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Abstract

We study a new form of dark matter interaction which may significantly affect the
thermal relic abundance of dark matter. This new interaction takes the form C+D -+
C+#, where D is the dark matter species present today, # is a standard model species,
and C is a very heavy exotic particle. In particular, C was present during the period
when freeze-out occured for dark matter species D, but subsequently decayed into
standard model particles. We refer to this process as a catalytic reaction, since C
acts as a catalyst for the destruction of D. We further postulate that there is a
matter-antimatter asymmetry in C, so that C + C -+ D + # is suppressed. We
find that the catalytic reaction produces very different dynamics than the standard
annihilation reaction. We also find that the catalytic reaction can significantly affect
the relic abundance of dark matter even if it has a much smaller cross section than
the annihilation reaction. Possible physical origins for this catalytic reaction are
discussed.

Thesis Supervisor: Jesse Thaler
Title: Assistant Professor of Physics

3



4



Acknowledgments

I would like to thank my thesis advisor Professor Jesse Thaler for his clear explana-

tions and valuable comments.

5



6



Contents

1 Introduction

2 Boltzmann Equation

3 Boltzmann Equation for the Annihilation and Catalytic Reactions

4 Solving Boltzmann Equation in the Lee-Weinberg Scenario

4.1 Semi-Analytic Solution Using Freeze-out ...................

5 Boltzmann Equation with Catalytic Reaction

6 Combined Effect of Annihilation and Catalytic Reaction

7 Physical Model

8 Conclusion

7

9

11

15

19

20

25

29

33

37



8



Chapter 1

Introduction

Many observational evidence across a wide range of scales, such as galactic rotation

curves, velocity dispersion of galaxies, and gravitational lensing, all indicate there is

missing mass in the universe [1][2][3]. Although some alternative theories of gravity,

such as Modified Newtonian Dynamics (MOND) [4], have been proposed to account

for this discrepancy, dark matter is still the most popular theory to explain the

unobserved mass. However, due to a lack of direct detection evidence, the nature of

dark matter remains one of the biggest open problems in modern physics.

Currently, Weakly Interacting Massive Particles (WIMP) are particularly success-

ful dark matter candidates. In the Lee-Weinberg scenario [5], WIMP particles 4 and

its anti-particles 4 thermalize in the early universe through the annihilation reaction

#' -+ ##, where # is a standard model degree of freedom. Naively, one would ex-

pect the number density of 0 to decrease and eventually reach 0, however, if we take

the expansion of the universe into consideration, we find that eventually the inter-

action rate will be too slow to keep up with the expansion, and the number density

asymptotes to a constant. This is referred to as thermal freeze-out.

Boltzmann's equations are necessary to calculate the number density as a function

of time in an expanding universe. It is found that in the Lee-Weinberg scenario, if

we assume mv, is on the order of 100 GeV, and assume an electroweak annihilation

cross section, we roughly obtain the observed abundance for dark matter. Physicists

refer to this as the "WIMP miracle".
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In this paper, we postulate the existence of a new exotic particle C that partic-

ipates in dark matter dynamics. For the bulk of the paper, we will not specify the

properties of C, but we will argue that this "catalyst" field can arise in supersymmet-

ric theories. We will demonstrate that, if we assume a catalytic reaction can occur

via C + D -+ C + # (where D is the dark matter species, and C the "catalyst") in

addition to the annihilation reaction D+D -+ ##, the thermal relic abundance can be

significantly altered even if the catalytic cross section is much smaller. The catalytic

process is an extreme limit of the so-called "semi-annihilation" process studied in [6].

In our catalytic scenario, we will assume that there is an asymmetry in C and its

anti-particle C, so that C + C -+ D + 4 is suppressed. For simplicity, we will assume

the number density of C is 0, ie C and C have annihilated as much as possible before

D freezes out. Since the baryon asymmetry is on the order of n/s = 6.23(17) x 10-10

[7], we will assume nc/s = 10-9, where s is the entropy density per comoving volume.

The rest of the paper is organized as follows. In section 2, we introduce and derive

the general Boltzmann's equation in an expanding universe. In section 3, we recast the

general Boltzmann's equation specifically for the annihilation and catalytic reactions.

In section 4, we solve the Boltzmann's equation derived previously with the catalytic

reaction turned off, so it will be the same as the standard Lee-Weinberg scenario.

We will present both the numerical and semi-analytic solution to the equation, and

calculate the cross section of the annihilation reaction necessary to yield the observed

thermal relic abundance for dark matter. In section 5, we will solve the Boltzmann's

equation with only the catalytic reaction both numerically and analytically, and find

the cross section of the catalytic reaction that will yield the observed abundance.

In section 6, we turn on both the annihilation and catalytic reactions and solve the

Boltzmann's equation numerically, and discuss how their combined effect affects dark

matter relic abundance. In section 7, we will discuss how catalytic reactions can occur

in supersymmetric theories, and how it can impact the dark matter relic abundance.

Finally, we will conclude and discuss future works in section 8.
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Chapter 2

Boltzmann Equation

In the early universe, many particle species can collide and produce different species.

We can employ statistical mechanics and describe each species with a phase space

density f(, , t). The phase space density is related to the actual number density as:

n(t) (27r) 3 Jd3Pf(*,p~, t) , (2.1)

where g is the internal degree of freedom of the particle.

The evolution of a species' number density in the presence of various interactions

is given by the Boltzmann Equation, whose most general form is:

L[f] = C[f] , (2.2)

where L is the Liouville operator and C is the collision operator. The covariant

generalization of the Liouville operator in general relativity can be written as:

I = , (2.3)

Where IF is the connection. If we use the Robertson-Walker metric: ds 2 = dt2 
-

R 2 (t) [dr 2 + r 2 d02 + r 2 sin 2 OdOb2], and assume the dependence of f on momentum is

11



isotropic, the above operator becomes:

A Of 29fL[f(Et)] =H , (2.4)

where H = /R is the Hubble parameter, and E2  p 2 + m 2 . Using integration by

parts, it is then possible to rewrite the Boltzmann equation in terms of the number

density n as:
dni f gfid 3 p

+3-n = 3 E .C[f]3 (2.5)
t R" (2) 3 E

Notice that in the absence of the collision term, the above equation becomes: AR +

3Nn = 0, or nR3 = const, which is to say that n decreases as R 3 as the universe

expands, which is indeed what we expect.

The collision term is the sum of many processes. For a particular process 1+2 <-+

3 + 4, the collision term is:

g fCfdp _ f d3p1  f d3p 2  f d3p 3  f d3p 4
(27r)3J E J (27r) 32E1 1(27r)32E 2 f (27r)32E3 J (27r)32E 4

x (27r)4 63(p, + P2 - P3 - p4)J(E1 + E2 - E3 - E4)|M12

X {f3f4[1 f][1 f2] - ff2[1 ± f3][1 i f4]} , (2.6)

Note that we have suppressed h in the equation above. Each fi in the above equation

in fact denotes fi (X'p~ t). The amplitude |MI is determined by the physics involved

in the process. Here, we assumed both the forward and backward reactions have

the same amplitude, which is true given CP invariance. The integrals are over the

4-momenta of particles 1,2,3,4. However, since we need to impose E 2 -p 2 + m 2 , the

4-momentum integrals become:

dop dE6(E 2 _2 -m2)=Jd3pjdE6 (E _ 2-m 2 )J . (2.7)

Finally, other than the [1 ± f] terms, the last line says that the rate of producing

species 1 is proportional to f3ff4, while the rate of depleting species 1 is proportional

to fif2. The [1 ± f] terms account for Bose enhancement and Pauli blocking.

12



If we assume the particles are in equilibrium, the phase space distribution will

be given by either the Bose-Einstein distribution or the Fermi-Dirac distribution, for

bosons and fermions respectively:

1
S= (E-p)I 1 (2.8)

with the plus sign for fermions and minus sign for bosons, and where t is the chemical

potential. Typically, we are interested in regions where T < E - pt, so we can

approximate (2.8) as f - eI/Te-E/T. We can also safely ignore the Bose enhancement

and Pauli blocking terms in this limit, so the last line of (2.6) becomes:

f3f4[1 ± fi] 1 ± f2] - 1f2[1 ± f3][1 ± f4] (2.9)

=e-(E3+E4)/T (3+4)/T - (Ei+E2)/T(Al+A)T (2.10)

=e-(Ei+E2)/T[e(p3+p4)/T e(i1+12)/T] , (2.11)

where we used E1 + E2 = E3 + E 4 to get to the last line. So far, this is an expression

involving the chemical potentials pi. We can turn it into an equation involving the

number density as follows. First, recall that:

f 3p
ni = g22) dap;z p, t) (2.12)

= giel ( 2 )3 e (2.13)

This allows us to write elilT = ni/n e where we have defined the equilibrium density

to be:

S e-E/T (2.14)
ni 9 f (2ir)3

The equilibrium density is the density when the chemical potential is 0, ie. if the

particle is in thermal equilibrium with its surroundings.

Using this, (2.11) can now be written as:

e(-Ei+E2)/T n3n 4 _ nin 2  (215)
3 eq eq n eq eq

L3 ~4 1i ~2
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Notice that this term is independent of p so we can take it out of the integral. Defining

the thermal averaged cross section to be:

1
(o-v) =e n!eq4 f

d3p1

(27r) 3 2E 1

I d3 p2

(27r) 32E 2

, (2.16)e-(E+E2)IT (2 7r)4 3 (1 + P2 - P3 - p 4 )J(E1 + E2 - E 3 - E4 )|M12

we finally arrive at the following form for the Boltzmann equation:

dn, +3Hn, n q q _ 3 n 4

±t H 1  2l~4 ( nv eq neq
dt 3L neq neqU1 ~2J

(2.17)

When there are multiple interactions changing the density of ni, we simply add more

terms to the right hand side of the above equation.

14
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Chapter 3

Boltzmann Equation for the

Annihilation and Catalytic

Reactions

Now we are ready to write the Boltzmann equation for our specific toy model.

Recall that in the Lee-Weinberg scenario, the dark matter species D annihilates

via the reaction D + D -+ 4+ 4, where # is a standard model particle. Standard

model particles are much lighter than C or D, so they will remain in contact with

the background temperature for much longer, so we can assume nA = n e.

In addition, we will postulate the existence of another exotic heavy particle C,

which can lower the density of D via C + D -+ C + #, and C + D -+ C + 4.
Since C is very massive, it froze out way before D. We further assume that there is a

matter-antimatter asymmetry in C, which causes the anti-particle C to be completely

annihilated, leaving C at a constant density during the freeze-out of D. The lack of

C prevents the creation of D via processes such as C + C -- D + #. Hence, C's only

role is to serve as a "catalyst" to decrease the abundance of D. We will investigate

when the catalytic reaction will be significant compared to the annihilation reaction.

15



There are three processes in this toy model:

Da +c-+ o+ .

Assuming CP invariance, the cross-section of (3. 1) and (3.2) are the same.

symmetry in D,D ensures that they have the same abundance, we can treat it as a

single variable nD- From (2.17) the Boltzmann equation is:

dnD + 3HnD = Cc" + cann, (3.4)
dt

where the collision terms are:

Ccat = - (Ov)CD-+C+4 [ncnD - ncnD]D, (3.5)

= - (O-)D_,,, [n2 - eq2 ] (3.6)

We only consider s-wave cross sections and assume that both (o-v) are constant

through time for simplicity.

We redefine the variables as:

YD = , (3.7)

_MD

X T ,(3.8)

A, -s(x -1) (Liv) CD-+COj (3.9)
H(x = 1)

H(x = 1) (o-v)DD-+#k (3.10)

where s is the entropy density per co-moving volume, which satisfies sR3 = const.

16
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Hence

dsR3 + 3Rs = 0 (3.11)
dt dt
ds -3s dRdt -3sH. (3.12)dt R

Notice that since nD SYD, we have

dnD d D ds
dt s dt (3.13)

dYD
= dt 3HsY (3.14)

dYD
= - 3HnD , (3.15)

so the left-hand-side of Boltzmann Equation (3.4) becomes sdyD, and we end up with:

dYDt

SdYD (6)D4O[cD c q VD,5 n2 nq2] (3.16)
dt = {o-v)CD-C 4 nCrD - fCDDl4]D D2

Dividing both sides of the above equation by s, we get:

dYD

dt = -s (v)CD-+C4 [YCYD - YCYY/ - s (o')DD4 [, -y eq2  (3.17)

Now we need to change the time variable from t to x = m/T. In the radiation-

dominated epoch, equation (5.15) of [8] gives:

t = 0.301g-1/2MI zx2 , (3.18)
m

Where g, counts the total number of effective massless degrees of freedom, and is

defined in equation 3.62 of [8], and mif is the Planck mass. So we have

- = 0.602g-1/2 x

dx ,.
U/-N 1(3.19)
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Where H(m) =H(x =1) =1.67g/2 from equation 5.16 of [8].

So, after changing variable from t to x, the Boltzmann equation becomes:

dYD = s (av)CD-+4C[D - Cy D
dx H(x = 1)

DD-+ [Y _ yeq 2]
H(x = 1)-

(3.20)

Now from equation 3.72 of [8]:

s = 2gT5 3
2r 2  m3  s(x 1)
45 9*S 3

3 (3.21)

where g*, counts the contribution of relativistic particles to the entropy density, and

is defined in equation 3.73 of [8], so the Boltzmann equation becomes:

S 1) (aV)CDC [YCYD
H(x = 1)x 2

- YC Y7I -
S(X (=V)DDo 2

H(x- = )X2 [D

or, using the definition of A,

S (2 [A[YcYD - Y D] + A2[Y2 ygq2]]x

Y*7 - D 45. 2K2[x]g*s 41r4

is the equilibrium density, and K 2 [x] is the modified Bessel function of the second

kind. For the remainder of the paper, we will assume g= 1, 9* = 100 (which is

typical in the early universe see Fig. 3.5 in [8]), So ygq = 4 1 x 2 K 2 [x]

18
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Chapter 4

Solving Boltzmann Equation in the

Lee-Weinberg Scenario

Equation (3.23) has both the standard annihilation term and the new catalytic term.

In this section we will study just the annihilation piece. If we only keep the annihi-

lation term, the Boltzmann equation (3.23) becomes

dYD _1 2 L2
dx X 2 12 [YDYD] y (4.1)

We can solve this differential equation numerically and obtain the freeze-out density

YD(oo). For our numerical studies, we will assume mD - 100 GeV.

To convert the dimensionless YD(oo) into a meaningful dark matter abundance,

we use equation (5.46) of [8], where the dark matter number density today is nDO

s0Yo = 2970Yoocm~ 3,

QDh 2 nDO X mD

1.055 x 10-5GeV/cm3

2.815 x 108YmDGeV-1

= 2.815 x 1010Yoo . (4.2)

Here, QDh 2 is the abundance of dark matter, which is the ratio between the dark

matter mass density and the critical density Pcr = 3HO. Similarly, we also need to

19



turn A into a cross section (ov). From (3.10):

A =(av)s(x l) (4.3)
H(x = 1)'

where s(x = 1) = -g,,m3 from equation (3.72) of [8], H(x = 1) = 1.66vK~m from
equation 3.63 of [8], thus

A = 0.264 * mIm (o-v) . (4.4)

Assuming g.= = 100,
0.379A (45)(o-v) =m . 4.5

We are working in units where h = c = 1. So we need to put in the appropriate factors

of h and c to make the equation dimensionally correct. Notice that A is dimensionless,

and (o-v) has a dimension of cm 2, so we have:

_ 0.379h 2c2A(o-v) - m A . (4.6)
mgam

With my = 1.221 x 10"9 GeV, m 100 GeV, we get:

(o-v) = 1.209 x 10- 49Acm 2  (4.7)

Solving the Boltzmann equation numerically, and converting all the dimensionless

quantities into meaningful quantities with the two conversion formulae above, it is

found that, to have QDh 2 
- 0.1, (the 95% CL is determined to be between 0.0975

and 0.1223 [9]) we want A2 ~ 6 x 1012, which corresponds to (o-v) = 0.73 pb.

Figure 4-1 is a plot of YD vs x obtained numerically.

4.1 Semi-Analytic Solution Using Freeze-out

Notice that there is a very distinctive value of xf (~ 20) when freeze-out occurs,

namely when YD deviates from Ygq. YD was in equilibrium and follows closely with

20



Y
10-5

10-5r

10-0 -

I-25 -

L0-30 .

5 10 20 50

X-~j

Figure 4-1: Annihilation reaction with A2 = 6 x 10-12. The dashed line represents
Y, and the solid line is YD-

Y" for x < xf, then, YD suddenly freezes out at x > xf.

Using this feature, it is possible to derive a fairly accurate semi-analytic solution

to the Boltzmann equation in the Lee-Weinberg scenario. First, we define Q(x)

YD(x) - Y~q(x), and consider the differential equation satisfied by Q(x):

dQ dY"q A
Dd Q(2Y+ Q). (4.8)

In the region where x < x, YD is very close to yLq, so both Q and dQ/dx are

very close to 0. It turns out that it is a good approximation to set dQ/dx = 0 in this

region, so we have:

X2 dY/dx
A 2 2Yj'+Q
x 2 dYj'/dx

2A2 YSeq
(4.9)

For x > 3 we can approximate Y" ~ 0.1459x 3/2 e-x using equation 5.25 of [1], such

21
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that:
d Yi /dx

y~ -(3/2x - 1) -1, (4.10)

for x big enough. Combining (4.9) and (4.10), we obtain that for x < xf,

X2
Q~x) -.(4.11)

2A2

Now, when x > Xf, Y$4 is exponentially suppressed, so Q > Y, and the differential

equation for Q(x) becomes:

Q= - 2 (4.12)

Suppose Q(xf) = A, we can integrate the above equation to find:

1 1 1 1)
x) + -A 2 ). (4.13)

Q~A (X Xf

Typically, A > Q(x), so we can ignore the second term on the left-hand-side. When

X = oo, we get:

Q(oo) = YD (oo) - (4.14)
A2

Notice that if we have x1 , we have YD(oo).

[8] provides a procedure to find Xf as follows: first, define xf by the criterion

Q(xf) = cYL(xf), where c is a constant of order unity. Substituting in the early

solution of Q(x) = x2/A 2 (2 + c) gives:

1
xf ln[(2 + c)A2 ac] - ln[ln[(2 + c)A 2 ac]] , (4.15)

2

where a = 0.1 4 5g/gs = 0.00145. Here we pick c = 1 ± v/2 = 2.414. If we choose

A2 = 6 x 1012, we get xf = 23.6. And hence YD(oo) = 3.93 x 10-12, which corresponds

to QDh 2 = 0.112. Recall that we found numerically YD(oo) = 0.100 with the same

A2, we see that the semi-analytic solution gives a very accurate answer. Figure 4-2

compares the numerical and analytic solutions of Q(x)

Figure 4-3 is a graph that shows how the relic abundance changes as a function

of A2. Notice that the vertical scale is the logarithm of QDh 2, a relic abundance of

22



Q(x)
5.x10 -1

A

3. x10-11/

Figure 4-2: Numerical (solid) vs semi-analytic (dashed) solution of Q(x) in the an-
nihilation reaction. The semi-analytic solution is obtained by piecing together the
analytic solutions for x < xf and x > xf at xf.

0. 1 would correspond to a value of - 1.

To summarize, we find that with mD = 100 GeV, the cross section of the annihi-

lation reaction should be (ov) = 0.73 pb to yield a relic abundance Of QDh2 = 0.100.

As the cross section increases, QDh 2 decreases roughly as 1/A2.
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0

0.0

-0-5

-1.0

0.0 0.2 0.4 0.6 0. 1.0 1.2

(av)a [pb]

Figure 4-3: Log of relic abundance vs annihilation cross section 0 to 1.2 pb.
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Chapter 5

Boltzmann Equation with

Catalytic Reaction

Having understood the standard freeze-out calculation, we now turn to the new cat-

alytic reaction. When only the catalytic reaction is possible, we can set A2 = 0 in the

Boltzmann equation, yielding

dYD _1-- D =--Yc[YD- -YI] . (5.1)
dx x

For convenience, we define A = AYc where Yc = 10-9, so

dYD _Ad = - [Y (5.2)dx x2l

Note that the solution only depends on the combination A = AYc. We will see that

in order to yield a thermal relic abundance of 0.1, A is typically on the order of 150.

Figure 5-1 is a numerical solution of YD with A = 100.

Comparing this solution with the annihilation solution, we see that the freeze-

out is less well defined in the catalytic case, i.e. the number density of dark matter

continues to decrease even after it has been detached from the equilibrium solution.

Thus, to calculate the abundance, we need to evaluate the solution at a sufficiently

late time.
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Y

10-10

10-15r

102

10-30

L2 5 10200

Figure 5-1: Catalytic reaction with A 100. The dashed line represents yeq the
solid line represents YD. Yc, which is a constant, is also plotted on the graph.

More concretely, at a time when YD > Y the Boltzmann equation becomes:

dYD
d = -- YD- (5.3)dx X2

The solution to the above equation is YD AeA/x. This is a much slower decreasing

function of x than the annihilation case. Since A ~ 100, even if we take x = 100,

freeze-out still hasn't technically occured, since the ratio

YD(100) Ae1001 100

YD(OO) Ae1 00/oo '

the true freeze-out level is still another factor of e away! This is very different from

the behavior of freeze-out with only annihilation, where YD stabilizes shortly after

Xf. Now, notice that (5.2) is a linear first order equation, so we can solve it exactly.

Analogous to the annihilation case, we define the difference Q(x) YD(x)-- D

so (5.2) becomes:
dQ A dYL(

-x - -- 2Q - . (5.5)dx x2 dx

Since it is a linear equation, its general solution can be broken into two parts: the

26



homogeneous solution to the differential equation is QH:

dQH A
dx 2(5.6)

this is easily solved to be QH(X) - AeA/x. The particular solution Qp, to the equation

satisfies:
dQp QP - . (5.7)
dx x2 dx

The general solution is thus: Q(x) = QH(X) + QP(X) = AeA/x + Qp(X)

To solve for Qp(x), we use the method of integrating factors to obtain:

A x dY**. A d
QP(x) = -e-ID e- du, (5.8)

1 du

so the general solution is: Q(x) = Ae^/x - e A fj~ e-Adu. To determine the

constant A we impose the boundary condition of Q(1) = 0 (since we started our

numerical integration at x = 1, and at that point we assumed particle D is still

completely in thermal equilibrium). But Q(1) = AeA - 0 0, so A = 0. Thus the

solution to our differential equation is:

A xdY** -A
Q = -e _e- du. (5.9)

J, du

If we are interested in the freeze-out density: YD(oo) = Q(oo) + Y (oo) = Q(oo)

We can make the above expression look nicer using integration by parts:

A dY"" -Ad
Q(oo) = -e- D u

1 du

= - Y. e-du

= Y 2 e du. (5.10)

Now, since yg = -4X 2K 2 [X], we have

Q g 4 A K 2[u]eIAdu. (5.11)
9*S 47r
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0

0-

-2F

0.000 0.00 0-010 0.015 0.020

(ov), [pbj

Figure 5-2: Log of relic abundance vs catalytic cross section (0 to 0.0242 pb). This
shows that the relic abundance decreases exponentially as A.

We can verify that (5.11) agrees precisely with the numerical solution to the Boltz-

mann equation.

Figure 5-2 shows the log of the dark matter abundance as a function of the catalytic

cross section. The horizontal axis is cross section ranging linearly from 0 to 0.0242

picobarn.

To summarize, the catalytic reaction produces a very different history of dark

matter density compared to the annihilation reaction. Firstly, it takes a much longer

time for the dark matter density to stablize. Secondly, with a very small cross section

of about 0.02 pb, the catalytic reaction is able to achieve the same QDh 2 as the

annihilation reaction, which had a cross section of 0.73 pb. Lastly, while QDh only

decreases as 1/A2 for the annihilation reaction, it decreases exponentially as A, in the

catalytic reaction.
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Chapter 6

Combined Effect of Annihilation

and Catalytic Reaction

Now we want to understand the case where both the annihilation and catalytic reac-

tions are turned on. Figure 6-1 is obtained when we vary the annihilation cross-section

along the vertical axis and vary the catalytic cross section along the horizontal axis.

The value of the plot is the log (base 10) of the dark matter abundance 2Dh2,

where the experimentally determined value of 0.1, which roughly corresponds to a

value of -1 on the plot.

Notice that a catalytic reaction with a cross section 50 times smaller than the

annihilation reaction has a similar effect on the dark matter relic abundance.

Amazingly, if we estimate the annihilation and catalytic cross sections to be

(o-v). Oc memD and (Ov), oc , we roughly get the correct ratio between the cross

sections. It would be interesting to have an explicit physical model which realizes

this possibility.

Now, let's study what happens to the dark matter abundacne vs. catalytic cross

section curve (Figure 5-2) changes when we introduce a small amount of annihilation

reaction. Fix (-v), = 0.12 pb and vary (-v), from 0 to 0.06 pb, then compare with

the case when no annihilation is introduced. The result is shown in Figure 6-2. We see

that when (o-v), is large enough, the two lines converge, since the effect of catalytic

reaction dominates the annihilation reaction. Similarly, let's fix (o-v), = 0.0012 pb
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Figure 6-1: Variation of dark matter abundance with (o-v)a and (ov),. The observed
abundance of QDh 2 ~ 0.10 corresponds roughly to -1 on the graph. The effects of the
annihilation and catalytic reactions on the abundance are comparable even though
the range of the annihilation cross section is 50 times bigger.

(a very small value), and vary (av), from 0 to 60 pb (an extremely large value),

and compare this to the same graph without the additional (ov)r. We obtain Figure

6-3. Surprisingly, even when (av), is absurdly large, the tiny amount of (ov), is still

significant enough to cause a difference in the final abundance. This demonstrates

the following fact when we have both the annihilation and catalytic reactions: even

a small catalytic cross section will have a noticeable effect on the final abundance of

dark matter no matter how big the annihilation cross section is.

This can be understood intuitively as follows: when the annihilation cross section

is very large, the dark matter abundance will eventually become very small. When

this happens, the annihilation reaction is suppressed as YD, whereas the catalytic

reaction is only suppressed as YD, so the catalytic reaction will eventually dominate
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Figure 6-2: Dark matter abundance against catalytic cross section. The top curve is
the relic abundance against catalytic cross section without any annihilation reaction.
The bottom curve shows the relic abundance against catalytic cross section with an
annihilation reaction of 0.12 pb. At very large catalytic cross sections, the two curves
converge.

the annihilation reaction no matter how large the cross section is.
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Figure 6-3: Dark matter abundance against annihilation cross section. The top curve
is the relic abundance against annihilation cross section without any catalytic reac-
tion. The bottom curve shows the relic abundance against annihilation cross section
with a catalytic reaction of 0.0012 pb. Even at very large annihilation cross sections,
the two curves do not converge.
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Chapter 7

Physical Model

The toy model for catalytic dark matter analyzed in the previous sections is in fact

motivated by supersymmetry (SUSY). In SUSY models, the following reaction can

occur:

C + D -+ C+4 (7.1)

C'+ D - +. (7.2)

Here 4 is a standard model particle such as a photon. D is the supersymmetric

partner of #. C is some yet unobserved heavy particle, such as a fourth generation

quark, and C' its superpartner. It can be immediately seen that Yc+Yc, is a constant,

just like Yc in the toy model.

In our model, we would also like to enforce the triangle inequality between the

masses of the three species mD,mCmC,, so that one does not decay into the other

two, via, for example, C' -+ C + D + #. In particular, this requires mc, < mc + mD

and all other permutations.

The above reactions are similar to the catalytic reaction analyzed in this paper,

but to rigorously calculate the densities of each species, we would have to solve the

Boltzmann equations with at least three species. That said, it is still reasonable to

expect the general features of the catalytic toy model to hold.

As mentioned earlier, we assume both C and C' carry matter-antimatter asymme-
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try, and they have both completely annihilated their respective anti-particles before

the freeze-out of D begins. However, we need to get rid of C and C' eventually,

since we do not observe them today. In a typical SUSY model, there is a symmetry

called R-parity, and D is the lightest R-parity odd particle. If C is R-parity even,

then SUSY tells us that C' is R-parity odd, and thus C' must decay to the lightest

R-parity odd particle, namely D, thus the relic abundance of D will be enhanced by

the decay of C'. On the other hand, C can decay into standard model particles and

won't affect dark matter abundance.

Since we are motivated by the baryon asymmetry to assume Yc = 10-, and the

freeze-out density of D is typically much lower (~ 10-11), we hope that the reactions

will carry out in a way such that C'+D -+ C+# is more favorable than C+D -+ C'+#

so that Yc, will be low enough in the end to not significantly increase YD when C'

decays.

We argue that there are good reasons to believe this is the case. Assuming C' and

C are kept in thermal equilibrium by the reactions (7.2), and that they are in the

non-relativistic regime, the ratio of their equilibrium density can be approximated by

equation 3.6 in [10]:

nc/~ c' T '3/2 e-m&'IT 3/ 2
nc __ c ~,I)3/ _c/ -mc') 3/2(m',-m)/T . (7.3)
nc 9c_(T,)3/2e-mc/T mc

The exponential term will dominate, so we can approximate the ratio between C' and

C as e-A/T, where A is their mass difference. As long as C' is more massive, the

Boltzmann equation will favor the conversion of C' to C, thus decreasing the density

of C'. In other words, even though C and C' are not in thermal equilibrium with #,
C and C' may be kept in relative equilibrium with each other.

The triangle inequality between mD, mc and mc' implies that A = mc, - mc

can be on the order of mD- Recall we defined x = mD/T ~ A/T in our Boltzmann

equation, the density ratio nc0 /nc can be as small as ex. Since freeze-out occurs

at x > 1, we expect only a very small amount of C' in the end, which will not

significantly increase the final yield for D when it decays. However a more rigorous
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calculation must be done to establish this claim.

The physical model based on SUSY reactions will likely preserve the properties

of the catalytic reaction toy model. Additionally, the enhancement of the relic abun-

dance due to the decay of C' can be made insignificant by requiring m' > mc.
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Chapter 8

Conclusion

We studied a new type of reaction in the dark matter freeze-out calculation of the

form C + D -+ C + . This catalytic reaction exhibits very different behavior than the

standard annihilation reaction (D + D -+ ± ) since by assumption, the density of

C is constant, effectively making the Boltzmann equation for the density of D linear.

We found that by assuming mD = 100 GeV, an ordinary annihilation cross section

of 0.73 pb is required to make f2Dh
2  0.1. In the catalytic reaction, only a much

smaller cross section of 0.02 pb is needed to get the same dark matter density.

We solved the Boltzmann equation for the catalytic reaction both numerically and

analytically. The dynamics of the dark matter density differ from the annihilation

case in two main ways:

1. It takes a much longer time for the dark matter density to stabilize.

2. The final abundance decreases much more sharply as we increase the catalytic

cross section.

When both the catalytic and annihilation reactions are present, it is interesting to

note that even if the catalytic reaction is very weak, it can still significantly affect the

final abundance of dark matter, regardless of how big the annihilation cross section

is. This means that catalytic reactions, if present, are crucial to calculating the relic

abundance correctly, and may even dominate the annihilation reactions.

This form of catalytic reaction is natural in SUSY theories and can be applied

with a very minor modification: instead of one catalytic species C, we will have C
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and its superpartner C', which undergo the following reactions.

C + D -+C'+ 4,(8.1)

C'+ D -C + . (8.2)

As mentioned in section 7, the dynamics involving three species are slightly more

complicated. In particular, since C' will eventually decay into D, we need to include

this effect in our calculation of the relic abundance.

Future work needs to be done to rigorously calculate Yc, and show that it can be

neglected when dark matter freeze-out has occurred. Another issue not addressed in

this paper is the dependence of various cross sections on time, which is assumed to

be constant. An actual field theory model is needed to more rigorously establish the

various results in this paper. Given the exciting prospects of detecting dark matter

in the coming decade, it is crucial to theoretically study these variant dark matter

scenarios.
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