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Abstract

This research focuses on improving the performance of spoken dialog systems (SDS)
in the domain of assistive technology for people with disabilities. Automatic speech
recognition (ASR) has compelling potential applications as a means of enabling peo-
ple with physical disabilities to enjoy greater levels of independence and participation.
This thesis describes the development and evaluation of a spoken dialog system mod-
eled as a partially observable Markov decision process (SDS-POMDP). The SDS-
POMDP can understand commands related to making phone calls and providing
information about weather, activities, and menus in a specialized-care residence set-
ting. Labeled utterance data was used to train observation and utterance confidence
models. With a user simulator, the SDS-POMDP reward function parameters were
optimized, and the SDS-POMDP is shown to out-perform simpler threshold-based
dialog strategies. These simulations were validated in experiments with human par-
ticipants, with the SDS-POMDP resulting in more successful dialogs and faster dialog
completion times, particularly for speakers with high word-error rates.

This thesis also explores the social and ethical implications of deploying location-
based assistive technology in specialized-care settings. These technologies could have
substantial potential benefit to residents and caregivers in such environments, but
they may also raise issues related to user safety, independence, autonomy, or privacy.
As one example, location-aware mobile devices are potentially useful to increase the
safety of individuals in a specialized-care setting who may be at risk of unknowingly
wandering, but they raise important questions about privacy and informed consent.
This thesis provides a survey of U.S. legislation related to the participation of individ-
uals who have questionable capacity to provide informed consent in research studies.
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Overall, it seeks to precisely describe and define the key issues that are arise as a

result of new, unforeseen technologies that may have both benefits and costs to the

elderly and people with disabilities.

Thesis Supervisor: Nicholas Roy
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Thesis Supervisor: Seth Teller

Title: Professor of Computer Science and Engineering

Thesis Supervisor: James R. Glass

Title: Senior Research Scientist

4



Acknowledgments

I am very grateful for the assistance, guidance, mentorship, and participation of many

people in the formation, writing, and review of this thesis; it truly was not a solo

effort. First and foremost, I thank my advisors, Nicholas Roy, Seth Teller, and Jim

Glass. Nick's patient and rigorous guidance, Seth's creativity and support, and Jim's

thoughtful insights contributed immensely to the work here and in my growth as a

person and researcher. A single paragraph, or even many pages of acknowledgments,

would not be able to do justice to the learning and research environment that they

have cultivated.

I also thank Joseph Coughlin for reading this thesis and providing guidance on

the technology policy component. His involvement has helped me to consolidate my

learning and coursework as a student in the Technology and Policy Program (TPP).

Other students and staff in CSAIL, especially in robotics and speech, have also

been very helpful in making this thesis a reality. In particular, I thank Sachithra

Hemachandra, Ross Finman, David Hayden, Sudeep Pillai, Jun-geun Park, Josh

Joseph, Finale Doshi-Velez, and Javier Velez, along with many others in 32-33x, for

many conversations and discussions that helped shape the ideas and results in this

thesis. At numerous stages, Dorothy Curtis and Bryan Reimer were a source of an-

swers and assistance. Meanwhile, in SLS, Hung-An Chang, Jacqueline Lee, Stephen

Shum, Ekapol Chuangsuwanwich, Ian McGraw, and Scott Cyphers provided critical

explanations and support that directly contributed to the development of the spoken

dialog system. Finally, I have had the chance to work with several bright research stu-

dents who made useful contributions to this research, including Minh Phan, Sebastian

Nowak, Erika Lee, and Alex Sekula.

Navigating TPP, EECS, and dual-degree process would not have been possible

without Krista Featherstone and Janet Fischer, along with Sydney Miller and Ed

Ballo. I also thank Sophia Hasenfus and Bryt Bradley for their support.

Much of the work of this thesis was done at The Boston Home, where I have had

the privilege to spend considerable time during my Master's studies. To me, TBH has'

5



been like a second campus; I have learned more there than I could have imagined. In

particular, Don Fredette provided his help, technical advice, and assistance in every

imaginable way to help make this thesis a reality. As well, I thank Marva Serotkin,

Cindy Walsh, Marva Serotkin, and Alex Burnham for their openness, flexibility, and

assistance at many stages of this thesis. Finally, I am truly grateful for the guidance

and participation of many TBH residents who motivated and contributed to this

research.

Last but not least, I thank my friends in TPP, Sidney Pacific, EECS and CSAIL,

Toronto and elsewhere, and my parents and sister for their love and support.

6



Contents

1 Introduction

1.1 Application Domain: The Boston Home . . . . . . . . . . .

1.2 Dialog Management Strategies . . . . . . . . . . . . . . . . .

1.3 Ethical Implications of Intelligent Assistive Technologies . .

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4.1 SDS-POMDP Development and Evaluation . . . . .

1.4.2 Confidence Scoring of Utterances . . . . . . . . . . .

1.4.3 User Simulation and Reward Function Optimization .

1.4.4 Ethical Challenges in Assistive Technology . . . . . .

1.5 R oadm ap . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Related Work and Technical Background

2.1 Speech-Based Assistive Technology . . . . . . . . . . .

2.2 Spoken Dialog Systems . . . . . . . . . . . . . . . . . .

2.2.1 Automatic Speech Recognition . . . . . . . . . .

2.2.2 Rule-based Dialog Managers . . . . . . . . . . .

2.3 Models for Planning Under Uncertainty . . . . . . . . .

2.3.1 Markov Decision Processes (MDPs) . . . . . . .

2.3.2 Partially Observable Markov Decision Processes

2.4 MDP and POMDP Dialog Management . . . . . . . .

2.4.1 MDP-based Spoken Dialog Systems . . . . . . .

2.5 POMDP-based Spoken Dialog Systems . . . . . . . . .

2.5.1 Computing a Policy . . . . . . . . . . . . . . . .

(POMD

15

. . . . 16

. . . . 18

. . . . 19

. . . . 19

. . . . 20

. . . . 20

20

. . . . 21

21

25

. . . . 25

. . . . 26

. . . . 27

. . . . 28

. . . . 29

. . . . 29

Ps) . 30

. . . 31

. . . 32

. . . 32

. . . 36

7



2.6 Confidence Measures for Speech Recognition . . . . . . . . . . . . . .

2.7 Location-Aware Assistive Technologies . . . . . . . . . . . . . . . . .

3 Spoken Dialog System Development

3.1 System Functions . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Automatic Speech Recognizer . . . . . . . . . . . . . . . . .

3.3.1 Speech Recognition Outputs as Dialog System Inputs

3.4 POMDP Dialog Manager . . . . . . . . . . . . . . . . . . . .

3.4.1 States, S and Actions, A . . . . . . . . . . . . . . . .

3.4.2 Observations, Z . . . . . . . . . . . . . . . . . . . . .

3.4.3 State Transition Function, T . . . . . . . . . . . . . .

3.4.4 Observation Function (User Model), Q . . . . . . . .

3.4.5 Reward Function . . . . . . . . . . . . . . . . . . . .

3.4.6 Policy, H . . . . . . . . . . . . . . . . . . . . . . . . .

3.5 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . .

3.6 Hardware Selection . . . . . . . . . . . . . . . . . . . . . . .

4 Utterance Confidence Modeling

4.1 Problem Definition . . . . . . . . . . . . .

4.2 Feature Engineering . . . . . . . . . . . . .

4.3 Feature Selection with AdaBoost . . . . .

4.4 Classifier Performance . . . . . . . . . . .

4.5 Lim itations . . . . . . . . . . . . . . . . .

5 User Simulation

5.1 Design of User Simulator . . . . . . . . . .

5.2 Candidate Dialog Managers . . . . . . . .

5.3 Results and Discussion . . . . . . . . . . .

5.3.1 Threshold-Based Dialog Managers.

5.3.2 POMDP-based Dialog Managers

8

37

39

41

. . . 41

. . . 43

. . . 44

. . . 44

. . . 46

. . . 46

. . . 46

. . . 48

. . . 48

. . . 51

. . . 52

. . . 52

. . . 54

55

. . . . . . . . . . . . . . . 55

. . . . . . . . . . . . . . . 57

. . . . . . . . . . . . . . . 60

. . . . . . . . . . . . . . . 61

. . . . . . . . . . . . . . . 65

67

. . . . . . . . . . . . . . . 67

. . . . . . . . . . . . . . . 69

. . . . . . . . . . . . . . . 70

. . . . . . . . . . . . . . . 70

. . . . . . . . . . . . . . . 71



5.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

6 Reward Parameter Search

6.1 Solving the POMDP . . . . . . . . . . . . . . . . . .

6.1.1 Enumerating POMDP States and Functions .

6.2 Approximately Solving the POMDP . . . . . . . . . .

6.2.1 Structure of the QMDP-Generated Policy . .

6.3 Defining Good Dialog Behavior . . . . . . . . . . . .

6.4 Optimization Approach . . . . . . . . . . . . . . . . .

6.5 Brute Force Search and Gradient Descent . . . . . . .

6.6 Lim itations . . . . . . . . . . . . . . . . . . . . . . .

7 User Experiments

7.1 Experiment Design . . . . . . . . . . . . . . . . . . .

7.2 R esults . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 D iscussion . . . . . . . . . . . . . . . . . . . . . . . .

75

. . . . . . . . 75

. . . . . . . . 76

. . . . . . . . 79

. . . . . . . . 80

. . . . . . . . 83

. . . . . . . . 84

. . . . . . . . 86

. . . . . . . . 88

91

. . . . . . . . 91

. . . . . . . . 92

. . . . . . . . 93

8 Deploying Assistive Technologies: Ethical and Policy Considerations 97

8.1 Ethics of Location Monitoring Technologies . . . . . . . . . . . . . . 98

8.2 Resident Location Awareness at The Boston Home (TBH) . . . . . . 100

8.2.1 Study Findings on System Efficacy . . . . . . . . . . . . . . . 102

8.2.2 Design Decisions to Mitigate Ethical Risks . . . . . . . . . . . 102

8.2.3 Stakeholder Analysis on Ethical Issues . . . . . . . . . . . . . 106

8.3 Informed Consent for the Elderly and People with Disabilities . . . . 108

8.3.1 Consent Capacity and Legally Authorized Representatives . . 109

8.4 Conclusions and Future Research Directions . . . . . . . . . . . . . . 113

8.4.1 Planning for Future Living and Care . . . . . . . . . . . . . . 113

9 Conclusions and Future Work 115

9.1 SDS-POMDP Policy Optimization . . . . . . . . . . . . . . . . . . . 115

9.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9

72



10



List of Figures

2-1 Sample plot of SDS-POMDP belief . . . . . . . . . . . . . . . .

3-1

3-2

3-3

Probability distribution of utterance confidence scores . . . . . .

Graphical user interface (GUI) of SDS-POMDP . . . . . . . . .

Example speech interface setup . . . . . . . . . . . . . . . . . .

4-1 Performance of AdaBoost by iteration on training and test sets

4-2 Fitting of logistic curve to AdaBoost scores . . . . . . . . . . .

5-1 User simulator model . . . . . . . . . . . . . . . . . . . . . . .

QMDP-derived expected payoff of SDS-POMDP

Framework for optimizing dialog policy.....

Average dialog duration with brute force search

QMDP-derived expected payoffs . . . . . . . . .

actions . . . . . . . 82

. . . . . . . . . . . . 84

. . . . . . . . . . . . 89

. . . . . . . . . . . . 90

7-1 Experimental results: average dialog durations . . . . . .

8-1 Location awareness system setup . . . . . . . . . . . . .

8-2 Stakeholder views on safety and personhood . . . . . . .

11

. . 34

. . 51

. . 53

. . 54

6-1

6-2

6-3

6-4

61

65

72

94

101

106



12



List of Tables

1.1 Concept error rates for MIT speakers . . . . . . . . . . . . . . . . . . 17

1.2 Concept error rates for TBH speakers . . . . . . . . . . . . . . . . . . 17

2.1 Random variables in a SDS-POMDP . . . . . . . . . . . . . . . . . . 33

2.2 SDS-POMDP probability functions . . . . . . . . . . . . . . . . . . . 35

3.1 Third-party application programming interfaces (APIs) for dialog system 43

3.2 Sample annotation for utterance file. . . . . . . . . . . . . . . . . . . 43

3.3 Sample ASR output for a single utterance . . . . . . . . . . . . . . . 47

4.1 Features selected by AdaBoost . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Performance of dialog managers over 50,000 simulated dialogs . . . . 70

6.1 Estimated time costs of different user actions . . . . . . . . . . . . . . 84

6.2 Best reward function parameters from search . . . . . . . . . . . . . . 87

7.1 Experimental results: dialog completion rates . . . . . . . . . . . . . 93

13



14



Chapter 1

Introduction

People with physical disabilities may experience difficulties accessing and controlling

their surroundings. Affordances [28] such as doorknobs, light switches, and remote

controls, electronics ranging from computers to smartphones, and objects like writing

instruments or eating utensils can be difficult or impossible to use. These limitations

can adversely affect their quality of life.

Human caregivers and personal support workers can assist with these challenges.

However, human assistance, along with not always being available, presents its own

issues. First, having a dedicated human caregiver is expensive; nurses in specialized-

care settings or home-care workers must divide their time among many residents or

clients. Second, from the perspective of the person with the disability, receiving help

does not address the issue of lost independence. For these reasons assistive technol-

ogy that maximizes the independence of people with disabilities is attractive; among

other benefits, appropriate assistive technology has been shown to reduce expendi-

tures for home care costs and institutional care for the frail elderly [50]. Beyond

existing devices, substantial interest exists in personal robotics as assistive devices;

early ethnographic studies have suggested that assistive robots can play a role in

ensuring high-quality affordable care [25].

One basic observation of human-to-human interaction in healthcare settings is that

the interaction is largely speech-based. Although severe speech dysarthria or loss of

speech may co-occur with physical disabilities or aging, a caregiver who adapts to the
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person's speaking style, asks clarification or confirmation questions, or simply is pa-

tient can mitigate many of these issues. Therefore, the focus of this thesis is enabling

automatic speech recognition and spoken dialog systems as a means of controlling

assistive devices. People with physical disabilities may be unable to use traditional

physical input devices such as keyboards, pointing devices, or touchscreens; for these

individuals, speech could be an effective human-computer interaction modality. Ro-

bust spoken dialog systems could have a wide range of assistive applications, including

enabling devices that that provide a person mobility, information, communication, or

environmental control.

This thesis largely focuses on the problem of spoken dialog management; however,

more generally, the goal of this work is to infer a person's desires or needs (collectively,

his or her "state") robustly. Most of this thesis examines inferring the user's state

through speech, but some sections, particularly the discussion of technology policy

issues and areas of further work, take a broader view of the user's state.

1.1 Application Domain: The Boston Home

The motivation for assistive spoken dialog systems stems from ongoing work at The

Boston Home (TBH), a 96-bed specialized-care residence for adults with multiple

sclerosis and other neurological conditions [12]. As discussed later in Section 3.1,

a range of speech-enabled information, communication, and environmental-control

functions could benefit residents at TBH and enhance their quality of life. The

development of robust speech interfaces is a component of ongoing work to develop a

voice-commandable autonomous wheelchair that can assist wheelchair users with their

mobility and other needs [34]. Other systems that could potentially be placed under

voice control include environmental control systems, robotic arms, or full-fledged

personal robots.

A central challenge of enabling such assistive technologies, however, is that many

residents exhibit high speech-recognition word-error rates when interacting with ASR

systems. This may be due to fatigue, voice strain, or other pathologies that cause their

16



Table 1.1: Concept error rate for MIT speakers on 30 utterances
Speaker Concept Error Rate

labOl 3.3%
lab02 9.9%
lab03 6.6%
lab04 13.3%
lab05 3.3%
lab06 3.3%
lab07 0.0%
mean 7.5%

std. dev. 4.3%

Table 1.2: Concept error rate for TBH speakers on 30 utterances
Speaker Concept Error Rate
tbhOl 13.3%
tbh02 3.3%
tbh03 33.3%
tbh04 56.7%
tbh05 26.7%
tbh06 9.4%
tbh07 6.6%
mean 21.4%

std. dev. 18.9%

speech patterns to differ from acoustic models trained on speech from able-bodied

individuals. In general, these speech difficulties may cause high concept error rates,

where the top hypothesis from the speech recognizer does not map to the user's actual

intent (a more precise definition of a "concept" and the "concept error rate" can be

found in Chapter 3. Tables 6.2 and 1.2 illustrate the differences in concept error rates

between TBH residents who participated in this research and able-bodied individuals

in the lab. Most notably, as Table 1.2 shows, three of seven residents at The Boston

Home have very high concept error rates above 25%. As well, greater variability exists

among TBH speakers than among our control group of MIT laboratory participants.

These facts suggest a need for the development of a spoken dialog system that

17



robustly handles uncertain speech inputs. This research hypothesizes that dialog

strategies that consider the uncertainty associated with user utterances

can enable higher task completion rates, particularly for speakers with

high speech recognition error rates.

1.2 Dialog Management Strategies

For speech-based assistive technologies to become widely available, many open prob-

lems in speech recognition and dialog systems remain. These challenges include de-

veloping noise-robust ASR, handling fatigued, strained, or dysarthric speech, under-

standing free-form, natural-language commands, and creating robust and scalable

strategies for successful dialogs between humans and machines. This thesis focuses

on the last of these challenges: developing a probabilistic dialog-management strategy

so that assistive spoken dialog systems can more effectively serve the needs of their

users.

A few intuitions about human-to-human spoken dialog guide this research. First,

when a person's intent in a conversation is unclear (due to poor speech recognition or

semantic ambiguity), his or her dialog partner may ask the speaker to repeat, clarify,

or confirm. Critically, a sensible dialog partner chooses one of these actions only in the

face of uncertainty about the intent; for example, asking questions would be unnec-

essary and even irritating if the intent is clear. More abstractly, dialog management

can be modeled as an inference problem, in which hidden state (the user's intent)

may be inferred from observations (the output of the speech recognizer), and the

task of the dialog manager is to select appropriate actions (asking the user to repeat,

confirming a particular intent, or fulfilling the inferred intent) in an optimal manner.

These insights are formalized in work described in Section 2.5; to summarize, dialog

management is modeled as a partially observable Markov decision process (POMDP)

[62, 59, 70]. The focus of the technical part of this thesis is on the development of a

spoken dialog system POMDP, referred to as a SDS-POMDP throughout this thesis.



1.3 Ethical Implications of Intelligent Assistive Tech-

nologies

As a dual Master's thesis with the Technology and Policy Program (TPP), this thesis

also discusses the ethical implications of deploying intelligent assistive technologies

in a specialized-care setting. Such technologies could employ information about the

user's state, including health, location, desired activities, or other behaviors, to aug-

ment the activities of caregivers or enhance the effectiveness of other assistive devices.

However, beyond the functions and capabilities of new technologies for aging, con-

cerns related to trust, privacy, and stigma must be carefully considered for these

innovations to be actually adopted and successful [19]. For example, the collection,

use, and application of location data could allow staff at a skilled nursing facility to

to remain aware of the whereabouts of residents, particularly those who may be at

risk of wandering off the grounds of TBH due to cognitive challenges, could help im-

prove resident safety. Location monitoring, however, raises important questions about

whether these safety benefits come at the expense of the resident's independence, pri-

vacy, or dignity. How can these values be effectively balanced in a residential-care

setting? What stakeholders and viewpoints need to be considered in deciding whether

such technologies should be deployed? These questions are posed and discussed in

Chapter 8.

1.4 Contributions

This thesis is driven by the problem of developing a robust spoken dialog system with

applications to assistive technology. The main contributions are in the development

and evaluation of the end-to-end SDS-POMDP dialog system (Chapters 3 and 7),

concept-level utterance confidence scoring (Chapter 4), simulation and reward func-

tion optimization (Chapters 5 and 6), and ethics and public policy related to assistive

technologies for the elderly and people with disabilities (Chapter 8). These contribu-

tions are outlined below.
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1.4.1 SDS-POMDP Development and Evaluation

The full SDS-POMDP model is learned from a novel corpus collected from laboratory

and TBH speakers. In particular, the high concept error rates of TBH speakers

present difficulties to simple rule-based dialog managers. As discussed in detail in

Chapter 3, the SDS-POMDP takes observations in the form of hypothesized speech

recognition concepts, which is discrete, and an associated confidence score, which is

continuous. How these parts of the observation are handled by the SDS-POMDP is

described in this thesis. The SDS-POMDP is found in Chapter 7 to outperform rule-

based dialog managers, both in terms of dialog completion rate (successful versus

unsuccessful dialogs) and dialog completion time, with TBH users in a controlled

experiment.

1.4.2 Confidence Scoring of Utterances

As described above, the utterance observations that the SDS-POMDP handles in

order to manage the dialog consist of both a hypothesized concept and its probability

of correctness. To compute this probability, a custom confidence-scoring module is

trained from data in this thesis and found to exhibit strong performance on a held-out

test set. Specifically, the confidence model was constructed in a supervised manner

using concept-annotated utterances, Then, adaptive boosting (AdaBoost) [26] was

used to train a classifier for correctly and incorrectly recognized utterances. This

approach was found to be effective as a method of selecting from a large number

of diverse features from the ASR output, including acoustic, language-model, n-best,

syntactic, semantic, and corpus-level features; overall, the system achieved a minimum

error rate of 6.9% on a held-out test set. A logistic curve was fit to the AdaBoost

scores in order to convert the classifier into a confidence score between 0 and 1.

1.4.3 User Simulation and Reward Function Optimization

As discussed in detail in section 2.5, the observation function of the SDS-POMDP is

used as a generative model of the user; for any given state-action pair (S, A), we have

20



a conditional probability distribution, P(Z IS, A), where Z is the set of observations.

This model is used to compare the performance of the SDS-POMDP in simulation; we

find that the SDS-POMDP with continuous confidence score observations outperforms

both simple threshold-based methods and a SDS-POMDP without confidence scores.

The user simulator is also used as a way to compute the average dialog cost to find

reward function parameters that lead to a POMDP policy that performs better in the

real world. Such an approach is useful when, as in this case, it is difficult to compute

the optimal reward function existing methods.

1.4.4 Ethical Challenges in Assistive Technology

This section discusses the real-world ethical dilemmas that arise in deploying tech-

nologies for a vulnerable population. It describes how new technologies, such as a

location-awareness system that allows staff in a specialized-care residence to know

the whereabouts of residents who may be at risk of wandering, offer benefits but also

raise other issues. The interests and roles of different stakeholders are analyzed in the

context of a location awareness system deployed and evaluated at The Boston Home.

This chapter discusses the current mechanisms that exist for individuals with ques-

tionable consent capacity to participate in research. In particular, existing guidelines

for surrogates, such as a resident's family members or activated health care proxy,

are not explicitly defined for decision-making on non-medical research and new tech-

nologies, but existing legislation and practices by MIT and other institutions provide

some guidance on how to proceed.

1.5 Roadmap

This remainder of this thesis is structured as follows:

e Chapter 2 (Background and Related Work): This chapter examines the current

state of research on spoken dialog systems, particularly POMDP-based dialog

managers, along with existing work on confidence scoring of speech recognition
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hypotheses.

" Chapter 3 (POMDP-based Dialog Management): In this chapter, we describe

how the dialog manager for this research was constructed. The key design

considerations, methods of collecting data, and how the models were trained

are discussed in detail.

" Chapter 4 (Utterance Confidence Scoring): This chapter focuses on how the con-

fidence model for utterances was trained, along withhow the confidence scores

were incorporated into the SDS-POMDP model.

" Chapter 5 (User Simulation Results): In order to evaluate the SDS-POMDP

efficiently, a user simulator that probabilistically describes the user's behavior

given certain goals and actions was developed. This chapter describes this sim-

ulator and how the SDS-POMDP compared to baseline threshold-based dialog

strategies.

" Chapter 6 (Searching over Reward Function Parameters): This chapter de-

scribes how the user simulator was used to optimize the performance of the

SDS-POMDP, as measured by the total time to completion.

* Chapter 7 (Human Experiments): To validate the end-to-end system, the SDS-

POMDP is compared to a threshold-based dialog manager with research par-

ticipants at The Boston Home. This chapter details the design and results of

these experiments.

* Chapter 8 (Deploying Assistive Technologies: Ethical and Policy Considera-

tions): This chapter describes the potential ethical dilemmas that exist with

deploying intelligent assistive technologies in a specialized-care setting, particu-

larly the potential conflict between safety and personhood that may arise with

location awareness systems. A survey of existing legislation and policies on

involving individuals with a questionable capacity to consent is also conducted.
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* Chapter 9 (Conclusion): In this final chapter, the main contributions of this

research, its limitations, and oppotunities for further work are summarized.
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Chapter 2

Related Work and Technical

Background

This chapter focuses on related work in speech-based assistive technology, confidence

scoring in speech recognition, and spoken dialog systems. It also provides some

background in partially observable Markov decision processes (POMDPs) and their

application to spoken dialog management

2.1 Speech-Based Assistive Technology

Speech-enabled assistive technologies are a compelling application of automatic speech

recognition; people who cannot use other kinds of input methods into computers or

other devices may be able to control them using their voice. By way of example, many

individuals with mobility impairments, including some residents at The Boston Home,

use speech recognition software for a range of purposes. Some isolated-word recog-

nizers have been integrated into systems that control switch-based devices, including

nurse call systems and adjustable beds [10], while other residents use continuous-word

speech recognition software, such as Nuance's Dragon NaturallySpeaking or Windows

Speech Recognition, to access computers [7].

The success of commercial off-the-shelf speech recognition software varies among

people with physical disabilities. At TBH, some residents use such software exten-
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sively, others report occasional or frequent difficulties depending on the speech task,

quality of their speech, level of fatigue, or other issues, and still others have been

completely unsuccessful in their attempts to use automatic speech recognition. While

successful assistive technology adoption involves many considerations [42], improved

ASR could help lead to wider adoption of speech-based assistive technologies. Cur-

rently available commercial systems often use train the speech recognizer through

an initial training session or online speaker adaptation in order to reduce word-error

rates; in the case of continuous speech recognizers, the software might show a list of

hypotheses when appropriate. Notably, though, there appears to be little work in this

domain involving dialog management techniques to improve system performance.

Meanwhile, speech has been proposed as an interaction modality on a number of

assistive robots, including robotic wheelchairs [15, 22, 34] and humanoid assistants

[52, 56]. These robotic platforms are designed to assist with mobility, personal care,

information, or emotional needs. Along with being a natural way of interacting with

assistive robots, speech interaction may be be particularly useful for individuals with

fine-motor skill impairments that may prevent them from using existing typical input

devices.

2.2 Spoken Dialog Systems

A spoken dialog system (SDS) is an agent that interacts with the end-user who uses

speech. In its most general form, it includes the following components:

1. Automatic speech recognition (ASR): The user's input into an SDS is spoken

language, meaning that a speech recognizer is needed to convert human speech

utterances into a machine-readable form. The output from a speech recognizer

could include strings of words and statistics about how those strings match the

speech recognizer's models of speech.

2. Dialog management: The dialog manager receives the output from the ASR and

makes decisions about what actions to take. In principle, the dialog manager
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could vary greatly in terms of complexity; it could be range from a few rules and

consider only the most recent ASR output to more sophisticated models that,

for example, account for uncertainty in the ASR output and consider the history

of the dialog. This thesis focuses on modeling dialog processes as a partially

observable Markov decision process (POMDP), which we define in detail below.

Thus, we name our spoken dialog system the SDS-POMDP.

3. Output interface: The SDS must respond to the user or send messages to other

components of the system, based on the decision made by the dialog manager.

This might take on the form of a graphical display or speech synthesis using

text-to-speech (TTS) technologies. Some spoken dialog systems are designed to

interact with other systems; for example, a robot's SDS might send messages

to the robot's actuators to effect a certain action. Although a rudimentary

graphical and TTS output interface was developed for the prototype system,

these components of an end-to-end SDS are not the focus of this thesis.

2.2.1 Automatic Speech Recognition

Although the focus of this research is mostly on the POMDP dialog manager, un-

derstanding the nature of ASR outputs is important for at least two reasons: First,

although a POMDP, in an abstract sense, can handle any kind of observation about

its environment, the type of these observations have a substantial impact on how the

POMDP is actually constructed. Second, it is helpful to understand how ASR works

in order to grasp the terminology used in this thesis to describe certain components

of the SDS-POMDP, particularly its observation function.

Briefly, modern ASR systems, including the MIT SUMMIT system used in this

thesis, take input speech utterances (encoded digitally as audio files) and use proba-

bilistic models of acoustics and language to infer strings of words [29]. ASR can be

summarized by the following equation:

P(zja) oc P(alz)P(z) (2.1)
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where z is the hypothesized string of words and a is the acoustic evidence. P(alz) cor-

responds to the acoustic model that maps acoustic inputs to different speech sounds,

while P(z) refers to the language model that encodes the prior probability of the

string of words. Inferring the correct hypothesis is simply an arg maxz operation

over all possible strings of words. In its most basic form, therefore, an ASR system

generates a set of hypothesized string of words with acoustic and language model

probability scores. Some ASR configurations, including the one that was used in this

research, return an n-best list of hypotheses (in our case, n = 10). As described in

Chapters 3 and 4, information from the n-best list may also be useful for the dialog

manager.

As shown in Tables 6.2 and 1.2, ASR is not perfectly accurate, particularly for

users with speech challenges associated with their disabilities. Consequently, an ef-

fective dialog manager must be able to uncertainty in speech recognition hypotheses

while making good decisions. Designing a dialog manager with this property is the

focus of this thesis.

2.2.2 Rule-based Dialog Managers

In an SDS, the dialog manager is the subject of significant design and engineering ef-

fort. To illustrate, Paek and Pieraccini [53] provide an in-depth discussion of existing

production, large-scale dialog management systems, such as those used in automated

call centers. The construction of dialog managers is a major effort, with many person-

hours devoted to developing specifications for the spoken dialog system's behavior,

developing the system, testing extensively, and monitoring usage to make improve-

ments. Most existing dialog systems often use rule-based approaches for handling

speech recognition inputs and determining system actions. They may have large de-

cision trees that map speech recognition hypotheses to system actions and intricately

crafted error-handling techniques. Some dialog systems may simply use the top hy-

pothesized ASR result, processing it as if it were completely confident; others might

use confidence measures and set certain thresholds for confirmatory system actions.

Traditionally, these thresholds might be set by hand or learned from data.
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2.3 Models for Planning Under Uncertainty

This thesis models dialog management as a partially observable Markov decision

process (POMDP) and discusses (in theory, simulation, and experimental work) how

a spoken dialog system modeled as a POMDP (SDS-POMDP) produces robust dialog

performance. An introduction to Markov decision processes (MDPs) and partially

observable MDPs (POMDPs) is presented here as technical background.

MDPs and POMDPs are formulations for planning under uncertainty. In both

cases, "uncertainty" means that there is stochasticity in the domain that the agent is

considering. In an MDP, the agent knows what state it is in, but there is stochasticity

in actions; that is, the effects of system actions are not deterministic. A POMDP is a

generalization of a MDP: Along with stochasticity in system actions, the state is not

known, and the system can only make observations that may be informative about

the underlying state.

2.3.1 Markov Decision Processes (MDPs)

MDPs consist of the tuple {S,A,T,R,-} [47]:

" S: The set of states in the environment in which the agent may find itself.

" A: The set of actions that the agent may take.

" T: The transition function, T(S', S, A) = P(S'|S, A), which models, for each

state in S, the effect of each action in A in terms of transitioning to state S.

" R: The reward function, R(S, A), which describes the expected immediate re-

ward gained by the agent for taking an action in A while in state S.

* 7: The discount factor that expresses the relative value of future rewards as

a function of time; in some sense, y expresses the "time value" of the reward.

Typically, 0 < -y < 1; low values of y will bias the agent away from action

sequences that may have a payoff in the future. A discount factor of less than
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one, with bounded rewards, will also ensure that the expected discounted reward

is finite [36].

A canonical example of the Markov decision process is mobile robot path plan-

ning, with states corresponding to locations on a map, actions that may occur with

some error (such as overshooting or undershooting a desired translation), and rewards

(which may be positive or negative) for reaching the goal location, not reaching the

goal location, or colliding into objects. A policy, H : S -4 A, defines what action the

MDP should take in any given state; one way of defining the optimal policy, I*, is

the mapping of states to actions that maximizes the expected discounted reward [36]:

R =[E 7rt] (2.2)
t=1

2.3.2 Partially Observable Markov Decision Processes (POMDPs)

POMDPs generalize MDPs, adding the notion of observations, Z, and an observation

function, Q [16, 62]:

" Z: The set of observations that the agent may make about the environment.

" Q: The observation function, Q(Z, S, A) = P(ZIS, A), which models, for each

state-action pair, the probability of each observation in Z.

Extending the example above, a robot may not be able to determine exactly where

it is in the environment due to imperfect sensors, meaning that its true state is not

known. Like the fully observable MDP case, rewards are defined for every state-action

pair. However, because the agent does not know which state it is in, it must make

decisions based on its belief distribution over states, b(s). After each action and ob-

servation, the posterior belief can be calculated from the prior belief, the transition

function, and the observation function, as shown in equation 2.3. Therefore, we need

to compute a policy that maps all possible beliefs to actions, lI(b). The extension of

MDPs to POMDPs adds a number of other challenges, including substantial increases

in computational complexity required to compute an optimal policy [41]. In addition,
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most agents in POMDPs now have additional information-gathering actions to con-

sider - actions that decrease the entropy of the belief may help the agent increase

its expected discounted reward. In the robot example, a "sensing" action may incur

a small cost in terms of time, but it could help the robot localize itself and perform

better subsequent actions.

2.4 MDP and POMDP Dialog Management

In contrast to the rule-based, hand-crafted nature of many existing dialog manage-

ment systems, researchers have focused on formulating dialog management as a model-

based reinforcement-learning problem. By specifying a dialog manager as either an

MDP or POMDP, standard automatic methods of computing optimal policies can be

used; in other words, according to the specified reward function, the actions that the

dialog manager takes should be optimal. Taking this approach, it is envisioned, could

automate the construction of dialog managers, lead to more optimal dialog behaviors,

and ensure system robustness even as ASR performance degrades. In particular, this

last benefit is especially of interest due to the high ASR error rates of TBH residents

and other speakers with disabilities.

Although robot navigation initially seems quite different from spoken dialog man-

agement, they share certain features that make it possible to cast dialog management

as an MDP or POMDP. Specifically, dialog management is a stochastic domain be-

cause automatic speech recognizers may be imperfect sensors of the user's true goals

in interacting with the dialog system. Given these noisy ASR results, the challenge of

dialog management is to find the best system action to take, whether it be greeting

the user, asking a clarification question, or assuming that the ASR result was correct

and responding to the user; in other words, an optimal policy is equivalent to an

effective dialog manager.
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2.4.1 MDP-based Spoken Dialog Systems

Early work focused on dialog management as an MDP [45, 46, 611. In these dialog

managers, the MDP state generally reflects the state of the dialog. For example,

in a dialog system in which the user is specifying two entities, such as the origin

and destination of a flight, the states include all valid combinations of origins and

destinations, including whether the origin and destination "slots" have been filled in

the dialog. The probabilistic nature of speech recognition hypotheses is encoded in

the transition function, T [45]. For example, given a particular initial state s and an

system action, a, T encodes p(s'Is, a) for every possible new state s', based on the

performance of the speech recognizer.

2.5 POMDP-based Spoken Dialog Systems

One problem with the above formulation is that it requires the system to track the

state of the dialog accurately. More recently, increasing attention has focused on

modeling dialogs as partially observable Markov decision processes (POMDPs). This

model, first proposed by Roy et al. [59], treats the user's intent in the dialog as the

hidden state and speech recognition hypotheses as noisy observations of that intent.

As it is the focus of this thesis, we work through a detailed example of how a dialog

manager is encoded as a POMDP in this chapter.

The elements of the spoken dialog system POMDP (SDS-POMDP) are outlined in

Table 2.1. To help illustrate these elements, consider a simple, toy dialog system that

serves two functions: it can either make a phone call or report the weather forecast.

The speech recognition hypotheses in this example are mapped to specific concepts

with confidence scores.

As shown in Table 2.1, in an SDS-POMDP, the user is assumed to be in a state, S,

which is hidden from the system. Because the state is a hidden variable, the system

maintains a belief, b, which is a probability distribution that the system maintains

over states (user intents). The system makes observations (results from the automatic

speech recognizer) about the user's state, updates its belief about the hidden state,
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Table 2.1: Random variables in a SDS-POMDP

Entity Symbol Description Toy Example

States S The possible user intents. The get-weather-forecast,
state is a hidden variable; the sys- makephone_call

tem seeks to infer the user's in-
tent by making observations (the
user's speech utterances) and tak-
ing actions.

Actions A The actions that the system can GREET,
take. In a dialog manager, this
includes opening GREET actions, CONFIRM
terminal SUBMIT actions, which it get.weather-forecast,
takes once it is sufficiently confi-
dent about the user's intent, or CONFIRM
intermediate actions that might make-phone-call,
be used to acquire more informa-
tion, such as asking the user to SUBMIT
repeat a request, or confirmatory get-weather forecast,
questions about certain intents.

SUBMIT
make-phonecall

Observations 0 The speech recognition hypothe- ( get.weather-forecast,
ses that are observed by the di- confidence=0.98 ),
alog manager from the speech

recognizer. In the case of ( make-phone-call,
POMDP dialog managers, obser- confidence=0.41 )
vations consist of speech recogni-
tion hypotheses encoded as con- ( null (did not parse) )
cepts with associated confidence

scores. Details about how strings
of words are converted to con-
cepts can be found in Chapter 3.
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Figure 2-1: Plot of Sample SDS-POMDP belief. The horizontal axis corresponds to
each POMDP state, s, while the height of each bar is the belief probability in that
state. In this particular case, "dinner tuesday" (A) and "dinner thursday" (B) have
non-negligible probability.

and takes an optimal action depending on its belief. Three key functions encode these

relationships, as described in Table 2.2.

An example belief distribution is shown in Figure 2-1. This distribution is the

posterior that is generated with a uniform prior over states and a speech recognition

observation in which top hypothesis was "'dinner tuesday" and the confidence score

was 0.5. As expected, the state with the highest posterior probability is "dinner tues-

day"; however, this probability is not very high (less than 0.4) and the state with the

second-highest probability is "dinner thursday." The intuitive explanation for these

two facts is that the SDS-POMDP is not especially confident in the "dinner tuesday"

hypothesis, and that it is taking into account the tendency of "dinner thursday" to

be confused with "dinner tuesday." The details of the SDS-POMDP that enable it

to encode these insights algorithmically are discussed in Chapter 3.
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Table 2.2: SDS-POMDP probability functions

Entity Symbol Description Toy Example
Transition T(s', s, a) = T maps the current state from P(make-phone-calll
function P(s'js, a) the previous state s and the ma- make.phone.call, GREET )

chine's action a; it describes how 1
the user's intent s' changes as
a function of the user's previous P(get-weather_f orecasti
intent, s and the machine's re- makephone-call, GREET )
sponse a. Practically, when a di- = 0
alog terminates (the system takes

a terminal action), the dialog re-
sets to a new initial belief.

Observation Q(z, s, a) = Q is a model for how observa- P(make-phone-call|
function P(zls, a) tions are generated from different make.phone-call, GREET )

states and actions. Correspond- = 0.8
ing observation-state pairs might
have high probability. The obser- P(get weather_f orecast|
vation model is exactly the user make-phone-call, GREET )
model - it encodes the probabil- 0.2
ity distribution over possible ob-

servations for a given user intent
s and machine action a.

Reward R(s, a) R encodes the desired system R( make-phonecall,
function behavior. It describes the re- make.phone_.call ) = +10

wards or costs (negative rewards)
that the system incurs for ac- R(make-phone-call,
tions while the user is in the get.weatherforecast )
given state. "Correct" termi- = -100
nal actions might have positive

rewards, while "incorrect" ter-
minal actions should have neg-

ative rewards. Intermediate ac-

tions, meanwhile, such as asking

the user to repeat or requesting
confirmation, might be associated

with a small negative reward to
promote shorter dialogs.
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2.5.1 Computing a Policy

Given these random variables and probability distribution functions, it becomes pos-

sible to create a POMDP dialog manager. First, the model needs to be specified, with

all possible user intents mapped to states, all system responses to actions, all speech

recognition results to observations, and the transition, observation, and reward func-

tions defined. Then, the POMDP must be solved; that is, for every point in the belief

space, a mapping from beliefs to actions, called a policy, is determined. The policy

is denoted as II(b); it is a function that maps beliefs to actions. Various solution

techniques for POMDPs, methods such as Point-Based Value Iteration (PBVI) that

admit continuous observations (for confidence scores) have been used for POMDP

dialog managers [68]; approximation techniques, including modeling the POMDP as

an augmented Markov Decision Process (MDP), have also been employed to provide

reasonable policies that outperform models that do not assume observation uncer-

tainty [59]. In this work, an even simpler approximate POMDP solution technique,

QMDP, is used [48]. We attempt to characterize the performance of the dialog system

with the QMDP-derived solution.

In interacting with the SDS-POMDP, the user has a hidden goal state, speaks

utterances (observations), and receives system responses (actions) depending on the

belief state and policy of the SDS-POMDP. Updating the belief state is governed by

the following equation that updates the current belief, b, to the new belief, b':

b'(s') = P(s'z, a, b) (2.3)

= - P(zls, a) P(s'Is, a)b(s) (2.4)

where each of the terms and variables in Equation 2.3 are as described in Tables 2.1

and 2.2 and 71 is a normalizing factor.

In the context of this thesis, it is worthwhile to note the potential challenges of a

POMDP-based approach to dialog management. First, all of the internal probabilistic

models of the POMDP-the state transition model, the observation model, and the

reward function-must be learned or specified in some manner. In the absence of
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large amounts of training data, which may be labor-intensive to obtain, these models

need to be estimated or handcrafted by the designer. Second, the proper reward

function is not inherently clear for dialog POMDPs; to date, the values specified in

reward functions have been arguably arbitrary (e.g. +10 for a correct dialog, -100

for an incorrect dialog, and -1 for a clarification question). The relative values

in the reward function can have dramatic effects on the resulting policy, meaning

that care must be taken in specifying them in a manner that reflects user preferences.

Third, these models may not be entirely descriptive of user behavior. The observation

function, for example, only models the probability distribution over the user's state

and the immediate preceding system action, not the entire history of machine actions.

This model limitation might affect performance if, for example, the distribution over

hypotheses changes after multiple repeats of the same system action. While not all

of these issues can be addressed in a single thesis, they help both to identify possible

research directions and to understand the inherent limitations of the SDS-POMDP.

In terms of open problems, the main thrusts of possible work might be grouped

into three broad categories: extensions and refinements to the SDS-POMDP model

itself, including the incorporation of continuous observations in the form of confidence

scores [69], efforts to make solving SDS-POMDPs computationally tractable [70], and

approaches to learn the underlying models needed for the SDS-POMDP [22].

2.6 Confidence Measures for Speech Recognition

A useful component of effective spoken dialog systems is accurate confidence scoring

of speech recognition results - it would be helpful to the dialog manager had a

probability of the correctness of the incoming speech recognition hypothesis [30, 31,

32, 40]. A probabilistic measure of the accuracy of the hypothesized text of a spoken

utterance would make it possible for a dialog system to decide how to best respond.

For instance, it might take the action assuming that the hypothesized result is correct,

reject it and ask the speaker to try again, or request confirmation or clarification. A

few themes of the body of research on confidence scoring are discussed in this section.
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Feature Selection. One way of casting confidence scoring is to treat it as a

supervised learning problem: Given a training set of speech recognition hypothesis

and confidence or correct/incorrect labels, we can learn a function that predicts these

scores or labels for new speech recognition hypotheses. A wide range of statistics

from the speech recognizer have been shown to be useful features for confidence

scoring, including signal-level features of the utterance, additional statistics from the

speech recognizer's hypotheses, distributional features of the N-best lists, sentence-

level characteristics, or contextual features related to the state of the dialog and

the world. For example, Lemon and Konstas [44] used signal amplitude features

and grammar parsability as part of similar confidence scoring work. Meanwhile,

other work has used different discriminative machine-learning algorithms or have had

slightly different classification tasks - San-Segundo et al. [60], for instance, used

decision trees to classify utterances as being "in-domain" or "out-of-domain".

In dialog systems, dialog-level features, including the sequence of turns, have

also been shown to contribute to improving confidence-scoring performance. Most

notably, Lemon and Konstas [44] found that a user-system-turn n-gram (n = 5), which

describes the probability of all possible five-turn-sub-sequences in annotated dialogs,

was the feature that contributed most to information gain in their re-ranking classifier.

The key to overcoming the sparsity typically associated with higher-order n-grams was

the creation of large amounts of simulated data using hybrid supervised/reinforcement

learning techniques [27].

Recent work has sought to incorporate language model information or other dialog

context features as part of utterance confidence measures. For example, Gruenstein

[30] constructed a confidence scoring module by considering additional features at the

recognition and response levels of a spoken dialog system. Specifically, these statistics

were augmented with two new types of features: distributional features from the n-

best list, including the number of distinct possible actions and the purity of the n-best

list, and response-level features that provided some indication of whether the hypoth-

esis "made sense" in the context of the dialog; for instance, because a multimodal

map interface was part of this spoken dialog system, a geographical filter feature was
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used to determine whether the hypothesized utterance's location was a reasonable

one [31]. These additional features led to a statistically significant improvement over

the classification of correct and incorrect utterances using only ASR features used in

[32].

Applying Confidence Scoring to Dialog Systems. A robust confidence scor-

ing module can be used to improve the performance of a spoken dialog system. As

one example, at the aforementioned 5% false detection rate (incorrect utterances hy-

pothesized as correct), 66% of incorrect utterances were identified using the features

described in [32]. These results led to a 35% relative decrease in the concept error

rate in the weather domain.

2.7 Location-Aware Assistive Technologies

Location-aware technologies have several applications to assist people with disabili-

ties. People who are blind or have low-vision may benefit from devices that help them

localize or navigate unknown environments [37, 54]; somewhat similarly, individuals

with orientation difficulties may benefit from location-aware cognitive orthotics that

help them with wayfinding [64]. Location information might also be used to improve

ASR performance by re-weighing the language models used in the speech recognizer.

These technologies may also be useful for mobile robotic devices with assistive appli-

cations, such as robotic wheelchairs.

In specialized-care settings such as The Boston Home, location-aware technologies

may be able to assist with wander management - some individuals who remain

mobile in power wheelchairs are at risk, due to cognitive challenges, of unknowingly

wandering outside or off grounds. A system that could alert staff of a wander event

could augment existing procedures. Indeed, this is not a unique problem at The

Boston Home; many studies cite wandering as an increasingly important and difficult-

to-manage issue for people with dementia [43]. In fact, many commercially available

systems that seek to address the problem of "wander management" have become

available over the last several years [20, 21].
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A policy question relates to the ethics of deploying such wander-management

technologies: while they may have benefits in terms of the safety of individuals, such

location tagging may have an adverse effect on the dignity or personhood of the par-

ticipants in the system. Over the past decade, this question has received substantial

attention from ethicists focused on technology and aging, with some arguing that it

is particularly complicated to strike a proper balance when it comes to technological

interventions such as electronic tagging [14, 38, 57]. Any implementation of location-

aware assistive technologies must be carefully considered to be accepted by residents,

staff, and caregivers. There is a need for a clear policy to address these concerns.
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Chapter 3

Spoken Dialog System

Development

This chapter focuses on the design and development of the elements of the SDS-

POMDP. While the focus of this thesis is on the data, models, and software that

constitute the POMDP dialog manager, the hardware selection and interface design

are also briefly discussed.

3.1 System Functions

Through conversations with residents and staff at TBH, a number of useful features

were identified for a personal dialog system for residents at TBH:

" Time and date: A clock with a graphical user interface, or, for visually impaired

residents, the ability for the system to speak the time and date could be a useful

feature for TBH residents onboard their wheelchairs.

* Weather forecasts: Many TBH residents spend time outdoors on pleasant days.

Multiple sclerosis leaves many residents susceptible to high temperatures and

humidity, making weather information particularly useful.

" Activities schedules: TBH staff organize a wide range of activities, from birth-

day parties to art classes and religious services. The event calendar is posted in
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printed format throughout the building, but having access to the event schedule

through spoken dialog could make it easier for residents to stay informed.

9 Breakfast, lunch, and dinner menus: Many residents expressed a strong interest

in knowing what's on the menu.

e Making phone calls more easily (using Skype): Using conventional telephone

devices can be difficult for people with disabilities due to the small keypad but-

tons and the challenge of holding a handset. Some residents use adapted phones

with larger buttons and alternative switches; a speech-activated telephone could

eliminate the need for physical switches entirely.

e Television schedules: Most residents have televisions in their own rooms, and

being able to query information about upcoming television programs could be

useful.

e Environmental control: Many residents report difficulty operating light switches,

nurse call buttons, or controlling devices like fans or electronics. Enabling

speech-based access to these devices could improve their independence.

e Sending messages to other residents: It can be tiring or difficult for some res-

idents to control their wheelchairs and drive to visit other residents. TBH-

specific messaging software might make socializing easier.

e Personal notes and reminders: TBH residents have activities, outings, appoint-

ments, and visitors. A speech-enabled personal reminder system could help

residents keep track of their own schedules.

The first four system functions (time, weather, activities, meals, and phone calls)

were selected for this thesis. Table 3.1 shows the specific APIs that were used to

acquire this information.
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Table 3.1: Third-party application programming interfaces (APIs) for dialog system
Function API Notes
Time/Date System time libraries
Weather Google Weather API For Dorchester, MA (ZIP code

02124)
Activities Google Calendar API TBH activities were entered into

an "Activities" Google Calendar
Menus Google Calendar API Menus were entered into a

"Menus" Google calendar in a
structured manner (breakfasts,
lunch, and dinner at certain
times on each day)

Phone Calls Skype4Py API Skype4Py is a Python wrapper
for the Skype API, which allows
the Skype interface to be called
programmatically.

3.2 Data Collection

To construct the SDS-POMDP system, data was collected from a total of 20 re-

search participants in our research lab and at The Boston Home. Participants were

prompted with possible goals and asked to speak into a microphone, prefacing a

natural-language question inquiring about the goal with an activation keyword like

"chair" or "wheelchair". A basic power-based speech-activity detector was used to

automatically segment the speech into separate utterances. An example file from the

aligned dataset, with the type of annotated data, is shown in Table 3.2:

Table 3.2: Sample annotation for utterance file.

Filename: lab03-20101105_164.wav
Sampling Rate: 16kHz

Speaker: lab03

Date: 2010/11/05

Goal: ( lunch, Tuesday )
Orthography (ground-truth transcript): chair what's lunch for Tuesday

This labeled data (2039 utterances in total) was used for a number of models in
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the SDS-POMDP.

3.3 Automatic Speech Recognizer

The SDS-POMDP uses the MIT SUMMIT speech recognizer [29]. To train the lan-

guage models of the speech recognizer, the labeled utterance was used to build a

trigram language model with classes to help overcome sparsity. For example, all of

the days of the week were placed in a single class called DAY; in training the language

model, all of the days of the week were replaced by the word DAY, the trigram proba-

bilities are trained with this word, and then the trigrams involving days of the week

use this probability.

Overall, the recognizer uses a fairly constrained 200-word vocabulary in this recog-

nition task. This vocabulary include tokens such as <noise>, <uh>, and <um>. For

the duration of all experiments, the same 200-word language model was used. SUM-

MIT itself was run locally on the netbook or laptop computer used in each of the

deployments or experiments with the dialog system, or run in batch mode on CSAIL

Spoken Language System (SLS) servers.

3.3.1 Speech Recognition Outputs as Dialog System Inputs

As discussed in section 2.2.1, an ASR system like SUMMIT processes take speech

utterances in the form of audio files and infer strings of words based on its acoustic

and language models, along with statistics in the form of log probability scores. In

addition, multiple ranked strings of words are returned in our configuration.

Our dialog system uses the notion of dialog manager observations at a "concept"

level; that is, it reasons about certain concepts as opposed to reasoning directly

about strings of words to make decisions. Some examples of concepts are "make

phone call" and "weather today". As a result, it is necessary to map strings of words

to concepts. In the current implementation, the system uses a very simple set of

keyword-extraction rules:
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" The top hypothesis string of words is the input into a decision tree function

that chooses the concept. For example, the decision tree determines whether

the word "weather" or "forecast" is in the word string. If one of these words

is present, then the decision tree looks for a word like "today", "tomorrow", or

"monday."

" If the top hypothesis does not map to any of the concepts in the decision tree,

then the speech recognition output is assigned the "null" concept, which means

that it does not map to any of the pre-defined concepts.

" If a word string maps to multiple concepts, one of the concepts is arbitrarily

chosen, based on the structure of the decision tree. For example, the word string

"what is the weather today tuesday" maps to "weather today" simply because

This procedure was chosen for its simplicity and ease of implementation. There are

clear limitations: for example, it does not consider alternative, lower-ranked hypothe-

ses, is brittle when there are word strings that might map to multiple concepts, and

requires the user to say the necessary keywords. More sophisticated approaches could

learn a probabilistic mapping of word strings to concepts from data, have methods for

handling out-of-vocabulary words, or possibly consider multiple concepts. Overall,

though, because residents at The Boston Home prioritized system reliability over be-

ing able to speak a large vocabulary of words, the focus was on the dialog management

component of the spoken dialog system.

Meanwhile, the ASR outputs are also used to compute a confidence score, which

expresses the probability of correctness of the ASR result. As discussed in chapter 4,

this module is more sophisticated and uses many more features from the ASR outputs.

An implicit hypothesis is that a simple keyword extractor combined with a accurate

confidence score is sufficient for the dialog manager to perform effectively.
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3.4 POMDP Dialog Manager

The central research and engineering effort of this thesis was the POMDP-based dialog

manager. As discussed in Section 2.5, modeling a dialog manager as a POMDP is a

principled, data-driven method to produce a dialog manager that exhibits desirable

behavior. This section discusses how the data was used, with a special emphasis

on the assumptions and approximations used to construct the different models that

constitute the SDS-POMDP. By illuminating the design decisions, it becomes easier

to understand the strengths and limitations of the SDS-POMDP, identify areas of

further work, and explain the behavior of the system in later chapters.

3.4.1 States, S and Actions, A

The SDS-POMDP discussed in this thesis is essentially similar in structure to the

toy SDS-POMDP shown in Table 2.1 but with more states. The states are the user

goals; for example, the user may want to ask for tomorrow's weather forecast, make a

phone call, or have the system go into "sleep mode". In all, there are 62 states. The

actions include "submitting" and "confirming" the possible user goals, along with

actions corresponding to 1) asking the user to repeat and 2) terminating the dialog.

Thus, there are 2(62) + 2 = 126 actions.

Other state spaces for SDS-POMDPs have been proposed in the literature. For

example, Williams and Young [68], in a flight-booking dialog system, employs a fac-

tored state space that encodes whether various slots in the dialog have been grounded

or confirmed. Indeed, many of the states share certain conceptual (e.g. weather for

today, tomorrow, or another day of the week) or temporal (e.g. weather, activities, or

lunch menus for Wednesday). However, this was not explored in depth in this thesis.

3.4.2 Observations, Z

The observations made by the SDS-POMDP are the audio files of the user's utter-

ances, as processed and encoded by the speech recognizer. The form of this encoding

is shown below in the form of the output from the SUMMIT XML-RPC recognizer.
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Table 3.3 shows ten hypotheses from a single utterance, ordered by score. The tab-

separated columns, from left to right, are the total score, the acoustic score, the

language model score, the number of acoustic segments. and the number of words.

The information captured by the speech recognizer includes ranked hypotheses of

word strings, along with acoustic and language model scores for each hypothesis.

These features are used to compute an SDS-POMDP observation in the form of a

mapping to one of 65 tokens (one of the 62 concepts, "yes" or "no", or "null" if the

hypothesis could not be parsed) and a confidence score.

Table 3.3: Sample ASR output for a single utterance

total log acoustic language

probability model log model log phones words hypothesis
probability probability

-7.4845 -3.0617 -4.4227 28 5
chair what time is it

-12.0269 -3.8957 -8.1312 23 3 chair what is
-12.0955 -0.2425 -11.8530 26 3 chair what's answer
-12.4355 -5.0344 -7.4010 24 4 chair what is it
-13.0177 -1.9230 -11.0947 27 4 chair what time is
-13.1698 -7.3272 -5.8427 22 2 chair voice_ on
-13.3031 -6.8496 -6.4535 25 2 chair cancel
-13.4944 -3.1169 -10.3776 24 4 chair time is it
-14.2099 -1.0144 -13.1955 26 3 chair what answer
-14.8912 -5.8312 -9.0599 25 3 chair what time

TBH residents expressed the importance of a reliable, robust system over the

ability for the system to understand a wide spectrum of phrases related to the concept.

For this reason, a simple keyword extractor was used to map hypotheses to concepts;

for example, the hypothesis "what is the weather for tomorrow" would map to the

concept ( weather, tomorrow ). Clearly, this is a simplification of natural spoken

language, but it was deemed sufficient for this application.

To compute a confidence score, the features of the n-best list are used. Intu-

itively, high acoustic and language model scores, grammatically correct hypothe-

ses, or a high level of agreement among all of the hypotheses might suggest that a

high confidence score should be assigned to a hypothesis; details of the confidence

scoring module used in this SDS-POMDP are described in Chapter 4. In the end,
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the speech recognizer's outputs are encoded into a single concept with an associ-

ated confidence score. The above ASR output, for example, might be encoded as

z = (concept = timeof _day, conf idence = 0.56); features such as the acoustic

score and the diversity in the n-best list might have contributed to this confidence

score.

3.4.3 State Transition Function, T

The state transition function encodes changes in the underlying hidden state at each

turn, given the previous state and action. More precisely, it is P(S'IS, A), the con-

ditional probability of a new state, S', given the previous state, S, and the system

action, A. For the purpose of modeling dialog interactions with a POMDP, we make

the assumption that, in any given dialog, the user's goal is fixed; that is, the user

does not change his goal over the course of the dialog, or does not explicitly "give

up" on the original intended goal.

The assumption that the user's goal is fixed in a POMDP dialog manager is a

common simplification [59, 58, 68] in SDS-POMDP models. Systems with factored

state spaces, as described above, use a deterministic transition function when, for

example a state variable transitions from "grounded" to "confirmed" [68]; in this

system, though, no such transitions can occur over the course of a single dialog.

3.4.4 Observation Function (User Model), Q

The observation function is a probabilistic map from states and actions to observa-

tions, P(zIs, a). In words, it describes, given a particular user state and the previ-

ous system action, the distribution of observations (pairs of concepts and confidence

scores). The observation function is learned from data; that is, the system uses ac-

tual speech recognition outputs with known states and actions in order to learn this

probabilistic function. It is, as described in Section 2.5, the user model: it encodes

the speech hypotheses that are generated when the user has a particular goal and the

system has just performed a certain action.
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The observations from the speech recognizer consists of a discrete part (the con-

cept) and an continuous part (the confidence score). We call these two parts zd and

ze, respectively, and factor the observation function into two parts as per equation 3.1

using the multiplication rule of probability:

P(zd, zcIs, a) = P(zdls, a)P(zs, a, Zd) (3.1)

Conditioning zd on the user goal, s. If the dialog system could perfectly

reproduce the speaker's utterance 100% of the time, then the observation function

would be deterministic; for example, if the words "lunch" and "today" were observed

only when the user wanted to know the concept (lunch, today), then P(zls, a)

would be unity for that goal and zero otherwise. However, the speech recognizer is an

imperfect information source. For example, some of the utterances in which the user

seeks to know the concept (lunch, today) might be incorrectly recognized as other

concepts; meanwhile, other utterances with different true goals might be recognized

incorrectly as (lunch, today). The labeled training data can be used to generate

the probability of a particular observation given a particular state by counting the

number of times that observation, z*, occurs as a fraction of all observations, as shown

in equation 3.2.

P(z~ s, a) = c(z*, s, a)
Z~zdcIs, a)ad (3.2)

Conditioning on the system action, a. The observation function also depends

on the preceding system action, a - the user's utterance is clearly influenced by

the previous system prompt. The utterances collected from research participants

implicitly assume that the previous system action was GREET; the data collected did

not capture the user's response to confirmation questions or incorrect terminal actions.

As a result, a few assumptions need to be made.

First, users may be likely to answer confirmation questions with a "yes"l or "no"

response. Specifically, if the correct user goal is being confirmed, there should be

a high probability that the user will respond with "yes"; if an incorrect user goal

is being confirmed, a high probability should be associated with a "no" response.
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Importantly, "yes" and "no" observations need to be treated in the same way as

other observations in equation 3.2.

From early data collection, another insight was that, when prompted with a con-

firmation question, the user might speak an utterance corresponding to the original

goal. For example, if the user's goal is to know the weather and the system asks,

"Did you want to know the lunch menu?", the user might respond, "No, what is

the weather?" As a result, we assume that, when prompted with a confirmation

question, the user will either speak an utterance corresponding with the desired goal

or the correct (yes or no, depending on concept being confirmed) confirmation ut-

terance. Consequently, conditional probability distribution is the normalized sum of

two distributions, as defined in equation 3.2.

Lastly, when the system takes an incorrect "terminal" action (submitting an incor-

rect user goal), we assume that the user will provide an utterance either corresponding

to "no" or the correct goal. In doing so, the SDS-POMDP should extinguish the prob-

ability mass associated with the incorrect goal. To illustrate, if the user's actual goal

is X, a different goal is Y, and the preceding system action is CONFIRM Y, then a very

low probability is assigned to P(z = NO|X, CONFIRM Y).

Incorporating confidence scores, zc. In addition to being one of 65 possible

discrete observations, the observation includes a continuous part, the confidence score.

As expressed in equation 3.1, learning the model of confidence scores (a continuous

observation space) for every state, action, and observation triple seems potentially

daunting in terms of the data required; clearly, some approximations are needed.

A model similar to the one used by Williams [66] is used for this SDS-POMDP.

Specifically, we use the following approximation:

P(zc Is, a, z () P(zclcorrect observation) if zd + S (3.3)

P(zclincorrect observation) otherwise

Equation 3.3 encodes two different conditional probability density functions: 1) the

distribution of confidence scores when utterance hypothesis is correct (P(zcIcorrect observation)),
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and 2) the distribution of confidence scores when there is an error ( P(zclincorrect observation)).

These two distributions reveal that the confidence score contains important informa-

tion about whether the observed concept is correct or incorrect. Figure 3-1 shows

histograms of confidence scores for top hypotheses that are correct and incorrect.

During the belief update step of the SDS-POMDP, we draw from the "correct obser-

vation" distribution for the state corresponding to the observation concept and from

the "incorrect observation" distribution for all other states.

Histogram of confidence scores for correctly recognized utterances (training se) Histogram of confidence scores for Incorrectly recognized utterances (trainIng set)
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Figure 3-1: Left: Distribution of confidence scores for top hypotheses in training
set that were correct. Right: Distribution of confidence scores for top hypotheses in
training set that were incorrect.

This approximation assumes that the distribution of confidence scores for correct and

incorrect observations are the same for every concept; however, it helps overcome data

sparsity issues while still capturing the key insight that the confidence score reflects

whether the utterance has been correctly or incorrectly recognized.

3.4.5 Reward Function

A challenge in developing SDS-POMDPs is determining an appropriate reward func-

tion; indeed, this is still an open challenge [67]. In general, the characteristics of a

reasonable reward function this task domain are:

e The highest reward should be associated with the correct terminal action, since

this is the desired behavior of the SDS-POMDP.
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" Incorrect terminal actions should be assigned large negative rewards, since this

is precisely the kind of behavior that the SDS-POMDP should not exhibit. The

relative values of rewards for correct and incorrect terminal actions contributes

substantially to how much risk the SDS-POMDP in submitting a terminal ac-

tion, as Chapter 6 will show.

* A small negative reward should be assigned to asking the user to repeat his or

her query. The magnitude of this reward also influences when the SDS-POMDP

will submit a terminal action instead of asking the user for more information.

" Small negative rewards should also be assigned for confirmation questions. The

magnitude of asking a correct confirmation question should be smaller than

simply asking the user to repeat (since it may be reassuring if the SDS-POMDP

asks to confirm the user's actual goal); meanwhile, the magnitude should be

larger for an incorrect confirmation question.

3.4.6 Policy, 11

The policy computed by solving the SDS-POMDP seeks to maximize expected total

reward. The challenge, however, is that the expected total reward may not be a

perfect representation of the user's satisfaction. We use the QMDP approximation to

compute a policy for the SDS-POMDP. Chapter 6, which discusses the search over

reward parameters to optimize SDS-POMDP performance, provides more details.

3.5 Interface Design

Along with the speech recognizer and the POMDP dialog manager, the end-to-end

spoken dialog system includes several other modules that are required for it to operate.

1. Given that the intended users of the SDS-POMDP have difficulty pushing

buttons or activating switches to access electronic devices, a push-to-talk sys-

tem would be undesirable. A simple GStreamer-based speech activity detector
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(SAD) is used to automatically detect the start and end of speech input [51].

Briefly, the endpoint detector relies on a few parameters, including energy an

threshold, minimum-duration before detecting a speech segment , and holdover

time after the system drops below the energy threshold. Hand-tuning these pa-

rameters produced reasonable performance, particularly by using a close-talking

microphone in the experiments.

2. The different user goals manifest themselves in different ways in the actual

spoken dialog system. Instructing the system to wake up or go to sleep changes

the activate state of the system; if the system is sleeping, for example, then

it must be woken up before it will provide the user with other services. The

interface also needs other components that translate the system actions and

returned data from APIs into text outputs that are meaningful to human users

that can be displayed visually or spoken by a voice synthesizer.

3. A basic graphical user interface is used for the deployed and experimental SDS-

POMDP, as shown in Figure 3.5. The simple GUI shows prompts and system

information in text form. The "Awake" box changes color and reads "Listening"

while the user is speaking an utterance.

TBH Resident interface..x

Mon, Apr 16, 2012, 10:52 AM

Phone Available

You asked about today's activities.

Today's activity schedule:

09:30am: Coffee and News

01:00pm: 2nd Floor Store

01:45pm Movie

03:00pm: Bridge.

Figure 3-2: Graphical user interface (GUI) of SDS-POMDP
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3.6 Hardware Selection

We use a netbook with Ubuntu 10.04 to deploy the spoken dialog system. Figure 3.6

shows one system setup at The Boston Home. In this particular case, the system is

available to the user near his bed; he can use the system while in bed or by driving

up to it in his wheelchair.

Figure 3-3: Example setup of speech interface in resident room at The Boston Home.
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Chapter 4

Utterance Confidence Modeling

As discussed in Chapter 3, observations in the SDS-POMDP have a discrete part

(the concept to which the top ASR hypothesis maps) and a continuous part (the

confidence score). The confidence score encodes the certainty with which the speech

recognizer is correct; consequently, different scores for the same concept have substan-

tially different effects on the SDS-POMDP's belief distribution. Accurate confidence

measures, therefore, are critical for good system performance. This chapter focuses

on the development and evaluation of the utterance confidence scoring model used in

the SDS-POMDP.

4.1 Problem Definition

For the SDS-POMDP, we seek a probability of correctness of the concept hypothesis,

zd. This can be expressed as P(zd = zgjw), where Zd is the concept of the top ASR

hypothesis, zg is the concept of the ground-truth utterance, and w is the output of a

speech recognizer. The output w is in the form of ranked hypotheses in an n-best list,

each with acoustic and language model scores. A sample output from the SUMMIT

speech recognizer is shown in Section 3.4.2.

A few notes about the design of the confidence-scoring module are warranted.

The experiments and system development discussed in this chapter assign a confidence

score to the top hypothesis in the n-best list. Furthermore, this confidence score seeks
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to reflect the probability that this hypothesis concept accurately maps to the ground

truth concept, not that each word is correct or that the utterance as a whole has

been correctly recognized; we are assigning a probability of correctness at the concept

level. It is worthwhile to note that other formulations of the problem are possible;

for example, one could seek to assign confidence scores to every hypothesized in the

n-best list, or even every observation in the SDS-POMDP's observation space based

on the data. More generic word-based or utterance-based confidence scoring might

also have been employed, and the results could have been used to inform a concept

confidence score. However, given the required task (assigning a confidence score for

a given hypothesis concept) and the data available for this problem, the approach

taken was deemed most viable.

For this task, 2701 utterances from 17 different individuals in the lab and at The

Boston Home were used. Each of these utterances were labeled with their ground-

truth orthography (transcript) and processed by the SUMMIT speech recognizer.

Each of the hypotheses, with associated acoustic and language model scores, are

used as individual data points in the classification task, leading to 25869 (up to 10

hypotheses per utterance) data points that are divided into a training/test set by a

90/10 split.

It is worthwhile to comment on the use of 10 hypotheses per utterance and treat-

ing them as separate data points. This is an unusual setup for at least two reasons:

First, the way that the problem has been defined is to classify the top hypothesis.

Second, because the hypotheses are drawn from the same underlying utterance, they

cannot be considered independent observations. We decided to use all of the hy-

potheses from each utterance was done in order to create a balanced dataset with

a roughly equal number of positive and negative training examples; using only the

top hypotheses would have resulted in about 80% of the training examples being

correct, and sub-sampling from the set of correct examples to create a balanced set

of positive and negative examples would have resulted in an even smaller training

set. While collecting more data from laboratory participants or other sources might

be inexpensive, collecting more in-domain data from TBH participants would have
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been relatively costly and time-consuming. Importantly, the ten hypotheses from any

given data point were either all assigned to the training set or all assigned to the test

set in learning the classifier; therefore, no training examples are part of the test set.

4.2 Feature Engineering

Given the high dimensionality of any output w, a more tractable approach is to

extract features from w and learn confidence scores based on these feature values.

Potential features were identified manually by examining the outputs of correctly and

incorrectly recognized utterances. These features were identified from preliminary

data exploration and existing work in the literature on confidence scoring [32, 30,

60]. For example, a high-level of diversity in the n-best list, the presence of many

stop words in an utterance, or the presence of words that were often confused often

seemed to suggest that the hypothesis was incorrect. Features were computed from

the ranked n-best lists of each of the utterances and corpus-level information from the

training set. The features that were eventually selected by the AdaBoost classifier

are described in more detail below.

Concept-level features: The hypothesized concept itself could provide impor-

tant hints as to whether the hypothesis is correct or incorrect. These features include:

e asrclassifier is an binary feature that simply indicates whether the hy-

pothesis maps to the "null" concept; since these hypotheses are, by definition,

incorrect, all of the data points with a value of 0 for this feature should be

classified as incorrect.

ASR outputs: The log probabilities of the acoustic, language model, and total

scores provide some signal related to the correctness of a hypothesis. Useful features

include:

e onetwodifferencetotal: The difference between the total log probability

score of the top hypothesis and the total log probability score of the second-

ranked hypothesis in the n-best list.
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" normalizedlm_score: The language model log probability score of the hy-

pothesis divided by the number of words in the hypothesis. Normalizing the

score in this manner removes the correlation between the sentence length and

the language model log probability, since this language model score is simply

the sum of the log probabilities of the trigram scores in the language model.

" onetwodif f erenceim: Similar to onetwodif f erencetotal, the value of

this feature is the difference between the language model log probability scores

of the top- and second-ranked hypotheses.

Sentence- and word-level features: The "grammaticality" of the sentence,

the number of repeated or stop words, or the count of different part-of-speech tags in

a sentence could be useful features. Some data exploration using the Stanford parser

on the dataset to automatically determine whether sentences were grammatical were

not successful, perhaps because many hypotheses with the correct concept were not

strictly grammatically correct, or many hypotheses with the incorrect concept were

grammatically valid. However, taking counts of different parts of speech, such as

adjective phrases, noun phrases, and verb phrases, seemed to be more promising.

These features include:

" stop-words-fraction: The fraction of words in a hypothesis that are short

function words ("stop words"), including "the", "is", "at", "and", "which" and

"on" is used as a feature of correctness. Hypotheses that have a high fraction

of stop words might be more likely to be incorrect; for example, it seems likely

that the hypothesis "it the time of the" (with a stop-words_fraction of 0.8)

may be incorrect.

" multiple-dayscount: This feature counts the number of "day" words (e.g.

"today", "tomorrow", "monday", "tuesday", ... ) in a hypothesis. A higher

number of day words, particularly two or more, might suggest that this is a

speech recognition error. For example, the hypothesis "what is lunch monday

wednesday" would have a value of 2 for this feature.
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n-best list features: A number of features can be extracted from the grouping

of utterances (up to ten ranked hypotheses in our configuration). The difference in

scores between the top hypothesis and the other hypotheses or the purity or diversity

of concepts or words in the n-best list at a concept or word level are among the many

possible statistics that can be computed.

" nbestrank: The rank, from 1 to 10, of the hypothesis in question within its

n-best list is used as a feature. Intuitively, we might expect lower-ranked hy-

potheses to tend to be incorrect more frequently than higher-ranked hypotheses.

" category-andaction-entropy: The diversity of the n-best list is expressed

in terms of its entropy, defined as - E p(xj)logj0 (p(xz)), where x is a concept

and p(xi) represents the "probability" of that concept in the n-best list. This

feature takes on a value of 0 if all 10 hypotheses have the same concept and 1

if every hypothesis maps to a different concept.

* log-hypothesis-high-purity-fraction: This feature is computed from the

fraction of the n-best list that is comprised of the most popular concept. For

example, if 6 out of 10 hypotheses map to the same concept, then the logarithm

of 0.6 is used (the log probability is used for numerical reasons for AdaBoost).

e current hypothesis _nbest-purity: The fraction of hypotheses that map to

the same concept as that of the hypothesis being considered is used for this

feature.

" log-totalscore_fraction: The total log probability score for the given hy-

pothesis is expressed as a fraction of the sum of all log probability scores in the

n-best list and used as a feature.

Corpus-level features: A number of summary features on the training set as

a whole are also used as features. For instance, the most common words that were

incorrectly inserted, missed, merged, or split could be determined from the recognition

results on the training set, and the presence of these words was used as a feature.

59



" merged-word.pairs and split-word-pairs: SUMMIT computes summary

statistics on the words that were merged and split most often. The number

of these words were counted for each of these features.

" speaker: An indicator function corresponding to whether the speaker was from

TBH, the target population, was used. This information should be readily

available in the test set because each dialog system is configured for a specific

setting and person.

4.3 Feature Selection with AdaBoost

To assign confidence scores to the data, a two-step process was used. First, using

AdaBoost [26], a classifier for correctly and incorrectly hypothesized utterances was

trained. Although the ultimate goal of this supervised learning task is regression (i.e.,

to learn a function that maps features to a meaningful confidence score), AdaBoost

offers an attractive framework for selecting relevant features. Specifically, AdaBoost

is an iterative algorithm that combines a collection of weak classifiers to produce a

single, strong classifier. At each iteration, a weak classifier is chosen and assigned a

weight. Critically, the loss function that AdaBoost seeks to minimize at each iteration

places more weight on datapoints incorrectly classified by the existing collection of

classifiers.

The trained AdaBoost classifier assigns a positive or negative prediction to each

datapoint, based on the sign of the sum of weighted weak classifiers. However, for

regression, the score itself can be used. A logistic curve was fit to the AdaBoost

scores to the labeled data. The evaluated logistic function is interpreted by the SDS-

POMDP as the confidence score.

It is worth noting that more features than those explained in the previous section

were evaluated by AdaBoost. An attractive property of this algorithm, though, is that

AdaBoost only selects those features that have an impact in reducing the weighted

classification error.
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4.4 Classifier Performance

Figure 4-1 shows the performance of AdaBoost on the training and test set at each

iteration. The performance on the test set reaches a minimum error rate of 6.9%.

Table 4.1 lists the features selected by AdaBoost at each iteration. The AdaBoost

classifier greedily chooses the feature and threshold at each iteration that minimizes

the weighted classification error. Some important features include the concept clas-

sifier itself ("null" observations are classified as incorrect), the "purity" of the n-best

list (the fraction of hypotheses that map to the same concept), and the difference in

the total ASR score between the top and second hypothesis.

Figure 4-2 illustrates the fit of the logistic curve to the training data. The function

representing this curve is used by the confidence scoring module in the SDS-POMDP.
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Figure 4-1: Performance of AdaBoost by iteration on training and test sets
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Table 4.1: Features selected by AdaBoost

Training Set Test Set

Iteration Selected Feature FPR FNR FPR FNR

0 asr-classifier 0.00% 15.02% 0.00% 14.75%

1 currentihypothesis-nbest-purity 0.00% 15.02% 0.00% 14.75%

2 log-hypothesisihigh-purity-fraction 5.43% 9.78% 5.56% 9.65%

3 one-two-difference-total 4.73% 8.03% 5.12% 7.97%

4 asr-classifier 4.73% 8.03% 5.12% 7.97%

5 nbest-rank 3.93% 8.08% 4.01% 7.91%

6 current hypothesis-nbest-purity 4.55% 7.95% 4.89% 8.06%

7 normalized Im-score 3.03% 6.87% 3.21% 7.09%

8 one-two-difference-lm 4.69% 6.49% 5.03% 6.33%

9 asr-classifier 2.70% 7.34% 2.77% 7.55%

10 category-and-action-entropy 2.91% 6.81% 3.17% 7.22%

11 current hypothesis-nbest-purity 4.41% 4.03% 4.78% 3.72%

12 one-two difference-total 3.86% 5.50% 4.54% 4.76%

13 loghypothesis-high-purity-fraction 3.40% 4.35% 3.96% 3.19%

14 asr-classifier 3.21% 6.02% 3.76% 5.03%

15 one-two difference-total 3.37% 4.65% 3.96% 3.48%

16 currentihypothesis-nbest-purity 3.06% 4.46% 3.30% 3.81%

17 merged-word-pairs 3.40% 4.23% 3.99% 3.30%

18 asr-classifier 2.64% 4.81% 2.99% 4.10%

19 category-and-action-entropy 3.38% 4.26% 3.94% 3.28%

20 current -hypothesis-nbest-purity 2.88% 4.72% 3.10% 4.12%

21 split-word-pairs 2.35% 5.25% 2.79% 4.69%

22 speaker 2.96% 4.83% 3.23% 4.47%

23 current hypothesis-nbest-purity 2.43% 4.89% 3.01% 4.47%

24 one-two difference-Im 2.86% 4.53% 3.34% 3.92%

Continued on next page
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Training Set Test Set

Iteration Selected Feature FPR FNR FPR FNR

25 asr-classifier 2.33% 5.00% 2.83% 4.67%

26 category-and-action-entropy 2.93% 4.49% 3.37% 3.92%

27 split-word-pairs 2.40% 4.88% 3.06% 4.23%

28 currentihypothesis-nbest-purity 2.58% 4.55% 3.28% 3.65%

29 log-hypothesis-high-purityifraction 2.49% 4.56% 3.14% 3.63%

30 normalized-Im-score 2.48% 4.53% 2.86% 3.92%

31 one-two-difference-total 2.46% 4.67% 3.01% 3.79%

32 one-two-difference-lim 2.44% 4.78% 2.88% 4.16%

33 one-two-difference-acoustic 2.35% 4.80% 2.97% 3.88%

34 normalized-acoustic-score 2.75% 4.39% 3.19% 3.76%

35 asr-classifier 2.26% 4.98% 2.83% 4.16%

36 one-two-difference-total 2.78% 4.37% 3.23% 3.81%

37 current hypothesis-nbest-purity 2.30% 4.67% 2.99% 3.94%

38 log-hypothesishigh-purity-fraction 2.44% 4.42% 2.99% 3.85%

39 one-two differenceIm 2.31% 4.77% 2.92% 4.05%

40 merged-word-pairs 2.33% 4.77% 2.83% 3.92%

41 current hypothesis-nbest-purity 2.49% 4.57% 3.37% 3.68%

42 stop-words-fraction 2.40% 4.59% 3.14% 3.68%

43 multiple-days-count 2.49% 4.52% 3.21% 3.65%

44 one-two-difference-total 2.50% 4.41% 3.34% 3.57%

45 asr-classifier 2.36% 4.72% 3.01% 3.85%

46 category-and-action-entropy 2.62% 4.30% 3.43% 3.54%

47 asr-classifier 2.35% 4.70% 3.06% 3.74%

48 category-and-action-entropy 2.58% 4.32% 3.41% 3.54%

49 normalized-acoustic-score 2.45% 4.41% 3.28% 3.59%

50 one-twojdifference-acoustic 2.39% 4.52% 2.88% 3.85%

51 log-total-score-fraction 2.55% 4.15% 3.32% 3.45%

Continued on next page
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Training Set Test Set

Iteration Selected Feature FPR FNR FPR FNR

52 asr-classifier 2.36% 4.56% 2.70% 3.92%

53 log-total-score-fraction 2.48% 4.23% 3.26% 3.50%

54 current hypothesis-nbest-purity 2.36% 4.58% 2.77% 3.96%

55 normalized-lm-score 2.21% 4.58% 2.97% 3.85%

56 split-word-pairs 2.51% 4.31% 3.08% 3.65%

57 currentihypothesis-nbest-purity 2.21% 4.56% 2.90% 4.01%

58 one-two-difference-lm 2.44% 4.33% 3.08% 3.79%

59 normalized-total-score 2.28% 4.34% 2.99% 3.94%

60 hypothesis-averageikeyword-purity 2.42% 4.23% 2.99% 3.83%

61 asr-classifier 2.19% 4.52% 2.72% 4.05%

62 normalized-acoustic-score 2.45% 4.21% 2.99% 3.79%

63 asr-classifier 2.20% 4.48% 2.72% 4.05%

64 one-two-difference-total 2.45% 4.22% 2.95% 3.79%

65 split-word -pairs 2.27% 4.39% 2.90% 3.68%

66 current hypothesis-nbest-purity 2.45% 4.16% 3.12% 3.68%

67 normalized-Im-score 2.35% 4.27% 3.03% 3.72%

68 merged-word-pairs 2.46% 4.22% 3.06% 3.74%

69 number-of-words 2.39% 4.23% 3.03% 3.65%

70 one-two difference-total 2.36% 4.35% 3.01% 3.76%

71 log-total-score-fraction 2.47% 4.06% 3.21% 3.57%

72 one-two-difference-total 2.35% 4.25% 2.97% 3.70%

73 one-two-difference-lm 2.47% 4.09% 3.19% 3.52%

74 stop-words-count 2.34% 4.24% 2.95% 3.70%

75 split-word -pairs 2.46% 4.08% 3.12% 3.52%

76 asr-classifier 2.29% 4.32% 2.81% 3.83%
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Figure 4-2: Fitting of logistic curve to AdaBoost scores

4.5 Limitations

Many of the features that contribute to the confidence score would likely be useful

in other ASR applications. However, it is also important to note that some of the

features used to improve results for this specific task might not be directly applicable

for other domains. For example, the labels of correctness for this classification task are

based on whether the hypothesis, using a basic keyword extractor, maps to the correct

concept; other confidence-scoring modules might require more stringent definitions of

correctness at the word or utterance level. In addition, the use of corpus-level features

restricts the transferability of the confidence scoring module to other domains with

different language models.

As Figure 4-1 shows, 6.6% of the test set utterances remain incorrectly classified.

Characterizing the errors that remain could be useful to identify other informative

features. Currently, for example, an utterance with a highly consistent-but-incorrect

n-best list is vulnerable to being classified incorrectly, due to the importance of low

concept entropy in the dataset. Meanwhile, the use of dialog-level features, such

as the turn number and the results of the previous utterance, might also be useful

features; this would require data from actual dialogs.
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Finally, a number of extensions to the behavior and capability of the confidence-

scoring module could be useful for the dialog task. First, in the current problem

definition, a confidence score is assigned to a single hypothesis concept. Assigning

confidence scores to multiple concepts, however, could be useful in updating the belief

of the SDS-POMDP. Second, this framework assigns a single confidence score to the

entire hypothesis. Word-level confidence scoring could also be useful in updating

the belief of the SDS-POMDP. For example, in an utterance where the hypothesis

is "what is the weather on Wednesday?", if a high confidence score were assigned to

the word "weather" in a hypothesis but a lower confidence score were assigned to

the word "Wednesday", the observation model might distribute probability mass to

"weather" states corresponding to different days.
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Chapter 5

User Simulation

Evaluating the effectiveness of a spoken dialog system involves addressing several

challenges. Ideally, human users should use and evaluate the end-to-end system.

However, because spoken dialogs can involve multiple turns, conducting such experi-

ments can be time-consuming and expensive. As well, it is unclear whether data from

a set of dialog experiments with one set of parameters is applicable to different sets of

parameter configurations, especially because a dialog consists of a user's utterances,

the system's responses, and the user's reaction to those responses.

This chapter describes a user simulator that was used to evaluate the effectiveness

of the SDS-POMDP compared to other dialog strategies. As discussed in Chapter 6,
this user simulator is also used to identify optimal reward function parameters for the

SDS-POMDP.

5.1 Design of User Simulator

The observation model of the SDS-POMDP, P(ZIS, A), can be interpreted as a gen-

erative model of the user's behavior: It encodes the probability of any observation,

given the user's goal and the most recent system action. Therefore, we can sample

a hypothesis concept and a confidence score for a given state and system action and

provide this observation to the dialog manager. The procedure is as follows:

1. The user simulator samples a hidden state, s*, from a distribution over states
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P(S). This mimics a real user who wishes to interact with the system to achieve

his or her goal (e.g. learn the time, make a phone call, or ask for Thursday's

weather).

2. The user simulator samples an observation from the distribution P(ZIS = s*, A)

If this is the first simulated utterance in the dialog, A = GREET, which corre-

sponds to the start of the dialog. The interpretation of this step is that the user

speaks an utterance based on his or her goal and the fact that the system has

just performed its initial GREET action. The distribution over observations

is the observation model learned from training data, meaning that the simula-

tor may either choose an observation that maps correctly to the user's state,

which simulates a correctly recognized utterance, or an observation that maps

to another meaning, which mimics an incorrectly recognizer utterance.

3. Along with a hypothesis, the simulated observation requires a confidence score.

This confidence score is sampled from the appropriate probability distribution

shown in Figure 3-1, as dictated by Equation 3.1: A selected observation hy-

pothesis that "corresponds" to the goal state is more likely to have a high

confidence score, while a mismatching hypothesis concept is more likely to have

a low confidence score.

4. Together, the simulated observation hypothesis and confidence score comprise

the user input into the dialog manager. In the case where the dialog manager is

the SDS-POMDP, this observation is used to update the belief, just as the SDS-

POMDP would behave with an actual utterance. The new belief is used by the

policy of the SDS-POMDP, II(b) to select an action, a'. Notably, however, we

can use any dialog manager with this model, making it possible to compare the

performance of different dialog strategies or parameter settings. In the case of

a threshold-based dialog manager, for example, the policy would be determined

solely by the observation and confidence score of the previous observation.

5. Steps 2-4 are repeated until the dialog manager performs the correct system
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action (i.e. fulfills the user's goal). At each turn, the user simulator selects an

observation based on the distribution P(ZIS = s*, A = a').

With this approach it becomes possible to simulate many dialogs rapidly and to

compute performance statistics, including the number of turns, the number of correct

or incorrect dialogs, and the time required per dialog. It is also possible to compare

the SDS-POMDP against other dialog managers (as discussed below) and to use the

user simulator to optimize the SDS-POMDP's behavior (as discussed in Chapter 6).

5.2 Candidate Dialog Managers

Using the simulator, three dialog strategies are compared against the full SDS-

POMDP model developed in this thesis:

" The argmax dialog manager simply accepts the first (non-null) concept uttered

by the user.

* The threshold dialog manager considers the confidence score in deciding to

accept or reject the hypothesized concept in the utterance. There are two pos-

sible outcomes from any observation: it either does not meet the threshold and

the "GREET" system action is repeated, or it meets or exceeds the threshold

and a terminal action is submitted.

" The POMDP-no-conf idence-scores dialog manager computes belief updates in

the SDS-POMDP without the use of confidence scores. The system may ask

the user to repeat, confirm a concept, or submit a terminal action.

These dialog managers are compared against the POMDP-with-conf idence-scores

experimental condition, which uses the full SDS-POMDP with confidence scoring of

utterances, as detailed in Chapters 3 and 4. A total of 50000 dialogs are simulated

for each dialog manager.
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5.3 Results and Discussion

Table 5.1 compares the performance of the different dialog managers described above.

Dialogs are marked as "incorrect" if a terminal action is taken that does not corre-

spond to the user's simulated goal.

Table 5.1: Performance of dialog managers over 50,000 simulated dialogs

Mean Standard
Correct Incorrect Dialog Error on

Dialog Strategy Dialogs Dialogs Error Rate Dialog Number of
Turns

argmax(State) 45920 4080 8.16% 1.00 0.00

(no threshold)
Confidence 46589 3411 6.82% 2.60 0.07
threshold
(thr=0.50)
Confidence 46976 3024 6.05% 5.44 0.14
threshold
(thr=0.85)
Confidence 46179 3821 7.64% 10.39 0.17
threshold
(thr=0. 95)
POMDP-no- 48022 1978 3.96% 1.23 0.00
confidence-
scores
POMDP-with- 49421 579 1.16% 1.95 0.01
confidence-
scores

5.3.1 Threshold-Based Dialog Managers

The threshold-based dialog managers shown in Table 5.1 exhibit a trade-off between

the mean number of turns and the number of incorrect dialogs. The main trend

is that, as the the threshold increases, the percentage of correctly completed dialog

increases, but so does the required number of turns to complete each dialog. At one

extreme (the argmax dialog manager), having no confidence threshold minimizes the
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number of turns at the expense of generating more incorrect dialogs; at a threshold

of 0.95, meanwhile, a high mean number of turns (10.39 ± 0.17) was needed.

Notably, the trade-off between the number of turns and the dialog error rate does

not simply change monotonically over the entire range of thresholds; for instance,

thresholds of 0.50 and 0.85 both yielded better performance than the threshold dia-

log manager with a confidence threshold of 0.95 - they both had a higher number

of correct dialogs and fewer mean turns. Interestingly, this result can also be ex-

plained analytically: it turns out that the behavior of the user simulator can be

explained by a simple Markov chain, as shown in Figure 5-1. In the experiment, after

the simulator selects a goal s*, it chooses an observation based on the probability

distribution P(zls*, a = GREET). Then, depending on the sampled observation, a

confidence score is sampled either from the "correct" confidence-score distribution

or the "incorrect" confidence-score distribution. Because the threshold is fixed and

the confidence-score distributions are pre-defined, there is a fixed probability for each

distribution that a confidence score above the threshold will be sampled. If the se-

lected confidence score is selected, the dialog terminates (in one of the shaded states);

if not, then the Markov chain returns to the initial state. The expected probabili-

ties of ending up in each of two shaded terminal states can be easily calculated with

basic infinite-series formulas. It turns out that these expected values can change

non-monotonically because the confidence-score distributions that we sample differ

depending on whether the observation we are choosing an observation that maps to

the correct state or the incorrect state.

5.3.2 POMDP-based Dialog Managers

As shown above, the POMDP-with-confidence-scores dialog manager outperforms

the other dialog strategies. By choosing actions based on the SDS-POMDP's be-

lief, the dialog manager makes better decisions about when to repeat the original

"GREET" question, ask a confirmation question, or submit a final terminal action.

Interestingly, the POMDP-no-conf idence-scores dialog manager, which simulates

user utterances but does not sample confidence scores, performs substantially worse;
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Figure 5-1: Markov chain model of user simulator with threshold-based dialog man-

agers

in fact, many of the threshold-based dialog managers perform better. This is because

mismatched simulated observations are not assigned low confidence scores; thus, such

observations can result in a belief in which high probabilities are assigned to states

that do not correspond with the true user goal.

5.3.3 Limitations

It is worthwhile to note that the threshold-based dialog managers studied do not

include the concept of confirmation questions in this set of comparison experiments.

A second, lower "confirmation" threshold could be assigned in which a confirmation

question is asked if the simulated confidence score exceeded this threshold but did not

reach the higher "submit" threshold. However, this second threshold would not be

the only parameter that would need to be fixed for a certain experimental condition.

For example, we would need to decide how the dialog manager would act in response

to another observation for the same hypothesis concept that does not exceed the

"submit" threshold. Should the dialog manager ask the confirmation question again,

submit a "terminal action" because the observation has been repeated more than

once, or somehow combine the two confidence scores (perhaps in a Bayesian manner)?

If the next observation corresponded to a different hypothesis, but also was in the
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"confirmation" range of confidence scores, which confirmation question should the

system ask next? Although handcrafted rules could be generated for all of these

different scenarios, these questions in themselves motivate the formulation of the SDS-

POMDP, which maintains a belief over different states and determines "thresholds"

for confirming and submitting terminal actions based on learned models of hypotheses

and confidence scores to states.

An important question that arises from the user simulator is whether it truly is an

accurate representation of the user, and how closely the simulation results will reflect

actual user behavior. First, it is important to note that the user simulator chooses

observations based on the model P(ZIS, A), where S and A are the user's intent

and the immediately preceding system action, respectively. Evidently, a Markov

assumption is made; the simulated observation does not depend on system actions

beyond the immediate preceding action or other aspects of the dialog history. In

reality, human dialog actors might change the words that they use in response to

"unsuccessful" utterances (e.g. when there is a recognition error); such dynamics

have not been captured in P(ZIS, A). Secondly, meanwhile, it is almost certain

that the observation model of individual users will differ from P(ZIS, A) used in

the simulations; indeed, as noted in the introduction of this thesis, residents at The

Boston Home exhibit wide variability in word error rates. Ultimately, therefore, the

results must be compared to dialog data with human participants.
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Chapter 6

Reward Parameter Search

As discussed in the previous chapter, the SDS-POMDP with confidence scores appears

to be superior to simpler threshold-based dialog managers. However, the results

were demonstrated with just one handcrafted SDS-POMDP policy; it is likely that

other policies could yield even better results. This chapter focuses on optimizing the

behavior of the SDS-POMDP with the aid of the user simulator.

6.1 Solving the POMDP

As a toy example, consider a three-state SDS-POMDP; that is, the user can ask

the dialog system for three different concepts. A three-state POMDP is minimally

required so that confirmation questions are preferred in some beliefs and generic re-

quests for information (greeting the user or asking the user to repeat) are preferred

in others. For this section of the thesis, we assign numerical values that are reason-

able approximations of the structure of the actual SDS-POMDP and make it easier

to convey the key ideas associated with solving the POMDP through the Q-MDP

approximation [48]. We can now form a finite-world POMDP, with a finite number

of states, actions, and observations.
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6.1.1 Enumerating POMDP States and Functions

States, Actions, and Observations. The state space S consists of three states,

denoted by si, S2 , and S3. The action space A consists of seven actions, including

"submit" actions corresponding to each state (ais, a2s, a3s), "confirmation" questions

corresponding to each state (aic, a2c, and a3c), and a generic request for information

(greeting the user, or asking him or her to repeat), ar. Finally, there are observations

that map to each of the three states, (zi, z 2 , and z 3 ), "yes" and "no" confirmation

questions (Zyes and zno), and a "null" observation if the speech hypothesis does not

map to any of these observations.

Transition Function. For the transition function, we assume that the user's

goal does not change over the duration of the dialog. Therefore, we can write:

1 if S' = s
P(sis', a) = (6.1)

0 otherwise

In other words, the transition function is independent of the system action.

Observation Function. The observation function, P(ZIS, A), must be defined

for all observations for each state-action pair. First, we consider the distribution over

observations for the initial system action, ar, and state si. This set of values fully

defines the conditional probability distribution for (si, ar); the probabilities sum to

1.

P(zilsi,ar) = 0.7 (6.2)

P(Z 2|si,ar) = P(z3 si,ar) = 0.05 (6.3)

P(zyeslsi, ar) = P(znolsi, ar) = 0.025 (6.4)

P(znnIisi, ar) = 0.15 (6.5)

The interpretation of the above values is that the speaker has a 0.7 probability

of an utterance that maps to the correct state, with the remainder of the probability
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mass assigned to the other possible observations. For completeness, the observation

functions for the other two hidden states are listed:

P(zils 2, ar)

(z2|s2, ar)

P(zyes Si, ar)

P (z..u1si1, ar)

P(zisS3 , ar)

P(z 3 1s3 , ar)

P(Zyes si, ar)

P (z..1 Isi1, ar)

SP(z3|s2, ar) 0.05

= 0.7

= P(znolsi, ar) 0.025

- 0.15

- P(z 2 sS3 , a,) - 0.05

= 0.7

= P(zosi, ar) = 0.025

= 0.15

The confirmation questions are a kind of "sensing" system action; they provide in-

formation about the system state. For example, if the underlying system state is si

and the action is ac, the probability mass function is assigned as follows:

P(zi Isi, = 0.4

P(z 2|si, a1c) = P(z 3 si, a1c) = 0.04

P(Zyeslsi, a1c) = 0.4

0.02

0.1

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

An important subtlety exists in the above probability distribution for the confirmation

question ac: we assign equally high probability to the observation zi (which maps
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to si) and the observation zyes. This means that when the SDS-POMDP asks a

confirmation question, the user tends to confirm the question by answering "yes" or

by providing an observation that maps to the goal state. The probability distribution

for the other goal states follows a similar structure, in that corresponding conditional

probability distributions exist for states S2 and ss.

Another important probability distribution is when the incorrect confirmation

question is asked; that is, the SDS-POMDP asks a confirmation question that does

not correspond to the user's goal:

P(zilsi, a2 c) = 0.4 (6.20)

P(z2 |sia 2c) = 0.04 (6.21)

P(z 3 |si,a 2c) = 0.04 (6.22)

P(zyeslsi, a1c) = 0.02 (6.23)

P(zal s1, ac) = 0.4 (6.24)

P(zuur ls1,ajc) = 0.1 (6.25)

Similar to the probability distribution P(-|si, a1c), there is a relatively high proba-

bility assigned to observation zi when the true goal is si because the user can provide

either a "no" utterance or an utterance that maps to the true goal.

Finally, there is a class of distributions in the observation function when the action

is a terminal action, i.e. ais, a2s, a3s. These take on essentially the same form as the

distributions conditioned on ar.

The above equations for P(Z|S, A) omit the continuous component of the ob-

servation model, namely the confidence scores as discussed in Chapter 3. Having

a continuous observation function increases the complexity of solving the POMDP,

making approximate methods more attractive.

Reward function. The reward function is defined on all state-action pairs. The

reward function encodes a positive reward for submitting the correct terminal ac-

tion and a large negative reward for submitting the incorrect terminal action. The

information-gathering actions are also given smaller negative rewards. The "correct"
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confirmation question has a reward that is less negative than the initial system ac-

tion, ar, while the "incorrect" confirmation question has a higher-magnitude negative

reward. As a initialization point for our search over parameters, we use, for state si:

R(si, ai,) = +10 (6.26)

R(si, a2 ,) = R(si, a38 ) = -100 (6.27)

R(si, alc) = -5 (6.28)

R(si, a2 c) = R(si, a3 ) =-15 (6.29)

R(si, ar) = 10 (6.30)

The reward function is similar for states 82 and 83, with high positive rewards for the

correct terminal action and a lower-magnitude negative rewards for the corresponding

confirmation question in each of these states,

6.2 Approximately Solving the POMDP

With the full SDS-POMDP specified, a solution method needs to be chosen. As

discussed above, the continuous nature of the observations means that methods that

make use of the fact that the observation space is finite and discrete cannot be used.

To incorporate the confidence score function, Williams and Young [68] use a method of

POMDP policy optimization that admits continuous observations in a dialog system

with close to 2000 states [35]. This implies that a similar method can be used for

the 62-state SDS-POMDP discussed in this thesis. A useful extension of this thesis

might be a comparison of these solutions to the QMDP-derived solution discussed in

this chapter.

As an alternative, it is interesting to examine whether simpler approximately

POMDP solution techniques of the SDS-POMDP can be used to generate reasonable

policies. In particular, the QMDP method that uses the value functions of the under-

lying Markov decision process (MDP). QMDP makes the assumption that the state

is fully observable after one control step; as a result, it becomes possible to use the
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value functions, V(s), of the underlying MDP to compute a policy [48]. Specifically,

the QMDP algorithm computes a function Q for each state-action pair,

N

Q(si, a) = R(si, a) + E V(sj)P(sjjsj, a) (6.31)
j=1

for each system action, a. Then, for a belief state b = (P1, P2, ... PN), where pi corre-

sponds to the probability mass in state i, the policy is simply

N

11(b) = arg max piQ(si, a) (6.32)
a

6.2.1 Structure of the QMDP-Generated Policy

It is interesting to examine how the parameters of the reward function affect the

QMDP-generated policy. First, the underlying MDP's value function is critical for

the QMDP algorithm. The value function V(s) is initialized to rmin and then com-

puted iteratively until convergence; for completeness, this procedure is shown below

as Algorithm 1.

Algorithm 1 MDP Value Iteration
Input: R(S,A),T(S|S,A)

1: for all s do
2: V(s) = rmin

3: end for
4: repeat
5: for all s do
6: V(s) = - maxa(r(s, a) + EN (sj)p(sjlsi, a))
7: end for
8: until convergence
9: return V -

In fact, given that the transition function P(S' S, A) is deterministic in our SDS-

POMDP, the steady-state, converged value of V for all states is straightforward to

calculate with the given reward function and y = 0.95:
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Z/(s) = Rmin -100 (6.33)
N

Z(si) = 7 max[R(si, a) + Z p(sIsi, a)] (6.34)
a

j=1

='y[R(si, asubmit i) + Z(si)] (6.35)

Z(s1) -- 7(si) = 0y (6.36)

Z(si) = 107/(1 - 7) (6.37)

= 190 (6.38)

The value function can now be used in the QMDP algorithm for computing a

policy for the SDS-POMDP, as given by Equation 6.32. One method of examining the

behavior of the SDS-POMDP is to plot the expected value function for different belief

distributions. In particular, a class of distributions in an N-state SDS-POMDP is one

in which one state has most of the probability mass, while the remaining probability

mass is distributed among other states, as follows:

b(s) = (6.39)
(1 - p*)/(N - 1) if s s*

Figure 6-1 shows such a plot for our three-state example, where s* = si. The

plots start at si = 0.33; by symmetry, the plots would be similar for S2 and S3. The

curves illustrate the value of the QMDP-derived expected payoff, Eji piQ(si, a) for

each action, a, meaning that the action corresponding to the line with the highest

value is the value of the policy function at that particular belief distribution. The

behavior induced by solving the SDS-POMDP using QMDP is reasonable:

e Between b(si) = 0.33 and a b(si) = 0.5, the action ar produces the maximum

expected payoff. This means that the SDS-POMDP initially makes a generic

request for information (assuming a uniform initial distribution over states) and

continues to ask this question so long as the belief in si remains less than 0.5.
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" Between b(si) = 0.5 and b(si) = 0.81, the action aie dominates. In this re-

gion, the SDS-POMDP asks to confirm whether the user's goal is si. This

seems sensible; the system asks the "correct" confirmation question when it is

"somewhat" sure of the user's intent.

" Above b(si) = 0.81, the maximum curve corresponds to ai,; in other words, the

SDS-POMDP "commits" to goal si. This policy also seems reasonable - when

the SDS-POMDP's belief is sufficiently confident in one state over all others, it

takes the "submit" terminal action for that state.

" It is worthwhile to comment on the curves that are not at the maximum in this

part of the belief region. They correspond to the "submit" actions for states S2

and s3, a2, and a3s, and the confirmation questions corresponding to these two

states, a2c and a3c. The policy decides that, when there is low probability in

states 2 and 3, the SDS-POMDP should not submit or confirm either of these

two goals.

200 81s

190

180

170

160 - a_1s
-a_2s

S 150 a_3s
-aIc

cl- a110140.- a_2c
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Figure 6-1: QMDP-derived expected payoff of SDS-POMDP actions

Importantly, depending on the reward parameters, the values of # and Q change,

which affects the cross-over points represented in Figure 6-1. The reward parameters
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can also have different effects on other behaviors of the system, such as when there

are two leading hypotheses. The impacts of these policies on the performance of the

SDS-POMDP is the subject of the remainder of this chapter.

6.3 Defining Good Dialog Behavior

A challenge in spoken dialog systems is characterizing the nature of successful dialogs.

A dialog's success in achieving the user's goal, total duration, number of turns, or

"naturalness" may all be features that determine whether a dialog is "good" or not.

Frameworks in the literature, such as PARADISE, consider factors such as task suc-

cess, efficiency metrics, and qualitative measures, along with surveys of satisfaction

based on user evaluations [65]. Even in the user simulator experiments in the previous

chapter, it is not necessarily clear what the trade-off between successfully completed

dialogs and the mean number of turns might be.

For this set of experiments, a reasonably simple metric is adopted: the wall-

clock time required to complete a dialog successfully. Importantly, the dialog is

complete only when the user achieves his or her true goal; in other words, when the

SDS-POMDP performs an incorrect -terminal action, the simulated dialog continues.

Intuitively, the best policy should execute a terminal action as soon as SDS-POMDP

is sufficiently confident that about the user's goal, but not so soon as to result in

many incorrect terminal actions, which would waste time.

Because simulations can be completed much more quickly than actual dialogs,

we assign estimated time costs (in seconds) for different categories of actions. These

estimated times reflect the amount of time that would be used for the actual action

to be taken and for the user to realize that the incorrect action has occurred. Some

actions are more costly than others; for example, if the system mistakenly makes a

phone call, it could be time-consuming to wait for a connection and end the accidental

call. In contrast, showing the activities or weather forecast might require some time

to call the relevant API, but should otherwise be less costly. Table 6.1 summarizes the

estimated time for each kind of actions. With these estimated time costs, the objective
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Table 6.1: Estimated time costs of different user actions
Action Category Estimated Time (s)

time 10
activities 20
weather 15
menus 15
phone 50

confirmatory question 5
greet user 5

function was to minimize the time required for each dialog. The time required for

the final terminal action (the correct one) is excluded to avoid skewing the total

time required for actions that inherently take longer periods of time. This can be

interpreted as the user feeling "satisfied" once the SDS-POMDP has committed to

fulfilling his or her goal.

6.4 Optimization Approach

dialog costs reward function
parameters

dialog policy

Figure 6-2: Framework for optimizing dialog policy

The general approach that we take is shown in Figure 6.4. The initial reward
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parameters can be used to compute a policy for the SDS-POMDP (using the Q-MDP

approximation); this policy is then used by the SDS-POMDP with 10,000 simulated

dialogs and the dialog cost metric. As discussed below, a brute-force search is con-

ducted in order to find regions in the parameter space with good performance; then,

gradient descent is used to refine the parameters for further performance improve-

ment.

The reward function R(S, A) is a discrete function defined on every state-action

pair (s, a) of the POMDP. Different values can be defined for each unique (s, a),

meaning that the search could involve SA parameters. However, the number of

parameters can be reduced as follows:

'ric if S = s, and A = submit sy, x = y

r'ti if S = sx and A = submit sy, X # y

R(S, A) = < rcc if S = sx and A = confirm sy, x # y (6.40)
'ric if S = sx and A = confirm sy, X # y

rterminate if A = terminate dialog

rrepeat if A = greet

The focus of this chapter is finding a set of values for the above parameters that

yield good dialog performance. Instead of searching from -oc to +oo for all six

parameters, the nature of the POMDP and the dialog problem constrains the search

space. First, since the solved policy seeks to maximize the total reward, scaled values

of the parameters yield the same policy, meaning that we can reduce the total search

space. Second, as discussed below, the actual meaning of the reward in the dialog

provides other constraints:

e rtc is the reward associated with the SDS-POMDP submitting the correct ter-

minal action. The brute-force search constrains this value to be non-negative.

* rti is the reward for incorrect terminal actions, e.g. the SDS-POMDP makes a

phone call when the user wanted to know the weather. This parameter is set to

85



be negative, since it is an undesirable outcome.

0 rrepeat is the reward associated with a generic request for the user to provide

information. For all states, this action is assigned a reward that is greater than

the value of rti but less than the value of rtc; otherwise, the SDS-POMDP's pol-

icy would automatically prefer to guess terminal actions (for the lower bound)

or continue to ask the generic repetition question (for the upper bound). A

stricter upper bound is that this parameter is set to be negative to bias against

acquiring more positive reward simply by repeatedly asking the same question.

* rcc is the reward received by the SDS-POMDP when the "correct" confirma-

tion is asked; that is, the confirmation question conforms to the underlying

state. This reward is set to be non-negative and greater than rrepeat because

a confirmation question that reflects the user's true intent is desirable dialog

behavior.

* ric is the reward received by the SDS-POMDP for an "incorrect" confirmation

question; that is, a confirmation question that does not map to the underlying

goal. This parameter is set to be negative and less than rrepeat, since confirming

the incorrect question could be less desirable dialog behavior than simply asking

the user for generic clarification question.

Practically, these constraints will also help to generate policies that will ensure

that dialogs will reach the correct final state within a reasonable period of time.

6.5 Brute Force Search and Gradient Descent

A coarse-to-fine approach is taken to search over the parameter space. First, we use

brute-force search to find good initialization points. At each iteration, the policy is

recomputed (using MATLAB) and 10,000 dialogs were simulated (using the Python-

based dialog simulator described in Chapter 5). One representation of the results of

this search are shown in Figure 6.5, which illustrates the mean and standard deviations
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of dialog rewards for particular parameter values and the minimum observed dialog

cost at that value. Following the brute-force search, gradient descent was used to

find a dialog-cost minimum in the reward-parameter space. This turned out o be a

noisy process, likely due to the stochastic nature of the simulation costs, the possible

non-convex nature of the cost space, and the relatively small differences in computed

costs; different iterations often settled at slightly different points not far from the

initial point. To overcome these challenges, the gradient descent was repeated. One

parameter setting that yielded good results (a mean cost of below 9.6 seconds) was

as follows:

Table 6.2: Reward function parameter values for lowest-cost simulation
Parameter Description Value

rtc correct terminal action +21
rti incorrect terminal action -71

Trepeat repetition question -9
rce correct confirmation question -1
ric incorrect confirmation question -23

?terminate terminate dialog -15

For visualization purposes, a magnified plot that shows the cross-over points is

shown in Figure 6-4, assuming three states instead of 62 states in the actual POMDP.

Of particular note is that the region in which the confirmatory question, ar, represents

the optimal action is much smaller than in the toy example shown in Figure 6-1. A

closer inspection of the actual simulated dialogs reveals that this has to do with the

time-based cost function. Specifically, the cost of a confirmatory question is often

higher than simply asking the user to repeat: If an incorrect confirmation question

is asked, the user may give a "no" observation, which, while informative, usually

does not immediately lead to the correct terminal action being taken. As a result,

the dialog often consumes the time associated with another turn. In contrast, a

system that rarely, or never, asks a confirmation questions could simply ask the

user to repeat, which can lead to the correct terminal action. Indeed, some of the

policies that exhibited good performance never involved the confirmation question

being asked.
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6.6 Limitations

The method used to search over reward parameters yields some policies with better

performance than others. However, it is not possible to make any claims of optimality

from the QMDP-derived policy. This should not be considered surprising; QMDP

does not in any way take into account the observation function. A comparison of

the QMDP-derived policies to other methods, including the aforementioned POMDP

solver that admits continuous observations [351, would be useful to determine how

this non-optimality affects performance. Such methods would also make it possible

to relax the parameterization of the reward function. Among other benefits, we could

allow every state-action pair in the reward to take on different values instead of fixing

the reward function to a small number of parameters needed to make brute-force

search and gradient descent tractable.

One possible rationale for using the parameter-search method described in this

chapter is if the dialog reward function were non-Markov in some way. For example,

it may be that the "reward" associated with a certain system action cannot be suf-

ficiently described by R(s, a). For example, the reward for a confirmation question

could become more negative (more costly) as a function of the dialog length, or if

the cost changes when the confirmation question has been asked previously in the

same dialog. Incidentally, the costs outlined in Table 6.1 are sufficiently described by

R(s, a), but it was found that simply setting the reward function to these costs and

using the computed policy did not yield better performance. It would be worthwhile

to explore the reasons for this observation and whether they relate to the generated

approximate policy or other issues.
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Chapter 7

User Experiments

The previous chapters describe the design and development of the SDS-POMDP, the

user simulator employed to validate its effectiveness in simulation, and the search over

the reward parameters to find good simulated behavior. Ultimately, the purpose of

these efforts was to create a dialog manager that would lead to more successful dialogs

with human participants, especially the target population of residents at The Boston

Home. This chapter focuses on the dialog experiments with human participants to

validate the simulation results.

7.1 Experiment Design

The human subject experiments compared a threshold-based dialog manager to the

SDS-POMDP dialog manager with confidence scoring. Based on a few exploratory

tests with users, a confidence-score threshold of 0.7 to trigger the terminal action

was found to be a reasonable value for accepting a user utterance. Notably, 0.7 is

approximately the value of beyond which the SDS-POMDP "submits" a particular

state, given that the remaining probability is distributed equally among the other

states.

The actual experiments were similar in design to the simulations in Chapter 5.

Specifically, at the start of each dialog, users were given one of the 62 possible goals

encoded in the dialog system to pursue and asked to achieve that goal. In total,
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twenty dialog goals were selected, and each participant participated in forty dialogs:

twenty with the threshold-based dialog manager, and twenty using the SDS-POMDP

with confidence scoring. The ordering of each of these forty dialogs was randomized,

and it was not necessarily the case that the same goal for the threshold and POMDP

dialog managers were presented consecutively.

In contrast to the user simulator, the human research participants may be influ-

enced by the structure of the sentence that prompts them with their goal; for example,

if the system suggests, "Ask the weather on Wednesday", the user may be more likely

to utter, "What is the weather on Wednesday?" as opposed to "What is Wednesday's

weather?" To reduce this bias while also evoking the necessary vocabulary for the

keyword extractor, the key terms were reordered randomly in a grammatically correct

manner.

7.2 Results

Table 7.1 shows the dialog completion rates for lab and TBH participants. As the

table shows, all lab participants were able to complete the dialogs successfully with

both dialog management strategies. Meanwhile, a few of the TBH residents had

difficulty achieving the goals for certain dialogs, and the SDS-POMDP increased the

completion rate for most TBH participants.

Figure 7.2 illustrates the performance of the threshold-based and POMDP-based

dialog managers for the fourteen users listed in Table 7.1. In the case of unsuccessful

dialogs, we assume that the total time elapsed was 60 seconds to compute the values

in the figure. Participants "labO3", "tbhol", "tbh06", and "tbh07" had mean dialog

durations that were significantly lower (at p = 0.10) for the SDS-POMDP than for

the threshold-based dialog manager. None of the other differences are significant.

92



Table 7.1: Number of completed dialogs by lab and TBH users

User Threshold Dialogs POMDP Dialogs
Completed (/20) Completed (/20)

labOl 20 20
lab02 20 20
lab03 20 20
lab04 20 20
lab05 20 20
lab06 20 20
lab07 20 20
tbhOl 18 13
tbh02 17 16
tbh03 20 20
tbh04 19 18
tbh05 13 5
tbh06 18 10
tbh07 17 10

7.3 Discussion

The results demonstrate the benefits of the SDS-POMDP for speakers with high-

error rates - the POMDP approach generally appears to perform better than the

threshold-based dialog system, and this improvement increases as the mean dialog

duration (for either dialog system) increases. This trend underscores the benefit of the

POMDP in handling noisy speech recognition inputs: the SDS-POMDP performs just

as well as simpler, threshold-based methods for speakers with low concept error rates

(i. e. laboratory participants), but the SDS-POMDP becomes superior for speakers

with high ASR errors.

The benefits of the SDS-POMDP in the human experiments were seen in several

different ways. First, correct hypotheses with low confidence scores still contributed to

useful belief updates; that is, they increased the probability of the correct observation

in the belief distribution. After more turns with the same observation, the SDS-

POMDP asked a confirmation question or submitted the correct action. In contrast,

the threshold-based dialog system did not consider this dialog history because below-

threshold observations were essentially discarded.
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Figure 7-1: Dialog durations for POMDP- and threshold-based dialog systems.

Second, the use of confirmation questions and the consideration of alternative

hypotheses by the SDS-POMDP was beneficial in a number of cases. Although the

collected data seemed to suggest that the "yes" and "no" observations were somewhat

noisy (likely contributing to the small confidence region in which confirmation ques-

tions would be asked), most of the participants seemed to be able to produce correct

"yes" and "no" utterances without difficulty. The ability to confirm low-confidence

utterances did not exist with the threshold-based system.

The results also reveal the limitations of the SDS-POMDP, at least in the current

formulation of the model. In at least one case, the speaker misspoke and provided

an observation for an incorrect state; providing a high-confidence observation for the

correct state in the next turn would result in the immediate successful termination

of the dialog for the threshold-based system, but often required an extra turn to

overcome the low prior probability for the correct state. Meanwhile, if a speaker

was consistently unable to provide an observation that resulted in a higher belief
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probability for the correct state, then the SDS-POMDP did not succeed, leading to

some of the unsuccessful dialogs for TBH participants. These failures demonstrate

the problem of off-model observations.

The comparison of the threshold- and POMDP-based dialog systems might have

been more objective if the threshold-based system had been able to ask confirmation

questions. Instead of having just one confidence-score decision boundary at which

the dialog system accepts or rejects a hypothesis, a second, lower threshold could be

used to determine when the dialog system asks a confirmation question. Ultimately,

however, such handcrafted rules would be challenging to set optimally; in the limit,

we could handcraft the policy similar to the one determined by the SDS-POMDP.
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Chapter 8

Deploying Assistive Technologies:

Ethical and Policy Considerations

The successful deployment and evaluation of any assistive technology must take into

account the context in which it is used. Critically, these devices and systems are in-

tended for a vulnerable population: the elderly and people with disabilities. Arguably,

therefore, considerations such as the unintended consequences of new technologies are

especially important.

This chapter focuses on an experimental location awareness system deployed at

The Boston Home that informs staff of the current room-level locations of partici-

pating residents. Between June and September 2011, a study on the efficacy of the

system to improve staff productivity and resident safety was conducted [23]. In the

process of preparing and implementing the study, we encountered two related issues:

First, knowing the whereabouts of residents has benefits for their caregivers, families,

the specialized-care institution, and the residents themselves, but it may also raise

issues related to individual privacy, dignity, and personhood. Second, obtaining the

consent of certain individuals who have experienced cognitive decline raises a new set

of concerns about personhood and choice.

Section 8.1 discusses the issues associated with wander management technologies.

This review is included in this section of the thesis, as opposed in Chapter 2, to help

frame the discussion on technology and policy issues. Then, the specific contributions
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of this chapter are as follows:

1. Location Awareness Technologies: In Section 8.1, we discuss the key

stakeholders, benefits, and tradeoffs associated with the location awareness sys-

tem, drawing on our deployment of an actual system at The Boston Home as a

case study. While it may not be possible to generalize the experience at TBH

to all other residential-care settings, it is worthwhile to compare this case study

to discussions in the literature on location awareness systems for similar target

populations.

2. Consent and Planning for Getting Older: Section 8.3 discusses the issue

of obtaining informed consent from residents who may have difficulty under-

standing the risks and benefits of a research study due to cognitive challenges.

Typically, for medical decisions, an activated health care proxy can make deci-

sions on a person's behalf; however, it is unclear whether using assistive tech-

nologies is a decision that such proxies are currently authorized to make. This

section discusses how individuals, caregivers, and society currently plan for de-

cisions as people age and face new challenges, particularly given the existence

of new technologies, such as location monitoring, that may not be anticipated.

The content of this chapter centers on the ethical questions related to knowing

a resident's location, but it might be generalizable to other knowledge about the

individual's state and preferences. Due to demographic shifts and advances in com-

puting, interest in technology that monitors a resident's location, health status, or

other needs is increasing [18]. More directly, the issues raised in this chapter may

also be applicable to a future deployment of an assistive dialog interface, such as the

one described in the rest of this thesis.

8.1 Ethics of Location Monitoring Technologies

One effect of society's aging population is that there are growing numbers of people

with Alzheimer's disease, dementia, and other forms of cognitive decline [331. Such
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conditions can cause people to become lost or disoriented, leading to the phenomenon

of "wandering" in which individuals may put themselves in danger by getting lost

and finding themselves in unfamiliar surroundings [43, 49]. Residential-care facilities,

including The Boston Home, are ethically and legally responsible for the safety of

their residents. This concern has led to the development of wide range of wander

management technologies that allow staff to know the whereabouts of residents in

these settings, some of which are commercially available.

An ethical issue can be framed in terms of a tradeoff between two or more compet-

ing values. These values may include a desire to do good or prevent harm. In the case

of wander management technologies, it seems clear that the desired "good" is is to

increase resident safety and well-being by knowing their location. A possible tradeoff

is that such technologies can come at the expense of a resident's autonomy or inde-

pendence, but this notion requires a more nuanced analysis In many specialized-care

settings, however, one could argue that such systems may increase an individual's

autonomy: A wander management system could ensure that doors may not need to

be locked, that a caregiver may not need to be constantly watching the person, or

that a person can continue to use a power wheelchair. Therefore, while a wander

management system could have some adverse impact on a person's freedoms and au-

tonomy, these considerations may need to be balanced with the positive impacts on

quality of life, particularly compared to alternative approaches [39].

The potential harms of a wander management system center on how a participant

in the system is perceived and treated. First, a wander management systems could

affect personhood of people who are "tagged" or "tracked" with an electronic device

[38]. Specifically, the idea of "tagging" people potentially implies that individuals

might be seen more as objects as opposed to human beings. Second, residents who

are part of a wander management system must have some kind of marker or tag on

themselves or on their mobility device, which could cause them to be stigmatized.

Third, as new technologies that have the potential to monitor people's activities in

greater spatial and temporal detail are developed, the scale and scope of threats to

people's privacy also increase. These threats to the freedoms and civil liberties of
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individuals must be balanced against the potential benefits of such systems.

The above discussion lists hypothetical risks; the actual implementation of a lo-

cation awareness system by technologists in a real-world setting seems central to

determining whether it is appropriate for the technology to be used. This is the focus

of the next section, which discusses our study at The Boston Home.

8.2 Resident Location Awareness at The Boston

Home (TBH)

The responsibilities of TBH staff include knowing the general whereabouts of resi-

dents, particularly individuals experiencing cognitive decline who may be at risk of

"wandering" off the grounds of the facility. In addition, knowing the location of res-

idents is useful to reduce the time required for staff to find them for appointments,

visitors, or other activities. Anecdotally, this issue is one of growing concern at TBH;

interestingly, one contributing factor is that, with new innovations in alternative drive

controls for power wheelchairs, many residents continue to remain mobile even as they

become older.

Both of these issues were identified by staff and management at The Boston Home,

leading to the development of the "MIT People Finder" software system. Over the

course of two years, the Organic Indoor Localization (OIL) system, a WiFi-based in-

door localization system, was deployed and tested at The Boston Home, with twenty

highly mobile residents having N810 tablets attached to their wheelchairs [63]. Fig-

ure 8-1 shows a Nokia N810 tablet (referred to in this chapter as the "client") mounted

on a resident's wheelchair and the location-finding software interface for staff at The

Boston Home. Briefly, the system uses the signal strengths of wireless access points,

as measured by the client, as features to determine room-level estimates [55, 63]. The

room-grain location of the client is estimated on the client, transmitted to a server,

and finally displayed on a software interface at designated staff computer terminals.

Based on the configuration of the system, the location information displayed on the
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software interface typically showed the real-time location of the resident [23].
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Figure 8-1: Left: PDA tablet mounted on resident wheelchair at The Boston Home.
Right: Software interface used for resident-finding study (names redacted).

The pilot study of the system consisted of two parts. In Study One, nineteen highly

mobile residents and nine staff (clinicians from physical therapy and rehabilitation,

the adaptive technology coordinator, and the unit secretaries on each floor) partic-

ipated in a study that examined the effect of the system on the time required to

find residents. Specifically, the participating staff members were given clipboards and

stopwatches and asked to record the time required to successfully search for a partici-

pating resident when he or she was needed. The study consisted of a four-week control

period without the location awareness system, followed by a four-week period with

the "MIT People Finder" software interface. Next, in Study Two, nine residents were

selected because they were highly mobile and were identified by staff as being at risk

of wandering without informing staff. Over a two-month period, a modified version

of the software interface, which displayed pop-up alerts when one of the participating

residents had gone outside or left the TBH premises, was deployed [23].
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8.2.1 Study Findings on System Efficacy

The results of the study suggest that the goals of reducing finding times and improv-

ing resident safety were achieved. In Study One, we found a significant (p=0.0008)

decrease in the mean time required to find residents with the system, from 311.1

seconds (24 find events) to 110.9 seconds (18 find events). In Study Two, meanwhile,

over the course of two months, the software interface recorded 194 correct alerts that

residents participating in the study had gone outside or left the grounds of TBH (along

with 21 false positives, when the system incorrectly suggested that a participant had

gone outside). Through semi-structured interviews, staff responded positively to the

system, describing many examples when the software was useful. Full details can be

found in [23].

8.2.2 Design Decisions to Mitigate Ethical Risks

Evidently, the system was useful in terms of improving resident safety and staff pro-

ductivity at The Boston Home. In addition to contributing to the technical efficacy

of the system, the design choices and engineering efforts that went into the resident-

finding system also contributed to mitigating the risks associated with wander man-

agement system. Using the issues hypothesized by Hughes et al. [39] as a starting

point, each of the possible risks are addressed in turn, based on our observations of

resident and staff attitudes toward the system during the study and semi-structured

interviews with staff upon completion of the both phases:

Personhood and Dignity: A possible risk with the location awareness system

might have been that participants could be seen as "objects" as opposed to people.

However, our semi-structured interviews and informal conversations with residents

and staff did not give us concerns related to this issue. Importantly, the number of

staff authorized to view the interface was limited; only the clinical staff, adaptive

technology coordinator, and unit secretaries on the two resident floors could view

the interface on their computer screens and were trained to use and communicate

this information judiciously. During the interviews, some staff participants acknowl-
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edged that it was interesting to see how the system performed as participants moved

throughout the building, but the comments generally centered on whether the system

was useful for finding residents.

Privacy: In the context of the study, the potential intrusion into the privacy of

the participants was guarded in two main ways. As mentioned above, only a few staff

members were authorized to view the interface, and the computer terminals showing

the information were not positioned in areas that could be easily seen by casual by-

standers. The computer screens of the unit secretaries, who sit at a desk in a busy

area of The Boston Home, were potentially viewable by other nurses and staff; how-

ever, in general, restricting the number of people with access to the software interface

discouraged behaviors such as "watching" the interface to see how people move over

time. Second, the software interface, explicitly by design, did not have a "playback"

or "log" mode for the end user; only the instantaneous location information could be

seen by the user.

It is worthwhile to note that our system did not have a distinct "temporary opt

out" feature on each client that could allow the participating residents to become

invisible on the interface for a period of time. If a participant wished to become

invisible, the possible ways might be to inform a staff member or to push the "opt out"

button of the study for a period of time; arguably, however, taking these actions would

be more difficult to do for a resident. From a practical standpoint, one concern with

such a feature was that the participant would forget to re-activate his or her client,

thereby defeating the purpose of the system. In the end, none of the participants

opted out of the study, but a "temporary opt-out" option is worth at least some

consideration in future systems.

As part of examining the effect of the system on privacy, understanding the nature

of privacy in a 24-hour skilled nursing facility like The Boston Home is worthwhile.

Almost by definition, the care requirements of residents in a skilled-nursing facility, in

contrast to other eldercare options such as assisted living or living at home, are greater

[71]; at The Boston Home, residents often need assistance with sensitive activities

ranging from taking medications to having meals and transferring in and out of bed.
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Inevitably, knowing potentially sensitive information about residents is a by-product

of these care requirements. In terms of location information specifically, staff members

generally know about the whereabouts of residents at all times; residents are advised

to "sign out" with the staff at the front desk if they are leaving the premises, and

staff are particularly vigilant about residents who may have a tendency to wander.

Overall, these observations suggest that the location awareness system, in providing

location information about a certain set of residents, did not substantially change the

culture or definition of privacy at The Boston Home.

Stigma: As Figure 8-1 shows, the Nokia N810 clients were clearly visible on the

wheelchairs of participating residents. This placement was chosen mostly for practical

reasons: the client is fairly large (the size of a large cellular phone), the back of the

wheelchair provided the best place to access power and mount the plastic container,

and the position made it fairly straightforward to fix problems quickly. Arguably, the

visible placement of the clients helped to ensure that residents themselves remained

aware that they were part of the research study; since the system requires no active

input on their part, it could be easy to forget about the tablet. Given that the clients

have been on the wheelchairs of participating residents for over two years (as part of

a longer-term characterization of the location awareness system) and that no resident

has ever opted out of the system, it may be reasonable to state that the participating

residents believe that the placement of the clients is not a concern or a source of

stigma.1 Overall, while it might be desirable for future systems to have more discreet

clients, the setup for our experimental system did not seem to cause major concerns

for participating residents.

In addition to the thoughts and attitudes of participating residents themselves,

the views of other caregivers, staff, and family members are critical for assessing the

possible stigma attached with participating in the system. In particular, the second

part of our study focused on nine residents whom staff had identified as being at risk

'Informal conversations with residents about their attitudes toward the hardware on their
wheelchairs range from being indifferent ("It doesn't affect me or my wheelchair in any way")
to being positive ("I'm happy to help") or whimsical ("We call you the 'Massachusetts Institute of
Tupperware"').
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of wandering, and for whom having such a visible electronic tag could be stigmatizing.

However, an interesting artifact of our study was that participants in the first phase

retained their tablets during the duration of the second phase, even though their

location information was not being displayed on the interface. This fact is noteworthy

because these residents were specifically chosen because they were highly mobile, had

an interest in engaging in a research project, and were generally independent. As a

result, residents identified by staff in the second phase of the study were not the only

individuals with clients on their wheelchairs. One insight that can be drawn from this

experience is that the reducing stigma might be achievable by thinking about how

the system is perceived publicly (the hardware visible on wheelchairs) versus how it

is actually used (through software only accessible to a few staff members).

Independence and autonomy: Similar to the above discussion on resident

privacy, our experiences with the location awareness system did not suggest that it

had an adverse impact on the independence and autonomy of participating residents.

In both phases of the study, residents were never prevented from going outside or

leaving the premises of TBH; the system simply displayed this information and left

it up to designated staff member to decide what to do. The system was also reactive;

it did not make predictions on when an individual might be going outside or to a

specific location. In the absence of the location awareness system, caregivers were

still responsible for being aware of the whereabouts of residents and ensuring their

safety.

Consent: Perhaps most importantly, all of the residents who participated in

the study at The Boston Home provided their informed consent to participate in a

research study that received approval from the MIT Committee on the Use of Humans

as Experimental Subjects (COUHES); we chose, for this pilot study, not to involve

residents who might have required a proxy. As part of the study, they had the right

to opt out at any time by pressing a button on the client or by informing a member of

the TBH staff or the research team. By agreeing to participate in the research study,

they asserted that they were aware of the potential risks and benefits of the location

awareness system. It is worth noting that some residents who were approached in
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the initial round of recruitment expressed disinterest or declined to participate in the

study. In addition, of the twenty residents enrolled in the original system research

study, one declined to participate in the resident-finding study. In itself, this is an

interesting finding, since many commercial wander management systems or strategies

are deployed without the explicit consent of residents who are part of the system.

8.2.3 Stakeholder Analysis on Ethical Issues

A useful approach to summarize the tradeoffs might be to understand the relative im-

portance of different competing values to the various stakeholders in a skilled nursing

facility. Figure 8-2 speculates on the relative importance on which these stakeholders

(residents themselves, management, nursing staff, and family members) might place

on the potentially conflicting values of resident safety and personhood. The positions

on this axis are based on analyzing the interests and responsibilities of each group,

discussions at The Boston Home, including two presentations to the TBH Ethics

Committee in 2011, and a review of the literature (specifically, limited survey results

(n=143) of these different groups on this topic [39]. To be clear, a strong emphasis

on one value does not imply a a complete neglect of the other. Moreover, the relative

positions of different groups, not the exact values, are the most salient feature of this

plot.

management
families nursing staff residents

SAFETY PERSONHOOD

Figure 8-2: Hypothesized relative weights on the importance of safety and personhood
for different stakeholders. This diagram does not imply that these stakeholders are
in conflict about the decision on whether a location awareness system should be
used; rather, it may be a guide for understanding the responsibilities and priorities
of different stakeholders.
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An explanation of the viewpoints of different groups is discussed below:

Residents: In skilled nursing facilities, residents themselves have an interest in

their own well-being and safety, but also their dignity and privacy. A location aware-

ness system has the potential to provide participating residents with an added sense

of safety, but it may come at some expense to their independence and personhood.

Interestingly, the evidence on which value is more important is conflicted: among a

small set of survey respondents with mild memory problems, Hughes et al. [39] found

strong acceptance of electronic tagging for safety reasons. However, at The Boston

Home, it is perhaps notable that the attitudes toward participating in the system

ranged from residents who were enthusiastic to participate to those who declined to

be involved in the study. Overall, it seems reasonable to state that, among all of

the stakeholder groups, residents have the strongest interest in their own sense of

personhood and dignity.

Management: While management in a skilled nursing facility has an overall in-

terest in the well-being of residents, which encompasses both safety and personhood,

its legal responsibility for the safety of residents may be a dominant consideration.

A system that provides staff with tools to save time and manage wandering behavior

might also produce cost savings. Granted, focusing only on the legal and financial

considerations is a simplified view of administrators and risk managers in a residen-

tial care setting - an important nuance, for example, is that the location awareness

system may actually preserve a resident's mobility (and, consequently, their indepen-

dence and personhood) by allowing him or her to continue to use a power wheelchair.

However, these other pressures suggest that safety is paramount.

Family Members: Conversations at The Boston Home and discussions in the

literature suggest that family members may actually be among the most concerned

about the safety of their loved ones; in the survey results, family caregivers (n=32)

placed much stronger emphasis on safety than on civil liberties [39]. Much of the

interest on location monitoring in the literature can also be attributed to family

members of elderly people living independently at home [38]. For these reasons,

Figure 8-2 suggests that family members may be among the most concerned about
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resident safety, possibly at the expense of other values.

Clinical Staff: Nurses and nursing assistants potentially have a strong inter-

est in knowing the whereabouts of residents; their job responsibilities include being

aware of residents' needs and a whereabouts, which would make a location awareness

system. Interestingly, although all stakeholder groups were strongly supportive of

electronic tagging (compared to other alternatives) in the survey by Hughes et al.

[39], the biggest source of concern about the dignity of individual's came from clinical

staff, which consisted of geriatricians, old age psychiatrists, nurses, and occupational

therapists. While this tendency was not explored in detail, one hypothesis could be

that front-line staff may be more cognizant of the importance of person-centered care

than other groups [39].

These qualitative observations suggest that most stakeholders have a primary

interest in ensuring the safety of residents who participate in a location awareness

system. Meanwhile, although the personhood of residents is an important consid-

eration for all stakeholders, it is arguably a superior priority only for the resident

stakeholder group. This observation may make the next section, which discusses the

issue of obtaining consent from individuals who may have cognitive challenges.

8.3 Informed Consent for the Elderly and People

with Disabilities

The previous section outlined some of the tradeoffs in terms of resident safety and

independence, both of which are important values in specialized-care settings. Over-

all, it seems that the benefits of the system for improving resident safety and staff

productivity were clear; however, lingering questions remain about the risks that the

system presents to the personhood of people who are part of the location awareness

system. In particular, the analysis of the views and considerations of different stake-

holders suggests that residents themselves are the group most concerned about the

value of dignity and personhood, while other stakeholders may be more concerned
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about their safety.

In the study that we conducted at The Boston Home, the balance between these

competing values was perhaps achieved because all of the residents who were part

of the system gave their written consent to participate. The protocol was approved

by the MIT Committee on the Use of Humans as Experimental Subjects, which

is required by federal law to approve all research involving humans at MIT [3]; in

addition, the research protocol was reviewed by the TBH Ethics Committee, a body

consisting of community members, staff, and management at The Boston Home who

review important ethical issues.

A significant ethical and policy question, however, arises when individuals who

might benefit from a location awareness system cannot fully appreciate the nuanced

tradeoffs between competing values. As one indicator, at The Boston Home, some

residents have an activated health care proxy, meaning that that they have given

authority to a person whom they trust to make important health care decisions on

their behalf [13]. Understanding the nature of informed consent and the roles of an

individual's legal surrogates, if they exist, could answer the specific question of how

to obtain consent for the location awareness system study and other similar research

projects. More broadly, this discussion could help inform how people might plan

and make decisions with competing value tradeoffs as they age and potentially face

disability or cognitive decline.

8.3.1 Consent Capacity and Legally Authorized Representa-

tives

Informed consent is a pillar of human subjects research in the United States; ac-

cording to the Code of Federal Regulations (CFR), research can only proceed after

"legally effective informed consent of the subject or the subject's legally authorized

representative" has been obtained [1]. This regulation can be parsed into two parts

that merit further discussion: the definition of "legally effective informed consent"

and the laws that govern who may serve as the "legally authorized representative."
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Some of the discussion in this section is drawn in a 2009 policy directive from the

National Institute of Health on research with vulnerable populations with people who

may have questionable capacity to give informed consent [11].

To aid the reader, it may be helpful to give an overview of the possible legal

sources from which we can define the proper procedure for obtaining consent. In this

case, the rules and policy directives promulgated by the U.S. Department of Health

and Human Services (HHS) on the protection of human subjects in research is most

relevant. HHS has been given rulemaking authority in this domain by Congress. In

addition to these administrative laws, other statutes or regulations at the state level

may also be relevant. In particular, as discussed below, how the Commonwealth of

Massachusetts defines health care proxies and durable power of attorney agreements

is important.

Consent Capacity: The ability of an individual to give consent for research stud-

ies is not determined by whether he or she has an activated health care proxy or other

decision-making surrogate; rather, it is defined by whether he or she can comprehend

the "information required to make an informed, voluntary decision to participate in

the research study" [11]. Dementia or other forms of cognitive decline can compro-

mise the consent capacity of individuals [24]. A number of studies have attempted

to develop assessment tools to determine whether a person has sufficient capacity to

provide consent [17]; to date, though, no agreed-upon standard has emerged, and the

varying complexity of different study interventions, along with the complex nature of

different ethical tradeoffs make it difficult to develop a truly universal standard [11].

At The Boston Home, it was clear that some potential research participants in the

location awareness system studies did not fully comprehend the nuanced benefits and

risks associated with participation, thereby ultimately necessitating a the role of a

representative if we had decided to include these individuals in the initial study.

Selecting a Representative for Obtaining Consent: If it is determined that

an individual does not have the capacity to provide informed consent, the Code of

Federal Regulations (CFR) provides for "legally authorized representative (LAR)"

to fulfill this role. This LAR is defined as "an individual or judicial or other body
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authorized under applicable law to consent on behalf of a prospective subject to the

subject's participation in the procedure(s) involved in the research" [2]. The key

difficulty, however, is that no law seems to clearly give authority to an individual

for non-medical research studies; Children's Hospital Boston, for instance, states in

its Clinical Investigation Policy and Procedure Manual that "Massachusetts state law

has no specific definition of legally authorized representative just for research decision

making" [5]. In the absence of clear guidelines, the suitability of three possible LARs

are described below: health care proxies, durable power of attorney agents, and family

members.

Health Care Proxy: In its policy directive, the NIH states that a LAR might be

someone who has been granted a "durable power of attorney for health care". Under

Massachusetts law, this person is called the health care proxy, and authority to make

health care decisions on is granted to him or her if a physician determines that the

patient lacks capacity [9].

Notably, the wording of the Massachusetts health care proxy law states that the

agent granted the health care proxy has the "authority to make health care decisions

on the principal's behalf". It further defines "health care" as "any treatment, service

or procedure to diagnose or treat the physical or mental condition of a patient" [9].

Combined with the NIH policy directive, it could be fairly concluded that the health

care proxy should have the authority to make decisions on research participation if the

study has a medical nature; however, it is not entirely clear that studies of assistive

technology fit this criteria. For instance, the location awareness system seeks to

improve resident safety, but it seems debatable whether this can defined as a "health

care" intervention.

Durable Power of Attorney: Massachusetts state law, under the Massachusetts

Uniform Probate Code, also makes provision for an individual (the "principal") to

grant durable power of attorney to an "agent". Critically, the term "durable" refers

to the power of attorney remaining valid even after the principal has become inca-

pacitated [8]. Support for the notion that durable power of attorney grants decision-

making authority for research studies, however, appears limited unless the principal
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has clearly included authority to participate in research. As one example, the Clini-

cal Investigation Policy and Procedure Manual at Children's Hospital Boston states

that a appropriate surrogate decision-maker may be a "person with power of attorney

who has clear authority to consent to participation in research, or clear authority to

make health care decisions for a class of diagnostic and therapeutic decisions that are

inclusive of the proposed research . .. " [5].

Family members: Given that it is unclear whether the health care proxy or

the agent with durable power of attorney can make consent decisions on non-medical

research studies, some support exists for a trusted family member to be designated as

the legally authorized representative, potentially on an ad-hoc basis. Three examples

of policies among Boston-area institutions include:

* MIT COUHES suggests that the subjects with "limited comprehension" should

have an "authorized third party ... to represent the subject's interests"; the

main requirement is that the third part should "understand the incompetent

subject's situation and act in that person's best interest." [4].

* The Dana-Farber Cancer Institute's Office for Human Research Studies states

that, in order of priority, a spouse, adult child, parent, sibling, other relative, or

close friend could serve as a legally authorized representative for research stud-

ies, and that designating such representatives has precedence in Massachusetts

case law on medical decision-making [6].

" Children's Hospital Boston states that the adult spouses, adult children, or

parents may be authorized to make decisions on research studies. Similarly, its

justification for such authority lies in the notion that research has essential sim-

ilarities to clinical procedures, stating that "it is generally legitimate to consider

a surrogate who is involved in the patient/subjects care and is knowledgeable

about him or her, and his or her preferences and needs, as having the ability

to consent to research participation in which the subject will receive a direct

health benefit relevant to the care he or she receives at Children's Hospital."

[5].

112



This survey of federal and state laws and regulations, along with policies of orga-

nizations that conduct research with people with limited consent capacity, provides

some modest guidance for how to conduct non-clinical research studies in a setting

like The Boston Home. First, whether a person has an activated health care proxy

or other surrogate has no direct bearing on whether he or she can properly give in-

formed consent; instead, the relevant criteria is whether he or she can understand

the risks and benefits of a research study and make an informed choice. Second, if

the person cannot make an informed decision, unless he or she has granted durable

power of attorney with specific authority on research studies to an agent, there is no

clear answer on whether a health care proxy, or a trusted family member is the most

correct choice for informed consent. Importantly, though, as illustrated by the the

policy directives of the NIH and three Boston-area research institutes, in spite of the

lack of perfectly clear guidelines, it is still possible to ethically and legally include

people with limited consent capacity.

8.4 Conclusions and Future Research Directions

Moving forward at The Boston Home, it seems worthwhile to define TBH-specific

policies for involving residents with limited capacity to consent in research studies.

Given the guidelines set out by MIT COUHES (having an "authorized third party"

to represent the potential research subject's interests [4]), future MIT-TBH research

might involve identifying the most suitable third party for each potential research

participant to discuss the study and obtain informed consent. The process might

involve researchers, social workers and clinicians at The Boston Home, and oversight

by the TBH Ethics Committee.

8.4.1 Planning for Future Living and Care

An important undercurrent of this chapter is how individuals make decisions about

their future living and care as they get older, especially if they face the prospect

of disabilities that affect their reasoning capacity. This theme unites the discussion
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about the ethics of location awareness systems and the legal frameworks that govern

informed consent. Although decisions related to aging and disability extend beyond

questions that are of a strictly medical nature, the relevant ethical and legal guidelines

are ill-defined at best. With the growing number of technologies that could benefit the

elderly and people with disabilities, these difficult decisions are likely become more

common. Moreover, individuals and their families will not be able to predict all tech-

nological innovations in advance, further increasing the complexity and uncertainty

of decision-making.

Overall, the discussion in this chapter reveals a number of possible further avenues

of research related to planning and decision-making for the elderly and people with

disabilities. For instance, the usefulness of advanced planning and directives from

individuals before they become cognitively impaired, especially given that technolog-

ical change can be difficult to predict, is worth exploring. Meanwhile, lessons might

also be drawn from how the elderly and people with disabilities make other kinds

of difficult decisions, including whether to live independently or enter a residential-

care setting, continue to drive a car, or make other life-changing choices. Such work

could help inform what policies and practices could best help the elderly and people

with disabilities make make good choices about the use of technology and other life

domains.
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Chapter 9

Conclusions and Future Work

This thesis describes the development of speech-based assistive technologies for people

with disabilities, with a focus on the design and evaluation of a POMDP-based spoken

dialog system. A corpus of utterances was collected from research participants from

the laboratory and from The Boston Home to train speech-recognition and dialog-

system models, a SDS-POMDP was formulated and learned from this data, and

experimental results demonstrated its benefits over simpler, threshold-based models.

A few possible refinements and extensions arise from the experiments discussed in

previous chapters.

9.1 SDS-POMDP Policy Optimization

Although good dialog experiment results with actual huamn users were seen with the

QMDP-derived policy for the SDS-POMDP, further work is needed to move toward

finding optimal dialog policies, as outlined in Chapter 6. First, an analysis of policies

derived using QMDP and point-based backup methods would be informative and

useful to determine how far from optimality the QMDP-derived solution actually is.

The simulation-based method used to generate dialogs could be useful if the reward

function cannot be sufficiently expressed by R(s, a). In addition to the examples

suggested in Chapter 6, there are other features of good dialogs beyond its total

duration, then finding the best reward parameter settings using the user simulator.
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An interesting idea worth exploring might be to learn features of "good" dialogs,

possibly from speech- or text-based ratings collected from actual dialog participants.

Many of these features could be non-Markov, meaning that the reward function would

not be expressible simply as R(s, a).

9.2 Extensions

Validation of the SDS-POMDP in extended, real-world experiments is an important

area of future work. The experiments described in Chapter 7 prompted the user with

goals, making it straightforward to compare the POMDP- and threshold-based dialog

managers. Ultimately, though, the usefulness of this approach for assistive technology

applications depends on whether users derive benefit from the system over extended

periods of time. From a modeling standpoint, such experiments could reveal how the

SDS-POMDP performs as a user's speech recognition accuracy changes (over multiple

time scales) and how it is used in real-world settings.

Future work could also focus on each of the components of the SDS-POMDP

framework outlined in Chapter 3. In the area of SDS-POMDPs, there are many pos-

sible directions related to learning better models, solving large POMDPs efficiently,

or adapting the model; some possible directions that seem useful for the assistive-

technology domain are discussed here. First, even though there are related goals in

the state space (either by the type of information or by the date), a simple state

space that treats every distinct goal as a separate, unrelated state was implemented

in the SDS-POMDP is described in this thesis. A factored, slot-based, or hierarchical

state space might be more scalable; such models would also change the nature of the

observation and transition functions. An additional compelling challenge is how the

state space and the associated observation functions might be defined for other kinds

of concepts; for instance, if the goal of the dialog system were to understand a desired

path that the user wanted to take in a robotic wheelchair, there could be hundreds or

thousands of possible paths, and it is unclear whether all of these possibilities would

need to be pre-defined in the state space.
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Second, the observation function, which describes the distribution of observations

for every state-action pair, is also ripe for refinement. Most notably, a simple keyword

extractor is used to map speech-recognition hypotheses to concepts, but this clearly

constrains the user to commands that use the pre-defined keywords. An exploratory

dataset of sentences collected for many of the categories on Amazon Mechanical Turk

reveals many reasonable ways to request the different functions in the system. For

example, some of the ways to ask for the weather, without using the word "weather"

or "forecast", include "Is it sunny?", "Do I need to wear a coat when I go out?",

"What's the temperature like?", "Is it nice out there?", and "Is it going to be windy

outside?" Understanding these different ways of asking about the same concept likely

requires more sophisticated parsing and language-understanding tools.

In addition to this language-understanding challenge, there could be better ways

of assigning confidence scores to different hypotheses. Currently, the system simply

assigns a confidence score to the top hypothesis, using the high- and low-confidence

models to update the belief probabilities of the other states. As a result, the only

mechanism by which the belief probability of other states changes is through the

function P(Z|S, A), which itself is trained on counts of the top hypothesis for every

different state. Alternative models could potentially assign different confidence scores

to lower-ranked hypotheses, making each observation more informative.

Lastly, more sophisticated clarification questions (e.g. disambiguating among

closely related concepts) could be a useful addition to the system. Currently, the

only kind of clarification question within the action space of the SDS-POMDP is con-

firming individual concepts; it could be useful, for instance, to ask "Did you mean X

or Y?" if there are two competing hypotheses or to ask about a particular part of the

concept if related concepts are similarly probable. A related challenge, meanwhile,

is that actual dialog data would be most ideal to train the appropriate observation

functions.

The broader theme of this work is intelligent assistive technology that leverages

noisy sensor inputs and knowledge about the environment to provide appropriate

assistance to human users. In this work, we ha've focused on speech input and han-
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dled the uncertainty of speech recognition hypotheses; a more sophisticated system,

however, could use additional sensors in addition to speech to infer the preferences

and goals of users. For instance, one might infer the user's needs based on his or her

location, the time of day, the presence of other people in the environment, or other

kinds of multimodal user interactions. Ultimately, being able to reason over these

different sources of knowledge could lead to assistive technologies that better serve

their intended users.
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