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Abstract

Pricing and revenue management are two essential levers to optimize the sales of an
airline's seat inventory and maximize revenues. Over the past few decades, they have
generated a great deal of research but have typically been studied and optimized sep-
arately. On the one hand, the pricing process focused on demand segmentation and
optimal fares, regardless of any capacity constraints. On the other hand, researchers
in revenue management developed algorithms to set booking limits by fare product,
given a set of fares and capacity constraints.

This thesis develops several approaches to solve for the optimal fares and book-
ing limits jointly and simultaneously. The underlying demand volume in an airline
market is modeled as a function of the fares. We propose an initial approach to the
two-product, two-period revenue optimization problem by first assuming that the de-
mand is deterministic. We show that the booking limit on sales of the lower-priced
product is unnecessary in this case, allowing us to simplify the optimization problem.

We then develop a stochastic optimization model and analyze the combined im-
pacts of fares and booking limits on the total number of accepted bookings when
the underlying demand is uncertain. We demonstrate that this joint optimization ap-
proach can provide a 3-4% increase in revenues from a traditional pricing and revenue
management practices.

The stochastic model is then extended to the joint pricing and seat inventory
control optimization problem for booking horizons involving more than two booking
periods, as is the case in reality. A generalized methodology for optimization is pre-
sented, and we show that the complexity of the joint optimization problem increases
substantially with the number of booking periods. We thus develop three heuristics.
Simulations for a three-period problem show that all heuristics outperform the deter-
ministic optimization model. In addition, two of the heuristics can provide revenues
close to those obtained with the stochastic model.
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This thesis provides a basis for the integration of pricing and revenue management.
The combined effects of fares and booking limits on the number of accepted bookings,
and thus on the revenues, are explicitly taken into account in our joint optimization

models. We showed that the proposed approaches can further enhance revenues.

Thesis Supervisor: Peter P. Belobaba
Title: Principal Research Scientist of Aeronautics and Astronautics
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Chapter 1

Introduction

Pricing and revenue management are essential for an airline to maximize its rev-

enues. The goal of pricing is to improve revenues by designing an appropriate set of

fare products. A fare product is a combination of a price, also called a fare, and an

assortment of travel constraints and service amenities. Each fare product is designed

for and targeted toward a specific group of travellers. The probably most well-known

two groups are the business travellers on one side and the leisure travellers on the

other. By offering various fare products, the airline intends to force some passengers

with travel constraints and a high willingness-to-pay to buy high revenue products,

without deterring all other passengers from booking seats.

Revenue management, on the other hand, improves the airline's revenues by set-

ting limits on the maximum number of seats to be sold for each fare product, especially

the low revenue ones. The airline can only offer a fixed, predetermined, number of

seats. Some booking requests will generally have to be rejected due to a lack of ca-

pacity, and it is therefore important for the airline to ensure that as few high-revenue

requests are rejected as possible. To do so, limits on the number of low-revenue

products that should be sold are set. This ensures that a minimum number of seats

is saved for the high willingness-to-pay passengers arriving late in the booking process.

Over the past few decades, pricing and revenue management have generated a
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great deal of research but have typically been studied and optimized separately. Nev-

ertheless, the two processes are interrelated and should ideally be considered and

solved for as a single optimization problem. Both pricing and revenue management

are based on an analysis of the booking patterns. Bookings are an indicator of the

underlying demand characteristics, such as demand elasticity, and are used for market

segmentation for example. On the other hand, the analysis of the demand volume

per fare product or group of fare products is the basis for setting booking limits. In

turn, both pricing and revenue management processes affect the choice set available

to a potential passenger during the booking procedure. By setting fares and travel

constraints, pricing defines the global set of options that could be available to a pas-

senger. However, booking limits may render one or more of these options unavailable

at the time of booking and therefore restrict the actual choice set of a passenger.

We could gain much insight on revenue maximization from a better understanding

of the interactions between pricing and revenue management methods. The analysis

of the combined impacts of fares and booking limits on a passenger's choice set, and

thus on the final number of accepted bookings, would enable us to further improve

the optimization process. This thesis investigates ways of analysing these two com-

ponents' combined effects on the demand, with the objective of ultimately solving

for the optimal fares and booking limits jointly and simultaneously. In our model,

the underlying demand volume is modelled as a function of fares and we focus on

determining how booking limits define the percentage of underlying demand that

will finally be accepted. Based on this insight, we formulate a revenue maximization

problem in which fares and booking limits are the decision variables.

This dissertation is divided into six chapters. We shall first detail the current

pricing and seat allocation practices and describe our research objectives. In Chapter

2, we present the literature review and explain how this dissertation complements

the existing body of work in joint pricing and seat allocation optimization. A two-

product, two-period joint pricing and seat allocation problem is then formulated in

18



Chapter 3. We first propose a deterministic model and then introduce a stochastic

approach. Finally, in Chapter 5, we suggest heuristics to tackle the multiple-time

frame optimization problem. Chapter 6 summarizes the findings and presents possible

directions for future work.

1.1 Background

Pricing and revenue management are part of airline planning, a lengthy and complex

process. Nowadays, airline planning is usually broken down into five smaller and

interdependent planning problems that are solved separately one after the other, as

shown in Figure 1-1. Fleet planning, route evaluation and schedule development are

the first steps. They focus on developing the airline's operations. These three steps

determine the air transportation service to be offered by the airline and establish

the capacity constraints. The inherent characteristics of the transportation service,

e.g. the origin and destination airports, the departure time, the total travel time,

the number of connections or the aircraft types, are all determined by the first three

steps. The goal of the last two steps, pricing and revenue management, is to then

generate and maximize revenues from the sale of the airline's seat inventory.

Pricing consists of the design of the different fare products that will be available to

each origin-destination market served by the airline. Air travel demand is defined for

an origin-destination (OD) market, consisting of a passenger's original departure city

and his final trip destination. Several itineraries, with different connecting flights,

may be possible for one OD market. During the pricing process, the total demand

for each origin-destination market is analysed and segmented. A fare product is then

designed for each identified segment. A fare product is associated with a combina-

tion of travel restrictions and service amenities, and a price. The product's fare is

set according to the estimated willingness-to-pay of the segment's passengers. Dif-

ferent restrictions and services amenities are then used as fences to deter passengers

from buying fare products with a lower fare than their estimated willingness-to-pay.

19



1 - Fleet
Plnning

2 -Route
Evaluation

3 - Schedule
Development

4-Pricing

Determine fare levels, con
diferent service amenities an
for a set of fare products in al

Figure 1-1: Airline planning, a sequential approach

Product differentiation or differential pricing enables the airline to extract additional

consumer surplus from passengers. An example of a simple set of fare products, a

fare structure, is shown in Table 1.1.

Restrictions

Fare Product

1

2

3

Saturday-night
stay required

No

No

Yes

Purchase 21-day

before departure Fare ($)

No 700

Yes 450

Yes 300

Table 1.1: Example of a fare structure

Once the complete set of fare products is defined, the revenue management pro-

cess determines the maximum number of bookings to accept for each fare product in

20



Pricing

Define travel mfi!l #
Irrestrictions & service Set fare levels
am eniti es for p rod ucts

Fare Products

Revenue Management
------------------------------------ -------------------- I

Average
Forecast Set bookinghistorical booking Demndliit

data by fare product

L ---------------------------- -------------------

Figure 1-2: Overview of the current approach to pricing and revenue management

order to maximize the airline's expected revenues, as shown in Figure 1-2. Revenue

management systems can forecast the demand for each fare product and compute

the different booking limits. Several optimization techniques have been developed to

calculate the appropriate levels of protection.

One aspect of revenue management is overbooking. It was first developed in the

1960's and enabled airlines to account for the no-show behaviour of a proportion of

passengers. With overbooking, more bookings than can physically be accommodated

are accepted, in an attempt the reduce the impacts of the very few passengers that

may decide not to travel at the very last minute. Another aspect of revenue manage-

ment is seat allocation. If too many seats are sold at a discounted fare and the plane

fills up, passengers with the willingness to pay the traditional full fare can be de-

nied their booking request, which represents a revenue loss for the airline. The need

to protect seats for later booking but higher revenue passengers triggered research

on seat allocation. The latest research developments in the field concern demand

forecasting and seat allocation, the main focus of this study. An example of a set

of booking limits is shown in Table 1.2. In this example, as soon as the 3 01h Fare
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Product 3 booking is accepted, the product becomes unavailable. Similarly, only 40

bookings can be accepted for Fare Product 2. On the other hand, Fare Product 1

remains available throughout the entire selling period, unless the plane fills up.

Restrictions
Saturday-night Purchase 21-day

Fare Product stay required before departure Fare ($)

1 No No 700

2 No Yes 450

3 Yes Yes 300

Nested
Booking

Limits

100

60

20

Table 1.2: Example of booking limits for a fare structure (capacity = 100 seats)

Pricing and revenue management have traditionally been considered separately,

both from a theoretical and practical point of view. These two fields have indeed gen-

erated much interest from the research community over the years but few researchers

have considered the two fields jointly. At the same time, the pricing department and

the revenue management department of an airline are usually two distinct depart-

ments. Although many airlines have tried to integrate these two departments, most

still have two distinct systems in place.

1.2 The Evolution of Pricing and Seat Allocation

Practices

Before the deregulation of the industry in the United States in 1978, airlines were not

able to freely set their own prices. The US Civil Aeronautics Board (CAB) was the

entity setting the fares of the interstate airlines. To do so, the CAB used a simple

cost-based approach: prices were computed in order to cover the operating cost of the

airlines and ensure a profit margin. Fares for the different origin-destination markets

were based on distance. Only one fare product was offered for a given flight in the
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economy class.

In 1977, shortly before deregulation, American Airlines was allowed by the CAB

to introduce an additional fare product, the Super Saver Fare. The new fare prod-

uct was first tested on flights between New York and both San Francisco and Los

Angeles, but it soon became available on most domestic routes. This product was

substantially cheaper than the normal economy fare but came with a 30-day advance

purchase requirement and a minimum stay of at least seven days (Bailey et al., 1985).

The average load factor of the industry in the 1970's was low, around 50% (Ben-Yosef,

2005), and legacy carriers were facing a competitive threat from charters. The expec-

tation was that cheaper fares would increase the load factor and enable the airline to

compete with lower-priced alternatives.

However, cheaper fares could also affect the revenues adversely. Indeed, discount-

ing has two effects: stimulation and diversion (Krajewski and Ritzman, 1990). Lower

prices will stimulate a previously unmet demand from price-sensitive customers. How-

ever, lower prices are also attractive to the non-price-sensitive customers who would

have flown with the airline at the non-discounted fare anyway. In order words, with

the introduction of cheaper fares, passengers can book seats at a fare level lower than

the one they would have been prepared to pay. They are thus diverted from the

original product, creating a loss in revenue (McGill and Ryzin, 1999).

The advance purchase restriction and minimum stay requirement were a first at-

tempt at lessening the impact of diversion. The restrictions created two market

segments. People who can book their flight tickets more than a month in advance

and stay at their destination for more than a week are likely to be leisure travellers

with a lower willingness-to-pay than last-minute passengers. With the restrictions

enforced by American Airlines, late booking passengers had no choice but to buy

the full fare. The new fare product enabled the airline to sell seats that would have

otherwise remained empty while still retaining the high-revenue passengers who could
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not fulfil all the restrictions.

Nevertheless, this pricing strategy of implementing restrictions cannot, alone, en-

sure an increase in revenue. The demand for the discounted fare could potentially

fill up a flight long before departure, leaving no seats to late booking higher-fare pas-

sengers. Some seats should therefore be protected for full fare passengers who book

later and generate more revenues. There were no simple rules to determine the right

number of seats to save for full-fare passengers. The introduction of this second fare

product marked the beginning of the development of seat allocation models.

Yet, despite the fact that the effectiveness of a fare structure depends partly on

the ability to set good booking limits, the progress made in the revenue management

field was never the driver for change and innovation in the airlines' pricing strategies.

In 1985, American Airlines announced the introduction of a new fare product,

the "Ultimate Supersaver Fare". The ultimate supersaver fare offered up to a 74%

discount from the regular coach fare, an unprecedented discount. The new fares were

subject to a new restriction, on top of the then usual 30-day advance purchase require-

ment and a Saturday-night minimum stay. 50% of the ultimate supersaver fare was

non-refundable. This latter restriction enabled the legacy carrier to further segment

the domestic market. American Airlines was facing the rapid and successful growth

of the low cost carrier People Express. The introduction of the ultimate supersaver

fare was the traditional airline's response to the threat of the low cost competitor

(Ben-Yosef, 2005).

In the following years, the complexity of the fare structures put in place by the

airlines kept increasing. This trend was hastened by the development of computer

reservation systems, enhancing airlines' ability to record and analyse booking data.

Different types of restrictions were implemented as fences to prevent high-revenue

passengers from buying lower fares. Advance purchase requirements were combined
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with minimum stay restrictions, cancellation policies and non-refundable conditions.

The pricing strategy of the legacy carriers grew more and more complex in an attempt

to refine the demand segmentation.

This trend was interrupted by the rapid growth of a new generation of low-cost

carriers. These new entrants challenged the pricing practices imposed by the legacy

carriers over the years. While the low-cost carriers still offered a large number of fares,

they significantly reduced their price range. In addition, they entered the market with

simplified fare structures. While most tickets on low-cost carriers were non-refundable

and had rescheduling fees, they did not require a Saturday-night stay. In fact, most

of the low-cost airlines removed the minimum stay requirement altogether, effectively

offering one-way tickets only. The new entrants chose to base their customer segmen-

tation strategy mainly on the advance purchase requirement, an easy to understand

rule for the travellers.

Faced with the rapid and threatening expansion of the low-cost carriers, some

legacy airlines reviewed their strategy. In 2005, Delta Air Lines announced the re-

moval of the minimum stay requirement on all its US domestic markets altogether.

The legacy carrier was struggling and the removal of the restriction was an attempt

at recapturing passengers (Shaw, 2007).

A new trend was initiated in 2007 with the emergence of the fare structure now

called "Fare Families". A few airlines chose to reduce the number of fare products

they offered altogether. A handful of products with clearly differentiated restrictions

and service amenities were identified and then branded. The branded products are

the same across the markets. However, their prices can vary over time and by markets.

Over the years, the airlines have applied marketing principles and segmented the

demand as much as possible by combining various types of restrictions and amenities.

The major transitions were always the responses to a competitive threat.
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Revenue management was most likely another factor of success, even if progress

in the seat allocation field was never the driver for pricing changes. Pricing evolved

irrespective of, and usually more quickly than, revenue management. Similarly, rev-

enue management was unaffected by the changes in the fare structures offered by the

airlines. As airlines implemented fare families, for example, very few new revenue

management models were developed.

The objective of revenue management is to maximize the revenues of an airline by

making some seats available at a lower fare to passengers who would not have trav-

elled otherwise, while protecting seats for passengers with a higher willingness-to-pay

but a later time arrival in the booking system. Revenue management is required

only if there are at least two fare products competing for the same resource, a finite

number of seats.

From the outset, technology did not permit to assess each request separately, one

at a time. Durham (1995) reported that a computer reservations system may have to

handle more than five thousand booking requests per second at certain peak times.

The individual real time assessment of each request was infeasible and revenue man-

agement focused on recommending booking limits by fare product for periods of a

few hours to a few days. The status of each fare product was updated on a periodic

basis.

The initial revenue management systems focused on optimizing the revenues for

each flight leg independently. The systems computed the booking limits for each fare

product on a leg. They were developed for the first type of fare structures of the

airline industry: a limited number of fare products with clearly differentiated restric-

tions. In these revenue management systems, the demand for each fare product was

modelled by a Gaussian distributed random variable and the demands were assumed

to be independent. The possible diversion of a passenger from the full fare product to
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a lower fare product was not considered. The assumptions were intended for math-

ematical and programming convenience, but nonetheless led to impressive revenue

gains for the airlines.

The success of airline revenue management was widely reported. American Air-

lines estimated the benefit of such techniques at $1.4 billion over a period of three

years (Smith et al., 1992), further stimulating the development and implementation

of revenue management methods. More advanced systems were designed to address

the broader issue of network revenue optimization.

As airlines developed hubs and expanded their network, the number of connect-

ing passengers increased tremendously. The origin-destination fare product sold to a

connecting passenger depends on the availability of seats on each of the connecting

flights. This creates an interdependence among flights. Considering the capacity of

different flight legs independently to optimize the airline's total revenue becomes sub-

optimal. Flight leg heuristics were extended to origin-destination control mechanisms

to account for some network effects.

Later on, researchers suggested modifications to take into account the possible

diversion of passengers to a lower fare product when determining the booking limits.

However, despite the tremendous evolution of the pricing strategies over the years,

the research on seat allocation optimization models remained heavily based on the

initial fully restricted fare structures.

1.3 Research Motivation and Objectives

The need for seat allocation controls materialized as soon as the airlines started of-

fering more than one fare product to their passengers and the possibility that the

demand may exceed capacity arose. As the airlines kept widening their array of fare

products, the problem of setting booking limits on each fare product became a real
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challenge and drew the attention of the research community.

The first revenue management approaches suggested by researchers were designed

for the contemporary restricted fare structure. This fare structure relied on many

different types of travel restrictions, such as the advance purchase requirement, the

minimum length of stay restriction or the Saturday night stay requirement, combined

with different fare levels. The demands for each fare product was assumed to be

independent.

When the minimum stay requirement was temporarily removed in 2005 by Delta

Air Lines, the inherent characteristics of the fare structure changed. The choice of

fare products for the potential passengers was not restricted by the length of stay

anymore and this change affected the consumers' booking patterns. Most passengers

who used not to be able to meet the length of stay requirement and thus used to

have to buy less restricted more expensive fare products were suddenly able to book

much lower fare products. A large part of the demand for the higher fare products

was diverted to the lower ones, dramatically changing the booking patterns which

are the basis for the revenue management analysis. The revenue management pro-

cess incorporated the updated average fares and some adjustments were implemented

to take into account the possible passenger diversion between fare products. Nev-

ertheless, the underlying models remained mainly unchanged. Similarly, as airlines

implemented fare families, very few new revenue management models were developed.

The following question is then raised: can the pricing and revenue management

processes be addressed jointly to further maximize revenues? While fares do consti-

tute an important input for seat allocation optimizers, they are determined during

the pricing process. Fare levels are frequently updated, but are changed irrespective

of the work done downstream to set the booking limits. On the other hand, the fares

are used as fixed inputs by the seat allocation systems. The booking limit for each

fare product is determined and implemented assuming fixed, averaged, fares. Intro-
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ducing fares as an additional decision variable in revenue management and solving

jointly for fares and booking limits could further increase revenues. The goal of this

research is to develop a method to jointly optimize pricing and seat allocation.

1.4 Thesis Outline

The remainder of this thesis is organised as follows: Chapter 2 presents a literature

review of pricing and revenue management methods. We shall first start with the

description of the evolution of pricing techniques. We will then turn to the develop-

ments in the revenue management field, by focusing first on forecasting methodologies

and then seat allocation mechanisms. The third part of the chapter is dedicated to

the recent work on joint pricing and seat allocation optimization.

In Chapter 3, we formulate the two-product, two-period joint pricing and seat

allocation problem. We propose a first approach to solving this problem by first as-

suming that the demand is deterministic. The deterministic model is discussed and

its performance analysed through a numerical example.

Chapter 4 presents a stochastic approach to the joint optimization problem. The

demand is assumed to be a uniformly distributed random variable and a geometrical

analogy is used to express the objective revenue function. The stochastic approach

simultaneously computes the fares and the booking limit that maximize the total rev-

enues. Simulations show that the proposed approach performs well when compared

to a traditional revenue management approach.

We then extend the approach to the multiple-time frame joint pricing and seat

allocation optimization problem. A generalized methodology is presented in Chapter

5. In light of the complexity of the objective function arising from the consideration

of multiple time frames, we derive and test three heuristics to the joint optimization
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problem.

Chapter 6 summarizes the findings and draws conclusions from them. We will

also discuss practical applications and possible future research directions.
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Chapter 2

Literature Review

A considerable body of work exists on airline pricing and seat allocation optimiza-

tion. Whitin published a single period pricing model in 1955 and Littlewood first

considered the two-class, single leg, seat allocation problem in 1972. Nevertheless, it

is only in the mid nineties that the problem of joint pricing and seat allocation for

perishable goods raised the attention of researchers.

In this chapter, we first review the pricing literature. An overview of the revenue

management research on forecasting and seat allocation is then provided. Finally, we

discuss the recent developments in joint pricing and seat allocation.

2.1 Pricing

Research on airline pricing has been undertaken from many different perspectives.

Economists, marketing scientists and operations researchers have all studied the sub-

ject.

The existing body of work from an economic point of view is very large. Schmalensee

(1981) studied the impact of an airline's pricing strategy on social welfare. Borenstein

(1985) used spatial models to analyse price discrimination in oligopolistic markets.

Borenstein and Rose (1991) suggested price dispersion as an indicator of price dis-
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crimination in the US airline industry.

Studies of pricing strategies in the context of revenue optimization stemmed from

research on production-pricing problems. The airline pricing problem was first con-

sidered as a special case of the classical newsvendor problem where the production

cost was fixed and the product was perishable with no penalty cost or salvage value.

Whitin (1955),Mills (1959, 1962), Karlin and Carr (1962), Zabel (1970) and Hempe-

nius (1970) worked on single-period newsvendor models that included both the price

and the inventory level as a decision variable. Their studies only concerned the single-

product case. Petruzzi and Dada (1999) presented an overview of the research on this

field.

Karlin and Carr (1962), Nevins (1966), Zabel (1972), Thomas (1974), Thowsen

(1975), Petruzzi and Dada (1999), Federgruen and Heching (1999) extended the scope

of the research to a multi-period stocking and pricing problem. The planning period

was segmented and the unsold products at the end of a time period were available to

meet the demand of the subsequent time periods. Each time period was associated

with a pricing and stocking decision. The studies remained focus on the single-product

case.

Gallego and van Ryzin (1994) and Zhao and Zheng (2000) addressed the problem

of dynamically pricing a given inventory of a single product. The demand was price

sensitive and stochastic and the objective was to maximize the expected revenues.

Optimal prices were functions of the inventory level and the length of the planning

period. Chatwin (2000) and Feng and Gallego (2000) restricted the number of allow-

able prices to a finite set. Gallego and van Ryzin (1997), Paschalidis and Tsitsiklis

(2000) suggested to extend the dynamic pricing models to the multi-product case.

The various products shared the same supply of resources. The two groups of re-

searchers proposed heuristics based on deterministic models.
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2.2 Revenue Management

Revenue management commonly encompasses overbooking, forecasting and seat al-

location. The focus of this dissertation is forecasting and seat allocation.

2.2.1 Forecasting

Work on airline forecasting for revenue management dates back to the 1960's. The

first efforts focused on modelling the demand distribution and the passenger arrival

processes. Beckmann and Bobkoski (1958), Beckmann (1958), Lyle, Belobaba (1987a)

discussed the reasonable fit of the Poisson, negative binomial, gamma or normal prob-

ability distributions.

Later on, researchers proposed remedial measures to the truncation of the observed

historical demand due to booking limits and capacity constraints in the airline indus-

try. The distinction between aggregate and disaggregate forecasting emerged. Taneja

(1978) and Sa (1987) provided an overview of aggregate forecasting techniques. Lee

(1990) discussed issues in disaggregate forecasting. Later work by Weatherford et al.

(1993) took into account the possible diversion of a passenger in the two-product

case. Some passengers might indeed be willing to pay the higher fare product but

will always buy the lower available fare product. There was diversion when those

passengers ended up buying the higher fare product because the other one was not

available.

2.2.2 Seat Allocation

Littlewood (1972) first studied the seat allocation problem for the two-class, single

flight leg case and proposed a simple rule to accept or reject bookings. A discount

fare booking should only be accepted if the revenue it generates exceeds the expected

revenue of a future request for the full fare. Belobaba (1987b, 1989, 2002) extended

the principle to the multiple-fare products problem with the expected marginal seat

revenue heuristic (ESMRa and EMSRb). This method did not yield the optimal
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booking limits, except in the two-class problem, but provided reasonable approxima-

tions in typical situations. However, the heuristic could realistically be implemented

and was therefore widely adopted by airlines. Other approaches to derive the optimal

booking limits for single-leg flights were developed by Curry (1990), Wollmer (1992),

Brumelle and McGill (1993) and Robinson (1995). These methods were referred to

as leg-based approaches in the literature. They aimed at optimizing the expected

revenue from seat allocation for each flight leg independently.

In the 1980's, airlines rapidly expanded their use of the hub-and-spoke network

model and it soon supplanted the point-to-point service model. The number of con-

necting passengers increased significantly, creating network effects: each flight leg

carried a mix of local and connecting passengers. The yield of a connecting passenger

might on a particular flight leg be lower than that of the passenger sitting next to

him and yet the total itinerary contribution to the airline might be greater. On the

other hand, a connecting passenger may displace two local passengers who could have

generated more total revenue for the airline. The conventional leg-based approach to

revenue management failed to address these two fundamental network issues.

Researchers worked on developing origin-destination control mechanisms for net-

works. The first approaches were based on conventional leg-based methods. Instead

of setting booking limits for fare products, controls were set for "value classes". All

the itineraries that comprised the same particular flight leg were ranked, and the fare

products of these itineraries were then mapped to buckets according to their value

to the network. Each bucket was a value class. The leg-based heuristics were then

used to compute the booking limits of each value class. American Airlines called the

clustering process "virtual nesting". Belobaba (1989), Smith and Penn (1988) and

Williamson (1992) presented different mapping techniques. Virtual nesting addressed

the first network issue by taking into account the possibility that a low yield connect-

ing passenger on a flight leg may in fact be generating more revenue overall than a

local passenger.
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More advanced network optimization techniques were then developed to tackle

the second network issue mentioned previously, which is the displacement of two

local passengers by a connecting passenger. Glover et al. (1982) and Curry (1990)

provided mathematical programming formulations for network flow models. These

results were used to estimate the displacement cost of an itinerary. Smith and Penn

(1988), Simpson (1989) and Williamson (1992) developed bid-price methods in which

a booking is accepted only if its total net contribution is greater than the estimated

displacement costs, also called the bid-price.

2.3 Joint Pricing and Seat Allocation

To our knowledge, the literature on joint pricing and seat allocation for perishable

assets is very sparse.

Weatherford (1997) emphasized the importance of considering prices as part of

the overall optimization problem and suggests including them as decision variables in

the seat allocation problem. The study focused on the case of a single flight leg with

at least two fare products. The demand for each product was assumed to be normally

distributed, with a mean a linear function of the product's own fare as well as the

next higher and lower fares. The selling period was not divided into subintervals

which greatly reduced the complexity of the problem. For example, there were only

three decision variables in the case of the two fare product problem: two prices and

one booking limit.

The analysis was divided into three parts. First, Weatherford assumed that the

inventory was partitioned and that there were no diversion: passengers with the

willingness-to-pay the higher fare do not consider the lower fare product. These two

assumptions are released, one after the other, in the two subsequent parts of the analy-

sis. This was the only case in which the closed form expression of the expected revenue
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could be derived. In the last part, the more realistic behavior of a high willingness-

to-pay passenger buying a lower fare product if it is available was taken into account.

However, it was assumed that the demand for the different products follows a strict

arrival order, with the lowest fare product demand arriving first. Numerical methods

were used to find the optimal solutions and the analysis was restricted to two and

three fare products, due to the increased complexity of the problem.

Kuyumcu and Garcia-Diaz (2000) tackled the joint pricing and seat allocation

problem with the objective of broadening the scope of the problem by taking into

account the entire airline network in the decision making process. The analysis was

not focused on the revenues generated by one single flight leg, but by all the airline's

origin-destination (OD) itineraries that constituted the network.

The demands for each OD and fare class combinations were assumed to be mu-

tually independent and normally distributed. There were no explicit hypothesis re-

garding the relationship between the demands and fares, or any other fare product

characteristics. The demands were known, through the analysis of historical data,

and the objective function was the system-wide expected marginal seat revenue. A

graph theoretical approach was proposed to determine the subgroup of fare products

that would maximize the revenues, given an initial set of fare products. The seat

allocation technique used was the standard leg-based revenue management method

EMSR, even if the focus was the network.

The fares remained exogenous variables to the decision process in this study. The

approach simplified the optimization problem by reducing the number of fare prod-

ucts available, and then relied on standard EMSR to set booking limits for each OD

itinerary.

Bertsimas and de Boer (2002) also analyzed the joint pricing and seat allocation

optimization problem in a network. In this study too, it was assumed that the de-
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mand for each fare product was uncertain and that its expectation only depended on

its own price. In the first part of the paper, the selling time period was not divided

into subintervals. The analysis was first reduced to the case of a single fare prod-

uct. It was shown that the objective function could be concave with respect to the

production level for a certain set of probability distributions, including the uniform

and normal distributions. The authors proposed an iterative non-linear optimization

algorithm to determine the optimal fares and allocation policies for all fare products.

The second part of the analysis focused on the multi-period optimization prob-

lem. Three heuristics were presented. In the first one, the demand for a product was

first aggregated over all the periods considered, which reduced the problem to the

single time period problem. In the second heuristic, the inventory was partitioned,

which also reduced the problem to a larger single time period problem. In the third

heuristic, the allocation policy was set first and the optimization then only concerned

pricing.

Cote et al. (2003) proposed a model with the capability of jointly solving the

pricing and seat allocation problem in a network with a competitor. The approach

was based on bilevel programming: the airline was assumed to know how its com-

petitor would react and integrate this behavior in its decision process. The main

objective of the study was to propose an approach to determine the optimal fares

across the network, knowing how the competitor would react. The main variables of

interest were the fares, not the booking limits. The demand for each fare product and

origin-destination itinerary combination was assumed to be fully known: there was no

randomness or hypothesis regarding the relationship between the fare products' char-

acteristics. The inventory was partitioned and the model does not allow for diversion.

The booking limits are obtained a posteriori. Indeed, once the two airlines pricing

policy was known, the booking limits were simply set equal to difference between the

flight's capacity and the higher fare products' demands.
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Chew et al. (2009) developed a joint optimization approach for a single product

with a two period lifetime. The demand for the product was assumed to be uncertain,

and its expectation was a linear function of its fare. Based on the concave proper-

ties of the objective revenue function, the authors suggested an iterative procedure

to compute the optimal fare and booking limit. The extension to the multiple time

period problem was then considered. As the concavity of the expected revenue func-

tion did not always hold, three heuristics were suggested. In the first heuristic, the

inventory was no longer nested but partitioned. In the other two heuristics, the time

intervals were grouped into two time periods. The two-period procedure was then

applied.

Figure 2-1 summarizes the main aspects of joint pricing and seat allocation opti-

mization privileged by each one of the mentioned studies and thus provides a visual

help to identify the gaps in the literature. Weatherford (1997) was the only one to

consider the demands for different fare products to be mutually dependent and to

solve for the optimal fares and booking limits simultaneously. Kuyumcu and Garcia-

Diaz (2000), Whitin (1955), and Cote et al. (2003) chose to approach the optimization

at the network level instead and the focus of Cote et al. (2003) was mostly the com-

petitive effect. None of these three studies extended the work of Weatherford (1997)

by introducing dependent demands. For Chew et al. (2009), the emphasized aspect

is the ability to update the fare of a product several times over the booking process.

Figure 2-1 also shows how this dissertation complements the existing body of

work on joint pricing and seat allocation optimization. Our intent is not to directly

analyze the impacts of fares and booking limits on the demand at a network level or

in a competitive environment. Instead, we revert to the base case, the single-flight leg

case, but assume that the demands for the fare products considered are dependent.

Furthermore, we divide the selling period into sub-intervals to model the fact that

airlines can increase their revenues by changing their fares several times over the

booking period. Our study combines the joint pricing and seat allocation aspects that

were the focus of Weatherford (1997) and Chew et al. (2009). This dissertation could
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then be the starting point for more comprehensive research encompassing network or

competitive effects.
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Chapter 3

Deterministic Approach to Joint

Pricing and Seat Allocation

Optimization

In this chapter, we develop a deterministic model of joint pricing and seat allocation

optimization. In this approach, the prices of different fare products offered by the

airline are no longer considered as exogenous variables to the seat inventory problem.

Instead, the demand for fare products is modelled as a function of the fare products'

prices, which thus become decision variables, as booking limits are.

This newly formulated optimization problem involves a large number of variables.

We initially facilitate an analysis by assuming that the demand is deterministic. This

highly simplifying assumption, which is relaxed later, allows us to gain insight into

the optimization problem. We will show that without demand uncertainty, the fares

can be used as the sole lever to match inventory and demand. The deterministic

assumption will therefore allow us to set aside the booking limit in a first time and

find a simple solution to the optimization problem. This shall constitute a starting

point to observe, thanks to a numerical example, the impact of the flight capacity on

the observed demand and pave the way for the following chapter.
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We open up the chapter with a description of the problem's scope. The fare

products and their characteristics are defined. The underlying selling mechanism

used by the airline is explained. The notations used are then decrypted in Section

3.2, which allows us to then introduce the model chosen for the demand functions.

In Section 3.4, we give a detailed analysis of the resulting objective function. Finally,

we illustrate the approach with three sets of numerical simulations.

3.1 Scope of the Problem

Traditional revenue management techniques focus exclusively on booking limits for

each fare class. The objective of these techniques is to improve the total expected

revenues by determining the best booking limit for each product. In the formulation

of the traditional revenue management optimization problem, the prices of different

fare products are known and fixed and are considered as input to the problem. The

booking limits are determined given the demand estimated at those price points.

In reality, however, prices do affect the demand and thus the revenues. We believe

that the airline's revenues could be further improved by modifying the formulation of

the seat inventory optimization problem and including prices as decision variables.

To do so, we place ourselves in a single carrier, single flight, single origin-destination

(OD) market environment. The flight has a fixed capacity of C seats. This simple

context enables us to reduce the complexity of the analysis by removing competitive

or network effects.

In the OD market considered, two fare products, Fare Product 1 and Fare Prod-

uct 2, are offered by the airline. The two products provide exactly the same in-flight

service; nevertheless, these products are associated with two distinct sets of purchase

restrictions and rules, and are therefore priced differently. In our notations, Fare

Product 1 represents the more expensive, less restricted product. The other product,
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Fare Product 2, is priced lower, but in return, has additional restrictions and rules.

Since the very beginning of revenue management, both researchers and airline

managers have acknowledged that passengers booking first exhibit different behaviors

from those booking last. They have different trip purposes, different willingness-to-

pay and different tolerance regarding fare products' rules. The implementation of

restrictions, such as advance purchase requirements, was an attempt at segmenting

the demand based on those changing characteristics. A few days or weeks before the

flight departure date, the lower discounted fare would no longer be available as most

of the passengers arriving later have a willingness-to-pay closer to the higher price.

Our fare structure does not include advance purchase requirements. The two fare

products remain available throughout the entire selling period unless the flight sells

out. Instead, to take into account the changing characteristics of the passengers, we

divide the selling horizon into subintervals which allows the prices to change from one

period to the other, while keeping the restrictions unchanged. We start by dividing

the booking period into just two time frames. Increasing the number of subintervals

would result in additional decision variables and would greatly increase the complex-

ity of the problem. We will explore the multiple-time period optimization problem in

Chapter 5.

Bookings start to be accepted at the beginning of the first time frame, TF1. The

flight departs at the end of the second and last time frame, TF2. The prices of the

two products can be modified at the start of each new time period. In the notation, xt

and yt represent, for each TFt, the prices of Fare Product 1 and Fare Product 2, re-

spectively. These price points are decision variables. The set of restrictions and rules

associated with each fare product are set by the airline. These restrictions remain

the same throughout the entire booking period: they are constant characteristics of

the two fare products.
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Refundability
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No changing fee,
but fare difference 125%

Changingff e 100%
+ fare difference 10

Prices &
Booking Limits

TF1 TF2

x X2

Y1 Yz

C

Figure 3-1: Example of the two fare products, their restrictions, fares and booking limit

In addition, the airline can limit the total number of seats to be sold in the first

time frame. This should enable the airline to protect a minimum number of seats for

TF2 passengers, which are usually less price sensitive and therefore more likely to

accept to pay a higher fare. We assume that the total capacity is nested between the

two time frames: unsold seats from the first time frame are available for booking in

the second time frame. The flight capacity caps the total number of bookings that

can be accepted over the course of the two time frames. The booking limit imposed

by the airline on the two products in the first time frame is noted zi and is the fifth

decision variable of our optimization problem. The flight capacity C is, on the other

hand, fixed.

An example of the two fare products and their possible restrictions is provided in

Figure 3-1.

The joint pricing and seat allocation problem modeled here consists of maximizing

the total revenues generated by the sale of the two fare products during the two time

periods by optimizing the four price points and the first time frame's booking limit.
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3.2 Notations

The following notations are used throughout this and the next chapters:

" C is the capacity of the flight.

* xt is the price of Fare Product 1 in TFt

" yt is the price of Fare Product 2 in TFt. We impose that for all t, yt < xt.

* zi is the booking limit corresponding to TF1, i.e. the total number of seats

that the airline is willing to sell in the first time frame. The number of seats

available for booking limit in the second time frame TF2 is at least equal to

C - z 1 .

* nxt is the demand for Fare Product 1 in TFt.

* ny,t is the demand for Fare Product 2 in TFt.

" ntotdt is the combined demand for fare products 1 and 2 in TFt.

" pt is the probability that a random passenger chooses Fare Product 1 in TFt.

" Rt is the total revenues generated by the combined sale of the two fare products

in TFt.

* Rta is the total revenues generated by the sale of the two fare products over

the entire booking period.

3.3 Modeling the Demand for Two Fare Products

The total demand for the two fare products is approximated by a linear function of

the lower available price:
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ntota,i (xi, yi) = ai - #iyj

with aj,#j > 0

and yj E 0, 0

The assumption that the demand is a linear function of the price is very common

in the literature (Weatherford, 1997; Chew et al., 2009). The second part of the as-

sumption on the lower available price is a good approximation for large Fare Product

2 demand relative to Fare Product 1 demand, as we will show.

We allow for diversion: if passengers can meet all the restrictions attached to

the lower fare product, they will buy it, even if they have the willingness-to-pay for

the higher-end fare product, regardless of the product preference. Hence, passengers

book the fare product with the lower available price and the most restrictions they

can accept. The passengers buying Fare Product 1 are therefore mostly "business"

travellers and are relatively price inelastic. The passengers buying Fare Product 2

are, in comparison, more price sensitive.

We further postulate that the demand of both fare products is a linear function

of the fare product's price. Examples of demand curves for the two fare products are

shown in Figure 3-2.

Let the demand function for Fare Product 2 be:

n,,i (y1) = a,, - #,,iyi

with ay,i,#,,o 0

and y 0, a
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Figure 3-2: Demand curves for the two fare products

The demand function for the higher Fare Product 1 is given by:

nx,j (xi) = ax, - pfix

with ax,j,# , 0

and xi E 0,- I

In addition, #,ix e (o).

The total, combined, demand for the two fare products thus is

ntotal,i (xi, yi) = ay,i + axi - #2,iXi - 3 ,,iyi

where #,3ix - e (o). The total demand function can therefore approximated as:

nittal,i (xi, yi) - ai - #y

The total combined demand is represented by the full blue line in Figure 3-3. The

47

I



Combined demand cune
Price (x y)

$800

$600 a 1 Legend:
nJ- - - - Fare Product 1

- - - Fare Product 2
$400 - Combined

- - -Approxuation

$200

$0 *
0 20 40 60 80 100 120 140 160

QuantityDemanded

Figure 3-3: Combined demand curve and its approximation

approximation that we use is the blue dotted line.

The higher-end fare product passengers are taken into account through the con-

stant aei.

For simplifying purposes, most of the previous studies addressing the multiple-

product problem assume that the demands for the different products are independent

of each other (Kuyumcu and Garcia-Diaz, 2000; Bertsimas and de Boer, 2002; Cote

et al., 2003; Chew et al., 2009). In reality, the demand for a product depends not only

on the product's own price, but also on the other product's price: there is diversion

between the products. A change in the price of one of the fare products affects not

only its own demand but also the demands for the other products. It is therefore

important in the joint pricing and seat allocation approach to take this dependence
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into account.

In our model, we allow for sell-up: passengers able to meet all the restrictions of

Fare Product 2 may choose to buy the higher fare product with less restrictions. Let

pi be the probability that a passenger chooses the less restricted product: Pi = ".' .Stotal,i

We choose to express this choice probability by the binary logit model:

1
p (Xi, yj) = 1 + eai-biyi+cixi

with bi, ci > 0

The parameters ai, bi and ci should be such that for equal and reasonable values

of xi and yi, the probability is 100%.

The resulting demand for each fare product is a non-linear function of the two

prices. Both the lower and higher fares y and xi have impacts on individual demands.

Previous works on the joint pricing and seat allocation optimization problem have

either assumed that the demand for a product only depended on its own price, or that

the demand for a product was a linear function of the other products' prices. Figures

3-4 and 3-5 are examples of the two fare products' demand curves, given ntota0 ,i and

pi. There is substitution between the two fare products.

The demands in the different time frames are assumed to be independent of each

other. This is a very common assumption in the literature.

In this chapter, we also assume that both the total demand and the probability

of a passenger choosing the less restricted product are deterministic. Here, neither

equation includes a random variable that would take into account the stochasticity of

the demand. This assumption greatly simplifies the joint optimization problem, with

the demand for each product entirely defined by the fares. Once the two fares are
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set, the demands are known, without any uncertainty or variability. This assumption

will be relaxed in the next chapter.

The booking limit zi

that can be accepted in

TF2 are min (ntoti,1, zi)

and flight capacity C affect the total number of bookings

the two time frames. The bookings accepted in TF1 and

and min [ntotal,2, C - min (ntotaI,, zi)] respectively.

3.4 Objective Function

The objective function is the total revenue generated by the sale of the two products

over the course of the two time frames that constitute the entire selling period:

Rtota =R 1 + R 2

with R 1  { ntota,1P1X1 + ntotal,1 (1 - pi) Y1,

zipixi + zi (1 - pi) y1,

R2 = ntotaL,2P2X2 + ntotal,2 (1 - P2) Y2,

I(C - min (ntota,1; z1)) [P2 x 2 + (1

if ntota,1 < zi;

otherwise.

if ntota,2 < C - min (ntota,1; zi);

- P2) Y2], otherwise.

The objective in this section is to demonstrate that the booking limit is unneces-

sary in the deterministic case.

Time Frame 1

Consider the first time frame, TF1. We can show that the third variable z1 is a re-

dundant variable in the deterministic case. We will also analyse the revenue function.

In this section, we will drop the index 1 to simplify the notation.
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The revenue function is given by:

R(x,y,z) =
ntotalPX + ntotal (1 - p) y,

zpx + z (1 - p) y,

if ntot1 < z,

otherwise.
(3.1)

ntotal (x, y) - a - #y
with 1

p (x, y) 1 + ea-b+cx

where a,#, b, c > 0,

and y E , -
#0)

The second part of Equation 3.1 represents the case in which the total demand is

greater than the booking limit:

R (x, y, z) = zpx + z (1 - p) y

By isolating the variable z in the revenue function, we get:

R (x, y, z) = z[px + (1 - p) y]

= z -g (x,y)

where the function g represents the average fare in the time frame considered:

g (x, y) = px+ (1 - p)y

with p (x, y) =
1

1 + ea-b+J

The revenue function's maximum is not reached.

Vk > 0, p X +
k k
c b
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The function g increases in x and y. Thus:

k k
R x + --,y+ -, Z) > R (x, y, z)

Thus, for all booking limits z, the maximum of the revenue function is reached on

the boundary of the domain of definition, for ntot = z. In other words, the maximum

of the revenue function is reached for y = .

We shall now turn to the other part of Equation 3.1, representing the case in

which the total demand is below the booking limit:

R (x, y, z) - ntotalPX + ntota (1 - p) y

This function does not depend on z, but solely on x and y. Figure 3-6 is an illustra-

tion of revenues as a function of those two price points. The function is also twice

differentiable. It is neither concave nor convex.

Let (x*, y*) be the optimal solution to Equation (3.1). Then we can set z to be

equal to a - #y*.

In both considered cases, the booking limit resulting in the optimal revenues is

given by z = a - #y*. The booking limit is a redundant variable. Since the demand

is deterministic, it can simply be adjusted by changing the fares. We can ensure that

the demand does not reach the upper bound that the booking limit represents by

increasing the lower fare yi.
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Figure 3-6: Example of the revenue as a function of the two fares, without a booking limit

The equivalent revenue function for TF1 is:

R (x, y) = ntapx + ntta (1 - p) y

with{
ntotsa (x, y) = a - py

1
p(xY) = 1+ ea-by+cx

where a,#P, b, c > 0,

and y E 0,)-
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Total revenues over the two time frames

These results can be generalized and applied to the second time frame. The objective

function becomes:

Rtotaj = R1 + R 2

{Ri 1 = notal,1p1X + ntotal,1 (1 - pi) y1
with ±~~~2( 2

R2 =tnota,2P2X 2 + ntotai,2 P2) Y2

The total revenue function is also concave and we therefore have a concave opti-

mization problem:

Maximize R = R1 (x1 , yi, zi) + R 2 (x 2 , Y2)

Subject to ai - #1Y1 + a 2 - #2Y2 - C < 0

with zi ai - #1y1

This is a non-linear constrained maximization problem. It is possible to use the

interior point method to find a solution.

3.5 Numerical Results

A numerical example is used to illustrate the proposed approach and gain more in-

sights into the benefits of joint pricing and seat allocation optimization.

The assumed parameters for the demands in the two time frames considered are

given in Table 3.1. The flight capacity is 100 seats. The demand level in the second

time frame is lower and less price elastic than in the first time frame, as it is usually

observed in the airline industry. The probability that a passenger will buy the higher

fare product, for a given pair of fares, increases with time, all else being equal.

The optimal deterministic solution to this joint pricing and seat allocation problem
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TF1 TF2

ai=135 a 2 =85
Total Dernand nit,It ,-15 2=8

'l mi # 0.44 #2 = 0.20

ai 0.864 a2  -0.038
Probability pt b1 = -0.020 b2 = -0.016

ci = 0.009 c2 = 0.008

Table 3.1: Parameters for the demand functions

is obtained by running an interior point algorithm in

revenue is reached with the following fares:

Matlab. The maximum total

Fare Product 1

Fare Product 2

Implied booking limit

TF1

x* = $349.1

y*= $173.3

zi = 60

TF2

x* = $462.4

y2= $223.2

Table 3.2: Optimal solution to the deterministic joint pricing and seat allocation problem

Based on the assumed parameters, we can deduce the deterministic demands and

revenues expected at those fare levels, as shown in Table 3.3.

Average Fare ($)
Probability pt

Total Demand

Revenues

TF1

244

pt =40.3%

n* ,,a,1 =59.6

R* = 14,559

TF2

336

p* =47.0%

n*,e0 ,2 =40.4

Rt = 13,544

Total

n*a =100.0

R*,,t = 28,103

Table 3.3: Deterministic demand and revenues

The deterministic model results in a total number of booking requests matching

the flight capacity exactly. The optimal lower fares are such that 60 passengers shall

requests bookings in the first time frame, and 40 in the second time frame. The total

revenue generated by the two fare products is $28.1k.
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3.6 Simulations

In the previous sections, the optimization problem was formulated with a demand as-

sumed to be deterministic. We showed that this hypothesis implies that the booking

limit is zi is a redundant variable. The demand for air travel in reality is known to be

stochastic by nature. We therefore test our solution to the optimization problem in a

stochastic environment. In this last part of the chapter, we run simulations in which

the demand generated is a random variable. The set of simulations shall enable us

to assess the importance of a booking limit in a stochastic setting. We shall run a

first set of simulations without enforcing any booking limit and then a second set of

simulations with a booking limit set to z* = ai - 1yi = 60. Lastly, we will compare

the proposed joint pricing and seat allocation approach with a more traditional and

well established leg-based seat allocation method.

3.6.1 Simulations with no booking limit

In the first set of simulations, we use the fares corresponding to the deterministic op-

timal solution (see Table 3.2) without enforcing the implied booking limit of zi = 60

seats. The resulting maximum number of bookings accepted in TF1 and TF2 are

min (ntot,1, C) and min [ntotal,2, C - min (ntota,1, C)] respectively.

The total demand for the two fare products is a random variable generated at the

beginning of each time period. We will test two possible probability density functions:

a uniform and a Gaussian probability density function. Thus, for each considered sce-

nario, two distinct sets of simulations will be run. In the first set of simulations, the

demand is uniformly distributed in both time frames. In a second set of simulations,

the demand is normally distributed in both time frames. The demands for the two

time frames are independent. For both type of demands, we generate 1,000 samples.

The mean total demand is a linear function of the lower fare, yi, and we use the

same parameters, displayed in Table 3.1, to model these expected values. The stan-
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1' Generate the stochastic demandgiven thefares

n, ~ N(60,20)

T F1
2/Reject part of the demand if greater than capacity

3/Deduce revenues and remaining capacity

R= n=pIx 1 + n 1 - )y,
Remaining Capacity= C -n

4/Generatethe stochastic demand given thefares

-N(4O,12)

TF2 5/Rejectpart of the demand if greater than remaining capaciy

6/Deduce revenues

R2 = mini (n2 ,C- n,) P2X2 + min (n 2 , C - n,)(1-P 2)Y 2

Figure 3-7: Overview of the simulation process

dard deviations of the demands in TF1 and TF2 are 20 and 12 respectively, which

corresponds to about a third of the deterministic demand for each time frame. For

the normal distribution, the demand is truncated in order to prevent any instance of

negative demand. Finally, the flight capacity does not affect the probability that a

passenger chooses the higher fare product.

The simulation process is summarized in Figure 3-7. We first generate demand in

TF1 and decide how many booking requests can be accepted given the flight capacity.

Then we generate the TF2 demand, and given the remaining capacity, we determine

the number of bookings that can be accepted.

The average demands and revenues resulting from the two different sets of simu-

lations are shown in the two tables, Table 3.4 and Table 3.5. The cumulative distri-

butions of the revenues for the two types of demand, are shown in Figure 3-8. They
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Figure 3-8: Cumulative distribution functions of the revenues when no booking limit is enforced

are fairly similar.

TF1 TF2 Total

Accepted Bookings 59.1 31.1 90.2
Difference with theory -1% -23% -10%

Average Fare ($) 244 336 276

Revenues ($) 14,430 10,426 24,856

Table 3.4: Simulation results when no booking limit is enforced - uniform distribution

For both types of distributions, the accepted demand in the first time frame

matches the predicted deterministic demand. There is only a -1 to 1% relative dif-

ference with the theoretical demand of 59.6. However, in the second time frame, we

observe a large difference between the accepted demand and the predicted, under-

lying, demand. The average accepted demand in TF2 is about 31.1, which is 23%

lower than the mean underlying demand. The resulting load factor averages 90-91%.
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TF1 TF2 Total

Accepted Bookings 60.1 31.1 91.2
Difference with theory 1% -23% -9%

Average Fare ($) 244 336 276

Revenues ($) 14,684 10,423 25,107

Table 3.5: Simulation results when no booking limit is enforced - Gaussian distribution

This gap in the accepted demand, not observed in the first time frame, is due

to the flight capacity and the combined demand variability. Figure 3-9(a) shows the

distribution of the demand in TF2 given the accepted demand in TF1. In about 50%

of the samples generated, the combined demand of TF1 and TF2 exceeds the flight

capacity, represented on the figure by a red line. Thus, in about 50% of the samples

generated, part of the TF2 underlying demand was not accommodated and only the

demand matching the remaining capacity was accepted, as shown in Figure 3-9(b).

The average accepted demand is displaced and lowered by the constraint represented

by the flight capacity. This translates into a 23% loss in the second time frame's

revenues, which represents a -9% decrease in revenue overall.

The average fare in the second time frame is nevertheless higher than that of

the first time frame. We could mitigate the loss in revenue by displacing part of

the rejected demand to the first time frame. To do so, we would need to enforce a

booking limit in the first time frame, thus protecting a minimum number of seats for

the second time frame. This case will be illustrated with the next set of simulations,

where we set of limit to the number of bookings accepted in TF1.

3.6.2 Simulations with a booking limit

In the second test, we enforce the booking limit: the number of bookings accepted

in the first time frame is at most z* = 60. For a more accurate comparison with the

previous scenario, we do not regenerate the underlying demand. Only the number of

accepted bookings changes. The fares still correspond to the deterministic optimal
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Figure 3-9: Impact of the flight capacity on the accepted demands

solution.

The results are summarized in Table 3.6. Enforcing the booking limit in the first

time frame results in a 0.5-0.7% increase in the estimated average total revenues. The

results are further detailed in the Table 3.7 and Table 3.8. The revenue improvement

is driven by the increase in the accepted demand in TF2. Enforcing the booking limit

zi in the first time frame lowered the estimated expected TF1 constrained demand

from 59 to 51, a 14% decrease, which resulted in a $1950 loss in expected revenues

for the uniform distribution. However, the few seats saved in the first time frame

became available for the later arriving demand: the estimated number of bookings

increased from 31 to 37 in the second time frame. The higher fares combined with

the increase in accepted demand resulted in a $2100 gain in expected revenues in the

second time frame for the uniform distribution, eventually leading to a 0.5% increase

in total expected revenues.

The impact of the booking limit on the distribution of the accepted bookings in

both time frames is displayed in Figure 3-10. The booking limit greatly reduced the

standard deviation of the accepted bookings. However, the load factor is also reduced,

as shown in Figure 3-11, which gives an overview of the opposite changes induced by

zi on both time frames.
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Figure 3-10: Impacts of the booking limit on the accepted bookings in both time frames
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Uniform Gaussian
Demand Demand

Revenues without z1  $24,856 $25,107

Revenues with zi $24,970 $25,292
Change 0.5% 0.7%

Table 3.6: Impacts of the booking limit on the expected revenues

TF1 TF2 Total

Accepted Bookings 51.1 37.2 88.3
Difference with theory -14% -8% -11%

Difference with no z1  -14% +20% -2%

Average Fare ($) 244 336 283

Revenues ($) 12,471 12,499 24,970

Table 3.7: Simulation results with the booking limit enforced - uniform distribution

There is trade-off between the increase revenues generated by saving a seat for a

later, higher-revenue passenger, and the risk of rejecting a booking for a seat in the

first time frame that may not be sold in the end. The 0.5% increase in total revenues

may be further enhanced by another well chosen booking limit. The next chapter will

focus on determining simultaneously fares and booking limit to optimize the total

revenues in a stochastic environment.

3.6.3 Simulations with booking limits on Fare Product 2

In traditional revenue management approaches, all fare products but the highest one

have a booking limit. The objective is to ensure that only a maximum number of

discounted, or lower, fare products are sold, thus leaving at least a few seats available

for the late arriving but high revenue passengers. In our set-up, this would correspond

to imposing an additional booking limit on Fare Product 2. Capping the number of

bookings that can be accepted for Fare Product 2 in both time frames would ascertain

the prolonged availability of Fare Product 1.
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TF1 TF2 Total

Accepted Bookings 52.2 37.4 89.6
Difference with theory -12% -7% -10%

Difference with no z1  -13% +20% -2%

Average Fare ($) 244 336 282

Revenues ($) 12,751 12,541 25,292

Table 3.8: Simulation results with the booking limit enforced - Gaussian distribution

Our model does not account for this kind of booking limit. Instead we specify

a booking limit to protect seats for later time frames. We therefore do take into

account the time dimension: our model acknowledges the fact that later arriving

passengers probably have a higher willingness-to-pay than early booking passengers.

Moreover, we assume, implicitly, that this is likely to be true for both fare products.

Furthermore, our model also protects Fare Product 1 versus Fare Product 2, but

not in the traditional way: integrating pricing and revenue management allows us

to control the passenger mix thanks to the fares. In other words, including the four

fare levels as decision variables enabled us to remove the two additional booking lim-

its that would be required to mirror the traditional approach. Nevertheless, we will

test the performance of the model when these additional bookings limits are enforced.

Let Z2,TF1 and Z2,TF2 be the booking limits for the lower fare product in the first

and second time frame, respectively. The optimal fares of the deterministic model

imply demands of 36 and 21 for Fare Product 2 in TF1 and TF2. Therefore, in ad-

dition to the zi = 60 booking limit on the total TF1 demand, we impose a booking

limit of Z2,TF1 = 36 on the number of accepted Fare Product 2 bookings in the first

time frame, and another booking limit of Z2,TF2 = 21 on the number of accepted Fare

Product 2 bookings in the second time frame. In this case too, we do not regenerate

the underlying demand, in an effort to allow for a more accurate comparison between

scenarios. Only the number of accepted bookings changes.
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Figure 3-11: Impacts of the booking limit on the type of accepted bookings

The results are summarized in Table 3.9. Enforcing the booking limits on Fare

Product 2 in both time frames results in a decrease in the estimated average total

revenues from the case where no booking limit is applied. However, the change is very

small. It is driven by the decrease in the total number of accepted bookings. With

the additional booking limits, the average number of accepted bookings diminished.

More Fare Product 2 booking requests were rejected, however the booking limits were

not well adapted since this did not result in many additional higher-revenue bookings.

3.6.4 Simulations with a traditional revenue management ap-

proach

The last set of simulations is intended to help us compare the deterministic joint

optimization approach with a more traditional revenue management method. To do

so we used a fixed fare structure combined with a leg-based seat allocation method,
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Uniform Distribution

Accepted
Gaussian Distribution

Accepted
Revenue Bookings Revenue Bookings

Simulations without zi $24,856 90 $25,107 91

Simulations with z1  $24,970 88 $25,292 90
Change 0.5% -2 0.7% -1

Simulations with zi,

Z2,TF1 and Z2,TF2 $24,732 87 $25,078 89

Change -0.5% -3 -0.1% -3

Table 3.9: Impacts of booking limits on the expected revenues and the accepted bookings

the Expected Marginal Seat Revenue method, also noted EMSRb. In this traditional

revenue management approach, the fares and booking limit are considered separately.

The fares are not part of the decision process and do not change. It is therefore dif-

ficult to propose a straight-forward comparison.

We use the same parameters as those displayed in Table 3.1 to test this tra-

ditional revenue management method. In this traditional approach, the fares are

assumed to remain fixed throughout the entire selling period and we therefore keep

the fares unchanged. We use the formulation of the deterministic joint pricing and

seat allocation method to determine the pair of fares that would optimize the rev-

enues. This should mitigate the impact of a poor pricing strategy on the simulated

revenues. The optimal fares are $392 and $189. Once the pair of fares is known, it is

possible to apply the leg-based seat allocation method, EMSRb, to find the optimal

booking limit. As show in Figure 3-12, the deterministic demand for Fare Product 1

and Fare Product 2 is 28 and 72, respectively. Standard deviations of 20 and 12 in

TF1 and TF2 imply standard deviations of 10 and 14 for Fare Product 1 and Fare

Product 2, respectively. The EMSRb booking limit for Fare Product 2 is therefore 71.

The total demand for the two fare products is generated for each time frame, given

the new optimal pair of fares. We deduce the demand for each fare product based on
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mZ J

Total

32 189.0

53

40

47

189.0 72

100

Figure 3-12: Fares and demands for the traditional revenue management method

the implied probabilities pi and P2. The booking limit of 71 seats is then applied to

the demand for Fare Product 2 and the flight capacity limit is applied to the sum of

the demands for the two products.

Once again, we use two distinct sets of simulations. In the first set of simulations,

the demand is uniformly distributed in both time frames. In a second set of simu-

lations, the demand is normally distributed in both time frames. For both type of

demands, we generate 1,000 samples.

Uniform

Demand

Accepted Bookings:
Traditional RM Approach

Joint Optimization with zi
Change

Revenues:
Traditional RM Approach

Joint Optimization with zi
Change

90.6

88.3
-2.5%

$24,116

$24,970
3.5%

Gaussian

Demand

90.6

89.6
-1.1%

$24,239

$25,292
3.5%

Table 3.10: Comparison between joint optimization and a traditional revenue management approach

The deterministic joint optimization solution provides a 3.5% increase in revenues
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Figure 3-13: Cumulative distribution functions of the revenues, for Gaussian demands

from the traditional approach to revenue management with a single set of fares, as

shown in Table 3.10. The pair of fares used for this set of simulations is already par-

tially optimized: we used the deterministic model to find the best pair of fares given

the flight capacity. In reality, fares are usually not optimal when traditional revenue

management approaches are used and the deterministic model could therefore result

in an even higher increase in revenue.

Figure 3-13 shows the cumulative distribution functions of the revenues when the

demand in Gaussian. The joint optimization approach can help the airline reduce

the risks of lower revenues. The highest revenues are also obtained with the joint

optimization approach.
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3.7 Summary

In this chapter, we formulated the two-product, two-period joint pricing and seat

allocation problem.

We proposed a first approach to solving this problem by first assuming that the

demand is deterministic. This assumption enabled us to gain some insights. In the

deterministic case, the booking limit was unnecessary, which greatly simplified the

objective function.

In the last section, a numerical example was used to illustrate the deterministic

approach and run a few sets of simulations in which the demand exhibits some vari-

ability. The simulations confirmed the benefits of enforcing the booking limit when

the demand is stochastic. By protecting a minimum number of seats from early, low

revenues passengers, the booking limit enabled the airline to improve its expected

revenues. The simulations showed that even when the demand is uncertain, the pro-

posed approach performed well when compared to a traditional approach to revenue

management method. Finally, the proposed approach behaved well under the two

types of demand distribution tested. The uniform and Gaussian distributions led to

very similar results.
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Chapter 4

Stochastic Approach to Joint

Pricing and Seat Allocation

Optimization

In this chapter, we extend the work presented in Chapter 3 by introducing stochastic-

ity in the demand formulation. The total demand for the fare products is no longer

deterministic. While it still depends on the products' prices, it now also encompasses

an uncertainty component. This new formulation, in which the demand fluctuates

around an average, is intended to be more realistic. The objective of the stochastic

model is to simultaneously find the optimal set of fares and booking limit that max-

imize the expected total revenue.

This chapter is divided into five sections. We begin by reviewing the problem

scope. The notations are identical to those used in Chapter 3. In Section 4.2 we state

and explain the assumptions regarding the demand formulation. In the following

section, we derive the objective function by analysing the effect of demand uncertainty

on the total number of accepted bookings, one time frame after the other. The analysis

is based on a geometrical analogy. We then go back to the numerical example from

the previous chapter to illustrate the new stochastic approach to joint pricing and

seat allocation. We compare the results with those obtained with the deterministic

71



approach and the more traditional leg-based revenue management method EMSRb.

Finally, we conclude the chapter with a sensitivity analysis and performance analysis.

4.1 Scope of the Problem

The scope of the problem remains the same as in the previous chapter. We place

ourselves in a single carrier, single flight, single OD market environment, and the

flight has a fixed capacity of C seats.

Again, two fare products are offered. They provide exactly the same in-flight ser-

vice but are associated with two distinct sets of purchase restrictions and are priced

differently. Fare Product 1 represents the more expensive, less restricted, product.

The other product, Fare Product 2, is priced lower, but in return, has additional

restrictions and rules. The prices of the two products can change over time.

The booking period is divided into two time frames, noted TF1 and TF2. Book-

ings start to be accepted at the beginning of the first time frame, TF1. The prices

of the two products can be modified at the start of each new time period. The price

points are decision variables.

Furthermore, the airline can limit the total number of seats to be sold in the first

time frame. Any unsold seats at the end of the first time frame is available for book-

ing in the second time frame: the seat inventory is nested.

The notations used in this chapter are the same as the ones used previously.

4.2 Model Assumptions

We make the following assumptions regarding the demand formulation:

1. The demands in the two time frames are independent.
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2. The total demand for both products in TFi is uncertain, and modelled as a

stochastic additive function ntot,,i = pi (yi) + Ei.

3. The expectation of the total demand in TFi, denoted pi, is a linear function of

the lower price: pi (yi) = ai - #3yj, with aj, 3 > 0.

4. The random variable Ei is uniformly distributed: si - U [-o-, o-].

5. The probability that a passenger chooses the less restricted product is
1

pi (Xi, yj) = + ea-bsy,+cixi, with bi, c > 0.

Assumptions 2 and 4 are the two assumptions that were not applied in the pre-

vious chapter. Through Assumption 2, we introduce the total demand as a random

variable. The mean value of the total demand, given by Assumption 3, corresponds

to the deterministic demand of the previous chapter. Assumption 4 implies that the

total demand in each time frame is uniformly distributed. In the literature on rev-

enue management, the most commonly used probability distribution is the Gaussian

distribution (Weatherford, 1997; Kuyumcu and Garcia Diaz, 2000). However, several

reasons, detailed next, led us to chose the uniform distribution over the Gaussian one.

As we shall see in the following section, determining the expected number of ac-

cepted bookings, also called the censored demand, over the two time frames is critical

to the optimization problem. The probability density function of the sum of two

independent random variables is the convolution product of their individual density

functions. While we know that the convolution of two unbounded Gaussian prob-

ability density functions is a simple Gaussian probability density function, there is

no closed-form expression for the convolution of bounded Gaussian distributions. In

other words, because the booking limit or the flight capacity truncate the probability

distribution function of the demand in the first time frame, the convolution product

becomes extremely complex when the distributions are Gaussians. The uniform dis-

tribution, on the other hand, enables us derive the probability density function of the
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sum of two bounded variables.

Nevertheless, we shall note that all the work done with the uniform distribution

can be used to model the Gaussian distribution. The Gaussian function can be seen

as the limit of a sum of uniform functions, as shown in Figure 4-1, and the convolution

product of two sums of functions is the sum of the convolution products of all pos-
kf k9  kf kg

sible pairs of functions: L fi * = [ (fi * g3). The results found
(i=1 (j=1 i&=1 j=1

for two uniform distributions can be directly applied to every pair of functions fi * gj.

The findings of this chapter can thus be easily extended and used to approximate the

results for Gaussian distributions.

In addition, the uniform distribution does not put as much emphasis on the mean

as the Gaussian distribution does. In reality, it might occur that a demand much

lower or higher than the mean is more likely than the normal distribution predicts.

Modeling the demand with the uniform distribution therefore protects the airline a

bit more against lower revenues.

4.3 Objective Function

The total revenues generated by the sale of the two products over the course of the

two time frames is given by:
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Probability
Density Function

-- -- - -- - -- - - - -

Figure 4-1: Gaussian as the limit of a sum of uniform functions

Rtota = R1 + R2

ntotal,1 [p1xI + (1 - PI) yi]

zi [pixi + (1 - pi) y1],

if nettai,1 < zi;

otherwise.

R2 ntota,2 [P2X2 + (1 - P2)Y2], if ntota,2 < C - min (zi,ntota,1);

[C - min (zi, ntota,,)] [p2 x 2 + (1 - p2) Y2], otherwise.

The two underlying demands ntotai and ntotal,2 are uniformly distributed. The

objective function for the stochastic model is therefore the expected value of the total

revenue:
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total J min (ntotai,1, zi) [pix1 + (1 - pi) y1] fi (ntotae,1) dntotai,1

+ f min (ntotal,2, C - min (ntota,1, zi)) [p2X 2 + (1 - P2) Y2] fi (ntotai,1) f2 (ntotal,2) dntotal,1dntota,2

The expected revenue from the first time frame only depends on few variables.

Once again, we will analyse the revenue functions for the two time frames separately,

starting with the simpler first time frame revenue.

Time Frame 1

In this section, we will drop the index 1 to simplify the notation. The revenue function

is:

R (x, y, z) ={ ntotalPX + ntotal (1 - p) y, if ntotal < z;zpx + z (1 - p) y, otherwise.

The expected revenue in TF1 is given by the following equation:

R (x, y, z) = min (ntotol, z) [px + (1 - p) y] f (notc) dntotca
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For z C [p - o-; p + ] and z < C, we have:

R (x, y, z) = ntotal [px ± (1 - p) y] f (ntotai) dntotal

+ 100 z [px + (1 - p) y] f (ntotai) dntotal

[pX + (1 - p) y] neLo ftotaif (nttoti) dntotai + z f (ntota) dntotoal

=[ox + (1 -p)yi] o"dntota+ - z dntotaj[X+ I. A yf,_0a 2o- J 2a

[X+ 1 AY1z+p (p Z)2 0

2 4o- 4

We can introduce the expected value of the censored demand, noted rccpte:

pifz > P+ 0;

-z_ z p (p-z)2  o-naccete - -- , Gf ze[p1-o;pL+or];

Z, ifz<p- 0.

The expected revenue in TF1 can then be rewritten as:

R (x, y, z) = [px + (1 - p) Y1iaccpted.

It is important to note the difference between the underlying demand and the

actually observed number of bookings or censored demand.

The underlying demand is the demand that would be observed if the airline could

accept all the booking requests it received. However, in reality, they are physical

constraints that bound the total number of bookings that can be accepted. Once the

flight capacity or the booking limits are reached, the airline has to reject booking re-

quests. Therefore, the total number of accepted bookings, which is the total censored

demand, is in most cases different from and lower than the underlying total demand.
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Figure 4-2: Underlying and constrained, also called censored, demands in TF1

The revenues generated by the sale of the two products depends on the number of

accepted bookings. Therefore, the expected revenues are a function of the expected

censored demand, noted incapted,i. The probability density function of the censored

demand in TF1 depends on the booking limit imposed by the airline, as shown in

Figure 4-2. The expected censored demand is a function of Pi (yi), z and o-. The

expected value of the underlying total demand, pi, and the booking limit zi are lower

and upper bounds of the expected censored total demand.

Time Frame 2

The maximum number of bookings that can be accepted in the second time frame de-

pends on remaining capacity at the end of the first time frame, i.e. C-min (ntoat,1, zi),

as outlined in the following equation:
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R2 ntotal,2 P2x2 + (1 - P2) Y2] , if ntotal,2 < C - min (zi, ntotal,1);

[C- min (zi,ntotat,1)] [p2 x2 + (1 - P2) Y2], otherwise.

The second time frame's revenue function not only depends upon the flight capac-

ity, but also the upon variables form the first time frames. The flight capacity could

have been, for the second time frame, the equivalent of the booking limit from the first

time frame. However, the seat supply for the two time frames is nested: the physical

constraint embodied by the flight capacity does not solely apply to bookings of a

single time frame but to the combined bookings of both time frames. The combined

censored demands of the two time frames have to verify Taccpted,1 + accepted,2 < C.

The first time's booking limit and the flight capacity affect the number of bookings

that can be accepted in the two time frames, as shown in Figure 4-3.

The expected value of the revenues in TF2 is a function of the expected censored

demand in TF2, noted Taccpted,2.

I2 = [P2-T2 + (1 - P2) Y2] Taccteed,2

One way to determine the expected value of the censored TF2 demand would

consist of first evaluating the expected value of the sum of the two censored demands

faccepted,1 + accepted,2, and then subtracting the known accetde,1. This would involve

a cumbersome convolution of a censored and an uncensored probability density func-

tion. There is, however, a more straight-forward and intuitive method to obtain

ffaccepted,2-

Indeed, the expected value of the total censored TF2 demand can be found geo-
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Figure 4-3: Constraints on the bookings in the two time frames

metrically. The probability density functions of the underlying, underlying, demands

in TF1 and TF2 are fairly simple. The region of possible values for niotal,1 and ntotaL,2

can be divided into four smaller regions by the constraints zi and C. Those four

regions are shown in Figure 6-1.

Region I is not affected by either constraint. All the points in this region are

equally likely to be drawn.

In Region II, the bookings in TF1 were lower than the booking limit and are

therefore equally likely to be drawn. They are not affect by either the booking limit

or the capacity constraint. However, the sum of booking requests in TF1 and TF2

are greater than C. The capacity constraint therefore applies to TF2. In this region,

the demand in TF2 is censored to C - ntotal,1.

In the other two regions, Region III and Region IV, the booking limit had to be

enforced in the first time frame. However, the booking limit and capacity constraint
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Figure 4-4: Divide and conquer

are not enforced simultaneously. The booking limit z1 is applied first and will affect

the number of accepted bookings in TF1 only. The capacity constraint is applied

later, but its impact on the number of accepted TF2 bookings depends on the number

of bookings accepted in TF1.

In Region III, the booking limit zi applies to the first time frame's bookings: the

TF1 demand is censored and exactly zi bookings are accepted. The underlying TF2

demand of this third region is between p2 - o,2 and C - zi. Therefore, when the

booking limit is enforced in the first time frame, the sum of bookings for TF1 and

underlying demand for TF2 is lower than the capacity. The TF2 demand is not

capped.

In Region IV, both constraints apply. The booking limit zi was enforced in the

first time frame and the accepted number of bookings in this region is exactly equal

to zi. Then, in the second time frame, the underlying demand is too high again and

the accpeted number of bookings is exactly equal to C - zi. there are more than zi

booking requests in TF1 and more than C - zi requests in TF2.

For each of one these four regions, we can easily find the ordinate of the barycen-
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tre, and therefore deduct -accepted,2-

We assume that the condition Cap - zi < P2 + 92 is always satisfied. In order

words, we assume that the fares are such that the flight capacity can be reached. If

this is not the case, the total demand is much lower than the capacity and there is

little meed for seat allocation optimization. There are three cases to consider, depend-

ing on the position of the flight capacity constraint with respect to the underlying

TF2 demand. We shall first consider the case for which: p1 - i 5 C - p2 - o-2 < z1 .

This is the case depicted by Figure 6-1.

We shall first consider Regions I & II. We shall compare the ordinates of these two

regions in the two following cases: without and with the capacity constraint. When

the flight capacity is not enforced, the ordinate of the combined regions is simply p12-

Let Yi,f' be the ordinate of the barycenter of these two regions when the capacity

constraint is applied. The two regions' characteristics of interest are listed in the two

tables, Table 4.1 and Table 4.2.

Barycenter's
Region Ordinate Area

I unknown 2CF2 (zi -(12 + U2 - Ciz))2

C - z + 2 2 + 2a 2  (/12 + 2 - C + zi)2

3 2
Total p2 2o2 (zi - p1 + ai)

Table 4.1: Underlying demands in Regions I and II

By substitution, we have Y , 1  =L2 - (-2 +02

1202 (z1 - 1 + i)

Similarly, we can define the ordinates of the Regions III and IV's barycentres, as

shown in Table 4.3. The ordinate of the two regions' barycenter is given by YrnIjv

C - z1 +12 (_ 2 - C + z1) 2  0-2

2 4o 2 4'
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Barycenter's
Region Ordinate Area

I unknown 20-2 (zi - pi + o) - _A____-C+__

2

2C - 2z1+ pL2 + -2  
+_2 C + z1)2

3 2
Total Yji 2U2 (z1 - pl + 0-1)

Table 4.2: Censored demands in Regions I and II

Barycenter's
Region Ordinate Area

III (C - zi + p2 - o 2 ) (C - ZI - P2 + 0-2 ) ([L + o1 - zi)
IV C - zi (p2+ -2 - C + zi) (p1 + o- - zi)

Total YIIIv 2o-2 (1t + ol - zi)

Table 4.3: Censored demands in Regions III and IV

As, 2 o-17accepted,2 = Yin' (zi - il + 0ol) + Yinr,Iv (pt1 + o1 - zi), we have, for L1 -

U-1 C - p2 - o-2 < zi:

"accepted,2 -
(P2 - + U-2 - C + z1)3

p212o-2 (zi - p1 + a-1)

(z1 - P1 + Oi)
2al

+C - Z I + p 2 (p-2 -C + zi)2 U.2

2 40-2 4 _
pl + o- - Zi

2a

We can use the same geometrical approach to determine the expected censored

demand in the two remaining cases. For [Li - o-l < zi 5 C - [2 - c-2 , we have

Tiaccepted,2 = [12. For C - P2 - 0'2 5 P1 - o- zi, the expected censored demand is

z2 - (pl - 0_1)2
p12 

12U-2

±C - zl + 2 _ (pL2
2

C + zi) 2

4o-2

o- 1 C)2 (Zi - Li + a)
201

L + ol - Zi
2o-1

Figure 4-5 is an illustration of the expected censored demand in TF2 as a function
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of the first time frame's demand and booking limit.

The assumption that the demand follows a uniform distribution allowed us to

determine the exact expression of the censored demand. The geometrical approach

would not have been possible with a Gaussian distribution. Instead, one would have

had to resort to simulations to estimate the number of accepted bookings. The use

of this simple distribution will be particularly useful as we move to a multiple-time

frame optimization problem. As we shall seen in the next chapter, it is possible to

extend the geometrical approach to additional time periods.

Total Expected Revenues

The objective function is the expected total revenues generated by the sale of the two

products over the course of the two time frames:

Rtotal =accepted,1 X1PI + (1 - P1) Y1] + faccepted,2 [X2P2 + (1 P2) Y21

with accepted,1 2 4 i 4 '

and, for p1 - o1 < C - 112 - 0-2 < zi:

(accepted,2 - P2- (I O2 - C + z) 3  (zi - P1 + a)
n 122 (Zi - /1-i-i) I 2o-

[C - Zi + 2 (p2 - C + Z)2 T2 p1 + O-1 Zi

for p1i - 01 <_ Z1 < C - p2 - O2: Waccepted,2 = p2;

for C - p12 - O2 1 - O1 <z 1 :
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z - ( - o 1 )2  (A2 + o2 + - o-1 - C)2 (z 1 - 1 ±J + a-)
12+acceted,2 - 2

2  12-1

C - zi + 2  (p 2A-C+zi) 2  0.2 pLI+ 0-1 Zi

2 4u2 4 2a-

2

In this model, we have, by construction, iaccepted,1 < zi and Tacceptedi 5 C.
i=1

The two booking constraints zi and C are included in the objective function.

The objective function is a non-linear, neither concave nor convex function. A

non-linear maximization technique, such as the Powell's algorithm can be used to

determine the optimal set of fares and booking limit. The deterministic optimal

solution, derived from the deterministic problem, can be used as a starting point.

4.4 Numerical Results

In this section, we illustrate the stochastic joint pricing and seat allocation approach

with a numerical example. This example will help us understand the advantages

of the stochastic model over the deterministic one. Furthermore, simulations drawn

from this example will enable us to test the model under different assumptions and

compare the joint approach to a more traditional revenue management approach.

The assumed parameters for the demands in the two time frames considered are

given in Table 4.4. The demand and portion parameters are identical to the parame-

ters used in Chapter 3. However, for the stochastic approach, we have two additional

parameters which describe the standard deviation associated to the total demand

in each time frame: si and s2. The relationship between the uniform distribution's

standard deviation s and distance between upper bound and mean, noted - in the
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problem formulation, is given by o-= sv/5. The flight capacity is 100 seats.

TF1 TF2

a 1 =135 a2 8
Total Demand nittalt a3 0.445 /2 0.20

' P# = 0.44 #2-=0.20

ai = 0.864 a2 = -0.038
Probability pt b1 = -0.020 b2  -0.016

ci = 0.009 c2  0.008

Standard deviation s= 20 S2=12

Table 4.4: Parameters for the demand functions

The optimal stochastic solution to this joint pricing and seat allocation problem

is obtained with Matlab. The maximum total revenue is reached with the fares and

booking limit of Table 4.5. The stochastic optimal fares are higher than the deter-

ministic fares, and the increase is larger in the first time frame. These higher fares

should lower the demand, yet the optimal booking limit is also higher than the im-

plied deterministic booking limit.

Fare Product 1

Fare Product 2

Booking limit

TF1

x* = $383.4

y* = $196.5

z* = 73

Table 4.5: Stochastic optimal solution to the joint pricing and seat allocation problem

Based on the assumed input parameters, we deduce the total number of accepted

bookings, or censored demand, and revenues implied by these fares and booking limit,

as shown in Table 4.6. The optimal fares and booking limit determined with the

stochastic approach result in a total expected censored demand of 82.6, or an average

load factor of 82.6%. The expected total revenue is $25.7k. This forecasted expected

revenue is about 9% lower than the $28.1k revenue predicted with the deterministic

model. However, the previous chapter's simulations revealed that, in practice, the
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Figure 4-6: Difference between the two time frames' underlying and censored demand

average revenue generated by the deterministic optimal solution in a stochastic envi-

ronment only averages $25.0k.

TF1 TF2 Total

Average fare ($) 279.8 355.8

Underlying Demand * =49.5 , =37.6 p =87.1

Accepted Bookings Wtaj =48.7 7total,2 =33.9 7ta =82.6

Revenues (k$) R = 13.6 R2 = 12.1 Rot = 25.7

Table 4.6: Implied censored demand and revenues

Figure 4-6 shows the underlying and censored demands for the two models, de-

terministic and stochastic. In the case of the deterministic model, the underlying

demand corresponding to the optimal solution matches the flight capacity exactly.

The simulations revealed that the demand variability, the booking limit and the

flight capacity all constrain the demand to about 88 instead. The stochastic model,
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Figure 4-7: Impact of fares and booking limit on the revenues

which takes into account uncertainty and constraints, recommends fares which lower

the total underlying demand altogether. The displacement between underlying and

censored demands is reduced. As shown in Figure 4-6, the censored demand obtained

with the stochastic solution should not be too far off the actual total number of

bookings observed with the deterministic solution in practice. Yet, since the fares are

optimized in light of the constraints and their impact on the observed demand, the

average revenues provided by the stochastic model should ultimately be higher.

Figure 4-7 is a schematic overview of the relationship between the problem's in-

puts, the fares and booking limit, in green in the graph, the different types of demands,

in blue, and the revenue. Fares stimulate the underlying demand, and their effects

therefore cascade down to the censored demand as well. The booking limit and the

flight capacity constrain the underlying demand. The amplitude of a constraint's

impact on the underlying demand can be seen as inversely proportional to their dis-
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tance. This impact, labelled as "demand displacement" in Figure 4-7, is subtracted

from the underlying demand, yielding the censored demand. Eventually, the fares

intervene again directly, since the revenues is the product of the censored demand

and an average fare.

Increasing the fares lowers the underlying demand, which lowers the impact of the

flight capacity. The censored demand thus undergoes minimal changes. However, be-

cause the fares, the other revenue component, are higher, the total revenues increase.

The booking limit and fares, adjusted simultaneously, can increase the expected total

revenues of the airline overtime.

4.5 Simulations

We shall now run several sets of simulations in which the demand is stochastic and

analyse the results of the stochastic model.

4.5.1 Simulations with the stochastic optimal set of fares and

booking limit

In the first set of simulations, we use the fares and booking limit corresponding to

the stochastic optimal solution (see Table 4.5). The booking limits do not affect the

probability that a passenger chooses the higher fare product.

As was the case in Chapter 3, the total demand for the two fare products is gener-

ated at the beginning of each time period. We run two distinct types of simulations.

In the first type of simulations, the demand is uniformly distributed in both time

frames. In a second type of simulations, the demand is normally distributed in both

time frames. The demands for the two time frames are independent. For both type

of demands, we generate 1,000 samples. We use the parameters displayed in Table
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4.4, to model the expected demands. The standard deviations of the demands in

TF1 and TF2 are 20 and 12, respectively, as outlined in Table 4.4. For the normal

distribution, the demand is truncated in order to prevent any instance of negative

demand. Finally, the flight capacity does not affect the probability that a passenger

chooses the higher fare product.

These simulations should, in a first time, enable us to ascertain the accuracy of

the predicted revenues. The simulations will also help us compare the performance

of the stochastic model when the demand is not uniformly distributed but normally

distributed.

Table 4.7 summarizes the findings. The simulations results match the values pre-

dicted by the stochastic model in the uniform distribution case. The results are higher

than expected when the demand is normally distributed.

Uniform Gaussian

Demand Demand

TF1 Accepted Bookings 48.5 48.1

TF2 Accepted Bookings 34.2 35.0

Load factor 82.8% 83.1%
Diff. w/ Deterministic -5.5 -6.5

Total Revenues (k$) 25.8 25.9
Rel. Diff. w/ Deterministic 2.5% 2.5%

Table 4.7: Average censored demands and revenues

The estimated expected censored demands are very close to the predicted censored

demands for both demand distribution types. In the case of the uniform distribution,

the relative difference between the simulated censored demand and the predicted ex-

pected censored demand is -0.3% and 1.2% for TF1 and TF2, respectively.

The stochastic model is based on the uniform distribution and the relative dif-
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ferences between the theoretical and simulated results with a Gaussian distribution

are therefore slightly larger for the Gaussian distribution. We should note that the

estimated average demands are higher for the Gaussian distribution. The Gaussian

distribution gives more weight to the mean of the underlying demand. Thus, the

expected censored demand for this distribution type lies between the uniform distri-

butions' anccepted and p. We can use the nicc computed for the uniform distribution

as a lower bound for the expected censored demand in the case of a Gaussian distri-

bution.

For the uniform demand distribution, the average total revenue is only 0.4% higher

than the predicted revenue. For the Gaussian distribution, the expected revenues are

1.0% higher than predicted, due to the higher average censored demand.

The set of fares and booking limit determined with the stochastic model led to

2.5% increase in revenues from the deterministic model. The average load factor is

however 5-6 points lower than it used to be with the deterministic solution.

Figure 4-8 shows the histogram of the revenues for the deterministic and stochastic

model when the demand is uniformly distributed. The revenues obtained with the

stochastic optimal solution span over a larger range of values. The minimum revenue

observed with the stochastic solution is $11.0k instead of $13.8k for the deterministic

fares and booking limit. However, revenues are higher than $28.5k in 43% of the

cases with the stochastic approach, versus 7% only in the case of the deterministic

approach. The stochastic model can provide a 2.5% increase in revenues on average.

4.5.2 Simulations with re-optimized TF2 fares

While the stochastic optimal solution provides a 2.5% increase in revenues, it also

lowers the load factor by about 7 points. By modifying the TF2 fares at the end of

the first time frame, given the observed TF1 demand, we may be able to adjust the

demand to better match the remaining capacity.
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Figure 4-8: Revenue histogram for the uniform demand distribution

Previously, a very low underlying TF1 demand would leave much more seats avail-

able for the second time frame than anticipated. Yet, the TF2 fares, optimal for the

average demand, are ill-suited to accommodate the "extra" capacity. As we re-adjust

the TF2 at the end of the second time frame, we can lower the optimal x2 and y2 to

foster the demand and fill-in the remaining capacity, while maintaining the revenues

to an even level. This should help us improve the load factor without sacrificing the

revenues.

In this second test, we allow for the re-optimization of the fares at the end of

the first time frame. At the end of TF1, the remaining capacity is computed as

C - min (nt,1, zi). The stochastic approach can then be applied to the second time

frame only, with the flight capacity set equal to the remaining capacity. The newly

determined set of optimal fares for TF2 is then used to generate the demand. We

keep the same generated demand for the first time frame, in order to compare this
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set of simulations with the previous "static" one.

Uniform

Demand

TF2 average fare:
Static
Re-optimized

TF2 average accepted bookings:
Static
Re-optimized

Average load factor:
Static
Re-optimized
Changes in LF

Average total revenues:
Static
Re-optimized
Change in revenues

$355.8
$335.7

34.3
36.5

82.8%
85.0%

2.1

$25.8k
$25.8k
0.1%

Gaussian

Demand

$355.8
$337.1

35.0
37.0

83.1%
85.1%

2.0

$25.9k
$25.9k
0.0%

Table 4.8: Impacts of the re-optimization on the expected revenues

For both types of demand distribution, the adjustment of the TF2 fares at the end

of the first time frame results in very little changes in the revenues but improves the

load factor, as shown in Table 4.8. The average re-optimised TF2 fare is about $20

lower than initial optimal average of $355.8, fostering the demand. The TF2 censored

demand is about 2 points higher. This resulted in an increased load factor, averaging

85%. As anticipated, the decrease in average fare combined to the increase in the

number of accepted bookings ultimately lead to very small changes in the revenues:

+0.1% for the uniform distribution and 0.0% change for the Gaussian distribution.

As shown in Figure 4-9, the probability of revenues higher than $30.Ok greatly

increases when the TF2 fares are re-optimized at the end of the first time period.

Re-optimizing the fares lowers the risk of low revenues.
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Figure 4-9: Revenue histogram for the uniform distribution when TF2 fares are adjusted

4.5.3 Simulations with booking limits on Fare Product 2

The stochastic model we developed includes a single booking limit. This booking

limit protect seats for the later time frames versus the earlier one, rather than for a

higher fare product versus a lower fare product. In practice, airlines would impose a

booking limit on the lower fare product as well, as discussed in the previous chapter.

We will take advantage of our numerical example to test this other type of booking

limits on our model.

Let Z2,TF1 and Z2,TF2 be the booking limits for the lower fare product in the

first and second time frame, respectively. These limits are not part of the stochastic

model's output. We shall therefore test several levels for each one of them. The tested

values for z2,TF1 are between a slightly lower value than the underlying expected Fare

Product 2 demand in TF1, given the optimal TF1 fare y*, and the maximum demand

for Fare Product 2 in TF1, which is defined by optimal TF1 booking limit z*. For

the second time frame, we test values between 17, which is slightly lower than the
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expected underlying demand for Fare Product 2 in TF2 and 45. In this case too, we

do not regenerate the underlying demand in neither time frames, in an effort to allow

for a more accurate comparison between scenarios.

The results are summarized in Table 4.9 and represented on Figure 4-10. The

additional booking limits led to a -3.5% to +0.02% change in revenues. Very low TF2

booking limits on Fare Product 2 systematically result in a decrease in revenues. The

lower Z2,TF2, the larger the decrease. Larger values of this same booking limit do not,

however, affect the revenues. The change in revenues seems to be mostly driven by

Z2,TF1-

For Z2,TF1= 31, which is about 15% higher than the expected number of booking

requests for Fare Product 2 in the first time frame, we observe a slight increase in

revenues (+0.02%) when Z2,TF2 is large enough. All other combinations of booking

limits led to a decrease in revenues.

Several factors may account for these results. Our optimization model does not

include booking limits on Fare Product 2. Therefore, enforcing such booking limits

with the stochastic optimal set of fares and Z4 is unlikely to be optimal and provide a

very large increase in revenues in our simulations. Additionally, the objective of limits

on lower fare products is to protect seats for passengers with a higher willingness-

to-pay who usually arrive late in the booking process. The time dimension of this

strategy is already taken into account in our model. By dividing the selling period

into two time frames and imposing a booking limit on the first time frame, we ensure

that seats are saved for the late, high-revenue passengers of TF2.

The fares, which are now decision variables, also enable us to control the demands

for the two fare products in each time frame. These demands are assumed to be

dependent on the two products' fares and the stochastic model's output therefore im-

plicitly optimizes the mix of Fare Product 1 and 2 passengers. The potential revenue
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impact of additional booking limits on Fare Product 2 is lessen.

Furthermore, our model does not make any assumptions on the arrival order of

Fare Product 1 and 2 passengers within each time frame. Contrary to Weatherford

(1997) for example, we do not assume that all lower-revenue passengers arrive first

and higher-revenue passengers last. In this type of unrealistic scenario, enforcing a

booking limit on Fare Product 2 bookings would probably lead to large increase in

revenues.

Lastly, in our model, the probability that a passengers buys the higher fare prod-

uct is deterministic. A booking limit of Fare Product 2 may lead to a larger increase

in revenue if we had large variations in the passenger mix.

Z2,TF2

17 21 25 29 33 37 41 45

41 -2.7 -1.8 -1.3 -0.1 -0.5 -0.5 -0.5 -0.5

37 -2.4 -1.5 -1.0 -0.0 -0.2 -0.2 -0.2 -0.2

34 -1.6 -1.3 -0.8 -0.2 -0.1 -0.1 -0.1 -0.1

z2,TF1 31 -1.5 -1.1 -0.8 -0.6 +0.0 +0.0 +0.0 +0.0

27 -2.3 -1.3 -0.9 -0.5 -0.1 -0.1 -0.1 -0.1

24 -3.5 -1.8 -1.3 -0.2 -0.6 -0.6 -0.6 -0.6

Table 4.9: Changes in revenues due to the implementation of Fare Product2's booking limits

4.5.4 Simulations with a traditional revenue management ap-

proach

This set of simulations is intended to help us compare the stochastic joint optimiza-

tion model with a traditional revenue management approach. To do so we used, as

we did in Chapter 3, a fixed fare structure combined with a leg-based seat allocation
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Figure 4-10: Decrease in revenues due to the implementation of Fare Product2's booking limits

method, the Expected Marginal Seat Revenue method, also noted EMSRb. For the

joint approach, we do not re-adjust the TF2 fares.

We use the same parameters as those displayed in Table 4.4 . In the traditional

approach, the fares are assumed to remain fixed throughout the entire selling period.

We use the stochastic joint optimization approach to find the optimal pair of fares

for EMSRb. In this formulation, the booking limit of the first time frame is equal to

the flight capacity. The optimal pair of fares for TF1 and TF2 is : $428 and $211.

As shown in Figure 4-11, the predicted censored demand for Fare Product 1 and

Fare Product 2, given the fares, is 24 and 62, respectively. The associated standard

deviations are 11 and 13. The implied EMSRb booking limit for Fare Product 2 is 76.

The total demand for the two fare products is generated for each time frame,

given the optimal pair of fares. We deduce the demand for each fare product based

on the implied probabilities pi and P2. The booking limit of 76 seats is then applied
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TF1

Predicted
Constrained

Fare Demand

428 18

211 25

43

TF2

Predicted
Constrained

Fare Demand

428 6

Total

Predicted
Average Constrained

Fare Demand

428 24

211 37 211 62

43 86

Figure 4-11: Fares and demands for the traditional revenue management method

to demand for Fare Product 2 and the flight capacity limit is applied to the sum of

the demands for the two products.

Once again, we use two distinct sets of simulations. In the first set of simulations,

the demand is uniformly distributed in both time frames. In a second set of simu-

lations, the demand is normally distributed in both time frames. For both type of

demands, we generate 1,000 samples.

Uniform
Demand

Accepted Bookings:

Traditional RM Approach

Stochastic Joint Optimization

Difference

Revenues:
Traditional RM Approach

Stochastic Joint Optimization

Difference

82.0
82.8
1.0%

$24.9k
$25.8k

3.4%

Gaussian

Demand

82.0
83.1

1.4%

$25.Ok
$25.9k

3.9%

Table 4.10: Comparison between stochastic joint optimization and a traditional revenue management
approach

The comparison is summarised in Table 4.10. The two methods lead to similar

load factors. The load factor for the joint approach is only one point higher than
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Figure 4-12: Cumulative distribution functions of the revenues, for Gaussian demands

the traditional revenue management method's load factor. However, even with the

Gaussian distribution, which is the assumed distribution for the calculations in EM-

SRb, the stochastic joint optimization approach provides a 3.9% increase in revenues.

Figure 4-12 shows the cumulative distribution functions of the revenues when the

demand in Gaussian.

The joint optimization approach can help the airline reduce the risks of lower

revenues. The best revenues are also obtained with the joint optimization approach.

4.6 Sensitivity to Forecasting Errors

There are three sets of input parameters to the stochastic joint optimization model:

the total demand parameters, the probability parameters, and the demand uncer-

tainty. Different estimates of these parameters will change the output of the model,

the optimal set of fares and booking limit. In this section, we build on the previous
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numerical example to discuss the impact of the input parameters on the output of

the stochastic model. We then run simulations in which the demand generated fol-

lows the original, true, input values, as displayed in Table 4.4, but where the fares

and booking limits are the newly found stochastic outputs. This allows us assess the

impact of forecasting errors on the final revenues.

For each cases of forecasting error, we then find the optimal solutions correspond-

ing to the deterministic model and the fixed fare structure,traditional leg-based rev-

enue management method. Simulations are then run again to determine the average

revenues obtained with these new sets of fares and booking limit, allowing a compar-

ison with the stochastic model.

Estimates of the Standard Deviations

The true parameters for the demand and the probability that a passenger chooses

Fare Product 2 are unchanged and are outlined in Table 4.4. The true standard

deviations remain the same: s1 = 20 and S2 = 12.

For the purpose of this discussion, we first assume that the true value of the de-

mand uncertainty is unknown and assume different values. Based on the assumed

si and s2, we use the stochastic model to determine the optimal set of fares and

booking limits. This allows us to appreciate how a change in the uncertainty affects

the model's output. Furthermore, we run simulations in which the demand gener-

ated follows the true parameters but the fares and booking limit imposed are those

corresponding to the assumed demand uncertainty. In order words, the generated

demand has a standard deviation of si = 20 and 82 = 12, but the assumed standard

deviations used to determine the optimal solution are different.

First, we assume different levels of uncertainty in the first time frame, keeping s2

unchanged. We then change the level of uncertainty in the second time frame, keeping

si to its true value of 20. The different values tested, as well as the corresponding
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optimal set of fares and booking limits are shown in Table 4.11 and Table 4.12. The

two figures, Figure 4-13 and Figure 4-14, give a graphical overview of the impact of

the change in uncertainty on the five output components. A small difference in si only

leads to, at most, a $3 variation in the optimal fares, and barely affects the booking

limit. However, if the uncertainty is largely underestimated, and halved for exam-

ple, the variation in the optimal fares increases, and the suggested booking limit is

much lower. The impact on the fares of the two time frames have a similar amplitude.

As the demand uncertainty increases in the second time frame, the first time

frame's fares increase steadily, while the second time frame's fares decrease. As the

uncertainty in TF2 increases, the stochastic model warrants lower fares to ensure the

TF2 demand is high enough in the worst case scenario. Simultaneously, to improve

the expected revenue overall, the model suggests a higher booking limit for the first

time frame.

Assumed Assumed Difference in

si s2 X* y* z* x* y; Revenue (%)

a/ 10 12 378 193 69 481 236 -1.28

b/ 15 12 381 195 73 482 236 -0.54

c/ 18 12 383 196 73 482 236 -1.32

d/ 23 12 384 197 73 483 237 -1.35

e/ 25 12 384 197 73 484 238 -2.45

f/ 30 12 384 196 73 485 239 -0.15

Table 4.11: Sensitivity analysis to uncertainty in the first time frame

The optimal set of fares and booking limit deduced with the assumed standard

deviations are used to run simulations. The generated demand, however, follows the

true parameters. For each combination of standard deviations, 1,000 samples were

used to find the average revenue. The results were compared to the average revenue

obtained when the inputs used for the stochastic model are the true parameters. The

relative differences in revenues are summarized in Table 4.11 and Table 4.12. An
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Figure 4-13: Changes in the optimal solution, given uncertainty in the first time frame

inadequate estimate of the demand uncertainty led to 0.1 to 2.0% decrease in rev-

enues. As shown in Figure 4-15, a large difference between the true and assumed

TF2 standard deviations led to the larger decrease in revenues.

Assumed Assumed Difference in

si s2 x y* z* x y Revenue (%)

a/ 20 4 375 191 66 488 241 -1.05
b/ 20 7 378 193 69 486 239 -1.22

c/ 20 10 381 195 71 484 238 -2.15

d/ 20 14 385 198 75 482 236 -0.83

e/ 20 17 387 199 78 480 237 -0.53

f/ 20 20 389 200 82 478 234 -1.10

Table 4.12: Sensitivity analysis to uncertainty in the second time frame
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Estimates of the Demand and Probability Parameters

We now assume that we know the true value of the standard deviations, but ignore

the exact value of the other input parameters, one at a time. Based on guesses of

a, #, a, b or c, we use the stochastic model to determine the optimal set of fares

and booking limits. This should allows us to assess how critical forecasting is to the

model's output. Furthermore, we run simulations in which the demand generated

follows the true parameters but the fares and booking limit imposed are those corre-

sponding to the assumed demand uncertainty. The resulting revenue is compared to

the average revenue obtained when the inputs used for the stochastic model are the

true parameters.

The relative differences in revenues are summarized in Table 4.13 and Table 4.14.

A 10% error in the estimate of the one of the two time frames' demand parameter can

lead to a 1.4 to 3.8% decrease in revenues. Over-estimating the parameter a seems

to have the largest detrimental effect on the revenues. The fares are too high for the

actual underlying demand.

An inadequate estimate of the probability function seems to have a smaller impact

on the revenues. As shown in Table 4.14, the decrease in revenue varies between 0.4

and 2.2%.

Comparison with the deterministic model and the more tra-

ditional approach to revenue management method

We now compare the impact of forecasting errors on the revenues obtained with the

stochastic solution, and ,on the one hand, the deterministic solution and, on the other

hand, a traditional revenue management approach. For these simulations too, the de-

mand generated follows the true parameters. The numerical results are summarized

in Tables 4.15, 4.16, 4.17 and 4.18.
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Relative Diff. Diff. in
with True Revenue
Parameter Value x* y* z x (%)

+10% 149 418 220 78 488 241 -2.7
a1  -10% 122 350 174 69 477 233 -1.5

+10% 94 389 200 68 524 264 -3.8
ae2  -10% 77 377 192 79 442 209 -1.4

+10% 0.48 358 179 70 482 236 -1.9

-10% 0.39 415 218 77 484 238 -2.0

+10% 0.22 382 195 76 450 215 -1.4

132 -10% 0.18 385 198 70 523 264 -2.0

Table 4.13: Sensitivity analysis to the demand input parameters

The expected revenues from the deterministic solution or traditional revenue man-

agement approach's solution are systematically lower than the stochastic solution. As

shown in Tables 4.15 and 4.16, the stochastic model provides at least a 1.5% increase

in revenues from the other two approaches when the uncertainty input parameter is

off.

4.7 Performance Analysis

In this section, we extend the numerical study to analyze the performance of the

stochastic model under different levels of demand and flight capacity. For each one

of the input variables, two new levels are tested, as shown in Table 4.19. The inputs

are changed one at a time.

For each combination of input variables, we determine the optimal set of fares

and booking limit for the deterministic model, the stochastic model and the more

traditional revenue management approach. We then run numerical simulations to

determine the average revenue for each case considered, given the new demand, flight
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Relative Diff. Diff. in
with True Revenue
Parameter Value x* y* z* x* y (%)

+10% 0.950 380 197 73 482 237 -1.3
a, -10% 0.778 387 196 74 483 237 -2.2

+10% -0.042 383 197 73 483 237 -0.4
a 2  -10% -0.034 383 197 73 483 237 -0.5

+10% 0.022 409 198 76 483 237 -1.3
b, -10% 0.018 368 196 72 483 237 -0.8

+10% 0.018 384 197 71 512 239 -0.3

-10% 0.014 383 196 75 458 235 -1.6

+10% 0.010 365 196 72 483 237 -2.1

C1  -10% 0.008 422 197 76 483 237 -0.6

+10% 0.009 382 196 75 445 236 -1.2
C2  -10% 0.007 384 197 71 520 238 -1.8

Table 4.14: Sensitivity analysis to the probability input parameters

capacity and deduced set of optimal fares and booking limit.

The stochastic approach to joint pricing and seat allocation performs consistently

well, regardless of the input parameters.

Table 4.20 shows the percentage difference in average revenue between the stochas-

tic model and the deterministic model for each one of the 27 input combinations of

demand uncertainty and flight capacity. The stochastic model provides a 0.3 to 6.0%

increase in revenue.

Table 4.21 summarizes the percentage difference in average revenue between the

stochastic model and the traditional approach to revenue management, with a fixed

fares tructure and the EMSRb seat allocation method. The stochastic joint opti-

mization consistently outperforms the traditional approach by providing a 0.3 to
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Di.ff in revenues (%) from

Assumed deterministic traditional RM
s1  s2  solution solution

a/ 10 12 2.93 3.18
b/ 15 12 3.70 3.98
c/ 18 12 2.89 1.38
d/ 23 12 2.85 1.91
e/ 25 12 1.71 1.45

f/ 30 12 4.11 3.91

Table 4.15: Revenue comparison

Assumed

s1 S2

with a forecasting error in the first time's standard deviation

Di.ff in revenues (%) from
deterministic traditional RM

solution solution

a/ 20 4 3.17 7.18

b/ 20 7 2.99 3.38
c/ 20 10 2.02 2.54

d/ 20 14 3.39 2.40

e/ 20 17 3.71 4.83

f/ 20 20 3.11 3.24

Table 4.16: Revenue comparison with a forecasting error in the second time's standard deviation

7.0% increase in revenue.

As the demand parameters and the flight capacity change, the expected revenues

from the deterministic solution or traditional revenue management approach's solu-

tion are systematically lower than the stochastic solution. The numerical results are

summarized in Tables 4.22 to 4.25.

4.8 Summary

In this chapter, we propose a stochastic approach to solving the joint pricing and

seat allocation optimization problem. The demand is assumed to be a uniformly dis-
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Relative Diff. Diff. in revenues (%) from
with True deterministic traditional RM
Parameter Value solution solution

+10% 149 0.3 2.1
a1  -10% 122 7.9 4.8

+10% 94 0.5 0.8
e2  -10% 77 5.6 3.1

+10% 0.48 4.5 3.5
)31 -10% 0.39 0.1 2.4

+10% 0.22 4.0 3.1
/32 -10% 0.18 2.5 3.9

Table 4.17: Revenue comparison with a forecasting error in the demand parameter

tributed random variable. Its mean remains a linear function of the lower fare. We

use a geometrical analogy to determined the censored demand of each time frame and

express the new objective revenue function. The stochastic approach relies on both

the fares and the booking limit to maximize the total revenues generated by the two

fare products over the two time periods considered.

The same numerical example as the one of Chapter 3 is used to illustrate this

stochastic approach and run a few sets of simulations. The simulations confirmed

the benefits of accounting for the demand uncertainty and the constraints imposed

on the demand in the problem formulation. The simulations showed that the pro-

posed approach performs well when compared to a traditional revenue management

approach, with fixed fares and a leg-based seat allocation method. Finally, the pro-

posed approach behaved well under the two types of demand distribution tested. The

uniform and Gaussian distributions led to fairly similar results.
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Relative Diff. Diff. in revenues (%) from
with True deterministic traditional RM
Parameter Value solution solution

+10% 0.950 1.4 1.5
ai -10% 0.778 2.4 2.0

+10% -0.042 2.9 3.2
a2  -10% -0.034 3.5 4.2

+10% 0.022 4.3 2.7
b1 -10% 0.018 2.3 2.1

+10% 0.018 3.7 4.7
b2 -10% 0.014 2.5 3.4

+10% 0.010 2.1 1.1
c1 -10% 0.008 4.1 3.8

+10% 0.009 2.5 3.5
C2  -10% 0.007 1.9 2.2

Table 4.18: Revenue comparison with a forecasting error in the probability parameter

Capacity C 90 100 110

a- 10 20 30

U 2  7 12 17

a -10% +10%

# -10% +10%
a2  -10% +10%

b -10% +10%

Cj -10% +10%

Table 4.19: Levels of demand and flight capacity
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Capacity
o- o-2 90 100 110

10 7 0.8 2.1 3.3
10 12 2.1 2.9 3.8
10 17 2.0 3.5 5.8

20 7 0.7 0.8 4.5

20 12 2.1 3.5 3.2
20 17 2.4 3.9 5.6

30 7 0.3 2.5 4.1

30 12 1.3 1.9 5.2

30 17 3.6 3.2 6.1

Table 4.20: Increase in revenue between
stochastic and deterministic joint opti-
mization (%)

Capacity
TF1 TF2 90 100 110

148.5 85.0 2.2 2.7 3.2
121.5 85.0 1.4 3.5 4.7

135.0 93.5 2.0 1.7 2.7

135.0 76.5 3.5 3.3 5.1

0.479 0.200 2.5 3.8 4.9

0.392 0.200 0.9 2.4 4.8

0.435 0.220 10.4 3.6 5.8
0.435 0.180 0.6 2.9 4.6

Table 4.22: Increase in revenue between
stochastic and deterministic joint opti-
mization (%)

Capacity

0-1 0-2 90 100 110

10 7 2.5 3.0 2.5
10 12 3.5 2.1 2.4

10 17 1.8 4.1 2.9

20 7 3.1 2.5 3.9
20 12 4.5 3.3 0.3
20 17 4.0 3.1 3.2

30 7 6.5 5.7 2.7
30 12 5.9 2.6 3.9
30 17 7.0 4.7 4.6

Table 4.21: Increase in revenue between
stochastic joint optimization and the tra-
ditional revenue management approach

(%)

Capacity
TF1 TF2 90 100 110

148.5 85.0 4.2 2.6 1.4
121.5 85.0 5.4 5.0 5.4

135.0 93.5 6.2 3.8 3.8
135.0 76.5 3.3 0.7 0.9

0.479 0.200 6.0 3.4 4.8
0.392 0.200 1.7 2.2 0.7

0.435 0.220 10.9 1.1 1.6
0.435 0.180 4.6 4.8 5.3

Table 4.23: Increase in revenue between
stochastic joint optimization and the tra-
ditional revenue management approach

(%)
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Capacity
TF1 TF2 90 100 110

0.950 -0.038 2.5 4.2 4.3

0.778 -0.038 1.5 3.2 5.6

ai 0.864 -0.042 0.6 2.0 3.7

0.864 -0.034 2.4 2.2 4.7

0.022 0.016 3.0 6.7 1.0

0.018 0.016 2.6 2.9 6.6

bi 0.020 0.018 1.2 4.0 0.7

0.020 0.014 3.9 2.8 2.8

0.010 0.008 1.0 2.1 4.7

0.008 0.008 2.7 4.1 4.4
C 0.009 0.009 1.2 2.5 5.1

0.009 0.007 2.5 2.6 4.9

Table 4.24: Increase in revenue between
stochastic and deterministic joint opti-
mization (%)

Capacity
TF1 TF2 90 100 110

0.950 -0.038 4.2 4.3 2.0

0.778 -0.038 2.4 2.5 4.6
a2  0.864 -0.042 3.1 2.7 1.1

0.864 -0.034 6.5 2.7 1.6

0.022 0.016 5.4 4.6 1.7

0.018 0.016 3.6 3.7 17.0

b 0.020 0.018 3.4 5.3 0.1
0.020 0.014 3.2 2.5 1.4

0.010 0.008 3.0 3.6 3.6

0.008 0.008 6.4 5.6 3.0
ci 0.009 0.009 4.8 4.1 2.8

0.009 0.007 4.4 4.1 2.5

Table 4.25: Increase in revenue between
stochastic joint optimization and the tra-
ditional revenue management approach

(%)
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Chapter 5

Heuristics for the multiple-period

problem

The proposed stochastic model for the two-product, two-time frame joint pricing and

seat allocation optimization problem provides a significant increase in revenue from

the deterministic model or the tested traditional revenue management method given

a traditional, yet optimized, fare structure. The natural next step to improve the

model consists in extending it to additional time frames. Dividing the selling horizon

into more but smaller time frames would allow an increased number of changes in

the fares, which should, to a certain point, help match more closely the changing

characteristics of the passengers over the booking process. Ultimately, solving for the

multiple-time frame optimization problem should further enhance the revenues.

Extending the deterministic model to additional time frames does not present any

problem. The stochastic model, however, will not scale up as easily. With each time

frame, we add not only another uncertainty parameter and but also three decision

variables. Furthermore, as seen in the previous chapter, the censored demand of a

time frame is dependent on the demand that materialized in the previous time frame.

As we increase the number of time intervals, the demands become very quickly more

intricate.
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In this chapter, we describe how the stochastic model can be extended to addi-

tional time frames. In the first section, we go over the assumptions and introduce

new notations. We then present a recursive approach to determine each time frame's

censored demand. As shown in an example, the problem complexity increases very

rapidly and we therefore propose alternative heuristics to overcome the curse of di-

mension in Section 5.3. Then, we use a numerical example to illustrate the heuristics

and compare their performance with the stochastic and deterministic models.

5.1 Notations and assumptions

The scope of the problem remains the same as in the previous chapter, with a single

carrier, a single flight, a single OD market environment, and a fixed capacity of C

seats.

Again, two fare products are offered, Fare Product 1 and Fare Product 2. The

prices of the two products can change at the start of each of the k time frames con-

stituting the booking period.

The airline can limit the total number of seats to be sold by the end of each time

frame. All the unsold seats are available for booking in the later time frames.

The notations and assumptions of this chapter are similar to the ones used previ-

ously.

* x is the price of Fare Product 1 in TFi

* yj is the price of Fare Product 2 in TFi. We impose that for all i, y < xi.

" zi is the booking limit corresponding to TFi. We havezk = C.

* nittai is the combined underlying demand for Fare Product 1 and 2 in TFi,

and ntotal,i = p- (yi) + ej.
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* The expectation of the total demand in TFi, denoted pi, is a linear function of

the lower price: pi (yi) = ai - 3yj, with c, #i ;> 0.

" The random variable Ei is uniformly distributed: Esj U [-otr, o-i].

" The minimum and maximum values that the underlying demand netoal,i can take

are noted Imin,j and pmax,-

e nccepted,i is the total number of accepted bookings in TFi, also called the cen-

sored demand, when all booking limits are enforced. For example, nccepted,2 =

min [z2 - min (zi, ntota,1) , ntota,2]. Furthermore, we define necceted,o as the null

function.

* Titccpted,i is the average total censored demand for both products in TFi, when

all booking limits are enforced.

* ft is the probability density function of the sum of the censored demands
t

S Wtotaj of TF1 to TFi.
j=1

" ui is the probability density function of the total underlying demand in TFi.

" pi is the probability that a random passenger chooses Fare Product 1 in TFi.

* R, is the total revenues generated by the combined sale of the two fare products

in TFi. Ri represent the expected revenues.

" Rots is the total revenues generated by the sale of the two fare products over

the entire booking period. 77ta is the total expected revenues.
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5.2 Expected total revenues and the expected cen-

sored demands

Expected total revenues

The objective function is the expected value of the total revenues generated by the

sale of the two products over the course of the k time frames considered. The total

revenue function is given by:

k

i=1

with, Vi E [1, ... , k],

ntotal,i [pixi + (1 - pi) yi] , if ntota,i < zi - naccepte,t;
R3 = t=i

(zi - naccepted,i_1) [PijXi ± (1 - pi) yJ], otherwise.

The expected total revenue function for two time frames can be generalized to k

time frames:
k

Rtotal = Wcxccepted,i [XiPi + (1 - pi) yi]

The challenge consists in expressing the censored demand for each time frame,

given the demand and booking limits of all the prior time frames.

Determining the expected censored demands

The rather straight-forward geometrical approach used in the previous chapter to find

the expected values of the censored TF2 demand can be extended to three or more

dimensions, with some modifications. For all TFi with i > 2, we shall still be able to

define four possible regions and analyse them one by one to determine the TFi cen-

sored demand. However, we will have to introduce convolution products to express

the probability density function of the sum of the previous time frames' censored
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demands. This step was not necessary in Chapter 4 because the probability function

of the censored TF1 demand was simply a truncated uniform distribution. However,

the probability density function of the sum of TF1 and TF2 censored demands is

altogether more complex, even though we assumed the underlying demands are uni-

form distributions. It is thanks to this simplified assumption that we can continue

deriving the expression of the censored demands for more time frames.

A generalized methodology to find the censored demand for all time frames is

described below. It is a recurring method.

Initialization - TF1

1. Define the probability density function f1 of the censored total demand in TF1.

2. Deduct the expected censored total demand naccepted,1. From Chapter 4, we

have:

. -1d - f + / 1 1 ( # 1 - 2 ) 2
nece~es1= 2 4o-1

0-1
4

Recurrence - TFk for k > 2

1. Find the probability density function fk-1 of the sum

previous time frames' censored total demand.

k-1

[ Wcaceptd,i of all the
i=1

If k > 3, then:

fA-2 * Uk-1 (x)

k-1 (X) fk-2 * Uk-1 (t) dt

0

"k-1

if X i,1

if X k-1,

otherwise.

If k = 2, then fi is simply the function found in the first step of the initialization

process.
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2. Define the four possible regions, as shown in Figure 5-1. The x-axis is the
k-1

sum of the previous time frames' censored demand, [j Tacpted,j. The y-axis
j=1

represents the underlying demand for the time frame of interest, TFk. The two

constraints considered are Zk_ and zk.

Region I is not affected by either constraint.

In Region II, the sum of the censored demand from TF1 to TFk-1 is lower than

the booking limit Zk_1. The other constraint, Zk, nonetheless, applies to the

sum of bookings from TF1 to TFk.

In Region III, the booking limit Zk-_ applies to sum of the accepted bookings

from TF1 to TFk-1: the sum is censored and only Zk bookings are accepted.

The sum of the censored demand from TF1 to TFk is, however, lower than the

capacity C. The TFk demand is therefore not capped.

In Region IV, both constraints apply: the number of accepted bookings from

the first k-1 time frames is equal to zk_1 and the bookings in the kth time frame

are censored to Zk - Zk_.

For each of one these four regions, we can find the ordinate of the barycentre,

and then deduct Tnc,pted,k.

3. Find the ordinate of Region II's barycentre when there are no constraints.

S() = f1 (t) dt, if X E [Z2- n2 - 0-2; z1]

0, otherwise

Deduct the area of Region II: Area f2a 2 g (y) dy. Normalize function g,

and note it G. Obtain the coordinate of the region's barycentre,

Ynocanstraints f f_±a2 yG (y) dy.
fZ22-Z
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T Fk underlying
demand im

k-i

b ik =-Z

ik +aOkl

IOk

Ak- rk -f

k-1

zi.i

Probability Density Function fk

haij

5uaimf

Zk-4

i=1

Figure 5-1: Constraints on the bookings in the two time frames

4. Find the ordinate of Region II's barycentre when the constraint zk is applied.

h (x) =(X z fA-1 (

10,

if x E [z2 - n2 - '2; z1]

otherwise

Normalize this function and note it H. Deduct the coordinate of the region's

barycentre, Ycostraints = In2 yH (y) dy.

5. Substitute to find Y1,11, the ordinate of Regions I and II's combined barycentre:

YII = pAk + (Yconstraints - Ynoconstraints)

6. Determine the ordinate of Region III's barycentre.

= 1
YI11 =- (zk - zk_1 - Ain,k )
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The length of this region is (Zk - Zk_1 - Imin,k).

7. Determine the ordinate of Region IV's barycentre. In this region, the Zk book-

ing limit applies. Therefore, all the TFk bookings are capped to zk - zk_1, and

YIv = Zk - Zk_1. The length of this region is 2 0'k - (zk - Zk_1 - Mmin,k).

8. Deduct the ordinate of Regions III and IV's combined barycentre:

i Y k - (Zk - Zk-1 - Imin,k) ± y (Zk - Zk-1 - Pmin,k)

9. Deduct accepte,k from Y1,11 and YIII,Iv.

The function fi becomes more complex with each iteration. The initial advantage

presented by simplicity of the uniform distribution soon disappears as we go from one

truncated convolution product to another. Accordingly, the analysis of Region II,

steps 3 and 4 of the recurrence, becomes fairly complicated. The resulting Y1,11, the

ordinate of Regions I and II's combined barycentre, grows larger with each iteration,

involving an increasingly large number of variables. As the following example shows,

the approach is very quickly impractical. Heuristics may thus be more suitable to the

multiple-time frame joint pricing and seat allocation optimization problem.

Example with three time frames

The proposed methodology gives us the expected censored demand in TF3:

ifaccepted,3 - (1 - v) YI,1 + vYIII,Iv
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zi - Z 2 + Pmax,2 2 ymax,1 + pmax,2 - Z2 - Zl

4a12 2

(pmax,3 - Z 3 + Z2)3 . 4 E (Imax,i) + 3 (z 3 - z 2 ) + pmax,3

1603 (z 2 - Atmin,1 - /min,2) 3 E (pmax,i) + 2 (z 3 - z 2 ) + ptmax,3

Z3 -Z2 + 1 3  (3 - z 3 + z2 ) 2 aIIIIV - 2 40-3

The expression for Y,1I is already very complex. On the other hand, Yurr,rv's

form is not altered as we move from one time frame to the other. The main difficulty

does arise from the increasingly complex probability density function fi of the sum

of the censored demands.

5.3 Heuristics for Cases with more than Two Time

Frames

In light of the fact that the probability density function fi of the sum of the censored

demands is the main source of complexity, we derive three heuristics to the joint pric-

ing and seat allocation optimization. Each heuristic tackles the problem in a different

way.

With the first heuristic, we altogether bypass the complexity induced by fi by

simply assuming that the censored demands are independent. Convolutions are no

longer necessary, and the recurrence simply becomes the same as the initialization.

With the second heuristic, we also focus on the first step of the recurrence. How-

ever, the change is more subtle. We smooth out fi by imposing that it be a uniform

distribution. This greatly simplifies the subsequent steps 3 and 4 of the recurrence.

With the third heuristic, we acknowledge the simplicity of the problem formulation

when the number of time periods is kept to two and use dichotomy to revert to this
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case systematically.

Heuristic One - Non-nested Inventory

The nested characteristic of our model is at the root of the increased complexity of

the objective function. The expected censored demands are all interrelated. Indeed,

the booking limit zi applies not only to the demand in TFi but also to the sum

of the censored demands from all the anterior time frames. As a consequence, the

censored demand for the ih time frame is a function of its own and all the previous

time frame's booking limits z, expected demand p, and demand uncertainty o. The

expression does not scale up.

Relaxing the nested assumption and imposing a partitioned inventory rule instead

could greatly simplify the analysis. In the first proposed heuristic, the time frames

are no longer nested: if the demand during a time frame is lower than the booking

limit, the remaining unsold seats are considered lost and are not available for booking

in subsequent time frames. Under this rule, the objective function is:

k

i=1

with, Vi E [2, ... , k]

nitotali [pixi + (1 - pi) yi], if ntota,i < zi;

zi [pixi + (1 - pi) yi], otherwise.

k

We then have zi = C. The revenue function R is identical to the previous
i=1

chapter's TF1 revenue function. Therefore, the expected revenue function for all time

frames is given by the simple equation:
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k

-total [pixi + (1 - Pi) Yi ]accepted,i
i=1

pi, if zi Pi + os;

withi, naccepted,i 2 - - -, if zi [- [i - O;h ±i + J];
2 4ai 4

zi, otherwise.

The objective function is greatly simplified.

We shall now analyze how this simplification affects the outcome of the optimiza-

tion. The simplicity of the heuristic is due to the fact that we ignore a portion of

possible bookings, as shown in red in Figure 5-3. The extra revenue generated when

unsold seats from previous time frames are available to ulterior time frames is not

taken into account by the new problem formulation. If the later time frames' average

fare is higher than the earlier time frames' average fare, then the optimization pro-

cess will either tend to increase the booking limit for the later time frame or tend to

decrease the fares in an attempt to increase the average censored demand. However,
k

since zi = C, this will have the consequence of lowering the earlier booking limit or
i=1

increasing the fares. Thus, this heuristic will be more conservative than the stochastic

model in the first time frames. The heuristic will recommend a lower booking limit

early on to protect more seats for the later time frames. Furthermore, the optimal

fares set by the heuristic are likely to be higher than those proposed by the stochastic

model. As a result, the total accepted demand will not be as high. However, since

the fares are likely to be higher than with the stochastic model, it is difficult to assess

how the revenues will decrease.

When implementing this heuristic, the booking limits should ideally be "re-nested".

The first time frame's booking limit zi remains unchanged, but for TFi with i > 1
i

the booking limit should be set to Z Zk. By doing so, we mitigate the revenue loss
k=1

by ensuring that unsold seats from previous time frames become available to ulterior
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TF2 UnderlyingDemand

p1 Zij p+ 1,

TF1 Underlying
Demand

Figure 5-2: Possible bookings ignored by the first heuristic

time frames.

Heuristic Two - Simplified Probability Density Function

With the first heuristic, we simplify the analysis by assuming the demands for the

different time frames are independent of each other. This approach is conservative

and ignores some of the potential revenues. Another alternative would consist in

simplifying the probability density function of the sum of the censored demand while

keeping the nested structure of the demand.

Much of the difficulty arises from the increasing complexity of the function fA, the
i

probability density function the sum of the censored demands E Waccept of TF1
j=1

to TFi. As described in the first step of the recurrence, in Section 5.2, the function is

the convolution product of the previous time frame's f._1 and a uniform distribution.

The complexity of convolution product increases with the index of the time frame,

and reflects in the following steps of the recurrence. Therefore, one alternative would
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TF3 Bookings

n3 = Z 1

3 2, = C

TF2 Bookings

n2 = z2

TFI Bookings

Figure 5-3: Possible bookings ignored by the first heuristic

consist in simplifying this function.

For example, the convolution product can be replaced by a new uniform distribu-

tion: For k > 2,

1

k-1

-1 Amax,k - Zk-1
k-1

0

k-1

if X E [Iymin,i, Zk-1 ,

if X = Zk-1,

otherwise.

Figure 5-4 illustrates the change in the probability density function this imposes.

This change enables us to draw insights from the two period example. The new

probability density function fi_1 has the form of f2. Therefore, we can use the results

found for the censored demand for TF2 in the two-time period problem and generalize
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Real Probabiliti' Density Function fAi

SubstiitteProbabilivDensitv Function k,

k-I k-4 I

k-I

k-I

Figure 5-4: Change in the probability density function

it. The expected revenues are therefore:

k

tata= 7Taccepted,i [Xjpi + (1 - pi) yi|
i=1

with, for k = 1,

and, for k > 2,

7accepted,k - k (k + 0- k - k +k- 1 Zk)
3

12o~k (Zk-1 - I-equi + Oequi)J

4Zk - Zk-1 + 11k

2
{Ak - Zk + Zk-1)2 Ok

(Zk-1 - MIequi + o'equi)
2

0equi

1/equi + O'equi - Zk-1

20-eui4]

k-1 k-1

where Mequi = tk, and 0-equi = U-

i=1 i=1
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TFI TF2 TF3 TFk-1 TFkI I I .. - - -I - - --

Start of selling period Flight departure

M M

Step 1:

TFk-1 TFIk-Step 2: TI.k-R

1 1F F F

Step k-1:

Figure 5-5: Dichotomy

Heuristic Three - Dichotomy

The two-time period problem formulation was fairly simple. We therefore suggest

the use of dichotomy to unravel the process and revert to the two-time period case

systematically.

We first divide the selling horizon into two time frames, TF1 and TF2. We deter-

mine the set of fares and booking limit zi that result in the maximum total expected

revenues from those time frames, based the two time period joint optimization ap-

proach described earlier in this chapter. We then further divide TF1 into two new

intervals. The joint optimization approach can be applied again to those two new

intervals, once the total number of seats available to the demands from those time

frames is set to zi. We repeat this step k - 2 times, until all the time frames are

covered.
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Figure 5-6: First steps of the heuristic

5.4 Performance Analysis

As we have in the previous chapters, we use a numerical example to illustrate the

approaches newly introduced and assess their various performance. The numerical

example in this chapter will have three time frames.

We expand the results from Chapter 3 to find the deterministic model's optimal

solution to this multiple-time frame joint pricing and seat allocation problem. The

revenues obtained with the deterministic solution will be used as a benchmark. The

optimal solutions of the other four approaches, the stochastic model and its three

heuristics, will be compared to this first model's output and simulations will then be

run to assess the performance of each approach.

The assumed parameters for the demands in the three time frames considered are

given in Table 5.1. The flight capacity is 100 seats. All else being held constant,

the total demand decreases as the time frame considered is closer to the departure

date. On the other hand, the passengers become less price sensitive. The standard

deviation decreases with the total demand. At the same time, all else being equal,

people seem to be more inclined to choose the higher fare product as we get closer to

departure, even if there is not much difference between the last two time frames. All

these are characteristics observed when analyzing real booking data.
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TF1 TF2 TF3

Total Demand notalte ai 110 0 2 =66 a3 -44

#1 =0.35 32= 0.19 P3 3 0.10

ai = 1.023 a2 = 0.512 a3 -- 0.022
Probability pt b1 = 0.022 b2 = 0.019 b3  0.016

ci = 0.001 c2 = 0.009 c3 = 0.008

Standard deviation s1 = 16 S2 10 Sa= 7

Table 5.1: Parameters for the demand functions

Deterministic Model

All the results from Chapter 3 can be extended to the multiple-time frame problem.

The booking limits zi are all redundant variables. The optimization problem is given

below:

Maximize R = fntota,ipiXi + notat,i (1 - pi) Yi

Subject to Zai - #,yi - C < 0

The optimal deterministic solution to this joint pricing and seat allocation prob-

lem is obtained with Matlab. The maximum total revenue is reached with the fares

and booking limit outlined in Table 5.2. In the simulations we will set the booking

limits as follows: zi = a, - #1iy and z2 = E ai - piyl.

Based on the assumed parameters, we can deduce the censored demand and rev-

enues implied by those fares and nested booking limits.
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TF1 TF2 TF3

Fare Product 1 z* $336.8 x* = $376.1 xz = $484.5

Fare Product 2 y* $174.4 y* = $185.7 y* = $239.2

Implied booking limit z* = 49 z* = 79

Table 5.2: Optimal solution for the deterministic model

TF1 TF2 TF3 Total

Average fare ($) 237 265 361

Underlying Demand 48.6 30.4 21.0 100.0

Table 5.3: Fares and demand implied by the deterministic model's output

Stochastic Model

The censored demand for the first two time frames are detailed in the previous chap-

ter. We will use the equations derived from the recurring methodology proposed in

Section 5.2 to determine the expected censored demand for the third and last time

frame. This enables us to find the stochastic model's exact optimal solution for this

three-time frame problem. Table 5.4 shows this optimal solution.

The stochastic model's optimal fares are higher than the deterministic model's

fares in all three time frames. This is consistent with the findings of Chapter 4: the

fares are used as a means of lowering the underlying demand and lessen the impact

of the flight capacity on the censored demand. However, the gaps closes-in as we get

to the last time frame. The load factor will subsequently be much lower than when

the deterministic output is implemented. However, because seats are protected for

the later arriving but higher revenue passengers, and because the fares are higher on

average, the revenues should be greater overall. From Chapter 4's numerical example,

we can expected an increase in revenues around 2-3% .

Based on the assumed parameters, we can deduce the censored demand and rev-
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Fare Product 1

Fare Product 2

Implied booking limit

TF1

X* = $368.7

y* = $195.7

z* = 65

TF2

x= $401.3

y* = $202.7

z2*= 87

TF3

x= $498.9

y; = $248.8

Table 5.4: Optimal solution for the stochastic model

TF1 TF2 TF3 Total

Average fare ($) 269 290 375

Underlying Demand 41.1 27.1 20.1 88.3

Accepted Bookings 40.8 25.5 18.1 84.4

Revenues (k$) - = 11.0 7 = 7.4 * = 6.8 7mOt = 25.2

Table 5.5: Fares and demands implied by the stochastic model's output

enues implied by those fares and booking limit, summarized in Table 5.5. The optimal

fares and booking limit determined with the stochastic approach should result in a

total expected censored demand of 84.6, or an average load factor of 84.6%. The

expected total revenue is $25.2k.

Heuristic One

With the first heuristic, we assume that the inventory is partitioned instead of being

nested across time frames and we solve for the corresponding joint optimal solution.

The optimal set of fares and booking limits is shown in Table 5.6.

The first time frame's fares are very close to the stochastic model's TF1 fares.

However, the other ones are higher than for the stochastic model and thus much higher

than they were in the deterministic case. The booking limits on the other hand are

very low. At most, we will have accepted z1 + z2 = 76 passengers by the end of the

second time frame, versus 87 in the stochastic case. The load factor corresponding to
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TF1 TF2 TF3

Fare Product 1 *= $369.0 x = $408.9 x* = $519.3

Fare Product 2 y* $195.8 y* = $207.7 y* = $262.3

Implied booking limit z* = 46 z = 76

Table 5.6: Optimal solution for the non-nested heuristic

TF1 TF2 TF3 Total

Average fare ($) 269 297 396

Underlying Demand 41.1 26.1 18.8 86.0

Table 5.7: Fares and demands implied by the non-nested heuristic's output

the first heuristic is expected to be very low.

Heuristic Two

For the second heuristic, we revert back to the nested inventory structure but simplify

the probability density function.

shown in Table 5.8.

The optimal solution for this second heuristic is

TF1 TF2 TF3

Fare Product 1 X* = $369.9 x* = $396.3 x* = $503.7

Fare Product 2 y* = $196.4 y; = $199.3 y* =$252.0

Implied booking limit z* = 69 z = 82

Table 5.8: Optimal solution for the second heuristic

TF1 TF2 TF3 Total

Average fare ($) 270 285 380

Underlying Demand 40.9 27.7 19.8 88.4

Table 5.9: Fares and demands implied by the second heuristic's output

These fares are very closed to those determined by the stochastic model. There
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is at most a $5 difference. The second booking limit, however, is a bit lower than it

were with the stochastic model.

Heuristic Three

The third heuristic is based on dichotomy. The optimal solution is outlined in Table

5.10.

The other two heuristics mostly had higher fares than the stochastic model. This

last heuristic, on the contrary, seems to warrant much lower fares, especially early

on. In the three time frames, the fares are between the deterministic and stochastic

optimal fares and this is combined to the highest booking limits so far: 74 and 91

for the first and second time frame, respectively. The lower fares and high booking

limits ought to result in a higher number of accepted bookings in the first two time

frames. Nevertheless, since it is also accompanied by a lower average fare, the impact

on the total revenues is unsure. In the last time frame, there should be fewer accepted

bookings due to the limited number of remaining seats. The TF3 revenue may very

be low.

TF1 TF2 TF3

Fare Product 1 x* = $352.0 x* = $381.8 x* = $491.9

Fare Product 2 y= $184.6 y= $189.5 y $244.7

Implied booking limit z = 74 z4 = 91

Table 5.10: Optimal solution for the dichotomy heuristic

TF1 TF2 TF3 Total

Average fare ($) 252 270 369

Underlying Demand 45.0 29.6 20.5 95.1

Table 5.11: Fares and demands implied by the dichotomy heuristic's output
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Simulations with the optimal set of fares and booking limit

We now compare the performance of those five different approaches by implementing

the proposed fares and booking limits and simulating the demand.

In this chapter too, the total demand for the two fare products is a random vari-

able generated at the beginning of each time period. We will again test two possible

probability density functions: a uniform and a Gaussian probability density function.

In the first set of simulations, the demand is uniformly distributed in all three time

frames. In a second set of simulations, the demand is normally distributed in all three

time frames. The demands for the three time frames are independent. For both type

of demands, we generate 1,000 samples. The mean total demand is a linear function

of the lower fare, yi, and we use the same parameters, displayed in Table 5.1, to

model these expected values. The standard deviations of the demands in TF1, TF2

and TF3 are 16, 10 and 7, respectively, which corresponds to about a third of the

deterministic demand for each time frame. For the normal distribution, the demand

is truncated in order to prevent any instance of negative demand.

The booking constraints or the flight capacity do not affect the probability that

a passenger chooses the higher fare product. We run five scenarios for each type of

probability density function:

1. simulations with the deterministic optimal fares and booking limits;

2. simulations with the stochastic optimal fares and booking limits;

3. simulations with the first, non-nested inventory, heuristic's optimal fares and

booking limits;

4. simulations with the optimal fares and booking limits of the second heuristic,

with the simplified demand probability density function;

5. and, finally, simulations with the optimal fares and booking limits of the thrid

and last heuristic, based on dichotomy.
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Tables 5.12 and 5.13 summarize the findings. The estimated average censored

demands are very close to the predicted censored demands for the stochastic model.

In the case of the uniform distribution, the relative difference between the simulated

censored demand and the predicted average censored demand is -1.2%, -0.1% and

1.0% for TF1, TF2 and TF3, respectively. The final load factor is 84.6% and the

total revenues are as expected equal to $25.1k. This represents a 2.8% increase in

revenues from the deterministic case. Nevertheless, as observed in the previous chap-

ters, the load factor is also lower with the stochastic fares and booking limits than

the with the deterministic solution.

The stochastic model is based on the uniform distribution and the relative dif-

ferences between the theoretical and simulated results for the three time frames are

therefore slightly larger for the Gaussian distribution. Since, the Gaussian distribu-

tion gives more weight to the mean of the underlying demand, the expected censored

demand for this distribution type lies between the uniform distributions' -nt&j and

[y and the estimated average censored demands are thus higher for the Gaussian dis-

tribution. The revenues are consequently larger with the Gaussian distribution than

the uniform one.

7accepted,1

Waccepted,2

7accepted,3

Load factor

Rtotai (k$)
Change in rev.

Deterministic Stochastic
Model Model

42.2 40.3

27.2 25.5

19.9 18.3

89.3% 84.1%

24.4 25.1

from deterministic 2.8%

Heuristic

One

36.2

24.9

18.6

79.6%

24.5

0.4%

Heuristic

Two

40.4

24.6

18.4

83.5%

24.9

2.2%

Heuristic

Three

45.3

26.6

16.6

88.4%

24.7

1.3%
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Deterministic Stochastic Heuristic Heuristic Heuristic

Model Model One Two Three

Waccepted,1 42.5 40.5 37.1 40.0 44.6

iaccepted,2 27.6 26.1 25.1 25.7 28.2

7Taccpted,3 19.7 18.1 18.3 18.1 16.8

Load factor 89.8% 84.8% 80.6% 83.8% 89.6%

Riotai (k$) 24.5 25.3 24.7 25.0 25.1

Change in rev. from deterministic 3.1% 0.9% 2.1% 2.4%

Table 5.13: Average censored demands and revenues, for a Gaussian demand distribution

Deterministic
Model

TF3

TF2

TF1

Total 89.8

Bookings andAverage Fare ($)

Stochastic Heuristic Heuristic
Model One Two

I I 0 0ol

361

265

237

375

290

269

84.8

396

297

269

80.6

380

285

270

Heuristic
Three

00 o

369

270

252

83.8 89.6

Figure 5-7: Accepted demand by time frame
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Revenues (k$)

Deterministic Stochastic Heuristic Heuristic Heuristic
Model Model One Two Three

6.8
TF3

TF2 7.6O 73

TF1

Total 24.5 25.3 24.7 25.0 25.1

Figure 5-8: Revenue by time frame
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Figure 5-9: Differences between the stochastic model and the heuristics - uniform distribution
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Non-nested Inventory
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Figure 5-10: Differences between the stochastic model and the heuristics - Gaussian distribution
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The highest revenues are obtained with the stochastic solution and the lowest with

the deterministic one. The first heuristic, with the partitioned inventory, not only

leads to the lowest revenues of all heuristics, but also to the lowest load factor overall.

This heuristic only provides a 0.4 - 0.9% increase in revenues from the deterministic

revenues, and the associated total number of bookings is in the low 80's, which is

about 9 points lower than the 89% deterministic load factor.

The second heuristic, with the simplified demand probability density function,

provides a steady 2.1 - 2.2% increase in revenues. For this numerical example, this

heuristic is the best of all three when the demand is uniformly distributed. With a

load factor only 0.6 points lower than the 84.1% of the stochastic load factor, and a

small 0.6% decrease in revenues from the stochastic revenues, this heuristic seems to

be a good approach to the multiple-time period joint optimization problem, when the

actual demand is uniformly distributed, as assumed by the heuristic. As shown on

Figures 5-9, the changes in fares or bookings are minimal with this heuristic. Conse-

quently, the impact on the revenue is small.

However, it should also be noted that when the demand is normally distributed,

the best heuristic is the third one. Indeed, while it still outperforms the determinis-

tic solution or the first heuristic's solution, the second heuristic's revenues and load

factor are lower than the third's. With a load factor in the high 80's, second only to

the deterministic load factor, the third heuristic also exhibit the second best revenues

overall: $25. 1k, a 2.4% increase from the base case. The third heuristic's load factor

is also very high when the demand is uniformly distributed. As anticipated, the low

fares and high booking limits warranted by the third heuristic fostered the demand in

the first two time frames. The bubble chart of Figure 5-9 shows how this combination

of factors generated a large increase in revenues in TF1, mitigating the overall loss

and largely increasing the overall number of accepted bookings.

The last two heuristics perform well. Heuristic Two, which assumed a simplified
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probability density function for later time frames, exhibited a consistent 2.1 - 2.2%

revenue increase from the deterministic case. This heuristic's optimal solution is

close to the stochastic optimal solution and changes in fares, bookings and revenues

are minimal. More importantly, the changes in revenues are more balanced across

time frames. With this heuristic, one can expect good revenues from the last time

frame, which usually is the time frame in which high revenue passengers materialized.

The third heuristic's good performance seems to rely mainly on the large number of

bookings from the first time frame. This heuristic, based on dichotomy, is in a sense

less risky by putting the emphasis on TF1 rather than TF3. In the numerical example

considered, this third heuristic seems to be the best under the assumption that the

demand is normally distributed. To generalize this finding, we would have to run

more tests. However, one possible explanation to the fact that the second heuristic is

not as good with a normal distribution is that, by construction, this heuristic relies

heavily on the uniform distribution. It therefore systematically underestimates the

number of accepted bookings.

5.5 Summary

In this chapter, we consider the multiple-time frame joint pricing and seat alloca-

tion optimization problem. A generalized methodology is outlined to determine the

expression of all the censored demands, and therefore derive the objective revenue

function. However, the probability density function of the sum of censored demands

becomes very quickly overly complex. The censored demand for a third time frame

already involves an important number of variables and is difficult to handle. In light

of the increasingly complexity arising from the probability density function, we derive

three heuristics to the joint pricing and seat allocation optimization problem.

A numerical example is used to illustrate the performance of these three heuristics.

To compare the results with those obtained with the deterministic and stochastic ap-

proaches, we limit ourselves to a three-time frame numerical example. The stochastic
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solution yields the best revenues overall, and all three heuristics outperformed the

deterministic model. In particular, two of the three heuristics provided very good

revenues.
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Chapter 6

Conclusions

We conclude the dissertation by summarizing the results and contributions of our

research. We also discuss implementation challenges of the optimization methods. We

then propose possible extensions of our models and suggest future research directions.

6.1 Research findings and contributions

Pricing and revenue management are two essential levers to maximize the sales of an

airline's seat inventory and increase revenues. The two processes are complementary

and interrelated. Both share the ultimate goal of maximizing the expected revenues

of the airline and both affect the consumer's choice set. By setting fares and travel

constraints, pricing defines the global set of options that could be available to a pas-

senger. Booking limits, on the other hand, may render one or more of these options

unavailable at the time of booking and therefore restrict the actual choice set of a

passenger. The two processes have, nevertheless, traditionally been studied and even

practised separately. For decades, researchers have considered them as two distinct

optimization problems.

Researchers started addressing the issue of airline joint pricing and seat allocation

optimization in the late 1990's. The papers published since then have either addressed

the multiple-product single-time-period problem or the single-product, multiple-time-
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period problem. Some studies put a particular emphasis on joint optimization within

a network, or in the presence of a competitor. Few studies proposed a simultaneous

optimization of pricing and seat allocation. Most of them relied on an iterative ap-

proach, optimizing pricing first and then turning to seat allocation.

This research complements the existing body of work by addressing the multiple-

product, multiple time frame joint pricing and seat allocation optimization problem.

We placed ourselves in a single carrier, single OD market environment to remove any

network or competitive effects. We first considered two time frames only. Two fare

products are offered. The demands for the products are mutually dependent. The

objective is to maximize the revenue generated by the sale of the two products by

simultaneously determining the optimal fares and booking limit for the two products

over the course of the two time periods.

We started with the simple deterministic case. The demand, a function of the

products' prices, is assumed to be deterministic. This allowed us to show that the

booking limit on the first time period's bookings is, in the deterministic case, a re-

dundant variable. The number of decision variables is thus reduced to four, which

simplifies the optimization problem. The deterministic model offers a rapid solution

to the problem and is used as a benchmark to test more elaborate approaches.

We tested the optimal solution of the deterministic model in a stochastic environ-

ment, with simulations in which the demand generated is a random variable. The

simulation results show that the deterministic model can provide a 3% increase in

revenues over a traditional revenue management approach, even when the demand is

uncertain. Furthermore, the simulations confirm the benefits of enforcing the booking

limit when the demand is stochastic. By protecting a minimum number of seats from

being sold to early, low-revenue passengers, the booking limit enables the airline to

improve its expected revenues.
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In Chapter 4, we introduced stochasticity in the model by assuming that, for each

time frame, the total demand for the two fare products is a uniformly distributed

random variable. The mean of the underlying demand is still a function of the lower

fare. The presence of a limit on the total number of bookings that can be accepted

in a time frame can increase the expected revenues. It thus becomes critical to un-

derstand the impact of the booking limit and the capacity on the accepted number

of bookings, the censored demand.

We chose the uniform probability density function over the more commonly used

Gaussian distribution after realizing that the latter distribution is at the root of the

greatest difficulties encountered by researchers working on joint optimization. The

probability density function of the sum of two independent random variables is the

convolution product of their individual density functions. While the convolution of

two unbounded Gaussian probability density functions is a simple Gaussian prob-

ability density function, there is no closed-form expression for the convolution of

bounded Gaussian distributions. This is not the case for the uniform distribution.

Furthermore, the uniform distribution can ultimately be used to model the Gaussian

distribution, since the Gaussian function can be seen as the limit of a sum of uniform

functions.

The uniform distribution presents the advantage of allowing us to derive the

closed-form solution to the problem, through a geometrical analogy. The impact

of the booking limit and the flight capacity on the underlying demands of the two

time frames can be shown on a two-dimension graph, as displayed in Figure 6-1. The

geometrical analysis of the two constraints' impact on the underlying demand allows

us to derive the closed-form expression of the two time frames' censored demand, and

by extension the objective revenue function.

Simulations confirm the benefits of accounting for the demand uncertainty and

the constraints imposed on the demand in the problem formulation. The simulations
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Figure 6-1: Divide and conquer

show that the stochastic model can provide a substantial 2% revenue increase over the

deterministic model or a 3-4% increase from a more traditional revenue management

approach with near-optimal fixed fares. We also showed that the approach behaves

well in an stochastic environment where the demand is normally distributed.

Finally, the stochastic optimization model was extended to account for additional

time frames. A recursion was proposed to derive the exact form of the censored de-

mand for all the time frames considered. However, the approach does not scale up

very well, as illustrated by an example. The compounded effects of successive book-

ing limits, the increasing number of parameters and variables, all greatly increase the

complexity of the censored demands. We therefore further analyzed the character-

istics of our model to identify the origins of the recursion's complexity. Based on

our understanding of the features that can be simplified, we proposed three different

heuristics.

A first heuristic, which assumes that the capacity allocated to one time frame is

not available to any other time frame was suggested. In order words, we assumed
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that the demands for the different time frames are independent of each other. We

showed that this approach is attractive for its facilitated implementation but ignores

an important revenue source. The extra revenue that can be generated when unsold

seats from previous time frames are available to later time frames is not taken into

account by this first heuristic.

The two other heuristics keep the nested structure of the inventory over the mul-

tiple time frames intact. We focused on simplifying the probability density functions

of the demand in the different time frames. In the second heuristic, we assumed

that the density function of the sum of the censored demands is uniform. Much

of the recursion difficulty comes from the increasing complexity of this probability

density function. Determining the exact expression of the convolution products of

bounded uniform distributions is possible, but becomes rapidly difficult as more and

more variables are introduced. We proposed to not compute the exact expression and

approximate it instead by a uniform distribution, with a similar mean and standard

deviation.

Lastly, we used dichotomy and the results from the initial stochastic model to

derive the third heuristic. The two-time period problem formulation in Chapter 4 is

fairly simple. We therefore suggested the use of dichotomy to unravel the multiple-

time period process and revert to the two-time period case systematically.

A numerical example was used to illustrate the performance of these three heuris-

tics. To compare the results with those obtained with the deterministic and stochastic

approaches, we limited ourselves to a three-time frame numerical example. Although

the stochastic solution yields the best revenues overall, all three heuristics outperform

the deterministic model. In particular, the last two heuristics perform very when com-

pared to the stochastic and deterministic models. The second heuristics results in a

revenue increase of about 2% from the deterministic solution, which represents 60%

of the potential increase from the stochastic solution. The third heuristic performed
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very well under the assumption that the demand is normally distributed, with a 2.4%

increase in revenues from the deterministic solution. This increase corresponds to

about 75% of the stochastic solution's potential increase.

6.2 Implementation challenges

The models developed in this dissertation can enable an airline to effectively merge

the practice of pricing and revenue management. There seems to be a trend in this

direction among major airlines and our methods can be a starting point for a few

appropriate markets.

The proposed approaches have the potential to improve the revenue of an airline

by 2-3%. However, the models do not account for any network or competitive effects.

The joint pricing and seat allocation heuristics could therefore first be implemented

in markets where the airline has very few connecting passengers, to mitigate any

network effects. Most importantly, the airline should also pick markets in which it

has not only a large market share, but also pricing power. If the airline has a large

market share, it should have a more comprehensive understanding of the underlying

demand characteristics. Furthermore, estimating the relationship between a market's

total demand and the fares requires the ability to change the market's lowest fare

and observe how this change affects the demand. It is therefore crucial to have the

pricing power for the origin-destination markets in question.

Once the origin-destination markets are chosen, the airline will have to calibrate

the model's demand functions. Historical data may not be fit for regressions. For

example, the price variations over a period of time could be too small. The airline

may then have to run small-scale pricing experiments to unveil the characteristics of

the underlying total demand and estimate the model's parameters. Booking limits

imposed by the airline during the booking period may constrain the observed demand.
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To get to the underlying demand, one possibility would be to use the equations devel-

oped in this dissertation and reverse engineer them. Based on the observed number

of bookings, the booking limits, and the fares, one could use the Chapter 4's formulae

to run regressions and find the corresponding underlying demand characteristics.

When total demand and probability coefficients are estimated for all time frames,

the airline can run one of the heuristics to jointly optimize pricing and seat alloca-

tion. We believe that Heuristic Two, with simplified probability density functions,

and Heuristic Three, based on dichotomy, are the most effective of the three heuristics.

Implementing the heuristic's optimal set of fares and booking limit may be not be

straight-forward. Filing the optimal set of fares with third party vendors may require

some flexibility and advance notice. Some airlines with innovative fare structures may

have already experienced similar difficulties with global distribution systems. Never-

theless, the models can relatively easily be implemented on an airline's own website.

Depending on the revenue management system in place, the airline users may have

to overwrite the system's own booking limits to ensure that the heuristic's optimal

solution is enforced on the origin-destination markets of interest. The airline may also

decide to impose additional booking limits on the lower fare products, as discussed

in Section 4.5.3, to mitigate the risk of an abnormally low buy-up rate during the

booking process.

Our models for joint pricing and seat allocation optimization can easily be first

used as a joint pricing and revenue management guideline by many airlines. Finding

the optimal corresponding set of fares and booking limits can provide insightful pricing

recommendations very quickly and efficiently, even with current revenue management

environments.
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6.3 Future research directions

The research presented in this dissertation can be expanded. We propose several

research directions:

1. Modify the total demand function to account for both fares

In the current demand formulation, the total demand is a function of the lower

fare only. We assume that changing Fare Product l's fare does not alter the

OD market's total underlying demand. We showed that this assumption holds

for OD markets and fare structures such that the number of consumers that

will only consider Fare Product 1 is relatively small compared to the total

demand and that these consumers are relatively price inelastic. However, there

are markets in which this assumption is not be applicable. It would then be

appropriate to include the second fare xi in the total demand function as well.

The geometrical analogy could be used to find the impact of booking limits on

the combined demands of the two groups.

2. Extend the model to more fare products

The research could be extended to account for more than two fare products. We

focused on improving the model by extending it to account for additional time

frames. Dividing the selling horizon into more but smaller time frames, which

airlines do in reality, helps match more closely the changing characteristics of

passengers over the booking process. However, most airline also offer multiple

fare products. To introduce additional products in our model, the demand

formulation would have to be adapted. The total demand function is likely to

be mostly dependent on a few number of fares, and may therefore not require

much changes if the first suggested research direction is undertaken first. The

probability that a passenger will choose of the multiple products will however

have to be adapted. The logit model may no longer be appropriate and the

interactions between the fare products will have to be further analysed.

3. Include network effects
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The stochastic model could be extended to take into account network effects. If

we consider a network of flights, then the demand for different fare products for

different origin-destination markets will be competing for the same resources,

the flight capacity. In short, the sum of the demands for the different origin-

destination markets will be capped by the flight's total capacity. Prior work on

multiple fare products could be useful if we assume that some the fare products

are for local passengers while the rest is designed for connecting passengers. The

geometrical analogy could be used again to find the impact of booking limits

on the different types of demands.

4. Introduce a competitor

This research could also serve as a mean of introducing a competitor. We could

imagine having two airlines, Airline 1 and its competitor, Airline 2. To simplify

the first analysis we could assume that each airline only offers one fare product,

and that the pricing strategy of Airline 2 is known and stable. The capacity

of each airline is also known. Airline 1 offers Fare Product 1 and Airline 2

offers Fare Product 2, but the average fare for Fare Product 2 over the booking

period can be anticipated. Then the objective would be to find the set of fares

and booking limits that would maximize Airline 1's revenues, given Airline 2's

pricing strategy and the two airlines' capacities. To successfully implement this

model, an airline will have to have very good forecasting capabilities.

In this dissertation, we developed a stochastic model to determine simultaneously

the set of fares and the first time period's booking limit that maximize the revenue

generated by the sale of two fare products over two time periods. We further proposed

three heuristics to tackle the multiple-time period joint pricing and seat allocation

problem. The performance of the model and the heuristics in the few numerical

examples used are very promising. The proposed approaches have the potential to

improve the revenue of an airline by 2-4%. This model should enable an airline to

effectively merge the practice of pricing and revenue management. There seems to

be a trend in this direction among major airlines and this method can be a starting
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point in a few appropriate markets.
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