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Abstract

Particle filtering is a technique used for state estimation from noisy measurements. In fluid

dynamics, a popular problem called Lagrangian data assimilation (LaDA) uses Lagrangian

measurements in the form of tracer positions to learn about the changing flow field. Particle

filtering can be applied to LaDA to track the flow field over a period of time. As opposed

to techniques like Extended Kalman Filter (EKF) and Ensemble Kalman Filter (EnKF),
particle filtering does not rely on linearization of the forward model and can provide very

accurate estimates of the state, as it represents the true Bayesian posterior distribution using

a large number of weighted particles. In this work, we study the performance of various

particle filters for LaDA using a two-dimensional point vortex model; this is a simplified

fluid dynamics model wherein the positions of vortex singularities (point vortices) define the

state. We consider various parameters associated with algorithm and examine their effect

on filtering performance under several vortex configurations. Further, we study the effect

of different tracer release positions on filtering performance. Finally, we relate the problem

of optimal tracer deployment to the Lagrangian coherent structures (LCS) of point vortex

system.
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Chapter 1

Introduction

Data assimilation into models have recently gained a lot of prominence in almost all areas

of geophysics. The ability to run extensive simulations of ever-faster computers and ever-

improving observational technologies have tremendously improved the feasibility of these

data-assimilation problems. Data assimilation can be defined as the problem of estimating

the optimal prediction that combines model output, with its attendant uncertainty, and

observations, which will also contain errors [84]. Stuart et al [3] give a good description

of data assimilation, from a statistical perspective, in the context of fluid problems. In

data assimilation applications, the analysis and forecasts are best thought of as probability

distributions. The analysis step is an application of the Bayes theorem and the overall as-

similation procedure is an example of Recursive Bayesian estimation. A good overview of

Bayesian data assimilation can be found in the following references [29, 2, 8, 97, 78]. Tradi-

tionally, techniques of data assimilation are based on control theory and optimization. Their

adaptation to highly nonlinear fluid flows, as in atmospheric and oceanic dynamics, presents

many mathematical challenges. Protas [74] considers a good example of a flow control prob-

lem arising out of data assimilation.

In this study, we focus on the statistical method of filtering based on measurements.

In filtering, at every stage there is new data appearing in form of measurements, based on

13



which one has to predict the estimates of the current states. The data that we use for our

filtering problem is Lagrangian as opposed to Eulerian. Lagrangian observations refer to

sequences of position measurements along trajectories of (Lagrangian) tracers. Such data

are abundant in geophysical systems. A new approach for assimilating Lagrangian data into

the fluid dynamical systems was introduced by Ide et al. [41]. The essential idea behind

the approach was to augment the state space of the model by including tracer coordinates

as additional model variables, thus the resulting model directly relates to the Lagrangian

observations and the technique is called Lagrangian data assimilation (LaDA).

The filtering problem was first formulated in terms of the extended Kalman filter (EKF) [44,

45, 42], which computes the forecast error-covariance matrix using the linearized model of

the system equations. The system model can vary in complexity. Several times in litera-

ture, a relatively low-dimensional, computationally tractable model called the point vortex

model has been used [21, 4, 41]. Better models, such a vorticity-velocity formulation of the

Navier-Stokes equation [22] and the DNS (Direct numerical simulation) model [77], have

also been used. In our study, we use the point vortex model. The EKF was applied to the

point vortex model by Ide et al. [41] and [50]. A better version of the EKF called the En-

semble Kalman filter (EnKF) [14] has also been applied to the Lagrangian data assimilation

problems [90, 39, 66, 75, 49, 57]. Spiller et. al [84] showed that particle filter does better

than both EKF and EnKF for a point vortex model. The formulation based on either the

EKF or the EnKF approximates the model uncertainty up to second order using the error

covariance matrix. When model nonlinearity is strong and the observation period is long,

this approximation may become invalid and filter divergence can occur [50, 81].The particle

filter (PF), in contrast, is an approach in which, a full distribution of the model uncertainty

is attained by a large number of particles [13, 24]. In other words, the resulting distributions

are not approximated by Gaussians in the process of particle filtering. Highly nonlinear

effects in the flow can therefore be accommodated without causing breakdown of the EKF

and EnKF.

14



In this study, we implement the particle filter with Lagrangian data assimilation into the

point-vortex model and investigate the performance of the filter. We consider different vortex

configurations, which were not considered by Spiller et al. [84]. Chorin et al. [63, 62, 19, 18

applied an implicit particle filtering approach to tackle the data assimilation problem. In

this work, we use the traditional particle filtering algorithms like the Sequential Importance

Resampling (SIR). Further, we extend our study to answer the question of "ideal" tracer

deployment, which leads to best filtering performance. In particular, we consider Lagrangian

coherent structure (LCS) [32, 30, 83] of the flow based on its initial conditions, and relate it

to the tracer deployment problem. We divide our study into the following chapters.

In chapter 2, we discuss the particle filtering and related algorithms. First, we look at

different state of the art particle filter algorithms like the Sequential importance re-sampling

(SIR) and Auxiliary particle filtering (APF) algorithms. Next, we look at the problem of

smoothing, where all the data is available at once, and we try to get the best estimates of

the state variable. Finally, we look at simultaneous state and parameter estimation, where,

we not only need to infer the states of the system, but also, the parameters associated with

the system model.

In chapter 3, we derive the point vortex model from basic fluid dynamics principles and

also discuss its validity for the filtering problem. We look at a few basic vortex configurations

and discuss the numerical integration schemes we use to solve the stochastic version of the

point vortex model numerically.

In chapter 4, we introduce the concept of finite-time lyapunov exponents (FTLE) and

Lagrangian coherent structures (LCS). FTLE help us to understand the extent to which the

flow is chaotic, while LCS are invariant structures arising out of the FTLE field. We discuss

their relationship to our "ideal" tracer deployment problem.

15



In chapter 5, we discuss the numerical results of our study. We first investigate the per-

formance of the filter under different vortex configurations by varying different parameters

associated with the particle filtering algorithm. Next, we compare the performance of the

SIR and the APF. Finally, we study the effect of tracer release positions on the filtering

performance under different vortex configurations.

In chapter 6, we provide a summary of our study, followed by mentioning the key con-

clusions and scope for future work.

16



Chapter 2

Particle filtering and related

Algorithms

2.1 Particle Filtering

Many scientific problems require the estimation of the unknown states of system that changes

with time given a certain amount of noisy data. In order to analyze and make inference about

such a dynamic model, mainly two models are required. First, a model describing the evo-

lution of the state with time (called the "system" model) and, second, a model relating the

noisy measurements to the hidden states. If these models are available in the probabilistic

form, its sets the an ideal stage for a Bayesian based approach. Here, one attempts to con-

struct posterior probability density functions for the states given the measurements or data.

Further, there are two kinds of state estimation problems, namely, filtering and smoothing.

In filtering, at every stage there is new data appearing in form of measurements, based on

which one has to predict the estimates of the current states. Smoothing is a different prob-

lem in which the data for all times is available at the beginning of the inference process.

Sequential Monte Carlo methods form the backbone of this kind of recursive estimation. Be-

fore heading into the filtering problem we discuss some basics which are required for Particle

Filtering.
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2.1.1 Theory behind particle filtering

Importance Sampling

Importance sampling is a general technique for estimating properties of a particular distri-

bution, while only having samples generated from a different distribution called the proposal

distribution rather than the distribution of interest. In any inference problem, we need to

sample from the posterior of the variable we wish to estimate. However, in most cases, it is

difficult to sample directly from the posterior, and we use the method of importance sam-

pling. In the context of particle filtering we estimate the probability densities using particles

with weights. These weights are associated with ratio of the true distribution to the proposal

distribution. More formally, we can write the particle approximation of a density function

as follows

N pxi)

p(x) ~ ( w'6(x - x'), where wi oc q(xi) (2.1)

Hidden Markov Models

Most of the inference problems on sequential state estimation falls under the category of

Hidden Markov Models (HMM), where we have a set of dependent variables called {Y}[_1

are available in form of measurements and one has to infer the hidden states {X} 1 from

the measurements. The graphical model of a HMM is shown in fig. 2-1 below. The system

model and observation model, in terms of probability distributions, associated with an HMM

is detailed below.

Particle Filtering is usually done on HMMs. However, inference on problems having

more complex graphical structure is also being pursued by some researchers and seems to be

much more involved. The main issue in non-HMM models lies in the fact that particles from

different branches of the graph need to be integrated and propagated forward while doing

the inference.

18



Y| IX. =x ~ n-1g(y x Ix)

X 2I X X - -Y I X.X~ -p(x)

Figure 2-1: Standard Hidden Markov Model

Steps in Particle Filtering

Particle filtering on an HMM consists of two steps. Also, from now on particle filtering

on HMMs shall be referred to as plain Particle Filtering. First, the predict step is used

to generate samples of the new state given observations till the previous time step. Then

these samples are updated in terms of weights through the update step by incorporating

the likelihood of the predicted samples. These two steps are described mathematically as

follows. Also, a pictorial description of the same is given in fig. 2-2.

Predict Step:

Given ptt(xtIyi:t)

Pt+iit(Xt+i ly:t) -J p(xt+|Ixt)ptjt(xt|y1:t)dxt (2.2)

Update Step:

Pt+11t+1 (zt+1|#1:t+1) 0C P(Yt+1|zxt+1)pt+11t(zt+1|V1:t) (2.3)

As we mentioned before, it is often difficult to sample from the true posterior distribu-

tions in inference problems and hence, we use a proposal distribution q(xtIyi:t). We sample

19



. I -S

T i .k

P(XkY 1:k)

P(Ykk)

Measurement
Equation

Yk
I Time = k+1

Figure 2-2: Steps in Particle Filtering [5]

values of xt from the proposal distribution and associate weights wt with each of these sam-

ples based on the ratio of the true distribution and the proposed distribution. Once this is

done, we have particle approximation of the posterior of the states. Mathematically,

N

p(xt ly1:t) ~ze w'J(xt - x'), where w , p(xit q(|yi:t)
q(xtly1:t)

We also assume the importance density to factorize as

q(xt ly1:t) = q(x lxt_1, yt)q(xt_1|y1:t_1)

(2.4)

(2.5)

Eq.s 2.2-2.3 above lead us to a simplified update for the weights given by,

p Xzi|yi:t)
W q(xilJy1:t)

pXyt lzi)p(X Xi_I)p(zj_1 Iyi:t_1)
q(xilzxi-1, yt)q(z'-_1|y1:t_1)

p(yt lz )p(zjtIzj_1)
0CW',-q(xi |ri_1, yt)

(2.6)

The above set of Eq.s 2.2-2.6 set up the most generic particle filtering algorithm, which

we shall look into next. However, a major concern with the particle approximation and the

20
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Figure 2-3: Qualitative effect of resampling on particle degeneracy [5]

update equation given by 2.6 is that over time the variance of the weights can only increase.

This leads to a serious problem of particle degeneracy wherein only a handful of particle

carry all the weights.

2.1.2 Degeneracy and Resampling

One of the main problems associated with particle filtering is degeneracy. As the filter moves

in time the posterior distribution of the particles becomes skewed in certain directions, which

is clearly seen in the left diagram of fig. 2-3. The reason behind this is that the particles with

higher weights continue to get even higher weights in the next time step and as the result the

distribution collapses. The phenomenon of all the weight being carried by a few particles and

rest of the particles having negligible weights is called sample degeneracy. Apart from sample

degeneracy an immense amount of computational power by updating weights for particles

with close to zero weight. There have been several solutions proposed to this problem, two

of them being Resampling and Good Choice of Importance Density. However, it is argued

that resampling does not reduce the degeneracy, it merely reduces the computational effort

of dealing with low weight particles.
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We define effective particle size (ESS) as Neff = .Though this formula is not

exact it gives a good approximation of the effective sample size. It is easy to see that in the

extreme cases i.e. when one particle has all the weight, the ESS is reduced to 1 and when

all particles have equal weights (1/N) the ESS is N. Resampling is done when the ESS falls

below a certain threshold (NT). The basic idea of resampling is to eliminate all particles

with low weights and to concentrate on particles with high weights. In the process, a large

number of particles are generated in the high probability zone, each having equal weight,

and thereby helping in throwing around the particles in the high probability zone. One can

use the Multinomial Resampling Algorithm as detailed below.

Multinomial Resampling Algorithm

[{z, }{ 1]=RESAMPLE[{zx, wj}&]

Initialize the CDF: ci = 0

FOR i = 1,..., N

Construct CDF: c, = c 1 + wt

END FOR

Start at the bottom of the CDF: i = 1

Draw a starting point: ui ~ U(, N-)

FOR k = 1, ..., N

Move along the CDF: uk = ui + N-1(k - 1)

WHILE Uk > Ci

i = i+1

END WHILE

Assign sample: x k =

Assign weight: w k= w

END FOR

22



The other way of decreasing sample degeneracy is by choosing a good importance density.

This is definitely not an easy task. One can evaluate the optimal importance density accord-

ing to a particular criteria, however, sampling from such an optimal density is the difficult

part. For example, Doucet [25] showed that the importance density to minimize the variance

of the weights and maximize the ESS is given by q(xtljx_ 1 , yt) = p(lxtx_1, yt). However, it

is very difficult to sample from this distribution except in cases when p(xtIxI, yt) is gaussian.

2.1.3 Filtering Algorithms

Now, we have all the background to independently look at different filtering algorithms and

evaluate their respective performances using the Lorenz model. The most generic particle

filter algorithm is detailed below. As we shall see we can modify the generic particle filter us-

ing a particular set of assumptions leading us to different types of particle filtering algorithms.

Generic Particle Filter

[{zi,7 W'}1]=PF[{xz-_1, w-1J i} i, yt}}

FOR i = 1, ..., N

Draw x - q(xt Iz4 1, yi)

Assign the particle a weight, w= wt_1 qxjxs,

END FOR

Normalize the weights {wt} i

Calculate Nef =

IF Nef f < NT

Resample using the multinomial resampling algorithm: [{x , w } ]=RESAMPLE[{x , w }4v 1]

END IF
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Stochastic Lorenz Model

Before we jump into specific particle filtering algorithms we describe the Lorenz model which

we use to compare the performance of various algorithms later. The stochastic Lorenz equa-

tions are a a set of 3-dimensional equations describing a chaotic system. The deterministic

Lorenz model is given by the following equations.

=o-(y - x)

px - y - xz

z = xy - /

We obtain the stochastic set of Lorenz equations by adding independent noise terms in each

of the three equations above. Further, we discretize the stochastic system numerically using

the Euler-Maruyama scheme to obtain the following set of equations on which we apply our

particle filtering algorithms.

Xt+1 = Xt + o-(y - x)dt + e.N(0, dt)

yt+1 = yt + (px - y - xz)dt + e.N(0, dt)

z+1= z + (xy - #)dt + e.N(0, dt)

In literature, one uses the start values for the variables (x, y, z) = (5.91652,5.52332, 24.5723)

as it gives rise to a chaotic Lorenz system. Also, the values of the parameters are given

by (o-, p, /, e) = (10, 28,8/3, 0.5). Although the value of e can be altered to change the pro-

cess noise or our "degree of belief" in the model, we keep it fixed for the purpose of this study.
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Specific Filtering Algorithms

One of the most common filtering algorithms is the Sequential Importance Sampling (SIS)

Algorithm. The assumptions behind the algorithm are very simple. The choice of impor-

tance density is the prior density, i.e. q(xtljx 1 , yit) = p(tl_1) and resampling is done in

a time step if the ESS falls below a threshold sample size. The choice of prior density as

the importance density gives a simple update equation for the weights w' oc wtp(y±lxi),

only involving the likelihood of the new observation. The Sequential Importance Resampling

(SIR) algorithm is only a little different from the SIS algorithm. In SIR resampling is done

at every time step unlike in SIS. The SIS is algorithm is formally described below.

SIS Particle Filter

[{zi, W'J}vl]=SIR[{zi, w'j}v1, yk}]

FOR i = 1,..., N

Draw x~ p(x lx_1)
Assign the particle a weight, wi = wip(ylz)

END FOR

Normalize the weights {w } 1

1
Calculate Ne1 1 =

IF Neff < NT

Resample using the multinomial resampling algorithm: [{4i w'}N_1j=RESAMPLE[{zx, w} 1]

END IF

Theoretically, the runtime of the SIS particle filter is O(NT), where N is the number

of particles used and T is the total number of time steps used in the numerical integration

scheme. The constant factor depends on several other parameters associated with algorithm,

like observation frequency, resampling threshold etc. We now study the performance of this

algorithm using the Lorenz model described above. We use a linear observation model as
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follows:

Xobs Xrue - Uob,.N(0, 1)

Yobs - Ytrue + 0ob,.N(0, 1)

Zobs = ztrue + cbs.N(0, 1)

First, we run the SIS filter, with an observation noise of aob, = 1, start values of states same

as their true values, observations made every 0.2s and a sample size (number of particles)

equal to 500. The results are shown in fig.s 2-4 and 2-5. We plotted the mean estimates of

the states and their respective quantiles along with the true values and the noisy observa-

tions. The true values of the states here correspond to those which were used to generate the

noisy observations. We observe that in all the three dimensions that the inferred estimates

of the states are very close to their true values and also that the true value lies within the

quantile estimates of the states. After looking at a particular case we now turn our atten-

tion to the effect of various parameters associated with the algorithm and look at the their

effect on the performance of the algorithm. Specifically, we vary each of observation noise,

observation frequency, sample size and start values (priors) and study their respective effect

on the performance of the algorithm.

To compare the results from various algorithms, we need to account for the uncertainty in

the system. We need to evaluate the filtered estimates over several realizations. A good esti-

mate of the filtered states being the mean over the samples. In literature, Root Mean Squared

Error (RMSE) has been extensively used to compare filtered state estimates. The"mean" in

RMSE refers to the mean taken over several realizations of the filter. In other words, the

filter is run several times to obtain estimates of the states (and parameters) to account for

the uncertainty. More formally, we can write,
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Figure 2-4: Estimates of state x compared to its true values

1M
Root mean square error (RMSE) = J [((m - Xtrue)

2 + Var(x)m]

where km and Var(x)m are the state estimate (mean) and variance of the mth realization,

Xtrue is the true state and M is the total number realizations used. Typically, around 10-100

realizations are used in simple sequential estimation problems.

First, we study the effect of the number of particles we use in filtering on the estimated

states. Figure 2-6 shows the effect of the sample size on the RMSE of x. One can clearly

infer that the performance of the algorithm improves with the number of particles used to

carry out the filtering. For the case shown in fig. 2-6 we used an observation noise with

o , 1, observation time (the time interval between successive observations) ot = 0.2s,

threshold sample size NT = 0.2N and start values same as true values of states. We use a

sample size of N = 500 for our remaining studies.
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(a)

Figure 2-5: Estimates of state y

t
(b)

and z compared to their true values
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Figure 2-6: RMSE of x for different sample sizes (number of particles)

The start values or priors of the states can also determine the performance of the fil-

tering algorithm. Figure 2-7 shows the RMSE of x for different normal priors on x with

a : = 0, 0.5, 1.25, 2 respectively. In fig.2-7a we see that over the long run all priors do not

really matter. It is only in the first few time iterations, as evident from fig. 2-7b that the

priors on x effects the performance. This can be attributed to the fact that with increasing

time, more observations come in and hence the posterior distributions of the states rely more

on the likelihood and the influence of the initial prior decays.

The threshold sample size which decides whether to resample or not is a difficult param-

eter to set. In other words, it is difficult to say whether or not resampling is good at any

time step. Figure 2-8 shows the results of the RMSE with time for filtered state x for various

values of the threshold sample size used. Figure 2-8a tells us that the no resampling case

is easily the worst among the lot. However, as we can see from fig. 2-8b there is no single

threshold sample size which does the best at all times. It appears that this is a difficult

parameter to set and depends on the system model as well.
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Figure 2-7: RMSE of x for different normal priors on x with o, = 0, 0.5, 1.25, 2
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Next,we look at the effect of observation noise on the RMSE of x. The four cases con-

sidered are with a gaussian noises with 0
obs= 0.1,1, 2,3 respectively. We observe from fig.

2-9 that the performance goes down with increasing noise. This is further confirmed when

we evaluate the integral mean of the RMSE values over time as 0.0923,0.2213,0.4564,0.6941

with increasing noise. We recommend an observation noise with obs = 1, which is reasonable

going by usual measurement standards.

Finally, we vary the observation frequency and look at its effect on the RMSE. We define

the observation time (ot) as the time interval between two successive observations. Figure

2-10 shows that the the case of ot = 0.5s is clearly the worst. We evaluate the integral mean

RMSE as 0.0724, 0.1892 and 0.4321 for ot = 0.1s,0.2s and 0.5s respectively. Hence, as ex-

pected the performance gets better with increasing observation frequency of more incoming

data per unit time.

The other popularly used filtering algorithm is the auxiliary particle filter. The auxiliary

particle filter (APF) was introduced by Pitt and Shephard [70] as a variant of the standard

SIR filter. This filter can be derived from the SIR filter by introducing an importance density

q(xt, ily:t), which samples from the pair {xt, k}' 1 where k refers to the index of the particle

at t - 1. By applying Bayes' rule, a proportionality can be derived for p(xt, ily1:t) as

p(xt, i y1:t) 0C p(ytlxt)p(xt, i y1:t-_)

=y pIext)p(xt li, y1.t_1)p(ily1:t_1)

= p(ytx)p(xtx1_1)w_1 (2.7)

The APF operates by obtaining a sample from the joint density p(xt, ily1:t) and then

omitting the indices i in the pair (xt, i) to produce a sample {4x}_ 1 from the marginalized
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density p(xtyi1:t). The importance density used to draw the sample {x, k} 1 is defined to

satisfy the proportionality

(2.8)

where pt is some characterization of xt, given x- 1. This could be the mean, in which case,

p = E(xtlxi_1). We can write

q(xt, ily1.t) = q(ily1.t)q(xt li, y1:t)

and defining q(xt li, yi:t) = p(xtIx-1) it follows from Eq. 2.8 that

q(i, y1:t) oc p(yt lpi)wt_1

The sample {zI, k} k is then assigned a weight proportional to the ratio of the right hand

side of Eq. 2.7 to Eq. 2.8.

Wk k P t t t-
0w-l-1 q(zi, kly1.t)

_ p(yt 4)
p(yt I4)

Finally, we describe the algorithm below.

Auxiliary Particle Filter

{zi , W'J}v1]=APF[{ xt' _1, w'_1}' 1, yt}]

FOR i = 1,..., N

Calculate pj ~ E(xtxli)

Calculate wi = wip(ytjp)

END FOR

Resample using the multinomial resampling algorithm.

FOR i = 1,..., N

Draw xi ~ p(X Ix_ 1)

34
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Figure 2-11: RMSE of x using the APF and SIR

Assign the particle a weight,

END FOR

Normalize the weights {w}t_1

Wi = XytI X)t Xy I/A)

The auxiliary particle filter has an advantage over the SIR because it resamples the

previous states according to the likelihood of an estimate of the present states. This ensures

that the states generated have higher likelihoods. The advantage is clearly seen if the overlap

of the likelihood and the prior is not good. The APF ensures that the previous states are

sampled such that they give rise to states which have higher likelihood in terms of the new

data available. Figure 2-11 compares the performance of the APF and the SIR for oa, = 1,

ot = 0.01s and N = 100 particles. It appears that both the algorithms have almost similar

accuracy, although the APF is more computationally expensive than the SIR.
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2.2 Particle Smoothing

A related idea to particle filtering is particle smoothing. Filtering corresponds to estimating

the distribution of the current state of an HMM based upon the observations received up

until the current time, whereas, smoothing corresponds to estimating the distribution of the

state at a particular time given all of the observations up to some later time T. The tra-

jectory of the estimates obtained by smoothing tend to be smoother than the one obtained

through filtering. It is kind of intuitive to say that smoothing gives a better approximation

of the hidden states of the HMM because it uses more data than filtering. The additional

information incorporated in smoothing in the form of some extra information at later times

makes it better. Hence there is a clear need to come up with smoothing algorithms which

might be able to give better estimates of the hidden states.

Formally, assuming that we have access to data up to time T, we need to compute the

marginal distributions {P(XtY1:T)};i or to sample from the joint distribution P(Xi:TlYi:T).

In principle the marginals could be obtained from this joint distribution by integrating out

the additional variables (X1:t_1, Xt+1:T). However, Doucet and Johansen [25] note that using

particle methods to obtain the joint distribution and then integrating out the extra variable

does not work, especially in cases when t << T. Instead the marginal filtering distribution

P(XIlY1:T) plays a crucial role and needs to be used in this framework, as it is better charac-

terized as a marginal distribution. Hence, to obtain smoothing algorithms we need to build

recursions which rely on the marginal filtering distributions p(xl1.y:t).
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2.2.1 Forward Filtering Backward Smoothing (FFBS)

The joint distribution p(X1:Tly1:T) can be factored using the fact that {Xt} is a Markov

process, conditional on Y1:T as follows:

T-1

P(X1:TIY1:T) = P(XTI|T) 171 p(XtIXt+1, Y1:T)
t=1
T-1

= P(XTIY1:T) 171 p(XtlXt+1, Y:t) (2.9)

Also, using Bayes' rule we can write,

p(Xtlxt+1, Y1:t) = f(Xt+i Xt)p(Xt1Yi:t) (2.10)
p(xt+1 ly:t)

Eq.s 2.9 and 2.10 form the basis of the forward-backward recursion. First, we compute

and store the marginal distributions {p(xtly1:t)}_ 1. Then sample Xt ~ P(XTY1:T) and for

t = T - 1,T - 2, ...,1 , sample Xt ~ p(xtIxt+1, y1:t) which leads us to samples from from the

joint distribution p(X1:TIY1:T), as suggested by Eq. 2.9. However, instead of having to sample

from p(xt xt+1, y1:t), we integrate out (X1.t_1, Xt+1:T) in Eq.2.9 and use Eq. 2.10 to obtain,

P(Xt Y1:T)= p(Xty1:t) J (Xt+1 It) p(xt+1y:T)dt+ (2.11)

So, to compute {P(Xt IY1:T)} t=, we simply modify the backward pass and use Eq. 2.11. To

obtain the SMC estimates of the smoothed marginal P(XtIYl:T), we use the following particle

approximations,
N

p(xt lyi:t) = W 6(ze - Xi) (2.12)

N

P(Xt IY1:T) = WIT6(Xt - i) (2.13)

We plug the above approximations from Eq.s 2.12 and 2.13 into Eq. 2.11 to obtain the
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final FFBS recursion using particle/SMC methods.

N

WI Wt &+IZ ~fx~j~ (2.14)

We can infer from Eq. 2.14 that the recursion involves the marginal filtered distribution

weights and the transition probability density of the process. It might be useful to note that

in some cases the transition density might be difficult to obtain analytically. In such cases,

we might have to some approximation for the transition density, or not be able to use the

FFBS at all. Once, we have the marginal filtered distributions as particle approximations

and the transition density between the hidden states, the formula is recursion is straight

forward to apply. To develop an intuition for the recursion, we observe from the formula

that the weights are updated using taking into considerations the following:

1) Marginal filtered weights of the present state

2) Sum of chances of making a transition to all "good" particles in the next state, where a

"good" particle is one which has a large smoothed distribution weight.

The order of complexity of the FFBS is O(N 2T). This is clearly seen from Eq. 2.14 as

we need to compute the transition probability between every pair particles in the consecu-

tive time steps. Hence this method is computationally expensive and is used when sample

degeneracy prevents usage of computationally cheaper methods.

2.2.2 Generalized Two-Filter Formula

The two filter formula is another recursion method to compute the smoothed marginals. It

further attempts to decrease the computational complexity using certain approximations.
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The two-filter formula is based on the following identity

P(XtIYr:T) = p(Xz IY1:t_1)P(Yt:Tzt) (2.15)
P(Yt:TYi:t-1)

where the backward filter is initialized at t = T by p(ytlxt) = g(ytlxt) and satisfies the

following recursion,

IT T

p(yt:T t) = 1 (k k-1 g1(yk sTk)dxt+1-T
k=t+1 k=t

= g(yt|zt) ff(zt+1|ze)p(Yt+1-rlxt+1)dzt+1 (2.16)

The backward information filter is not a probability density argument in xt and it is

even possible that f P(Yt:TIxt)dxt = oo. Although when one can analytically find P(Yt:TIXt)

particle approximation may not be a problem. To develop particle approximations of the

backward information filter, we introduce a set of artificial distributions {t(Xt)} and the

joint distributions

T' T

t tP(Xtt:T yt:T (C PtXt) f(Xk f-1 (YXk)

k=t+1 k=t

which are constructed such that their marginal distributions, pt(Xtlyt:r) OC pit(Xt)P(Yt:rIXt),

are integrable version of the backward information filter. The generalized two-filter formula

hence becomes

p(Xt y1:T ) = p(2.1:7)p~z y:
pt(xt)

whichever is valid whenever the support of p (xt) includes support of the prior pt(Xt). The

generalized two filter smoother proceeds as follows. Using the standard filtering methods, we

can compute the marginal distributions {p(Xtly1:t_1)}u 1. Using a backward recursion in Eq.

2.16, we compute and store {pt(XtIlyt:7)} _1. Then we combine p(xtly1:t-) and Pt(XtlYt:T) to

obtain p(XtIy1:) using Eq. 2.15. One main problem with this method is choosing appropriate

pt(xt). We need to be able to compute it directly, hence having Pt(xt) = p(xt) is ruled out for
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most non-linear non-gaussian models. In literature it is suggested that we use a heavy tailed

approximation of p(xt) for pt(xt) instead in such settings. A good overview of the two-filter

smoothing can be found in [12]. Also, they mention methods using which the complexity of

the smoothing algorithm can be improved to O(NT).

2.2.3 Practical Filter - Fixed Lag smoothing

The Practical Filter by Polson et al [73] is actually a method for filtering, since it provides

samples from the marginal distribution p(xtly1:t). However, the procedure they adopt to

estimate the posterior of the states is based on the concept of fixed lag-smoothing. The

lag-smoothing distribution is defined as the conditional distribution P(Xt-k+1:tIXt-k, Yt-k+i:t)

and the marginal lag-smoothing is defined as p(Xt-k Iy1:t), where k is the lag-length. One can

sample from the lag-smoothing distributions using standard MCMC methods or the FFBS

in case of conditionally linear models.

The state filtering distribution is given by p(xtlyi:t). As we observe, a new observation yt

we wish to update the filtering distribution p(xt_1|y1:t._) to p(xtly1:t). We start by writing

the desired filtering distribution as the marginal

pEt ly1:t) p(Xt-k+1 Iy1:t )dit-k+1:t-1

At the core of the algorithm is th representation of this lag smoothing distribution as a

mixture with respect to the smoothing distribution on xt_ 1.

p(Xt-k+1|1:t ) -- p(t-k+1:t|St-k ,1:tidp(Xt-klY1:t )

p(Xt-k+1:t t-k, Yt-k+1:t) dP(Xt-k Iy1:t) (2.18)

Now, we argue that the as the we are implementing the algorithm sequentially that sam-

ples from p(Xt-k Iyi:t) are approximately samples from p(Xt-kly1:t_1). The approximation is
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reasonable if the predictive distribution p(yt yt-k+1:t-1, Xt-k) is conditionally independent of

Xt-k as reflected in the identity below

P(Xt-kY1:t) - P(YtXtk Yt-kl:t- (t-ky1:t-1)
P(YtIyt-k+1:t-1)

Hence we can further simplify Eq. 2.18 as follows

(2.19)

The above identity provides the motivation of the simulation based Practical Filter. The

algorithm is initialized with samples generated from the smoothing distribution p(X1:k IY1:k).

Starting with t = k + 1 samples from the desired smoothing distributions p(xtly1:t) are

generated by following Eq. 2.19. At each time t we generate new samples Xt-k+1:t ~

p(Xt-k+1|X-k, Yt-k+1:t), using the imputed values for Xt-k saved from the previous itera-

tion t - 1. We save the simulated X-k+1 for used in the next iteration with t + 1. The

algorithm reduces the filtering problem to a lag smoothing problem. We formally state the

algorithm as follows.

Fixed-lag smoothing Algorithm:

Burn-In: FOR t = 1, ..., k:

FOR i = 1, ..., M:

Generate xl:t - p(x:tly1:t)

END FOR

END FOR

Sequential Updating: FOR t = k + 1,

FOR i = 1, ..., M:

Generate Xt-k+1:t ~ p(Xt-k

Set ^X-k+1 = Xt-k+1 and le

END FOR

and save 1= X1 .

+1e -- yh-k+1:te)

ave s-k unchanged.
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END FOR

The algorithm replaces the filtering problem with T - k smoothing problems for a time

series of length k, which is typically easy to carry out. However, the computational complex-

ity associated with this method is large when compared to usual filtering and even smoothing

algorithms and goes as O(N 2 kT), when the FFBS is used to sample from the lag-smoothing

distributions. Also, before starting the problem, a preliminary study needs to be done to

choose the appropriate lag-length k for the problem. Towards this, one can perform MCMC

smoothing or FFBS to obtain the distributions p(x1:t_1|y1:t_1) and p(x1:tly1:t) and compare

the marginal distributions p(xtk ly1:t-) and p(Xtk ly1:t) for different values of k.

2.3 Parameter Learning using Particle Filtering Ideas

We now turn to the more involved problem of estimating the unknown system parameters

and the states using particle filtering ideas. We assume, in this section that the both the

state transition density and the conditional likelihood function depend not only upon the

dynamic state xt, but also on a parameter 0. In other words, the state transition density

and the likelihood function can be represented as f(xtlxt1, 0) and g(ytlIxt, ) respectively.

There are two kinds of parameter estimation in dynamic problems based on the applica-

tion. If all the data (y1:t) is available before the inference is to be carried out, the process of

parameter estimation is called off-line estimation. In some cases, the parameters have to be

estimated sequentially with continuously incoming data, which we call as online estimation.

In this section, we concentrate on the online parameter estimation problem.

The online parameter estimation problem requires the joint estimation of the state and

the parameter to be carried out at every stage of the process. The problem of joint estima-

tion is to find out the joint probability distribution of the unknown parameters and states,
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p(xt, Olyi:t), which usually has no easy analytical form. The most natural option consists of

treating the unknown parameter 0 as a component of the state with no dynamic evolution.

Hence, we can directly use particle filtering methods to simulate the joint posterior distri-

bution of the states and the parameters p(xt, |1yi:t). However, this method fails miserably

as the absence of dynamic evolution of the parameter implies that the parameter space is

not explored at any instant, or that the particles are not moved around in space but only

re-weighted again and again. A practical solution to this problem is to make the parameter

a dynamically evolving quantity by adding a random noise to it. With this as the motiva-

tion there have been four algorithms which have successfully tackled the online parameter

estimation problem, namely, Storvik's Algorithm [86], Liu and West [55], Practical Filter

[731 and the Online Expectation Maximization (EM) algorithm [1, 15]. We discuss the first

three of these algorithms here.

2.3.1 Storvik's algorithm

Storvik's approach [86] is based on marginalizing the static parameters at every stage of the

filter, such that only the state vector is considered. Real-time applications of this algorithm

are only possible when the distribution of unknown parameters based given both the obser-

vations and the hidden state vector depends on some low dimensional sufficient statistics.

For most models, such statistics exist. When such statistics are not available ,the algorithm

can still be applied, but the computational complexity increases with time. In particular, for

Gaussian based system processes combined with general observation distribution, sufficient

statistics involve Kalman type updates.

Suppose that for given x1:t and y:it, the distribution of 0 is analytically tractable. In

particular, the distribution of 0 is assumed to depend on some sufficient statistics St =

S(x1:t, y1:t) where St can be recursively updated. The approach is based on the following
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result:

p(xi:t, O|y1:t) = Cp(x:it, 9, ytly1:t-1) where C-' = p(ytlyi:t-)

= Cp(x1:t_1|y1:t_1)p(6|zi~i_1, y1:t_1)p(ztlz1:t_1, y1:t_1, 6)p(ytl l1:ty1:t_1, 0)

= Cp(x1:t_ 1y1:t_1)p(9 |St_1)p(zX Ixt_1, O)P(Yt Ixt, 9) (2.20)

Simulation can be performed as before from the marginal p(xi:t iy:t) as before , but with

an additional step that 9 also needs to be simulated. The simplest approach is to simulate

X1:t-1 from p(xi:ti|y1:t-,, 9 from p( 9 |St_1), xt from p(xtlxt_1, 9) and accept with probability

proportional to p(ytlxt, 9). However, any simulation technique such as MCMC, rejection

sampling can be applied. The most widely used approach is sequential importance resam-

pling.

Storvik's algorithm

For t = 1, 2, ... ,T

Importance Sampling: For i = 1, 2, ... , N

1. Sample 9 ft,1(0|11t-i1, yi:t); (sample from prior for t=1)

2. Sample si~ ft,2(XtIX1,yt, 9); and define I.= ( , ,1); (sample from prior for t=1)

3. Evaluate the importance weights

7p(b|S'_1)p(ii1,01)p(yt1z4,0)
t-1 /,(|1x.T1,Y1:t)ft,2(iI1:1,Yt,,)

Resampling: For i = 1, 2, ..., N

4. Sample an index k from 1, 2,..., N with probabilities proportional to Wt ;

5. Put xi:t = s :vSi = S(St_,, x, yt), and w' = N-1.

end

Here f1 yi:t) and ft,2(Xtlzi.t 1, yt, 9) are the proposal distributions for 9 and xt

respectively. Typically, we choose ft,1(|Ix':t ,,y1:t) = p(O|St_1) and ft,2 (Xtli:ti1, Yt, 9)

p(s||zx_1,9), so that the weight update equation becomes -1 = 4_p(yti,69). It is neces-

sary to marginalize the joint distribution p(xt, O|y1:t) at the end of every time step to obtain
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the particles {xt} _1 for the next iteration. Also, to find out the posterior distribution of

theta p(OIy1:t) at any instant, we must marginalize out the states.

We applied the Storvik's algorithm on the Lorenz model described in earlier. Sequen-

tial parameter learning algorithms are quantified in terms of the root mean square error

(RMSE) between the true states (or parameters) and the estimates of the filtered states (or

parameters). A good esmitate of the filtered states (or parameters) being the mean over

the samples. The"mean" in RMSE refers to the mean taken over several realizations of the

filtered values. In other words, the filter is run several times to obtain estimates of the states

(and parameters) to account for the uncertainty in the system equations. More formally, we

can write,

Root mean square error (RMSE) =Z(.m - Xtrue) 2

m=1

where ,km is the state or parameter estimate of the mth realization, xtrue is the true state/parameter

value and M is the total number realizations used. Typically, around 100 realizations are

used in sequential estimation problems.

In our first study, we try to estimate the states and parameter a in the Lorenz equation

with true values for the other parameters. The Stochastic Lorenz equation is discretized

using the Euler-Maruyama scheme with a numerical discretization time of t = 0.01s with an

observation made at every instant (observations made less frequently results in the algorithm

performing poorly). We use a prior of N(0, 100) on the parameter o,. The best results are

obtained for realistic observation noises between 0.05 and 0.3. We use an observation noise of

0.1 for all our parameter estimation studies henceforth. The sample size (number of particles

used) of the particle filter plays a crucial role in estimation of the posteriors. Figures 2-12

and 2-13 shows the effect of number of particles used on the RMSE of mean estimates of

a and state variable x respectively. As expected the RMSE in parameter a decreases with

increase in number of particles, showing that the algorithm improves in terms of estimation

of parameter estimate with an increase in number of particles. In terms of the RMSE of
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state x, it appears that the algorithm does very for small number of particle as well. This

can been seen as a strength of the algorithm.

In our next study, we look at the evolution of the mean estimate a over several realiza-

tions. Figure 2-14 shows the evolution of the mean estimate o over the first few iterations

in time. We notice that the posterior converges very quickly and its mean of the estimate

is close to the true value of the parameter. Figure 2-15 shows the distribution of the mean

estimate -, over M = 100 realization at time t = 5s.

Finally, we try simulating the posteriors for the case when all three parameters appearing

in the Lorenz equations are unknowns. We use priors than the earlier case, a -. N(10, 10), p ~

N(28, 10), b ~ N(8/3, 10). The mean estimates of the parameters after 5s are o = 10.58, p =

28.52, b = 2.74 which are very close to their actual values. Figure 2-14 show the estimates

of the state variable and parameters for the case when all three parameters are unknown.

We can visually infer that the filtered state estimates and the true states overlap with each

other. SD denotes the standard deviation of the variable in the figures.

2.3.2 Liu and West Algorithm

In the general model with fixed parameters 0, extend the sample-based framework as follows.

At each time t, we have combined samples

{zt, Bt: i = 1, 2, ...,7 N}

and associated weights

{w:i = 1, 2, ..., N}

for an importance sampling/resampling approximation to the time posterior p(xt, 0) for both

parameter and state. Notice that the t suffix on the 0 samples indicate that they are from

the time t posterior, not that 0 is time-varying. As time evolves to t + 1, we observe Yt~i

and want to generate samples from
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which makes it explicit that the estimation of the density function p(O|yi:t) is crucial for the

joint parameter and state estimation. The two important ingredients involved in the Liu

and West Algorithm are the artificial evolution and kernel smoothing of parameters.

The idea of adding small random disturbances to the states at every time step to reduce

sample degeneracy was proposed Gordon et al [28]. Liu and West apply the same to static

parameters by considering a different model in which the model parameters 0 are replaced

by Ot and it is simply included in the an augmented state vector.

01+1 = Ot + (t+1 where <t+1 ~ N(O, Wt+1 )

for some specified variance matrix Wt+1 and Ot and (t+1 independent given y1:t,. The moti-

vating idea for evolving parameters is that at each time step in the simulation new parameter

values are generated resulting in re-weighting of the samples and lower degeneracy. However,

a drawback is that artificial evolution creates "loss of information" as the parameters do not

evolve in reality, leading to posteriors of the parameters which are more diffused compared

to their true posteriors. Liu And West propose the kernel smoothing of parameters to modify

the artificial evolution to avoid "information loss".

At a time t, the current posterior parameter samples {O}$f1 and weights {wt}f 1 provide

a Monte Carlo approximation to p(9 |y1:t). Suppose Ot and V denote the Monte Carlo mean

and variance matrices of p(O|y1:t), computed from the Monte Carlo sample Ot with weight

wt, then the smooth kernel density form of West [95], [96] is given by

p(6|y1:t ) ~ N(6|m, h2V t) ( 2.21)
i=1

where m' corresponds to the ith kernel location and h is a scaling parameter for the variance.

h is assumed as a decreasing function of N, so that the kernel components are more con-

centrated about their locations m' for larger N. Standard kernel methods assume m= B
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so that the kernels are located about the existing sample values. However, this results in a

kernel density function that is over-dispersed relative to the posterior sample, as the vari-

ance of the resulting mixture of normals is (1 + h2)V, always larger than V. This is a

big issue in sequential simulation as an over-dispersed approximation to p(O|y1:t) will result

in an over-dispersed approximation to p(9 |y1:t+1), and the consequent "loss of information"

accumulates over time as the operation is repeated. West [95], [96] proposed shrunk kernel

locations taking

mz= aO6+ (1 - a)Ot (2.22)

where a is the shrinkage factor. This shrinkage pushes samples O6 towards their mean 6t

before adding a small amount of noise implied by the normal kernel. Liu and West [55]

suggest that the artificial evolution method should be modified by introducing correlations

between 6t and the random noise (t+1 and obtain a = v/1 - h2.The following is the general

form of the Liu and West Algorithm, based on the above derivations and the concept of

auxiliary particle filtering as described in an earlier section.

Liu and West Algorithm:

1. For each i = 1, 2, ..., N identify the prior point estimates of (xt, 0) given by (p'+1, mi)

where

pi+1 = E(xt+Ixi, 0)

may be computed from the state evolution density and

m= a t + (1 - a)$

is the ith kernel location from equation from (2.22). 2. Sample an auxiliary integer variable

k from the set {1, 2, ..., N} with probabilities proportional to

gt+1 CIC wtP(yt+1|ii+1,,mi)

3. Sample a new parameter vector Otks from the ktf normal component of the kernel density,

namely
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N(.|mr, h2V)

4. Sample a value of the current state vector Xt+1 from the system equation

zf+1 ~-|, . 6f 1+1)

5. Evaluate the corresponding weight

k P(yt+19Xt+1,6tk+,)
t+1 p(yt+|I/4+1,Ok+1)

6. Repeat step (2)-(5) a number of times (say G) to produce a final posterior approximation

(Xz+ 1, O+) with weights wk+1 as required.

The Liu and West Algorithm has two additional parameters a and G, whose effect on the

posterior approximations of the states and parameters needs to be studied. We use the

Lorenz model to as an example. The Stochastic Lorenz equation is discretized using the

Euler-Maruyama scheme with a numerical discretization time of t = 0.01s with an obser-

vation made at every instant (observations made less frequently results in the algorithm

performing poorly). The best results are obtained for realistic observation noises between

0.05 and 0.3. We use an observation noise of 0.1 for all our parameter estimation studies

henceforth.

First, we study the single parameter estimation problem, using a prior of N(0, 100) on

the parameter a. The parameter a associated with the algorithm basically describes the

shrinkage factor i.e a smaller value of a suggest that after every time iteration the samples

of the parameters take values closer to their mean. We study the effect of the parameter a

on the algorithm performance taking G = 1 and 500 particles. Figure 2-15 shows the effect

of a on the RMSE of state variable x and parameter o. We can observe from the RMSE

values that as we decrease the value of a the algorithm performance improves. However,

decreasing the value of a too much collapses all the kernel approximation. In case of the

Lorenz model, a value of a = 0.5 can be said to optimum. We now look at the effect of

the number of particles on the algorithm's performance as in figure 2-16. We notice that
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for N = 100 particles the algorithm fails miserably. It performs well for sample sizes of 500

and 2000. Next, we explore the effect of the parameter G on the algorithms performance for

reasonable values of a = 0.5, N = 500. Figure 2-17 shows that G does not effect the output

of the result. Even G 1 suffices to give good results from the algorithm in the Lorenz case.

This can be attributed to the sequential nature of the problem. The sequential nature of the

problem does not require many iterations at each time step to predict the joint posterior of

states and parameter p(xt, Otlyi:t) because with every time step the marginal posterior of the

parameters p(9 tlyi:t) gets closer to the true posterior.

As in the Storvik's Algorithm, we also look at the box plot of the parameter estimate

a-m over several realizations with time in figure 2-18. The parameter estimate moves quickly

towards the true value of the parameter in the first few time iterations and then evolves

slowly. Figure 2-19 gives the distribution of the parameter estimate over several realizations

at time t = 5s.

Finally, we try simulate the posteriors for a single realization in the case when all

three parameters appearing in the Lorenz equations are unknowns. We use priors o-

N(10, 10), p ~ N(28, 10), b ~ N(8/3, 10). The mean estimates of the parameters after 5s are

- = 10.00, p = 27.91, b = 2.89 which are very close to their actual values. Figure 2-18 show

the estimates of the state variable and parameters for the case when all three parameters are

unknown. We can visually infer that the filtered state estimates and the true states overlap

with each other. SD denotes the standard deviation of the variable in the figures.

2.3.3 Practical Filter

The Practical Filter proposed by Polson et al [731 is a simulation based approach to filtering

and sequential parameter learning which uses a key idea of expressing filtering distribution

as a mixture of lag-smoothing distributions. It is based on the concept of fixed-lag smoothing
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as described before. In this section we discuss the application of the same idea to sequential

parameter learning. The most importance difference between the Practical Filter and the

earlier approaches is that it uses an MCMC scheme and not importance sampling to sample

the particles.

As earlier, the lag-k smoothing distribution, now augmented with the static parameter 0

is given by:

p(Xt-k+1:t, Oly1:t)= f p(Xt-k+1:t, Ol21:t-k , y1:t)dp(x1:t-k ly1:t)

f t-k+1:t, Ol21:t-k) y1:t)dp(X1:t-k Jy1:)

Again, we use the approximation that draws from P(X1:tk lY1:t_1) approximate draws

from p(X1:t-kIy1:t). Like in the plain filtering case, we cannot use the Markov property of the

dynamic model to simplify the above equation further, as the Markov property now holds

only conditional on the parameter 0. Instead, we proceed via a Gibbs sampling scheme as

follows. First assume that i :t-ky1:t) are samples from p(z1:t-ky1:t_1) which are approxi-

mate samples from P(z1:t-ky1 :t). Next, we generate from p(Xt-k+1:t, 1:t-k, yi:t) by repeated

simulation from

P(Xt-k+1:t4-k, 6, yt-k+1:t) andP(GIXi:t-k, Xt-k+1:t, Y1:t)

We have exploited the conditional independence Of Xt-k+1:t and (X1:t-k_1, Yi:t-k) given (Xtk, 9),

which is the Markov property of the dynamic model. Repeated Gibbs sampling from

P(Xt-k+1:t, 1:it-k, Y1:t) followed by saving the last imputed value of Xt-k+1 as t-k+1-

Algorithm:

Initialization: Set 0' = 0, i = 1, 2, ..., M. Use, for example, the prior mean.

Burn-In: For t = 1, 2, ..., k:

For i = 1, 2, ... , M : initialize 0= 6 .

For g = 1, ..., G :

Generate x1:t ~ p(x1:t|6, y1:t)
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Generate 0 ~ p(O|x1:t, Yi:t)

Set (zi, 0') equal to the last imputed (xi, 9).

Sequential updating: For t = k + 1, ..., T :

For i = 1, 2, ... , M : initialize 0 = 6'.

For g = 1, ..., G :

Generate Xtk+1:t ~ P(Xtk+i:t _, , Yt-k+1:t)

Generate 9 ~ p(01|1:t-k, Xtk+1:t, Y1:t)

Set (_t-k+1, 0i) equal to the last imputed (Xt-k+1, 9) and leave 4it_ unchanged.

The performance of the algorithm depends on three parameters (M, G, k). The parame-

ter corresponds to the number of samples drawn from the joint distribution or the number of

particles involved in the simulation. If the Metropolis Hastings scheme is employed ,then one

can use a small number of samples. However, one should remember that, there is additional

computational complexity involved due to Metropolis iterations inside each Gibbs iteration.

The parameter G denoted the number of MCMC Gibbs iterations involved to simulate from

P(Xt-k+1:t, 9 1:t-k, Y:t). In most cases, we can choose G = 1 and use FFBS as earlier. How-

ever, if the parameter can change values and not entirely static, it is recommended to use a

small number of MCMC Gibbs iterations. However, even then, the value of G chosen can

be reasonably small because the sequential nature of the problem ensures that the initial

starting values will be already close to the stationary distributions. Next, if 0 enters the

model only through the evolution equation then the choice of appropriate lag k could be

highly dependent on the true posterior of 9. Polson et al [73] mention a few heuristics to

choose an appropriate k.

Finally one may be able to update 9 using a sufficient statistic. Polson et al [73] uses

examples in which the conditional dependence of the parameter is known to be gaussian,

i.e. |1xl:t, y1:t ~ N(St, V) where Ot and V are the mean and variance of the gaussian.

The update equations for these sufficient statistics are given by V-1 = V-l + H'H and

5t = V1(Vt kOt- + H'xt-k+1) where the evolution equation is defined as xt = Ht + 77t,
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r; is the stochastic term.Polson et al [73] compare the Practical Filter with the Storvik's

Algorithm in several aspects. It turns out that for the static parameter learning case, the

Practical filter is more computationally expensive and gives similar results and hence has

no advantage. The real advantage of the practical filter comes into notice is the parameter

changes suddenly, or is not entirely static. The results from the practical filter are much

better than Storvik's Algorithm. This is mainly attributed to the fixed-lag smoothing and

repeated Gibbs iterations involved in the algorithm.
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Chapter 3

Point Vortex Model

The estimation problem we discuss here is associated with fluid flow. The idea is to estimate

the flow field (comprising the position and velocity fields) using measurements from passive

tracers released in the fluid. These tracers go around the fluid as governed by the flow field

and do not interact with the fluid at all. We restrict ourselves to a two-dimensional problem,

where the tracers are released such that they float on the surface of the fluid. Measurements

are obtained in form of position of the tracer in the fluid at regular intervals of time. These

measurements, along with the system model for fluid flow is used to estimate the flow fields.

As mentioned earlier, this problem finds a direct application in ocean modeling, where the

position data can be obtained in the form of satellite images of the ocean.

The system or process model in the most general case would be the Navier-Stokes equa-

tions. It is known that these equations are highly non-linear. Also, the resulting flow can

be extremely chaotic which can make the inference process even harder. Kalman filtering

and its modified versions like the Extended Kalman Filter (EKF) are expected to fail in

such cases. Spiller et al [84] used a highly simplified version of the process model (non-linear

but not chaotic) namely, the point vortex model and concluded that the EKF gives a very

bad approximation of the states when compared to particle filtering. In our study, we use

the particle filtering approach to infer the states. Further, we use a point vortex model
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[17, 21, 84, 41]which is a vorticity based approximation of the Euler equations.

3.1 Point Vortex Model

The Navier-Stokes equations can be approximated by the Euler equations in case of a inviscid

and incompressible flow. The Euler equations are as follows

ap+ V - (pu) 0 (3.1)

-+u -V(pu) =-VP (3.2)

The momentum conservation Euler equation can be further simplified by changing it into

the vorticity form. Vorticity field is given by w = V x u. Taking the the curl on either side of

eq. 3.2 helps in getting rid of the pressure term and we get the following equation in terms

of the vorticity and velocity by setting the density to unity.

+ V -( x U) = 0 (3.3)

Continuing further with the assumption that the our model is two dimensional and using

eq. 3.1, we can simplify eq. 3.3 to the following form

+ U -VW = 0 (3.4)

Equation 3.4 means that the material derivative of vorticity is zero i.e. = 0. So, for a

two dimensional flow the vorticity field does not change with time in the Lagrangian sense.

In other words, if a particle in the fluid has a vorticity w at a particular time, it will have

the same vorticity w at all subsequent times. This fact provide the main motivation of the

point vortex model. In the point vortex model, it is assumed that the fluid consists of finite
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number of points called point vorticities having non-zero vorticities. The point vortices move

in the fluid as dictated by the other point vortices. Every other point is assumed to have no

vorticity and are propagated forward in time only due to the effect of the point vortices. This

framework simplifies the Euler equations to set of coupled of ordinary differential equations

in terms of the positions of the point vorticities given by eq. 3.5 below. The vorticity field

at any point (x, y) E R 2 in the system is approximated as a sum of delta functions as shown

in eq. 3.6. Once the positions of these point vortices are known the positions of all the other

particles in the fluid can be found out using eq. 3.7 below.

da V 17 (i _ 03)

A(P Vd v~ . a -a ) (i -# )
d- =. -a i (3.5)
dt 27r (ae - a )2 + (0i - #3)2

V

W (X, y) = : Fjoe~ J ("j" X, y) (3.6)
j=1

da v ]F- (b-#0j)
dt 2r(a - a)2 + (b - #j)2

3=1

db V (&-a)
dt . 27r (a- a)2+ (b -3J)2

j=1

Here (a, b) and (ai, i), i 1, 2,.., V denote the positions of the tracer and vortices respec-

tively, V being the total number of point vortices. Also, PF denotes the circulation associated

with the ith point vortex. We note here that, for the point vortex model, since the vorticity

is assumed to concentrated at a singular point (zero area) its vorticity is a infinite. However,

the circulation, which is the integral of the vorticity over the area is finite, even though the

vorticity is delta function.

The point vortex model largely simplifies the inference problem. Instead of having to
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track the state vector of the entire system (every point in the fluid), we now only need to

track the states of vortices as they move around in the fluid. The states of any other point

in the system can be determined using the states of these handful point vortices. Hence

the most important advantage of the point vortex is that we have changed a very high-

dimensional filtering problem into a relatively low dimensional problem. Additionally, the

point vortex model in two dimensions only involves ordinary differential equations making

it the problem more easier.

3.2 Vortex Configurations

To make the inference problem interesting we investigate the flow using different number of

point vortices and their relative positions. We try cases with 3 and 4 vortices and varying

configurations. In all cases, the flow is nonlinear as given by the above equation. However,

depending on the relative configuration of the vortices the flow can be dramatically different.

3.2.1 3 and 4 vortex systems

Aref and Pomphrey [4] showed that the three-vortex problem in two-dimensions is integrable,

whereas the motion of four vortices is not. A sequence of canonical transformations can be

obtained that reduces the V-degree-of-freedom Hamiltonian, which describes the interaction

of V identical vortices, to one with V-2 degrees of freedom. Hence, for V=3 a reduction to

single degree of freedom is obtained and the problem is integrable. As a consequence of Aref

and Pomphrey's result, the 3 vortex is at most quasi-periodic as it is always integrable. On

the other hand, the 4 vortex system, cannot be integrated and most 4 vortex configurations

lead to chaotic system. Precisely, Aref and Pomphrey established that for V = 4 vortices

there are three cases that arise. If the four vortices are at the corner of a square, the vor-

tex motion is periodic. If there is inversion symmetry among the two pairs of vortices, we

observe a quasi-periodic vortex motion. Finally, if the vortices are in neither of the earlier

configurations to start with , then the vortex motion is chaotic. In noisy systems the 4
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vortex configuration always leads to chaotic systems. Also, because of the chaotic nature the

movement of the vortices become highly dependent on their initial positions. We consider

the following cases for our study. All of them consist of vortices which start at the edges of

a unit circle.

1. Symmetric 3 vortex system. Vortices start at (0,1), (V3/2,-0.5),(-v/3/2,-0.5)

2. Asymmetric 3 vortex system. Vortices start at (ev/T1 -E), (x/3/2,-0.5),(-v/5/2,-0.5),

where E denotes the asymmetricity of the system i.e. higher its value, the more asym-

metric is the system.

3. Square 4 vortex system. Vortices start at (1,0), (0,1), (-1,0), (0,-1)

4. Inversion symmetry preserving 4 vortex system. Vortices start at (1,0), (-1,0,), (1/v',-

11/VZ), (-1/v/Z,71/v Z2)

5. Asymmetric 4 vortex system. Vortices start at (1,0), (0,1), (-1/v,1/v Z), (-1/v'Z,-

1 /v/2Z)

3.2.2 Chaos and Chaotic flows

In common usage, chaos refers to a state of disorder. There is no universally accepted

mathematical definition of chaos, a commonly used definition says that, for a dynamical

system to be classified as chaotic, it must have the following properties [33):

1. It must be sensitive to initial conditions; Sensitivity to initial conditions means that

each point in such a system is arbitrarily closely approximated by other points with

significantly different future trajectories. Thus, an arbitrarily small perturbation of

the current trajectory may lead to significantly different future behavior [92].

2. It must be topologically mixing; Topological mixing (or topological transitivity) means

that the system will evolve over time so that any given region or open set of its phase

space will eventually overlap with any other given region [91].
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3. Its periodic orbits must be dense; Density of periodic orbits means that every point in

the space is approached arbitrarily closely by periodic orbits [23].

As mentioned before, having a chaotic flow also makes the problem more challenging.

Chaos is inherently a form of uncertainty. One important property of a chaotic flow is that

particles in the fluid can move away or towards each other at an exponential rate in time.

This also means that the positions of vortices are very sensitive to their initial positions.

It becomes increasing difficult to track them as time goes on, because even small errors in

estimation at a particular time can result in the estimated state totally losing track of the

true state at subsequent times. Other filtering algorithms fail completely to track chaotic

systems. Although particle filtering can handle such problems better, a huge number of

particles are required to track the states, otherwise, the filter loses track of the vortices. In

the later chapters we shall look at how well the particle filtering techniques can be used to

track chaotic 4-vortex system.

3.3 Numerical Integration Schemes

The point vortex model involves solving a system of coupled ordinary differential equations.

There are various numerical integration schemes of variable accuracy that one can use for

this. A good overview of the different stochastic numerical integration schemes can be found

in [47, 46, 72, 48, 98, 35, 79, 10, 64, 40, 71, 34]. The simplest and most well known scheme is

the Euler-Maruyama scheme [68, 99, 36]. However, it is only one-half order accurate in time

and can lead to large numerical errors. Lamba et al [51] provide a good description of an

adative version of the Euler-Maruyama scheme. Another frequently used scheme, when the

diffusion coefficient is not a constant, is the Milstein scheme [47, 72, 68, 43]. The Klauder-

Petersen scheme, which is first order accurate in time, has been used several times in the

context of particle filtering by Chorin et al [6, 18]. In this study, we choose to use the 4-order

Runge-Kutta scheme (only second order accurate in time), which is better known as RK4.
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We show the implementation of the 4th order stochastic Runge Kutta scheme for a scalar

variable as follow:

dy = f(y)dt + adW (3.8)

Equation 3.8 is ordinary stochastic differential equation in a scalar variable y

The stochastic RK4 method for this problem is given by the following equations:

1
Yn+1=Yn + h(ki + 2k2 + 2k3 + k4 )

t,,t + h

where yn+1 is the RK-4 approximation of y(tn+1), and

ki=f(y.)
11

k2 =f(yn + ±hk + -N(0, h))
2 2

1 1
k3=f(yn + ±hk2 +-N(O, h))

k4=f(yn + k3 + oN(0, h)) (3.9)

Thus, the next value yn+1 is determined by the present value yn plus the weighted average of

four increments which are specified by eqs. 3.9. A detailed overview of the different stochastic

Runge Kutta schemes can be found in [37, 38]. The deterministic RK-4 scheme is 4-order

accurate in time. However, in our estimation problem, the system model is stochastic, i.e.

we add gaussian noises to the discretized versions of the ordinary differential equations 3.5

and 3.7. As a result, the stochastic version of the Runge-Kutta 4 like scheme is only second

order accurate in time. This is mainly because the variance (proportional to integration

error squared) of the Weiners process scales linearly with time. We discuss the convergence

and the implication of using this integration scheme in later chapters.
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3.4 Estimation Problem Setup

The final process model is given by adding noises to the eqs. 3.5 and 3.7. They can be

represented as follows

d .a )2 + (#i /3 -#)2
dt =1,j#3 2r a

do' V _ (a - a') + (3.10)Z 2 .ia)2 + (3.j)210)

dt 27r (as - a)2 + (* - #)2

j=1,ji

da v(b-/(b ) #i) ~

dt L2 7r(a--a)2(b-#,8)2

db V p (a-a)(.-a = -) + 77b (3.11)
dt .= 27r (a - aj)2 + (b - #5)2-

Here the state vector to be estimated obtained by augmenting the positions of the vortices

with the positions of the tracers and is given by ({a}{ , {#O}{_1, a, b). Also, all the pro-

cess noises in eq.s 3.10 and 3.11 are assumed to be uncorrelated gaussians with variances of

0.02 in accordance with Salman [80]. As mentioned above, we use a fourth order stochastic

Runge-Kutta scheme, which is second order accurate in time, to solve eq.s 3.10 and 3.11.

The observation is assumed to be available in terms of the discrete tracer positions over

regular time intervals given by

ao a + 77a,

bo b ± b (3.12)

Here, the observations are given by tracer noisy tracer positions (ao, bo) and the observa-

tion noises are assumed to be uncorrelated gaussians with variance 0.05 in accordance with

Salman [80]. Also, the value of the circulations are assumed to be known and equal to 27r
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for all vortices. An advantage of having all the circulations having the same sign is that the

point vortices never collapse together.
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Chapter 4

Lyapunov exponents and Lagrangian

coherent structures

4.1 Finite time Lyapunov exponents

In the last chapter we learnt that chaotic flows are extremely sensitive to initial conditions.

Lyapunov exponents can help us ascertain the extent to which the system is sensitive to

initial conditions. The Lyapunov exponent or Lyapunov characteristic exponent of a dy-

namical system is a quantity that characterizes the rate of separation of infinitesimally close

trajectories [9, 56, 26, 58]. Some very interesting applications of Lyapunov exponents to

dynamical systems outside the area of fluid dynamics can be found in [94, 93, 60, 87, 88].

In fluid dynamics, we can define Laypunov exponents as follows: Two trajectories in phase

space with initial separation 6xO diverge (provided that the divergence can be treated within

the linearized approximation) at a rate given by

16x(t)| ~ ek IxoIl (4.1)

Here A is the Lyapunov exponent.

The rate of separation can be different for different orientations of initial separation vec-
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tor. Thus, there is a spectrum of Lyapunov exponents equal in number to the dimensionality

of the phase space. It is common to refer to the largest one as the maximal Lyapunov ex-

ponent (MLE), because it determines a notion of predictability for a dynamical system. A

positive MLE is usually taken as an indication that the system is chaotic (provided some

other conditions are met, e.g., phase space compactness). It makes sense to consider the

MLE because any arbitrary initial separation vector will typically contain some component

in the direction associated with the MLE, and because of the exponential growth rate, the

effect of the other exponents will be obliterated over time.

Mathematically, the maximal Lyapunov exponent is defined as follows:

A = lim lim 11 Inx(t) (4.2)
t-4o05xo-+O t |6xo|

The limit 6x o -+ 0 ensures the validity of the linear approximation at any time [16].

Evaluating the Lyapunov exponents of the particles in the fluid lead to Lagrangian coher-

ent structures, which are stable/unstable material structures in the flow. There are two kinds

of coherent structures; attracting and repelling. We discuss these structures more in the next

section. However, as the calculation of Lyapunov exponents involve a limit to infinite time,

in practice, we use the finite time Lyapunov exponents (FTLE) instead. Speicifically, in the

context of ocean modeling and data assimilation, FTLE has been used in [83, 85, 89]

Suppose the flow map is denoted by x(t, to, xo), i.e. the trajectory followed by a particle

at point xo at time to. Let F be the deformation tensor given by,

FT = VE0x(t, to, Xo) (4.3)

Now, F describes the deformation at (x, t) with respect to the initial conditions. For t > to,

the largest singular value of F, a-1(F), gives the maximum relative growth of an infinitesimal

vector at xo advanced by the flow map from to to t. Hence we have,

-1(F) = A.ma(FTF) (4.4)
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where FTF is known as the Cauchy-Green tensor [67]. The largest finite time Lyapunov

exponent (FTLE) is thus given by [30],

A(t, to, xo) 1 In (Amax(FTF)) (4.5)
2(t - to)

We calculate A in forward time (t > to) using a dense initial grid of particles. The derivatives

in F are approximated with central differences. The local maxima of the resulting FTLE

field A'0 (xo) are repelling coherent structures. These repelling structures signify regions in

the flow from where particles diverge away as time increases from t to to. We investigate

these structure in the next section. An alternate and interesting way to compute the FTLE

field has been proposed by Okushima [65]. This method is very helpful for evaluating the

FTLE field for multidimensional dynamical systems with degenerate spectra. Beyn et al

proposed another hybrid method to evaluate FTLE fields [11].

4.2 Lagrangian coherent structures

In this section, we explore Lagrangian coherent structures (LCS), which are defined as ridges

of finite-time Lyapunov exponent (FTLE) fields. These ridges can be seen as finite-time mix-

ing templates. In dynamical systems theory, LCS are stable and unstable manifolds of fixed

points and periodic orbits.

It has long been recognized that flows with general time dependence admit emergent

patterns which influence the transport of tracers; these structures are often generically re-

ferred to as coherent structures. When coherent structures are studied in terms of quan-

tities derived from fluid trajectories they are often named Lagrangian coherent structures

(LCS). For example, in the special case of time-independent systems, one might classify

the stable and unstable manifolds of hyperbolic fixed points as coherent structures, but

typically one uses the notion of coherent structures in the context of more general flows.

There is a vast body of literature on coherent structures in fluid mechanics that we will
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not attempt to overview here. One can find a good overview of LCS their properties in

[50, 32, 59, 83, 27, 61, 52, 54, 31, 53, 76, 7, 20, 82, 69].

One of the most important used of the LCS is that they can reveal an underlying flow

structure in time-dependent systems that is typically not evident from the Eulerian field. In

addition, these structures divide dynamically distinct regions in the flow, which allow for the

easy analysis of transport. Formally, we can define a Lagrangian coherent Structure (LCS)

as the second-derivative of the scalar FTLE field A(t, to, xo) at a time instant to [83]. We also

note here that the flux across these coherent structures, while not necessarily zero, is usually

negligible, and therefore these structures are effectively invariant manifolds and hence act as

transport barriers. We plan to use these Lagrangian coherent structures evaluate from finite

time lyapunov exponents to effectively study the problem of ideal tracer placement to carry

out effective filtering in the later chapters.

Finally, in figs. 4-2 and 4-2, we show the Attracting and Repelling LCS for simple point

vortex systems. We evaluate the repelling LCS by integrating the system in forward time

and then evaluating the FTLE field of the space, while we use backward-time integration for

locating attracting LCS. This makes sense because repelling structures are signify regions

from which the fluids particles diverge away, while attracting structures refer to boundaries

which attract fluid particles towards themselves. Figure 4-2 show the LCS for different 3

vortex systems with increasing asymmetricity. We can see that the difference between the

attracting and repelling structures of the system increases as we increase the asymmetricity

of the system. Also, we can identify regions with high value of FTLE, which have more

irregular flow than other regions with fairly low and uniform values of FTLE. We explore

more about these structures when we discuss the numerical results. Figure 4-2 shows the

LCS for 4 vortex system. We can clearly see that for chaotic systems like an asymmetric 4

vortex systems the LCS can get very complicated with several regions of high FTLE field.
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Repelling Structures of symmetric 3 vortex system
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Repelling structures of asymmetric (occ=0.3) 3 vortex system
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Repelling structures of asymmetric (ecc=0.5) 3 vortex system
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Repelling structures of asymmetric (ecc=0.7) 3 vortex system
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Figure 4-2: Lagrangian coherent structures of 3 vortex systems
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Repelling Structures of symmetric 4 vortex system
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Repelling structures of asymmetric 4 vortex system
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Figure 4-2: Lagrangian coherent structures of 4 vortex systems
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Chapter 5

Numerical Results

5.1 Error measures

We use two different error measures to quantify the errors associated with the filtering

process. In our vortex problem, these error measures show the effect of different initial

tracer placement positions on the process of inference of the flow states through the particle

filtering algorithm. Suppose that our state vector Xt has K components {x} 1. We note

that for our problem the state vector X = ({a}_1, {#}f_1, {a}_ 1, {b}{_1), where (a, #) and

(a, b) denote the two-dimensional coordinates of the V vortices and P tracers respectively.

So, specifically we have K = 2(V + P).

5.1.1 Median mean square Error

Firstly, from a filtering run we obtain the posterior distribution of the states p(XlYi:t) or

{Xj, wj}iN 1 at every time t. We evaluate the mean squared error (MSE) of this run as

follows;

K N

MSE,=- ) k nj, - X ktruel) 2Wt,n,i

k=1 n=1
K N

((tmean,1 - Xtrue,) + (Xt,n,1 - xQmean,)
2 Wn,) (5.1)

k=1 n=1
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Here x% , is the true value of the kth state component and Xmean, is the mean of the

posterior of the kth state for the first filtering run or the first realization of the filter. The

subscript on xk and w denotes time, particle number and realization number respectively.

Now we repeat this process for several filtering runs; m = 1, 2, .., M to obtain {MSEt,m}m

We now look to quantify the uncertainty in the simulated data (truth) and the observations

using a median of the MSE over all the M runs of the filter. We choose to use median

instead of mean after verifying that the median gives more robust results for our problem.

The median mean squared error (MMSE) is given by the following formula.

MMSE= medianm= 1  1 X(,nm (5.2)
M S -K k= =4~~,trte,m) 2

Wtn,m)

Here xitrue,m is the true value of the kth state component for the mth filtering run or the mth

realization of the filter.

5.1.2 Root square error estimator - Chorin's Measure

In order to form this measure, we first consider a root squared error estimator (RSEE)

defined for a single filter run as follows [18];

RSEE, 1 = E( tlme1- X,true,,)2 (5.3)

The RSEE for one run basically indicates the deviation of the mean of the posterior of the

state from the truth at each time. Now we repeat this process for several runs of the filter

m = 1, 2, .., M to obtain independent samples of the error estimator {RSEEt,m}m. We

now look at the mean and variance of the estimator to give us a sense of how "good" this

estimator is on average and also with what certainty it achieves this level of "goodness".

men RS~tm~ =1 1 7k k )
mean (RSEE,m) = K (tmean,m - xttrue,m) 2  (5.4)
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M

variance (RSEEt,m),t = M Z(RSEEt,m - mean (RSEEt,m)t) 2  (5.5)
m=1

Note: For both these measures we need not use all the state component i.e. k = 1, 2, .. , K

to find out the error measures. For example, in our problem we use two kinds of error

estimates, one for the vortices and one for the tracers. However, it makes more sense to

evaluate the error estimates of the vortices because the tracer positions are functions of the

vortex positions and the vortex model is defined by the positions of the vortices.

5.2 Performance of the Sequential Importance Resam-

pling (SIR) Algorithm

Now, we study the performance of the Sequential Importance Resampling (SIR) filtering

algorithm in tracking the two-dimensional flow. There are several parameters which effect

the performance of the algorithm. We carry out the following studies in particular

1. Effect of starting priors of the vortex positions on the estimation errors.

2. Effect of the number of particles used on the estimation errors.

3. Effect of the tracer release position on the estimation errors.

5.2.1 Starting priors on vortices

We explore the effect of starting priors on the estimation in case of an asymmetric three

vortex system with tracer released at (0,0) and 100 particles. We consider gaussian priors

with mean at true values and varying variances.

We use 30 filter runs for our RMSE calculations. From Figure 5-1 we conclude that a

prior with variance of 0.01 is reasonable for the purpose of estimation. We use this prior
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Figure 5-1: Effect of starting prior on vortices on the estimation process

variance for our further studies.

5.2.2 Number of particles used in filtering

Figure 5-1 shows the effect of number of particles used on the estimation performance. We

clearly see that as we increase the number of particles the estimation quality improves. This

is an inherent problem with particle filtering. For this problem in particular, to get a very

good estimate of the states, one has to use particle sizes of the order of 10000 particles. We

use 5000 particles for most of our studies in the later sections.

5.2.3 Tracer release position

Figure 5-1 shows the effect of tracer release position on the estimation performance. We

release the tracers at two different positions in the two cases, one very close to the vortex
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Effect of the number of particles on vortex position estimation for a inversion
symmetry preserving 4 vortex system with tracer released at ()0.5)
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locations at (0,0.5) and the other very far away from the vortices at (0,10). We expect the

data from the closely placed tracer to be more relevant as seen clearly in all the cases we

have considered. However, as the flow is chaotic as well, a more extensively study needs to

be done to find out the locations where the tracer placement gives the best results. This

strongly motivates the us towards experimental design in terms of optimal tracer placement.

We look at this in detail in a later section. In this study, we have been using just a single

tracer. We show the vortex tracking in case of an asymmetric four vortex system in fig. 5-2.

We can clearly see that the estimated state loses track of the true state after some time.

This clearly motivates us to look at the tracking of chaotic systems in detail.

5.2.4 Tracking Chaotic Flow

We can possibly think of two reasons as to why the estimated state loses track of the true

state in the chaotic 4 vortex system. Firstly, upon observing the propagation of the particles

of the tracer over time, we notice that after a certain period of time all the particles cluster

around each other and are sufficiently not thrown apart. This happens because the process

noise is much lesser in comparison to the observed noise. We step up the process noise to

a value comparable to the observation noise (only while filtering and not in data simula-

tion). Figure 5-3 shows the tracking of both vortex and tracer with the adjusted process

noise. We again see that the estimated vortex state loses track of the true vortex position,

although the filtered estimate of the tracer is still able to track the true position of the tracer.

This clearly shows that using just a single tracer we may not be able to extract sufficient

information about the dynamics (which is chaotic in this case) of the flow field and hence the

position of the vortices. In fig. 5-4 we plot the tracer state estimation corresponding to fig.

5-2. We clearly see that the though the tracer is continuously tracked the vortex isn't. So,

to track chaotic systems, we need to introduce a large number of tracers and also introduce

them at appropriate positions.
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Effect of tracer release point on vortex position estimation in an asymmetric
3 vortex system with N100 particles
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Effect of tracer release position on vortex position estimation in inversion
symmetry 4 vortex system with N100 particles
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Figure 5-1: Effect of the tracer release position on the estimation errors
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Vortex state estimation with a=0.01 noise in the starting positions of the
vortices for an asymmetric 4 vortex system with tracer starting at (0,0.5)
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Figure 5-2: Vortex state estimation for an asymmetric 4 vortex system

5.3 Comparison of auxiliary particle filter (APF) and

sequential importance resampling (SIR)

Here, we compare the performance. of the APF and the SIR for an asymmetric four vortex

system with tracer released at (0,0.5) and using 1000 particles in fig. 5-5. The APF performs

better than the SIR and hence is a very good alternative to the SIR, especially in problems

where the data is more valuable than the prior. The reason why the APF performs better

than the SIR is that the APF samples the particles high probability regions in the posterior.

Hence, we should consider APF to be a good alternative to the SIR. However, as the APF

resamples at every step, it can lead to sample impoverishment quicker than the SIR. This

can especially be a problem if the estimated state loses track of the true state as in chaotic

systems.
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True and estimated states of the vortex with adjusted process noise (filtering
process noise of the order of observation noise)
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Figure 5-3: Vortex and tracer tracking with adjusted process noise
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True and estimated states of tracer with a=0.01 noise in the starting positions
of the vortices for an asymmetric 4 vortex system with tracer starting at (0,0.5)
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Figure 5-4: Tracer state estimation for asymmetric 4 vortex system
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with tracer starting (OP.5) and N=1000 particles
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Figure 5-5: Comparison of the APF and SIR for asymmetric 4 vortex system
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5.4 Effect of Tracer release positions on the estimation

process

We now move our attention to the effect of tracer release positions on the estimation process.

In our preliminary study about this in the last section, we figured that tracers released close

to the vortex positions lead to better estimation than ones released far away. An intuitive

explanation for this is that when tracers are placed close to the vortices, they directly come

under their influence of the fields generated by the vortices, and their motion is thereby

influenced by these fields. This, in turn, results in them capturing better information about

the movement of the vortices.

We also learned earlier that some of the systems that we are looking at are chaotic and

irregular. Also, finite time lyapunov exponent plots can be effectively used to study chaotic

systems. This motivates us to build up a link between the tracer placement problem and

the corresponding FTLE plots of the system. We divide our study into several cases arising

from different vortex configurations.

5.4.1 Symmetric 3 vortex system

First we look at the symmetric 3 vortex system. Figures 4-2 a,b represent the attracting

and repelling structures of the symmetric 3 vortex system. As the system is symmetric,

the attracting and repelling features turn out to be very similar. Based on these coherent

structures, we define regions 1, 2a, 2b, 2c, 3a, 3b, 3c and 4, as shown in fig. 5-6, where we

intend to test out tracer placement problem.

We consider the following tracer release positions:

1. Single tracer release positions: 1 (-4,0), 2a (-0.5, 0.58/5), 2c (1, 0), 3a (-1.5, 0), 3b

(0.75, 0.75x/5), 4 (0, 0).
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FTLE plot of asymmetric 3 vortex system at t=10s
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Figure 5-6: Different regions in the symmetric 3 vortex system based
structures

on Lagrangian coherent

2. Double tracer release positions: 2a-2al, 2a-2c, 2a-3a, 2a-3b, 2c-3a, 3a-3a1, 3a-3b.

We note that the different tracer release positions in region 2 and 3 are symmetric about

the origin. We also note that 2a1 and 3a1 are tracers released very close to 2a and 3a and

their coordinates are given by (-0.6,0.5V') and (-1.6,0). We now apply the SIR filter

with N = 5000 particles to carry out inference on the symmetric 3 vortex system. Based

on the two different error measures we had developed, i.e. MMSE and RSEE, we make the

following observations.

We make the following observations from plots of the Median Mean Square Error (MMSE)

of the vortices for the various tracer release positions.

1. Single tracers released in regions 1 and 4 perform significantly worse than region 2 and

3. This can be clearly observed in fig. 5-5a. The repelling structures separating region

1 from region 2 and 3 indicated that the particles on either side of the structure do not

interact. This is in fact confirmed by a physical simulation of the system. In a similar
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way, we think that region 4 does not interact much with region 2 and 3. However,

there are few particles from region 4 which escape into region 2 and 3 as we mover

forward in time. Both these suggest that more complicated flow of the vortices can be

captured better by placing tracers in regions 2 and 3 than by tracers released in region

1 or 4 as tracers in region 1 and 4 do not interact much with regions 2 or 3 and hence

cannot infer the movement of vortices in region 2 well.

2. Single tracer in region 2 performs worse than region 3. This is evident from fig. 5-5b.

We observe that the MMSE of vortices with a tracer released in region 2 is an order of

magnitude higher than when it is released in region 3.Also, the magnitude of FTLE in

region 2 is on an average more than that in region 3. Further, the boundaries (repelling

structures) of region 2 are far more diffused than those of region 4. These suggest that

the flow in region 2 is more irregular than in region 3 and hence tracers from region 2

are less useful in inferring about the locations of vortices in the system.

3. Figure 5-5b shows that symmetrically placed tracers in region 3 perform almost the

same. As the 3 vortex system we study is symmetric about the origin and so are the

tracers released in different parts of region 3, we can expect them to lead to similar

observations and also similar inference results. Further, as the MMSE of the vortices is

of significantly low order of magnitude, the numerical integration error does not seem

to affect the results for the symmetrically placed tracer release positions in region 3 to

be different.

4. Symmetrically placed tracers in region 2 do not perform the same. This is observed in

fig. 5-5b, where symmetrically placed tracers in regions 2a and 2c lead to very different

errors. Like in the previous case, we would expect tracers released symmetrically

located positions in region 2 to lead to similar inference results. However, this is

not something that we observe. We think that there are two factors that work in

conjunction to give rise to this result. Firstly, the inference results are very sensitive to

tracer release positions. This result if further justified by one of the later observations.
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Secondly, due to the more irregular flow in region 2 when compared to region 3, the

error due to numerical integration has more pronounced effects in region 2. This fact

is corroborated by a separate study of numerical integration error on tracers in region

2 and 3. We make a short digression here to talk about the performance and errors

associated with the stochastic RK-4 integration scheme that we have to using in our

problem.

Stochastic RK-4 Numerical Integration Scheme

We learnt earlier that the stochastic RK-4 scheme is second order accurate in time.

We prove this by looking at the convergence plot for the scheme. Figure 5-6 shows

a loglog convergence plot of the absolute integral average error over time and over

all the three vortices in a symmetric 3 vortex model. We consider a time step of

At = 10 4 s to be the true state, while we evaluate time steps from At = 10-s to

At = 10-2S in the plot. We clearly see that the slope of the curve is close to 2 which

corroborates the fact that the stochastic RK-4 scheme is second order accurate in time.

Figure 5-7 shows the effect of numerical integration error on tracers in region 2 and 3

for two different stochastic integration schemes labeled as "good" (At = 10- 3 s) and

"bad" (At = 10- 2 s) schemes. The benchmark used is an even stronger scheme with

At = 10 4 s. This proves that numerical integration error is more for tracers in region

2, making inference using tracers in region 2 harder.

5. Figure 5-5c shows that two closely spaced tracers in region 2 does worse than single

in region 2. This is by far the most perplexing result. As we add new observations

from an additional tracer at every instant in time, we should hope to get better state

estimates than those obtained by using a single tracers. One way to rationalize this

peculiar behavior would be to claim that additional tracers can lead to conflicting

observations which in turn can lead to bad inference results. By conflicting, we mean

that when observations from one tracer leads to a high likelihood, then the observation

from the other leads to a low likelihood. Also, these additional observations can turn
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out to be conflicting as inference results using a single tracer is highly dependent on

the start position. However, we are not entirely satisfied with this result and find it

an interesting idea to be explored in further studies.

6. Two closely spaced tracers in region 3 does worse than single in region 3.This is clearly

seen in fig. 5-5d and be justified by the same reasons as the case of region 2.

7. In fig. 5-5e we see that four tracers starting from same location in region 2 performs

almost the same as single tracer starting at that location. Further, it performs much

better than 4 tracers starting from closely spaced points. This observation suggests

that the inference results are highly dependent of the start location of the tracer as

using 4 tracer observations starting at the same point leads to much better results than

4 tracer observations starting at closely spaced points. Also, using this result we verify

that adding additional tracers at the same point leads to almost same inference results

as single tracer released at that point. Although, one might expect the results to get

a little better but definitely nor worse.

8. Again, in fig. 5-5f we notice that four tracers starting from same location in region 3

performs almost the same as single tracer starting at that location. Further, it per-

forms much better than 4 tracers starting from closely spaced points. This observation

can be explained just as in case of region 2. Additionally, in this case adding 4 tracer

observations starting from the same point actually improves the inference results. This

totally agrees with our intuition that additional observations should improve an infer-

ence process.

We now study plots of mean and variance of the Root Square Error Estimator (RSEE) of

the vortices for the various tracer release positions. Figures 5-6 a,b shows that single tracers

in regions 1 and 4 perform significantly worse than region 2 and 3. Single tracer in region

2 performs worse than region 3. While symmetrically placed tracers in region 3 perform

almost the same, symmetrically placed tracers in region 2 do not. Figures 5-6 c,d show that
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two closely spaced tracers in region 2 does worse than single in region 2. Infact single tracer

in region 2 performs better than any combination of that tracer with any other tracer in

region 2 or 3. In figs. 5-6 e,f we see that two closely spaced tracers in region 3 does worse

than single in region 3. All these observations can be explained in the same way as in the

case of the Median Mean Squared Error. Additional, we note that the variance of the RSEE

gives us additional information. The variance of RSEE for tracers placed in region 2 is much

more than tracers in region 3, i.e. not only is the error of estimation lower in region 3 than

in region 2, but also that this error is lower on an average in region 3 than in region 2. That

being said, there can be cases when observations collected from a tracer released in region 2

can lead to better results than a tracer released in region 3. Hence, in a practical situation

we should ideally release multiple tracers in every region, even if we know that releasing

tracers in one region can lead to better inference.

5.4.2 Asymmetric 3 vortex system

We now study the performance of the SIR filtering algorithms under different tracer re-

lease positions for a asymmetric 3 vortex system. In particular, we consider a system with

ecc = 0.3, which can be considered to be moderately asymmetric. Figures 4-2 c,d represent

the attracting and repelling structures of the symmetric 3 vortex system. Based on the

common feature in the attracting and repelling coherent structures, we define the following

regions 1, 2a, 2b, 2c, 3a, 3b and 3c as shown in fig. 5-7, where we intend to test out tracer

placement problem.

We consider the following tracer release positions:

1. Single tracer release positions: 1 (-4,0), 2a (-0.5,1), 2b (-0.5, -1), 2c (1, 0.3), 3a

(-1.5, 0), 3b (1, 1.5), 4 (0.8, -1).

2. Double tracer release positions: 2a-2al, 2a-2b, 2a-2c, 2a-3a, 2a-3b, 2a-3c, 2b-2c, 3a-3al,

3a-3b, 3a-3c, 3a-2b, 3a-2c, 3b-3c.
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Repelling structures of asymmetric (ecc=0.3) 3 vortex system
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Figure 5-7: Different regions in the asymmetric 3 vortex system based
structures

on Lagrangian coherent

Here the different tracer release positions in region 2 and 3 are not symmetric about the

origin. We also note that 2a1 and 3a1 are tracers released very close to 2a and 3a and

their coordinates are given by (-0.45,1) and (-1.55,0). We now apply the SIR filter with

N = 5000 particles to carry out inference on the asymmetric 3 vortex system.

We study the MMSE plots for these different tracer release positions and combinations.

Clearly, from fig. 5-8a, we can say that tracers released in region 1 are not valuable to the

inference process. The reason for this is that tracers in region 1 do not interact sufficiently

well with the fields created by the vortices and are hence cannot capture valuable information

about the positions of the vortices. In fig. 5-8b, we notice that the MMSE of tracers released

in region 2 and 3 are fairly different from that in the symmetric 3 vortex case. Tracers in

2b and 2c perform significantly worse than the other tracers. However, tracer in region

2a perform very well. In all likelihood, the tracer released in 2a looks like an outlier. As

we mentioned earlier, the estimation process is very sensitive to initial positions, and the
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variance of RSEE in region 2a is much higher than in region 3, it is very much possible that

we got lucky in terms of tracer 2a. That being said, it is important to note that the difference

in errors between tracers released in region 2 and region in the asymmetric 3 vortex system

is much lesser than in the case of symmetric 3 vortex systems. We can further hypothesize

that as we increase the asymmetricity of the 3 vortex system, the difference between region 2

and 3 becomes lesser as region 3 tends to have more irregular flow. Figures 5-8 c,d show that

single tracers in region 2 and 3 performs significantly better than combinations of multiple

tracers respectively.

5.4.3 Symmetric 4 vortex system

We now study the performance of the SIR filtering algorithms under different tracer release

positions for a symmetric 4 vortex system. Figures 4-2 a,b represent the attracting and

repelling structures of the symmetric 4 vortex system. Both the attracting and repelling

coherent structures are very similar and based on them, we define the following regions 1,

2a, 2b, 2c, 3a, 3b and 3c as shown in fig. 5-9, where we intend to test out tracer placement

problem.

We consider the following tracer release positions:

1. Single tracer release positions: 1 (-4,0), 2a (-1.05,0), 2b (0, 1.05), 2c (1.05,0), 2d

(0, -- 1.05), 3a (-1.05, 1.05), 3b (1.05, 1.05), 3c (1.05, -1.05), 3d (-1.05, -1.05), 4 (0,0).

2. Double tracer release positions: 2a-2al, 2a-2b, 2a-2c, 2a-3a, 2a-3b, 3a-3a1, 3a-3b, 3a-

3c, 2a-2asame, 3a-3asame.

Here the different tracer release positions in region 2 and 3 are not symmetric about the

origin. We also note that 2a1 and 3a1 are tracers released very close to 2a and 3a and their

coordinates are given by (-1.1, 0) and (-1.1,1.05). Also, 2a-2asame and 3a-3asame denote

two tracers released from the same position in region 2a and 3a respectively. We now apply
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Repelling Structures of symmetric 4 vortex system
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Figure 5-9: Different regions in the symmetric 4 vortex system based on Lagrangian coherent
structures

the SIR filter with N = 5000 particles to carry out inference on the symmetric 4 vortex

system.

We study the MMSE plots for these different tracer release positions and combinations.

Clearly, from fig. 5-10a, we can say that tracers released in region 1 and 4 are not valuable

to the inference process. The reason for this is that tracers in region 1 and 4 do not interact

sufficiently well with the fields created by the vortices and are hence cannot capture valuable

information about the positions of the vortices. In fig. 5-10b, we notice that the MMSE of

tracers released in region 2 and 3 compare the same way as in the symmetric 3 vortex case.

Tracers in region 2 perform significantly worse than the tracers in region 3 as their errors

are an order of magnitude higher. As we had mentioned in the symmetric 3 vortex case, this

mainly happens because the flow in region 2 is much more irregular and chaotic than in region

3, making them more prone to errors (including numerical integration error). Also, fig 5-10b

shows that symmetrically placed tracers in region 3 perform the same, while symmetrically
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placed tracers in region 2 do not perform the same. Figure 5-10c shows the comparison of

different tracers released in combination with tracer 2a. We observe that the single tracer in

region 2a actually performs worse than most combination of double tracers. In fact, we can

say for sure that single tracer in region 2a performs better than any combination of tracer 2a

with another tracer from region 3. This is a promising result which agrees with our intuition

that by increasing the number of tracers in right way one can improve the performance of the

estimation process. Figure 5-10d shows that the performance of the single tracer released at

3a is equivalent to a lot of other double tracer combinations with 3a.

5.4.4 Asymmetric 4 vortex system

We now study the performance of the SIR filtering algorithms under different tracer release

positions for an asymmetric 4 vortex system. Figures 4-2 c,d represent the attracting and

repelling structures of the asymmetric 4 vortex system. Both the attracting and repelling

coherent structures are very similar and based on them, we define the following regions 1, 2a,

2b, 2c, 2d, 3a, 3b and 4 as shown in fig. 5-11, where we intend to test out tracer placement

problem.

We consider the following single tracer release positions: 1 (-4,0), 2a (0,1.02), 2b

(1.02,0), 2c (-1/v/2 + 0.02, -1/v'2), 2d (1/Vf2, -1/112), 3a (-0.6, 0.12), 3b (-0.6,0.25),

4(0,0).

Each of the tracers named as 2 define the regions surrounding eyes of the vortices that

we observes in the FTLE plot (fig. 5-11). The tracer 3a is located exactly on a attract-

ing/repelling structure, while tracer 3b is located in a region which is engulfed between

attracting/repelling structures. We only study single tracer release positions here as double

tracer combinations can get fairly complicated. We apply the SIR filter with N = 5000

particles to carry out inference on the asymmetric 4 vortex system.

Figure 5-12 shows that the errors due to different placements are very similar and follow
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Figure 5-11: Different regions in the asymmetric 4 vortex system based on Lagrangian
coherent structures

a similar pattern which seems to the evolution of the flow over time. In chaotic systems,

filtering is a very hard process. At certain instances the chaotic nature of flow decreases

and the filter can track the vortices efficiently for these short periods of time. This seems

to happen between t=11-14s in fig. 5-12. In terms of tracer placement, strangely the tracer

placed at region 1 which is outside the chaotic region does the best in terms of tracking.

Although, we should not hypothesize anything from this observation, mainly because, the

average MMSE in the asymmetric 4 vortex case is much larger and the filter loses track of

the states of the vortices. Hence the problem lies in the fact that the current filter is not

good enough to track this system. We should use particle filters with larger particle sizes

and better algorithms like the APF to track these chaotic systems.
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Chapter 6

Conclusion

We set out with the objective of using Particle filtering techniques in tracking fluid flow.

The motivation behind the study was to explore the applications in ocean modeling, where

tracers/buoys can be released in the flow to collect data in the form of position (say through

satellite images) or velocity measurements over time. This sequentially available data could

then be used to predict or track the flow field of the entire system (a larger part of the

ocean). Our study provided several insights into the problem which can be used in the

larger application of fluid tracking.

6.1 Filtering on point vortex models

6.1.1 Summary and key conclusions

We first explored the different variants of the particle filtering algorithms that are available

for state estimation in Hidden Markov Models. Particle filtering is based on the idea of

importance sampling and approximating probability distribution using a bunch of particles

with varying weights. Particle filtering algorithms consist of two main steps: the predict

step, where the particles are propagated from one state to the next and, the update step,

where the weights of these particles are updated. The most commonly used algorithm is
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the Sequential Importance Resampling (SIR) algorithm, while we found out that variants

like Auxiliary Particle filtering (APF) can do better under certain conditions. We realized

that the biggest problem with most of these algorithms is that of particle degeneracy. In

most of these algorithms, the variance of the posterior reduces with time naturally and we

are left with only a handful of particles carrying all the weight. Resampling is an effective

way of dealing with this; however, we clearly understood that this is the one of the main

disadvantages of particle filtering algorithms. We then moved on to the application part of

this study, i.e. tracking fluid flows using these algorithms and data.

In order to learn about the fluid flow, we needed to first consider a good system model

which would define how the fluid particles move in time. Using either Navier-Stokes equa-

tions or Euler equations, would force us to learn about infinite dimensional state vectors. In

order to make the forward model simpler and the state vector low dimensional, we considered

the Point Vortex Model. The point vortex model is a simplification of the Euler equations,

which assumes that all the vorticity in the system is concentrated at a certain number of

particles. The assumption gives rise to a set of coupled ordinary differential equations in

two-dimensions of space. Further, the state vector is also reduced to a small number equal

to the number of vortices in the system. Any other particle in the fluid could be propagated

if the positions of the vortices of the vortices are known. The point vortex model is a simple

analytical model which makes the state vector relatively low-dimensional and in turn making

the filtering problem more tractable.

We looked at few deterministic examples of the point vortex model. Specifically, we

looked at N=3 and 4 vortices. We learned that both the cases were interesting in their own

ways. The 3 vortex system was always non-chaotic, making it a good example for our study.

On the other hand, 4 vortex systems are chaotic under most cases. We know that it can

be very difficult to track chaotic systems, as they have an inherent amount of uncertainty

associated with them. In setting up our filtering problem, we consider a stochastic version
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of the point vortex model, with added noises, to account for the uncertainty associated with

the model (as it is different from a natural model). Further, we consider noisy observations

from tracers released in the system.

We looked into different aspects of the SIR algorithm in terms of its performance for the

point vortex model. We first figured out a good starting prior on the vortex positions, which

is very essential especially for chaotic system like the 4 vortex model. Next, we studied the

effect of increasing the number of particles used to characterize the posterior distribution of

the states. As expected, the algorithm performance improved with increase in the number

of particles used. We set a particle size of 5000 for the rest of our study, which we consid-

ered to be adequate. However, we also note here that one can improve the performance of

the filtering process, especially in case of chaotic systems with even larger number of parti-

cles. Although, then the problem may start to become extremely computationally expensive.

The final study was focused on studying chaotic 4 vortex systems. As mentioned earlier,

tracking chaotic systems can be a very difficult task. Chaotic flows have particles diverging

away at exponential and hence even a small error in estimation can lead to the filtered state

totally losing track of the true state. From our studies, we learn that we lose track of the

chaotic system after a certain time. By increasing the number of particles, the system can

be tracked for a longer time. However, eventually, the filtered state always loses track of

the true state. We conclude that it is very difficult to track chaotic systems for prolonged

periods of time using the generic versions of the particle filtering algorithms.

6.1.2 Improvements and open challenges

In terms of improvements, one can have a system model better than the point vortex model.

For example, a model with vortex patches is a better description of chaotic fluid flow than a

point vortex model. However, we note that a more elaborate can make the filtering process
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more difficult. As the number of dimensions of the state increases, the filtering problem

becomes more difficult to solve and also becomes more computationally expensive.

Secondly, we assumed that all the parameters associated with the models (eg: circulation,

process noise) are known. Otherwise, we need to use algorithms which carry out simultane-

ous state and parameter estimation. This can also be area of further study specifically in

the context of the vortex model.

It can definitely be an area of future research to investigate whether or not chaotic sys-

tems can be effectively tracked for longer periods of time. The fact that chaotic systems

cannot be tracked for long periods of time clearly stood out as a challenging task from our

study. One can suggest using better versions of the particle filtering algorithms, involving

better sampling algorithms, like Chorins filter, to track these chaotic systems. Although,

as a side study we observed that the Chorins filter in particular does not help for this problem.

6.2 Tracer placement using LCS

6.2.1 Summary and key conclusion

As most flows are chaotic, it is imperative to understand the extent to which they were

chaotic. In other words, we needed a measure which could quantify how chaotic a system

really was. Lyapunov exponents have been used in literature to study chaotic systems. These

exponents define how sensitive the system is to the initial conditions, which is a very impor-

tant variable to be considered in the context of our filtering problem. As chaotic flows can

have particles moving away from each other at exponential rates, it is of utmost importance

to know their initial positions. We then explored a particle version of Lyapunov Exponents

called finite time lyapunov exponents (FTLE) can be learnt from the initial conditions of the

system. Further, we plotted the scalar FTLE field, which revealed certain coherent struc-
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tures in the system. Coherent structures are invariant structures, which define boundaries of

the flow of the system. They are mainly of two kinds: attracting and repelling. Attracting

structures are ones which attract fluid particles towards themselves, while repelling struc-

tures repel them away. In other words, attracting structures are regions to which particles

converge to over time, while repelling structures are regions from where particles diverge

away. The attracting and repelling structures of the 3 and 4 vortex systems clearly helped

us identify regions where one could possibly place tracers to start with to gain better in-

formation out of the system. It also motivated us to consider the problem for experimental

design in terms of ideal tracer placement besides our original problem of tracking the system

in a general case.

We studied the effect of tracer release positions on the state estimation process under

different vortex configurations. In the symmetric 3 vortex case, we identified regions based

on the FTLE plots where single tracer placements lead to better estimations. These regions

were those labeled 3 and had relatively low values of FTLE but were still under the influence

of the vortices. As opposed to a tracer released in region 3, the one released in region 2 did

not perform well, mainly because the flow in this region was more irregular. Also, single trac-

ers released in region 2, which were symmetrically about the origin, did not lead to similar

estimation errors. Again, this suggested that the flow in region in 2 was irregular and more

sensitive to initial conditions. We also tried to learn the estimation performance when two

tracers were released in the flow. Strangely, it turned out that placing two tracers very close

to each other in region 2 and region 3 did not lead to better estimation performance than

placing a single tracer in region 2 and region 3 respectively. This was a perplexing result.

Next, we moved on to an asymmetric 3 vortex case, where we learnt that the differences

between filtering performance in regions 2 and 3 were less contrasting than in the symmetric

case. This mainly happens because region 3 has more irregular flow than in the symmetric

case. However, one clearly benefits by placing a tracers in region 3 than in region 2. In the

4 vortex symmetric case, we obtain similar results, where regions corresponding to region 3
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in the 3 vortex system tend to lead better estimation performance.

The above studies on tracer placement lead us to the following conclusions. Firstly, we

need to evaluate the attracting and repelling structures of the system based on FTLE field.

Based, on these structures we should identify regions which do not interact much among

themselves. The tracers should be placed in regions like region 3, which have the advantage

of both being close to the vortices as well as low FTLE fields meaning that the flow in the

region is less irregular or sensitive to initial conditions. When placing multiple tracers, they

should be placed different regions like region 3 (eg: 3a and 3b), as they lead to best perfor-

mance.

6.2.2 Future Work

We think that the most important contribution of this work was to set up the connection

between FTLE based coherent structures and tracer release position. It clearly showed that

we can exploit use the initial conditions of the system to ideally release tracers which lead

to good estimation performance. This study forms the groundwork for more applied studies

where we can release a large number of tracers in the fluid and try to learn the flow and in

turn improve our tracer releases.

The fact that placing two tracers very close to each other in region 2 and region 3 did

not lead to better estimation performance than placing a single tracer in region 2 and region

3 respectively was perplexing. One way to explain is that the data provided the tracers are

conflicting. In other words, when one tracer gives rise to a high likelihood the other does not

and vice versa. Also, we notice that when we start with multiple tracers from same point in

region 3 this anomaly tends to go away. However, we definitely think that this result is an

open question to be answered and can be the scope of future work based on this study.
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The question of ideal tracer deployment is even more difficult for chaotic systems as the

FTLE plots are far more messy and do not have well-defined structures. The results of the

single tracer study in this regard can be considered to be inconclusive. In all, tracking and

ideal tracer deployment in case of chaotic system can be a much more complex problem and

should be a challenging study to pursue.
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