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Abstract

This dissertation studies the problem of motivating an expert to help a principal take a
decision. The first chapter examines a principal-expert model in which the only source of
friction is that the expert must be induced to acquire non-verifiable information relevant
for the principal's decision. I show that contracts that specify a single transfer scheme
are strictly dominated by contracts that specify a menu of transfer schemes from which the
expert can choose. Optimal menu contracts often induce inefficient decision-making. Indeed.,
in environments where decisions affect the amount of information that is revealed ex-post.
distorting decision-making in favor of decisions that reveal more information can help to
provide better incentives for information acquisition. Without menus, there is an additional
reason to distort decision-making. In this case, distorting decision-making is almost always
optimal, and the distortions can favor decision that reveal less information ex-post.

The second chapter studies the role of authority in a more general version of the principal-
expert model studied in chapter 1. Contracts specify a menu of transfer schemes from which
the expert can choose. I consider three possible allocations of authority: 1) Full-commitment,
under which the expert's choice from the menu also determines the decision to be taken. 2)
Expert-authority, under which the expert can ultimately take any decision. 3) Principal-
authority, under which the principal can ultimately take any decision. I provide conditions
under which any Pareto-optimal outcome implementable under full-commitment can also be
implemented when either one of the parties has authority.

The third chapter analyzes what happens if the expert is not motivated through a con-
tract, but through his concern about his reputation. The expert can be a charlatan (and
have no relevant information) or informed, and he privately knows his type. The principal
makes inference about the expert's type based on the expert's report and on the outcome of
the decision. I show that the expert's concern about his reputation coarsens the information
that he can credibly transmit. As a result, decision-making is biased away from the status
quo: the decision that the principal would take under the prior is taken too infrequently.

Thesis Supervisor: Bengt Holmstr6m
Title: Paul A. Samuelson Professor of Econoniics

Thesis Supervisor: Glenn Ellison
Title: Gregory K. Palm Professor of Economics
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Chapter 1

A Principal-Expert Model and the

Value of Menus

1.1 Introduction

The classical moral hazard literature has analyzed the problem of motivating an agent whose

costly and non-verifiable effort is a direct input to the production process. The agent is

induced to work through a contract that specifies a single transfer scheme contingent on

some performance measure.' This model provides a good description for situations where

the agent is a worker. However, there is another type of agent, an expert, whose effort does

not affect output directly, but instead generates information relevant for the decisions that

determine output. The problem of motivating experts has one fundamental difference from

that of motivating workers: in the former, there is additional information arriving at an

interim stage, after the expert exerts effort, but before outcomes are observed. This raises

the possibility that the parties could do better by writing contracts that are qualitatively

different from those used to motivate workers. A contract could specify a menu of transfer

schemes from which the expert can choose at the interim stage.2 The purpose of this paper

1 See, for example, Mirrlees (1976), Holmstr6m (1979), Harris arid Raviv (1979), Shavell (1979), Grossman

and Hart (1983), Holmnstr6mn arid Milgromn (1991) or Kimn (1995).
2 Menu contracts are common in the analysis of incentive problems that combine adverse selection with

moral hazard (see Laffont and Tirole (1986), for example).
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is to determine when and why menu contracts are valuable, and to study the features of

optimal menu contracts.

I examine a model with two risk-neutral parties, a principal (she) and an expert (he). The

principal is the residual claimant of output, which is determined by a decision and a binary

state of nature. The expert has no direct interest in the decision and is protected by limited

liability.3 Both parties start with the same prior about the state of nature. After a contract

is signed but before the state is realized, the expert can exert costly and non-verifiable effort

to acquire non-verifiable information about the state. Formally, we may assume without

loss of generality that each level of effort induces a distribution over posteriors about the

state with expectation equal to the prior. Contracts specify a menu of pairs; each pair is

formed by a decision and a transfer scheme, which may be contingent on everything that

is observable at the end. In the case where transfer-scheme menus are not available, every

decision must be paired with the same transfer scheme. At the interim stage, the expert

privately observes a posterior drawn from the distribution corresponding to the effort that

he exerted. Based on this observation, he then selects an element from the menu specified

by the contract. The selection determines the decision to be taken and the transfer scheme

for payments. Note that, since the parties are risk-neutral, the total surplus generated by

the relationship is determined by the expert's effort and the decision rule, which specifies

the decision that is taken after the expert observes each posterior. Thus, the outcome of

the relationship can be fully described by a level of effort, a decision rule and a constant

specifying the expert's net gain from the relationship.

The core of the analysis is concerned with determining how the set of outcomes that can

be implemented depends on whether contracts specify transfer-scheme menus. In particular,

the objective is to understand the interaction between the decision rule to be implemented

and the level of effort that can be attained. Given a contract, the expert's incentives to

acquire information are entirely determined by the expected payoffs that he will receive.

given his optimal selections from the menu, after observing each posterior. These payoffs are

described by the value function associated with the expert's choice problem at the interim

a For example, consultants or portfolio managers typically have no direct interest in their clients' choices.
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stage.4 This function has a central role in the analysis. Indeed, the first result in the paper

is a characterization of implementable outcomes (with menus) expressed only in terms of the

expert's interim value function.5 This characterization serves two purposes: 1) it enables us

to use the interim value function directly as the incentive instrument (replacing contracts);

2) it makes explicit the way in which the decision rule to be implemented restricts the shape

that the interim value function can take (and thus, the amount of effort that can be induced).

With menus, decision rules add restrictions only when they prescribe decisions that do

not reveal the state ex-post. As an illustration, consider the following examples:

Example 1: An expert is hired to advice a gambler on how to make a bet on the Celtics

vs Lakers game. The set of states is { Celtics win, Lakers win}, the decision is how to bet,

and the output corresponds to the gambler's profit. The parties observe at the end output.

the decision and the state.

Example 2: An expert is hired to assess whether a project should be undertaken. The

set of states is {Project succeeds, Project fails}. Output is equal to zero if the project is

not undertaken, it equals some positive value if the project is undertaken and succeeds, and

some negative value if the project is undertaken but fails. The parties observe the value of

output and whether the project was undertaken. 6

In Example 1, the realization of the state can eventually be observed regardless of the

decision taken. We will see that, in this case, decision rules impose no restrictions on the

shape that the interim value function can take. so there is no need to induce ex-post inefficient

decision-making. Intuitively, with menus, a contract can give the expert choices that have

different state-contingent payoffs even though they induce the same decision. This possibility

4 This function depends only on posteriors.
5 This result exploits the fact that, since the expert's observation is a posterior, his interim payoff, given

any choice from the menu, is linear in his type. In this sense, the result is analogous to the standard

characterizations of implementable outcomes in linear mechanism design environments (see, for example,

Rochet (1987) or Jehiel and Moldovanu (2001)). The characterization in this paper has some unique features

derived from the specific characteristics of this problem.
6 This environment is studied in Lambert (1986), Levitt and Snyder (1997), and Inderst and Klein (2007).
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enables the parties to separate the expert's incentives to acquire information from the way

in which the decision is taken.

In Example 2, if the project is not undertaken, the state is never revealed (the counter-

factual cannot be observed). We will see that, in this case, even though separation is still

possible, decision rules do impose restrictions on the expert's interim value function. Intu-

itively, if the expert is to take a decision that does not reveal the realization of the state, the

(optimal) choice from the menu that induces that decision must pay him the same amount

regardless of the state. This fact restricts the shape that the interim value function can take.

Such restrictions can only be relaxed by distorting decision-making in favor of decisions that

reveal the state.

Without transfer-scheme menus it is no longer possible to separate the expert's incen-

tives to exert effort from the decision taken; the expert can receive different state-contingent

payoffs only if the decision taken changes. If the decision taken can be identified ex-post

(as in the examples above), this is the only difference compared with the case where menus

are available. The paper formalizes this claim by extending the characterization of imple-

inentable outcomes to the case without menus and where decisions are identifiable. 7

The two characterizations illustrate how decision rules induce different restrictions on the

expert's interim value function depending on whether contracts can rely on transfer-scheme

menus. In order to assess the importance of these differences, we need to compare the

Pareto-optimal outcomes that can be implemented when menus are available and when they

are not. By working directly with the expert's interim value function, we identify conditions

(regarding the information acquisition technology) under which -the first-order approach" is

valid. 8 Under these conditions, we then characterize optimal contracts and Pareto-optimal

outcomes (implementable with and without menus).9 We show that optimal contracts (with

7 If decisions are not identifiable ex-post, the set of implementable outcomes without transfer-schene

menus shrinks, making menus more valuable.
8 The first-order approach replaces the expert's effort incentive compatibility constraints for a single local

constraint. The conditions provided here are analogous to Rogerson (1985)'s conditions for the validity of

the first-order approach in the standard moral hazard framework.

9 The fact that the state of nature is binary provides significant tractability because the expert's type

space (and the domain of the interim value function) becomes one-dimensional.
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and without menus) specify at most three alternatives that induce different state-contingent

payoffs for the expert. Thus, optimal menus are relatively simple. For instance, in Example

1, the optimal menu contract gives the expert a choice between two transfer schemes, one

paying him only if the Celtics win, and the other paying him only if the Lakers win.

The comparison of the Pareto-optimal outcomes that are implementable depending on

whether transfer-scheme menus are available gives the following conclusions: 1) Menus are

usually valuable because they enable the parties to separate the expert's incentives to acquire

information from the way in which the decision is taken. This improves decision-making and

induces more information acquisition. Separation may require the expert to be given both

the option to bet for and against the same decision. Indeed, in Example 1, the optimal

menu typically includes an option in which the expert induces the principal to bet for one

team and simultaneously chooses to be paid only if the other team wins. 2) The nature of

optimal distortions in decision-making depends crucially on whether menus are available.

With menus, optimal distortions are driven purely by differences in the amount of inforina-

tion that different decisions reveal about the state ex-post. Inducing the expert to exert

more effort requires distorting decision-making in favor of decisions that reveal more infor-

mation. Thus, in Example 1, the optimal (lecision rule is ex-post efficient. However, in

Example 2, the optimal decision rule is distorted in favor of undertaking the project, which

is the only decision that reveals the state. Without menus, the inability to separate the

expert's incentives from the principal's decision introduces an additional motive to distort

decision-making. As a result, ex-post efficient decision rules are optimal only in exceptional

circumstances. Moreover, the direction of optimal distortions becomes ambiguous; it may

also be optimal to distort decision-making in favor of decisions that do not reveal the state.

The previous literature recognized the presence of distortions in decision-making in

principal-agent models where the agent exerts effort and, at the same time, helps take a

decision in which he has no direct interest (Lambert (1986), Demski and Sappington (1987),

Levitt and Snyder (1997), Diamond (1998), Athey and Roberts (2001), Inderst and Klein

(2007), Malcomson (2009, 2011) and Chade and Kovrijnykh (2011)).1o These studies either

10 Osband (1989) and Prendergast (1993) analyze models with similar features, but take their analyses in
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focus on contracts that specify a single transfer-scheme or analyze environments in which

menus turn out to be not valuable (Levitt and Snyder (1997) and Inderst and Klein (2007)).

By comparing the outcomes that can be attained depending on whether transfer-scheme

menus are available, this paper makes two contributions to this literature. First, it uncovers

the nature of optimal distortions to decision-making (with and without menus). Second it

shows that. contrary to previous findings, menus are usually valuable.1 1

Another strand of the literature has studied the problem of inducing agents, who have

a direct interest in decisions, to acquire non-verifiable information (Lewis and Sappington

(1997), Aghion and Tirole (1997), Cramer, Khalil and Rochet (1998a), Cramer, Khalil and

Rochet (1998b), Szalay (2005) and Szalay (2009))." The incentive design problem analyzed

in these papers is quite different from the one here, since now decision rules serve as the

main incentive instrument.1 3 Szalay (2005) is the most similar to this paper. It also has the

feature that, even though the expert's preferences over decisions are ex-ante aligned with

those of the principal, it is optimal to implement decision rules that are riot ex-post efficient.

Nevertheless, the nature of distortions there is very different from the one in this paper. In

Szalay (2005), the expert has his own motive to acquire information, the problem is that he

does not take into account the principal's gain when deciding how much to acquire. The

expert can be induced to gather more information if the parties commit never to take the

decisions that are efficient when the information is relatively inaccurate.

The rest of the paper is structured as follows. Section 1.2 describes the model and defines

different directions. In Osband (1989), the main source of friction is the fact that the principal does not know
the expert's quality (how costly it is for him to acquire information). In Prendergast (1993), the principal

receives a free (and private) informative signal, and the expert's compensation is based solely on how his

report compares to the principal's signal. Dewatripont and Tirole (1999) and Gromb and Martimort (2007)
are concerned with the question of when hiring two agents to acquire information may dominate hiring only
one. The former has the distinguishing feature that the information acquired is verifiable.

" In Zermefio (2011b), I study the role of authority in a more general principal-expert model, where the
state of nature can take a finite number of values and the expert's effort may shift the distribution of the
state in addition to generating information.

" Other papers have studied information acquisition beyond principal-agent frameworks. For example,
Bergemann and Valimdki (2002) study the implications of allowing information acquisition in a general

mechanism design environment, and Persico (2000) analyzes the effect of information acquisition in auctions.

13 In Aghion and Tirole (1997), for example. the allocation of authority effectively determines the decision

rule to be implemented.

13



the main concepts that are used in the analysis. Section 1.3 derives the characterization of

implementable outcomes (with menus) that lies at the heart of our analysis. Section 1.4 pro-

vides sufficient conditions for the validity of the first-order approach and characterizes the

optimal menu contract. Section 1.5 extends the results to the case where transfer-scheme

imenus are not available and decisions are identifiable ex-post. Section 1.6 provides (im-

plicit) characterizations of the Pareto-optimal outcomes that are implementable depending

on whether menus are available. That section considers explicitly the relation between the

decision rule to be implemented and the level of effort that can be induced, and introduces

a class of information acquisition technologies for which this relation takes a particularly

simple form. Section 1.7 works with these particular technologies to illustrate, in the con-

text of Examples 1 and 2, when and why menus are valuable. Section 1.8 explores what

could be the cost of motivating an expert with a contract designed for a worker. Section 1.9

concludes.

1.2 The model

There are two risk-neutral parties, a principal (she), and an expert (he). The principal has

unlimited wealth, and is the residual claimant of output, y(d, 0), which is determined by a

decision, d e D, and a state of nature, 6. The state, 0 E {01, 02}, is binary and the set

D is finite. The expert is protected by limited liability; his pledgeable income is W dollars.

Moreover, he does not have a direct interest in the decision, and is the only one capable of

acquiring information regarding the state of nature.

Both parties start with the same prior about the state of nature, xp E (0, 1), where xp is

the probability that 0 =02. After the contract is signed, the expert chooses a non-verifiable

effort cost normalized to e E [0, 1]. Each level of effort produces an experiment, which

is a joint distribution over a signal and the state of nature." After effort is exerted, the

expert privately observes the realization of the signal which results in a posterior over the

state of nature. Note that the expert's effort induces a distribution over posteriors with

14 The notion of experiments here corresponds to that in Blackwell (1953).
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expectation equal to the prior (by the law of iterated expectations). Thus, the experiment

corresponding to effort eo is fully described by a CDF over posteriors, FeO (x), where x is

the probability that 0 = 02 In short, after incurring the effort cost, eo, the expert privately

observes a posterior, xo, drawn from the distribution FO (x). This information is assumed to

be non-verifiable, so the expert's type, in the mechanism design jargon, is xo E [0, 1].15 An

information acquisition technology is a family of CDFs, {Fe(X)}ecFt,13, where Ee p,

for all eo E [0, 1].16

Transfer schemes are payments from the principal to the expert. They may be contin-

gent on the contractible variable z(d, 0), which describes everything that will be observable

after the state is realized and the decision is taken.' 7 A contract specifies a menu of pairs,

{ (tr(Z), dr)}rCR, where r E R is an index. The expert can choose any pair from the menu

after acquiring information, but before the state is realized.' 8 The selected pair, ro E R,

determines the transfer scheme through which the expert is compensated, tro(z), and the

decision to be taken, dro E D.' 9 The case in which contracts cannot specify transfer-scheme

menus can be described by the additional constraint that tr(z) t,, (z) for any r, r' E R.

Without loss of generality, we only consider contracts in which the expert contributes his

whole pledgeable income at the beginning and always receives non-negative transfers.

To sum up, the principal and the expert have Von Neumann-Morgenstern preferences

with Bernoulli utility functions up = y - t, and uE - t - e respectively (t is the transfer

paid to the expert). The following timeline describes the sequence of events:

I I I I I
Contract: Experiment Posterior drawn Selection from State realized,
{(tr(z),dr)}rE R selected (e0) from 1,(-) menu (roe R), transfer made

decision di- taken

15 The advantage of this formulation is that the expert's interim payoff becomes linear in his type.
16 Throughout the paper, the subscripts after the expectation operator denote the distribution with respect

to which the expectation is taken.
17 The codomain of the function z(d, 0) is left unspecified because its natural specification depends on

the environment under consideration. For instance, in Example 1 we have z(d, 0) = (y(d, 0), d, 0), while in

Example 2 we have z(d, 0) = (y(d, 0), d) (see the examples in section 1.1).
18 Menus may have any number of elements; the set R is arbitrary.

19 We restrict attention to contracts that specify deterministic decisions. Section 1.2.1 expands on this

point.
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1.2.1 Model discussion

There are several aspects of the model that deserve discussion. This is best done in the

context of the two examples from the introduction. In these examples, the assumptions that

the expert has no direct interest in decisions, and that the information that he acquires is

non-verifiable are natural. In both cases, the expert is interested in the clients' choices only

to the extent they may affect his compensation. The non-verifiability of information captures

situations in which information is difficult to communicate unequivocally. For instance, the

gambler's expert would struggle to prove that the Celtics will win with some probability.

Since the parties do not have any exogenous conflict of interest regarding decisions, the

only source of friction in this model is the fact that the expert's effort is non-verifiable; if

effort did not need to be motivated, decisions would always be taken efficiently given the

information available. This feature allows us to isolate the interaction between the need to

induce the expert to exert effort and the way decisions are taken. Even for problems where

the expert might have a direct interest in decisions, the analysis in this paper serves as a

useful benchmark.

The assumption that the set of states is binary provides significant tractability, since the

interim mechanism design problem becomes one-dimensional (the expert's type, his posterior,

is just a number). As Examples 1 and 2 illustrate, there are environments that are well

described by two states. Moreover, many of the main insights that can be derived for the

binary case also apply for the N-state case.2 0

In this model the parties operate under full-commitment. That is, the decision to be

taken is determined by the contract. Thus, the present analysis establishes an upper bound

for the set of outcomes that the parties could implement under alternative arrangements

in which decisions were taken in some other way. Full-commitment, interpreted literally,

may not be attainable in some situations. For instance, there are environments where the

principal may have trouble committing not to overrule the expert's decision (Baker, Gibbons

and Murphy (1999)). In Zermefio (2011b), I provide conditions that apply to this framework

20 In Zermefio (2011b) I examine a principal-expert model with N states in which effort may affect output

directly in addition to generating information.
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under which any Pareto-optimal outcome implementable under full-commitment can also be

implemented under the following two arrangements: 1) contracts specify a menu of transfer

schemes (from which the expert can choose), and the expert has the right to irrevocably take

any decision, d C D; 2) the same, except that the principal keeps the right to overrule the

expert's choice of d C D. The conditions needed boil down to a restriction over the function

z(d, 0): it must enable the party with the ultimate right to decide to be held accountable

through transfers after unplanned decisions are taken. In particular, these conditions are

met when transfer schemes may be contingent explicitly on decisions, as in the examples

above. 2 '

Finally, note that we have assumed that the decisions specified in contracts must be

deterministic. In Zermefio (2011b), I show that, in general, the parties would benefit if

contracts could specify lotteries over decisions. However, I show that outcomes in which

stochastic decisions are taken are difficult to implement without full-commitment.

1.2.2 Basic concepts

An outcome is a complete description of the variables that determine the size of the surplus

generated by the relationship, and the way it is split between the parties. Formally,

Definition 1.2.1. An outcome is a triplet, (eo, d(x), TI), where eo E [0, 1] is the effort exerted

by the expert, d : [0,11 -> D is a decision rule, mapping each posterior, xO G [0,1], to some

decision, d(xo) E D, and T E R denotes the expert's (ex-ante) expected payment.

Since the parties are risk neutral, eo and d(x) fully determine the size of the surplus.

Decision rules specify the decisions to be taken for all posteriors observed by the expert, not

only those in the support of Fe(x). The expert's ex-ante expected payment, T, determines

how the surplus is split between the parties.

21 These results rely on the fact that the contracts considered in Zermeio (2011b) may specify transfer-

scheme menus. Without menus, implementation under imperfect commitment may become more difficult.
22 Formally, I show that any outcome with a stochastic decision rule that is implementable when the expert

has the ultimate right to decide is Pareto-dominated by another outcome with a deterministic decision rule

that is also implementable when the expert has the right to decide.
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Since the parties may choose to opt-out of the relationship, outcomes must be individually

rational (IR).

Definition 1.2.2. An outcome, (eo, d(x), f) is individually rational if

1. T - eo > W.

2. u + EFe0 [Ex[y(d(x), 0)]] - T > 0.

The first condition is the expert's individual rationality constraint. At the time of signing

the contract, the expert's expected payoff must exceed the amount of money that he brings

to the table. The second condition states that the principal must obtain a non-negative

benefit from the relationship. It reflects the fact that she receives w dollars from the expert

at the beginning. The parties' outside options are normalized to zero.

Next we define implementability. We take into account the fact that effort and information

are not verifiable, so a contract must induce the expert to willingly pick the planned choices.

Note that, given a contract {(tr(Z), dr)}rER, in the interim stage the expert will always

select an element from the menu that gives him the highest expected payoff conditional

on his information. That is, for each x0 E [0,1], the contract actually pays the expert a

conditional expected transfer, T(xo) -- maxcR Exo[tr(z(d,, 0))]. The function T(x) denotes

the conditional expected payment to the expert induced by the contract. This function will

play a central role in the analysis. Then, we have:

Definition 1.2.3. The IR outcome, (co, d(x), T), is implementable if there exists a contract

{(t(z), dr)}rCR (and its corresponding T(x)) such that:

1. eo E arg maxc[0,1] EF [T(x) - e-

2. EFo[T(x)] U.

3. For all x 0 6 [0,1], there exists ro E arg maxER cEx0 t,(z(dr, 0))] . t. dr0 = (

23 Note that we are imposing the requirement that contracts must be such that the expert's problem of

choosing an element from the menu always has a solution (even for posteriors that are not in the support of

Fe (x)). Potentially, it could be the case that the parties would be able to implement more outcomes if this

constraint was relaxed by requiring that such solution exists only after observing posteriors in the support

of Fe0 (x). Zermefio (2011b) proves that this is actually not the case in a more general framework, so it is

riot the case here.
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4. All transfers are non-negative.

The first condition states that the contract must induce the expert to exert the level of

effort specified by the outcome. The second condition guarantees that the expert's ex-ante

expected payment is indeed T. The third condition ensures that the expert is always willing

to select an element from the menu that is compatible with the decision rule specified by the

outcome. The fourth condition is limited liability.

Definition 1.2.4. A decision do G D is revealing if z(do, 01) # z(do, 02).

Decisions are revealing when they allow the parties to identify the realization of the state

ex-post. In Example 1, the parties are always able to observe who won regardless of the

decision that was taken, so all decisions are revealing. In Example 2, by contrast, the only

revealing decision is investment. If the project is not undertaken, the parties never observe

the counterfactual. This is illustrated by Figure 1.2.1.

yh
Project succeds

yOf

Project fails

Do not invest Invest

Figure 1.2.1: Example 2

1.3 Characterization of implementable outcomes

This section provides a characterization of implementable outcomes that is central to the

analysis. One implication of this result is that, instead of contracts (which are relatively

complicated objects), it is possible to use the expert's conditional expected payment func-
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tion, T(x), directly as the incentive instrument.2 4 This observation simplifies the analysis

considerably. Moreover, this characterization illustrates when and why it may be optimal to

distort decision-making away from ex-post efficiency in environments where transfer-scheme

menus are available.2 ' We begin by stating the result:

Theorem 1.3.1. The IR outcome (Co, d(x), T) is implementable if and only if there exists a

function T : [0,1] -+ R such that:

1. eo C arg maxec[o,1] EFeTx)] - e.

2.IEF,.0 T(x)] =T.

3. T(x) is convex and continuous (at the boundary).

4. T(0) + T'(0) > 0.

5. T(1) - T'(1) 0.26

6. T(x) reaches its minimum in the entire interval, [x(d(x)), i(d(x))], where x(d(x))

inf{xo E [0, 1]| d(xo) is unrevealing} and t(d(x)) sup{xo E [0, 1] | d(ro) is unrevealing}.

This interval is empty if d(x) is always revealing.

Proof. See appendix 1.10.1.

The key difference from the definition of implementability (definition 1.2.3) is that, in

Theorem 1.3.1, the function T(x) replaces contracts as the choice variable (from now on, we

will refer to T(x) as a contract). Before discussing the implications of this characterization,

let us provide an intuition for why it is true.

Figure 1.3.1 illustrates the argument for necessity. Suppose an outcome, (eo, d(x), T),

is implementable with some contract {(tr(Z), dr)}rR. The lines in Figure 1.3.1a describe

the expert's expected payment conditional on his information given each particular selection

24 This methodology corresponds to Rochet and Chone (1998)'s "dual approach", in which the agent's

indirect utility function becomes the choice variable.
2' A decision rule, d(x), is ex-post efficient if d(xo) e arg maxdCD Ex4[y(d,0)] for all xo E [0, 11.
26 The expressions T'(0) and T'(1) denote the side derivatives of T(x) at 0 and 1 respectively.
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If z(d(xo),8i)=z(d(xo),82), state-contingent

tz(d,01)) payments must coincide.

t(Z(dr,02)) T()+ T'(O)
- I()- T'(1)

0 0
0 X 1 0 X X"

(a) (b)

Figure 1.3.1: Theorem 1.3.1 - Necessity

from the menu. A contract boils down to a set of lines in this graph.27 After observing

a posterior, £o E [0,1], the expert will select from the menu the element that corresponds

to the highest line at £O. Thus, the upper envelope, T(x), describes the expert's actual

expected payment conditional in his information. This function satisfies conditions (1)-(6)

of Theorem 1.3.1. Conditions (1) and (2) follow directly from definition 1.2.3. Condition (3)

is a consequence of the fact that T(x) is the upper envelope of linear functions. Since the

original contract satisfies limited liability, the points at the sides of Figure 1.3.1a must be

non-negative. As Figure 1.3.1b illustrates, the expressions T(0) + T'(0), and T(1) - T'(1)

correspond to the lowest point in each side. Thus, conditions (4) and (5) hold. Finally,

condition (6) follows because, if the decision taken at some £O is unrevealing, the expert's

payment cannot be contingent on the state. Thus, the highest line at this point must be flat

(see Figure 1.3.1b).

Figure 1.3.2 illustrates the argument for sufficiency. Start with a function, T(x), that

satisfies conditions (1)-(6) of Theorem 1.3.1 given some outcome, (eo, d(x), T). As Figure

1.3.2a shows, for each £O E [0, 1], we can construct payments, t O(z(d(xo), Of)), by using

a tangent line to T(x) at zO. The payments specified by the transfer scheme, tre(z), for

z -f z(d(£o), 6i) can be any non-negtive number. The contract {(t, (z), d(o))}xOE[o,oo built

27 Although the contract depicted in the figure has only three elements. in general it may have an arbitrary

number of elements.
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For each xo, construct txo(z(d(xo),8a))
using the tangent to T(x) at xo.

0' ' 0 1
0 x xo 1 0 X0 X 1

(a) (b)

Figure 1.3.2: Theorem 1.3.1 - Sufficiency

in this way implements (e, d(x), T). Condition (6) guarantees that these transfers are well

defined. If, for some xo E [0, 1], we have that z(d(xo), 01) = z(d(xo), 02), condition (6) implies

that there exists a flat tangent to T(x) at zO, so the payments constructed for this value of

z actually coincide (see Figure 1.3.2b). Since T(x) is convex, conditions (4) and (5) imply

that all transfers are non-negative (see Figure 1.3.2b). In addition, convexity implies that

condition (3) of definition 1.2.3 holds, and that the conditional expected payment function

associated to the constructed contract coincides with our starting T(x). Thus, conditions

(1) and (2) here imply that the first two conditions of definition 1.2.3 are also satisfied.

Theorem 1.3.1 uncovers several insights about this problem. In particular, it illustrates

that, when transfer-scheme menus are available, optimal distortions to decision-making are

purely driven by differences in the amount of information about the state that different

decisions reveal ex-post. The first condition in Theorem 1.3.1 establishes that the expert's

incentives to acquire information are completely determined by the function T(x). Thus,

given a pair (d(z), T), the parties need to choose T(x) to induce their preferred level of

effort subject to conditions (2)-(6) in the theorem. Note that the decision rule, d(x), only

restricts T(x) through condition (6). In fact, if all decisions are revealing, d(x) does not

restrict T(x) at all. When this is the case, any decision rule can be implemented without

hindering the parties' ability to induce effort, so there is no need to distort decision-making.
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The presence of unrevealing decisions, however, introduces a trade-off between the levels

of effort that can be induced and the decision rule implemented. Indeed, as reflected by

condition (6), taking unrevealing decisions restricts the shape that T(x) can take, limiting

the parties' ability to induce effort. Therefore, in this case, in order to foster information

acquisition, it may be optimal to distort decision-making. Optimal distortions always take

the form of revealing decisions being taken when unrevealing ones would be ex-post efficient.

The following proposition formalizes this point:

Proposition 1.3.1. If contracts may specify transfer-scheme menus, any implementable out-

come, (co, d(x), T7), is Pareto- dominated (at least weakly) by another implementable outcome,

(co, d(x), 7), in which d(x) is such that, for some interval [M, in],

1. d(xo) c arg maXdD Exy(dO)] for allxo G [,on] j

2. d(xo) E arg maxdDR Exo [y(d, 0)] for all xo g [m,mn], where DR C D is the set of

decisions that are revealing.28

Proof. Suppose that the outcome, (eo, d(x), T), is implementable with a function T(x). Since

T(x) is convex, we can define [_m, n] = arg minxE O,1] T(x). Then T(x) also implements

(Co, d(x), T), where d(x) is as described in the corollary given [_M, in] (by construction, T(x)

satisfies condition (6) in Theorem 1.3.1 given d(x)). This outcome makes both parties at

least weakly better off. E

In Example 1 in section 1.1, the expert should always be induced to decide efficiently.

In Example 2, however, the expert may optimally be induced to undertake the project too

frequently; it can never be optimal to undertake the project too rarely.

Theorem 1.3.1 enables us to assess what is the cost of information being non-verifiable.

If information were verifiable and transfer schemes could depend directly on posteriors, con-

ditions (1) and (2) of Theorem 1.3.1 and the limited-liability constraint, T(x) > 0 for all

28 1 use [m, 7-n] as opposed to [x, x], as in Theorem 1.3.1, because it may be optimal for a contract, T(x),
to reach its minimum in a strict superset of [x, z].
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x G [0, 1], would completely characterize implementable outcomes. 2 9 In this case, distorting

decision-making away from ex-post efficiency would never be necessary. When information

is non-verifiable (and transfers may only depend on variables observable ex-post), condi-

tions (3)-(6) of Theorem 1.3.1 must be included to characterize implementable outcomes.

Condition (3), convexity, reflects the intuitive observation that having more non-verifiable

information can never be detrimental to the expert. Conditions (4)-(6) are needed because,

here, the expert's compensation depends on his information only indirectly. Conditions (4)

and (5) illustrate that now limited liability imposes stronger restrictions than in the case

with verifiable information. The reason is that here transfers must be non-negative for ev-

ery realization of the state, and not only in expectation. As discussed above, condition (6)

introduces a reason to distort decision-making when information is non-verifiable.

The insights we have derived in this section are quite general. In Zermefno (2011b), I

extend Theorem 1.3.1 to the case where there is a finite number of states, and where the

expert's effort may affect output directly in addition to generating information. Furthermore.

this result could also be generalized to environments in which the parties are expected

utility maximizers with Bernoulli utility functions strictly increasing in money. Without risk-

neutrality, the main difference would be that the surplus generated by the relationship could

no longer be described by a decision rule and a level of effort; the structure of compensation

would also affect total value.30  Nevertheless, Theorem 1.3.1 relies on the fact that the

function T(x) contains all the relevant information available in a contract (as Figure 1.3.2a

illustrates, the whole contract can be constructed from T(x)), and this is true regardless of

preferences. 3 1

29 This situation would correspond to the standard moral hazard framework, as studied by Holmstrbm

(1979) or Kim (1995), for example. The agent's output (in this case information) is directly contractible.
3 Differences in the parties' marginal utilities of income would make the level of compensation matter;

differences in their attitudes towards risk would make the variability of compensation matter.
31 Therefore, a similar characterization can be used to study the case where the principal is risk-neutral,

the expert is risk-averse and there is no limited liability, as in Lambert (1986), Demiski arid Sappington (1987)
and Malcomuson (2009). The analysis is actually quite similar, since both, limited liability arid risk-aversion,
basically set limits to how convex T(x) can be (with risk-aversion, steeper slopes rmean more value lost).
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1.4 Simple contracts

This section provides a sufficient condition under which any implementable outcome can

be implemented with contracts that specify a significantly reduced set of alternatives for

the expert. Formally, an alternative is a vector specifying the payment that the expert

will receive after each of the states is realized. That is, when the expert makes a selection,

ro E R, from the menu, he is actually choosing the alternative, (tro(z(dro, Oi)))& . Note that

different selections from the menu may correspond to the same alternative, and different

alternatives may be induced by selections that have the same transfer scheme. An alternative

is undominated if it is strictly preferred by the expert after observing some posterior. The

results in this section will be phrased in terms of the following notion of simple contracts:

Definition 1.4.1. A contract is simple if it specifies at most three undominated alternatives.

The third alternative (whenever it applies) pays the same amount regardless of the state.

The term simple is used because, to be effective, a contract must provide at least two

undominated alternatives. Here, we are only including the possibility of having a third

riskless alternative. As an illustration, in the gambler's example a simple contract could give

the expert the right to choose between two pre-specified bets, where each bet is a payment

contingent solely on who won. Note that the function, T(x) - maxrcEREx[tr(z(dr, 0))],

induced by a simple contract may change its slope at most twice (see Figure 1.3.1).

Given the information acquisition technology, {Fe(X)}e[O,1l, define I(zo; e) fJ 0 Fe(x)dv.

Then, the following condition is sufficient for simple contracts to be optimal:

Assumption 1.4.1. For all xo E [0, 1], I(xo; e) is non-decreasing and concave in e.

This condition is equivalent to requiring that, for any convex and continuous T(x), the

function, EF, [Tx)], is non-decreasing and concave in e. Indeed, if A(xo) is a subderivative
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of a given convex function, T(x), at £O for all £O E [0, 1],32 then

EF, [T(x)] =T(1) - (1 - sp) AM1 + jOI(x; e)dA(x), 33(14)
11

where fo I(x; e)dA(x) denotes the Riemann-Stieltjes integral of I(x; e) with respect to A(x)

over [0.1] (it is well defined because I(x; e) is continuous in x and A(x) is non-decreasing). 34

The requirement that, for each £O E [0, 1], T(xo; e) is non-decreasing in e is intuitive. It

is equivalent to asking that, if e > e', then the experiment generated by e must be more

informative (in Blackwell's sense) than the experiment generated by C'.3 ' The concavity

requirement corresponds to a strong notion of diminishing returns to information acquisi-

tion.3s I shall return to Assumption 1.4.1 later on. Now, we can state the main result of this

section:

Theorem 1.4.1. Under Assumption 1.4.1, simple contracts minimize the expected transfer

that needs to be paid to the expert in order to implement any given pair, (eo, d(x)). Moreover,

if d(x) is always revealing, the contract that attains the minimum needs to specify only two

undominated alternatives.

Proof. See appendix 1.10.3. l

32 The subderivative of a convex function T : [0, 1] -* R at a point xO is a scalar, c, such that T(XO) +
c(x - xo) < T(x) for all x e [0, 1].

33 The equivalence follows from:

1. EF[T(x)] =T(0)Fe(0)+f T(x)dFe(x),

2. f T(x)dFe(x) + f Fe(x)A(x)dx = T(1) - T(0)Fe(0),

3. Fe(x)A(x)dx + f0' I(x; c)dA(x) = 1(1; e)A(1) - 1(0; c)A(0) = (1 - xp)A(1),

where all the integrals are Riemann-Stieltjes integrals.
34 The argument for sufficiency is straight forward. For necessity note that, if there exists zo such that

I(xo; e) is not non-decreasing (or concave) in e, we can pick a convex T(x) that changes slope only once at

xo. Then, EF. [T(x)] T(1) - (1 - xp)A(1) + 31(xo, e), where 6 > 0 is the increment in slope. This function

is not non-decreasing (or concave) in e.
35 The requirement that, for all e > e' and xo E [0,1], fJ0 Fe(x)dx > f~ Fe,(x)dx is equivalent to requiring

that, for all e > e', Fe (x) is a mean-preserving spread of Fer (x) (see Rothschild and Stiglitz (1970)).
36 Not all reasonable information acquisition technologies satisfy this requirement. Radner and Stiglitz

(1984) provide sufficient conditions under which the marginal value of a small amount of information is zero

(and, thus, the concavity requirement is violated). Chade and Schlee (2002) show that these conditions are

rather restrictive, and provide examples where the concavity requirement is satisfied.
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The rest of the section provides the intuition behind this result. Before we get there,

however, the following corollary establishes its main implication.

Corollary 1.4.1. Under Assumption 1.4.1, any implementable outcome is implementable

with a simple contract. Moreover, if all decisions are revealing, contracts need to specify at

most two undominated alternatives.

Proof. Suppose the outcome, (eo, d(x), T), is implementable. By Theorem 1.4.1, there exists

a simple contract, {(ir(z), dr)}rR, that implements (eo, d(x), i), with i < T. If d(x) is

always revealing, this simple contract specifies only two undoininated alternatives. Then.

the contract {(tr(z), dr)}rCR, where t,(z) - i,(z) + T - i for all r E R, is also simple and

implements (cO, d(x), T). E

Therefore, optimal menu contracts need not be complicated objects. Considering con-

tracts that specify only a reduced set of alternatives is often enough.

Theorem 1.4.1 states that simple contracts solve Program 1.4.1 below. In this program we

choose a function T(x) to minimize the expert's expected payment subject to implementing

a given level of effort, eo, and decision rule, d(x). That is, T(x) must satisfy conditions (1)

and (3)-(6) in Theorem 1.3.1, given eo and the interval, [x(d(x)), z(d(x))].

Program 1.4.1 Cost-minimization problem given eo and [1, T] = [(d(x)), z(d(x)))

min EFe[T(x),
T(x)

subject to:

1. T(x) is convex and continuous (at the boundary).

2. EFe [T(xj eo > EF [T(x)] - e for all e / eo.

3. T(0) + T'(0) > 0.

4. T(1) - T'(1) > 0.

5. T(x) reaches its minimum at every point in the (possibly empty) interval [x, 2].

This problem is non-standard in the sense that the choice variable is a convex func-

tion. Fortunately, it can be expressed in more familiar terms. We rely on the fact that

27



a function, T(x), is convex and continuous if and only if it can be expressed as T(xo)

T(O) + foJ A(x)dx, where for each xo E [0, 1], A(xo) is a subderivative of T(x) at xo (note

that A(x) must be non-decreasing). Then, as we will see below, it is possible to replace T(x)

with A(x) as the choice variable, and rewrite Program 1.4.1 in terms only of the increment

of A(x), dA(x). The advantage of doing this is that the reformulated problem is linear in

the increment, dA(x), and the convexity constraint turns into a non-negativity constraint

on dA(x). Once here, using standard linear programing techniques (generalized to apply to

this problem), it can be proved that, under Assumption 1.4.1, simple contracts, in which

dA(x) is positive at most twice, solve this problem.

In what follows we will show how to express Program 1.4.1 in terms of only of dA(x),

and discuss the role of Assumption 1.4.1. The first step is to note that any convex function

T(x) can be characterized by its (non-decreasing) subderivative, A(x), and its intercept,

T(1) E R. Furthermore, by integrating by parts twice (as in equation 1.4.1), it is possible

to rewrite Program 1.4.1 in terms of the increment of A(x), dA(x), and of two levels: the

level of T(x) (determined by T(1)), and the level of A(x) (determined by A(1)). 3 7 Then,

Program 1.4.1 becomes Program 1.4.2:

Program 1.4.2 Program 1.4.1 reformulated

min T(1) - (1 - xy)A(1) + I(x; eo)dA(z),
A (x), T (1) J

subject to:

1. A(x) is non-decreasing.

2. fo [I(x; eo) - I(x; e)]dA(x) > eo - e for all e $ eo.

3. T(1) - f (1 - x)dA() ;> o.38

4. T(1) - A(1) > 0.

5. A(x) = 0 in the (possibly empty) interval [z, i].

37 The term level is used to describe the "height" of a function. For example. if the tfnction A(x) is fixed.,

the level of T(x) is determined by its value at any point; in particular, by T(1).
38 This expression is equivalent to T(O) + A(O) > 0. The equivalence follows from:
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The variables, dA(x), T(1) and A(1) can be chosen independently. For example, by

shifting up the schedule T(x), we can increase T(1) without affecting A(x). Similarly, by

shifting up A(x) we can increase A(1) without affecting dA(x) or T(1). The next step is to

pin down the levels, T(1) and A(1) using the constraints, and express Program 1.4.1 only in

terms of the increment, dA(x). For this task, there are four cases that must be considered:

1) the interval, [4,'], is empty; 2) 0 = x < z < 1; 3) 0 < x < x = 1; 4) 0 < x < z < 1.

In the first case constraints (3) and (4) of Program 1.4.2 pin down the optimal levels

of T(x) and A(x). Since increasing A(1) decreases the objective function, it is optimal to

shift up the schedule A(x) to the point where A(1) = T(1). Substituting this value into the

objective, we can see that, optimally, the schedule T(x) should be shifted down to the point

where T(1) = f (1 - x)dA(x). Thus, Program 1.4.2 becomes Program 1.4.3 below.

Program 1.4.3 Case 1: [x, :] is empty

min [I(x; co) + x,(1 - x)]dA(x),
A) Jo

subject to:

1. A(x) is non-decreasing.

2. fo [I(x; eo) - I(x; e)]dA(x) > eo - e for all e # eo.

When the interval [z, z] is not empty, the level of A(x) is pinned down by constraint

(5) in Program 1.4.2. In particular, we must have A(1) f, dA(x). Substituting this

value in Program 1.4.2, we can see that, in the second case, constraint (4) implies constraint

(3). Thus, when x = 0, it is optimal to have T(1) f dA(x), and Program 1.4.2 takes

a very similar form to Program 1.4.3. The only differences are that the objective function

becomes f [I(x; eo) + x]dA(x), and that all the integrals run from T to 1. The third case

is analogous to the second. Here constraint (3) in Program 1.4.2 implies constraint (4),

1. A(0) = A(1) - f dA(x),

2. T(O) = T(1) - f A(x)dx,

3. fl A(x)dz = - fl xdA(x) + A(1).
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and it is optimal to make T(1) = f(1 - x)dA(x). Now, the objective function becomes

f[I(x; eo) + 1 - x]dA(x), and all integrals run from 0 to x.

The fourth case is qualitatively different. Here, there is no loss of generality in assuming

that constraints (3) and (4) in Program 1.4.2 both hold with equality. The reason is that

increasing only the value A(1) (while keeping the rest of the schedule A(x) fixed), only affects

constraint (4), and decreasing the value of A(0) in a similar way only affects constraint (3).39

Taking this into account, Program 1.4.2 becomes Program 1.4.4 below.

Program 1.4.4 Case 4: 0 < x < z < 1

min I(; eo)dA(x) + [I(x; eo) + x]dA (x),

subject to:

1. A(x) is non-decreasing.

2. ff[I(x; eo) - I(; e)]dA(x) + f[I(; eo) - I(; e)]dA(x) > eo - e for all e eo.

3. f6(1 - x)dA(x) - fx dA(x).

As we wanted to show, Programs 1.4.3 and 1.4.4 are linear and expressed only in terms

of the increment, dA(z), which is restricted to be non-negative by constraint (1). Unfortu-

nately, finding a general solution to these problems is difficult; the second constraint actually

specifies a continuum of constraints from which the set that will bind depends on the specific

information acquisition technology.40 Assumption 1.4.1 guarantees that these constraints can

be replaced by a single local condition. In this sense, this assumption is analogous to the

conditions provided in Rogerson (1985) for the validity of the first-order approach in the

classic moral hazard model. In Rogerson (1985), the agent's effort is a direct input to the

production process and x E [0,1] is output. Rogerson's convexity of the distribution func-

3 For example, consider what happens in Program 1.4.2 when increasing the value of A(1) by 6, while
keeping the rest of A(x) and T(1) fixed. The objective increases by 6(-(1 - xy) + 1(1; eo)) = 0. The first

constraint is relaxed. The left hand side of the second constraint changes by 6(X(1; eo) - 1(1; e)) = 0 for any

e : co. The third constraint changes by 6(1 - 1) = 0. The fourth constraint becomes tighter by 6. Thus, we
can always increase A(1) (without affecting the outcome) to the point where constraint (4) binds.

40 In binary effort models, such as Inderst and Klein (2007), we do not have this problem, and simple

contracts also solve Program 1.4.1.
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tion condition (CDFC) is equivalent to the requirement that, for any non-decreasing T(x),

EFe [T(x)] is concave in e.41 When x is output, the assumption that Fe(x) satisfies the miono-

tone likelihood ratio property (MLRP) is natural. This property, together with the CDFC,

guarantees that optimal compensation schemes are actually non-decreasing. When effort is

about acquiring information (and x is a posterior), we lose the MLRP, so we cannot require

the function T(x) to be non-decreasing. However, if information is non-verifiable, T(x) must

be convex and continuous, which is the fact that we exploit in Assumption 1.4.1.

Assumption 1.4.1 is not necessary for Theorem 1.4.1 to hold. Appendix 1.10.4 provides

an example where it is not satisfied, but where simple contracts are still optimal. Whether

Theorem 1.4.1 holds without Assumption 1.4.1 is an open question. I have not found an

example where simple contracts are not optimal.

1.5 Single-transfer-scheme contracts with identifiable

decisions

In this section we analyze the case in which contracts may only specify a single transfer

scheme. That is, contracts are now menus of the form {(t(z), d,)}rcR. The main insight that

comes out of the analysis is that, without transfer-scheme menus, contracts can only induce

different alternatives if the prescribed decision changes.4 2 In fact, if z(d, 0) is such that the

decisions taken can be identified at the end, this is the only difference between having and

not having access to transfer-scheme menus. Proposition 1.5.1 provides a characterization

of implementable outcomes that formalizes these observations. Moreover, we will see that

the result that (under Assumption 1.4.1) simple contracts can implement any implementable

outcome extends to the case where transfer-scheme menus are not available.

41 The family of distributions {Fe(x)}e [O,j satisfies the CDFC if for al xo e [0, 1], Fe(xo) is convex in e.

Take any non-decreasing T(x) for which the Riemann-Stieltjes integral with respect to Fe(x) over [0,1] exists

for any e. Then, integrating by parts, EFe [T(x)] T(1) - f Fe(x)dT(x). The equivalence follows from this

equation.
42 Recall that an alternative is a vector specifying the payment that the expert will receive after each

realization of the state.
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We will restrict attention to environments in which decisions can be identified after they

are taken. In other words, the variable z(d, 0) must satisfy:

Assumption 1.5.1. Decisions are identifiable. That is, d # d' implies z(d, 0) $ z(d', 0') for

any 0 and 0'.

This assumption is natural in many situations. For instance, it is satisfied in Examples

1 and 2 in section 1.1. In environments where decisions are identifiable, it is less likely

that transfer-scheme menus are valuable, since the set of outcomes that are implementable

without menus becomes larger. The specific role of Assumption 1.5.1 will be described in

more detail after the following proposition:

Proposition 1.5.1. Under Assumption 1.5.1, the IR outcome, (eo, d(x), Tf), is implementable

with a single-transfer-scheme contract if and only if there exists T : [0,1] -> R such that:

1. eo E arg maxe [, 1 EFe [T(x) - e.

2.IEF[T(x)] Fe.

3. T(x) is convex and continuous (at the boundary).

4. T(0) + T'(0) > 0.

5. T(1) - T'(1) > 0.

6. T(x) reaches its minimum in the entire interval, [x(d(x)), 2(d(x))], where x(d(x)) and

2(d(x)) are as defined in Theorem 1.3.1.

7. If d(xo) = d(x'), then T(ax' + (1 - c)xo) = aT(x') + (1 - a)T(xo), for all a E [0, 1].

Proof. See appendix 1.10.5. 0

The intuition behind this result is analogous to that of Theorem 1.3.1. The only inno-

vation here with respect to our original characterization is condition (7). It reflects the fact

that, when a contract specifies a single transfer scheme, each decision cannot correspond
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to more than one alternative. Indeed, suppose a contract, {(t(z), dr)}rCR, implements an

outcome (eo, d(x), T). If d(xo) = d(x'), then we must have z(d(xo),6O) = z(d(x'),6O), and

thus, t(z(d(xo), Of)) = t(z(d(x'), Oj)) for i = 1, 2. This implies that the same line must be

tangent to T(x) = maxER Ex[t(dr,0)] at zo and x' (see Figure 1.3.1). Thus, by convexity,

T(x) must be linear between xo and x'.

If Assumption 1.5.1 were not satisfied, there would exist do = d'with z(do, Ui) = z(d', Oj)

for some Qi, Qj E {01, 02}. Suppose a decision rule had d(xo) = do and d(x') = d'. Then, in

order to implement d(x), a contract, {(t(z), dr)},ER, would need to induce best alternatives

at xo and x', r*(xo) and r*(x'), satisfying t(z(dr*(xo), Oi)) = t(z(dr*(xl), Oj)).1 This fact would

impose additional constraint over the shape that T(x) - maxCR Ex[t(dr, 0)] could take. As

we can see, in order to characterize implementable outcomes without Assumption 1.5.1, one

would need to keep track of the relationship between each pair of decisions.

Condition (7) in Proposition 1.5.1 boils down to the requirement that the function T(x)

that implements an outcome, (co, d(x), T), can only change its slope at posteriors where d(x)

specifies that the decision taken will change. Formally. each decision rule, d(x), now induces

a partition, P(d(x)), on the set [0, 1] given by:

P(d(x)) ={o E [0, 1] 1{d(x') E D x x' < xo}m {d(x') E D I ' > xo} = }.44

Condition (7) states that the slope of T(x) can only change at the points in P(d(x)). Propo-

sition 1.5.2 relies on this observation.

Proposition 1.5.2. Under Assumptions 1.4.1 and 1.5.1, if contracts may only specify a

single transfer scheme, any implementable outcome is implementable with a simple contract.

Moreover, if all decisions are revealing, contracts need to specify at most two undominated

alternatives.

Proof. Here we need to solve Program 1.4.1 with one additional constraint: T(z) can only

change its slope at points in P(d(x)). The proof that simple contracts solve this modified

4r*(x) E arg maxreR E,[t(z(dr, 0))] for all x E [0, 1].
" Note that, since D is finite, P(d(x)) must be finite.
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program is analogous to the proof of Theorem 1.4.1. The modified version of Program 1.4.1

can still be expressed as a linear program only in terms of the increment of the subderivative

of T(x), dA(x). The only change is that now we only get to choose a finite number of

variables (the size of the increment at the pre-specified points), as opposed to a continuum

as before. Simple contracts still correspond to extreme points in the feasible set. 13

This result enables us to compare, in the following section, the Pareto-optimal outcomes

that can be implemented depending on whether transfer-scheme menus are available.

1.6 Pareto-optimal outcomes

This section derives an (implicit) upper bound for the level of effort that the parties can

implement given a decision rule, the expert's pledgeable income, O, and the net expected

utility that the expert will derive from the relationship. This upper bound enables us to

(implicitly) characterize Pareto-optimal outcomes with and without menus, and to illustrate

when and why menus are valuable.

The subsequent analysis relies on the results in the previous sections. Indeed, we will

see that the value functions of the cost-minimization problems that we solved in Theorem

1.4.1 and Proposition 1.5.2 can be used to implicitly define the upper bound for imple-

mentable effort. Let Uo E R+ be the expert's net expected utility, and VJ(d(x), co) de-

note the value function of the cost-minimization problem (given d(x) and eo), depending

on whether transfer-scheme menus are available (j = M) or not (j = S). Note that out-

comes can alternatively be defined in terms of the expert's net expected utility, Uo, instead

of his ex-ante expected payment, T (given eo, the expression Uo T - eo - o defines a

one-to-one mapping between Uo and T). Then, by the definition of the cost-minimization

problems, the IR outcome, (eo, d(x), Uo), is implementable given j E {M, S} if and only if

Uo+eo+w > Vj(d(x), eo) (note that T - Uo+eo+w). We will show that, under Assumptions

1.4.1 and 1.5.1, the inequality, Uo + eo +w Vj(d(x), eo), implicitly defines the highest level

of effort that can be implemented given d(x), Uo and w.

34



Under Assumptions 1.4.1 and 1.5.1, the expression Vi(eo, d(x)) has already been derived

(see appendix 1.10.3). Under these assumptions, VJ(eo, d(x)), can be expressed in terms of

the locations where the function, T(x), that solves the cost-minimization problem (given eo,

d(x) and j E {M, S}) changes its slope. Recall that, if j = M and d(x) is always revealing,

the slope of T(x) optimally changes once at some point in XM(d(x)) = [0, 1]. If j = M, but

d(x) specifies unrevealing decisions, the slope of T(x) may optimally change twice, once in

XM(d(x)) = [0, x(d(x))], and once in XM(d(x)) = [z(d(x)),1]. If j = S, however, we must

include the additional constraint that T(x) can only change its slope at the points in P(d(x))

(constraint (7) in Proposition 1.5.1). Thus, in this case, changes in the slope of the optimal

T(x) can only take place in XS(d(x)) - XM(d(x)) flP(d(x)) if all decisions are revealing,

and in XS(d(x)) = X m (d(x)) ) P(d(x)) and XS(d(x)) - X"(d(x)) P(d(x)) if there are

unrevealing decisions. Then, we have:

Proposition 1.6.1. Let the index, j E {M,S}, describe whether contracts may specify

transfer-scheme menus (M), or only a single transfer scheme (S). Then, under Assumptions

1.4.1 and 1.5.1, the IR outcome (eo,d(x), Uo) is implementable (given j) if and only if:

1. If d(xo) is revealing for all xo G [0,1],

( I~x; e-(x; eo) (161
UO + o' + eo > max ., (1.6.1) 4

UEX0 (d(x)) ±(x; eo) + xp(1 - x)

2. If d(xo) is unrevealing for some xo C [0,1],

uo~w+CO >j-~ max iiI- (m; eo) + (1 - _m)I- (f; eo) (1.6.2)
(meXI(d(x)), -nEXi(d(.,)) nI(_M; eo) + (1 - M) (I(rn; co) + xp)

Proof. It follows from the previous discussion. Note that Uo+O+eo = T, and the expressions

on the right are the value functions of the cost-minimization problems. See appendix 1.10.3.

4 The term Ie- (xo; eo) -= lime-e I(xo;eo) I(o;e) is the left-derivative of I(x; e) with respect to e at (xo,

eo), which is always well defined under Assumption 1.4.1. Thus, this characterization applies for outcomes

with eo > 0. Any IR outcome with eo = 0 is implementable.

35



The maximizers in expressions 1.6.1 and 1.6.2 correspond to the locations where the

cost-minimizing function, T(x), changes its slope (given d(x) and eo). Note that the decision

rule, d(x), only affects these expressions by changing the set of points in which the slope of

T(x) is allowed to change. The following lemma demonstrates that expressions 1.6.1 and

1.6.2 implicitly define an upper bound for the level of effort that can be implemented given

the expert's expected net utility, Uo, initial endowment, w, and decision rule, d(x).

Lemma 1.6.1. Under Assumptions 1.4.1 and 1.5.1, if the outcome (co, d(x), Uo) is imple-

mentable (given j E {M, S}), then (e', d(x), Uo) is also implementable (given j {M, S})

for any e' < eo.

Proof. See appendix 1.10.6. E

Moreover, under Assumption 1.6.1, this upper bound is attainable.4 6

Assumption 1.6.1. The function 14, (xo; eo) -- limee Io;CO) I(xo;) is continuous in (xo, co).

Let UBi (d(x), Uo, w) denote the upper bound for the implementable levels of effort de-

termined by expressions 1.6.1 and 1.6.2. The superscript j E {M, S} describes whether the

parties have access to transfer-scheme menus. Then, under Assumptions 1.4.1, 1.5.1 and

1.6.1, Pareto-optimal outcomes solve Program 1.6.1 below. Optimal contracts are those that

implement Pareto-optimal outcomes.

Program 1.6.1 Pareto frontier

max 1EFe, [E2[y(d(x), )]] -eo,
ecE[o,1],d(x)

subject to:

1. eo < UBi (d(x), Uo, w).

There are several insights that can be derived from Program 1.6.1. For instance, consider

the question of when transfer-scheme menus are valuable. Let (eM, dM(x)) solve Program

46 By the maximum theorem, Assumption 1.6.1 guarantees that both sides of expressions 1.6.1 and 1.6.2

are continuous in co.
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1.6.1 when transfer-scheme menus are available, and suppose that the constraint is binding.

Then, transfer-scheme menus are valuable if the maximizer in expression 1.6.1 (or 1.6.2) when

eo = em is not in P(d(x)) 4 7 If all decisions are revealing, this maximizer is determined

solely by the information acquisition technology, whereas d (x) is determined by the output

function. Thus, in this case, the maximizer need not be in the set P(dM(x)), and trasnfer-

scheme menus are generally valuable. When there are unrevealing decisions, however, menus

may not be valuable in environments that are not exceptional. This point will be illustrated

in section 1.7.

The expression, UB'(d(x), Uo, w), summarizes the trade-off between improving the incen-

tives for information acquisition and inducing better ex-post decision-making. As discussed

in section 1.3, when j = M, d(x) only affects UBi(d(x), Uo, w) through the unrevealing

decisions that it prescribes. The only way to increase this upper bound is to take such

decisions less frequently.48 When j = S, the set P(d(x)) introduces an additional reason to

distort decision-making. In this case, the analysis becomes more subtle because the direction

of optimal distortions depends on what the maximizer in expression 1.6.1 (or 1.6.2) would

be in the case with menus (without menus, effort may be increased by distorting d(x) to

approximate such maximizer with points in P(d(x))). The maximizer in expression 1.6.1

(or 1.6.2) when j = M is difficult to characterize in general, since it is jointly determined

with the level of effort that is implemented. Section 1.6.1 introduces a class of information

acquisition technologies for which this maximizer can be characterized. In section 1.7 we

will work with this technology to illustrate how optimal distortions to decision-making work

in the case without transfer-scheme menus.

Finally, note that the function UBj(d(x), Uo, w) is increasing in UO and w. 49 That is,

increases in the expert's bargaining power or pledgeable income lead to more information

acquisition and better decision-making. This could explain why partners in private equity

47 If this is the case, we would have Us(d' (x), Uo, w) < UM (dM (x), Uo, w) and eM would not be attainable.
48 When unrevealing decisions are taken less frequently, the interval, [x(d(x)), x(d(x)], becomes smaller,

and the maximum problem embedded in expression 1.6.2 attains a greater value for any level of effort. This

implies that inequality 1.6.2 is satisfied for higher levels of effort, so UM(d(x), Uo, w) increases.
491 y in creasing w or UO, the inequalities in expressions 1.6.1 and 1.6.2 become easier to satisfy for any

level of effort. Thus, the highest level of effort that will satisfy the inequalities becomes larger.
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funds, for example, are required to invest a non-trivial amount of their own wealth in their

respective funds.

1.6.1 Success-Failure information acquisition technologies

An information acquisition technology is Success-Failure if, when the expert exerts effort

eO E [0, 1]: with probability P(eo), he observes a posterior drawn from some distribution

G(x) with mean equal to the prior (success); with probability 1 - P(eo), the expert learns

nothing and observes the prior (failure). We assume that the function, P : [0, 1] -* [0, 1], is

non-decreasing, continuously differentiable and concave. Then Success-Failure information

acquisition technologies satisfy Assumptions 1.4.1 and 1.6.1.50

Success-failure information acquisition technologies have the attractive feature that the

maximizers in expressions 1.6.1 and 1.6.2 can easily be characterized. Indeed, it is always

optimal to choose x, m, and fir as close to x, as possible in their respective problems. The

following lemma formalizes these claims:

Proposition 1.6.2. If the information acquisition technology is Success-Failure, then:

1. The expression _(x;eO) is non-decreaasing in x in the interval [0, xp], and non-

increasing in x in the interval [x,, 1].

2. For any x <; 2, the expression " is non-decreasing in m in the

expresion a7T(rn;eo)H-(1 r)(I(fh~eO)+xp)

interval [x, 1] n [o, xp], and non-increasing in m- in the interval [2,T1] x 1]. Similarly,

this expression is non-decreasing in m in the interval [0, x] O[o, xp], and non-increasing

in m in the interval [0, x] n[x,, 1].

Proof. See appendix 1.10.7.

Another way of reading Proposition 1.6.2 is: when the information acquisition technology

is Success-Failure, the contract, T(x), that minimizes the cost of implementing any pair,

50 This class of information acquisition technologies has been extensively used in the literature. In par-

ticular, Lambert (1986), and Inderst and Klein (2007) work with discrete versions of this technology (effort

is binary). In Lambert (1986) G(x) ~ U[0, 1], and in Inderst and Klein (2007) G(x) is assumed to have

continuous density.
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(eo, d(x)), is a simple contract that changes its slope at a point (or pair of points) as close

to XP as possible (given the restrictions imposed by d(x)). Since the optimal location of

the change in slope is independent of eo, it is also true that, given any pair, (d(x), Uo), the

contract that maximizes effort is a simple contract, T(x), that changes its slope at a point

(or pair of points) as close to x, as possible. This is the main implication of Proposition

1.6.2.

1.7 The value of menus

This section illustrates, through the examples described in section 1.1 (and in the context of

Success-Failure information acquisition technologies), when and why transfer-scheme menus

are valuable.

In order to induce the expert to acquire information, a contract must create a decision

problem for him for which the information is relevant. We will see that menus are valuable

because they enable the parties to separate this problem from the way in which the principal's

decision is taken. Moreover, we will see that attaining separation requires menu contracts to

take a form that may seem counterintuitive at first sight. Indeed, the value of menus stems

from the fact that they introduce the possibility of giving the expert the option to bet for

or against the same decision. Thus, in the optimal menu contract, the expert often has the

opportunity to choose a decision for the principal and get rewarded when that decision fails.

1.7.1 Example 1: Betting on a game

We begin by considering an example in which all decisions are revealing. Let 01 =Lakers

win, 62 =Celtics win, and suppose that there are only two decisions: bet on the Lakers and

bet on the Celtics. Fix Ua and w small enough so that the first best is not attainable when

contracts may specify menus (this implies that constraint (1) in Program 1.6.1 is binding).

The information acquisition technology is Success-Failure.

We will see that, in this case, the only reason to distort decision-making comes from
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the inability to separate the principal's decision from the expert's incentives to acquire

information. Figure 1.7.1 depicts the contracts that implement the maximum level of effort

conditional on inducing ex-post efficient decision-making, depending on whether menus are

available (Figure 1.7.1a) or not (Figure 1.7.1b). The yellow (green) region includes posteriors

for which betting on the Lakers (Celtics) maximizes conditional expected output.

tc

tc
7TX)

tL 1(X)

0 0 r
0 XE X Xp 1 0 XE X Xp1

(a) With transfer-scheme menus (b) Without transfer-scheme menus

Figure 1.7.1: Ex-post efficient contracts

Recall from Theorem 1.3.1 that, if contracts may specify transfer-scheme menus and all

decision are revealing, decision rules impose no restrictions over the shape that T(x) can

take. Thus, by Proposition 1.6.2, the contract that maximizes effort conditional on efficient

ex-post decision-making is a simple contract that changes its slope at x, (see Figure 1.7.1a).

In fact, this contract maximizes the level of effort that can be induced for any decision rule

(given Uo and w), so it is optimal." The optimal function T(x) has two different slopes in

the region where the decision is to bet on the Celtics. Thus, the contract that implements

the optimal outcome must have three elements: 1) bet on the Lakers and get paid tL only

when the Lakers win; 2) bet on the Celtics and get paid tc only when the Celtics win; 3)

bet on the Celtics and get paid tL only when the Lakers win. The expert will choose the

first option after observing posteriors in [0, XE], the second option after observing posteriors

51 The fact that the optimal contract changes its slope exactly at xp is a specific feature of Success-Failure

information acquisition technologies.
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in [zx, 1], and the third option after observing posteriors in [XE, xpj. Note that, when the

expert chooses the third option, he is making his client bet on the Celtics, but he is getting

rewarded only when the Lakers win. Indeed, it is the possibility of letting the expert bet for

or against the same decision (in this case, bet on the Celtics) that enables menus to separate

the expert's incentives to acquire information from the way in which decisions are taken.5 2

Without menus, it is impossible to attain separation; in this case, the function T(x)

can only have different slopes at points where different decisions are taken (condition (7)

in Proposition 1.5.1). Therefore, as illustrated in Figure 1.7.1b, implementing the ex-post

efficient decision rule requires T(x) to change its slope at 1 E. By Proposition 1.6.2, this

contract implements a lower level of effort than the contract in Figure 1.7.1a. Inducing the

expert to acquire more information requires distorting decision-making. Indeed, in order

to enable T(x) to change its slope at a point closer to xp, the bet must be placed on the

Lakers more frequently than what would be efficient. Doing this actually leads to a Pareto-

improvement. 53

This example illustrates a more general insight: when the parties do not have access to

transfer-scheme menus, distorting decision-making is generally optimal.5 4 In particular, this

implies that, in environments where all decisions are revealing, menus are usually valuable.

Moreover, although in this example distortions favor betting on the Lakers, by modifying the

output function, we could have constructed an example where distortions would go in the

opposite direction. That is, without transfer-scheme menus, optimal distortions to decision-

making do not follow a general pattern (as they do when menus are available). In fact,

without menus, the intuitive result that distortions should always favor decisions that are

more revealing breaks down. Below we provide an example where, in the absence of menus,

it is optimal to distort decision-making in favor of the unrevealing decision.

52 The same logic can be applied in any environment where the transfers may depend explicitly on state of

nature. Portfolio managers, for example, could be compensated with a menu of transfer-schemes contingent

only on stock prices. This would motivate them to acquire information relevant for their clients' choices

without encouraging then to take inefficient decisions on their behalf.
5 Modifying the contract in Figure 1.7.1b slightly to induce more effort generates a second-order loss of

value due to betting in the Lakers too frequently, but a first-order gain due to the additional effort.
54 It is not optimal only in the (unlikely) event that both decisions generate the same expected output

after observing the posterior in which T(x) should change its slope to maximize effort.
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1.7.2 Example 2: Undertaking a project

Here the decisions are invest or not invest, 01 =project fails and 02=project succeeds.55 The

only revealing decision is to invest in the project. We will see that, when there are unrevealing

decisions: 1) there is a reason to distort decision-making even when transfer-scheme menus

are available and the expert's incentives can be separated from the principal's decision; 2)

menus may be not valuable under circumstances that are not exceptional; 3) menus are still

often valuable (indeed, without menus, it may be optimal to distort decision-making in favor

of the unrevealing decision).

Figure 1.7.2 depicts optimal contracts given two different output functions (everything

else is kept unchanged). The red (green) regions include posteriors for which not investing

(investing) is the ex-post efficient decision.

Optim al contract (w ith or without m enus) t pi a o - e uc nr cOptimal non-menu contract

Optimal menu
* : : contract

0 __-' 0__
0 Xp X* XE 1 0 XE X* Xp 1

(a) Transfer-scheme menus are not valuable (b) Transfer-scheme menus are valuable

Figure 1.7.2: Optimal contracts

Figure 1.7.2a illustrates an example in which menus are not valuable. In this case, the

decision that maximizes expected output under the prior is to not invest (Inderst and Klein

(2007) focus on this case). Start by considering the optimal menu contract. If the parties

wanted to implement an ex-post efficient decision rule, the function T(x) would have to be

flat in the interval [0, XE] (condition (6) in Theorem 1.3.1). However, by Proposition 1.6.2,

the parties would be able to increase information acquisition by having T(x) change its slope

55 This is the environment studied in Lambert (1986) and Inderst and Klein (2007).
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at a point closer to xP. This can only be achieved by investing in the project more frequently.

Thus, the optimal menu contract changes its slope at a point x* E [X,, XE] . In order to

induce a function T(x) with these features, a contract could give the expert two alternatives:

1) not invest and get a fixed wage, w; 2) invest and get paid t, only if the project succeeds.

Note that, in each of the two alternatives, a different decision is taken. Therefore, the same

arrangement could be replicated with a single-transfer-scheme contract. In this example,

distortions to decision-making (the project is undertaken too frequently) are purely driven

by the fact that the decision not to invest is unrevealing.

Figure 1.7.2b illustrates an example where menus are valuable again. The only difference

with respect to the previous case is that now investing in the project is ex-post efficient

under the prior. Consider the contracts that implement the highest possible level of effort

conditional on ex-post efficient decision-making (given Uo and w). By Proposition 1.6.2,

the function T(x) (that is restricted to be flat in the interval [0, XE]) that maximizes effort

(given Uo) is actually flat in the (larger) interval, [0, xp]." In fact, if menus are available,

this contract is optimal.5 8 Therefore, in this example, the optimal menu contract has three

elements: 1) not invest and get w (chosen by the expert after observing posteriors in [0, XE];

2) invest and get w (chosen by the expert after observing posteriors in [XE, xp]); 3) invest

and get paid t, only if the project succeeds (chosen by the expert after observing posteriors

in [zX, 1]). Again, the principal's decision is separated from the expert's incentives by letting

the expert bet for or against the same decision. In the second alternative, the expert chooses

to invest, but does not let his own compensation depend on the investment's outcome. In

5 Distorting the decision rule slightly in favor of investing at points near XE creates a second-order loss
of value due to inefficient decision-making, but a first-order gain due to the additional effort. If the decision
rule were distorted at points near x = 0, this would also generate a first-order gain due to increased effort.
However, in this case such distortions would also generate a first-order loss of value, since at x = 0, not
investing is strictly more efficient than investing. We assume that distorting the decision rule at points close
to x = 0 is not worthwhile.

5 Recall that, under Success-Failure information acquisition technologies, in order to maximize effort
(given Uo), T(x) should change its slope at a point as close as possible to x, given the constraints imposed
by the decision rule.

58 This follows because, in order to be able to induce more effort, decision-making would have to be
distorted at x = 0. Deciding to invest at points near x = 0 would generate a first-order loss of value, which

(we assume) would not be compensated by the increase in effort.
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this case, it is optimal to implement the ex-post efficient decision rule.

Without menus the story is quite different. Now implementing the ex-post efficient

decision rule would require T(x) to change its slope at XE. Now, by Proposition 1.6.2, the

parties could do better by increasing information acquisition at the expense of distorting

decision-making in favor of not undertaking the project (in this way, the slope of T(x) could

change at a point closer to xp, as in Figure 1.7.2b). Therefore, in this case, it is optimal to

distort decision-making in favor of the unrevealing decision!

Lambert (1986), Demski and Sappington (1987) and Malcomson (2009) analyze the

Principal-Expert problem considering contracts that specify a single output-contingent trans-

fer scheme. These studies interpret the nature of distortions to decision-making in terms of

the differences in the variability of output induced by different decisions. We can use our

previous analysis to reassess this interpretation. The examples illustrate that the output

function may affect optimal distortions to decision-making through two different channels:

1) it determines the set of posteriors for which each decision is efficient; 2) it may affect

which decisions are revealing. Note that the riskiness associated with each decision only

affects distortions indirectly, since decisions that induce more variable output (invest, in the

project example) are also those that are revealing.

1.8 Can we treat experts like workers?

Consider the problem of motivating an agent whose contribution to output comes, to a

large extent, through his influence on decisions (take, for example, a CEO or a portfolio

manager). Can we analyze this problem (in theory and in practice) through the lens of the

standard moral hazard framework? In particular, if we only consider contracts that specify

a single output-contingent transfer scheme, should the contract used to motivate the CEO

resemble the contracts that could be optimal in the standard moral hazard model? This

section provides an example to illustrate two points. First, there is little that can be said in

general about the shape of optimal output-contingent contracts when the agent is an expert.

Indeed, it is easy to construct examples in which the information acquisition technology is
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natural and the optimal contract is non-monotone in output. Second, contracts that may be

optimal in the moral-hazard framework can easily lead to poor performance when used with

experts. In particular, we will see that a contract with two levels of compensation (a bonus

contract) can easily induce poor decision-making without fostering information acquisition.

Suppose that d E {A, B} and 8 = {OA, OB}. Let the output function be such that

y(A, OA) > y(B, OA), y(B, OB) > y(A, OB) and y(d, 0) = y(d', 0') for any (d, 0) / (d', 0').

Suppose contracts may only specify a single transfer-schemes contingent in output, and

that the information acquisition technology is Success-Failure. Figure 1.8.1a illustrates an

example in which the optimal transfer scheme is non-monotone in output. The figure depicts

the output function and the transfer scheme that implements the highest possible level of

effort, conditional on the decision-rule being ex-post efficient (given Uo). Note that, since

!E < 1, it must be the case that t(y(B,OB)) > t(y(A,6A)), while y(A,OA) > y(B,OB).

The same would be true for any simple contract in which the limited-liability constraint is

binding, and where the slope of T(x) changes at a point in [Ix, XE]. Thus, it is true for the

optimal contract.

y(A,OA) Optimal menu contract
y(B,OB)-4

-- ,% Optimal bonus contract

y(B,OA) - ~'b - - - -. - - - - - - - - - - - - - -
y -By(B,8B

y(A,6y(AOB

0 a t( BA) 0
0 Xp XE 1 0 Xp XE

(a) Non-monotone transfer scheme (b) Bonus contracts

Figure 1.8.1: Output-contingent contracts

This result contrasts with the conclusion in Diamond (1998) that, as output becomes

59 By Proposition 1.6.2, the induced level of effort here can only be increased by letting T(x) change its
slope at a point closer to xp.
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more important relative to the expert's cost of effort, the expert's optimal compensation

converges to a transfer-scheme linear in output.6 0 This conclusion relies on two especial

features of Diamond (1998)'s model. First, there, transfer schemes implement the ex-post

efficient decision rule if and only if they are linear in output. In the example above, the

contract that maximizes the implemented level of effort conditional on the decision rule

being ex-post efficient is actually non-monotone. The difference is that, in Diamond (1998),

the output function has y(AOB) = y(B,OA) = 0. Second, in Diamond (1998)'s model, as

output becomes more important relative to the cost of effort, it is optimal for the distortions

to decision-making to tend to zero (this implies that linear contracts are asymptotically

optimal). This feature does not seem general. It is true that, as output becomes more

important, the marginal cost of distorting decision-making increases. However, the marginal

benefit of acquiring more information also becomes larger, making the net effect over optimal

distortions ambiguous in general.

Figure 1.8.1b, illustrates what would happen in this example if the expert was rewarded

with a contract with two levels of compensation (a bonus contract). 6 1 In order to induce

effort, the bonus would have to be paid if and only if output is greater than or equal to

y(B, OB). Moreover, to maximize effort (given Uo), the baseline wage would have to be zero.

Note that any bonus contract necessarily induces the expert to take decision A if and only if

his posterior is smaller than 1. Thus, A is taken too frequently. Furthermore, the non-linear

contract in Figure 1.8.1a induces ex-post efficient decision-making and, by Proposition 1.6.2,

implements a higher level of effort than the optimal bonus contract. That is, in this example,

bonus contracts distort decision-making without fostering information acquisition.

1.9 Concluding remarks

This paper has analyzed the problem of motivating an expert to help a principal take a

decision. In order to induce the expert to exert costly and non-verifiable effort to acquire

60 Diamond (1998) analyzes a Principal-Expert model in which contracts may specify a single output-

contingent transfer scheme.
61 These contracts can be optimal in the standard moral hazard framework.
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information, a contract must create a choice problem for him for which the information

is relevant. Contracts that specify menus of transfer schemes are valuable because they

enable the parties to separate the expert's choice problem from the way the principal's

decision is taken. Indeed, when menus are available and all decisions reveal the same amount

of information about the state ex-post, optimal contracts always induce efficient decision-

making conditional on the information available. However, in environments where different

decisions reveal different amounts of information about the state, it may be optimal to distort

decision-making even when separation is possible. Fostering information acquisition requires

distorting decision rules in favor of decisions that reveal more information. Intuitively, when a

decision that is not revealing is taken, the expert's payment cannot depend on the realization

of the state, limiting his incentives to acquire information.

When contracts may only specify a single transfer scheme, the expert's choice problem

after acquiring information is inevitably linked to the way the principal's decision is taken;

different choices at the interim stage can only induce different state-contingent payoffs if

they lead to different decisions. This fact introduces an additional motive to distort decision-

making. As a result, in this case it is optimal to implement the ex-post efficient decision rule

only in exceptional circumstances. Moreover, the intuition for menus may be overturned:

without menus, it may be optimal to distort decision-making in favor of decisions that reveal

less information about the state, rather than more.

We have shown that, under reasonable conditions, optimal contracts have at most three

elements that induce distinct state-contingent payoffs for the expert (with and without

transfer-scheme menus). Moreover, we have illustrated how, in order to separate the ex-

pert's incentives for effort from the principal's decision, menu contracts must include choices

that induce different transfer schemes but lead to the same decision. This is often valu-

able, but has the counterintuitive implication that optimal menu contracts typically include

choices in which the expert induces a decision and is simultaneously rewarded when that

decision leads to low output.

These results are relevant for the study of optimal incentives for agents whose contribu-
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tion to output comes, to a large extent, through their influence on decision-making (CEOs,

consultants or portfolio managers, for example). The present analysis suggests that the stan-

dard moral hazard model may not provide a good description for such incentive problems.

In particular, menu contracts, which are qualitatively different from the contracts considered

in the standard model, are able to improve performance. A priori, there is no reason to rule

out menus. Understanding to what extent menus are actually used in practice or why they

might not be used is an interesting avenue for future research.

The main insights derived in this paper are quite general. The heart of the analysis is the

characterization of implementable outcomes provided by Theorem 1.3.1 (and its extension

to the case without menus provided by Proposition 1.5.1). In Zermefno (2011b), I extend this

result to the case where there is a finite number of states of nature and where the expert's

effort may affect output directly in addition to generating information.

The result that simple menu contracts are optimal is more delicate. We have only pro-

vided sufficient conditions under which the result is true, and illustrated why the conditions

are sufficient but not necessary. Characterizing optimal menu contracts without Assumption

1.4.1 or in the case where the state of nature is not binary could be interesting. Such result

would help us understand how the number of alternatives that a menu needs to provide is

related to the number of states of nature in the environment.

1.10 Appendix

1.10.1 Proof of Theorem 1.3.1

We begin with necessity. Suppose that an outcome (eo, d(x), T) is implementable with

some contract, {(tr(z),dr)}rCR. For all x 0 E [0,1], let T(xo) = maxrCREx0[tr(z(dr,O))],

and r*(xo) E arg maxER Exo[tr(z(dr, 0))]. Then T(x) satisfies conditions (1)-(6) of Theorem

1.3.1. Conditions (1)-(2) must be satisfied by definition 1.2.3. Condition (3) is satisfied be-

cause T(x) is the upper envelope of linear functions of x, so it must be convex and continuos.
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Moreover, by the envelope theorem (see Milgrom and Segal (2002)), we must have:

T(xo) = T(0) + j A(x)dx,

where A(x) - tr*(x)(z(dr*(x), 62)) - tr(X)(z(d-(x), 01)). By the convexity of T(x), A(x) is

non-decreasing. Note that condition (6) follows by the convexity of T(x) and because, if

d(xo) is unrevealing, A(xo) = 0, and T(x) must reach its minimum at zo.

Finally, conditions (4) and (5) are satisfied because

T(0)+T'(0) = tr-(O)(Z(d,(O), 01 ))+A(0+) > tr-(O)(z(dr,(o), 01 ))+A(0) = tr(O)(z(dr(O), 02)) > 0,

T(1)-T'(1) = tr*(1)(z(dr*(1), 62))- A (1 ) > tr*(1)(z(d,-(1), 62))- A (1) = tr-(1) (z(dr*-(1), 01)) > 0.62

Now we prove sufficiency. Suppose that a function T(x) satisfies conditions (1)-(6) on

Theorem 1.3.1 given the outcome, (eo, d(x), T). For each xo E [0, 1], let A(xo) be a subderiva-

tive of T(x) at xo with the following properties: A(xo) = 0 if T(x) reaches its minimum at

X0 E [0, 1]; if T(x) does not reach its minimum at x = 0. A(0) = lim,-o+ A(x); if T(x) does

not reach its minimum at x = 1, A(1) = lin, A(x). 6 3 For each xo E [0, 1], define:

tXO(z(d(xo), 01)) = T(xo) - xoA(xo),

tX0(z(d(xo), 02)) = T(xo) + (1 - xo)A(xo),

and tx.0 (z) = 0 for any other z. Since T(x) satisfies condition (6), these transfers are well

defired. The contract {(tx(z), d(x))} c[o,i implements (eo, d(x), T). First note that limited

liability is satisfied. We have,

tx 0(z(d(xo), 01)) = T(xo) - £oA(xo) > T(1) - T'(1) > 0, V xo C [0, 1).

62 The expressions A(O+) and A(1-) denote the limits of A(x) as x approaches 0 and 1 respectively.

63 The values A(0) and A(1) must be bounded because T(x) satisfies conditions (4) and (5).

49



tXO (z(d(xo), 0 2 ))= T(xo) + (1 - xo)A(xo) > T(0) + T'(0) > 0, V xo E (0, 1].

The first inequalities follow because the expressions T(x) - xA(x) and T(x) + (1 - x)A(x)

are non-increasing and non-decreasing in x respectively.6 4 The second inequalities follow

from conditions (4)-(5) in Theorem 1.3.1. When T(x) does not reach its minimum at 0 or

1, all the inequalities still hold for xO E {0, 1}. If T(x) reaches its minimum at I E {0, 1},

te(z(d(s), 01)) = t_ (z(d(s-), 62 )) > 0 by the inequalities above.

Finally, note that the expert's best response after observing xO is to report xO, so condition

(3) of definition 1.2.3 is satified. If the expert reported x' instead, his payment would be

T(x') - (1 - xo)x'A(x') + xo(1 - x') A(x') = T(x') + (xo - x')A (x') < T(xo),

which is what he would get by reporting xO. The inequality follows because A(x') is a

subderivative of T(x) at x'. Thus, for each xO C [0, 1], T(xo) = maxxE[o,1l] EX0 [tx(z(d(x), 0))],

so conditions (1) and (2) of definition 1.2.3 are implied by conditions (1)-(2) of Theorem

1.3.1.

1.10.2 Weak duality

Theorem 1.4.1 relies extensively on Lemma 1.10.1, which is stated and proved here. This

lemma is an adaptation of the standard weak duality result used in linear programming

theory.

Given the real-valued functions a(x), k(e), I(x), and b(x; e), defined over x C [0, 1], and

e E [0, 1], consider the following primal problem and its corresponding dual:

64 ' > xo- Then T(x') - x'A(x') - (T(xo) - xoA(xo)) = f7 A(x)dx - x'A(x') + xoA(xo) <

(x' - xo)A(x') - x'A(x') + £oA(xo) = Xo(A(Xo) - A(x')) < 0, where the inequalities follow because, by

condition (3) of Theorem 1.3.1, A(x) must be non-decreasing. Similarly, take x' > £O. Then T(x') + (1 -

x')A(x')- T(o)- (1-xo)A(xo) = JA A(x)dx+(1 -x')A(x')-(1-xo)A(xo) > (1-x')(A(x')-A(xo)) > 0.
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Program 1.10.1 Primal

min a(z)dA(x),

subject to:

1. A(x) is non-decreasing and right-continuous.

2. For all e E [0, 1], a(-), l(.) and b(.; e) are integrable with respect to the Lebesgue-Stieltjes

measure and o-algebra derived form A(x).

3. f b(x; e)dA(z) > k(e), for all e E [0, 1].

4. fo I(z)d A(x) = K.

Program 1.10.2 Dual

max p K + k(e)dA(e),
A (e), p

subject to:

1. A(e) is non-decreasing and right-continuous.

2. For all x E [0, 1], k(.) and b(x; -) are integrable with respect to the Lebesgue-Stieltjes

measure and o-algebra derived from A(e).

3. pl(x) + f b(x; e)dA(e) < a(x), for all x E [0, 1].

Lemma 1.10.1. Let A(x), and (A(e), p) be feasible in Programs 1.10.1 and 1.10.2 respec-

tively, and such that f| (f b(x; e)dA(e)) dA(x) = y (| lb(x;e)dA(x)) dA(e). Then,

Sa(x)dA() > pK + j k(e)dA(e).
0 0

Proof. Suppose that A(x), and (A(e), p) satisfy all the conditions in the lemma. Then,

1 a(x)dA(x) > 1 () +

+ b( ;

I b(x; e)dA(e) dA(x) = p,
Jo 1 /e

e)dA(x)) dA(e) > pK +

01
l(x)dA(x) +

j k(e)dA(e),

51



where the first inequality follows because (A(q).,p) satisfy condition (3) in Program 1.10.2.

The second inequality comes from changing the order of integration, which can be done by

assumption. The third inequality follows because A(x) satisfies conditions (3) and (4) in

Program 1.10.1.1.

If b(x; e) is bounded and measurable (with respect to the product space) for any feasible

A(x) and A(e), then, by Fubini's theorem, the order-of-integration condition always holds.

In this case, Lemma 1.10.1 implies that, if A*(x) and (A*(e),t*) are feasible and attain

the same value in their respective programs, they are optimal. The proof of Theorem 1.4.1

exploits this fact.

1.10.3 Proof of Theorem 1.4.1

We begin with two preliminary observations that will be used extensively:

Observation 1: Define Ie (x; eo) = lim,_0 I(x oi(e). Then, under Assumption

1.4.1, if the constraint set of Program 1.4.1 is non-empty, there must exist x0 ( (z, z) such

that I, (xo; co) > 0.

Note that the second constraint in Program 1.4.1 (as expressed in Program 1.4.2) can be

rewritten as:

2a. infe<ce fo I o IedA(x) > 1;

2b. supeyeo fi I"(x;eo)-I(x;e)dA(x) < 1.

Under Assumption 1.4.1, for each x0 E [0, 1], the expression £(xo;Co)-I(xo;C) is non-negative

and non-increasing in e. Thus,

1 I(x; eo) - I(X; e) dA(x)inf dajz) =e<eo o-o e

. 1 I(x; eo) - I(X; e) dA(x)
e-+e_ o o0 eO - e

If we had Ie (xo; eo) = 0, for all xo ( (x, z), then it would hold that

(x; eo) - I(x; e) dA(X) =
eo - e

lim (x;O)dA(x) = 0
o eo - e
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where the equality follows by Dini's theorem (a decreasing sequence of continuous functions

defined over a compact set converging pointwise to a continuous function converges uni-

formly). Since this would hold for any non-decreasing A(x), the constraint set of Program

1.4.1 would be empty.

Observation 2: Without loss of generality, for the purposes of this proof, we can change

the notion of integration from Riemann-Stieltjes to Lebesgue-Stieltjes. This is necessary

because we will use Lebesgue's dominated convergence theorem.

Program 1.4.2 is expressed in terms of Riemann-Stieltjes integrals, which are always

well defined because A(x) is required to be non-decreasing and the integrand functions

are continuous. The notion of Lebesgue-Stieltjes integration requires A(x) to be right-

continuous. However, since this function is endogenous, it need not be right-continuous. To

deal with this issue we will actually solve a modified version of Program 1.4.2. There are

three differences. First, the function A(x) is now defined over the reals and is required to be

right-continuous. Second, the closed interval in constraint (5) of Program 1.4.2 is replaced

by the interval [x, 7). Third, the notion of integration is now Lebesgue-Stieltjes integration.

The modified program is equivalent to Program 1.4.2 in the sense that a value is attainable

in the modified program if and only if it is also attainable in Program 1.4.2. To see why take

A(x) feasible in Program 1.4.2. Let A(xo) = A(O) for zo < 0, A(xo) = A(1) for xo > 1, and

A(xo) = lim x+ A(x) for xo E [0,1]. The function A(x) is right-continuous. Moreover, for

any continuous h(x), RS f h(x)dA(x) = LS f h(x)dA(x). 65 Thus, A(x) is feasible in the

modified program and attains the original value. Similarly, if A(x) is feasible in the modified

program, let A(0) = linio a(x), A(z) = 0, and A(xo) = (xo) for any other o e [0, 1].

Then, for any continuous h(x), RS fcjI h(x)dA(x) = LS f h(x)dA(x), so A(x) is feasible in

Program 1.4.2, and attains the same value. 66

Body of the proof: There are four cases that need to be considered when solving

65 The notation RS f denotes Riemann-Stieltjes integrals, and CS f denotes Lebesgue-Stieltjes integrals.

66 If , = 2 the necessary modification to Program 1.4.2 becomes more involved. The difference is that now

we must choose two non-decreasing and right-continuous functions, A(x), and A(x) defined over the reals. We

require that A(xo) = 0 for all xo < T, and A(xo) = 0 for all x0 > x. Finally, any integral, RS f h(x)A(x),

in Program 1.4.2 is replaced by CS fox h(x)dA(x) + ES f h(x)dA(x). This modified program is equivalent
to Program 1.4.2 when x
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Program 1.4.1: 1) the interval [xz] is empty; 2) x=0; 3) T = 1; 4) 0 < x_ < < 1. As

argued in section 1.4, in the first case, Program 1.4.1 can be rewritten as Program 1.4.3,

and in the fourth case it can be rewritten as Program 1.4.4. The second and third cases are

analogous to the first one in the sense that Program 1.4.1 can be rewritten in a very similar

way to Program 1.4.3. Thus, the same arguments used for the first case still apply to the

second and third, which will not be discussed here.

The proof proceeds in three steps. First, we show that in Programs 1.4.3 and 1.4.4 there

exists an optimal contract within the class of contracts that are feasible and simple. Second,

for each case we compute the optimal simple contract. Third, using Lemma 1.10.1, we show

that the derived simple contracts are optimal (within the class of all feasible contracts) in

their respective programs.

Step 1: Programs 1.10.3 and 1.10.4 below summarize the problem when only simlpe

contract are allowed. In this case, the function A(x) may only increase once in Program

1.4.3, and twice in Program 1.4.4 (once in each side of [x, ]). Thus, Program 1.4.3 becomes

a problem with two variables: the location of the change (say -), and its size (say 6); and

Program 1.4.4 becomes a problem with four variables: the locations of the changes (say m

and Fn), and their corresponding sizes (say _ and 6).

Program 1.10.3 Program 1.4.3 when only simple contracts are allowed

min 6[I(i; eo) + x(1 -

subject to:

1. c[~z o) - I(:z; e)] ;> eo - e for all e -f eo.

Note that the objective function in Programs 1.10.3 and 1.10.4 are continuous in all

the variables. Moreover, the constraint sets are closed. Thus, in order to show that a

solution exists, it is enough to prove that 6, 6 and S can be bounded from above (this would

guarantee that the constraint sets are compact). In order to find an upper bound for 6 in

Program 1.10.3, take any £O such that I- (xO; eo) > 0, and let 6o = (I- (xo; co)) . By

Assumption 1.4.1, the pair (zo, o) is feasible, and is attains some positive value V. Note
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Program 1.10.4 Program 1.4.4 when only simple contracts are allowed

min I(_m; e) + S[I(m; eo) + xp],
mC[o,],fnE[z,1],6>o,6>o

subject to:

1. 6[I(_m; eo) - I(m; e)] + 3[I(7,; eo) - I(ffi; e)] > eo - e for all e -f eo.

2. (1 - m)6 = ffi.

that minXC[o,1]{I(x; e) + xz(1 - x)} > 0. Thus, if 6 > V (minxc[o,1{I(x; e) + xz(1 - z)}) ,

it will attain a strictly higher value than V, and cannot be optimal. Upper bounds for 3

and 3 in Program 1.10.4 can be found in a similar way.

Step 2: We start with the solution to Program 1.10.3. Fix z and consider the optimal

choice of 6. A necessary condition for feasibility is that 61e- (; eo) > 1. Moreover, by

Assumption 1.4.1, if this inequality holds with equality, then (3, ±) is feasible. Since the

objective is non-negative, the inequality will optimally hold with equality. Thus, substituting

3 in the reciprocal of the objective, our problem becomes:

Ie (Z; eo)
max (1.10.1)

-RE[0,1] I ; eo) + Xp(1 - 11)01

We know that a solution exists (even though Ie (z; eo) cannot be guaranteed to be continuous

in -2) because we showed that there exists an optimal contract within the class of simple

contracts.

Similarly, we can find the solution to Program 1.10.4. Using the same arguments as be-

fore, we can see that, in this case, given the cutoffs m and Fn, having A satisfy _[frle- (M; eo)+

(1 - im)Ie (77n; eo)] = fi is optimal and feasible. Substituting 3 (and the implied 3) in the

reciprocal of the objective, our problem becomes:

mI'e- (Z_; Co) + (1 - m)Ie- (rh; eo)
max (1.10.2)

me[ox],mG[x,1] mI(mr; co) + (1 - _m)(I(r; eo) + xP)

Again, we know that a solution exists because we proved that there exists an optimal contract

within the class of simple contracts.
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Step 3: Let ±* maximize equation 1.10.1, and *= (le (*; eo))- . Similarly, let

(M ?i* ) maximize equation 1.10.2, and define * = * (*)+ ) _ (m*;eo) and *

* er-n *;eo). We will show that the simple contracts characterized by these

values are optimal in Programs 1.4.3 and 1.4.4 respectively. To do so we will rely essentially

on Lemma 1.10.1.

We begin by rewriting Programs 1.4.3 and 1.4.4 (the modified versions) in terms of our

canonical primal program (Program 1.10.1). Define b(x; e) - I(x;eo)-I(x;e) for all e < eo,eo- e

b(x; e) - _o(xe for all e > eo, and b(x; eo) -Te- (x; eo). Note that, by Assumption
eo C

1.4.1, |b(x; el < maxxc[o,1lb(x; 0), so b(x; e) is bounded. Moreover, b(x; e) is measurable with

respect to the product space generated by any feasible A(x) and A(e). 6 7 This implies that

the order-of-integration condition in Lemma 1.10.1 is satisfied for any feasible A(x) and A(e).

Note that, for any e f eo, and A(x) non-decreasing and right-continuous, b(x; e) is inte-

grable with respect to the Lebesgue-Stieltjes measure derived from A(x) (b(x; e) is continuous

in x). Then, by Assumption 1.4.1 and Lebesgue's dominated convergence theorem, b(x; eCo)

is also integrable and

1I

b(x; eo)dA(x) = lim b(x; e)dA(x) = inf b(x; e)dA(x).
o e-eo ee 0 Jo

Therefore, constraint (2) in Programs 1.4.3 and 1.4.4 implies that fo b(x; eo)dA(x) > 1, and

so it can be rewritten as:

j b(x; c)dA(x) > k(e), V c e [0, 1],

where k(e) =1 for e < eo, and k(e) = -1 for e > eo. Once constraint (2) is written in

67 To see this take any open subset of R (say 0). Then

b- 1(0) = (b1(O) {[, 1] x {e E [0, 11 | e # eo}) U (b-'( (O , 1] x {eo})

The first term is in the product --algebra because, since b(x; e) is continuous at any point with e j eo, it is

an open set. Note also that b(x; e') is measurable, as a function of x, for all e' # eo (it is continuous). Thus,

since b(x; eo) -- infe<eo{b(x; e)}, it is also measurable as a function of x. Therefore, the second term is also

in the product --algebra (it is a measurable rectangle).
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this way, Programs 1.4.3 and 1.4.4 have the exact same form as Program 1.10.1.68 Programs

1.10.5 and 1.10.6 are their respective duals.

Program 1.10.5 Dual for program 1.4.3

max k(e)dA(e),

subject to:

1. A(e) is non-decreasing and right-continuous.

2. For all x E [0, 1], k(.) and b(x; -) are integrable with respect to the Lebesgue-Stieltjes

measure and o-algebra derived form A(e).

3. fo b(x; e)dA(e) < I(x; e) + xp(1 - x), for all x E [0, 1].

Program 1.10.6 Dual for program 1.4.4

max k(e)dA(e),
).(e)qJI JO

subject to:

1. A(e) is non-decreasing and right-continuous.

2. For all x E [0, 1], k(.) and b(x; -) are integrable with respect to the Lebesgue-Stieltjes

measure and o-algebra derived form A(e).

3a. (1 - x)py + f0 b(x; e)dA (e) I(x; eco), for all x E [0, X].

3b. -xp + fl b(x; e)dA(e) I(x; eo) + xp, for all x E [z, 1].

In order to show that the simple contracts above are optimal, we must exhibit multipliers

that are feasible in their respective programs and that attain the same value as the optimal

simple contracts (the reciprocal of expressions 1.10.1 and 1.10.2). Note that the functions

k(.) and b(x; -) are left-continuous for any x E [0, 1]. Therefore, for any non-decreasing and

right-continuous A(e), they are Riemann-Stieltjes integrable, and thus Lebesgue-Stieltjes

integrable.

68 The third constraint in Program 1.4.4 can be rewritten as fo 1(x)dA(x) = 0, where 1(x) = 1 - x for
x < x, and 1(x) = -x otherwise.
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We begin by finding the multiplier for Program 1.10.5.

and A*(e) =)otherwise. Clearly, A*(e) attains the same value as the simple

contract characterized by (1*, 5*) (see equation (1.10.1)). To see that it is feasible, note that

constraint (3) of Program 1.10.5 becomes b(z; eo) < [I(x; eo) + xp(1 - x)] , xe) for

all x E [0, 1]. It holds because b(x; eco) =l e- (x; eo), and I(x; co) + xz(1 X) > 0.

Now we proceed to finding suitable multiplier for Program 1.10.6. Let

0

f*I(m*;eo)+(1-m*)(I(ii*;eo)+xp)
f-re-(m*;eo)+(1-m*)Ie- (i*;eo)

if e < eo

ife y e

and
_ I(_n*; eo)b(n*; eo) - b(m*; eo) [I(fim*; eo) + 34]

- -*b(m*; eo) + (1 - m*)b(fm*; eo)

Again, it is straight forward to verify that these multipliers attain the same value as the

simple contract above (see equation 1.10.2). To check feasibility take any x E [.T, 1]. Then,

-x* + b~x; eo) f*I(m*; eo) + (1 - n*)(I(fj*; eo) + xp) <I(x; eO) + x,
fn*b(m*; co) + (1 - m*)b(Ft*; eco)

holds if and only if:

- x[I(_m*; eo)b(ffi*; eo) - b(mr*; eo)(I( *; eo) + xp)] + b(x; eo)[?i*I(rm*; eo) +

+ (1 m*)(I(f*; co) + x)] [I(x; eo) + xp][fi*b(_mc*;eo) + (1 - m*)b(f*; eo)]

Rearranging and multiplying by (1 - m*) on each side we obtain

(1 - _m*)[I(fn*; eo) + xp] [xb(_m*; co) + (1 - _m*)b(x; eo)] + (1 - m*)b(x; eo)m*I(m*; eo) <

[zI(_m*; eo) + (1 - m*)(I(x; eo) + xp)]b(n*; eo)(1 - _m*) + [I(x; eo) + xp]m*b(_m*; eo)(1 - m*).
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Adding xfe*I(m*; eo)b(m*; eco) on each side,

[(1 - _n*)(I(in*; eo) + x,) + f*I(rm*; eo)][xb(m*; eco) + (1 - m*)b(x; eo)] <

[xI(m*; eo) + (1 - m*)(I(; eo) + x)][b(fm-*; eo)(1 - _m*) + f*b(rm*; eo)],

which holds by equation 1.10.2.

Similarly, take any x E- [0, x]. Then

m*I(n*; eo) + (1 -
(1 - x)p* + b(x; eo) m b(*; eo) + (1

n*) (I(iy-*; eo) + z,)
- m*)b(fn-*; eo)

< I(x; eo)

holds if and only if:

b(m*; eo)(I(t*; eo) + xp)] + b(x; co)[m*I(rm*; co) +

+ (1 - m*)(I(?7t*; eo) + xz)] < f(x; eo) [in*b(m*; eo) + (1 - m*)b(F*; eo)].

Rearranging and multiplying by f* on each side we obtain:

m*I(m*; eo)[(1 - x)b(m*) + fn*b(x; eo)] + i*(1 - m*)b(x; eo)(I(m*; eo) + x) <

f*b(m*; eo)[(1 - x)(I(m*; eo) + xz) + M*I(x; eo)] + f*(1 - _n*)I(; eo)b(Fn*; eo).

Adding (1 - x)(1 - m*)(I(m*; eo) + xp)b(ffi*; eo) on each side,

[m*I(_m*; co) + (1 - m*)(I(m*; co) + xz)][(1 - x)b(m*; co) + i*b(x; eo)] <

[(1 - _m*)b(fi*; eo) + fi*b(m*; eo)][(1 - x) (I(ffi*; eo) + xz) + ff*I(x; eo)],
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which holds by equation 1.10.2.

1.10.4 Binary-signal information acquisition technologies

Binary-signal information acquisition technologies generate experiments with signals that

have two possible realizations. Thus, given a level of effort e, the expert observes the poste-

riors xh(e) -- x,+h(e) with probability :(e), and xi(e) = x,- 1(e) with probability 1 - e),

where 2(e)h(e)-(1-:i(e))(e) - 0. The functions h : [0,11 -+ [0, i-x,], and l : [0, 1] -* [0,x,]

are assumed to be non-decreasing and continuous. It is straight-forward to verify that this

class of technologies does not satisfy Assumption 1.4.1. However, the following proposition

implies that simple contracts are still optimal.

Proposition 1.10.1. With binary-signal information acquisition technologies, if the outcome

(eo, d(x), T7) is implementable, then it is implementable with a simple contract.

Proof. Suppose that T(z) implements (eo, d(x), T). If d(x) prescribes unrevealing decisions,

let [x, j] be the interval over which T(x) must be minimized, and [M, m] the interval over

which it is actually minimized ([x, z] C [m, fa]). Figure 1.10.1 illustrates how we can build

a simple contract, Ts(x), that implements the same outcome.

Tx)

0
0 x (eo) m x m x,(eo) 1

Figure 1.10.1: Proposition 1.10.1

The function Ts(x) is the upper envelope of three lines. The first two are tangent lines

to T(x) at x1 (eo) and Xh(eo). The third one is the lowest flat line that guarantees that Ts(x)
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is flat in the interval [m, ?n]. Note that, given the outcome, (eo, d(x), T), Ts(x) satisfies

conditions (2)-(6) in Theorem 1.3.1. Condition (1) is also satisfied because, by the convexity

of T(x), Ts(x) < T(x) for all x E [0, 1], with equality in xi(eo) and xh(eo). Thus, for all

e $ eo,

IEF[T(I)1 - EF[T (x)] - c-0 > EF0IT§) ETx1-e

1.10.5 Proof of Proposition 1.5.1

The argument is analogous to that of Theorem 1.3.1, so Figures 1.3.1 and 1.3.2 are helpful to

provide intuition. We start with necessity. Suppose an outcome (eo, d(x), T) is implementable

with a contract {(t(z),dr)},ER. Let T(x) -- maXrEREx[t(z(dr,0))]. Theorem 1.3.1 implies

that conditions (1)-(6) must hold. Condition (7) must be satisfied because, if d(xo) = d(z'),

then t(z(d(zo), Qi)) = t(z(d(x'), Oi)) for i = 1, 2. Thus, for any a E [0, 1], we have

T(axo + (1 - a.)x') > [1 - (azxo + (1 - a)x')]t(z(d(zo), 01)) + [axo + (1 - a)x']t(z(d(xo), 02))

= [(1 - a)(1 - x') + a(1 - xo)]t(z(d(zo), 01)) + [axo + (1 - a)x']t(z(d(xo)02 ))

- aT(xo) + (1 - a)T(z'),

where the last line follows because t(z(d(xo), 02)) = t(z(d(x'), 62)) for i = 1, 2. The reverse

inequality follows from the convexity of T(z).

To show that conditions (1) to (7) are sufficient, take T(x) that satisfies them given the

outcome (eo, d(x), T). Transfer schemes can be constructed as in Figure 1.3.2. For each

xo E [0, 1], let A(xo) be a subderivative of T(x) at £o. If d(xo) = d(x'), pick A(xo)

A(X') = T(xo-(x), which are subderivatives of T(x) at zo and x' by condition (7). Also, let

61



A(O) = inf >o A(x), and A(1) = sup i A(x). Then, for each xO E [0, 11, define

t(z(d(zo), 01)) = T(xo) - xoZ(xo),

and

t(z(d(xo),0 2)) = T(xo) + (1 - xo)A(zo).

Note that, if d(xo) = d(z'),

t(z(d(xo), 61)) = T(xo) - xoA(xo) = T(x') + (xo - x')A(xo) - xoA(xo) = T(x') - x'A(x')

= t(z(d(x'), 01)),

where the second equality follows from condition (7). Similarly, t(z(d(xo), 62))= t(z(d(x'), 02)).

Moreover, by Assumption 1.5.1, if d(xo) # d(x'), z(d(xo),0) # z(d(x'),0') for any 6,0'.

Therefore, these transfers are well defined (for each zo, only one value is assigned to t(zo)).

The argument to show that the the contract {(t(z), d(x))} [o,1] built in this way imple-

ments the outcome (eo, d(x), T) is analogous to the one used in Theorem 1.3.1.

1.10.6 Proof of Lemma 1.6.1

Note that inequalities 1.6.1 and 1.6.2 are satisfied if and only if:

1. If d(xo) is revealing for all xo E [0, 1],

max {(U o + w + eo)Ic- (x; eo) - [I(x; eo) + xz(1 - x)]} > 0.
xEXj(d(x))

(1.10.3)
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2. If d(xo) is unrevealing for some xo E [0, 11,

max {(Uo + + eo)
mEX3 (d(x)), nEXj(d(x))

[fie- (m; eo) + (1 - m)Ie- (mn; eo)]

-[fiI(_m; eo) + (1 - m) (I(in; eo) + xz,)]} > 0. (1.10.4)

To see why suppose d(xo) is always revealing. If inequality 1.6.1 is satisfied, then there exists

z* E Xj(d(x)) such that

- I(X*;

le-

eo)
(x*; eo)
+ z,(1

which hold if and only if

(Uo + w + eo)Ie- (* co) - [I(z*; co) + (1 x*)] > 0.

Thus, inequality 1.10.3 is also satisfied.

Similarly, if inequality 1.10.3 is satisfied, there exists x* E Xj(d(x)) such that:

(Uo + W + eo)Ie- (x*; eo) - [T(x*; eo) + x,(1 - x*)] > 0,

which holds if and only if

Uo + w + eo >(I(x*;
Ie (*; eo)e) X * i (1

eo) + X'(1 -

Thus, inequality 1.6.1 is also satisfied.

The case where d(x) prescribes unrevealing decisions is analogous.

Now, under Assumption 1.4.1, for any x E Xi(d(x)), and (M, fi) E X (d(x)) x Xi(d(x)),

the expressions

(Uo + W + eo)Ie- (X; eo) - [I(x; eo) + X'(1 - x)],
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and

(Uo + w + eo)[fule- (m; eo) + (1 - m)I- (i; eo)] - [i7iI(m; eo) + (1 - _n)(I(Tf; eo) + x,)]

are decreasing in eo. To see why take eo > e'. Then,

(U + W + eo)Ie- (X; eo) - [I(X; eo) + xz(1 - X)] - [(UO + w + e')Ie- (z; e') - [I(z; e') + z,(1 - z)]]

< eoI- (X; eo) - e'Ie- (X; e') - (I(z; eo) - I(x; e'))

- (eo - e')- (zv; eo) + C'(Ie- (X; eo) - Ie (X; e')) (I(x; Co) - I(z; e'))

Se'(Ie- (X; eo) - le- (X; e')) < 0,

where the next-to-last inequality follows because, by Assumption 1.4.1,

(eo - e')Ie- (x; eo) - (T(z; eo)

The other case is analogous.

1.10.7 Proof of Proposition 1.6.2

Success-Failure information acquisition technologies have

j Il[,,] (x)dz + P(eo) [G(x) - I[xp,,1](x)]dz,

and Ie (co; eo) = P'(eo) fOx[G(x) - 1If[x,l)(x)]dx. Note that both expressions in the propo-

sition (as functions of x e [0, 1], and (_m, 77n) E [0, 1] x [,, 1] respectively) are continuous.

64

I(x; e')) < 0.

I(zo; eo) --



Moreover, their left partial derivatives are well defined, since

Ix- ('o; eo) lim I(xo; eo) -I(; £0) E[1I,(x-) + P(eo)(G(xz) - I (
x-+xo XO - X

and

Te-x- (o; Co) lim Ie (XO; eo) lI (X; £0) P'(eo)(G(xO ) - Ig,,x, (XO )),
x xo Xo -- X

where, for any function h(x), h(xz) denotes limx~x h(x).

In order to complete the proof, we will see that the left-derivative of the first expression

with respect to x is positive for all xo < xp, and negative for all zO > xp. Similarly, we will

see that, fixing any _m E [0, x], the left-derivative of the second expression with respect to fn

is positive if sio < XP, and negative if FnO > x,; and, fixing any Fn E [z, 1], the left-derivatve

of the second expression with respect to m is positive if mr < xp, and negative if MO > z,.

To simplify the algebra, note that 1e- (o; eo) - P ](I(xo; eo) - f, ]I,] (x)dx). We

start with the first expression. The numerator of the left-derivative with respect to x at £o

is proportional to:

P(eo)[G(xz ) - I[gx,,] (x )][I(xo; eo) + xz(1 - co)]

-[P(eo)G(x- ) + (1 - P(Co))]Ilil (X-) - zI] I(xo; £0) - ]I ,] (x)dxj (1.10.5)

If zo < XP, expression 1.10.5 becomes:

P(eo)G(v )x,(1 - £o) + xpI(zo; eo) > 0.

If £o > xP, expression 1.10.5 becomes:

P(eo)(G(x-) - 1)zxo(1 - x.) - (1 - cv)(I(xo; £0) - z0 + X) < 0

where the inequality follows because I(zo; eo) - zo + p ;> 1(1; eo) - 1 + z, = 0.
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Now for the second expression. The numerator of the left partial derivative with respect

to f-n at (MO, -no) is proportional to:

[I(mnO; Co) - I[x,1()dx + (1 - mo)P(eo)(G(f-) - [x,,1 (mn-))

[?nol(mo; eo) + (1 - mo)(X(7-no; co) + xp)]

[I(mo; eo) + (1 - _mo)[P(eo)G(f--) + (1 - P(

Mo (i(MO; eo) - IOM (I(i-no; eo) -
S (1.6x)dx)]

(1.10.6)

If m-o < x, expression 1.10.6 becomes:

[I(Mo; eo) + (1 - m )P(eo)G(r-n-)] (1 - m )x, > 0.
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If no > xP, expression 1.10.6 becomes:

EI(mo; eo) - 0
I[xz,, 1](x)dz + (1 - mo )P(eo)(G(--0)

[inoI(mo; eo) + (1 - MeO)(I(mno; eo) + x,)]

-[I(mo; eo) + (1 - no)[P(eo)(G(Fn-) - 1) + 1]]

j o(I(_EL; eo) - li[X,11(x)dx) + (1 - mO)

- n 1 fo I[[P,,1](x) dz=(1 - _mo)P(eo)(G(mf-)

(I(f-o; eo) - Fio

+ Hfto(1 - mo)

-(1 - Tn)(I(no; eo) - fo + x,) [Ko71I[1,1](x)dx + (1- mo)]

where the last inequality follows because I(fn-o; eo) - fio + x ;> 1(1; eo)

< 0,

1 + X, = 0.

Finally, the numerator of the left partial derivative with respect to _m at (mno, fio) is
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proportional to:

[?noP(6o) IE[X,,1](x)dx)[G(_mr) -l [x,,11(_mO)] - (I(mo; eo) -

[ffoI(_oT( ; eo) + (1 - mo)(I(mio; eo) + x.)]

-[no [P(eo)G(m-) + (1- P(eo)) I[2,1(_m)] - (IT(ino; eo) + xp)]

j m To(I(_mO; CO) - + (1 - Tno) (I(mfo; eo) -
0 I[[,,1)(x)dx)

[ [x,,1(x)dz1

(1.10.7)

If m < xP, expression 1.10.7 becomes:

P(eo)G(mO ) - (I(ino; co) -

[ 

ro

10 ff~p,])j)
[-ol(MO; co) + (1 - mt)(I(m-no; eo) + xe)]

- [i-noP(eo)G(_mO) - (I(7o; eo) + xp)] [-nol(rno; eo) + (1 - mO) (I(-no; eo) -

-[oP(eo)G(_mg )(1 - _mo) + Fnol(_mo; eo)] (, + I[2,](x)dx)
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If mr > xp, expression 1.10.7 becomes:

[fn-oP(eo)(G(m- ) - 1) - (I(7-no; co) - ino + x,)] [Finol(mo; eo) + (1 - rTn) (I(-no; eo) + xp)]

[?izoP(co)(G(_n ) 1) - (I(7-no; co) - riho + xz)]

[7no (I(mo; eo) - mo + xp) + (1 - _no) (I(ino; eo) - fno + xv)]

- [(I(7o; eo) - 7no + x,) + fnoP(eo)(1 - G(n-))] fho(1 - xp) < 0.
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Chapter 2

The Role of Authority in a General

Principal-Expert Model

2.1 Introduction

Since the seminal contributions of Crawford and Sobel (1982) and Holmstr6m (1977, 1984),

the literature on decision-making in organizations has relied extensively on an exogenous

conflict of interest between the parties regarding the decisions that are to be taken.1 There

are situations, however, where the agents involved in the decision-making process do not

have a direct interest in decisions. For instance, portfolio managers or consultants typically

are not directly concerned with their clients' choices; they become interested only to the

extent that these choices affect their own compensation. In these situations, the core of the

incentive problem is not the exogenous disagreement regarding decisions, but the need to

motivate experts to acquire costly information relevant for decision-making.

This paper examines a general principal-expert model in which the only source of friction

is the fact that the expert must be induced to exert effort. The principal (she) is the residual

claimant of output, which is determined by a decision and the state of nature. The expert (he)

1 See, for example, Aghion and Tirole (1997), Baker, Gibbons and Murphy (1999), Dessein (2002), Krishna

and Morgan (2008), Alonso and Matouschek (2008), Rantakari (2008) and Alonso, Dessein and Matouschek

(2008).
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has no direct interest in the decision and is protected by limited liability. By exerting costly

and non-verifiable effort, the expert may affect output directly (by shifting the distribution

of the state), or indirectly (by generating non-verifiable information about the state). To

induce effort, the expert is paid through transfer schemes, which can depend on everything

that is observable after the decision is taken and the state is realized.2 The analysis focuses

on the following questions. How does the allocation of authority (who has the right to take

the decision) affect the set of outcomes that can be implemented'? How should compensation

schemes respond to changes in the allocation of authority? Can optimal incentive design lead

to an endogenous conflict of interest regarding decisions'? If so, what is the nature of this

conflict? What kind of biases can systematically emerge'?

The first set of results is concerned with the first two questions. We start by consid-

ering the set of outcomes that can be implemented under full-commitment. In this case,

contracts specify a menu of pairs, where each pair is formed by a decision and by a trans-

fer scheme. After exerting effort but before the state is realized, the expert can select a

pair from the menu. The selection determines the decision to be taken and the transfer

scheme for payments. The full-commitment case establishes an upper bound for the set of

outcomes that can be implemented when decisions are determined in some other way. This

paper provides conditions under which any Pareto-optimal outcome implementable under

full-commitment can also be implemented under each of the following two arrangements: 3 1)

Expert-authority, under which contracts specify a menu of transfer schemes from which the

expert can choose, and the expert can ultimately take any decision; 2) Principal-authority,

under which contracts specify a menu of transfer schemes from which the expert can choose,

and the principal can ultimately take any decision after observing the expert's selection from

2 As in the standard moral hazard model (see, for example, Mirrlees (1976), Holmstr6m (1979), Harris

and Raviv (1979), Shavell (1979), Grossman and Hart (1983) or Kim (1995)), in this framework, if effort

were verifiable, the first-best would be attainable. Nevertheless, in contrast to the standard model, here there

is additional information arriving after the expert exerts effort but before the state is realized. Thus, as in

Laffont and Tirole (1986), in addition to inducing effort, the parties must solve an adverse-selection problem:

the expert must be induced to use his private information adequately. Moreover, here output is not only

determined by the expert's effort, but also by the way decisions are taken given the information available.

Thus, incentives designed to induce effort must take into account their influence on decision making.

3 An outcome is Pareto-optimal if there does not exists any other implementable outcome that makes

both parties better off.
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the menu and recommendation.

Optimal full-commitment contracts establish a plan that specifies the decision that should

be taken as a function of the transfer scheme selected by the expert. Under expert-authority

or principal-autority, the party in control can deviate from the plan and take any alternative

decision. The conditions identified in the analysis guarantee that it is always possible to make

such deviations unappealing to the party in control, while keeping the expert's incentives to

acquire information the same as in the full-commitment benchmark. We require that, for

any pair of decisions, d and d', if what the parties observe ex-post depends on whether d or

d' was taken (given the realization of some state of nature), then the parties must be able to

recognize that d was not taken when d' was taken.4 If this condition is met, the allocation of

authority is irrelevant, in the sense that any Pareto-optimal outcome implementable under

full-commitment can also be implemented regardless of who has authority.

This result emphasizes the value of accounatability, understood as the possibility of setting

limits to authority by making the parties responsible for their decisions. In environments

where accountability is possible, compensation schemes can be adjusted to changes in the

allocation of authority, muting the effects found in studies where the allocation of authority is

the only incentive instrument (see Aghion and Tirole (1997), Dessein (2002), Alonso, Dessein

and Matouschek (2008) and Rantakari (2008, 2010), for example). If accountability is not

possible, however, the set of implementable outcomes depends in general on the allocation of

authority and is a proper subset of the set of implementable outcomes under full-commitment.

In this model, optimal compensation schemes respond to changes in the allocation of

authority. Indeed, the party ultimately taking decisions is the one who is held accountable

after unplanned decisions are detected; optimal contracts penalize the party in control even

if such decisions lead to a positive outcome.

The second part of the analysis derives a characterization of implementable outcomes

in the full-commitment case.5 This result illustrates when and why, in order to generate

4 In particular, if the parties can observe ex-post the decision taken or the realization of the state, this

condition is satisfied.
5 This result extends the characterization provided in Zermefio (2011a) to this more general framework.

In Zermefio (2011a), the state of nature is binary and the expert's effort cannot affect output directly.
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better incentives to exert effort, it may be optimal to distort decision-making away from

what would be efficient given the information available. When a contract induces ineffi-

cient decision-making, the parties' preferred decisions given the information available do not

always coincide. Thus, such contracts create an endogenous conflict of interest.

It has long been recognized in the literature that, in models where agents must be induced

simultaneously to exert effort and to participate in decision-making, optimal contracts often

lead to inefficient decision-making given the information available (Lambert (1986), Demski

and Sappington (1987), Diamond (1998), Prendergast (2002), Athey and Roberts (2001),

Malcomson (2009, 2011), Rantakari (2011), Inderst and Klein (2007), Levitt and Snyder

(1997)).6 These studies focus on contracts that can only specify a single transfer scheme

contingent on what the parties can observe ex-post. With such contracts, it is impossible to

separate the agents' dual tasks of exerting effort and participating in decision-making (see

Zermefio (2011a)).' This problem does not arise if contracts can specify menus of transfer

schemes. In this case, separation can be attained because the same decision can be associated

with different transfer schemes. Nevertheless, we will see that it can still be optimal to distort

decision-making. With menus, optimal distortions are purely driven by differences in the

amounts of information that different decisions reveal about the state ex-post.

In environments where all decisions reveal the same amount of information ex-post, op-

tirial contacts always induce efficient decision-imaking. For example, portfolio managers are

6 These papers study models with three common features: 1) the agents' private information is non-

verifiable; 2) the agents do not have a direct interest in decisions; 3) the agents are induced to work through
compensation schemes based on information revealed ex-post. Szalay (2005) analyzes a principal-expert
model where the expert preferences over decisions are also aligned with those of the principal. The main
differences with respect to the present analysis are that, in Szalay (2005), the expert also has a direct interest

in decisions and, since there are no transfer schemes, decision rules are the only incentive instrument. In

Prendergast (1993), the principal also receives a (free) private informative signal, and the expert's compen-

sation depends solely on how his report compares to the principal's information. Dewatripont and Tirole
(1999) study an information acquisition model where information is verifiable.

Other related studies include: Osband (1989), who focuses on the friction created when the principal
does not know the expert's quality at the time of offering a contract; Gromb and Martimort (2007) and

Krishna and Morgan (2001) who analyze whether a principal should hire one or two experts; and Lewis

and Sappington (1997), Cr6mer, Khalil and Rochet (1998a), Cr6mer, Khalil and Rochet (1998b) and Szalay

(2009), who study a Baron-Myerson setup where the agent has the possibility of acquiring information.
7 A possible solution proposed in Athey and Roberts (2001) is to separate the tasks by assigning them

to different agents. However, if the agent's effort is about acquiring non-verifiable information relevant for

decision-making, the same agent must inevitably perform both tasks.
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hired to take investment decisions based on their assessment of what stock prices are going

to be. The decisions that they take do not affect the parties' ability to observe the actual

prices ex-post, so optimal contracts induce efficient investment decisions.

There are environments, however, where different decisions reveal different amounts of

information ex-post. To illustrate, suppose that a doctor is hired to assess whether a patient

should get a treatment. There are three states of nature: the patient will die anyway, the

patient will live only if she gets treatment and the patient will live anyway. Transfer schemes

can depend on what is observable ex-post: whether the patient received treatment and

whether she survived. This situation is illustrated in the diagram below:

* 3 Dies anyway

Lives only with
treatment

Z4

ZLives anyway

Do Not Apply Apply
Treatment Treatment

If the patient gets treatment and she survives (z 4 ), it is not possible to distinguish whether

she lived because of the treatment or because she would live anyway. If she gets treatment

and dies (z3 ), the parties learn that she would have died anyway. On the other hand, if

the patient does not get treatment and dies (z2 ), the parties cannot recognize between the

states the patient will die anyway and the patient will live only if she gets treatment. If she

survives (zi), they learn that she was going to live anyway.

In environments where decisions can be ranked in terms of the amount of information

that they reveal ex-post, inducing more effort requires distorting decision-making in favor of

decisions that reveal more information. Intuitively, in order to motivate the expert to exert
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effort, his compensation must depend on the realization of the state.8 Taking a decision that

does not enable the parties to recognize between two states, forces the expert to receive the

same payment after each of the two states is realized, limiting the parties' ability to induce

effort.

When decisions cannot be ranked in terms of the amount of information that they reveal

ex-post (as in the example above), we cannot say in general how optimal decision rules

are going to be distorted. This depends on the features of the information acquisition

technology. In the example, if information acquisition is mainly about distinguishing between

the states the patient will die anyway or the patient will live only if she gets treatment, then

it is optimal to over-treat the patient, since the decision to apply the treatment reveals

which of these two states was realized. However, if information acquisition is mainly about

distinguishing between the states the patient will live anyway or the patient will live only if

she gets treatment, then it is optimal to under-treat the patient.9

The rest of the paper is structured as follows: section 2.2 introduces the model, and

defines the basic concepts that will be used throughout the paper. Section 2.3 contains the

results regarding the role of authority and accountability in this incentive problem. Section

2.4 provides a characterization of implementable outcomes in the full-commitment case,

which illustrates when and why it may be optimal to distort decision-making. Section 2.5

provides an example that shows how this characterization can be used to derive the shape

of optimal contracts. Moreover, it illustrates how the set of implementable outcomes may

depend on the allocation of authority when accountability is not possible. Finally, section

2.6 concludes.

8 This is true regardless of whether effort influences the realization of the state or purely generates

information about what the realization is going to be.
9 A situation in which information acquisition is mainly about distinguishing between the states the

patient will die anyway or the patient will live anyway is unlikely to be relevant in this environment because,
since the efficient decision is the same in both cases (do not treat the patient), acquiring this information
would not be valuable.
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2.2 The model

Consider an environment with two risk-neutral parties, a principal (she) and an expert (he).

The principal has unlimited wealth, and is the residual claimant of output, y(d, 0), which

is determined by a decision, d E D, and the state of nature, 0 E . Assume that 0 =

{1, ... , ON} and D are finite sets. The expert does not have a direct interest in the decision,

and is protected by limited liability; he starts with a pledgeable income of w dollars.' 0 After

being hired, the expert may exert non-observable effort, eo E E, at private cost c(eo)." The

principal and the expert have Von Neumann-Morgenstern preferences with Bernoulli utility

functions up = y - t and UE = t - C(e) respectively, where t is a transfer made from the

principal to the expert.

The expert's effort may have two effects. First, it may affect output directly by shifting

the distribution of the state of nature. This effect is captured by the fact that the parties'

(common) prior over the state of nature may be contingent on effort; let xP(eo) E int(X),

where X is the set of all possible distributions over 8 (the simplex), denote the prior.' 2

Second, effort may generate information about the future realization of the state of nature;

each level of effort creates an experiment (that is, a joint probability measure over a signal

and the state of nature)." After an experiment is created, the expert privately observes

the realization of the signal, and, through Bayes rule, generates a posterior, x 0 E X, over

the states of nature (x9 denotes that probability that 0 = 0i). Note that the experiment

created with effort, eo E E, generates a probability measure over posteriors denoted by

Pe (-). Thus, an information acquisition technology can be characterized by a cost function,

c : E -* R, and a set of probability measures over posteriors, {Peo(-)}eocE, with the property

that Ep,[x] = xP(eo) for all eo E E (by the law of iterated expectations, the expected value

of the posterior must be the prior). Summarizing, after exerting effort, eo E E, the expert

10 The assumptions of risk-neutrality and limited liability are not essential for the results, but make the

exposition cleaner. The same results would still be obtained in an environment with risk-averse parties.

" The set E could potentially be multidimensional, so the model embeds multi-tasking framework such

as Holmstr6m and Milgrom (1991).
12 The statement that the parties share the same prior is a statement about the whole function xP(c).

1 The notion of experiment here is the same as in Blackwell (1953).
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privately observes a posterior, xO E X, drawn from the probability measure, PeO(). The

vector, X0 E X, is the expert's type in the mechanism design jargon, so the expert's payoff

at the interim stage is linear in his type.

Transfer schemes are payments from the principal to the expert. They can be contingent

on the contractible variable, z(d, 0), which describes everything that is observable after the

decision is taken and the state is realized." A full-commitment contract specifies a menu of

pairs, {(t,(Z), dr)}rCR, where r E R is an index. After exerting effort. but before the state

is realized, the expert can choose a pair from the menu. The expert's selection, ro E R,

determines the transfer scheme, tro(z), through which payments are made, and the decision

to be taken, dro E D. Without loss of generality, we consider contracts in which the expert

forfeits to the principal his whole pledgeable income (w) at the beginning, and receives in

return non-negative transfers. The following timeline summarizes the sequence of events:

Contract: Experiment Posterior drawn Selection State realized,
{(t,(Z),d)}r1E R selected (eo) from 1k() from menu transfer made

First, a contract is signed by the parties. Then, the expert exerts effort, eo, at cost c(eo),

and observes a posterior drawn from PO (.). At this point, the expert selects an element from

the menu, determining his compensation scheme and the decision to be taken. Finally, the

state is realized and the payment is made.

2.2.1 Model discussion

This formulation of the principal-agent problem is quite general; it embeds as special cases the

standard moral hazard framework, where the expert's effort affects output directly, and the

case where the agent is a pure expert, in the sense that his effort only generates information.

The state of nature plays a crucial role in this formulation. It must satisfy two properties:

1) its distribution must be independent from the decision taken; 2) in conjunction with the

14 The codomain of this function is left unspecified because its natural specification depends on the

environment under consideration.
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decisions, it must account for all possible values that output can take, and must describe

everything that is observable at the time payments are made. For example, the standard

moral hazard model corresponds to the case where D = {do}, 8 = V x P, y(d, 0) = v with

v E V, z(d, 0) = p with p E P, and P(. I co) assigns probability one to xP(eo). The case

where effort is purely about information acquisition has xP(e) = xP. The main results of the

paper hold for any information acquisition technology. The assumption that the spaces of

decisions and states are finite is made for technical convenience.

The model does have a lot of structure in some important respects. First, as is standard

in the literature, the technology is common knowledge. Moreover, at the time of signing,

the parties have the same information, since they share the same prior about the state of

nature. The analysis if this assumption were relaxed seems challenging; contracts would

have to solve a double screening problem because the expert would still acquire new private

information after signing.

The expert has two special features. First, he does not have an intrinsic interest in

decisions. This assumption has been made because one of the purposes of this study is to

assess what kind of biases regarding decision-making may emerge endogenously. Although it

is natural in some environments, it may be strong in others. For example, a doctor might care

about his patients, or different decisions might have different private implementation costs for

a manager. Even in these cases, the present analysis serves as a useful benchmark. Second,

the information that lie acquires is non-verifiable. This assumption captures situations in

which the expert's findings may be difficult to communicate unequivocally to the principal

(maybe) because of her lack of time or expertise. The structure of the problem would change

drastically if information were verifiable.

We have imposed one important restriction: full-commitment contracts specify only de-

terministic decisions. If full-commitment contracts could specify lotteries over decisions in-

stead, the parties would generally be able to improve. However, committing to such decision

rules is more challenging. Appendix 2.7.2 expands on these points.
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2.2.2 Basic concepts

An outcome is a complete description of the variables that determine the size of the surplus

generated by a relationship, and the way it is split between the parties.

Definition 2.2.1. An outcome is given by the triplet (eo, d(x), T), where eo C E is the

exerted by the expert, d(x) denotes the decision rule, which maps each posterior, x 0 E

some decision, d(x 0 ) e D, and T c R+ is the expert's ex-ante expected payment.

effort

X, to

Since both parties are risk-neutral, the size of the surplus depends solely on the effort

exerted by the expert and on the way decisions are taken. If the parties were risk-averse,

then the surplus would also depend on the way the risk is shared. It is this feature that

motivated the assumption of risk-neutrality; it makes the exposition cleaner. The expert's

expected payment, T, determines how the surplus is split between the parties.

Since both parties must be willing to sign a contract, outcomes must be individually

rational (IR).

Definition 2.2.2. The outcome (eo, d(x), i) is said to be individually rational (IR) if:

1. T - c(eo) > w.

2. w + EpO [Ex[y(d(x), 0)]] - T > 0.

The first condition states that the benefit derived by the expert from the relationship

must exceed the amount of money that he brings to the table. The second condition is the

principal's IR constraint, and reflects the fact that she receives w from the expert at the

beginning. Both parties' outside options are normalized to zero.

Next we define implementability. We take into account that the effort exerted by the

expert and the information that he receives in the interim stage are non-verifiable. Thus, a

contract must induce the expert to act in accordance with the outcome to be implemented.

Note that, in the interim stage, the expert will choose one of the elements of the menu,

{(tr(Z), dr)}rCR, that gives him the highest expected payment conditional on the information

that he received. Therefore, each contract induces a conditional expected payment function,

T(x) -- maxrCR Ex[tr(z(dr, 0))]. Then we have:
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Definition 2.2.3. The IR outcome (eo,d(x),T) is implementable if there exists a contract,

{(tr(Z), dr)}rCR (with its induced conditional expected payment function, T(x)), such that:

1. E p, [T (x)] = T .

2. eo E argmaxeEE {Epe[T(x)] - c(e)}.

3. For all x0 C X, there exists ro E arg maxER Exo [tr(z(dr, 6))] such that dro = d(x 0 ).

4. All transfers are non-negative.

The first condition states that the expert's expected payment must indeed be T. The

second condition reflects the fact that effort is not observable, so the expert must be willing

to exert eo. The third condition establishes that, at the interim stage, the expert's optimal

choice from the menu must be consistent with the decision rule to be implemented. The

fourth condition is the limited-liability constraint.

Note that definition 2.2.3 requires the expert to have a best response at the interim stage

for every possible posterior. In principle, it could be the case that more outcomes could be

implemented if such requirement were relaxed to hold only for posteriors in the support of

Pe,(-). Appendix 2.7.1 shows that this is actually not the case.

Pareto-optimal outcomes are those observed when the parties design their contracts op-

timally. Formally,

Definition 2.2.4. The IR and implementable outcome (eo, d(x), T) is Pareto-dominated by

the implementable outcome (e', d'(x), T') if either

1. T' - c(e') ;> T - c(eo);

2. Ep,, [Ex[y(d'(x), 6)]] -T' ;> Ep, [E2[y(d(x), 0)]] - T;

with at least one strict inequality; or

1. T' - c(e') = T - c(eo);

2. Ep,, [Ex [y(d'(x), 0)1] - '= Ep, [E [y(d(x), 0)]] - T;
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3. Exo [y(d'(x 0 ), 0)] > Exo [y(d(x 0 ), 0)] for all x0 E X, with strict inequality for at least one

x0 E X.

The first part of the definition states that an outcome is Pareto-dominated if there exists

another implementable outcome that makes both parties better off at the time of signing

the contract. The second part establishes the assumption that, if two outcomes generate the

same expected payoffs, the parties will prefer the one with the most efficient decision rule.

We say that an implementable outcome is Pareto-optimal if it is not Pareto-dominated by

any other outcome. Finally,

Definition 2.2.5. A decision do is more revealing than a decision d' if z(do, 0) = z(do, 0')

implies z(d', 0) = z(d', 0') for any 0, 0' E e. That is, z(do, 0) induces a finer partition over

the set 9 than z(d',0).

Note that it may not be possible to rank decisions in terms of how revealing they are.

2.3 The role of authority and accountability

The notion of implementability established in definition 2.2.3 (the full-commitment case)

relies on contracts, {(tr(Z), dr)}rCR, that effectively give the expert restricted authority over

decisions. That is, after choosing a transfer scheme, say to(z) E {tr(Z)}rCR, the expert has

the right to choose any decision from the set {dr E D | r E R, tr(z) = to(z)}. There are

environments, however, where committing to such arrangements may be problematic. In

some situations authority may only reside at the top (Baker, Gibbons and Murphy (1999)),

and the principal may have trouble committing not to overrule the expert's choice. In other

cases, where the principal may credibly commit not to intervene, the expert's discretion may

be hard to restrict.

This section provides conditions under which Pareto-optimal outcomes, implementable

under full-commitment, can also be implemented when one of the parties has the right to take

any decision after observing the expert's choice of a transfer scheme and his recommendation.
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We begin by introducing two stronger notions of implementability than the one established

in definition 2.2.3.

Definition 2.3.1. The IR outcome (Co, d(x), T) is implementable under expert-authority if

there exists a contract {t,(Z)}r, R such that:

1. Epe, [T(x)] =T 1;

2. eo E arg maxeCE {EP, [T(x)] - c(e)};

3. for all x0 e X, there exists ro e R s.t. (ro,d(x0 )) E argmaxCR,dCD Exo[t,(z(d,0))];

4. all transfers are non-negative;

where T(x) -- maxER,dED{Ex[tr(z(d,O))]}.

The only difference with respect to definition 2.2.3 is that here contracts specify only

a menu of transfer schemes, and the expert may take any decision, d C D, after making a

selection from the menu.

Definition 2.3.2. The IR outcome (eo, d(x), T) is implementable under principal-authority

if there exists a contract, {tr(Z)} rCR, a message space, M, strategies, r* : X -> R, m* :X -

M, and d* : R x M -> D, and beliefs, x* : R x M -> X, such that:

1. E p,, [T (x)] = T ;

2. eo E arg maxeEE {Ep, [T(x)] - c(e)};

3. for all x0 E X, d*(r*(x), m*(x')) = d(x0)

4. all transfers are non-negative;

5. for all x0 E X, (r*(xO), m*(xO)) C arg mrn R,mEMEXo [tr (z(d(r, m), 0);

6. for all (ro, mo) E R x M, x*(ro, mo) = EpO [x I r*(x) = ro, m*(x) = mo] if r*-'(ro) n~
m* (mo) -# 0, and can be anything otherwise;
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7. for all (ro, mo) E R x M, d*(ro, mo) E arg maxdD Ex*(ro,mo)[y(d,0) - tro(z(d, )];

where T(x) = maxrcR,mcM Ex[tr(z(d*(r, n), 0))].

That is, an outcome is implementable under principal-authority if it is induced by a

Perfect Bayesian Equilibrium of the game where, given a contract {tr(Z)}rCR, the principal

may choose any decision after observing the expert's choice from the menu and recommen-

dation." Conditions (1)-(4) are analogous to those in definition 2.2.3. Condition (5) states

that the expert's strategy, (r*(-), m*(-)), is optimal given the principal's strategy, d*(-). Con-

dition (6) guarantees that the principal's beliefs are consistent given the expert's optimal

behavior. Condition (7) states that the principal's strategy, d*(-) is optimal given her beliefs.

Note that the principal must take into account the effect that decisions have on output.

Following Aghion and Tirole (1997), we say that an outcome, (eo, d(x), T), is imple-

mentable under principal-authority with a rubber-stamping scheme if the conditions in def-

inition 2.3.2 are met with M = D and m*(xO) = d(x 0), for all x0 E X. Rubber-stamping

schemes have the attractive feature that they minimize the amount of communication that

needs to take place between the expert and the principal in order to implement a given

decision rule. The expert only needs to be able to describe the decision that is to be taken

(or the principal needs to be able to observe the decision that the expert intends to take); a

detailed description of the information acquired (which may be impossible) is not required.

They also have a natural interpretation: the expert is taking the decisions under the princi-

pal's supervision. He knows that if he takes an unplanned decision, he will be overruled, so,

along the equilibrium path, his decisions are always carried out.

Evidently, outcomes implementable under expert-authority or principal-authority can

also be implemented under full-commitment. Here we provide conditions under which the

converse is also true:

Assumption 2.3.1. For all d, d' E D and 0, E 8, if z(d', 0j) -f z(d, 6h), then z(d', 0j) (

{z(d, 0) 0 E 8}.

i" See Fudenberg and Tirole (1991) for a formal definition of Perfect Bayesian Equilibrium.
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In words, suppose that, given a benchmark decision, d, there exists a significant devi-

ation (i.e. a decision d' f d such that, for some 0, E 8, z(d', O) # z(d, O6)). Then, when

the decision d' is taken and B2 is realized, it is possible to recognize that d was not taken.

Note that, if transfers may depend explicitly on the state of nature or on decisions, then

assumption 2.3.1 is satisfied; the converse is not true. Then, we have:

Proposition 2.3.1. If assumption 2.3.1 is satisfied,

(a) Any outcome implementable under full-commitment can also be implemented under

expert-authority. Implementation requires the expert to be penalized when unplanned

decisions are detected.'6

(b) Any Pareto-optimal outcome implementable under full-commitment can also be im-

plemented under principal-authority with a rubber-stamping scheme. Implementation

requires the principal to be penalized when unplanned decisions are detected.

Proof. See appendices 2.7.3 and 2.7.4. 0

In other words, under assumption 2.3.1, the allocation of authority is irrelevant in terms

of the outcomes that are implementable. However, it has a substantial effect on the way

compensation schemes should be structured. It is the party who ultimately takes the decision

the one that should be held accountable if unplanned decisions are taken. Note that, under

principal-authority, we require outcomes to be Pareto-optimal. This restriction is needed

because, when the principal is considering alternative decisions, she also takes into account

their effect on output.17

Proposition 2.3.1 illustrates the basic need in organizational design, identified in Arrow

(1974), to set limits to authority through accountability.18 Assumption 2.3.1 guarantees that

16 The full-commitment contract that implements the outcome under consideration establishes a plan that

determines the decision that is to be taken as a function of the transfer scheme selected by the expert.
Unplanned decisions correspond to deviations from this plan.

17 There could be a deviation, d' 5 d(x 0 ), such that z(d', 0) = z(d(x0), 0) for all 0 E- 8. If such deviation

was profitable for the principal, the original outcome would be Pareto-dominated by an outcome with a

decision rule specifying that d' is to be taken after x0 is observed. Thus, Pareto-optimality rules out such

deviations.
18 Arrow (1974) uses the term responsibility instead.
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it is always possible to detect significant deviations in decision-making, enabling the party

responsible for such deviations to be penalized through transfers. In this framework, these

penalties suffice to induce the desired decision rule.19

Although, in this model, accountability can only be achieved through transfers, in reality

it may may be achieved through other channels. For example, the decisions taken may affect

a manager's chances of promotion or of getting fired, or a consultant's reputation. Baker,

Gibbons and Murphy (1999) analyze a model where the principal always keeps the right to

ultimately take any decision. There, accountability is possible because the parties interact

repeatedly. The principal's choices are disciplined by the threat that the expert may brake

the relationship if he is overruled.

If assumption 2.3.1 is not satisfied, (perfect) accountability is unattainable. In this case.

the set of implementable outcomes when full-commitment is not possible generally depends

on who is in control. Moreover, it is a subset of the set of implementable outcomes under

full-commitment. Section 2.5 provides an example.

Studies where the allocation of authority affects the set of implementable outcomes as-

sume away (implicitly or explicitly) the possibility of accountability. In Aghion and Tirole

(1997), Dessein (2002), Alonso, Dessein and Matouschek (2008) and Rantakari (2008), for

example, transfers are ruled out. Athey and Roberts (2001) and Rantakari (2011) restrict

attention to transfer schemes which are linear in the performance measure. These restric-

tions may not be innocuous when considering situations where deviations in decision-making

could be detected ex-post, making accountability possible. In such situations, the effect of

changes in the allocation of authority may be muted by adjusting the compensation schemes.

19 Although the expert is protected by limited liability, he has no intrinsic interest in decisions. Thus,
a payment of zero is always punishment enough. The principal, on the other hand, has a direct interest

in output. However, since she is assumed to have unlimited wealth, her penalty if she deviates may be

arbitrarily large.
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2.4 A characterization of implementable outcomes; when

and how will decision-making be distorted?

Given a full-commitment contract, {(tr(Z), dr)}rCR, the expert's incentives for effort are en-

tirely determined by the conditional expected payment function, T(x) = maxCRlEx[tr(z(dr, 0))],

induced by the contract. Indeed, the expert's choice of effort can be viewed as a choice of

a probability measure over posteriors, and the function, T(x), specifies the expert's actual

expected payment as a function of the posterior observed. This section presents a charac-

terization of implementable outcomes that expresses this incentive problem only in terms

of the function T(x).2 o The value of this result is twofold. First, it simplifies the problem

considerably, since functions T(x) effectively replace contracts as the incentive instrument; it

is as if we could choose a payment scheme for the expert contingent directly on posteriors.2
1

Second, the characterization makes explicit what restrictions are imposed on the functions

T(x) that can be chosen due to the fact that posteriors are not actually directly contractible.

In particular, it illustrates how the decision rule to be implemented restricts the functions

T(x) that can be chosen and, thus, the incentives that can be provided for the expert to

acquire information. In other words, the characterization uncovers a tradeoff that is central

in this incentive problem; it allows us to understand when and why it may be optimal to

distort decision making away from what would be efficient (conditional on the information

available) in order to improve the expert's incentives to acquire information.

Let X = { E E RN I ENx = 1} be the extended simplex. For all i E {1, ... ,N},

let xi E X be the posterior that assigns probability one to state 0j, and X- be the set

of posteriors that assign probability zero to state 0i. Finally, for any vector v C RN with

E1 vi = 0, and convex function T: X -> R, let

v) lim T(x0 + hv) - T(x0 )
h-+0+ h

20 This result extends the characterization in Zermefio (2011a) to this more general framework.
21 In Zermefno (2011a) I use this characterization to solve for optimal contracts in the case where the state

of nature is binary and where the expert's effort is only about generating information.
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be the right directional derivative of T(x) at x0 in direction v. Now we can state the result:

Theorem 2.4.1. The IR outcome (eO, d(x), T) is implementable if and only if there exists

T X -* R such that:

1. E ,O[T(x)] = T.

2. eo E arg maxeCEE Ep,[T(x)] - c(e).

3. T(x) is convex.

4. T(x-') + T'(x I xi - x-) '> 0 V i = 1 ... , N, x-E X-i.

5. For any xO E X, and v E span ({zi - xj I z(d(x0 ), O6) z(d(x 0 ), j)}),

T (x0 ) < T(xO +v).

Proof. See Appendix 2.7.5. E

That is, an outcome is implementable if and only if there exists a function, T(x), that

satisfies five conditions. The main difference with respect the definition of implementability

(definition 2.2.3) is that functions, T(x), replace contracts as the incentive instrument. The

first condition states that the expert's ex-ante expected payment must indeed be the one

specified by the outcome. The second condition is the expert's effort incentive compatibility

constraint. These two conditions would be present even if we could offer the expert a

payment scheme contingent on the posterior that he observes. Conditions (3)-(5) must be

included because posteriors are actually not directly verifiable. In order to understand these

conditions, next we will go over the intuition behind the result.

2.4.1 The intuition behind Theorem 2.4.1

When the expert makes a selection, ro E R, from a full-commitment contract, {(tr (z), d,)},CR,

the selection determines a set of state-contingent payments, {tro(z(drO, Oj))}fY1, or a lot-
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tery. In the binary-state case, each lottery corresponds to a line in figure 2.4.1a. In-

deed, the horizontal axis describes the posterior observed by the expert, and each point

in the line describes the expert's expected payment conditional on observing a posterior

after making that particular selection. 2  In general, a selection, ro E R, from a full-

If z(d(xo),81)=z(d(xo),82), state-contingent
t~z~d,8 ))payments must coincide.

---------------- 0,_ --- ---

tr(z(dr,02)) T(O)+T'(0)
I'-- I()- T'(1)

0 0
0 X 1 0 X XO 1

(a) (b)

Figure 2.4.1: Theorem 2.4.1 - Necessity

commitment contract, {(tr(z), dr)}rCR, corresponds to the hyperplane in RN+1 given by

{(x, w) E RN x R I = _1 Xitro(z(dro,6j))}. Then, from the expert's perspective, a

contract boils down to a set of hyperplanes. After observing a posterior, x0 E X, it is in

the expert's best interest to choose the element form the contract that corresponds to the

highest hyperplane at 0. Thus, the expert's actual expected payment as a function of his

information is given by the upper envelope of the hyperplanes induced by the contract (the

function T(x) in figure 2.4.1b).

To prove that conditions (1)-(5) in Theorem 2.4.1 are necessary, one can show that they

are satisfied by the upper envelope, T(x), induced by the contract that implements the

outcome.2 3 Conditions (1) and (2) follow directly from definition 2.2.3. Condition (3) is a

consequence of the fact that T(x) is the upper envelope of hyperplanes.2 ' This condition

22 With two states, a posterior can be describes by a number in the interval [0, 1], where x = 1 means that
the expert is sure that 0 = 02.

23 The upper envelope can be defined over the extended simplex as T(x) = suprCR z= 1 xitr(Z(dr, Oi)) for
all x - X.

24 The convexity of the agents' indirect utility function is a central feature of other characterizations of
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has a clear economic interpretation. The constraint that the expert's expected payment

must be convex in his posterior is saying that the expert cannot be worse off by having

more non-verifiable information.25 Condition (4) follows from limited liability. Figure 2.4.1b

illustrates the argument in the case where the state of nature is binary. Since the contract

that implements the outcome satisfies limited liability, all the points on the sides of the

figure must be non-negative. The lowest point on the right-hand side can be expressed as

T(O) + T'(0) and the lowest point on the left-hand side as T(1) - T'(1). Condition (4)

states that these expressions must be non-negative. 2
' The intuition in the general case is

analogous. Finally, condition (5) must be satisfied. Figure 2.4.1b illustrates the argument

for the binary-state case. If the decision taken at xO has z(d(x0 ), 01) = z(d(x0 ), 02) then the

highest lottery at that point must pay the same amount regardless of the realization of the

state. This implies that the upper envelope of the lotteries must reach its minimum at x0 .

Conversely, it can be shown that if we start with a function T(x) that satisfies conditions

(1)-(5) given an outcome, (eo, d(x), T), then we can construct a contract that implements

the outcome. Figure 2.4.2a illustrates how to construct the transfer schemes in the binary-

imiplementable outcomes in mechanism design environments where the agents' utility is linear in their type

(e.g. Rochet (1987), Jehiel and Moldovanu (2001) and M6ler, Perea and Wolf (2007)). More generally,
Krishna and Maenner (2001) show that the agents' indirect utility function is convex in their type in any

mechanism design environment where the agents' utility is convex in their type.

25 Indeed, the experiment characterized by the probability measure over posteriors, Pe (-), is more informa-

tive in Blackwell's sense than the experiment characterized by Pe- (.) if and only if Pe(-) is a mean-preserving

spread of Pe' (-). Requiring T(x) to be convex, is equivalent to requiring that the expert's ex-ante expected

utility must be higher under Pe(-) than under Pe' (-) whenever Pe(-) is a mean-preserving spread of Pe, (.).
26 Figure 2.4.1b contains an abuse of notation. Indeed, strictly speaking, a posterior in the binary-state

case should be a two-dimensional vector, whereas in the figure we are representing posteriors in terms of a

scalar specifying the probability that 0 =0 2. Thus, the expression T(0) + T'(0) corresponds to

T(x') + T'(x 1 X2 _ i) _ T(x) + lim T(x'(1 h)+hX2 )-T(x1 )
h-+0+ h

Similarly, the expression T(1) - T'(1) corresponds to

T(x 2 ) + T'(x 2 I1 _2) = T(x 2 ) + lim T(X2(I h) + hx-) - T(X2 )
h-0+ h

27 More generally, take any x0 E X and v E span ({xi - Xs | z(d(x 0 ).0 ) = z(d(x0 ),0O)}). The highest

hyperplane at x0 cannot change its hight as we reshuffic weight between states that induce the same payment.

Thus, the height of this hyperplane at x0 must be the same as its height at xO + v (and equal to T(x 0 )).

Since T(x) is the upper envelope of all the hyperplanes, this implies that T(xa + v) > T(x 0 ).
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state case. For each x0 E X, txo(z(d(x0 ), O6)) for i E {1, ..., N} can be constructed using a

For each xo, construct txo(z(d(xo), Oi))
using the tangent to T(x) at xo.

0 ' ' 0
0 X X0 1 0 XO X 1

(a) (b)

Figure 2.4.2: Theorem 2.4.1 - Sufficiency

supporting hyperplane of the graph of T(x) at x0 (txo(z) can be any non-negative number

for any other value of z). Condition (5) guarantees that there always exists a supporting

hyperplane such that the transfer schemes constructed in this way are well-defined. That

is, if z(d(x0 ), O6) = z(d(xa), O6), then txo (z(d(x0 ),O 6)) = txo (z(d(x0 ), O6)) (see figure 2.4.2b).

Then the contract, {(tU(z), d(x))}xEx, can be shown to implement the outcome. Condition

(3) guarantees that the original T(x) is the upper envelope of the lotteries induced by the

contract, so, by construction, the contract implements the level T, the level of effort eo

and the decision rule, d(x). Finally, condition (4) guarantees that the constructed transfer

schemes satisfy limited liability (see figure 2.4.2b). The fact that T(x) is defined over the

extended simplex comes into play to make sure that the supporting hyperplanes at the points

in the boundary of the simplex are not vertical, so that we can use them to construct the

transfers at these points.

2.4.2 The quality of decision making vs the quality of information

Theorem 2.4.1 uncovers a tradeoff that is central in this problem. This tradeoff is summarized

by condition (5), as it illustrates the way the decision rule to be implemented restricts the set

of functions, T(x), that can be chosen. Since T(x) is our instrument to induce the expert to
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exert effort, this condition determines when and why it may be optimal to distort decision-

making (conditional on the information available) to induce more information acquisition.

There are environments where the decision taken does not affect the amount of informa-

tion about the state that is revealed ex-post. For example, a portfolio manager's decisions

do not affect our ability to observe stock prices ex-post. Formally, in this example we have

that for all d E D and 0 $ 0', z(d, 0) # z(d, 0'). In this case, condition (5) disappears and

the decision rule to be implemented imposes no restrictions on the functions T(x) that can

be chosen. Thus, here, the decision rule to be implemented can be chosen independently

from the level of effort to be induced, so there is no reason to distort decision making. More

generally, we can see that, when all decisions reveal the same amount of information about

the state ex-post, there is nothing to be gained by implementing decision rules that are

not efficient. Indeed, when this is the case, changing the decision rule does not alter the

restrictions imposed by condition (5) on T(x).

Nevertheless, there are situations where the decision taken does affect the amount of

information about the state that is revealed ex-post. For instance, the decision could be

whether or not to invest in a project, and the state could represent all the possible outcomes

of the project. In this case, the state is only revealed ex-post if the decision is to invest

in the project (otherwise, the parties never observe the counterfactual).28 Theorem 2.4.1

implies that, in environments where decisions can be ranked in terms of how revealing they

are, the parties could improve the incentives to acquire information by distorting decision

making in favor decisions that reveal more information ex-post. Indeed, condition (5) states

that for each xO E X, T(x 0 ) must be the minimum of T(x) when we restrict its domain

to {x E X | x0 -+ v, v E span({x -i I z(d(x0),O6) =z(d(x0 ),06)})}. Since T(x)

must be convex, if the decision d(x 0 ) is taken at any two points x, x' within this set, then

it must be the case that T(ax + (1 - a)x') = T( 0 ) for all a E [0,1]. When information

acquisition generates dispersion of posteriors along this line, allowing T(x) to actually vary

would improve the incentives for effort. However, if decisions can be ranked in terms of how

28 The models analyzed in Lambert (1986), Levitt and Snyder (1997) and Inderst and Klein (2007) have

this structure.
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revealing they are, this variation can only be achieved by taking a more revealing decision

in some points of the line.

When decisions cannot be ranked in terms of how revealing they are, the direction of

optimal distortions to decision making becomes ambiguous. It depends on the features

of the information acquisition technology. Consider the medical example discussed in the

introduction as an illustration. If information acquisition was mainly about distinguishing

between the states dies anyway or lives only with treatment, then it would be optimal to

over-treat the patient, since the decision to not apply the treatment would not enables us

to tell apart these two states ex-post. However, if information acquisition was mainly about

distinguishing between the states lives anyway or lives only with treatment, then it would be

optimal to under-treat the patient. Indeed, treating the patient would not allow us to pay

the doctor different amounts after these two states are realized.29

2.4.3 The role of limited liability

Condition (4) of Theorem 2.4.1 summarizes the role of limited liability in this problem. In

a nutshell, limited liability restricts how convex T(x) can be, in the sense that it limits its

steepness at the points in the boundary of the simplex. Formally,

T' (x-' I x' - x-x) > -T (x-i) V i = 1, ... , N, x-i E X-i.

This restriction is important because it is precisely the convexity of T(x) that makes infor-

mation valuable for the expert, and thus induces him to exert effort (see footnote 25).

Increasing the expert's pledgeable income, w, relaxes the constraints imposed by lim-

ited liability. Indeed, definition 2.2.2 implies that an outcome, (eo, d(x), T), is individually

rational if and only if

W + c(eo) < T < w + E, [E, [y(d(x), 6)]].

29 A situation in which information acquisition is mainly about distinguishing between the states

dies anyway or lives anyway is unlikely to be relevant in this environment because., since the efficient decision

is the same in both cases (do not treat the patient), acquiring this information would not be valuable.
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Thus, given any eo and d(x), the set of values for T that make the outcome (eo, d(x), T)

individually rational is increasing in w. This means that, if we fix the share of the surplus that

goes to each party, increases in w shift the schedule T(x) upwards, relaxing the restrictions

imposed by limited liability, as specified in condition (4) of Theorem 2.4.1. In this way,

increasing the expert's pledgeable income helps to provide better incentives for information

acquisition and decision making. This could explain why partners in private equity funds,

for example, are asked to invest a non-trivial fraction of their own wealth in the funds they

manage.

2.5 The role of authority without accountability

The goal in this section is to show that, if assumption 2.3.1 is riot satisfied, the set of Pareto-

optimal outcomes in general depends on the allocation of authority. In addition, we will see

how Theorem 2.4.1 can be used to solve for optimal contracts.

Throughout the section we restrict attention to environments with two states of na-

ture and where every decision reveals the state ex-post (i.e. z(d, 01) # z(d, 02) for all

d C D). Moreover, we will work with a particular class of information acquisition technolo-

gies, Success-Failure experiments, which makes solving for optimal contracts considerably

simpler.3 0 Formally, assume that E = [0, 1], and that c(e) is strictly convex, continuously

differentiable, and such that c'(0) = 0 and lim 1 c'(e) = oc. If the expert exerts effort e, the

experiment fails with probability 1 - e, and nothing is learnt (the expert observes the prior,

xP). With probability e, the experiment succeeds, and the expert observes an informative

signal. The signal generates a distribution over posteriors characterized by the CDF over

posteriors, G(x), where x is the probability that 0 = 02. By the law of iterated expectations,

it must be the case that EG[x] = xP. Since effort does not affect the prior, this is a pure

information acquisition environment.

We begin by showing that, under these conditions, any implementable outcome can be

3 Because of their tractability, this class of technologies has been widely used in the literature (see Aghion

and Tirole (1997) or Inderst and Klein (2007), for example).
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implemented with contracts that have a very simple form.

Proposition 2.5.1. Suppose that N = 2, that every decision reveals the state ex-post and

that the information acquisition technology is Success-Failure. Then any implementable out-

come can be implemented with a contract that induces only two different state-contingent

payments (or lotteries) for the expert. Moreover, the expert is indifferent between the two

lotteries exactly when x = xP, and both lotteries have the same low payment.

In Zermefio (2011a), I prove a more general. version of this proposition.3 1 Figure 2.5.1

illustrates the argument when the information acquisition technology is Success-Failure.

0 0
0 X XP 1 0 X XP1

(a) (b)

Figure 2.5.1: Proposition 2.5.1: Intuition

Figure 2.5.1a shows how any implementable outcome can be implemented with a contract

that induces only two lotteries that make the expert indifferent at the prior. Suppose T(x)

satisfies the conditions in Theorem 2.4.1 given the outcome (eo, d(x), T). Consider the two

lotteries that cross at the point (xP, T(xP)) and that have high payments T(O) and T(1)

respectively (the dashed black lines in the figure). By the convexity of T(x), the upper

envelope of these lotteries is always above T(x) and satisfies condition (4) of Theorem 2.4.1.

Now, as illustrated in Figure 2.5.1a, rotate the two lotteries around the point (xPI, T(xP))

31 Specifically, I show that in the binary-state case, if the "first-order approach" is valid, then any inple-

mentable outcome can be implemented with a a contract that induces at most three different state-contingent
payments for the expert. The fact that in Proposition 2.5.1 the expert is indifferent between the two lotteries
precisely at the prior is specific to Success-Failure information acquisition technologies.

94



until their upper envelope, t(x), is such that EG[T(x)] = EG[T(x)). The function T(x)

is the upper envelope of two lotteries that make the expert indifferent at the prior, and

satisfies all the conditions in Theorem 2.4.1 given (eo, d(x), T). Indeed, since t(xP) = T(xP)

and EG[(x)] = EG[T(x)1, conditions (1) and (2) are satisfied.3 2 Condition (3) is trivially

satisfied, as well as condition (5) (all decisions reveal the state). Finally, condition (4) is

satisfied because it was satisfied by the upper envelope of the lotteries before we rotated

them.

Figure 2.5.1b illustrates how we can implement the same outcome with a contract that

induces two lotteries that make the expert indifferent at xP and that have the same low

payment. This follows because, if we rotate the two lotteries constructed in Figure 2.5.1a

around the point (P, T(xP)), keeping the change in slope of their upper envelope unaltered,

the two resulting lotteries induce the same ex-ante expected payment for the expert and the

same incentives for effort.3 3 Thus, we can rotate the two original lotteries to the point where

their low payments coincide, without changing the implemented outcome.

In the rest of the section, we provide an example in which Assumption 2.3.1 is not

satisfied and where Pareto-optimal outcomes implementable under full-commitment can be

implemented under Principal-authority, but not under Expert-authority. Suppose there are

two decisions, di and d2 , which may succeed (lead to high output, g) or fail (lead to low

output, y). Decision di succeeds if and only if 6 = O6, and transfer schemes can only depend

on whether the decision taken succeeded or failed. Note that both decisions reveal the state

ex-post, but Assumption 2.3.1 is not satisfied (z(di, 6 1) = z(d 2 , 62) and z(di, 6 2 ) = z(d 2 , 01)).

32 To see this, note that Ep,[i(x)] = coEG [T(x) + (1 - eO)t(xp) e oEG [T(x)] + (1 - eo)T(xP) = T.
Condition (2) is satisfied because, with Success-Failure information acquisition technologies, it is equivalent

to EG[T(x)] - T(xP) = c'(eo).
33 To see this let T(x) be a convex function that changes slope once and at the prior. Then

EG[T(x)] = G(O)T(O) + J T(x)dG(x) = T(1) - j A(x)G(x)dx = T(xP) + (1 - xP)A(1) - A(x)G(x)dx

= T(xP) + (A(1) - A()) G(x)dx,

where A(x) is a subderivative of T(x) and all integrals are Riemann-Stieltjes integrals. The second equality is

derived by integrating by parts, and the fourth equality follows because fxP G(x)dx = (1 - xP) - fx G(x)dx.
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We will see that, in this example, Principal-authority dominates Expert-authority.

We begin by finding the optimal contract under full-commitment. Let the expert's ex-

pected net utility derived from an outcome, (eo, d(x), T), be denoted by Uo = T - c(co) - w.

Recall that, since both decisions reveal the state, every Pareto-optimal outcome implements

the efficient decision rule. Thus, given Uo, our problem is to find the contract that imple-

ments the level of effort that generates the highest expected surplus conditional on efficient

decision-making. In fact, for w and U0 small enough so that the first-best level of effort is

not attainable, our problem is to find the contract that implements the highest possible level

of effort. In what follows we focus on this case.

Figure 2.5.2 illustrates how to find the full-commitment contract that maximizes effort

given the expert's expected net utility Uo. Proposition 2.5.1 implies that we can restrict our

Optimal full-commitment contract

t

0-0

0 X XP 10 X XP1

(a) (b)

Figure 2.5.2: Optimal full-commitment contracts

search to contracts that induce two lotteries that make the expert indifferent at the prior,

and that have the same low payment. In fact, in the contract that maximizes effort, the

low payment of both lotteries must be zero, and the high payments are pinned down by

Uo and by the fact that the expert must be indifferent between the lotteries at the prior.

To see this, suppose that we start with two lotteries with the same but positive low pay-

ment, and that give the expert an expected net utility of Uo (given his optimal choice of

effort). If we reduce all payments by a constant so that the lotteries' low payments be-
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come zero, we can implement the same level of effort, but reduce the expert's expected net

utility (see Figure 2.5.2a). Then, as illustrated by Figure 2.5.2b, we can increase the lot-

teries' high payments to the point where the expert's expected net utility gets back to Uo.

Since we are restricting attention to pairs of lotteries that make the expert indifferent at the

prior, these high payments are uniquely pinned down by Uo. The resulting lotteries imple-

ment a higher level of effort." Thus, the optimal full-commitment contract in this example

is {(t if the decision succeeds, d1 ), (I if the decision fails, d2 ), (t if the decision succeeds, d2 )}.

The expert will choose the first option after observing posteriors in [0, 1], the second option

after observing posteriors in [1, xP), and the third option after observing posteriors in [XP, 1].

This contract implements the efficient decision rule (di if x < 1 and d2 if X > 1) and induces

the two lotteries that maximize effort given Uo.

Under Expert-authority, Pareto-optimal outcomes implementable under full-commitment

cannot be implemented. To see this note that, if a pair (t(z), di) induces a lottery with

payments T if the state is 01 and t if the state is 02, then the pair (t(z), d2 ) induces the

lottery with payments T if the state is 02 and t if the state is 01. This implies that, under

Expert-authority, the upper envelope of the lotteries induced by any contract is symmetric

around x = -. Thus, even though with Expert-authority we can still implement the efficient

decision rule (this is the case as long as all transfer schemes pay more after success than

after failure), we are not able to induce as much effort as with full-commitment (given Uo).

Under Principal-authority, however, we can implement with a rubber-stamping scheme

any Pareto-optimal outcome implementable under full-commitment. Indeed to implement

the outcome implemented by the contract in Figure 2.5.2b we could let M {di, d2 } and

offer the expert a contract with three payment options:

1. T if the decision succeeds and zero otherwise.

2. T if the decision fails and zero otherwise.

A From footnote 33 we can see that that if T(x) is convex and changes its slope only once and at the

prior, then the experts optimal choice of effort solves (A(1) - A(O)) fH G(x)dx = c'(e), where A(x0 ) is a

subderivative of T(x) at x0.
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3. t if the decision succeeds and zero otherwise.

This contract implements the outcome with a rubber-stamping scheme. Suppose the prin-

cipal's beliefs only depend on the payment scheme selected by the expert (and not on his

recommendation). Specifically, suppose that, if the expert selects the first option from the

contract, the principal believes that he observed a posterior in [0, }) (so the principal's pos-

terior lies in [0, 1]); if the expert selects the second option from the contract, the principal

believes that he observed a posterior in [1, xP] (so the principal's posterior lies in [1, rP]); if

the expert selects the third option from the contract, the principal believes that he observed

a posterior in [zP, 1] (so the principal's posterior lies in [zP, 1]). The principal's best response

given these beliefs is to choose di after the expert selects the first option and d2 after the

expert selects the second or third options from the contract." Finally, given the principal's

behavior, it is a best response for the expert to select the first option from the contract and

recommend di after observing a posterior in [0, 1], the second option from the contract and

recommend d2 after observing a posterior in [j, xP], and the third option from the contract

and recommend d2 after observing a posterior in [1XP, 1]. Thus, the principal's beliefs were

indeed consistent.

We have seen that, in environments where Assumption 2.3.1 is not satisfied, the allocation

of authority in general matters for the outcomes that can be implemented. In the example

that we studied, Principal-authority dominates Expert-authority. Whether this result is

more general is an open question.

3 Indeed, if the principal chooses d2 instead of di after the expert selects the first option, she would get
x*(j - ) + (1 - x*)y instead of x*y + (1 - x*)( - t), where x* E [0, 1] is the principal's posterior. For this
to be a profitable deviation, we would require g - y - f < 0, but this would imply that the principal would

prefer d2 to di for every posterior in [0, -]. Then the Pareto-optimal outcome that we were implementing
under full-commitment must violate individual rationality, for the principal would have been better off always
taking d2 without hiring the expert.

After the expert selects the second option, the principal prefers d2 to di because d2 maximizes expected
output and minimized the expected payment to the expert given x* E [1, XP].

Finally, after the expert selects the third option, the principal prefers d2 to di because 9-y-t > 9-y-t > 0.
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2.6 Concluding remarks

This paper has examined a general principal-expert model. We have identified conditions

under which the allocation of authority is irrelevant in terms of the outcomes that can

be implemented; under these conditions, any Pareto-optimal outcome implementable under

full-commitment can be implemented regardless of who has the right to ultimately take

the decision. For this result to hold, it must be possible to penalize the party in control

after decisions that differ from the plan established by the full-commitment benchmark are

taken, while, at the same time, keeping the expert's incentives to exert effort unaltered.

In particular, this is possible if: 1) the decision taken can be identified ex-post; or 2) the

realization of the state of nature can be observed ex-post. When the conditions provided are

not met, the set of implementable outcomes in general depends on the allocation of authority

(and is a subset of the set of outcomes implementable under full-commitment).

These results emphasize the value of accountability, understood as the possibility of limit-

ing the authority of the party in control by penalizing her after taking decisions that deviate

from the optimal plan under full-commitment. Importantly, it is valuable to penalize such

deviations even if they lead to high output.3" In environments where accountability is possi-

ble, compensation schemes can respond to changes in the allocation of authority, muting the

effects found in setups where the allocation of authority is the only incentive instrument.

Moreover, the paper provided a general characterization of implementable outcomes un-

der full-comnit ment that uncovers a central tradeoff in this problem: in environments where

the decision taken affects the amount of information about the state that is revealed ex-post,

distorting decision-making in favor of decisions that reveal more information can help pro-

vide better incentives for effort. This is the only reason to distort decision-making away

from what would be efficient given the information available. Indeed, if all decisions reveal

the same amount of information ex-post, optimal contracts induce efficient decision-making

conditional on the information available. If decisions can be ranked in terms of the amount

36 Thus, accountability is not attainable in setups where transfer schemes are restricted to be linear in

output such as Athey and Roberts (2001) or Rantakari (2011).
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of information that they reveal ex-post, optimal contracts distort decision-making in favor of

decisions that reveal more information. If decisions cannot be ranked, however, the direction

of optimal distortions is ambiguous in general, since it depends on the features of the in-

formation acquisition technology. These results illustrate how optimal organizational design

can lead to endogenous conflicts of interest between the parties regarding the decisions that

are to be taken. Indeed, when a contract induces inefficient decision-making, the principal

and the expert often disagree on the decision that should be taken given the information

available.

The results in the paper depend crucially on the fact that contracts can specify menus of

transfer schemes from which the expert can choose. In Zermeio (2011 a), I compare explicitly

the outcomes that can be attained under full-commitment depending on whether contracts

specify a menu of transfer schemes or a single transfer scheme. I show that, with menus, the

fact that the same decision can be associated with more than one transfer scheme enables

us to separate the expert's incentives to exert effort from the way decisions are taken. Thus.

optimal distortions to decision-making are purely driven by differences in the amount of in-

formation about the state that different decisions reveal ex-post. Without menus, however.

the inability to separate the expert's incentives from the principal's decision introduces an

additional reason to distort decision-making. Thus, the intuition derived in this paper can be

overturned; without menus, optimal distortions to decision-making can favor decisions that

reveal less information about the state ex-post. The results on implementability under imper-

fect commitment also rely on the fact that contracts can specify menus of transfer schemes.

The result that, under assumption 2.3.1, any Pareto-optimal outcome implementable under

full-commitment can also be implemented under expert-authority can easily be extended to

the case where contracts only specify a single transfer scheme. However, whether the same

is true under principal-authority is still an open question.
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2.7 Appendix

2.7.1 Completion of the type space

The notion of implementability established in definition 2.2.3 requires the expert to have a

best response at the interim stage after observing any posterior x0 E X. Nevertheless, given

the effort specified by the outcome to be implemented (eo), the probability measure, Peo(),

need not have full support. Thus the requirement that a best response must exists for every

posterior might be too strong, and more outcomes could potentially be implemented if a

best response were required to exist only after observing posteriors in the support of Peo(-).

Here we will see that this is actually not the case.

For any eo E E, let S(eo) C X be the support of Peo(-). Let a0 : S(eo) -+ D be a

decision rule with support over S(eo). For consistency, d(x) will still denote decision rules

defined over the whole simplex. The following definition formalizes the weaker notion of

implementability described above:

Definition 2.7.1. The IR outcome (co, ae(x), 1) is implementable if there exists a contract

{(t,(z), d,)}rER and a report rule r* : S(eo) -- R such that:

1. For all x 0 E S(eo), r* (xO) arg maxERclEo [t,(z (d,, -))

2. Epr [E2 [tr*(x)(z(dr*(x), 0))]] = T.

3. eo E arg maxeCE {Ep, [suprCR{Ex [tr(z(dr, 0))]}] - c(e)}.

4. For all x* E S(eo), dr*(xo) 4(x 0).

5. All transfers are non-negative.

The function r*(x) represents the expert's best response after observing posteriors x0 E

S(eo). This definition requires best responses to exist only after observing posteriors that

are in the support of Pe(-). If the expert does exert effort eo, r*(x) must be such that the

expert's expected transfer is in fact T (condition (2)), and the decision rule a, 0e(x) is actually
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implemented (condition (4)). Condition (3) guarantees that the expert is in fact willing to

exert effort eo, and (5) is limited liability.

The following proposition shows that it is always possible to complete a contract (making

sure that the same outcome is still implemented) to guarantee that the expert will have a

best response after observing any possible posterior.

Proposition 2.7.1. Let the IR outcome, (eo, dc(x), T), contract, {(t,(z), d,)}TR, and report

rule, r* (x), satisfy the conditions in definition 2.7.1. Then, there exists a decision rule d(x),

with d(x 0 ) 4,(x0 ) for all x0 e S(eo), such that the outcome (co, d(x), T) is implementable

according to definition 2.2.3. That is, there exists a contract, {(tr(z), dr)},ER (and its induced

conditional expected payment function, t(x)), such that:

1. EpeO [i(x)] = T .

2. eo C arg maxeEE {Ep,[T(x)] - c(e)}.

3. For all x0 E X, there exists ro G arg maxrC Exo [tr(z(d,, 0))] such that dO = d(x 0 ).

4. All transfers are non-negative.

Proof. Let R* = {r*(x) E R | x E S(eo)}, and f = R* U(X/S(eo)). Let ir(z) = t,(z) and

dr = dr for all r E R*. Condition (1) of definition 2.7.1 implies that

r*(.z) E argmaxER*Exo[tr(z(dr,0))] V x E (CO) (2.7.1)

Moreover, condition (3) of definition 2.7.1 implies that

eo E arg max Ep, sup {Ex [i((dr, 0))] - c(e) . (2.7.2)
eCE ,ER* )

So far we have only specified ir(z) and dr for r E R*. We need to construct these values for

r E X/S(eo) in a way such that:

1. ij (z) > 0 for all i E X/S(eo).
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2. EV[i-(z(d. , 0))] = SUPCR' E. E[r(z(dr, 0))] ;> E.[ix,(z(dx', 6))] for all z, x' E X/S(eo).

3. Exo[t,*(xo)(z(dr-(xo),0))] > Exo[ .(z(dj,6))] for all x 0 E S(eo) and z E X/S(eo).

These three conditions and conditions 2.7.1 and 2.7.2 imply that conditions (1)-(4) in the

proposition will be satisfied.

We start by showing that the vectors {tr(Z)}rR. must be uniformly bounded. WLOG,

we can assume that, if zo # z(dr, 64) for any i E {1, ..., N}, then ir(zo) = 0. If these vectors

were not bounded, since E is finite, there would exist io E {1, ... , N} such that tr(z(dr, 6o))

is not bounded. Moreover, since xP(eo) c int(X), there must exist x0 E S(eo) such that

z > 0. Thus, condition 2.7.1 would not have been satisfied.

Take any z E X/S(c). Since {fr(Z)}rR- is uniformly bounded, suprCR. E[ir(z(dr,O))] is

finite. Let (rn)nE be a sequence, contained in R*, such that

lim E.-[r,(z(d,, 0))] = sup E7[i,(z(dr, 0))].
n--oo ,cR*

Note that D is compact relative to the discrete metric, and the set of vectors, {f,(Z)}rR*, is

bounded (relative to the Euclidean metric). Thus, there must exist subsequences, d, and

rnk (z), that converge (relative to the discrete metric and Euclidean metric respectively).

Moreover, it is easy to verify that the function f (t(.), d) = E;[t(z(d, 0))] is continuous relative

to those metrics. Define de = limk-oo , and i4(z) = limi-,o, rnk (z) (relative to their

respective metrics). Note that i 4 (z) > 0. Furthermore, by continuity,

0[(z(4, 0))] lim EsLfrr (z(drnk,,))] =sup IEs4f(z(d,, 0))].
k-w ' ,R*

Using this procedure, we can construct t4 (z) and de for all z E X/S(co). We just need

to check that conditions (2) and (3) above are satisfied. Take z E X/S(eo). By definition,

E. s(z ( , 0))] = sup IE.[i.(z(dr, 0))].
rcR*

Take x' C X/S(e). Then i,,(z) = lim-oc frn(z) and d2, = limce dn for some sequence
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(rn)nEN C R*. Again, using continuity we obtain:

E7,[i,(z(d,' , 0))] lim E.[ir,(z(dr, 0))] < Ej[i(z(d, 0))],

so condition (2) is satisfied. Showing that condition (3) is satisfied is analogous.

The argument used in the proof can be generalized into other mechanism design envi-

ronments. In setups where the space of decisions is a compact metric space (so that every

sequence of decisions has a converging subsequence within the set), and where the agents'

utility is continuous in decisions, a similar argument would make any assumptions about the

type space superfluous. For example, it should often be possible to "convexify" a non-convex

type space without affecting the set of implementable outcomes.

2.7.2 Stochastic decision rules

This section illustrates two points. First, if full-commitment contracts could specify stochas-

tic decision rules, the parties in general could do better. Thus, restricting attention to

deterministic decision rules is with loss of generality. Second, outcomes with stochastic de-

cision rules are difficult to implement under imperfect commitment. Specifically, we will see

that any outcome with a stochastic decision rule implementable under expert-authority is

Pareto-dominated by an outcome with a deterministic decision rule and also implementable

under expert-authority.

Let o(x) denote a stochastic decision rule (o-d(X) is the probability of taking decision

d e D after observing posterior x E X). The following proposition shows that, if there exists

a decision that can be identified ex-post and that reveals the realization of the state, then

any outcome that would be implementable if all decisions were revealing can be arbitrarily

approximated by an implementable outcome with a stochastic decision rule. Formally,

Proposition 2.7.2. Suppose that there exists do E D such that z(do, 00) # z(d', 0') for all

(do,0 0 ) # (d',0'). Let a-(x) be such that Od (X0) > 0 for all x 0 e X, and such that the
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outcome (eo, o-(x), T) is IR. Then (eo,o-(x), T) is implementable if and only if it would be

implementable in an environment with i(d, 0) = (d, 0).

Proof. Only one side of the proof is non-trivial. Let {(tr(d, 0), or-)}CR be the contract

that implements (Coo (x), T) when 2(d,0) (d, 0). For each ro E R, let tr0 (Zo) = 0 if

zo V {z(do,0) 1 0 E 8}, and or(x)iro(zo(do,0i)) = Ejro[tr0 (d,0j)], for all 0, E . The

function tr(z) is well defined because, if 00 # 0', z(do, Bo) # z(do, 0'). Furthermore, to(z) is

non-negative. Now, for any 00, 0' EE , if d' / do, then z(d', 0') # z(do, 0o), so o (z(d', 0')) = 0.

Therefore, for any 0, E 8 and ro C R, IEro [ir (z(d, 0j))] = Eoro [tro (d, Of)], and the contract,

{(t,(Z), o')}R, implements the same outcome.

The idea is that, when there exists a decision that is identifiable, and that reveals the

state ex-post, as long as it is always taken with positive probability, it is possible to place all

the weight of a contract upon this decision. By doing this we can effectively make the state

of nature contractible. However, for this to work it is crucial that the expert is risk-neutral,

and that the parties are able to commit to stochastic decision rules.37 Note that with a

contract as the one constructed in the proof, without full-commitment neither one of the

parties would actually be willing to carry out the stochastic decision rule. If the expert had

the right to decide, he would always choose do, which is the only decision that allows him to

get positive transfers. If the principal had the decision right, she would not want to choose

do with positive probability whenever her information was such that some other decision

was ex-post efficient. In fact, the following proposition shows that stochastic decision rules

would never be implemented under expert-authority.

Proposition 2.7.3. If the IR outcome (Co, o, T) is implementable under expert-authority, it

is (at least weakly) Pareto-dominated by another outcome with a deterministic decision rule

and implementable under expert-authority.

Proof. Suppose that (eo, a, T) is implementable under expert-authority. For the expert to

be willing to randomize after he observed posterior x0 , he must be indifferent between the

" If the expert was risk-averse, the stochastic contracts considered here would destroy value.
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decisions that he chooses with positive probability. Thus, using the same compensation

scheme, it is possible to implement an outcome (eo, d(x), T), where

d(xz) E arg max Exo[y(do,0)].
doE{dEDjUd(X )>O}

The new outcome leaves the expert indifferent (the conditional expected payment function.

T(z) does not change), and makes the principal better off. D

2.7.3 Proof of Proposition 2.3.1 (part (a))

Let the outcome (co, d(x), T) be implementable under full-commitment with a contract

{(tr(z), d)},ER. For each x0 E X, let r*(zo) c argmaxrERExo[tr(z(dr, 0))], and d*(xo) =

d(x 0 ). Let R* = {r*(xo) E R | 0 E X}. For each ro E R*, define iro(zo) = tro(zo)

if zo E {z(dro,0) 1 0 E 8}, and £ro(zo) 0 otherwise. Consider the expert's choice

of d E D after having chosen a function tro(z) with ro E R*. Suppose he picks some

d' # dro. Take any 0, C 8. If z(d',0i) z(dro,Oi), then tro(z(d',Oi)) = fro(z(dro,0i)).

If z(d',0i) z z(dro,0i), then, by assumption 2.3.1, z(d',Oi) ( {z(dro,0) 0 0 E 8}, and

iro(z(d',6Q)) 0 < iro(z(dro, 0j)). Thus, the expert prefers dro over d' when the transfer

scheme is iro(z). Then, it is clear that the contract, {fr(x)},ER*, implements (eo, d(x), T)

under expert-authority.

2.7.4 Proof of Proposition 2.3.1 (part (b))

Let the Pareto-optimal outcome (C0, d(x), T) be implementable under full-commitment with

a contract {(tr(Z),dr)}rER. For each xo C X, let r*(xo) e argmaxrRExo[tr(z(d,,0))], and

dr*(xO) = d(x 0). Let R* = {r*(zo) E R £ 0 E X}. The functions, tr*(x)(Z) and dr*(x), generate

a partition over the simplex given by {Xj }jj, where xo E Xi if and only if tr*(xO)(z) = t'(z)

and dr*(xO) = dj. The idea of the proof is to construct a contract, {fr(Z)}rR*, satisfying:

1. The functions, i,*(x)(z) and dr-(x), partition the simplex in the same way as above.
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2. Given the choice of a transfer scheme ij(z) and recommendation drO (with ro E R*),

the principal prefers dr to any other decision.

3. For all 0, E and To E R*, iro(z(dro ,0i)) tro(z(droOi)). Moreover, r1 (z) ;> 0.

These conditions and the fact that the original contract implemented (eo, d(x), T), imply that

the contract, {tr(Z)}rR-, implements this outcome with a rubber-stamping scheme under

principal-authority. To see this note that, if the expert never deviates, and chooses r-(O) (z)

and recommends dr-(xO), with x0 E Xi, the principal's posterior must be an element of the

convex hull of Xi, which is denoted by xi C X. The transfer scheme, r-(Xo)(Z) = P(z),

must guarantee that the principal's preferred decision, given the posterior z- E X, is indeed

d,-(x) dj. If the expert chooses a pair (Ir(z), do), that is never observed along the

equilibrium path, we take the principal's off-equilibrium beliefs to be zJ, where to (z) ti(z)

When this happens, the principal overrules do and takes dj. Thus, the expert's choice

effectively reduces to picking an option from the menu {(ir(z), dr)}rCR*, which will not be

overruled, and, by condition (3) above, the same outcome is implemented.

All we need to do is to construct these transfers. WLOG, assume that, for all ro E R*

and zo {z(dro,0) 10 E e}, tro(zO) = 0. For all x0 E X, let ir.(xo)(zo) = t (zo) if xo E Xi

and zo E {z(dj,O) | 0 c 8}, and ir-(xo)(zo) = tj otherwise, where tj E R+ will be defined

shortly. Clearly, these transfer schemes satisfy conditions (1) and (3) above.

Here we show that, for payments fj appropriately defined, condition (2) is also satsfied.

Consider the principal's decision problem after she observes the expert's choice, (ir-(xo)(z),

dr(xo)) with x0 E Xi. Suppose the principal is considering picking an alternative decision

d' # d r(xO) = dj. Let 6 d' = {0 E a z(d', 0) k z(dj, 0)}. Then

Es3 [y(d., 0) - P (z(dj, 0)) - y (d', 0) + P (z(d', 0))] =

Era [y(dj, 0) - y(d', 0)] + Pr 10 E 8' I E [j - t3 (z(dj, 0)) 10 E 8d]
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where the equality follows because, by assumption 2.3.1, z(d', i) # z(dr(xo),O ) implies

z(d', O) ( {z(dj, ) | 0 E 8}. Let x = mi nJxi = 1,..., N, > 0}, and B E R such

that ly(do,0i)| < B for all do E D, O6 E 0. and ti(z(dj,0i)) < B for all Oi E 0. Define

3= . Then, if Pr [0 E ed/] > 0, t3 ensures that the principal would not prefer d' to

d . If Przy [0 E 6d] = 0, then for all i E {1, ... , N} such that x > 0, z(d', Oi) = z(dj, 0i).

Suppose that Ex [y(dj, 0) - y(d', 0)] < 0, so that the principal would deviate. We will show

that this must imply that this outcome is Pareto-dominated, which is a contradiction. Since

xi is an element of the convex hull of Xi (it need not be an element of Xi), there must exists

x0 E Xi such that Exo[y(dj, 0) - y(d', 0)] < 0, and such that x' = 0 implies x? = 0. Thus, for

all i E {1, ... , N}, if z > 0, then xi > 0 and z(d', Qi) = z(dj, Oi). Therefore, with the original

contract we could have implemented an outcome with one change: d(x 0 ) = d' instead of di.

This outcome Pareto-dominates the original outcome.

2.7.5 Proof of Theorem 2.4.1

We begin with necessity. Suppose that an outcome (eo, d(x), T) is implementable with a

contract {(tr(Z), dr)}rCR. Note that, for all i E {1, ..., N}, tr(z(dr, Oi)) must be bounded

above (it is bounded below by limited liability). 38 This implies that the function, T : X -+ R,

defined as
N

T(x0 ) = sup o't,(z(dr, Oi)),
,ER i-i

is well defined. For any z0 E X, let r*(x') E arg maxER Exo[tr(z(dr, 0))] (when x0 E X, the

supremum is attained). We will see that T(x) satisfies conditions (1)-(5) of Theorem 2.4.1.

Conditions (1)-(2) must be satisfied by definition 2.2.3. Condition (3) is satisfied because

T(x) is the upper envelope of linear functions of x (so it is convex). To see that condition

(4) is satisfied, take any x-' E X-', and consider the line segment that joins x- and i. For

each a c [0, 1], let =() afi + (1 - &)x -. By the envelope theorem (see Milgrom and

38 Otherwise, for any x0 E int(X), we would have arg maxrCR Exo [tr(z(dr, 0))] = 0.
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Segal (2002) or Krishna and Maenner (2001)),

T(ij(ao)) - T(x-) + J [ 0a A(a)da,

where A(a) _t,-=e())(z(dr-(i(Q)),Oi)) - Ex [tr(,(a))(z(dr*(x(a)),6))].39 By the convexity of

T(x), A(a) must be non-decreasing. Then we have:

T(x") + T'(x | xz - Xz) = Ex-i [tr*(. (0))(z(dr*(-(0)), 0))] + A(0+)

> EX-i [tr*(.(0))(z(dr*(s(o)), 0))] + A(0)

= tr*( (0))(z(dr*(.(0)), Oi)) > 0,

where A(0+) = lim,_,o+ A(a). The first equality follows because

T'(x-i I x-xi - i.
T(x-' + h(xz -

Finally, to see that condition (5) is satisfied. take any x0 E X and v E span({xi - z I

z(d(x0 ), O6) = z(d(x0 ), 6O)}). Then, there exists vectors, { k - k" K, and scalars, {Ak}K

such that v = Zk 1 Ak(Xik - zk) and z(d(x 0 ), ik)= z(d(x), 0 jk) for all k E {1, ..., K}. By

definition,

N N K

T (x 0 +(v) x + Vi~tr.(o)(z(dr.(xo), Q)) = T (x 0 ) + E tr. (xo) (z(d(? ), 0))) YA(z -

i=1 i=1 k=1

K N

T(x 0 ) + E Ak Z(Xzk - Xk)tr.(ox)(z(d(xo), O)) = T(?),
k=1 i=1

39 This follows because

E( (Q) [t,(z(d,, 0))] = Exi, [tr(z(d,, 0))] + a [tr(z(dr,,0 ))
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where the last line follows because Ei(=1k - Xi)tr.(xo)(z(d(xO),6i)) = 0, for all k E

{1, ..., K}.

Now we prove sufficiency. Suppose that the function T(x) satisfies conditions (1)-(5)

in Theorem 2.4.1 given the outcome (eo, d(x), T). For each 10 E X, let v(x 0 ) E RN be a

subgradient of T(x) at xO with the property that, if z(d(x0 ), 6h) = z(d(x0 ), Oj), then v(x 0 ) -

(zi - xz) = 0.40 Such subgradients can be constructed because T(x) satisfies condition (5).

For each x0 E X and i E {1, ..., N}, define:

txo (z(d(x0 ), Oi)) = T(x0 ) + v(x 0 ) - (xi' - x0).

Note that:

1. These transfers are well defined. If z(d(x0 ), O) = z(d(x0 ), 0), txo(z(d(x 0),0i)) -

txo (z(d(x0 ), O6)) = v(x) - (x - Xi) = 0.

2. For all x0 C X, Exo[txo(z(d(x 0 ),0))] = T(x0).

3. For all X0, / E X, T(x0 ) > Exo[tx,(z(d(x'),0))]. To see this, take any x0, x' E X, and

note that, by construction,

T(x0 ) T(x') + v(x') - (xO - x') = Exo[tx,(z(d(x'), 0))].41

4. For any i E {1, ... ,N} and x 0 E X/X-', txo(z(d(xo),6O)) > 0. To see this, take

any x0 E X/X-' and consider the line segment that joins x with the set X-' going

through AO. Let x- = zi(x0) be the point in X-' that lies in this line segment. Let

(aY) = (1-a)x- +axz describe the line segment (a E [0, 1]). Note that, since v(j(ao))

is a subgradient of T(x) at ,f(co), A(ao) = v( 0(ao)) - (xi - Xz) is a subderivative of

T(I(ca)) at cao. Moreover, as T(1(a)) is convex and continuous in [0, 1], it can be

40 A vector, v(x 0 ) E RN, is a subgradient of the convex function, T(x), at x0 E X if T(x) > T(x 0 ) +
v(x 0 ) . (x - x0 ), for all x E X.

41 The last equality follows because E_ to (z(d(x'), Qi)) = Ex? (T(x') + v(x') -(xi - x'))
T(x') + v(x')- (x 0 - x').
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expressed as

T(±(ao)) a T((0)) + j A(a)da,

where A(az) is non-decreasing in oz. Moreover,

t4(,) (z(d(X (a)), O6)) = T(I(a)) + v( (a)) - (x'

is non-decreasing in a. 42 Thus, for any a > 0,

ti(a)(z(d( (v)), O6)) > T(z(0+)) + A(0+) = T(x -) + T'(x- x

a)A(a)

x i) > 0.

In particular, this inequality holds when :f(a) = x0.

Finally we will modify the transfers that we constructed to guarantee that limited liability

is satisfied for all x 0 E X, and z. We must do so in such a way that the conditions (1)-

(3) that we just verified are still met. For each x0 E X, let ixo(z) = txo(z) if, for some

i E {1,..,N}, z = z(d(x0 ),O6) and xz > 0. Let ixo(z) = 0 otherwise. Note that ix(z) is well

defined, and satisfies limited liability. Moreover, ixo(z(d(xa),Oi)) = txo(z(d(x 0 ), O)), for all

i E {1, ... , N} such that xO > 0. Thus, for all x 0 E X, E o[ixo(z(d(x 0), O)) = T(x 0 ).

In order to prove that the contract {(ix(z), d(x))}xx implements the outcome (eo, d(x), T),

we must only show that T(xa) > Exo[bx,(z(d(x'),0))], for all x0 , x' E X. Suppose that there

existed x', x0 E X such that EXo[ix,(z(d(x'),0))] > T(x 0 ). Define

I {i E {l, ... , N} | ,(z(d(x'), 6h)) # tx,(z(d(x'), 6i)) or x = 0}.

4 Take any a > a'. Then,

tj (a) (z(d ((a)), O)) - t,(') (z(d(.i (a')), 6 i)) A(s)ds + A(a)(1 - a) - A(a')(1 - a')

> (a - a')A(a') + A(a)(1 - a) - A(a')(1 - a')

=(1 a)(A(a) - A(a')) > 0.
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Let K = #(I). Note that K < N. Otherwise, we would have

Exoo[ix,(z(d(x'), 0))] =0 < Exoo[ixo(z(d(x),0))] -- T(x0 ).

This follows because xi > 0 would imply ix, (z(d(x'), 02)) # txr (z(d(x'), 6 )), which means

that ix, (z(d(x'), 02)) = 0. Furthermore, there must exists i C I such that x' > 0. Otherwise,

we would have that

EXo[ixi(z(d(x'), 0))] = Exo[tx,(z(d(x'), 0))] < T(x 0 ),

since ix,(z(d(x'), 0)) f tx,(z(d(x'), Of)) would imply x9 = 0.

K 0
For s E (0, 1), define x" E init(X) as xi= y- if i E ,adx =( ) if (I.W

will show that, for E small enough, Exo[tze(z(d(xe),0))] > T(x0 ), which is a contradiction.

Let 61 {0 I i c I}. Note that

Exo [tx, (z(d (xE), 0)) |0 > 0 = E o [ix,(z(d(x'), 0)) 10 C E'

where the equality follows because, if 0, E 89 and x0 > 0, ix,(z(d(x'), 0j)) = 0. The
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conditional expectations are well defined because there exists i E I with xz > 0. Moreover,

Exo [txe (z(d(xi), 0)) 16 0 8'] =Eze [te (z(d(x'), 6)) 16 61]

T T(xE) - EIE,,t (z (d(xE), 0)) 6 8C

>]Ee[tx,(z(d(x'), 6))] - EExe[te(z(d(x"), 6)) |6 E '1]
1-E

=Eze [tx,(z(d(x'), 6)) 6 0'1]

+ E EXe [tx, (z(d(x'), 0)) - txe (z(d(xE ), 0)) 0 G E0-I
1 - E

=Eo [ix, (z(d(x'), 6)) 1 6 6 C0]

+ E e [tx,(z(d(x'), 0)) - te (z(d(x'), 0)) |6 E ']

where each line can be obtained by using the definitions of ix(z), 61 and x. Then we have:

Exo [tx (z(d(x'), 6))] > Exo [ix,(z(d(x'), 6))] +-EE e [tx,(z(d(x'), 6)) - txe (z(d(x'), 6)) 16 C 0']

> T(x) + Eze [t,(z(d(x'), 0)) - txe (z(d(x'), 6)) | 0 E '].

Note that, for all i c {1, ... , N}, txe(z(d(xE), 6h)) must be bounded above (it is bounded below
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because, since xE E int(X) for all E E (0, 1), it must be non-negative). 4 3 Thus,

lim EzE [tx,(z(d(x'), 0)) - txe (z(d(xE), 0)) 0 e '] = 0,
E-a

and, for E small enough, Exo[tx (z(d(xE), 0))] > T(x0 ), a contradiction.

4 Suppose not, and take any Eo E (0,1). Then there must exists E' E (0,1) such that

Ezeo [tx,, (z(d(xc'), 0))] > T(xzo), a contradiction.
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Chapter 3

A Reputational Model of Expertise

3.1 Introduction

After taking advice from an expert (a doctor, for example), we often make inference about

the quality of his advice based on the outcome of the decision that we took. When our

assessment about the expert's quality is positive, we are more likely to return for advice

or to recommend him to other people. Thus, experts have an interest in fostering their

reputation amongst their clients.1 This paper addresses the question of how the expert's

concern for his reputation can influence the amount of information that he can transmit to

his clients, and the way decisions are ultimately taken.

I examine a model with two parties, a principal or decision-maker (she), and an expert

(he). The principal has to choose between two decisions. Her ex-post utility depends on

the decision taken and on the state of nature, which is assumed to be binary. The expert

can be informed or a charlatan. If the expert is a charlatan, he does not have any private

information about the state, and his prior belief about the likelihood of each state coincides

with that of the principal. If the expert is informed, he receives a private and non-verifiable

informative signal about the state of nature. The expert is the only one that knows his

type. The parties play the following game: first, the expert observes his type and, if he

1 Ehrbeck and Waldmann (1996), Chevalier and Ellison (1997) and Chevalier and Ellison (1999) provide

evidence on the influence of reputational concerns over the behavior of experts.
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is informed, the realization of the informative signal about the state. Second, the expert

makes a cheap-talk report to the principal (no restrictions are imposed on the set of feasible

reports). Third, the principal observes the report and takes a decision. Fourth, the principal

observes the realization of the state of nature and updates her belief that the expert was

informed. The expert has no direct interest in the principal's decision, he is only concerned

about his reputation. More precisely, the expert's ex-post utility is a continuous and strictly

increasing function of the principal's posterior belief that he is informed. Note that, absent

the expert's reputational concerns, there would be no conflict of interest in this model. Thus.

in line with Holmstr6m (1999)'s seminal paper, in this model career concerns are the source

rather than the cure of the incentive problem.

The main result of the paper is that, no matter how small is the principal's prior belief

that the expert is a charlatan, the expert's concern for his reputation severely reduces the

value of his advice. The game played by the parties has a unique equilibrium outcome in

which some information is transmitted by the expert. This outcome can be implemented

with an equilibrium in which the expert only sends two reports, so the information that

the expert can transmit is endogenously coarse. Moreover, the expert must be indifferent

between the two reports precisely when his posterior about the state of nature is equal to

the prior. Thus, the expert sends one report or the other depending on whether his posterior

about the state is above or below the prior (with two states of nature, posteriors are one-

dimensional). This fact implies that the model yields a precise prediction about the way the

principal's decision will be distorted. Indeed, if in equilibrium the expert's advice influences

the principal's decision, decision-making is biased away from the status quo, understood

as the decision that the principal would take without the expert's advice.2 Remarkably,

this distortion does not disappear as the principal's prior belief that the expert is informed

approaches one.

The paper most related to this one is Levy (2004). She studies a model very similar to the

2 The charlatan randomizes between the two reports, so he sometimes induces the principal to inefficiently

deviate from the status quo. The informed expert also distorts the principal's decision. When his posterior

about the state lies between the prior and the efficient threshold to change the decision, he will induce the

principal to inefficiently deviate from the status quo.
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one analyzed here. The main difference is in the models' information structures. In Levy's

model, the expert observes the realization of a binary informative signal about the state

(which is also binary). The expert has a continuum of types which determine the precision

of the signal. The main result of the paper is that there is unique equilibrium where two

reports are sent (only equilibria where at most two reports are sent are considered). Under

the specific utility function for the principal considered, this equilibrium leads to decision-

making being distorted away from the status quo (what Levy calls anti-herding), as happens

here. Importantly, in contrast to what happens in the two-report equilibrium of my model, in

Levy's equilibrium the expert is not indifferent between the two reports when his posterior

is equal to the prior. This means that there are utility functions for the principal under

which Levy's equilibrium would actually lead to distortions to decision-making in favor of

the status quo. This does not happen in my model because the expert is indifferent between

the two reports exactly at the prior. Intuitively, in my model, if the expert was truthful,

deviations from the status quo would only be recommended by an informed expert. Thus, in

equilibrium, recommending deviations from the status quo carries a reputational premium

for the expert, who ends up inducing such deviations too frequently.3 This argument breaks

down in Levy's model because a relatively uninformed expert may also recommend deviations

from the status quo under truth-telling.

This paper is also closely related to Ottaviani and Sorensen (2006b) and Ottaviani and

Sorensen (2006c), who analyze single-expert games similar to the one studied here, but with

the important distinction that the expert does not know his type. They also find that in

the presence of reputational concerns, the information that the expert can credibly transmit

becomes endogenously coarse. Another strand of the literature, which began with Scharfstein

and Stein (1990)'s influential paper. has emphasized how reputational concerns can create

incentives for herding in multiple-expert models where the beliefs about each expert's quality

are formed based on the reports made by all the experts.4

3 This result has a similar flavor to that in Prendergast and Stole (1996), where young experts react too

much to their information to signal their ability.
4 See, for example, Trueman (1994), Zwiebel (1995), Avery and Chevalier (1999), Effinger and Polborn

(2001) and Ottaviani and Sorensen (2006a).
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The rest of the paper is structured as follows. Section 3.2 presents the model. Section

3.3 shows that the game played by the parties has a unique equilibrium outcome in which

some information is transmitted by the expert, and that this outcome is implementable by

an equilibrium in which only two reports are sent. Section 3.4 discusses how the potential

presence of charlatans reduces the value of the expert's advice. In particular, it illustrates

how the expert's concern for his reputation distorts the principal's decision-making away

from the status quo. Finally, Section 3.5 concludes.

3.2 The model

Consider an environment with two parties, a principal (she) and an expert (he). The prin-

cipal's utility, up(d, 6), depends on a decision, d E (do, dI} = D, and on the binary state of

nature, 0 E {00, 61}. Both parties start with the same prior belief, xp E (0, 1), that the state

is 01. The decision do represents the status quo in the sense that it is assumed to maximize

the principal's expected utility under the prior.

The expert can have two types, t E {Ch, I}; he can be a charlatan (Ch) or informed

(I). The expert is the only one that knows his type; the principal starts with a prior belief,

zp E (0,1), that the expert is informed. A charlatan expert has no additional information

about the state. That is, lie believes that the state is 61 with probability x. An informed

expert, however, privately observes the realization of a signal that contains information about

the state. The realization of the signal cannot be verified by the principal. Without loss of

generality, the signal can be described by a CDF over posteriors denoted by F(x), where

X E [0, 1] is the informed expert's posterior probability that 6 = 01. By the law of iterated

expectations, we must have EF[xII xp. We only impose the restriction that F(x) must be

continuos at xP.5 The expert has no direct interest in the principal's decision; he is only

concerned about his reputation. We assume that the expert's utility is an strictly increasing

and continuous function, UE(Z), where z is the principal's posterior belief that the expert is

5 This assumption is not crucial for the main results but simplifies the analysis.
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informed. Note that UE(-) does not depend on the expert's type.'

The parties play the following game. First, the expert observes his type. If he is a

charlatan his posterior belief that the state is 01 is x,. If he is informed, he observes a

posterior, x E [0, 1], drawn from the CDF, F(x). Based on these observations, the expert

chooses a lottery over reports, at E AR.7 The principal observes the expert's report, r E

R, and, given her conjecture about the expert's behavior (&t), updates her information

about the state. Let X'(r) be the principal's posterior belief that the state is 01 after

observing the expert's report, r c R, given her conjecture about the expert's behavior, &X.

Based on this information, the principal takes a decision. Finally, the principal observes

the realization of the state, and updates her beliefs about the expert's type.8 Denote the

principal's posterior belief that the expert is informed (given her conjecture r3t, the expert's

report and the realization of the state) by z" (r, 0). Contingent transfers between the parties

are not feasible.9 The following timeline summarizes the sequence of events:

I | I |
Expert observes Expert sends Principal observes Principal observes
t E { Ch, I) and, if a report r ER rand takes a decision the realization of the
t = I, draws a d eD state and updates her
posterior about the belief that the expert
state from F(x) was informed

Figure 3.2.1: Timeline

The analysis will focus on identifying the properties of the Perfect Bayesian Nash equi-

6 An specification like this one can be micro-founded with a two-period model such as those in Holmstr6m

and I Costa (1986) or Holmstr6m (1999). Reduced-form models of reputation like the one presented here

have previously been studied by Scharfstein and Stein (1990), Levy (2004), Ottaviani and Sorensen (2006b)
and Ottaviani and Sorensen (2006a), for example.

7 As is typical in cheap-talk games, the set R is specified by the equilibrium (see Crawford and Sobel

(1982)).
8 If u(d, Oo) = u(d, 01) for all d E D, the assumption that the principal observes the realization of the

state is equivalent to the principal observing her utility ex-post.
9 This assumption is made to enable the model to isolate the effect of the expert's concern for his

reputation on the amount of information transmitted and on the way the decision is made. Holmstr6m

and I Costa (1986), Gibbons and Murphy (1992) and Caruana and Celentani (2001), for example, study

how contingent payment schemes should be structured in models where the agent is concerned about his

reputation.
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libria of the game. Formally, we have:

Definition 3.2.1. The expert's report rule, a : {Ch, I} x [0,1] -4 AR, and principal's

decision rule, d : R -- D, are a Perfect Bayesian Nash equilibrium (equilibrium hereafter)

of the game if

1. The principal's beliefs, za(r, 0) and xU-(r), are generated through Bayes rule whenever

r is sent given the principal's correct conjecture, o . If r is never sent given or, then

z' -(r, 0) = 0 and xo-'(r) = x .

2. For all x e [0, 1] and t E {Ch, I}, ro E supp(oi) implies ro e arg maxCR TEx [UE r, 0))-

3. For all r G R, d(r) c argmaXdCD E .x ()[uP(d,0)]

The first condition states that the principal's beliefs must be consistent with the expert's

behavior. The second condition guarantees that ot is actually a best response for the expert

given his information and the principal's (correct) conjecture. The third condition states

that the principal must take the decision that maximizes her expected utility given her

information. Finally, we have

Definition 3.2.2. An outcome of the game is a pair, (UE(x), 6(x)), where UE : [0,1] -- R

specifies the expert's expected utility conditional on the posterior that he observed, and 6 :

[0,1] -* AD specifies the decision (or lottery over decisions) implemented as a function of

the posterior observed by the expert.1 0

The outcome of the game determines the parties' expected payoffs as a function of the

information about the state available at the interim stage. That is, if the equilibrium re-

port rule, o, and decision rule, d(r), implement the outcome, (UE(x), 6(x)), we must have

UE(x) =m axrCREx[uE(zt(r,0))], and 6(x)(do) = Pr[Ch | x]Pr[d(r) =do |h] + Pr-[I

x]Pr[d(r) = do I o] for all x E [0, 1] and do E D.

10 In this definition we are implicitly assuming that supp(F(x)) U{xp} = [0, 1]. Alternatively, we could

define the functions in the definition only for posteriors that can be observed by the expert.
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3.3 The equilibrium outcomes

This section derives the properties of the game's equilibrium outcomes. The main result is

that there is a unique informative equilibrium outcome in which the information transmitted

by the expert is severely limited. Indeed, this outcome can be implemented by an equilibrium

where an informed expert only sends two reports depending on whether his posterior belief

that the state is 01 is above or below xP, and the charlatan randomizes between the two

reports.

As is standard in cheap-talk games, in this game there is always an uninformative or

babbling equilibrium in which the expert always sends the same report and no information is

transmitted. Here we will focus on the informative equilibria of the game. The first result.

which is a consequence of the following two propositions, is that the information transmitted

in any informative equilibrium, can be transmitted in an equilibrium where only two reports

are sent. Let {zt(ro, Oj)} _ be the lottery over reputations induced by the report ro E R,

given the principal's conjecture about the expert's behavior, 81. Then we have:

Proposition 3.3.1. In any equilibrium, (o, d(r)), reports sent along the equilibrium path

can be divided into three groups: R 0 , R1 and Rp. Reports belonging to the same group induce

the same lottery over reputations. If a report is sent after the expert observes a posterior

smaller than the prior, it belongs to Ro; if a report is sent after the expert observes a posterior

greater than the prior, it belongs to R 1 ; and if a report is sent only after the expert observes

the prior, it belongs to Rp. It must be the case that Pr[r e Rp| o]= 0.

Proof. Take any equilibrium, (os, d(r)). Any report sent along the equilibrium path must

be sent sometimes by the charlatan. Otherwise, such a report would lead the principal to

believe that the expert is informed with probability one, and the charlatan would actually

always want to send it. Thus, the expert must be indifferent between all the reports that

are sent along the equilibrium path when his posterior about the state is equal to the prior.

The next part of the argument is illustrated in Figure 3.3.1. The horizontal axis represents

the posterior about the state observed by the expert. There is a line associated to each
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uE(Zx(ro, 06))

uE{I$ Tp,00))

UE(ZX( O100))

UE(ZX(, 200))

UE(Z (r2, d1))

ix(r, Or))

UE(X(ro, 01))

0 XP 1

Figure 3.3.1: The expert's decision problem

different report. The height of the line associated to a report, r, at a posterior, x, gives the

expert's expected utility (given x) derived from reporting r. From our previous discussion,

the lines associated to any report sent along the equilibrium path must intersect at the

prior, as is illustrated in the figure. Suppose two reports are sent in equilibrium after the

expert observes posteriors greater than the prior. Since nE(-) is strictly increasing, both

reports must induce the same lottery over reputations. Otherwise, as shown in the figure.

the expert would strictly prefer the report that induces the highest reputation after 01 is

realized. Similarly, if two reports are sent in equilibrium after the expert observes posteriors

smaller than the prior, they must induce the same lottery over reputations.

Finally, if a report, r,, is only sent after the expert observes the prior, it must be the

case that zo-(r,, 00) = z7'(rp, 01) = 2 > 0, as illustrated in the figure. Indeed,

- zPr[r, I, oT]Pr[0 1 rp, I, o]
z(rP,) = zPr[r, I, o]Pr[0 | r.,1, o] + (1 - zp)Pr[rp | Ch, a]Pr[0 | rp, Ch, o]

z,Pr[r, I, ot]

zPr[r| 1, o- ] + (1 - z,)Pr [rp | Ch, a]'

which does not depend on 0. The second equality follows because Pr[0 | rp, I, ot] = Pr[|
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ry, Ch, o7]. Moreover, it must be the case that Pr[r E Rp I o] = 0. Otherwise we would

have,

Pr [1, r G Rp I] a'I ~ l ~ p11 ~ C u1
0 = Pr[I r ,| i Pr(I I r E Rp, ot] = E[Pr[I I r, o'] | r E Rp, a,]= > 0,

Pr[r E RP | oI ] ' XJX

where the first equality uses the assumption that F(x) is continuous at xp.

Proposition 3.3.1 implies that, in any equilibrium, there can be at most two lotteries

over reputations induced with positive probability. However, reports that contain the same

information about the expert's type (i.e. that induce the same lottery over reputations)

could potentially contain different information about the state of nature. The following

proposition proves that this is actually not the case.

Proposition 3.3.2. In any equilibrium, if r, r' E R are sent along the equilibrium path and

induce the same lottery over reputations, then we must have x7'(r) = xi (r'), where o is

the principal's (correct) equilibrium conjecture about the expert's behavior.

Proof. See appendix 3.6.1.

Therefore, in any informative equilibrium the principal can end up (with positive proba-

bility) with at most two different posteriors about the state of nature. As suggested by this

observation, the next result, which is a corollary of Propositions 3.3.1 and 3.3.2, states that

there is no loss of generality in considering only equilibria in which at most two reports are

sent. Formally,

Corollary 3.3.1. Any equilibrium outcome can be induced by an equilibrium in which at

most two reports are sent.

Proof. Take any equilibrium. From Propositions 3.3.1 we know that reports sent along the

equilibrium path can be divided into three groups: R 0 , R 1 and Rp. Suppose that the expert

merges all the reports that belong to each group and sends a single report, ri whenever he was

gong to send a report in Ri, with i = 0, 1, p. By Propositions 3.3.1 and 3.3.2, for i = 0, 1, p,
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ri must indue the same lottery over reputations and the same posterior about the state of

nature as each report in Ri. Finally, suppose that the expert sends ro whenever he was going

to send rp. Without loss of generality, assume that ro was being sent with positive probability

by both the informed expert and the charlatan. Then, since, by Proposition 3.3.1, r, was sent

with probability zero by the charlatan and the informed expert, this change does not affect

the lotteries over reputations or the posteriors about the state induced by ro and ri. Note

that, in the new equilibrium, the expert's expected utility conditional on his information is

the same as in the original equilibrium (see Figure 3.3.1). Moreover, the principal is induced

to take her decision conditional on the information available in the same way as she did

originally (we assume that whenever she was indifferent between the decisions, she always

chose the status quo). Thus, the outcome implemented by the equilibrium with two reports

coincides with the original outcome. D

It remains to be seen that there actually exists an informative equilibrium where two

reports are sent. The following proposition states that, indeed, such equilibrium always

exists and it is unique.

Proposition 3.3.3. There exists a unique informative equilibrium in which two reports are

sent. The expert must be indifferent between the reports when his posterior about the state

is equal to the prior.

Proof. See appendix 3.6.2. l

Therefore, as we wanted to show, this model has a unique equilibrium outcome in which

some information is transmitted by the expert.

3.4 The value of information in the presence of char-

latans

The purpose of this section is to emphasize how, if the expert is concerned about his reputa-

tion, the mere possibility (no matter how small) that he may be a charlatan severely reduces
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the value of the information that he possesses. Indeed, for any prior belief that the expert is

informed, zP E (0, 1), in the unique informative equilibrium outcome of the game decision-

making is distorted away from the status quo. That is, there are posteriors under which do

would be the efficient decision, but where di is taken instead. There is a discontinuity in the

value of the expert's information in the sense that the induced distortion to decision-making

does not disappear as z, tends to one.

We start by considering what would happen in the model if the expert's type was known to

the principal (or if the expert was not concerned about his reputation). In this case, it would

always be incentive compatible for the expert to reveal his information, and the principal

would always take the efficient decision conditional on the information available. Figure

3.4.1 illustrates the principal's decision problem. The horizontal axis represents the expert's

uP(d0, 0o)

ur(di, 1)

uP(dd, 0,
0uP(d0, d1)

0 Xp x1

Figure 3.4.1: The principal's decision problem

posterior about the state, and each line gives the principal's expected utility conditional on

each posterior after taking one of the decisions. As we can see, do is the efficient decision if

the posterior is to the left of x*, and di is the efficient decision otherwise. Note that, as long

as F(x*) < 1, under truthful revelation, the expert's information influences the principal's

decision, so the expert's advice is valuable.

When the expert is concerned about his reputation, the outcome of the game drastically

changes. As we saw in the previous section, in this case there is a unique informative
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equilibrium outcome implementable by an equilibrium in which the expert only sends two

reports, say ro and ri. The informed expert sends ro when his posterior belief that the

state is 01 is smaller than x,, and r 1 otherwise. The charlatan randomizes between the two

reports. For each z, E (0, 1), let ut*(z) denote the expert's equilibrium report rule, and

xI( z) (ri) be the principal's posterior belief that the state is 01 after observing the report

ri (i = 0,1). Now, even if F(x*) < 1, it is no longer true that the expert's advice will

always influence the principal's decision. Indeed, this is only the case if x"*(zP)(ri) > x*. If

this inequality does not hold, the expert's advice becomes worthless. Moreover, even when

the inequality holds, the expert's information loses value with respect to the truth-telling

benchmark. This happens because, whenever the charlatan or the informed expert with a

posterior in the interval (x,, x*) send the report ri, the principal is induced to take decision

di, while do would have been efficient. Formally, the following is a corollary of Corollary

3.3.1 and Proposition 3.3.3.

Corollary 3.4.1. In any equilibrium in which the expert's report influences the principal's

decision, decision-making is biased away from the status quo.

This result is rather intuitive. Under truth-telling, di would only be taken if the expert

is informed. Thus, in the unique informative equilibrium outcome of the game, di carries a

reputational premium for the expert, who ends up inducing this decision too frequently.

Note that the size of the information loss caused by the presence of charlatans depends

on the nature of.the principal's decision problem. For instance, in the extreme case where

x* xP, information would never be wasted, for the principal's decision would always be

taken efficiently given the information available. In this case, the expert's advice is always

valuable. More generally, other things equal, the closer x* gets to x, (the more insecure the

principal is about the decision she should take under the prior), the smaller the waste of

information and, thus, the more likely it becomes that the expert's advice will influence the

principal's decision.

Finally, the last result shows that, for any x* > xp, when the prior probability that the

expert is informed becomes small enough, the expert's advice stops influencing the principal's
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decision, and so becomes worthless.

Proposition 3.4.1. The function xz*(2p)(ro) is strictly decreasing in zp, the function xz* (z)) (ri)

is strictly increasing in zp, and lim2,o0 xor (Zp)(ro) - lim,-+o+ xo*(z)(ri) = xP.

Proof. See appendix 3.6.3. E]

Thus, even though the informed expert has valuable information for the principal's de-

cision problem (as long as F(x*) < 1), when the principal's prior belief that the expert is

informed becomes sufficiently small, she will prefer to not consult the expert.

3.5 Concluding remarks

This paper has analyzed a model in which an expert who is concerned about appearing

to be informed advices a principal before she takes a decision. We have shown how the

mere possibility that the expert can be a charlatan drastically reduces the value of the

expert's information. The model has a unique informative equilibrium outcome which can

be implemented with an equilibrium in which the expert only sends two reports. Thus, the

information that can be transmitted by the expert is endogenously coarse. Moreover, in

this equilibrium the expert must be indifferent between the two reports when his posterior

about the state is equal to the prior. This implies that, if the expert's advice influences

the principal's decision, decision-making is biased away from the status quo. Remarkably,

this distortion does not disappear as the principal's prior belief that the expert is informed

approaches one.

Coarse information transmission seems to be a robust feature of communication games

where the sender is concerned about appearing well informed." However, the result that

the expert can only send two reports containing different information seems more delicate.

Indeed, the geometric argument provided in the proof of Proposition 3.3.1 relies on the fact

1 For instance, Ottaviani and Sorensen (2006b) show that, under very general conditions, truth-telling

cannot be an equilibrium regardless of whether the expert knows his type. In Ottaviani and Sorensen (2006a),
they study a model where, as here, any equilibrium outcome can be induced by an equilibrium where only

two reports are sent.
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that in this model there are only two states of nature, and cannot be generalized to the

case where there are more states. Similarly, even though the result that decision making

is biased away from the status quo is intuitive, it should be taken with a grain of salt. As

discussed in the introduction, if there were a continuum of types for the expert, distortions

to decision-making could go in the opposite direction.

A potentially interesting direction for future research could be to look at how contingent

payments could be designed to correct the distortions introduced by the reputational concerns

of experts." In particular, it would be useful to understand how such incentive schemes

would compare to those designed to induce effort, and whether they would resemble the

contracts that we actually observe.13

3.6 Appendix

3.6.1 Proof of Proposition 3.3.2

Suppose that r, r' E R lead to the same lottery over reputations given the principal's con-

jecture about the expert's behavior, or'. That is, we have

z X (r., 01) +1 zp Pr[r|Chxt] Pr[O1|r,Chp] 1 + 1-zp Pr[rChpxt] Pr[Oilr',Chp ]

zP Pr[r I J, ] Pr[OIr,Jat] zy Pr[r'IIpt] Pr[01|lr',I 4 ]
(3.6.1)

and

1 1
z1(r, O) - 1-zP Pr[r|Chp(t Pr[oIJr,ChC41 ] 1 -z Pr[rIJChpxt] Pr[Oor',Chp ] O),

1+ ZP Pr[r IJ,c4 ] Pr[Oo~rI,ua.] ZP Pr~r'JI,at PrO X'It

(3.6.2)

Note that Pr[ 1  'r, Ch,] =Pr[01  r',Ch,0] = xp. Thus, if Pr[01 r., 1, ] > Pr[01

12 Holmstr6m and I Costa (1986) and Caruana and Celentani (2001), for example, work along these lines.
13 For models in which contingent payments are designed to induce experts to acquire costly information

see, for example, Demski and Sappington (1987), Diamond (1998), Athey and Roberts (2001), Malcomson

(2009), Zermefno (2011b) and Zermefio (2011a).
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r', I, ot], for equation 3.6.1 to hold we must have > . But we also haveXPr[rji,at] Pr[r'Ij,4]t

Pr [o 1 r, J, of] < Pr[Oo I r', , o], so equation 3.6.2 could not be satisfied. By a similar

argument, it could not be the case that Pr[01 | r, 1, ot] < Pr[01 r', 1, o], so we must have

Pr[01 r, I, o] Pr[O1 I r', Icot].

An equivalent way of writing equations 3.6.1 and 3.6.2 is:

Pr[r I, (T] Pr[01 j r, 1, o7] Pr[r' 1I, oa] Pr[0 r', I o] a ,
Osr , x1 = z = z = z (r ,01),0"01 (9) Z19 P rrPr[r] Pr[1 r, ot] " Pr[r'] Pr[1| r', UK]

and

Pr[r 1I. ot] Pr [00 r, I, ot] Pr [r' |I, oK] Pr [o r', I, ot] , ,
z Gr ( r, 00) =PI zP = z = Z r W, 00).

( Pr[r] Pr [o |r,1 a] Z Pr[r] Pr [0o Tr, o ]

Since Pr[O1 r, 1, of] = Pr[O I r', 1, at], for both equation to hold we need Pr[01 | r, o ]

Pr[01 | r', ot], so x7'(r) = xo(r') as we wanted to show.

3.6.2 Proof of Proposition 3.3.3

The proof is constructive. From Proposition 3.3.1, we know that for an equilibrium with two

reports to be informative, each report must induce a different lottery over reputations and

the expert must be irldifferernt between the reports when his posterior about the state is Xp.

Thus, the expert must strictly prefer to send one report (say, r1 ) after observing posteriors

greater than the prior, and the other report (say, ro) after observing posteriors smaller than

the prior. Since F(x) is continuous at x,, what the report that the informed expert chooses

at the prior is irrelevant for the outcome. Thus, the only variable we have to play with is the

probability with which the charlatan sends ro, och(ro) (he sends r1 with the complementary

probability). The principal's consistent beliefs about the expert's type are:

1
zX (ro, 01) - 1_ XPdc

1+zp f_ 'PdF (x)
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z X(rO,600)

z'- (ri, 60) =

1

1+ 1-z (xj)h(ro)

zp f (1-x)dF(x)

1

+ 1 z, xp(1-Ch (ro))
z f xdF (x)

1

1 + 1-zp (1 X.)(luhT o)
z, fP (1 -x) dF(x)

Note that z" (ro, 00) > z" (ro, 01) if and only if xz fxp dF(x) > f xdF(x), which holds.

Thus, indeed, if the expert is indifferent between the

reports at x,, he strictly prefers to send ro after observing x < x,, and ri after observing

x > xP.

The last part of the proof is to show that there exists a unique oh(ro) E [0, 1] that

generates lotteries over reputations that make the expert indifferent between the reports at

X1 . That is, we must show that there exists a unique och(ro) E [0, 1] such that

Xp)UE(z (ro,0o) = XpUE(Z (r1,01)) + (1 - Xp)UE(zc (Tij 0o).

Note that the LHS of the equation is continuous and strictly decreasing in och(ro), and the

RHS is continuous and strictly increasing. Moreover, if ch (r=) 0, then LHS>RHS, and,

if oYCh(ro) = 1, then LHS<RHS. Thus, there exists a unique o7Ch(ro) c (0, 1) for which the

equality holds.

3.6.3 Proof of Proposition 3.4.1

Note that
zp fXP xdF (x) + (1 - zp) po hr-)

z~(rO) = Pr[01 1 ro, o]=

Thus,
(1 z) Ch ()

Z o- ( )

zpF(xp) + (1 - zp)oh (ro)

zot(ro)F(xp) - fx dF(x)

XP - i0(ro)

130

Similarly, zOlx'(ri,' 61) > zo7'(ri,8o0).

opuE (Z" (ro, 01) + (1



Substituting in the expression derived in the proof of Proposition 3.3.3, we obtain:

zo X(ro, 1) 0

zX (ro,0) =

1

1 + X (ro)F(xp) -f P xdF(x) XP

XP-x"4(ro) f xdF(x)

1
xoi(ro)F(x,)-f_ ' zdF (x) (1-,

XP-Xo (ro) f'P(1 x)dF(x)

1

1+ (z-:p

1+ 1-z

x" (ro)F(xp)-f _ xdF(x) xP
px,_ zs(rO) ) focxdF(x)

1

xso(ro)F(xp)-f'dF(x) (1- ,)

:r-X 't(ro) ) (1-x)d F(x)

From Proposition 3.3.3 we know that for each z, c (0,1), there exists a unique ut*(z,)

such that

XPUE(Zr(o, 01)) + (1- Xp)UE (z (ro, 00) XPUE (Z , (i 01)) + (1- Xp)UE (z (rl, 0o).

Note that the LHS is strictly decreasing in xo (ro), and the RHS is strictly increasing. As

zP decreases, the RHS decreases, so to restore the equality x z(ro) must increase. Thus,

zs* (2,)(ro) is an strictly decreasing function of zp. Moreover, as z, -+ 0+, the RHS goes to

infinity, so we must have limz,-o+ X (ZP)( -

With a similar argument, we can show that zut-(z)(ri) is an strictly increasing function

of zp, and that it must be the case that limz,-o+ xz*2)(ri) = X,.
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