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ABSTRACT

The U.S. government doubled NIH appropriations between 1998 and 2003, aiming to
significantly foster research activities in biomedicine. However, several indicators
demonstrate not only that the impact of the budget increase fell short of
expectations; in many cases it resulted in unintended negative effects. Compared to
pre-doubling conditions, researchers now spend significantly more time writing
grant proposals, impacting their ability to carry out research. Paradoxically, the
probability with which a grant proposal is accepted for funding deteriorated sharply
after the doubling and continues to fall. The average age of first-time NIH grant
recipients has increased by almost a decade since the early 70's, while the
percentage of biomedical doctorates securing tenured or tenure-track positions
relentlessly drops. These trends represent a threat to the quality, stability, and
availability of the U.S. biomedical research workforce.

This thesis takes a system dynamics approach to test the hypothesis that a sudden
and temporary increase in research funds can result in unintended long-term effects
hampering research discoveries and workforce development. A simulation model is
therefore developed using the available literature and calibrated to replicate
historical trends. The model is then used to perform experiments that test the effects
of changes in certain parameters or policies. The outcomes of these experiments
provide policy insights that can help improve the effectiveness of NIH funding and
its impact on the workforce.

Thesis Supervisor: Richard C. Larson

Title: Mitsui Professor of Engineering Systems
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1. Introduction

1.1 NIH Background

The National Institutes of Health (NIH) is the largest funder of medical research in
the world, the leading agency for non-classified research in the U.S. federal
government, and largest single source of funds for academic research in the country
(Collins, 2011; Brainard, 2004). It is one of eleven operating divisions that constitute
the Department of Health and Human Services (HHS), the United States
Government's principal health agency. NIH's mission is to seek and apply
knowledge about living systems to enhance health, lengthen life, and reduce the
burdens of illness and disability (NIH, 2011).

Underlining NIH's role as a government priority, President Barak Obama has
referred to biomedical research as essential to the health of individuals and the
economy as a whole (Glenn, 2011). The strong political support that NIH has
historically enjoyed is reflected in the size and growth of its budget; in 2010 the
agency spent over 30 billion dollars in medical research, a threefold increase from its
1980 budget (NIH, 2012).1 Figure (1) illustrates how federal support for HHS
overshadows all other non-defense federal R&D expenses; NIH represents over 97%
of HHS' budget (NSF, 2012).

The NIH supports more than 200,000 scientists and research personnel across the
U.S. and abroad, conducting research and training extramurally and within its own
facilities (Smith, 2006). NIH-funded medical research has played a fundamental role
in the increase of life expectancy in the United States, from 47 years in 1900 to 78
years in 2009 (NIH, 2011). Underscoring NIH's role in the nation's economy, Mack
(2000) notes that if only 10 percent of the value of longevity increases resulted from
NIH-funded research, it would indicate a payoff of about 15 times the annual
investment. The agency is a prominent player in the advancement of cutting-edge,
and sometimes controversial, science such as human embryonic stem cell research
and nanotechnology. This leadership is reflected in the more than 80 Nobel Prizes
that have been awarded for NIH-supported research (NIH, 2011).

Given NIH's sizeable budget and impact, its rapid growth in the past few decades,
and the ambitious outcomes it targets, it is critical for relevant policy-makers to
understand the dynamics of the underlining research workforce and its response to
changes in funding levels. Poorly designed policies could negatively impact the
quality, availability, and stability of this workforce, affecting the effective fulfillment
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of NIH's mission. To this end, it is first necessary to identify the population that this
workforce is composed of and their typical professional development.

Figure 1. Estimated Federal Obligations for R&D by Agency
Fiscal Year 2009 (NSF, 2012)

1.2 Workforce Characteristics and Career Progression

The scientific workforce qualified to carry out the research that NIH targets is

primarily composed of PhD holders in biological and medical science fields such as
biochemistry, epidemiology, and genetics, to name a few. Recent years have

witnessed a tremendous increase in the production of these doctorates. Figure (2)

shows how the number of degrees awarded has more than doubled in the past 20

years, a remarkable trend when compared to other fields in science and engineering

(Sturtevant, 2008).
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Figure 2. Doctorate Degrees Awarded in the Biological
and Medical Sciences (Garrison & Ngo, 2011)

Upon graduation, doctorate degree holders typically have the choice between one of
two broad sectors: academia or industry. Figure (3) shows how the number of
biomedical PhDs employed in academia has remained relatively stable for the last
two decades, while the number employed in industry doubled between 1995 and
2008. To make matters worse, the elimination of mandatory faculty retirement in
1994 further hindered the prospects of young investigators seeking tenured or
tenure-track positions, particularly at research institutions. Using MIT as a case
study, Larson and Gomez Diaz (2012) concluded that if tenured professors were to
remain employed an additional 10 years on average, the hiring of new faculty would
drop by approximately 20%.

This situation is at odds with the hopes and career aspirations of doctorates: "...an

academic career has traditionally been the goal of most entering Ph.D. students in
the biomedical sciences, and this ultimate objective is assumed in the design of
graduate programs" (Garrison, Gerbi, & Kincade, 2003). In addition, the NIH
awards 80% of its grant money to researchers affiliated with domestic higher
education institutions; the remaining 20% is split between researchers at
independent hospitals, research institutes, and non-profits (NIH RePORT, 2011).
These proportions indicate, therefore, that NIH's main researcher population
consists of PhD holders in biomedical fields who remain affiliated with domestic
higher education institutions throughout their careers.

11

10,000 -

" 9,000

8,000--

7,000

- 6,000

5,000

" 4,000

3,000
2,000--

0
1,000--

0
1966 1976 1986 1996 2006

Year



Figure 3. Employment of Biomedical Science PhDs
by Sector of Employment (Garrison & Ngo, 2011)

PhD holders who follow the academic path, and are able to successfully navigate the
professional hurdles of reappointment and promotion, eventually achieve tenure.
Before landing tenure-track appointments at research institutions, however, it is
becoming increasingly common for biomedical doctorates to engage in postdoctoral
training. The NIH defines a postdoctoral scholar as "An individual who has received
a doctoral degree (or equivalent) and is engaged in a temporary and defined period of
mentored advanced training to enhance the professional skills and research
independence needed to pursue his or her chosen career path" (NIH OER, 2007).

According to Cathee Johnson Phillips, Executive Director of the National
Postdoctoral Association, "...in biomedical fields, a postdoc has become required if a
person has any hope of becoming a faculty member on the tenure track [...] because
of the recent increases in graduate enrollment in the biological sciences, I would say
that the biomedical industry will remain the leader of the pack in the creation of
more postdocs" (Hibel, 2011). As seen in Figure (4), the number of biomedical
postdocs in the U.S. more than trebled between 1979 and 2009 from 11,000 to over
37,000. This trend highlights the growing importance of the postdoctoral stage in
biomedical doctorates' development towards full-time positions in higher education
institutions.
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Figure 4. Biological and Medical Sciences Postdocs,
U.S. Citizens and Permanent Residents (Garrison & Ngo, 2011)

Since NIH funding targets researchers at all stages in academia described above-
from graduate students, to postdocs, to tenured faculty-this is the main career
pipeline that this analysis will focus on. The impact of NIH funding in the
development of the workforce, however, is not straightforward and entails major
complexities examined in the following section.

1.3 Challenges and Complexities

In order to shed light on the complex relationships that exist between different
variables in the workforce ecosystem, a natural experiment is used to describe the
noteworthy and unintended effects of abrupt changes in NIH funding levels.

In 1997, the U.S. Senate voted 98-0 to endorse the goal of doubling the NIH's budget
in five years (Pear, 1998). The project was successful; between 1998 and 2003
Congress doubled NIH appropriations from $13.6 billion to $27.1 billion (Smith,
2006). Figure (5) plots this trend in constant 2010 dollars and highlights the
relevant doubling period. Due to a general lack of understanding by decision-makers
on how the biomedical workforce would respond to this increase, a seemingly
positive development for the field ended up triggering a crisis once the growth halted
(Monastersky, 2007). It is worth noting that as far back as 1998, a National
Research Council committee had urged restraint in the rate of growth of PhD
production in the life sciences. This conclusion drew strong criticism by some and
was ignored by others, resulting in its final dismissal (Monastersky, 2007).
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Figure 5. NIH Budget in Constant
(NIH, 2012)

2010 Dollars

The budget doubling flooded NIH with billions of dollars over a relatively short
period of time, provoking the massive expansion of biomedical research that policy-
makers had intended. Achieving the doubling of NIH's budget in five years required
an annual growth rate of roughly 15% (Kaiser, 2003). Such steep budget growth
created the conditions for a comparably steep increase in the number of researchers,
particularly at the doctorate level. Consequently, expectations of federal support
surged to levels that could not be sustained once the budget stopped growing
(Couzin & Miller, 2007). The biggest strain on the budget ultimately came from this
general increase in researchers (Timmer, 2008) and the relative declining
availability of funds following 2003.

The swelling budget drove research institutions to spend their own money building
more research laboratories in anticipation of winning NIH grants to operate them
(Brainard, 2004). Universities added graduate students and postdocs in biomedical
departments, increasing the pool of researchers competing for NIH grants
(Monastersky, 2007). The dramatic surge in demand for researchers was met with a
growth in supply, creating a scenario in which stability depended on continuous
annual budget increases of 15%. Sustaining this growth was not only practically
unfeasible; policy-makers never intended it.

Once the double-digit growth ended, biomedicine found itself in a situation where
the supply of qualified researchers far outstripped demand. NIH's budget underwent
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an abrupt reversal after 2003, going from annual increases of 15% to boosts of

around 3% in the years to follow; a decline in real terms when accounting for

inflation.

"After a completed five-year doubling campaign [...] biomedical researchers hoped

for a gradual easing into slower growth rates. But growth in the NIH budget slowed

sharply to 3.2 percent in 2004, slowed even further to 2.0 percent in 2005, and

[reversed] in 2006 with a declining budget for the first time since 1970. After

adjusting for inflation, FY 2006 [was] the first time in 24 years that the NIH R&D

portfolio [fell] behind inflation in the economy as a whole [...] the 2006 budget cut

[was] steep enough to bring NIH R&D below the 2003 funding level in real terms,
erasing the increases of the last two years." (AAAS, 2005)

Stagnant funding levels, combined with inflation, resulted in a 13% decline in NIH's

purchasing power between 2003 and 2007 (Agres, 2007). Not unexpectedly, such a

severe shock resulted in a wide array of negative effects for the biomedical research

community. In 2007 Science magazine concluded that conditions worsened after

NIH's budget doubled, as the infusion of money was far too rapid and not tied to

structural reforms that could have enabled NIH to best use its growing resources

(Benderly, 2007).

1.4 Troubling Indicators

This case study illustrates how the rapid growth of NIH's budget, a seemingly

positive development, set the stage for a series of unintended negative effects due to

the complex interactions between different components in the system. Among these

effects, it is evident that the current stagnation in available grant awards, coupled

with the increase in applications, has resulted in declining success rates. Figure (6)

shows how this decline began shortly after the doubling efforts came into effect in

1998.
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A second troubling indicator closely related to the decline in grant success rates is
the rising age at which investigators secure their first RO1 or equivalent grants.
These types of grants are a critical milestone in a researcher's career, and are
essential for their establishment in the scientific community. Figure (7) illustrates
this rising trend, where a steep increase can be appreciated shortly after 1998.
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As mentioned in Section 1.1, tenured positions are typically the long-term
professional goal for biomedical doctorates, which contrasts with the relatively
stagnant number of PhDs employed in the academic sector illustrated in Figure (3).
The growth in PhD production has therefore translated into a declining percentage
of doctorates landing tenured or tenure-track positions for the past three decades,
virtually unaffected by the doubling of the budget. Figure (8) illustrates this trend.
Furthermore, assume that in equilibrium the top X % of candidates enter the
biomedical system as PhD candidates. If the number of available PhD slots were to
double, then the top 2X % of candidates would enter the system, therefore impacting
the quality of the overall talent pool.

Figure 8: Percent of U.S. Biomedical Science PhDs Holding
Tenure or Tenure-Track Positions (Garrison & Ngo, 2011)

Given the NIH's commitment to a stable and sustainable scientific workforce, the
agency is growing increasingly concerned about the troubling indicators illustrated
above (Ruiz Bravo, 2007). Despite the outcomes of the budget doubling, equivalent
funding initiatives remain a popular proposition in the political realm (Hinck, 2010).
Flat funding is typically seen as the culprit, and many sectors of the research
workforce are clamoring for large budget increases once again. "What is often left
unsaid is that the fundamental problems are structural in nature-biomedical
research funding is both erratic and subject to positive-feedback loops that together
drive the system ineluctably toward damaging instability" (Teitelbaum, 2008).
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At this stage, one can only speculate about what the outcomes of different strategies
for budget growth would have been. Similarly, the long-term side effects of current
policies will be understood only until they become obvious. "Public policies often fail
to achieve their intended result because of the complexity of both the environment
and the policy-making process" (Ghaffarzadegan, Lyneis, & Richardson, 2011).
Without formal and verified models that broadly describe such systems, identifying
effective policies and foreseeing unintended side effects remain elusive tasks.

1.5 Problem Definition

"In this era of scarce resources and a stagnant job market, careful planning
for the direction of biomedical research is critical" (University of California -
Davis Health System, 2011)

In light of the unintuitive consequences that abrupt budget increases can bring, the
goal of this study is to examine how the NIH and its funding policies affect the
development of the U.S. biomedical research workforce. This study is mainly
interested in the pipeline that researchers go through, from enrollment in
biomedical doctorate programs until retirement, looking at the intermediate steps
and key decision points along the way. The analysis will focus on understanding how
different variables interact, respond to each other, and generate feedback
mechanisms that ultimately give rise to unforeseen behavior. In other words, this
study will take a systems thinking approach in order to understand the dynamics of
the biomedical research workforce and its response to changes in funding policies.

The size of the biomedical workforce, the unparalleled support it receives from
federal funding, the consequential discoveries it makes, and the impact that such
discoveries have on the nation's economy and its scientific leadership, are all reasons
that warrant improved knowledge of this ecosystem. By providing an understanding
of the dynamic characteristics and complexities that define the behavior of the
biomedical workforce, the hope is to assist decision-makers in foreseeing unexpected
effects of changes in policy. This improved understanding is instrumental in
answering questions about the strategies that can enhance the effectiveness of
public spending for biomedical research going forward.

Lastly, the dynamics of a particular research workforce and its relationship with
public funding could bear similarities across various areas of knowledge. Other
public agencies and organizations, such as the NSF, whose funding plays a critical
role in the advancement of different scientific fields, could benefit from these
transferrable insights.

18



1.6 Research Method: System Dynamics

"In dealing with the dynamics of information feedback systems, the human is

not a subtle and powerful problem solver" (Forrester, 1961, p. 99).

The case study outlined previously illustrates how the biomedical workforce is a

system that involves a considerable degree of dynamic complexity. Understanding

its behavior requires the simultaneous consideration of numerous variables and

processes, such as funding levels and the number of doctorate candidates that exist

in the 'production' pipeline. The structure of the system, which is described by the

interactions between these variables and processes, is what dictates its overall

behavior. In order to model such a complex system, it is therefore necessary to

implement a method that allows the construction of computer simulations in which

all the relationships can be described and the variables can respond dynamically to

each other.

System dynamics is a modeling technique through which the structure and

dynamics of complex systems can be understood. Using this technique, modelers can

build formal computer simulations of real systems in order to uncover long-term side

effects of decisions, and design effective policy strategies to achieve improved

behavior (Sterman, 2000). System dynamics models are useful in identifying

processes that involve feedback that can either be self-reinforcing or self-correcting.

These types of processes, known as reinforcing or balancing feedback loops, give rise

to the non-linear behavior that characterizes a wide range of complex systems in the

real world. Mathematically, system dynamics is grounded in control theory and the

modern theory of nonlinear dynamics (Sterman, 2000).

"System dynamics is the use of informal maps and formal models with computer

simulation to uncover and understand endogenous sources of system behavior."

(Richardson, 2011, p. 241)

The stock and flow structure that serves as the basic construct in system dynamics

provides an appropriate platform to model the multi-stage development of the

biomedical workforce, accounting for the delays involved between each of these

stages. In system dynamics, stocks are accumulations within the system; they can

represent populations, balances, or inventories, for example, and can only be

affected by the flows connected to them. Flows represent the rate of movement of

elements between stocks in the system. If the system were to be brought to a rest,

stocks would continue to exist while flows would be unobservable. In mathematical

terms, a stock is equal to the time-integral of its inflow minus the time-integral of its

outflow.

Sterman (2000, pp. , 194) provides a helpful metaphor for understanding this basic

stock and flow structure and its mathematical equivalents. Figure (8) illustrates his
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analogy, in which bathtubs represent stocks, pipes represent flows, and faucets (or
drains) controlling the amount of water in the bathtub represent rates of inflow (or
outflow). In this study, stocks will generally consist of biomedical researchers at
different career stages, although they are also used to represent pools of financial
resources and commitments.

Stock and flow structures are governed by Little's Law: the stock in transit is equal
to the inflow rate multiplied by the average delay time (L = AW), regardless of the
probability distribution of the outflow (Sterman, 2000, p. 423). For example, if the
enrollment rate in biomedical graduate programs (A) is 20,000 students per year,
and the average length of a doctoral program (W) is 6 years, there will be 20,000 * 6
= 120,000 students pursuing doctorate degrees (L) at any given time in steady state.

Figure 9. Sterman's Hydraulic Metaphor for System Dynamics'
Stock and Flow Structure (Sterman, 2000, p. 194)

System dynamics models are framed graphically using stock and flow diagrams as
shown in Figure (9), and produce visual output in the form of graphs showing the
behavior of variables over time. These features aid intuition and make them
appropriate for transmitting useful insights about complex, differential equation-
based, models to policy-makers and audiences without strong mathematical
backgrounds.
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Lastly, the modeling effort proposed in this study is not intended to provide

quantitative predictions of specific states of the real-world system in the future.

Attempting to build a mathematical model with such forecasting capabilities is

unrealistic for a system as complex as the one in question. Fortunately, the

usefulness of a model does not depend on its ability to predict the future. Instead,

the goal is to create a model that is able to represent the complex interdependencies

in the real system. A model "...should show how changes in policies or structure will

produce better or worse behavior. It should show the kinds of external disturbance

to which the system is vulnerable. It is a guide to improving management

effectiveness..." (Forrester, 1961, p. 56).

1.7 Data Sources

The data used to guide the development and calibration of the model are mainly

sourced from the National Science Foundation's Survey of Earned Doctorates,

Survey of Graduate Students and Postdoctorates in Science and Engineering,

Survey of Doctorate Recipients, and the National Institutes of Health. Garrison and

Ngo (2011; 2012), from the Federation of American Society for Experimental Biology

(FASEB), have synthesized much of the relevant data contained in the

aforementioned surveys in a series of consolidated reports.

2. Dynamic Complexities and Model Conceptualization

"All systems, no matter how complex, consist of networks of positive and

negative feedbacks, and all dynamics arise from the interaction of these loops

with one another." (Sterman, 2000, p. 13)

2.1 Feedback Loops

The first step in this analysis is to identify endogenous feedback loops in the system

that give rise to complex, and sometimes undesired, behavior. As such loops are

identified, a causal diagram that describes the interaction between these feedback

processes will be developed. Causal loop diagrams are a simplified version of the

stock and flow diagram; they are "...an integral part of system dynamics modeling,

helping to foster group knowledge and understanding and providing a concise view

of an enormous amount of complexity and a starting point for simulation" (National

Cancer Institute, 2007). The resulting diagram will serve as the precursor of the

formal system dynamics model, while providing a visual description the overall

structure of the system.
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Figure (10) illustrates the starting point for the causal loop diagram: the intuitive

process that an increase in budget aims to trigger. The polarity signs next to each

arrowhead describe the relationship between the two variables connected by the

arrow. Positive polarities describe relationships in which the two variables

connected move in the same direction, while negative polarities describe movement

in opposite directions.

Fostering research and boosting scientific discoveries are the main motivations for

federal research spending. Government therefore responds to society's need for

scientific progress by investing in research. Increasing NIH's budget allows the

agency to fund a larger project pool, expanding the overall amount of research

activity carried out by the workforce. Growing research activity enhances the

achievement of successful scientific discoveries. The resulting increase in discoveries

reduces the discrepancy between the level of discoveries targeted by policy-makers

and the country's perceived scientific output. As this discrepancy falls, the desire to

further increase NIH's budget decreases and the process eventually achieves a

stable goal. Simple bivariate relationships, such as the ones described above, rest on

a ceteris paribus assumption in which no other factors affect the goal-seeking

processes they create. This is clearly not the case in the real-life system, underlining

the need for a simulation technique that is able to calculate changes in variables

throughout the entire model and dynamically reflect their effects on other variables.

It is nonetheless helpful to understand how individual feedback loops would behave

in isolation as a step towards conceptualizing the model.

NIH Funding

Desire for Grants
Increased Funding Funded

Desired Level of
Discoveries+

Discrepancy Research
Activity

succeswiu
Discoveries

Figure 10. Basic Goal-Seeking Loop

Note that the desired level of discoveries is not an explicit quantifiable figure that

policy-makers have agreed to through debate or analysis. Instead, it represents the

levels of scientific progress that government aims to foster. For instance, suppose
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lawmakers feel that the country is progressively lagging behind other nations in

terms of science. This would translate to a growing discrepancy between the actual

and desired levels of discoveries, likely triggering increased spending. Additional

variables need to be considered when modeling this variable, making it a

dynamically evolving goal.

Changes in NIH funding trigger a crucial reinforcing feedback loop in which, as NIH

funding increases (or decreases), the expectations for future funding will also

increase (or decrease). This relationship became most evident during the doubling

years: "The steep growth in spending [...] built expectations (emphasis added) and

momentum that set the agency up for disappointment when the doubling was done"

(Levin, 2007).

Expectations for increased funding lead to expansion, both of infrastructure and

personnel. This effect was also observed during the aforementioned period:

"Research institutions everywhere were breaking ground on new facilities and

expanding their faculty [...] to fill the buildings, expecting to recoup their

investments from the NIH grants investigators would haul in" (Couzin & Miller,
2007). Student bodies and research staff at institutions naturally grow as new

facilities and faculty become available, enlarging the size of the overall academic

biomedical workforce. A larger biomedical research workforce requires increased

financial resources for the continued support of students, faculty, staff, and other

fixed costs. The need for increased funding adds pressure to the NIH for further

budget increases, therefore closing a process known as a reinforcing feedback loop.

The addition of these reinforcing mechanisms is depicted in Figure (11).
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Total Researchers

Young
Budget Needed to +Resarcers
Sustain Research Graduate

Ecosystem Enrollment

University
Expectations
for Incoming

Grants

NIH Funding

Desire for Grants
Increased Funding Funded

Desired Level of
Discoveries

+ ResearchDiscrepancy ReAch
.. Activity

Succesful
Discoveries

Figure 11. Addition of Reinforcing Feedback Loops

Triggered by Growing Expectations

Graduate enrollment is not the sole determinant for the size of the biomedical
workforce. By itself, the reinforcing feedback process described above would result in
unfettered growth, or decline, in all of its constituent variables. Instead, this
feedback process is countered by balancing mechanisms such as the initial goal-
seeking loop illustrated in Figure (10) and the market forces of supply and demand.

Basic economic theory suggests that as the supply of researchers increases, their
wages will eventually decrease, ceteris paribus. A drop in salaries for young
researchers due to excess supply was documented after the doubling period:
"Oversupply of PhDs [...] help established researchers in the short term due to lower
costs [... ]" (Monastersky, 2007). Lower salaries diminish the perceived attractiveness
of a research career in academia, which drives researchers to other professional
paths and eventually discourages prospective candidates from entering the field.
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Figure 12. Stipend Levels, Kirschstein-NRSA Awards for
New Postdoctoral Fellows (NIH OER, 2012)

Figure (12) shows the trend in NIH stipend levels for new postdoctoral fellows in
constant 2010 dollars.2 The steep increase in stipend levels seen during the budget
doubling years can be attributed to the sudden rise in demand for researchers, while
its subsequent drop could be a consequence of market forces accounting for the large
number of researchers trained during the previous years. These changes could also
be the result of efforts by policy-makers in the NIH to limit the number of
postdoctorates supported through its grants, foreseeing the potential consequences
of a future oversupply. In either case, such levels of volatility in salaries are
arguably detrimental to the workforce.

A 1975 economic analysis by Richard Freeman, one of the foremost labor economists
in the U.S., demonstrates how market forces affect the research workforce in the
field of physics. Freeman concludes that changes in salaries for physicists can be
attributed to R&D policies of the federal government, and that changes in the
numbers of physics students result from economic responses to salary or job
opportunity incentives (Freeman, 1975). In theory, this balancing feedback loop
should therefore counter increases in the number of biomedical researchers. The
biomedical workforce system, however, is not closed. "Given increased research
funding, additional graduate students and postdocs can be readily recruited from
large potential pools in countries with fewer such opportunities- precisely what

2 The NIH defines a stipend as a "payment made to an individual under a fellowship
or training grant in accordance with pre-established levels to provide for the
individual's living expenses during the period of training" (NIH RePORT 2012)
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took place as the NIH budget was rapidly doubled" (Teitelbaum, 2008). The expected
effect of market forces is therefore attenuated in this system given its open nature; a
drop in salaries does not necessarily result in a reduced supply of researchers.

The process discussed above introduces an important concept when thinking about
workforce development: the perceived attractiveness of a research career. Several
variables have important effects on this perceived attractiveness. Figure (8) outlined
the overall decline in the percentage of PhDs securing tenured or tenure-track
positions. In 2007, the Chronicle of Higher Education reported: "The number of
tenured and tenure-track scientists in biomedicine has not increased in the past two
decades even as the number of doctorates granted has nearly doubled" (Monastersky,
2007). The new academic posts created due to the growth in NIH funding between
1998 and 2003 were "supported mainly by soft money and off the tenure track,
dependent on grant renewals" (Benderly, 2007). The signals created by poor career
prospects decrease the attractiveness of a research career, discouraging current
young researchers. Again, given the readily available pool of potential graduate
students, departing young researchers can be quickly replaced with new graduate
students. Exit rates by young researchers are nonetheless a telling indicator of the
overall health of the system. Figure (13) illustrates the processes described above.
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Funding opportunities are another highly relevant determinant of the attractiveness

of a research career. The period of budget doubling allowed for a significant increase

in the number of grants made available by the NIH, which was met with an equally

significant increase in the number of grant applications. This presents a situation

analogous to adding lanes to a congested highway-traffic will almost always

expand to fill the available space. These types of scenarios are known as instances of

Parkinson's Law. In Parkinson's original formulation, "work expands to fill the time

available for its completion" (Sterman, 2000, pp. 166, 184).

Once the budget doubling ended, the unrelenting growth in applications faced

instead a stagnant, and even slightly declining, number of available grants. Drawing

another parallel with the highway metaphor, it is as though the traffic attracted

during the expansion phase kept growing even after the project was completed. And

even worse, it is as if some of the additional lanes built were subsequently closed due

to unavailable maintenance funds. This would make congestion even worse than it

was before the expansion project.

Science magazine reported that increased funding helped drive more applicants to

the NIH, and the chances of being funded by the agency on a first attempt

plummeted from 21% in 1998 to 8% in 2006 (Couzin & Miller, 2007). A growing

biomedical research workforce increases the number of applicants for NIH grants,

which results in a larger applicant pool. This drives success rates down, which in

turn decrease the perceived attractiveness of a research career. In 2007, Edward

Miller, dean of Johns Hopkins Medicine, told a Capitol Hill news conference: "We

are seeing young researchers quitting academic research in frustration, having

concluded that their chances of having innovative research funded by NIH are slim

to none" (Agres, 2007). The addition of these effects to the causal loop is illustrated

in Figure (14).
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Figure 14. Impact of Lower Grant Success Rates

Being able to secure NIH grants is an essential professional step for young
biomedical researchers seeking tenured positions at U.S. colleges and universities. It
is common for young faculty members to win two to three RO1 awards to support a
lab before they can gain tenure (Monastersky, 2007). As success rates drop, the
amount of time taken for researchers to secure sufficient grants rises, lengthening
the average training period typically at the increasingly common postdoctoral stage.
Longer postdoctoral appointments further impact the attractiveness of a research
career: "Graduate students see long periods of training, [...] they get a sense that
this is a really frustrating career path..." (Monastersky, 2007). Once again, the
declining attractiveness of a research fuels the number of researchers leaving
academia. Figure (15) illustrates this effect.
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Figure 15. Impact of Longer Training Periods

There exists another important loop, in this case reinforcing, arising from the effects

of a larger applicant pool. During the budget doubling, the number of applications

grew at an even faster clip than the number of potential applicants, as scientists,
concerned about their chances of getting funded, began submitting proposals more

frequently (Couzin & Miller, 2007). This behavior underscores a natural response of

individuals to decreasing success rates. As the percentage of researchers funded

drops, the perceived competition for funding increases. Higher competition drives

applicants to submit even more applications in order to enhance their chances of

receiving a grant. As the numbers of grant applications per applicant increase, the

total applications submitted will also increase and further drive success rates lower.

This creates a dangerous reinforcing feedback loop in the system that is illustrated

in Figure (16).
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A higher rate of applications per applicant, which can also be fueled by funding
expectations, has broader implications other than lower grant success rates. Given
that competition increases with a larger application pool, the quality of the grant
applications needs to be kept intact, if not increasingly higher. More applications per
applicant, of constant-or increasing-quality, unequivocally result in more time
spent by researchers writing grant applications. In 2007, "Robert Siliciano, an
infectious disease expert at Johns Hopkins University School of Medicine, told the
Senate panel the reduction in NIH grants has forced him to scale back on promising
research into optimizing antiretroviral therapies. 'Typically, in the past, I would
spend about 30 percent of my time applying for grants; now about 60 percent of my
time is spent preparing applications,' he said" (Agres, 2007).

The need for submitting more applications affects not only the amount of time
available for scientists to perform research, but their attitudes towards research
itself. Also in 2007, Stephen M. Strittmatter, a professor of neurology and
neurobiology at Yale University's School of Medicine, told legislators that due to
increased competition, "researchers shy away from real discoveries. They've become
worriers, not explorers" (Agres, 2007). It is straightforward to infer that the
consequences of spending more time writing grant applications negatively impact
the rate of successful discoveries made by the biomedical academic workforce. This,
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by itself, is clearly an undesirable outcome. Figure (17) illustrates the addition of

this balancing feedback loop to the causal diagram.
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Figure 17. Lower Available Time for Research Decreases Research Activity

A large and rapid inflow of federal dollars to the agency creates parallel expectations

in policy-makers of large and rapid biomedical discoveries. "Currently, it often takes

decades for an important discovery in the laboratory to actually benefit people"

(University of California - Davis Health System, 2011). Expectations of significant

results in a short timeframe are not only unrealistic; they set the stage for even

greater disappointments given the process described above, in which large and rapid

inflows can eventually result in lower discovery rates. Government expectations for

important and visible results became evident in the post-doubling period: "People

are in a sort of 'show-me' mode up here," says Daniel R. Pearson, an aide to

Democratic members of the House Science Committee. "They're thinking, 'we gave

you all this money. What are we getting for it?"' (Brainard, 2004).

Political pressure to support increases in NIH's budget build as the desired level of

discoveries exceeds the attained level of discoveries with available resources. As the

workforce is unable to find adequate support for its continued research activities,
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lobbying efforts intensify. With enough political pressure, the desire to increase
funding finally moves to bridge this gap. As a result, political pressure builds up
during periods of stagnant funding, and depletes after significant steps to increase
the budget. Once the doubling came to an end in 2003, political support for further
increases in NIH's budget had been depleted after 5 consecutive years of
unprecedented budget growth. Enough political pressure would need to build up
before further increases are approved. This balancing mechanism is added to the
causal loop in Figure (18).
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Figure 18. Political Support Depletes After 5 Years of Funding Increases

A salient aspect of the initial years of budget doubling was the shift in allocation of
grants between young and established researchers: "The increase in the total
number of R01 grants [...] went disproportionately to established researchers"

(Brainard, 2004). "In 1995, 25 percent of the R01 and similar grants went to
scientists age 40 and younger. By 2005, the fraction going to that group dropped to
15 percent, while researchers older than 51 were gobbling up almost half of the big
grants" (Monastersky, 2007). As the competition for research grants increased, the
criteria for awarding grants became increasingly stringent. Experienced researchers
were therefore increasingly likely to submit proposals that met these criteria, and
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absorbed a larger percentage of the grant pool. This creates a potential reinforcing
feedback loop in which as the percentage of grants given to young researchers
decreases, their professional development is severely impacted and their future
chances are further diminished. Figure (19) shows the addition of this loop to the
causal diagram.
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Figure 19. Impacts of Lower Success Rate for Young Researchers

Given the damaging effect that the previous reinforcing loop can have on the future
biomedical workforce, NIH countered its effects through explicit policies that seek to
close the funding gap between experienced and young researchers. These policies,
such as the New Investigators Program (Ruiz Bravo, 2007), act as a countering goal-
seeking loop that comes into play when the professional advancement of young
researchers is threatened. Figure (20) shows the widening and subsequent

narrowing gap between success rates for first-time and established researchers
during and after the doubling years. Figure (21) adds this policy response to the
final version of the causal diagram that is used for developing the system dynamics
model.
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Figure 20: Grant Success Rates for Researchers by
Career Stage (NIH, 2011)
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2.2 Stocks and Delays

Delays have a defining influence in the system described above. "Delays are a

critical source of dynamics in nearly all systems" (Sterman, 2000). Given that this

study deals with a system that involves the professional development of individuals,
the time it takes for variables to have an effect on each other is certainly non-trivial.

For example, the time elapsed between enrollment in a doctorate program and

graduation is close to 6 years. Similarly, it takes time for common perceptions on

career paths to evolve, and for researchers to adapt to changes in the system. As a

result, the time it takes for the effects of balancing or reinforcing loops to manifest

themselves is substantial, and such delays often lead to undesired oscillatory

behavior in the system.

When output lags behind a given input, an accumulation takes place between the

two flows, which makes stocks an integral component of delays. The central stock

and flow structure in the workforce system is the progression of researchers from the

moment they enroll in biomedical graduate programs until they retire from

academia. For the purposes of this analysis, two main stocks will be considered:

young researchers and established researchers. This is a simplification of the actual

pipeline, in which researchers go through several more stages: PhD candidates,
postdoctoral scholars, assistant professors, associate professors, tenured professors,
etc. The dynamic complexities caused by the delays involved in career progression,
and their impact on the overall system, are nonetheless captured by reducing these

stages to the two stocks mentioned above. This approach follows Einstein's oft-cited

philosophy of making things as simple as possible, but not too simple; the model

should be complex enough to capture the overall behavior of the real system.

The stock of young researchers includes those professionals who are yet to receive

enough grants to support a lab or achieve tenure. While it is rare for established

researchers to leave academia, young researchers dropping out of academia is a

critical outflow and is therefore included in the model. Figure (22) illustrates the

stock and flow structure of the workforce pipeline used in this analysis. The cloud-

like shapes in this figure represent stocks that are beyond the model's boundaries.

For example, this analysis is not concerned with researchers who leave academia in

their early careers; the underlining assumption is that it is uncommon for them to

return to the relevant pipeline. Despite the undeniable importance of the stages

preceding enrollment in biomedical doctorate programs, this analysis assumes

unconstrained availability of applicants. For a study that uses system dynamics to

model the relevant pipeline preceding graduate school and discusses the challenges

that this system is currently facing please refer to Sturtevant (2008).
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Figure 22. Simplified Workforce Pipeline Model

The main workforce pipeline depicted in Figure (22) is embedded in the causal loop
diagram developed in section 2.1. Critical variables-such as funding levels and
success rates-affect, and are affected by, this pipeline's stocks and flows.

The stock and flow structure is also used to model the financial commitments that a
new grant entails. In this case we have one stock, NIH commitments, that has one
inflow-new commitments-and one outflow-fulfilled commitments. Figure (23)
illustrates this structure. When a researcher is awarded an R01 or equivalent grant,
he or she will not receive the entire grant's worth on the first year. Since these
grants typically span periods of four years, projects will receive approximately one-
fourth of the entire grant each year. The amount of financial resources available for
new grants therefore depends both on that year's budget and on previous financial
commitments. This is important because the commitments made by NIH during

years of unusual budget growth can extend to subsequent periods of financial
stagnation. When this happens, the availability of funds for new grant awards is
severely diminished so that previous commitments can be met.

New Commitments
NIH lt 

t et
New Commitments 'Cmiens Fulfilled Commitet

Figure 23. Stock and Flow Structure Used to

Model Financial Commitments

To illustrate this point numerically consider the following simplified scenario, which

is summarized in Table (1). Suppose that in 2012 the NIH has $10B available to
fund both new and existing grants. Total grant funding in all years preceding 2012

has remained constant, and the duration of grants is fixed at 4 years. The agency
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would then need to disburse $2.5B for grants awarded in each of the previous 3

years, totaling $7.5B, and leaving $2.5B available to sponsor new grants. Assume

further that NIH grant funding undergoes a 15% increase in 2013, growing to

$11.5B. Follow-on obligations for the previous 3 years still amount to $7.5B, leaving

$4.0B to fund new grants-a staggering 60% increase compared to 2012. In 2014 the

NIH again receives a 15% increase in available grant funds. In this case, follow-on

obligations for the previous 3 years would now total $2.5B + 2.5B + $4.0B = $9.0B,

leaving $4.2B to fund new grants. In 2015 the 15% increase is maintained, yielding

the cash flows illustrated in Table (1). In 2016, however, grant funding remains

stagnant. NIH spending on new grants would then drop by 44% from $4.5B in 2015

to $2.5B in 2016, severely impacting success rates and the stability of the system.

Year Grant Funds Follow-on Obligations Funding for New Grants

2012 $10.0 B $7.5 B $2.5 B

2013 $11.5 B $7.5 B $4.0 B

2014 $13.2 B $9.0 B $4.2 B

2015 $15.2 B $10.7 B $4.5 B

2016 $15.2 B $12.7 B $2.5 B

Table 1. Impact of Stagnant Funding on New Grants

Stocks of researchers at different career stages and financial commitments in dollar

amounts are easy to conceptualize given the tangible nature of their units. Other

more abstract concepts, however, also need to be modeled if they are deemed to play

a critical role in the real system. Political pressure, as described in section 2.1, is one

such concept. Figure (24) illustrates the stock and flow structure used to model

political pressure. Even though the feasibility of quantifying historical levels of

buildup and depletion of political pressure is debatable, the intuition behind this

structure is straightforward. Stagnant budgets increase the inflow of pressure into

the stock, resulting in its accumulation, while pressure is released after increases in

budget. The rates of pressure inflow or outflow depend on the magnitude and

duration of funding stagnation or increase. While the units in which political

pressure is measured will not have any tangible meaning, the behavior of this

structure is of critical importance to the system.

Political ;

Pressure Buildup Pressure Relief

Figure 24. Stock and Flow Structure Used to

Model Political Pressure
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The system described in this section, in which pervasive feedbacks and delays give
rise to high levels of complexity, likely typifies the kind of problem that Nobel
Laureate Herbert Simon had in mind when setting forth concept of bounded
rationality:

"The capacity of the human mind for formulating and solving complex
problems is very small compared with the size of the problem whose solution
is required for objectively rational behavior in the real world or even for a
reasonable approximation to such objective rationality." (Simon, 1957, p. 198)

In order to understand and avoid troublesome side effects, leverage its feedback
mechanisms, and make a positive impact in this complex workforce system, it is
essential to make use of computer modeling and simulation methodologies. The
notion of designed experimenting in the real-life system is clearly impractical and
unfeasible, while computer-aided simulation renders experimentation possible
(Sterman, 2000). "By using a model of a complex system, more can be learned about
internal interactions than would ever be possible through manipulation of the real
system; [...] mathematical models make controlled experiments possible and allow
us to see the effect of the separate parts of the system." (Forrester, 1961, pp. 55, 130).
Figure (25) shows the resulting system dynamics model implemented to simulate
the causal diagram, stocks, and flows discussed in this section.
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3. Simulation Results

3.1 Model Validation

In order to validate the behavior of the model, its output is compared to U.S.
historical data between 1970 and 2012. Figure (26) shows how NIH's budget in the
simulation closely follows the trend in the average historical rate between 1970 and
1998. The decision to double NIH's budget in 5 years is considered exogenous to the
model and therefore the yearly increases during that period are added exogenously.
The decline in NIH budget after 2003, however, is the model's endogenous response
to such an unprecedented period of growth. This decline is largely a result of the
depletion of political support during the doubling years, leaving little political will to
push for subsequent increases. The budget starts to recover a few years later, after
enough political support accumulates once again, but experiences renewed
stagnation given the economic woes suffered after 2008. The overall health of the
economy is not endogenous to the model and therefore its decline is also an
exogenous input.

Yearly NIH Budget
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Figure 26. NIH's Yearly Budget,
Actual and Simulated

In terms of the number of grant applications received by NIH during this period,
Figure (27) shows that the simulation replicates the growth experienced shortly
after 1998. The simulation does not exactly follow the same growth pattern, in which
there was an initial moderate increase followed by a steeper rise. Furthermore, the
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data also shows a brief drop in the number of applications in 2007 that the model
does not replicate. This could have been caused by factors not considered in the
model, which is expected given the unfeasibility of accounting for all variables that
affect the real system. Nonetheless, the model shows how the number of applications
decelerates after the doubling is completed but continues to grow, outpacing the
stagnating budget after 2003. The data suggests a similar behavior after the brief
decline in 2007. The available data for applications per applicant and success rates
give further context to the troubling situation that the workforce experienced during
the post-doubling years.
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Figure 27. Number of Grant Applications Received

by the NIH Each Year, Actual and Simulated

Section 2.1 described how an increase in grant applications is not only the result of a
growing research workforce, but also the consequence of a considerable rise in the
average number of applications submitted by each grant applicant. Figure (28)
shows how the simulation output compares to the available, albeit sparse, data. In
the simulation, a jump in this number coincides with the beginning of the budget
doubling period; the corresponding jump in the data happens slightly later. Again,
the number of applications per applicant undergoes an initial moderate increase
followed by steeper growth that is not replicated by the model. The overall behavior,
however, is captured in the simulation.
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Figure 28. Average Number of Applications Submitted
per Applicant, Actual and Simulated Data

As for the number of competing awards available, Figure (29) shows how the
simulation replicates the growing trend in the historical data followed by stagnation.
Even though the short-term oscillations in the historical data are not entirely
captured by the simulation, the overall match is satisfactory. It is worth noting that
the NIH raised the average grant size during the doubling years to avoid creating an
unsustainable number of awards (Kaiser, 2005). This is considered in the model and
helps explain why the increase in competing awards is not as steep as the increases
in budget. It also reveals NIH's awareness of some of the potential destabilizing
effects associated with changes in funding, supporting the hypothesis presented in
section 2.1 regarding the jump in postdoctoral salaries. The magnitude of these
destabilizing effects, however, proved to be much larger than expected in light the
outcomes discussed throughout this study.

The stagnation in budget and competing grants, coupled with a continuously
growing number of applications, foreshadows the behavior of the success rate curve.
Figure (30) shows how the simulation captures oscillation in success rates, a small
short-lived increase during the doubling years, and a dramatic drop that matches
the historical data. Even though the simulation does not exactly replicate the timing
and steepness of actual changes in success rates, it does reflect the overall
oscillating and declining behavior.
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Figure 29. Number of Competing Awards,
Actual and Simulated
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Figure 30. Grant Awards Success Rate,
Actual and Simulated Data

3.2 Policy Experiments

The development of mathematical models such as the one presented in this paper is,
on its own merit, a process that greatly improves the understanding of the
underlining system. A major benefit of the modeling effort, however, is the
possibility of simulating a series of policy scenarios and examining the model's
overall response to such changes. This section therefore explores a series of
counterfactual scenarios that answer "what if' questions regarding the absence or
implementation of different policies, particularly related to funding. Since the model
consists of a large number of parameters that can be modified, this analysis is
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limited to changes in variables concerning policies that decision-makers within
government, and within the NIH, can implement.

3.2.1 Absence of a 5-Year Doubling Policy

Given that this paper focuses largely on the effects of doubling NIH's budget and its
aftermath, the first scenario explored is one in which this steep increase doesn't take
place. To operationalize such scenario, experiment #1 consists of turning off the
exogenous input used to replicate the unprecedented inflow of funds between 1998
and 2003. The resulting budget outcome is shown in Figure (31). This experiment
shows that without the doubling, funding levels would have surpassed those in the
calibrated run shortly after 2009. In current dollars, this translates to an annual
growth rate of approximately 8%. FASEB officials reached a similar conclusion in
2006, when they calculated that NIH's budget would "soon stand at the same point it
would have reached if it had simply continued its historic rate of growth" (Mervis,
2006). The simulation also shows how the exogenous impact of an economic
downturn would have been comparably smaller given that political support would
not have been depleted after 2003.
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Figure 31. Experiment #1: NIH Budget

To understand the wider effects of not doubling the budget, a series of outcomes
related to grants are first examined in Figure (32), focusing on the 1997-2012 period.
The number of competing grants in this counterfactual experiment is initially lower
but steadily grows beyond the number in the calibrated run. The exogenous
economic shock causes a delayed but steeper drop in competing grants given that the
average grant size is held constant in the experiment. As for the number of
applications per applicant, the experiment shows a much smoother increase.
Although an increase in this variable is still troubling, it is certainly preferable to
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have its growth be more moderate. This results in a decreased number of total grant
applications, which also grows at a lower rate. Finally, success rates remain
considerably higher throughout most of the examined period. The sudden drop near
the end is a response to the drop in competing awards, which can be ameliorated by
modifying the average grant size as was done by the NIH during the doubling.
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Figure 32. Experiment #1: Competing Awards, Applications per Applicant,
Number of Applications, and Success Rate

Outcomes related to research output and productivity are examined in Figure (33).
Despite the consistently lower budget in the experiment, it shows a relatively
unchanged level of research activity, measured in total hours per year, compared to
the base case. The total number of researchers and the time spent by them writing
grants are factors that influence this aggregate research activity. In the
counterfactual run, researchers spend less time writing grant applications, which
explains why even though funding is lower and the number of researchers is smaller,
research activity remains relatively unchanged. These outcomes also help explain
why productivity, measured as research activity per dollar spent, remains
significantly higher throughout most of the examined period. The jump in
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productivity in the calibrated run shortly before 2010 is caused by the drop in

funding due to the exogenous economic shock. This shock affects the experimental

run with a delay, which is why productivity starts to rise almost 2 years later in this

case.
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Figure 33. Experiment #1: Research Activity, Total Researchers,
Researcher Time Applying for Grants, Productivity

3.2.2. Additional Funding Policy Experiments

The U.S. Congress holds the final decision regarding yearly NIH appropriations,

which renders the scenario tested in 3.2.1 one that the NIH can influence indirectly

through budget requests but not determine directly. A series of additional

experimental policies are therefore proposed, including one that the NIH has greater

control over. The outcomes of these experimental policies are then presented side-by-

side with the calibrated run and the historical data for ease of comparison.

The second experiment tackles the issue of training more scientists than the

workforce can support in the long term. Doing so leads to an imbalance between

supply and demand of professional academic researchers, among other negative
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consequences (Ripple Effects Communications Inc., 2012). An increased number of

graduate students were supported with the large influx of funds that the NIH

started to receive in 1998. As argued earlier, this new wave of students will

eventually become grant and job applicants, impacting competition and success

rates.

Experiment #2 therefore tests a policy in which a cap is imposed on the number of

graduate students that can be supported through NIH grants. This policy is

designed to accompany large budget increases such as the one experienced between

1998 and 2003, and is relaxed during periods of budget stagnation. To operationalize

this experiment, the average fraction of students supported by a typical NIH grant is

reduced by 50% between 1998 and 2003.

The third experiment addresses the problem that arises when the number of new

grants awarded by the NIH each year undergoes volatility. Increases in the number

of grants awarded during periods of financial prosperity represent commitments

that can spill over to periods of stagnation. This reduces the availability of new

grants, inducing volatility and destabilizing the system. As mentioned above, the

NIH attempted to ameliorate this issue during the doubling years by increasing the

average grant size. An alternative approach is tested in this experiment.

In order to dampen the undesired effects arising from variance in the number of

grants awarded by the NIH, experiment #3 tests a policy that fosters smooth and

sustained growth in their number each year. Under this policy, financial resources

exceeding the level required to support this sustained growth are not spent on

additional grants. Instead, such additional funds are used to create a financial

buffer aimed at maintaining grant stability during periods of budget cuts. This

policy is implemented by creating a new stock of financial resources, thereby

modifying the structure of the system. Inflows to this stock occur when the available

funds exceed what is needed to maintain a given level of yearly growth, while

outflows take place when additional funds are needed to maintain this level.

The outcomes to experiments #1, #2, and #3 are plotted together in Figure (34) along

with the calibrated run. Bear in mind that the only changes in each of these

experimental runs are the ones discussed in the paragraphs above, i.e. in #2 and #3

the exogenous efforts to double the budget between 1998 and 2003 still take place.
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Figure 34. Major Outcomes of Experiments #1, #2, #3, and Calibrated Run

Limiting student support when the budget experiences steep growth results in a
moderate gain in success rates, compared to the base case, due to the reduced

number of grant applicants. The tradeoff, however, is that with a smaller pool of
researchers, the aggregate level of research activity also decreases even though the
number of grants funded is slightly higher. As a corollary, experiment #2 also has
the lowest levels of productivity throughout the examined period. This policy's
relatively straightforward implementation makes it an attractive option, but it is
critical to carefully evaluate whether its benefits for success rates outweigh its costs
in research output.

In contrast, the implementation of the policy tested in experiment #3 is significantly
more complicated; it requires a change in the system's structure, with all the

political obstacles that such a change entails. Its benefits, however, are consistent
throughout the examined outcomes. Success rates maintain relative stability during
the years following the budget doubling due to the sustained growth in the number

of grants available. This results in higher productivity after 2009, not only due to
the drop in spending, but also due to the continuously growing level of research
activity. This is a change that could transform the overall behavior of the system in
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the right direction, inducing greater stability and enhancing the development of the

research workforce.

4. Discussion

Through the implementation of a system dynamics model, this study has shown how

a sharp and temporary rise in NIH funding can result in unintended negative

consequences. An increase in funding, and the corresponding growth in the number

of grant awards available, results in a larger pool of graduate students and

researchers entering the system. With additional researchers in the system, the

number of applicants for NIH grants eventually increases. If the growth in funding

stagnates, or even decelerates, the previous growth in applicants will result in lower

grant success rates and therefore in increased competition. Higher competition

levels translate to additional time spent writing grant applications, which eats into

valuable research time. All these effects have a negative impact on the

attractiveness of a research career, hurt productivity, and imperil the stability and

availability of the future workforce.

The side effects described above are not inevitable and a series of strategies can be

implemented to prevent them. Perhaps the most salient lesson arising from this

study is that sudden and significant changes in funding levels have the potential to

severely destabilize a system that is already vulnerable to oscillations due to

multiple feedback loops and delays. The negative effects of a stagnant or decreasing

budget can be intuitively foreseen, but for steep and short-lived growth these effects

are not as intuitive. Sustained, smooth, and therefore predictable growth levels in

funding, foster the conditions for the necessary stability in the system. Stability can

play a crucial role in preventing high levels of competition and frustration,
stimulating productivity while building a more favorable perception of a biomedical

research career. The unpredictable reality of political decisions, however, poses a

real obstacle to ensuring stable and uninterrupted budget growth.

Other alternatives can help stabilize the system without the need for an outright

political assurance of sustained budget growth. Among these are the modifications of

policies that exacerbate the impacts of volatile funding, such as the requirement

imposed on NIH to fully utilize its annual appropriations every year. Whereas

private corporations are able to manage financial windfalls and conserve some

resources for the future, NIH must spend nearly all the money it receives the year it

receives it by law (Couzin & Miller, 2007).

Under the current system, sudden growth in NIH's budget translates to a direct

increase in the annual number of grants awarded. Each grant awarded represents,
on average, a 4-year financial commitment by NIH to the underlining project.
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Reduced availability of new grants, coupled with a growing workforce size,
intensifies the effects of a sluggish budget. If the agency was given more freedom to
manage its budget under a longer time horizon, much like a corporation, the
volatility of year-on-year political decisions could be attenuated, enhancing the
stability of the system.

The previous discussion also highlights the impact of NIH's budget on the overall

size of the workforce and the real potential for generating an oversupply of
researchers following sharp budget increases. Accounting for these systematic

effects, instead of freely allowing the use of NIH grants to sponsor unusual waves of
new graduate students, can further reduce instability in the system. Implementing

isolated policies aimed only at reducing the number of students supported by the
NIH, however, has limited benefits and can negatively impact the overall levels of
scientific output.

In addition, political campaigns that target the doubling of budgets are still
commonplace and are an example of policy resistance despite the undesirable

outcomes that past initiatives have yielded. This study contributes to the growing
body of system dynamics literature that studies how seemingly positive policies

might not be as effective in practice, and can instead worsen the conditions of a
particular system. These types of models can serve as persuasive tools to influence
policy-makers, while allowing for simulation experiments before actual policies are
implemented.

Lastly, the dynamics of a particular research workforce and its relationship with
public funding, biomedicine and the NIH in this case, could bear similarities across
various areas of knowledge. Other public agencies and organizations, such as the
NSF, whose funding plays a critical role in the advancement of science, can benefit
from these transferrable insights and policy strategies. Future work on the model
presented in this paper, and on similar new models, can shed light into additional
strategies that government and other players can implement to enhance the
behavior of complex systems.
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Appendix A: Model Equations

"% of ER Applying to Grants"=

0.29
Units: Dmnl

Percentage of established researchers applying to grants

"% of YR Applying to Grants"=

0.13
Units: Dmnl

Percentage of young researchers applying to grants"

AA Data:=

GET XLS DATA('ModelData.xlsx', 'Data', 'A', 'G2')
Units: Applications/Researcher

Applications per applicant data used for calibration. Sources:

http://www.hhs.gov/advcomcfs/meetings/minutes/cfsac07ll28min.html

http://cjasn.asnjournals.org/content/3/6/1878.full

http://www.hhs.gov/advcomcfs/meetings/minutes/cfsac071l28min.html

AA Switch=

0
Units: Dmnl [0,1,1]
Switch to use endogenous vs. exogenous number of applications per applicant. Used

for calibration.

Applications per Applicant=

(Funding Effect*Effect of Availabe Funds on Applications+Competition Effect

*Change in Applications due to Competition)* (1-AA Switch) + AA Data*AA Switch

Units: Applications/Researcher

Average PostPhD Training=

Applications per Applicant * Avg Applications for Promotion

Units: Years

Average Total Training Time=

Average PostPhD Training + Avg PhD Length

Units: Years

Avg Applications for Promotion=
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IF THEN ELSE( Success Rate = 0, 5, Grants Needed for Promotion/Success
Rate)
Units: Applications

Avg Discovery Delay=

0.5
Units: Years [0,5,0.5]

Avg Grant Duration=
4

Units: Years

Avg Grant Size=

gs0+Doubling Switch*(RAMP(gs 1, 1998,2003)-RAMP(gs2,2003,2007))
Units: Dollars/Grant

Avg PhD Length=

5.52
Units: Years [0,6]
Source:

http://www.ncbi.nlm.nih.gov/books/NBK56989/table/ch3.t5/?report=objectonly

Avg Time Employed=
30

Units: Years

Budget Adjustment Time=
8.5

Units: Years

Budget Memory=
7

Units: Years
Variable representing the delay involved in the release of political pressure

CA Data:=
GET XLS DATA('ModelData.xlsx', 'Data', 'A', 'F2')

Units: Grants
Grant data used for calibration.
Source:

http://report.nih.gov/NlHDatabook/charts/Default.aspx?sid=1&index=1&catl
d=2&chartld=20
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CA Switch=

0
Units: Dmnl [0,1,1]
Switch to use endogenous vs. exogenous competing awards. Used for calibration

Capacity Adequacy=

Effect of Capacity(Openings/Training Completion Rate)

Units: Dmnl

Change in Applications due to Competition=

smoothl(IF THEN ELSE( Competition Switch, Response to

Competition(Success Rate), 1), 1,1)

Units: Applications/Researcher

Calculates the response of applications per applicant to competition levels using the

s-shaped function 'Response to Competition'

Competing Awards=

max(O,Grants Funded-(Fulfilled Commitments/Avg Grant Size))*(1-CA

Switch) + CA Data*CA Switch
Units: Grants

New grants available

Competition Effect=

0.48
Units: Dmnl [0,1,0.02]
Magnitude of competition effect on applications per applicant

Competition Switch=

1
Units: Dmnl [0,1,1]
Switch to turn on and off the effect that competition has on applications per

applicant

DER Data:=

GET XLS DATA('ModelData.xlsx', 'Data', 'A', 'H2')

Units: Researchers

Source: (Garrison, 2011)

Desired Change in Funding=

t1*((1/(1+EXP(-Political Pressure/t2)))-t3)*Discrepancy*Research Hours per

Discovery/Research Hours per Researcher*Researcher Cost
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Units: Dollars
Calculates the dollar amount needed to close the discrepancy between desired and
actual levels of discoveries. Uses logistic function with calibrated transformations ti,
t2, and t3, to simulate response to political pressure.

Desired Established Researchers=
DER Data+RAMP( ER Growth, 2010, 2070)

Units: Researchers

Available tenured positions, uses external 'DER Data'

Desired Grant Money=
max(Yearly Grant Money + Desired Change in Funding,0)

Units: Dollars

Desired Level of Discoveries=
smoothl(Successful Discoveries*Goal GrowthGoal Adj Delay,Initial Level of

Discoveries)
Units: Discoveries

Desired Workforce=
NIH Commitments / Researcher Cost

Units: Researchers

Discrepancy=

Desired Level of Discoveries - Successful Discoveries
Units: Discoveries
Difference between desired and actual level of discoveries

Doubling Effect=

Doubling Switch*Doubling Size*PULSE(1998,5)+1
Units: Dmnl
Exogenous variable used to simulate increase in budget between 1998 and 2003

Doubling Size=
0.38

Units: Dmnl [0,2]
Exogenous variable used to simulate increase in budget between 1998 and 2003

Doubling Switch=
1

Units: Dmnl [0,1,1]
Switch used to turn on and off the doubling effect between 1998 and 2003
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DropOut Proportion=

0.03
Units: Dmnl [0,1,0.01]

Effect of Available Funds on Applications=

IF THEN ELSE( Expectation Switch, Response to Funding(Yearly Grant

Money), 1)

Units: Applications/Researcher

Calculates the response of applications per applicant to funding levels using the s-

shaped function 'Response to Funding'

Effect of Capacity(

[(0,0)-(2,2)],(0,0),(1,1),(2, 1))
Units: Dmnl

Enrollment Delay=

1
Units: Year

ER Growth=

150
Units: Researchers/Year

Estimated growth in the number of tenured positions based on available data

Established Researchers= INTEG (
Promotion Rate-Workforce Exit Rate,Initial ER)

Units: Researchers

Stock of established researchers

Expectation Switch=

1

Units: Dmnl [0,1,1]
Switch to turn on and off the effect that funding has on applications per applicant

Fraction of Enrollment Supported by NIH=

0.3
Units: Dmnl

Source:

https://webcaspar.nsf.gov/
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Fulfilled Commitments=
(NIH Commitments/(Avg Grant Duration-1))

Units: Dollars/Year

Funding Effect=

0.49
Units: Dmnl [0,1,0.02]

Magnitude of effect of funding on applications per applicant

Goal Adj Delay=

2
Units: Year [0,20]
Delay in adjustment of discovery goal

Goal Growth=
1.16

Units: Dmnl
Target discovery growth

Grad School Enrollment=
Smooth(Grant Sponsored Recruits/Fraction of Enrollment Supported by NIH

+ Researchers Leaving Academia + Promotion Rate,Enrollment Delay)
Units: Researchers/Year
Total enrollment in biomedical graduate programs

Grant Money Fraction:=
GET XLS DATA('ModelData.xlsx', 'Data', 'A', 'J2')

Units: Dmnl
Fraction of total NIH budget for grants. Source:

http://officeofbudget.od.nih.gov/pdfs/FYO9/Mechanism%2oDetail%2Oby%20IC

,%20FY%201983%20-%202008.pdf

Grant Sponsored Recruits=
Competing Awards*Students per Grant

Units: Researchers
Yearly biomedical graduate students supported by the NIH

Grants Funded=
Yearly Grant Money/Avg Grant Size

Units: Grants
Total grants funded in a given year, includes competing and noncompeting
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Grants Needed for Promotion=
3

Units: Grants

gsO=
375000

Units: Dollars/Grant

Average grant size

gsl=
20000

Units: Dollars/Grant
Increase in average grant size during budget doubling. Source:

http://report.nih.gov/NIHDatabook/Charts/Default.aspx?showm=Y&chartld=
158&catld=2

gs2=
18000

Units: Dollars/Grant
Decrease in average grant size after doubling. Source:

http://report.nih.gov/NlHDatabook/Charts/Default.aspx?showm=Y&chartld=
158&catld=2

Initial Commitments=

5.5e+09
Units: Dollars

Initial ER=
20000

Units: Researchers

Initial Grant Money=
2.9e+09

Units: Dollars

Initial Level of Discoveries=
38000

Units: Discoveries

Initial YR=

50000
Units: Researchers
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NA Data:=
GET XLS DATA('ModelData.xlsx', 'Data', 'A', 'E2')

Units: Applications
Data for number of applications used for calibration. Source:

http://report.nih.gov/NlHDatabook/charts/Default.aspx?sid=1&index=1&catl
d=2&chartld=20

NA Switch=

0
Units: Dmnl [0,1,1]
Switch to use endogenous vs. exogenous number of applications. Used for calibration

New Commitments=
Competing Awards*Avg Grant Size*(Avg Grant Duration-1)

Units: Dollars/Year

NIH Commitments= INTEG (
New Commitments-Fulfilled Commitments,Initial Commitments)

Units: Dollars

Number of Applications=

("% of ER Applying to Grants" * Established Researchers + "% of YR

Applying to Grants" * Young Researchers) * Applications per Applicant * (1-NA
Switch) + NA Data * NA Switch
Units: Applications
Total number of applications submitted to the NIH each year

Openings=

max(Desired Established Researchers-Established Researchers+Workforce
Exit Rate,0)
Units: Researchers

Political Pressure= INTEG (
Pressure Buildup-Pressure Relief,0)

Units: Pressure

Pressure Buildup=

Discrepancy-PULSE (2009,3)*Recession Effect
Units: Pressure/Year

Political pressure inflow
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Pressure Relief=

((Yearly NIH Budget - Recent Budget)/Recent Budget)*Relief Scaling

Units: Pressure/Year
Political pressure outflow

Productivity=
Research Activity/Yearly Grant Money

Units: Hours/Dollars

Promotion Rate=

Training Completion Rate * Proportion Who Get Promoted

Units: Researchers/Year
Rate of promotion from young to established researchers

Proportion Students per Grant=
0.05

Units: Dmnl
Source:

http://report.nih.gov/UploadDocs/EnumerationDataReport_20081219.pdf

Proportion Who Get Promoted=

Capacity Adequacy
Units: Dmnl

Recent Budget=
Delay1(Yearly NIH Budget,Budget Memory)

Units: Dollars

Recession Effect=

10000
Units: Dmnl
Exogenous effect of economic downturn

Relief Scaling=
17500

Units: Dmnl

Research Activity=

Research Hours per Researcher*(Established Researchers+Young

Researchers*Young Researcher Productivity)

Units: Hours
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Research Hours per Discovery=

1920
Units: Hours/Discovery

Research Hours per Researcher=

max(Total Researcher Time-Researcher Time Applying for Grants,0)
Units: Hours/Researcher

Researcher Cost=

100000
Units: Dollars/Researcher

An estimate of salaries + overhead per researcher

Researcher Productivity=

Research Activity/Total Researchers

Units: Hours/Researcher

Researcher Time Applying for Grants=

Applications per Applicant*Time Required to Prepare an Application
Units: Hours/Researcher

Researchers Leaving Academia=

Training Completion Rate * (1-Proportion Who Get Promoted) + DropOut
Proportion*Young Researchers

Units: Researchers/Year

Researchers per Grant=

Avg Grant Size/Researcher Cost

Units: Researchers/Grant

Response to Competition(

[(0,0)-(1,3)], (0,2.1),(0.1,2),(0.2,1.61278),(0.29052,1.25188),(0.535168,0.845865),
(1,0.823308))
Units: Applications/Researcher

Calibrated s-shaped function

Response to Funding(

[(-2.14748e+09,0)-(2.21475e+10,2)],(-1.6274e+09,0.0902256),

(9.72976e+08,0.0902256), (3.35047e+09,0.150376), (5.43077e+09,0.285714),
(7.43678e+09,0.578947),(9.44279e+09,0.857143), (1.23404e+10,1.20301),
(1.49407e+10,1.48872),(1.76897e+10,1.71429),(2.02901e+10,1.81203))
Units: Applications/Researcher
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Calibrated s-shaped function

SR data:=
GET XLS DATA('ModelData.xlsx', 'Data', 'A', 'D2' )

Units: Dmnl
Success rate data used for calibration. Source:

http://www.faseb.org/Policy-and-Government-Affairs/Data-

Compilations/NIH-Research-Funding-Trends.aspx

SR Switch=

0
Units: Dmnl [0,1,1]
Switch to use endogenous vs. exogenous success rates. Used for calibration

Students per Grant=
Researchers per Grant*Proportion Students per Grant

Units: Researchers/Grant

Succesful Discoveries=

Smooth(Research Activity/Research Hours per Discovery,Avg Discovery
Delay)

Units: Discoveries

Success Rate=

Competing Awards/Number of Applications * (1-SR Switch) + SR data*SR
Switch
Units: Grants/Applications [0,1]

tl=

9
Units: Dmnl [0,20,1]
Logistic function parameter, max y-value

t2=

1125
Units: Dmnl
Logistic function parameter, steepness

t3=
0.45

Units: Dmnl
Logistic function parameter, y-axis transformation
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Time Required to Prepare an Application=

320
Units: Hours/Application

Estimate of hours required using NIH grant preparation guidelines. Source:

http://www.niaid.nih.gov/researchfunding/grant/pages/newpiguide.aspx

Total Researcher Time=

1920
Units: Hours/Researcher

Estimate of the total number of hours in a year that a researcher devotes to work

Total Researchers=

Established Researchers+Young Researchers

Units: Researchers

Training Completion Rate=

Young Researchers/Average Total Training Time

Units: Researchers/Year

Workforce Exit Rate=

Established Researchers/Avg Time Employed

Units: Researchers/Year

Yearly Grant Money=

smoothl(Desired Grant Money*Doubling Effect,Budget Adjustment

Time,Initial Grant Money)

Units: Dollars

Yearly NIH Budget=

Yearly Grant Money/Grant Money Fraction

Units: Dollars

Young Researcher Productivity=

0.2

Units: Dmnl

Young Researchers= INTEG (
Grad School Enrollment-Promotion Rate-Researchers Leaving Academia,

Initial YR)
Units: Researchers

Stock of young researchers
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