee coordinates over the gait cycles shown.
Red circles indicate the location of maximal firing along the gait cycle for each
simulated neuron (e.g. the preferred gait phase of each cell). C) Probabilistic
Graphical Model. In general the graphical model for decoding latent state vari-
ables from point process observations allows for previous neural firing to affect
the probability of current cell firing (e.g. cell refractoriness, bursting, etc.) (Eden
et al., 2004a, Srinivasan et al., 2007). For simplicity, in this example, we do not in-
clude this effect (denoted by gray lines). In this case, the latent state variable is the
vector xk = x (tk) = [cos (0 (t)) , sin (0 (t))IT. D) Point Process Decoding Results.
Actual # (t), Ohip (t), and Oknee (t) are denoted by solid black lines. Solid blue line

denotes the estimated gait phase (t) = tan- sin() +/- one standard devia-

tion computed based on the estimated latent state variables reconstructed from the
point process observations. The solid blue lines for the joint angles denote Ohip (t)

and Oknee (t) defined as 0i (t) = Oi (tmin) where tmin = argminx (#(0 (x) - 0 (t) ).
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tions and across days. Future work should aim to develop extensions of the PPAF

to allow for tracking of parameter coefficients and covariates across time so that

the effects of neural plasticity can be systematically studied.

Assessment of Lower Extremity Motor Adaptation

Numerous investigators have aim to study motor adaptation in the lower extrem-

ity(Emken and Reinkensmeyer, 2005, Reisman et al., 2007, Banala et al., 2009,

Lam et al., 2006, Reisman et al., 2005). Unfortunately, the wide range of distinct

devices used to conduct these studies make experiments difficult to validate. More-

over, the measures of adaptation reported change across studies. Taken together,

these current limitations make it difficult if to easily compare results across ex-

periments or to perform meta-analysis of the data available from various studies.

We hope that by developing the LE-FFAP for a platform that is standardized and

becoming widely available will help to produce study outcome measure that are

more easily compared. Additionally, we hope that study protocols can become

easily transferrable across institutions so that large scale trials can be undertaken.

Incorporating the LE-FFAP into clinical systems available around the world

would open up a number of interesting possibilities. First, the LE-FFAP could be

used as an assessment tool within current gait retraining strategies. Being able to

understand the effects of distinct rehabilitation strategies on adaptation rates may

allow for the identification of strategies that are more effective (e.g. yield larger

adaptation rates or longer retention rates). In the long term, such assessment tools

might allow clinicians to monitor the adaptation rates of individual patients and

design interventions to maximize individual outcomes. Slightly less ambitious, but

still insightful, would be the ability to track an individuals' adaptation rate over

time. Much like hemoglobin AIC is a useful marker of blood sugar control in a

diabetic patient, rates of adaptation may be indicative of the ability of the nervous

system acquire new motor behaviors via rehabilitation. Lastly, because the LE-

FFAP is analogous to its upper extremity counterpart, an extremely rich set of

experimental protocols developed over the last 20 years can be directly applied to

lower extremity research. Conversely, the LE-FFAP algorithm, suggests a natural

approach for studying cyclical tasks (such as target tracking) in the upper extremity.

Future work will include the analysis of aggregate After-Effect and Error-

Clamp experiments from 40 healthy adult subject at the conclusion of the ongoing

clinical trial. Establishing an understanding of how healthy adults' motor systems

adapt to external perturbations will be an important step towards understanding

how the adaptive mechanisms involved in gait are altered by disease.
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