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requirements for the degree of
Doctor of Philosophy in Economics

Abstract

This dissertation ties together three papers on mechanism design with boundedly
rational agents. These papers explore theoretically whether, and to what extent,
limitations on agents' ability to strategically misrepresent their preferences can help
a mechanism designer achieve outcomes that she could not achieve with perfectly
rational agents.

The first chapter investigates whether local incentive constraints are sufficient to
logically imply full incentive-compatibility, in a variety of mechanism design settings.
This can be motivated by a boundedly rational model in which agents cannot contem-
plate all possible misrepresentations, but can consider those that are close to their
true preferences. This chapter offers a unified approach that covers both continu-
ous and discrete type spaces, showing that in many commonly studied cases, local
incentive-compatibility (suitably defined) implies full incentive-compatibility.

The second chapter advances the methodology of looking quantitatively at incen-
tives for strategic behavior, motivated by the premise that agents will be truthful
if the incentive to be strategic is small enough. This chapter defines a mechanism's
susceptibility to manipulation as the maximum amount of expected utility any agent
can ever gain from strategic misrepresntation. This measure of susceptibility is then
applied to anonymous voting rules. One set of results estimates the susceptibility of
specific voting rules; an important finding is that several voting systems previously
identified as resistant to manipulation are actually more susceptible than simple plu-
rality rule, by the measure proposed here. A second set of results gives asymptotic
lower bounds on susceptibility for any possible voting rule, under various combina-
tions of efficiency, regularity, and informational conditions. These results illustrate
how one can quantitatively explore the tradeoffs between susceptibility and other
properties of the voting rule.

The third chapter carries the methodology of the second chapter to a market en-
vironment: unit-demand, private-value double auction markets. This chapter quanti-
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tatively studies the tradeoff between inefficiency and susceptibility to manipulation,
among all possible mechanisms for such markets. The main result approximately
locates the possibility frontier, pinning it down within a factor that is logarithmic in
the size of the market.

Thesis Supervisor: Parag A. Pathak
Title: Associate Professor of Economics

Thesis Supervisor: K. Daron Acemoglu
Title: Elizabeth and James Killian Professor of Economics
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Introduction

This dissertation ties together three papers on mechanism design with boundedly

rational agents.

Economic theory is often criticized for relying on the unrealistic assumption that

agents are perfectly rational. Mechanism design is an area of theory that should

be especially sensitive to this criticism, because it is intimately tied to practical ap-

plications - witness the recent surge of interest in theoretically-informed design of

complex auctions, and applications of matching theory to areas from school choice to

organ transplantation. My hope is that this dissertation will represent the beginning

of a much longer project to address this criticism systematically, by importing spe-

cific models of bounded rationality into mechanism design problems, and studying

what changes and what stays the same, relative to the traditional benchmark of fully

rational agents. Thus, the long-term goal is to understand in exactly what ways, and

how seriously, imperfect rationality actually makes a difference for mechanism design.

The papers herein focus on direct mechanisms, where agents are asked to report

their preferences and a decision is made based on those preferences. The standard

design of (truthful) direct mechanisms is governed by incentive constraints, requiring

that each type of agent should not be able to benefit by pretending to be any other

type. The focus here is on forms of bounded rationality where agents' default be-

havior is to report their preferences truthfully, and they have only a limited ability

to strategically report other preferences. Such limitations relax the incentive con-

straints. Accordingly, the question is whether, and to what extent, this relaxation of

incentive constraints can help a mechanism designer better achieve her goals.

The first chapter of the dissertation studies the mathematical structure of incentive
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constraints, in a variety of mechanism design problems. The question is whether

local incentive-compatibility of a mechanism, by itself, logically implies full incentive-

compatibility. The paper offers several motivations for this question; in the context

of this dissertation, the relevant motivation is a simple model of bounded rationality,

in which agents may be unable to contemplate all the possible strategic misreports of

their preferences, but can at least consider misreports close to the true preferences.

If local incentive constraints do not automatically imply full incentive-compatibility,

then this raises the possibility that a designer could potentially benefit from agents'

bounded rationality, by using mechanisms in which she expects agents will tell the

truth, even though fully rational agents would instead find (nonlocal) manipulations.

It turns out that in a wide range of important mechanism design settings, local

incentive constraints - once formulated in the proper way - do imply full incentive-

compatibility. Thus, a mechanism designer cannot take advantage of agents' bounded

rationality in this way. The paper uses a simple supermodularity argument to unify

many continuous and discrete settings, showing that local incentive constraints are

sufficient for full incentive-compatibility in each case, for probabilistic as well as deter-

ministic mechanisms. Specifically, the results apply to any convex domain of cardinal

or ordinal preferences, as well as domains of single-peaked or successive single-crossing

ordinal preferences. For the ordinal domains in particular, these results imply com-

putational versions of many previous impossibility theorems: If a designer wishes

for her mechanism to satisfy some properties, and these properties cannot be met

without creating some opportunity for strategic manipulation, then in fact, there will

always be some such manipulations that can be found with a very small amount of

computational effort (by only searching for local manipulations).

The second, and main, chapter advances the methodology of looking quantitatively

at incentives for strategic behavior in mechanisms. This is motivated by the view -

which has been increasingly influential in recent applied market design literature -

that agents will not bother to be strategic if the incentive to do so is small enough.

The underlying boundedly-rational model is one in which agents face a small, additive

utility cost to behaving strategically (which may be interpreted as a computational
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or a psychological cost), whereas being truthful is costless. Then, all else being

equal, agents are more likely to be truthful if the incentive to be strategic is smaller.

The paper argues that we can and should understand just how small the strategic

incentives are in particular mechanisms. Such a quantitative understanding allows

us to compare different mechanisms in terms of their incentive properties, and helps

inform choices among mechanisms that require trading off strategic incentives against

other properties.

More specifically, a direct mechanism's susceptibility to manipulation is defined

as the maximum amount of expected utility that any agent can gain by behaving

strategically instead of sincerely. The maximum is taken over all preferences an agent

might have and all possible beliefs about other agents' behavior, within some natural

restrictions chosen depending on the environment.

As a concrete application, the paper considers anonymous voting rules, in which

each voter in a population submits a preference ranking over candidates and these

preferences are aggregated to determine a winner. The paper presents two sets of

results. The first set gives quantitative bounds on the susceptibility of several voting

systems discussed in prior literature. These results illustrate how to perform simple

estimates using the measure of susceptibility advanced here. A highlight of this

section of the paper is a finding that many voting systems previously identified as

relatively resistant to strategic manipulation, using a straightforward profile-counting

measure, actually perform worse than a simple plurality vote under this measure of

susceptibility, as long as the number of candidates is moderately large. This shows

that this measure of susceptibility leads to new insights and does not simply duplicate

previously known observations. The second set of results consists of several theorems

providing asymptotic lower bounds on the susceptibility of any voting rule satisfying

various combinations of efficiency, regularity, and informational properties. These

theorems illustrate how one can quantitatively study the tradeoffs between incentives

for strategic behavior and other properties that might be desired in a voting rule.

The proof technique for these theorems is also a contribution; for many of the results,

we simply take proofs of non-quantitative impossibility theorems and keep track of

11



error terms.

This second chapter studies the problem of designing a voting rule because it is

among the oldest and most widely-studied problems in mechanism design, and also

one where there has been significant previous literature attempting to measure manip-

ulation, using other approaches. However, the concept of susceptibility can of course

be applied to other problems. As another illustration - and one which perhaps fits

more familiarly into the domain of economic problems - the third chapter of the dis-

sertation takes the same measure of susceptibility and applies it to large private-value

double auction environments, studying the quantitative tradeoff between efficiency

and strategic incentives.

In such an environment (which may be thought of as a stylized model of more

general market environments), there are sellers who each have one unit of a homoge-

neous good for sale, and buyers who have money and would like to buy a good. Each

seller, however, has his own, privately known value for the good (or cost of procuring

it), and each buyer has his own value as well. A (direct) mechanism asks each buyer

and seller his value, and as a function of these reported values, determines who trades

with whom and how money changes hands. A mechanism designer's aim is to try to

get the goods to whichever combination of buyers and sellers values them the most.

It is well established in previous literature that, under participation and weak

budget-balance constraints, there is no way to achieve the first-best efficient outcome

while also giving all participants perfect incentives to report their values truthfully.

On the other hand, it is possible to achieve the first-best assuming agents are truthful,

with incentives to be strategic becoming negligible as the market becomes large (using

a k-double auction, a version of the Walrasian equilibrium mechanism). It is also

possible to give perfect incentives while achieving asymptotic efficiency as the market

becomes large (using a double auction due to Preston McAfee). However, under the

model of this paper, the susceptibility of the k-double auction and the inefficiency

of the McAfee double auction both converge to zero at the fairly slow rate of 1/VN

(where N measures the size of the market). A designer might be concerned that, in

moderate-sized markets, this susceptibility to manipulation for the k-double auction

12



is still too large to prevent manipulation by agents who have only small costs to being

strategic. This leads to the question of whether there is some other mechanism with

significantly smaller susceptibility than the k-double auction (but not necessarily

zero), and also significantly better efficiency performance than the McAfee double

auction. The main result of the chapter answers this question in the negative, by

showing that no mechanism does better than order I/(V/N log N) on both dimensions

simultaneously. The lesson is that, even in a model in which agents have a small cost

to behaving strategically, there is no way to do substantially better than the known

mechanisms.

The papers presented here are only the start of a long project on bounded ra-

tionality in mechanism design. One can imagine many different forms of bounded

rationality that might be theoretically modeled. My hope is that this work will in-

spire more exploration in these related but distinct directions.

13
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Chapter 1

When Are Local Incentive

Constraints Sufficient?

Abstract

We study the question of whether local incentive constraints are sufficient to imply
full incentive-compatibility, in a variety of mechanism design settings, allowing for
probabilistic mechanisms. We give a unified approach that covers both continuous
and discrete type spaces. On many common preference domains - including any con-
vex domain of cardinal or ordinal preferences, single-peaked ordinal preferences, and
successive single-crossing ordinal preferences - local incentive-compatibility (suit-

ably defined) implies full incentive-compatibility. On domains of cardinal preferences
that satisfy a strong nonconvexity condition, local incentive-compatibility is not suffi-
cient. Our sufficiency results hold for dominant-strategy and Bayesian Nash solution
concepts and allow for some interdependence in preferences.

Thanks to (in random order) Alex Wolitzky, Ron Lavi, Suehyun Kwon, Vince Conitzer, Anton

Tsoy, Alex Frankel, Ariel Procaccia, Parag Pathak, Daron Acemoglu, Tim Roughgarden, Rakesh

Vohra, and Glenn Ellison for helpful comments and suggestions. This work was supported by an

NSF Graduate Research Fellowship.

1 Introduction

In the analysis of mechanism design problems, taking account of all the possible

constraints imposed by incentive-compatibility at once can be unwieldy. It can be

This chapter was originally published in Econometrica, volume 80, issue 2, March 2012, pages

661-686. Appendix B was originally published online in Econometrica's supplemental material.
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easier to focus attention on local incentive constraints, ensuring that agents have no

incentive to make "small" misreports of their type, and then check at the end of the

analysis whether or not the mechanisms obtained are fully incentive-compatible.

In the present paper, we ask the general question of whether local incentive con-

straints are sufficient on their own to guarantee full incentive-compatibility, and obtain

an affirmative answer in a wide array of settings. We allow for arbitrary probabilistic

mechanisms, which specify a distribution over some (exogenously specified) outcome

space as a function of an agent's type. (Our analysis is mostly worded in terms of a

single agent, but we show how it readily extends to multi-agent mechanisms, including

allowing a limited degree of interdependence in preferences.)

To clarify the significance of these results, it is useful to distinguish two major

branches of mechanism design literature. We give a simple and unified approach

that applies to both branches but has slightly different implications for the two. One

branch, with roots in axiomatic social choice theory, studies problems without mone-

tary transfers. These include voting [25, 50, 39, 7, 48], matching [45, 2, 14], queueing

[15], and rationing [52, 22], among others. This literature has recently been influen-

tial in applied market design as well; see for example [46] and references therein. It

is commonly taken as given here that each agent submits a ranking over outcomes

(such as candidates, in a voting context, or schools or jobs, in a matching context)

to the mechanism. Thus, agents report ordinal preferences. Incentive-compatibility

typically means that reporting one's true preferences should be a dominant strat-

egy. We will say that such a mechanism is locally incentive-compatible if no agent

type can benefit from misreporting by switching some two consecutive outcomes in

his preference ranking. We show below that for many of the most common prefer-

ence domains considered in this literature, local incentive-compatibility implies full

incentive-compatibility. Specifically, we show this for domains of ordinal preferences

having convex closure (Proposition 3.2, which actually gives a generalization to polyhe-

dral type spaces); single-peaked ordinal preferences (Proposition 3.3); and successive

single-crossing ordinal preferences (Proposition 3.4).

The second large branch of literature concerns settings in which monetary trans-
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fers are possible and agents have quasilinear preferences, with applications such as

monopoly pricing, auctions, and public projects. Seminal works include [40, 28, 41,

42, 37, 34, 35]. It is generally assumed that agents can report a cardinal valuation

for each outcome. We show that local incentive-compatibility, suitably formulated,

implies full incentive-compatibility whenever the space of agents' cardinal types is

convex (Proposition 3.5). (We should note that this result also has some relevance to

the no-transfers literature, as some authors there also allow agents to report cardinal

preferences, e.g. [5, 31, 53].)

Our results on the sufficiency of local incentive constraints are relevant for several

reasons. One is that they provide a technical tool to facilitate the researcher's task

of analyzing mechanism design problems. This is particularly relevant to the trans-

fers branch of the literature, where analysis typically begins by using local incentive

constraints and the envelope theorem to obtain an integral formula for the utility

attained by each type of agent (as in e.g. [41, Lemma 2]); our sufficiency results

provide a general tool to help assure researchers that this reduction of the problem

has not neglected important nonlocal constraints. They also can streamline proofs

of incentive-compatibility for newly designed mechanisms, since it is enough to show

local incentive-compatibility and then invoke sufficiency.

Moreover, our analysis casts light on the form of local incentive constraints needed.

It is not sufficient to specify only that each type of agent should be unable to profitably

misreport as any nearby type; one must also specify that each type cannot serve as a

profitable misreport for any nearby type. (See the discussion in Subsection 3.1.)

A separate reason our results are relevant is that one may have more literal rea-

sons to impose only a subset of incentive constraints. For example, there may be a

monitoring technology that makes it possible to detect and punish reports far away

from an agent's true type, in which case the mechanism designer does not need to

worry about such misreports (as in Green and Laffont [29]). One might hope that

this would provide an operational way to circumvent impossibility results such as

the Gibbard-Satterthwaite theorem [25, 50], which are pervasive in the no-transfers

literature; or, in a setting with transfers, one might hope, say, to obtain higher rev-
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enue than would be possible with fully incentive-compatible mechanisms. If agents

are to report truthfully, then our sufficiency results show that in many settings, hav-

ing access to such a monitoring technology does not enlarge the space of effective

mechanisms.

Relatedly, when designing a mechanism for boundedly rational agents, one might

consider that agents are not capable of contemplating every possible misreport of

their preferences, and again ask whether this provides an operational way to improve

on fully incentive-compatible mechanisms. If the designer believes that agents are at

least rational enough to be capable of imitating any nearby type, then in the settings

covered by our sufficiency results, imposing only the relevant subset of incentive

constraints actually does not enlarge the space of usable mechanisms at all.

In particular, for ordinal type spaces, this idea leads to "computational" versions

of many existing impossibility or characterization results. This gives a very general

reply to a literature that seeks ways around the Gibbard-Satterthwaite theorem by

devising voting mechanisms that are computationally difficult, but not impossible, to

strategically manipulate (e.g. [9, 8]). On the type spaces where our sufficiency results

apply, they immediately imply that any such mechanism is easy to manipulate in some

instances, as long as the outcome of the mechanism itself is easy to compute. (Here, as

in the preceding literature, we take "easy" to mean computable in polynomial time.)

Namely, a manipulator can exhaustively consider each local manipulation - switching

some two candidates who are consecutive in the ranking - and compute the outcome

of the mechanism; this trial-and-error search is easy and will find an advantageous

manipulation in some instances. So a computational-complexity constraint, at least

of the naive form, cannot prevent agents from manipulating. 1

More broadly, there is a tradition in social choice theory of looking for the weak-

est assumptions necessary to obtain a characterization or impossibility result. Our

results can be immediately applied to many axiomatic characterizations (such as

those cited in the third paragraph), showing that, say, an axiom requiring dominant-

'In the Gibbard-Satterthwaite context, stronger results extending this idea are already known
(e.g. [32]). But our results lead more generally to computational versions of many other existing
characterization results by the same argument.
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strategy incentive-compatibility can be replaced by local incentive-compatibility with-

out changing the conclusion.

The aforementioned results show that, for many important type spaces, local

incentive-compatibility implies full incentive-compatibility. On the other hand, there

are type spaces where the implication does not hold. In particular, we show this for

domains of cardinal preferences that fail to be convex in a sufficiently strong way

(Proposition 4.1).

Our work connects with several previous papers on mechanism design under a

subset of incentive constraints. Green and Laffont [29], mentioned above, consider a

general setup in which the space of messages that agents can send equals the space

of types, with exogenous restrictions as to which messages each type is capable of

sending, and study when the revelation principle applies. Celik [16] and Sher and

Vohra [51] consider specific mechanism design problems under subsets of incentive

constraints, though their subsets are not local in our sense.

There does not appear to be previously published work asking the broad question

of when local and full incentive-compatibility coincide. However, a contemporaneous

paper by Sato [49], independent of ours, does address this question. Sato consid-

ers only deterministic mechanisms over ordinal type spaces. For such mechanisms,

Sato shows that local incentive constraints are sufficient on all of the ordinal type

spaces that we consider (type spaces with convex closure, single-peaked, and succes-

sive single-crossing preferences), as well as some others.

This paper also bears some formal resemblance to recent work on general settings

with cardinal preferences and transfers. In such a setting, a rule mapping types to

outcomes is implementable if there exists some accompanying payment function (map-

ping types to transfers) that makes truthful revelation incentive-compatible. There

has recently been much interest in simple conditions ensuring that a rule is imple-

mentable, e.g. [47, 12, 4]. In particular, our work is somewhat reminiscent of a paper

by Archer and Kleinberg [3]. They show that local implementability (suitably de-

fined) implies implementability, on any convex space of cardinal types. However, we

show that local implies full incentive-compatibility for a given mechanism, consisting
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of an outcome rule and a payment function together, whereas they show that local

implementability by some payment functions (possibly using different payment func-

tions on different local neighborhoods) implies full implementability. Thus, both their

hypothesis and their conclusion are weaker than ours. Moreover, their sets of local

incentive constraints are larger than ours, and their theorem would not hold using our

constraint sets; this is discussed in detail in Subsection 3.1. Accordingly, our results

on cardinal type spaces do not follow from the result of Archer and Kleinberg, nor

vice versa.

2 Framework

We begin with the general framework. Ensuing sections will give the concrete results.

2.1 Definitions

We will focus on incentives in a mechanism for an individual agent. In Subsection 2.2,

we will show how the ideas extend straightforwardly to multi-agent mechanisms with

private values. We begin by introducing the definitions for the no-transfers setting;

in Subsection 3.5 we will allow for transfers, and also for interdependence.

From the agent's point of view, a mechanism takes the agent's preferences as input

and determines an outcome, or a probability distribution over outcomes. We must be

explicit about the form of preferences that the agent can announce. In some settings,

it is standard practice to assume agents announce their cardinal valuation for each

of the possible outcomes. In others (specifically in the no-transfers literature), it is

assumed that agents only report an ordinal ranking of outcomes.

This latter assumption entails exogenously restricting the message space of the

mechanism to consist of the possible ordinal preferences. This restriction is widely

accepted, although it does not yet enjoy solid theoretical foundations. It is often

made for analytical tractability, and in practical market design applications it can

also be justified by the need to make the mechanism accessible to participants who

may have difficulty thinking about their preferences over lotteries. Bogomolnaia and
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Moulin [14] give a more detailed discussion on this last point.

Finally, in some settings, one might assume that agents report even coarser in-

formation than ordinal preferences (for example, they are required to rank only a

limited number of outcomes). We will first give a unified treatment that covers all

of the different specifications of preferences, then specialize to define local incentive-

compatibility in specific settings.

Let X, the outcome space, be any finite set; m will denote its cardinality. Let

A(X) denote the space of lotteries over X. The agent is assumed to have expected

utility preferences over lotteries. It will be convenient to think of both lotteries over

X and utility functions as elements of R'. If the agent's utility function is u, his

payoff from a lottery L is given by the inner product u - L.

For subsets of R', cl denotes the closure and 0 the boundary operator. If u,v E

RM, we write [u, v] for the line segment {(1 - a)u + av | a c [0, 1]}.

A type is a nonempty subset of Rm . A type space is a set of pairwise disjoint

types. We henceforth use the term type space in preference to domain: the latter

term suggests only an exogenous restriction of the set of utility functions the agent

may have, whereas our notion of a type space conveys both which utility functions

are possible and which ones the mechanism is required to treat identically.

Given a type space T, a mechanism is a function f : T -* A(X). Thus, the

mechanism chooses a distribution over outcomes, based on the agent's (reported)

type.

An incentive constraint is an ordered pair of types. The interpretation of the con-

straint (t, t') is that a type t cannot benefit from misreporting as type t'. Accordingly,

we say that a mechanism f satisfies an incentive constraint (t, t') if, for all u C t,
u - f(t) > u - f(t'); equivalently, u - (f(t) - f(t')) > 0. A mechanism satisfies a set of

incentive constraints if it satisfies every constraint in the set.

A mechanism that satisfies the full set of incentive constraints T x T is fully

incentive-compatible. This is exactly the usual meaning of incentive-compatibility.

A set S of incentive constraints is sufficient if every mechanism that satisfies S is

fully incentive-compatible.
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We highlight several important kinds of type spaces and define local incentive

constraints in each case.

* A type space T is cardinal if every type is a singleton. In this case, abusing

notation, we will think of types as vectors and T as a subset of R'. For example,

we write f(u) rather than f({u}).

For a cardinal T, a set S of incentive constraints will be called local incentive

constraints if every u E T has an open neighborhood N in T (with the relative

topology) such that (u, u') E S and (u', u) E S for every u' E Nu.

" A type space is ordinal if every type is of the form t = {nI u(Xi) > u(X2 ) >

. . . > u(Xm)} for some strict ordering xi >- - - >x, of the elements of X. We

say that t represents this ordering. Note that our definition of an ordinal type

space does not require that all possible orderings be represented by types.

When types are ordinal, f satisfies a constraint (t, t') if and only if the lottery

f(t) first-order stochastically dominates f(t') with respect to the ordering on X

represented by t. (This is easy to show.)

Call two ordinal types t, t' adjacent if the orderings they represent differ only by

a switch of two consecutive outcomes. On any ordinal type space T, the local

incentive constraints will refer to the set of all constraints (t, t') such that t and

t' are adjacent.

" More generally, we can consider polyhedral type spaces. In the space of utility

functions, RM, an open half-space is a set of the form {u I u - A > c} for

some nonzero A E Rm and some constant c. If H is such an open half-space,

its closure cl(H) = {u | - A > c} is a closed half-space, and its boundary

9H = {u I u - A = c} is a hyperplane. Define an (open) polyhedron to be

a nonempty set that is the intersection of finitely many open half-spaces. A

polyhedral type space is a type space consisting of finitely many types that are

all polyhedra.
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Say that two disjoint polyhedra t, t' are adjacent if cl(l) n cl(t') contains a

nonempty, relatively open subset of a hyperplane. In simpler terms, t and t' are

polyhedra that border along a face. We then let the local incentive constraints

on T be the set of constraints (t, t') such that t and t' are adjacent.

Any ordinal type space is polyhedral, and one can check that the definitions

of adjacency and local incentive constraints for ordinal types agree with those

for polyhedral types. (There exists previous literature in mechanism design

also using polyhedra to represent ordinal types, e.g. Duggan [21].) For an-

other example, take the types implied by truncated rankings, i.e. {u I u(xi) >

- > u(xp) and u(x,) > u(y) for all y # x 1 ,. . .,x,}, for any distinct outcomes

xi,.. ., x, with p < m - these are again polyhedral types. Such a type space is

natural for studying matching mechanisms in applications such as school choice,

where students may be asked to rank, say, 12 favorite schools out of more than

500 available [1].

More generally, any mechanism with a finite message space gives rise to a poly-

hedral type space: for each message, the set of utility functions for which it

is optimal forms a polyhedron (ignoring boundary issues). Studying local in-

centives in these type spaces can be helpful for analyzing such mechanisms.

Gibbard [27] gives a fairly complete analysis of dominant-strategy voting mech-

anisms with arbitrary finite message spaces; much of the analysis focuses on

incentives to misreport locally.

We say that a mechanism is locally incentive-compatible if it satisfies some set

of local incentive constraints (in the cardinal case; or the canonical such set in the

polyhedral case).

We are interested in determining whether or not local incentive contraints are

sufficient, on various type spaces.
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2.2 Mechanisms with multiple agents

As already mentioned, while we focus on single-agent mechanisms, our results apply

also with multiple agents, under private values. The extension is similar to arguments

in previous literature [3, 30], but we spell it out in detail here, as we will further build

on it in Subsection 3.5.

Define a mechanism with n agents, type space T = Ti x ... x Ts, and outcome

space X to be a map f : T -+ A(X), specifying a (probabilistic) outcome as a function

of all the agents' types. Suppose that, for some i, a set Si of incentive constraints is

sufficient for Ti.

One possible notion of incentive-compatibility is to say that f satisfies the in-

centive constraint (ti, t') c T x T for agent i if, for all t-i and all ui E ti, we have

u - (f(ti, ~) - f(tz, t-)) > 0. If f satisfies every incentive constraint in Si for agent i,

then holding fixed any profile t_, the single-agent mechanism tj 1-+ f(ti, t-j) satisfies

Si and so (by sufficiency) is fully incentive-compatible. Thus, f is fully incentive-

compatible in dominant strategies (for agent i).

One can also consider Bayesian incentive-compatibility. Suppose we are given a

probability distribution Og over T for each agent j, and assume f(ti, t-j) is measurable

in t-i for all ti. Then we can say that f satisfies incentive constraint (ti, t') for agent i

if, for all ui C ti, we have ui -(Ei[f(ti, ti)] - E [f(t , ti)]) > 0, where the expectation

is over t_, with respect to the product distribution xjhiOj/. Again, if f satisfies

each incentive constraint in Si, then the single-agent mechanism tj F-* E [f(ti, t-i)]

satisfies Si and so is fully incentive-compatible for agent i. This is the standard notion

of Bayesian incentive-compatibility for f. Notice that this argument depends on the

agents' types being independently distributed: the expectation Ej needs to be defined

in a way that does not depend on ti.

3 Sufficiency

In this section we show that local incentive constraints are sufficient on a variety of

common type spaces. All proofs absent from the main text are in Appendix A.
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3.1 Cardinal type spaces

Recalling that a cardinal type space is identified with a subset of R', we can state

our first sufficiency result:

Proposition 3.1 On a convex cardinal type space T, any set of local incentive con-

straints is sufficient.

We present the proof in detail, since the proofs of most of our other sufficiency

results (Propositions 3.2, 3.3, 3.5) follow the same model. To prove that an agent

of type u never wants to misreport as type v, we restrict attention to types along

the line segment [u, v], effectively reducing to one dimension; we then break the

segment into short pieces for which local incentive constraints apply, and combine

these local incentive constraints into the incentive constraint (u, v) using the kind of

supermodularity or "revealed-preference" argument that is familiar elsewhere in the

mechanism design literature (see e.g. [41, Lemma 2], [44, Theorem 1]).

Proof: Let S be a set of local incentive constraints and f a mechanism satisfying

S. For types u, v, write un-+v if (u, v) and (v, u) are both in S. By definition, every

u E T has some neighborhood Nu in T such that un-*v for all v E Nu.

Fix arbitrary u, v C T. We want to show that u - (f(u) - f(v)) 0.

For any a E [0, 1], define ua = (1 - a)u + av. Convexity implies ua E T. Let

A ={a I there exist 0 = ao < ai < -. < a, <; 1 with

uo*cl +-+ - - - -+u,. and a, = a}.

Clearly, if a E A, a < a' < 1, and ua<-+u0 ', then a' E A. Now let d = sup A > 0. If

= 0 then -a C A. If d > 0, then for a sufficiently close to d we have u1,y-+uz; since

we can choose a E A arbitrarily close, we again get d E A. Moreover, if -5 < 1, then

ua+-*ua, for a just slightly larger than Z; this implies a E A, contradicting z = sup A.

Therefore, we get - = 1 and 1 C A.
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So we have 0 = ao < a < --- < a, = 1with us,,k <4Uak± for each k. Now write

out the local incentive constraints:

Uak (f (Ua) - f (Uak)) 2 0,

Unkl -f (Ucek) - f (UC)) 2 0.

Multiplying by ak+1 and ak, respectively, and adding gives

[Ozk±1'Ual - CfkUckk+ll -(f (Uc') - f (u~k+l)) >_ 0.

But one directly calculates that ak+1Uk -akzk+l = (ak+1 - ak)U. Since ak+1 - ak >

0, we can divide through to obtain

U - (f(Uak) - f (Uak+l)) 2 0.

Now we can sum over k = 0, 1,... , r - 1, and telescoping gives

u -(f(u) - f(v)) = U -(f(ua.) - f(ua,)) > 0.

Proposition 3.1 applies to any convex cardinal type space. This includes, for

example, the full space of utility functions on X; or the space of utility functions that

are increasing with respect to some partial order on X; or the space of supermodular

or submodular utility functions, given a lattice structure on X; or the space of utility

functions satisfying some concavity conditions.

The proof of Proposition 3.1 clearly uses both parts of the definition of local incen-

tive constraints - that each u should have a neighborhood Nu with both (u, u') E S

and (u', u) E S for u' E Nu. A seemingly more natural way to define local incentive

constraints would only require (u, u') E S. Under this definition, Proposition 3.1

would no longer hold. For example, suppose X = {x, y} and T is the full space of

all cardinal types. Consider the mechanism f given by f(u) = x if u(x) < u(y)
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and f(u) = y otherwise. This f meets the weaker definition of local incentive-

compatibility, but is not fully incentive-compatible. (Requiring only (u', u) E S would

also not be enough: with the same X and T, consider the mechanism f(u) = x if

u(x) = u(y) - 1 and f (u) = y otherwise.) 2

By contrast, the local-to-global result of Archer and Kleinberg [3, Corollary 3.7],

on implementability in a quasilinear setting, effectively requires stronger local in-

centive constraints. They assume implementability throughout each Nu - that is,

for each u, there should be some payment function pu (specifying a payment for each

agent type) so that the mechanism-with-transfers (f, pu) satisfies incentive constraints

(u', u") for all u', u" E Nu. The analogue of our constraints in their setting would be to

merely require that (f, pu) should satisfy constraints (u, u') and (u', u) for all u' c N".

This requirement is a local form of weak monotonicity, which is not enough to imply

their implementability conclusion without further restrictions; see [12, Example Si]

or [47, Section 7].

Unlike the local constraints of [3], ours can be expressed succinctly in terms of

local maxima: f is locally incentive-compatible if every u E T is a local maximum of

both the functions v - u- f(v) and v - v - (f(u) - f(v)). With this interpretation,

local incentive-compatibility can potentially be checked by first- and second-order

conditions at points where f is differentiable. This convenience is relevant in making

the reduction from global to local incentive-compatibility a useful one: if one wishes

to check incentive constraints directly, then even local incentive-compatibility can

require checking many constraints when T is high-dimensional, since it is necessary

to check constraints in every direction at each u.

3.2 Polyhedral type spaces

Next we consider polyhedral type spaces. Our main result here is:

2A referee points out that a mechanism on a cardinal type space is fully incentive-compatible
if and only if the indirect utility function u - u - f(u) is convex, with f(n) belonging to the
subdifferential at each point u. Our two local conditions can be viewed loosely as local forms of
these requirements: the subdifferential condition at u is equivalent to satisfying (u', u) for all u' E T,
so our requiring this for all u' E Nu gives a local form of the subdifferential condition, and then
imposing the additional constraints (u, U') ensures convexity.
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Proposition 3.2 Let T be a polyhedral type space such that Utw cl(t) is convex.

Then the set of local incentive constraints is sufficient.

The argument is essentially the same as for Proposition 3.1. For utility functions

u and v, we consider the line segment [u, v]; this segment passes through various types

in succession. By jiggling v a bit if necessary, we can ensure that any two successive

types along this line segment are adjacent polyhedra, and then we can just add up

the corresponding local incentive constraints as before.

A particular case of Proposition 3.2 is that on the full space of all ordinal types over

a given X, the local incentive constraints are sufficient.3 (The union of the closures

of all types is simply all of R m.) Proposition 3.2 also applies when T consists of all

ordinal types that respect a given partial ordering on X. For example, Bogomolnaia

and Moulin [15] consider an allocation problem with real objects and a null object; all

types have the same preference ordering on the real objects, but rank the null object

differently relative to the real objects.

3.3 Single-peaked preferences

The preceding results have focused on essentially convex type spaces. One important

nonconvex type space is that of single-peaked preferences.

Fix an ordering x1 , ... ,xm of the outcomes in X. A strict preference ordering

>- over X is single-peaked if there exists some outcome xz, such that, whenever

q < p < p* or q > p > p*, we have x, >- x.. An ordinal type is single-peaked if

it represents a single-peaked ordering.

Single-peaked preferences have been popular in voting theory ever since Black's

[13] observation that the rule choosing the median of the voters' favorite outcomes

is dominant-strategy incentive-compatible. Single-peaked preferences are also impor-

tant in economic applications because single-peakedness is the same as quasiconcavity

of the utility function (aside from issues of indifference). Moulin [39] characterizes

3 An analogous result also holds if we allow indifferences - so that for each weak order on X, the
set of utility functions representing it constitutes a type - with an appropriate definition of local
incentive constraints. We omit the details here.
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dominant-strategy incentive-compatible deterministic voting systems under single-

peaked preferences. (Moulin assumes the outcome space is the whole real line, but

his proofs carry through almost unchanged for a finite outcome space.) Ehlers, Pe-

ters, and Storcken [23] extend this work to probabilistic mechanisms. Sprumont [52],

Barbera, Jackson, and Neme [6], and Ehlers and Klaus [22] study rationing problems

when consumers have single-peaked preferences over quantities.

The space of single-peaked ordinal types does not meet the convexity condition of

Proposition 3.2. However, we still have the result:

Proposition 3.3 Fix an ordering x 1,..., xm of the elements of X. On the space of

single-peaked ordinal types, the set of local incentive constraints is sufficient.

The argument is a slight extension of that used for Proposition 3.2. In general, in

an ordinal type space, say that a utility function v is accessible from another utility

function u if the segment [u, v] is contained in the union of the closures of all types.

In this case we can apply the argument of adding up local incentive constraints from

Propositions 3.1 and 3.2. Now, in the single-peaked ordinal type space, it is no longer

true (as it was for Proposition 3.2) that all v in a given type t' are accessible from

u E t, but we actually only need to be able to find some such v for each u. Lemma

A.5 in Appendix A shows that this can be done.

One can also consider the space of single-dipped ordinal types [36], or of single-

peaked ordinal preferences on a tree [20, 18]. It is straightforward to extend the proof

to cover each of these cases, showing that the local incentive constraints are again

sufficient.

3.4 Single-crossing preferences

Besides single-peaked preferences, another economically important class of ordinal

type spaces is given by single-crossing preferences. These are defined as follows: Fix

an ordering xi, ... , xm of the elements of X. A sequence >1,... , >. of distinct strict

preference orderings is a single-crossing preference domain if the following holds:

whenever p < q and xq >- X for some k, we also have xq >-I x, for all 1 > k.
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Single-crossing ordinal preferences arise in economic models such as the redistribu-

tive taxation models of Roberts [43] and Meltzer and Richard [38] (see Saporiti [48]

for references to other applications). Just as with single-peaked preferences, prefer-

ences coming from any single-crossing domain satisfy a median voter property - the

voting scheme that chooses the outcome most preferred by the voter with the median

preference is dominant-strategy incentive-compatible. More generally, Saporiti [48]

characterizes dominant-strategy incentive-compatible voting schemes on any maximal

single-crossing preference domain.

For any strict preference ordering >- on X, let V(-) = {(p, q) I p < q, xP < Xq }. By

definition, a sequence of preference orderings >i, . . . , >, is a single-crossing preference

domain if and only if V(s 1 ) C -- - C V(>,r). In fact, these inclusions must all be

strict, since any ordering >- can be uniquely reconstructed from V(>-). Therefore

IV(>-1)I < - < |V(>r)|. Call the domain a successive single-crossing preference

domain if |V(>-k+1)| = IV(Sk)| + 1 for each k = 1, ... ,r - 1.

This covers the domains considered in [48] - any maximal single-crossing prefer-

ence domain -,..., > is successive. For suppose that IV(>-k+1) - IV(>-k)| > 1 for

some k. There must be some two alternatives X,, Xq that are ranked consecutively by

>-k, with xp >k Xq but Xq >-k+1 X,. Single-crossing ensures p < q. By switching the

positions of x, and Xq in >-k, we get a new ordering >-' with V (-') = V (>-k)U{(p, q)},

and hence V(>-k) C V(>-') c V(>-k+1). This means that 1, ... , >-k, -', >-k+1, -

is again a single-crossing preference domain, contradicting maximality.

For any successive single-crossing preference domain >-I,..., >-r, call the corre-

sponding space of ordinal types T = {t 1,..., tr} a successive single-crossing ordinal

type space. In this case, the local incentive constraints are precisely those of the

form (tk, tk+1) or (tk+1, tk). We shall show that on such a type space, the local in-

centive constraints are sufficient. This result may be surprising, since these incentive

constraints are especially parsimonious - each type is adjacent to just two other

types.

Proposition 3.4 On any successive single-crossing ordinal type space, the local in-

centive constraints are sufficient.
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The strategy of proof is a little different from that used for the previous proposi-

tions. Instead of breaking a single line segment into short pieces, we find a sequence

of parallel line segments, each connecting two consecutive types tk, tk+1, but such that

each segment need not begin where the previous one ended. (As pointed out by a

referee, this method has some precedent in Gibbard [26, Lemma 2], where a similar

argument is applied to the full ordinal type space; and the argument can be applied

to the space of single-peaked ordinal types as well.)

Proof: Suppose the mechanism f satisfies the local incentive constraints. Fix

any two types ti, tj', and let u E t1. We wish to show that u - (f(ti) - f(t,)) > 0. We

will show this for 1' > 1; the proof for 1' < 1 is similar.

In fact it suffices to show that

u - (f (tk) - f (tk+l)) 0 for k > 1, (3.1)

since then we can sum up (3.1) for k = 1, 1+1, . . ., 1'-1 to obtain u-(f (ti) - f(tl-)) > 0.

So fix k > 1, and also define M = maxu(x) - min. u(x). Write V (>-k+1) \

V (>-k) = {(p, q)} by successiveness; then p < q, and >-k ranks xz just above Xq.

Because u E t, with I < k, single-crossing implies that u(x,) > u(Xq) also. Let v

be any utility function representing >-k such that v(X,) - v(Xq) < u(x,) - U(Xq),

and jv(x) - v(y)| > M for all distinct outcomes x,y E X other than x, and Xq.

Because >-k ranks x, and Xq consecutively, we can do this. Then the utility function

v - u ranks every pair of outcomes in the same way as v does, except {x,, Xq}. Since

V(>-k+1) = V(>-k) U {(p, q)}, this means that v - u represents >-k+1-

So, V E tk and v - u E tk+1. The local incentive constraints give

v (f(tk) - f(tk+l)) 2 0,

[v -u] - (f(tk+l) - f(tk)) > 0.

Adding these two gives exactly (3.1), and this completes the proof. L

The hypothesis of successiveness in Proposition 3.4 cannot be dropped, even if the
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set of local incentive constraints is modified in the natural way. That is, it is not the

case that, for any single-crossing ordinal type space {ti, ... , t, }, the set consisting of

the incentive constraints (tk, tk+1) and (tk+1, tk), for 1 < k < r, is sufficient. For a

counterexample, consider the three orderings

: I 21 2 >1 X3  -1 X4

>2: X 2  -2 X1 -2 X3  -2 X 4

53: X4  >3 X 2  53 X 1  >3 X 3

and the corresponding ordinal types t1 , t 2, t 3 . Let f map the types to lotteries over

(Xi,X 2 ,X 3 ,x 4 ) as follows:

f (ti) = (1/4, 1/4,1/2, 0); f (t2 ) = (0, 1/2, 1/2,0); f(t 3 ) = (1/2, 0, 0, 1/2).

Then f satisfies the incentive constraints (ti, t2 ), (t 2 , ti), (t 2 , 3 ), (t3 , t 2 ), but not (ti, ts),

so it is not fully incentive-compatible. (The line of the proof of Proposition 3.4 that

fails is the statement V(>k+1) \ V(>-k) = {(p, q)} in the third paragraph. More

broadly, the approach of the proof fails because if we take, say, the utility function

u representing S1 with u(xi) = 4, u(X 2 ) = 3, u(X3 ) = 2, u(X4 ) = 1, then we cannot

find any v such that v represents >-2 and v - a represents >3.)

3.5 Transfers and interdependent preferences

We now return to the setting of cardinal preferences. However, we generalize in

two new directions. First, we consider the transfers setting, in which agents have

quasilinear utility in outcomes and money, and a mechanism specifies both a lottery

over outcomes and a transfer for each agent. Second, we allow for the possibility of

interdependent preferences, where each agent's utility for each outcome depends on

the other agents' types. Numerous recent works prove possibility and impossibility

results with transfers and interdependence [34, 33, 35, 11], and it is natural to ask to

what extent our methods apply here.
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We adopt new notations and terminology, for this subsection only, in order to de-

scribe these extensions. For clarity, it will help to explicitly write out the dependence

of the mechanism on all n agents' types, as in Subsection 2.2. (Of course, a single agent

is a special case.) Each agent i's type space T is now assumed to be a subset of an arbi-

trary finite-dimensional Euclidean space, not necessarily R". Write T = Ti x ... x T.

Agent i's utility is now represented by a function ui : T -> R' specifying his utility

for each outcome as a function of the entire type profile. (The private-values case

discussed previously is the special case where T C R' and u2(ti, ... , tn) = ti.)

To allow for transfers, a mechanism is now a pair (f, p), where f : T -+ A(X)

specifies a lottery over outcomes for each type profile, and p : T -* R' is a payment

function specifying the net transfer each agent receives. We write pi(t) for the ith

component of p(t), representing agent i's transfer.

If the true type profile is t and the agents report profile t', then agent i's realized

utility is u (t) -f (t') +p(t'). An incentive constraint for agent i is again a pair (ti, t') E

T x T. We will emphasize here the Bayesian notion of incentive-compatibility, so

assume a distribution @j on each agent's type space T is given. The mechanism (f, p)

satisfies the incentive constraint (ti, t') if

Ej[uj(tj, t_j) -f (ti, t_j) + pj(tj, t-j)] ;> Ei[ui(ti, t_j) - f (t', t_j) + pi(t', t_j)].

Here the expectations are with respect to the product distribution xyp 0j on other

agents' types; it is presupposed that the expressions inside the expectations are mea-

surable in t_j, and both expectations are finite. (As in Subsection 2.2, the assumption

of independently distributed types is crucial.)

A set Si of incentive constraints will again be called local incentive constraints if

every tj E T has an open neighborhood Nt, in T such that (ti, t') c Si and (t', ti) c Si

for all t' E Nts. Si is sufficient for agent i if every mechanism that satisfies it must

satisfy the full set of incentive constraints T x Ti.

Dominant-strategy incentive-compatibility has an analogue in the interdependent

setting, namely ex post incentive-compatibility [17, 35], which demands Bayesian
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incentive-compatibility for all probability distributions simultaneously. Our result

(Proposition 3.5 below) is expressed in terms of Bayesian incentive-compatibility,

but an immediate corollary is that the same result holds using ex post incentive-

compatibility instead.

To obtain a sufficiency result, we need to restrict interdependence by assuming

that, for each fixed t_, the utility function ui(-, ti) : T -> R" is linear in ti. Under

this restriction, we have:

Proposition 3.5 In the setting with transfers and interdependent utility linear in

own type, if agent i has a convex type space T, then every set of local incentive

constraints is sufficient for agent i.

The proof is a straightforward extension of that for Proposition 3.1.

The linearity assumption warrants some comments. It is satisfied trivially in the

private-values case (hence, Proposition 3.1 is a special case of Proposition 3.5). It is

also satisfied by many concrete models appearing in the interdependent preferences

literature; see for example [19, Examples 2,3,4,5], [34], [24] (under Aassumption A2

of that paper), [11, Example 1], and [10, Section 3]. On the other hand, it is quite

restrictive, relative to the space of all well-behaved utility functions ui : T -> R' an

agent might have.

The linearity assumption is crucial in our analysis, ensuring that the convexity

condition in Proposition 3.5 extends that of Proposition 3.1. To understand this,

notice (as observed also in [3]) that we can think of each type of agent i as specifying

a utility function X x T-i -> R, and given the priors 0j, a mechanism induces a

distribution over X x T_, for each ti. In order to apply the argument from the proof

of Proposition 3.1, we essentially need agent i's type space to be a convex subset of

the linear space of all functions X x Ti -> R. This is exactly the combination of

linearity and convexity assumptions we have made above.

The preceding paragraph does not show that sufficiency fails when the linearity

assumption is violated, only that the method of proof used here (adding up incentive

constraints along a line) cannot be used. The question of how much further sufficiency
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can be generalized is taken up in more extensively in Appendix B, which suggests

that sufficiency results do not exist much beyond what can be proven with the present

method; as well as Section 4 below, which shows how sufficiency fails under a condition

somewhat stronger than nonconvexity.

We have here extended Proposition 3.1 to allow for transfers and/or interdepen-

dence with utility linear in own type. The same extension can be applied to Propo-

sitions 3.2 and 3.3. Such results may potentially be useful, for example, in analyzing

mechanism design problems in such settings when the message spaces are constrained

to be finite.

4 Insufficiency

The previous section gave numerous classes of type spaces on which local incentive

constraints are sufficient. The discussion is not complete without giving some cases

where local incentive constraints are not sufficient. We restrict ourselves here to

cardinal type spaces. Proposition 4.1 below identifies a large class of such type spaces

- roughly, those which violate convexity in a strong enough way - for which we can

construct mechanisms that are locally, but not fully, incentive-compatible. (Sato [49,

Proposition 4.2]) gives an analogous result for ordinal type spaces.)

It is unclear just how far Proposition 4.1 can be sharpened. Proposition 3.1 showed

that if the type space is convex, any local incentive constraints are sufficient, but the

converse is not true. The question of exactly characterizing those type spaces T for

which all local incentive constraints are sufficient appears to be subtle. This topic is

explored further in Appendix B. Proposition B.4 in that appendix gives a nontrivial

example of a nonconvex type space for which all local incentive constraints are suffi-

cient; on the other hand, Proposition B.3 gives a kind of converse to Proposition 3.1

for finite cardinal type spaces. The details are somewhat technical, so we refer the

reader to the appendix, and for now proceed to give our simpler result.

In the space R', let II be the subspace of vectors whose sum of components is

zero. Let a fair open half-space be a set of the form H = {u I u - A > 0} for some
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Figure 4.1: Illustration of fair separatedness

nonzero A E H. Say that a cardinal type space T is fairly separated if there is some

fair open half-space H such that the set T n H is not connected.

Proposition 4.1 Let T be a cardinal type space that is fairly separated. Then there

exists a set of local incentive constraints that is not sufficient.

Fair separatedness certainly implies nonconvexity. To further indicate the rela-

tionship between the two concepts, a little graphical intuition is in order.

For concreteness, suppose X has four elements. By additive and multiplicative

renormalization, we can map every utility function either to a point on the unit

sphere in the three-dimensional space H, or to the origin. This sphere is illustrated

in Figure 4.1. The upper hemisphere, whose boundary is shown dashed in the figure,

corresponds to a fair open half-space. If T contains the types labeled u and v, but

does not contain any type along the thick curve (or any type cardinally equivalent to

it), then T is fairly separated.

If T were to consist of all possible utility functions except 0 and w (and anything

cardinally equivalent to them), then T would be nonconvex. Nonetheless, on this T,

any local incentive constraints are sufficient; this is just Proposition B.4 in Appendix

B. Excluding the whole curve from T, rather than just the one point w, is enough

for insufficiency, by Proposition 4.1.
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Fair separatedness might not seem like a natural condition on a type space, so

we give one economically important example. Fix an ordering Xi,... , Xm of the

outcomes, and let T be the cardinal type space consisting of all quasiconcave utility

functions - a cardinal analogue of the single-peaked ordinal type space considered

in Section 3.3. Then T is fairly separated. For example, take any 1 < p < p' <

p" < m, and let H = {u I u(x,) - 2u(x,,) + u(xt,~) > 0}. If u c T n H, then

either u(xp) > u(xp,) or u(xp,,) > u(xp,). So {u E T n H I u(xz) > u(xp,)} and

{u c T n H I u(xp,) > u(xp,)} are two open, nonempty subsets of T n H, whose union

is all of T n H, and whose intersection is empty (any a satisfying both inequalities

would violate quasiconcavity). Hence, T n H is not connected. By Proposition 4.1,

there are local incentive constraints on T that are insufficient. Note that this result

for single-peaked cardinal types contrasts with our sufficiency result for the single-

peaked ordinal type space (Proposition 3.3). The accessibility argument underlying

that proposition (Lemma A.5 in Appendix A) fails with single-peaked cardinal types.

Proof of Proposition 4.1: Let H = {u I u A > 0} with A E U. There exist

lotteries L, L' on X such that H = {u I u -L > u -L'}. Indeed, let L be any lottery

with full support, and just let L' = L - 6A, where J > 0 is chosen small enough so

that all components of L' are still positive.

Now write T n H = Ta U Tb, where Ta, T are open, disjoint, and nonempty.

Consider the mechanism f defined as follows: if u E Ta, then f(u) = L; otherwise,

f (u) = L'.

Let S = (T x T) \ (Tb x Ta). This is a set of local incentive constraints: If u E Ta,

let Nu = Ta; if u E Tb, let Nu = T; and if a E T \ H, let Nu = T. In each case we

have (u, u'), (u', u) E S for all u' E Nu.

One readily checks that f satisfies the incentive constraints S, but does not satisfy

any incentive constraint in T x T and so is not fully incentive-compatible. Thus, S

is not sufficient.

A similar construction can be applied in the context of Subsection 3.5, to generate

many examples with interdependent preferences, nonlinear in own type, for which

local incentive constraints are not sufficient.
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5 Conclusion

This paper has examined the question of whether or not a small set of local incentive

constraints is sufficient to ensure that all other incentive constraints are automati-

cally satisfied, allowing for probabilistic mechanisms. We have obtained affirmative

answers in many of the most common mechanism design settings. With convex spaces

of cardinal types, local incentive constraints are sufficient to imply full incentive-

compatibility. This result allows for monetary transfers under quasilinear utility, and

for interdependence so long as each agent's utility is linear in his own type. Local

incentive constraints are also sufficient on polyhedral (including ordinal) type spaces

with convex closure, as well as single-peaked or successive single-crossing ordinal type

spaces. Our proofs follow a unified analytical approach based on a simple supermod-

ularity argument that applies across different settings. For cardinal type spaces that

are not convex, the argument does not apply, and with a strengthening of noncon-

vexity we have insufficiency - there are mechanisms that are locally but not fully

incentive-compatible.

The sufficiency results provide an immediate strengthening of many existing im-

possibility and characterization theorems, and a negative answer to a possible line of

inquiry as to whether one could obtain new mechanisms by ignoring nonlocal incen-

tive constraints on grounds of bounded rationality or monitoring technology. Most

importantly, they facilitate the technical analysis of mechanism design problems in

these settings by ensuring that one can focus on local incentive constraints without

any loss, avoiding the need for separate verifications of full incentive-compatibility.

Our analysis on cardinal type spaces in particular also sheds some light on the

form of local incentive constraints that should be considered in order to ensure full

incentive-compatibility. A naive formulation is not sufficient. On the other hand,

our local incentive constraints are still substantially weaker than requiring incentive-

compatibility throughout a neighborhood of each type (as required for the formally

similar result of [3]), and arguably easier to verify in applications.
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A Omitted proofs

Here we present the proofs that were omitted from the main text. We begin with

some technical lemmas.

Lemma A.1 Let the polyhedron t be written as an intersection of open half-spaces,

t = n,=1Hk. Then the boundary of t is

at = cl(t)\t= U n 8H n H,).
0#4KG{l,...,r} . kEK / kgK /.

Proof: Write cl(t) = nk cl(Hk) = nk (OHk U Hk); distribute on the right side; then

remove t = nkHk from both sides. l

In particular, Ot C Uk 0 1Hk.

Lemma A.2 Suppose T is a polyhedral type space. Fix u C R"', and let t, t' C T

be distinct, nonadjacent types. Then there exist finitely many hyperplanes, each one

passing through u, whose union contains cl(t) n cl(t').

Proof: Since t, t' are open and disjoint, neither one can intersect the closure of

the other, so cl(t) n cl(t') = Ot n t'. Now suppose t= n 1 Hk and t' = nr' HI.

Applying Lemma A.1 to both t and t', and then distributing the intersection operator,

we get

at n at'= U B(K, K'),
fKC{1,...,r}

OfK'G{1,..r'}

where

B(K,K')= (l Hk) n ( H) n ( aHL,n flHL,).
kEK (kgK (k'EK' k'K'

It therefore suffices to show that each set B(K, K') is contained in a hyperplane that

passes through u. We may assume B(K, K') is nonempty.

B(K, K') is a relatively open subset of P(K, K') = (nkEK aHk) n (nk'E K' aHkI,).

The set P(K, K') is an affine set, that is, an intersection of hyperplanes. If P(K, K')
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is itself a hyperplane, then since B(K, K') c cl(t) n cl(t'), it follows that t and t'

are adjacent. This contradicts the hypothesis. Therefore P(K, K') is an affine set

of dimension at most m - 2, and we can then find a hyperplane containing both

P(K, K') and u. L

Lemma A.3 Let T be any polyhedral type space, and u G R' any utility function.

Then there exists a finite collection Z of hyperplanes such that

" for any t E T, t is contained in the union of the hyperplanes in Z;

e if t, t' are distinct, nonadjacent types, and w G cl(t)ncl(t'), then some hyperplane

in Z passes through both u and w.

Proof: Immediate from Lemmas A.1 and A.2. L

As in the text, if T is a polyhedral type space and u, v two utility functions, we

say that v is accessible from u if [u, v] C UtCT cl(t).

Lemma A.4 Let T be any polyhedral type space, let u E R', and let Z be the set

identified by Lemma A.3. Let v C R' be any utility function not lying on any hyper-

plane in Z. Suppose v is accessible from u. Let to,t 1,..., t,. be the types intersecting

the segment [u, v] in order. Then tk and tk+1 are adjacent, for each k = 0,... , r - 1.

Note in the statement that the phrase "in order" makes sense, since each type tk

intersects the segment [u, v] in a subsegment, and these subsegments must be disjoint.

Proof: As in the proof of Proposition 3.1, define u, = (1 - a)u+av for a E [0, 1].

Any hyperplane in Z can contain at most one point of [u, v]: otherwise it would

contain the entire segment and in particular would contain ui = v, contradicting the

choice of v.

As noted above, each type tk intersects [u, v] in a subsegment {u u, a c Jk}, where

Jk is an open subinterval of [0, 1] - that is, Jk is of the form (-Y, 6), [0, 6), or (y, 1].

Write -yk = inf Jk, 6 k = sup Jk. By the assumption that the tk are in order, we have

ok Yk+1 for each k = 0,..., r - 1.

Next we show that in fact ok = Yk+1 for each k. Suppose instead that ok < Yk+1-

By assumption, the union of the closures of all types in T contains all of [u, v]. So
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for any a with ok < a < Yk+1, then, u,,, is in the closure of some type t. Such a point

u, cannot belong to t proper, so it belongs to &t. Then uc, belongs to one of the

hyperplanes in Z. But there are infinitely many choices of ui,. Since Z is finite and

each hyperplane in Z meets [a, v] at most once, we have a contradiction.

This establishes ok = 7Yk+1. On the other hand, us, E cl(tk), and uke+1 E cl(tk+l)-

So, Us5k C cl(tk) n cl(tk+1). If tk, tk+1 are not adjacent types, then some hyperplane of

Z passes through usk and u. This again contradicts the fact that each hyperplane of

Z can intersect [u, v] only once. So tk, tk+1 are adjacent. L

Proof of Proposition 3.2: Suppose u E t, for some type t E T, and let t' be

any other type. Suppose the mechanism f satisfies the local incentive constraints.

We wish to show that u - (f(t) - f(t')) > 0.

Let Z be given by Lemma A.3. Because t' is an open set, we can choose v E t' not

lying on any of the hyperplanes in Z. By convexity, v is accessible from u, so Lemma

A.4 applies, and the successive types tk, tk+1 identified in that lemma are adjacent for

each k.

Again define c, = (1 - a) u + av. For each k = 0, . . , r, pick any ak with u, E

tk l [u, v]. The local incentive constraints (tk, tk+1) and (tk+1, tk) for k = 0,... , r - 1

ensure that

Uak (f(tk) - f(tk+l)) 2 0,

Uak+l (f (tk+1) - f(tk)) > 0.

From here we proceed exactly as in the proof of Proposition 3.1 to reach the conclusion

U - (f (t) - f (t')) = U - (f (to) - f (tr)) > 0.

Lemma A.5 Let T be the space of single-peaked ordinal types. Fix u E t for some

t c T. For any t' C T, there exists a nonempty open set contained in t' such that

every v in the open set is accessible from u.
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Proof: Let u, t' be as in the lemma. We know that u is strict (i.e. gives different

values to different outcomes) since it belongs to an ordinal type. Then a sufficient

condition for v to be accessible from u is that (1 -a)+av be single-peaked whenever

it is strict: the set {a E 0, 1] 1 (1-ca)u+av is not strict} is finite, hence (1-a)u+av

will be in the closure of some single-peaked ordinal type for each a.

We first construct some v that is accessible from u. Let x, be the outcome ranked

highest by u, and let xz, be the outcome ranked highest by t'. If p' = p, then any

v E t' is accessible from u: since u(xq) and v(Xq) are both increasing in q for q < p

and decreasing for q > p, the same is true of any weighted average (1 - a)u + av, so

each such weighted average is single-peaked (as long as it is strict).

Now suppose p' > p (the case p' < p is similar). So u(xq) is decreasing and v(Xq)

must be increasing in q for p < q < p'. Choose v(xz,) and v(x,,_1 ) arbitrarily, with

v(x,,_1) < v(x,,). If p < p' - 1 then successively choose v(xq) for q = p' - 2,p' -

3, ...,p', such that
V(Xq+2) - v(Xq+1) v(xq+1) - v(xq)

u(Xq+1) - U(Xq+2) u(Xq) - u(Xq+1)

This can be done by choosing v(xq) low enough at each step. Finally, we can choose

v(xq) for q > p' or q < p so that v represents the ordering given by t'.

Now we will show that, for a E [0, 1], (1 - a)u + av is single-peaked whenever it

is strict. That is, we claim that (1 - a)u(xq) + av(xq) is increasing in q for q up to

some peak, and decreasing after that. Both u(xq) and v(xq) are increasing in q for

q < p, and decreasing in q for q > p', so we focus on the range p < q < p'. We will

show that there cannot exist any q E {p, ... ,p' - 2} such that

(1 - a)u(xq) + av(Xq) > (1 - a)u(Xq+1) + av(Xq+1) (A.2)

and

(1 - a)u(Xq+1) + av(Xq+1) < (1 - a)u(Xq+2) + av(xq+2) (A.3)

simultaneously hold; this will prove the claim.
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Suppose (A.2) and (A.3) do both hold, for some q. (A.2) implies

1 - a V(xq+1) - V(xq)

a 'u(xq>'IL(Xq,+i)

while (A.3) implies
1 - a V(Xq+2) - v(xq+1)

a U(xq+1) - U(Xq+2)

(Note we used the fact that u(xq) > u(xq+i) > U(Xq+2) to make sure the signs don't

switch when we divide. We know a > 0 since (A.3) is violated at a = 0.) Combining

these two inequalities gives a contradiction of (A. 1), completing the proof of the claim.

At this point we have shown that any v E t' satisfying the inequalities (A.1) is

accessible from u. Since these inequalities carve out a nonempty open subset of t',

the lemma is proven.

Proof of Proposition 3.3: Suppose that T is the space of single-peaked ordinal

types. Let u E t, for some t E T, and let t' be any other type. We wish to show that

u - (f(t) - f(t')) > 0, for any f satisfying the local incentive constraints.

Let Z again be the set of hyperplanes promised to us by Lemma A.3 (with respect

to T and u). By Lemma A.5, we can choose a v E t' that is accessible from u and

does not lie on any of the hyperplanes in Z. Accessibility ensures that Lemma A.4

applies. From here onward we just repeat the argument used to prove Proposition

3.2.

Proof of Proposition 3.5: Suppose that the mechanism (f,p) satisfies the set

Si of local incentive constraints for agent i. Consider any two types ti, t' E T. Write

ta = (1 - a)ti + at'. As in the proof of Proposition 3.1, we can find 0 = ao < a1 <

- < ar = 1 with (takI tk1), , (tak+tok) E Si for each k = 0,...,r - 1. These local

incentive constraints give
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Multiply by ak+1 and ak, respectively, and add:

Ei [[ak+1Ui(tfk, ti) - akui(tksl,, t... - (f(tc, ti ) - f(takl,, ti)) +

[ak+1 - ak) - (Pi (tak , t__i) - pA (t f,, t-i ))] 2 0. (A.4)

Because utility is linear in own type, and tak is equal to the weighted average

(ak/ak+1)tak+l + (1 - ak/ak+1)ti, we know that for each realization of t_,

U(tak,ti) - " Ui(tca+l, ti) + 1 - 0kai_

ak+1 ak+1

Rearranging gives

ak+1ui(ta,, t-i) - akui(tak+L, t-i) (ak+1 - ak)Ui(ti, t-i)

Applying this identity and dividing through (A.4) by the constant ak+1 - ak > 0

gives

Ei [Ui(ti t _i) - ( f (tCak 7t-i) - f t-ak,,,t _i) + (i (ak It-_i) - pA (ak+1 ,t-i))] > 0.

Summing over k = 0, . . ., r - 1 gives

Ej [ui (ti,7 t-j) -(f(tjI, t-j) - f (t', t-i)) + (pi (ti, t-i) - pi (t' , t-i))] ;> 0

which shows that the incentive constraint (ti, t') is satisfied.

B On proofs by adding up

This appendix gives a more detailed study of conditions under which the basic method

of proof used for the sufficiency results in the main text can be applied, with an eye

to understanding how much the method might potentially be further generalized, and

whether the results still hold when the method does not apply. We restrict ourselves
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to cardinal type spaces and no transfers, as in Subsection 3.1.

All of the proofs of sufficiency results in the main text follow the general method

of showing that the linear inequality corresponding to any desired incentive constraint

can be obtained by adding up inequalities corresponding to local incentive constraints.

We show here that for finite type spaces, whenever a set S of incentive constraints

is sufficient, there exists a proof of sufficiency by adding up (Lemma B.1 below).

Moreover, with minor exceptions, whenever an incentive constraint (u, v) is provable

by adding up, there exists such a proof that uses only types along the line segment

[u, v], or types cardinally equivalent to them (Proposition B.3). The conclusion, then,

is that for finite type spaces, there exist essentially no sufficiency results beyond those

that can be proven using the method of Proposition 3.1.

On the other hand, for infinite type spaces, the conclusions are not as tight. We

give an example (Proposition B.4) of a type space where local incentive constraints

are sufficient, but sufficiency cannot be proven by adding up. In that example, we

prove sufficiency by a combination of adding-up arguments and limiting arguments

exploiting the compactness of the space A(X).

To begin the investigation, we must first be precise about what it means for an

incentive constraint to be provable by adding up other constraints. Let T be a cardinal

type space, and let S be a set of incentive constraints. Let 1 E R' denote the vector

all of whose components are 1, and let e, denote the pth unit vector for p = 1,..., m.

For any mechanism f, we have

1 -f (U) = 1 (B. 1)

for all u E T, and

e, f (u) > 0 (B.2)

for p = 1,..., m and all u E T. If f satisfies S, then we also have

u - (f(u) - f(v)) > 0 (B.3)

for each (u, v) E S.
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We say that an incentive constraint (U*, v*) E T x T is provable from S by adding

up if the inequality

U* - (f (U*) - f(v*)) > 0 (B.4)

can be obtained as a finite linear combination of the equations (B.1) and inequalities

(B.2), (B.3), with nonnegative coefficients on the inequalities. That is, (u*, v*) is

provable from S by adding up if there exist real numbers

" au for u E T,

" bpu for p= 1,. . ,m, u E T, and

* ca, for (u, v) C S,

such that all but finitely many of these numbers are zero, all the b,2 and cU, are

nonnegative, and such that adding up au times (B.1), bu times (B.2), and c, times

(B.3) gives (B.4). (For notational convenience, we will assume ca, to be defined for

all u, v c T, with c, = 0 whenever (u, v) V S.)

We can write out the adding-up conditions explicitly, by comparing coefficients

of f(u), for each u E T. Assume u* $ v* (otherwise (B.4) just reads 0 = 0 which is

trivially provable by adding up). Then the adding-up condition says that for each u,

we have

u* if U = u*

au1 + Z puep + cu=u - couv -u* if u = v* (B.5)
plJ VET vET { 0 otherwise.

Also, for the constant terms, the adding-up condition is simply

Zau = 0. (B.6)
uET

We say that the set S of incentive constraints implies the incentive constraint

(u*, v*) E T x T if every mechanism that satisfies S also satisfies (u*, V*).
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The present question is: If S implies (u*, v*), must the constraint (u*, v*) neces-

sarily be provable from S by adding up? When S is finite, the answer is affirmative;

this is just a form of the theorem of the alternative.

Lemma B.1 If T is a cardinal type space and S a finite set of incentive constraints

that implies the incentive constraint (u*, v*), then (u*, v*) is provable from S by adding

UP.

Proof: We may as well assume that T consists only of u*, v*, and the types

that appear in constraints of S. Thus, T is finite. A mechanism f satisfying S then

consists simply of a choice of m - |TI real numbers - the components of the |TI

vectors f(u) for u E T - satisfying (B.1), (B.2), and also (B.3) for (u, v) E S. The

hypothesis is that any such numbers must also satisfy (B.4).

This can be recast as a linear programming statement: for any choice of m- TI real

numbers satisfying the nonnegativity constraints (B.2) and the linear equations (B. 1)

and inequalities (B.3), the minimum value of the linear function u* - (f(u*) - f(v*))

is 0. (This minimum is attained, for example, by any mechanism such that f(u) is

constant across all u.) The duality theorem of linear programming then tells us that

(B.4) is expressible as a linear combination of (B.1), (B.2), (B.3), with nonnegative

coefficients on the inequalities. That is, (u*, v*) is provable from S by adding up. O

To proceed further, it will be helpful to have an alternative, cleaner definition

of provability by adding up. Let II C R' be the hyperplane orthogonal to 1, as in

Section 4. For any u E R', let U denote its orthogonal projection onto II.

Lemma B.2 Assume u* $ v*. Then (u*, v*) is provable from S by adding up if and

only if there exist numbers cu, ;> 0, finitely many of which are nonzero, such that the

equation

U* ifu=u*

Sc.UV-EcVUv= U* ifu=v* (B.7)
vCT VET 0 otherwise.

holds for each u c T, and cu, = 0 unless (u, v) C S.
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Proof: First suppose that (u*, v*) is provable from S by adding up under the

original definition; let au, bPu, cu, be the coefficients satisfying (B.5). By summing

(B.5) over all choices of u we get E aul+Ep E bue, = 0. (On the left side, each cu,

occurs once multiplied by u and once multiplied by -u. On the right side, we get one

U*, one -u* , and all zeroes otherwise.) From (B.6), this reduces to L E bpep = 0.

Since the bu are nonnegative, they must all be zero. Once we know this, then, taking

(B.5) and projecting orthogonally onto UI gives (B.7).

Conversely, suppose there are coefficients cu, satisfying (B.7). Put bU = 0 for all

p and all u. Note that (B.7) implies that for each u, the expression

Ev cUn - E cVuV - u* if u = u*

ScuCVU - E cvUV + U* if u = v*

E cUVU - E cUV otherwise

must be some multiple of 1. Choose au so that this expression is equal to -au1. Then

it is immediate that (B.5) is satisfied for each u. Moreover, summing (B.5) across all

u E T, the cu, terms cancel as in the previous paragraph, and we are simply left with

Lu au1 = 0; hence, with this choice of au, (B.6) is satisfied as well. Finally, au # 0

only when u = u*, v* or when cuv or cu, is nonzero for some v; thus, only finitely

many of the au are nonzero. Thus, the original definition of provability by adding up

is satisfied. D

We need just a few more definitions. Say that two types u, v are equivalent if

v = au + 31 for some a, # E R, a > 0, and a type is indifferent if it is equivalent to

0. For u*, v* E T, let T[u*,v.] be the set of all types in T that are equivalent to some

type on the segment [u*, v*], and let

S[u*,v.] = {(u, v) E S | u, v E T[u.,v*.}.

We now arrive at the main result of this appendix.

Proposition B.3 Let T be a cardinal type space and S a set of incentive constraints

such that (u*, v*) is provable from S by adding up. Assume that v* is not equivalent

48



to -u*. Then (u*, v*) is provable from S[u.,,. by adding up.

This result says that if an incentive constraint (U*, v*) can be proved by adding

up constraints in S, then it can be proved by adding up in a way that only uses types

equivalent to convex combinations of u* and v*. Thus, the method used to prove

Proposition 3.1 is (almost) the only possible adding-up argument.

The proof of Proposition B.3 is a bit long, but the main idea is straightforward. It

consists of taking the coefficients c, satisfying (B.7) and successively replacing them

by zeroes, checking that (B.7) still holds at each step, until only constraints in Stu.,v.)

have nonzero coefficients.

Proof: We may assume that u* is not indifferent, since otherwise the conclusion

is immediate: (B.7) holds with all cuv equal to 0. We also assume u* j v*; otherwise

the conclusion is again trivial.

Let cu, be the coefficients satisfying (B.7), with cu, > 0 only if (u, v) E S. We may

as well assume that S consists only of the (finitely many) incentive constraints (u, v)

for which cuv > 0, and T consists only of the types appearing in these constraints.

Now consider any fixed vector w E II with the following properties:

(i) W -' > 0;

(ii) w - * > 0;

(iii) if u E T and w -U = 0, then - = 0.

We claim that if (u, v) E S such that either

(a) w - >Oandw-U< 0,or

(b) w-U> 0 andw-U=0 andv/v*, or

(c) w-U<0andw-U>0,

then cu, = 0.

Proof: Consider any u E T such that w -U < 0. Take the dot product of w with

(B.7). We get

S cUV(w.- ) - 5cVU(w -Vi) = 0
vET vET
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(note that u f u*, v*). Now sum over all u such that w -U < 0. For each incentive

constraint (u, v) c S such that w - U < 0 and w - U < 0, the term cu, (w - U) appears

once with a + sign and once with a - sign, so these cancel out. The remaining terms

give us

S cU (w.- )- cVU(W -U)=0.
W-W<0; W-U20 W-U<0; w-U20O

Since each cu, is nonnegative, every term in the first sum is < 0 and every term in

the second sum is > 0. Hence, every term must be equal to zero. This implies that

whenever w - < 0 and w -U 0, cuv = 0, and when moreover w -U > 0, we also have

CVU = 0.

This covers (a) and (c). For (b), when w = 0 and v 74 v*, (B.7) for v gives

E ceu - EL cuu = 0. Dotting with w gives E cu,(w - U) = 0 (after canceling).

We have already established that c,, = 0 if w - - < 0, so all the terms on the left are

nonnegative, and hence they must all be zero. So cu, = 0 whenever w - U > 0.

This proves the claim.

Next, for each u, v E T, define c', = ce, if w - E> 0 and w U > 0- and c',, = 0

otherwise. Then we again have, for each u,

il if U= U*

c' - c -U* ifu=v* (B.8)
V V

0 otherwise.

Proof: If u is such that w -U < 0 then (B.8) is trivial since both sides are zero. If

w - U > 0, then the left side of (B.8) differs from the left side of (B.7) by the terms

ceE) and -cquji for w - - < 0. These are all zero, by cases (a) and (c) of the claim,

respectively; thus (B.8) follows from (B.7). If w = 0 and u 74 v*, then again all

the left-hand-side terms of (B.8) are zero:

" all the c',EU are zero because WU = 0, by condition (iii) on w;

* c'.U = 0 for w -W > 0 by (b) of the claim;

e c',u = 0 for w -U = 0 again by (iii) on w;
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c'.U = 0 for w - < 0 by definition of c',,.

So both sides of (B.8) are zero, and it again holds.

Thus, (B.8) is verified for all u except possibly for u = v*. But summing (B.8)

over all u E T gives the identity 0 = 0; so if it holds for all u except u = v*, it must

hold for u = v* as well.

At this point, we have shown the following: If we start with coefficients cev for

which (B.7) holds, pick any w E H satisfying (i)-(iii), and replace cu, by 0 whenever

w -U < 0 or w -U < 0, then (B.7) still holds.

If we find any finite set of vectors w1,..., Wq c H, each satisfying conditions (i)-

(iii), and for each Wk we successively replace cu, by 0 whenever wk - < 0 or Wk -U < 0,

then the resulting coefficients will still satisfy (B.7).

Now let T[*,*]+ consist of the types in T[*,v* together with all indifferent types

(alternatively stated, all types that are equivalent to au* + 3v* for some a, 3 0);

and let S[*,v*+ = {(u, v) c S | u, v c T[*,v.;+}. We will show that, for any u E T that

is not in T*,*]+, there is some w E H satisfying (i)-(iii) with w -U < 0. If we consider

each such w in turn, and successively replace cuv's by 0 as in the previous paragraph,

we will be left with coefficients cu, > 0 that still satisfy (B.7), and such that cev = 0

unless u, v C T[*,,*+. Therefore, we will have shown that (u, v) is provable from

S[u*,v*+ by adding up.

Thus, consider any u C T \ T[*,,*+. We wish to show that there exists w C H

satisfying (i)-(iii) with w -U < 0. The assumptions that v* is not equivalent to -u*

and u* is not indifferent imply that there exists w' E H with

w- > 0, w'. > 0

and the latter inequality holding strictly unless V = 0. The assumption u ( T[u.,v.;+

implies that U is not a nonnegative combination of u* and v*; hence there is some

w" E H such that

W" - > 0, w" -v > 0, W" < 0.
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Taking w = w'+ rw" for large K will give (i), (ii), and w -U < 0. Finally, by perturbing

w slightly, we can ensure w -T 74 0 for all v C T, 7U 74 0, without breaking any of the

strict inequalities; thus we get (iii) as well.

At this point we have finished showing that (U*, v*) is provable from S[,.,*+ by

adding up.

If v* is indifferent, then S[u.,v.;+ = S[U*,V*] and so we are done. Otherwise, we have

to do just a little more work.

Let cuv now be the coefficients used to prove (U*, v*) from S[*,v*+ by adding

up (i.e. the coefficients satisfying (B.7)). Whenever ;U = 0, we can replace cuv by

0 without affecting the validity of (B.7) (since cuv only ever appears as part of the

product cuvii). So we may assume cu, = 0 whenever u is indifferent.

Since u*, v* are both non-indifferent and v* is not equivalent to -u*, we can find

w E H such that w - uW > 0 and w - v* > 0. Thus, for any element of T[K.,v*+ that is

not indifferent, its projection has positive dot product with w.

Now for any indifferent u, taking (B.7) and dotting with w gives - Ev cvu (w -U) =

0. Each term in the sum is nonnegative, so they must all be zero. Hence cu, = 0

whenever U has positive dot product with w; and the remaining v C Tlu*,v.)+ are

indifferent, so cu = 0 for them too by assumption. Thus, if u is indifferent then

cu,, cu = 0 for all v.

But this means that (B.7) holds with cu, zero unless u, v E T[*,*], so in fact

(u*, v*) is provable from S[*,,* by adding up.

D

Proposition B.3 is stated as a description of the form of proofs by adding up.

However, it also provides us with a tool to show show when a particular constraint

is not provable by adding up. In particular, we can apply it to give an example of

an infinite type space and a set of local incentive constraints that are sufficient, but

whose sufficiency cannot be proven by adding up, as promised at the beginning of this

appendix. In fact, we will give a stronger example: a type space such that any set

of local incentive constraints is sufficient, yet there exist fairly large such sets whose

sufficiency cannot be proven by adding up.
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Let X have four elements, and let w be some utility function on X that is not

indifferent. Let T+ be the set of all cardinal types that are either indifferent or

equivalent to w, and let T = R4 \ T+ be the set of cardinal types not in Tw+. Say

that two types u, v C T are T+-opposed if [u, v] rA T+ # 0. Let S be any set of local

incentive constraints such that if u and v are T,4-opposed, then (u, v) 0 S.

This requirement on S can be easily satisfied. Indeed, for each u E T, start with

any neighborhood Nu, and let d(u, T,+) > 0 be the Euclidean distance from u to T+.

Then the set Nu = {v E N I d(u, v) < d(u, T.+)} is again an open neighborhood of

U, not containing any types Tw+-opposed to u. So S = {(u, v) | u E Nc or v E Nu} is

a set of local incentive constraints meeting our requirement.

Proposition B.4 With T, S as above, S is sufficient. However, for any u*, v* G T

that are Tw+-opposed, with u* not equivalent to -v*, the constraint (u*, v*) is not

provable from S by adding up.

Proof: First we show that S is sufficient. Let f be any mechanism that satisfies

S. For any possible incentive constraint (u, v), if u and v are not T"+ -opposed, then

the entire line segment from u to v is contained in T. Therefore, the usual argument

from Proposition 3.1 of the main text shows that f satisfies (u, v).

So we need only deal with the case where u, v are T,4-opposed. In this case,

notice that we can choose Uk E T arbitrarily close to (u + v)/2 such that Uk is not

TW+-opposed to either u or v. (Any type Tw+-opposed to u must lie on the hyperplane

fIl, generated by u, w, and 1. Similarly, any type Tw4-opposed to v must lie on the

hyperplane generated by v, w, 1, which is again Iu.. There are types in T arbitrarily

close to (u + v)/2 not lying on this hyperplane.) For any such Uk, then, we have

already shown that f satisfies the constraints (u, uk), (v, uk), (Uk, v); that is:

u (f(n) - f(k)) > 0, (B.9)

v (f(v) - f(k)) > 0, (B.10)

uk (fUk) - f(v)) > 0. (B.11)
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So we can choose a sequence of types 1 , U2,... in T with Uk -+ (i + v)/2, such that

(B.9)-(B.11) are satisfied for each Uk. Moreover, because the image of f is contained

in the compact set A(X), we may assume by passing to a subsequence that f(Uk)

converges to some limit f*. Then, taking limits, we get

u -(f(u) - f*) 2 0, (B.12)

v -(f(v) - f*) 0, (B.13)

2 - (f* f (V)) >- 0. (B. 14)

Adding (B.12), (B.13), and twice (B.14) gives

u - (f(u) - f(v)) 2 0

so f satisfies the constraint (U, v).

This shows that S is sufficient.

It remains to prove that if u*, v* E T are T+-opposed, and u* is not equivalent

to -v*, then (u*, v*) is not provable from S by adding up. By Proposition B.3, if

(U*, v*) were provable from S by adding up, then it would be provable from S[*,v*

by adding up. So we just need to show that the latter is not the case.

For any a C [0, 1], let ta = (1-a)u* + av*. Let a* E (0, 1) be such that u,* E T+.

Notice that if u, v are equivalent to u,, u3 respectively, and (u, v) E S, then a, # are

either both less than a* or both greater than a*: otherwise u, v are Tw+-opposed.

Suppose that (u*, v*) is provable from S[u*,v* by adding up. Let cu, be the coef-

ficients that satisfy (B.7). Let T< be the set of types in T[u*,V* that are equivalent

to some uc for a < a*. The observation of the previous paragraph implies that if

cU, > 0, and one of u, v is in T<, then the other is as well.

Sum up (B.7) over all u E T<. The cuU terms on the left side appear in pairs of

opposite sign, which cancel; thus we are left with 0 = i. Since u* E T cannot be

indifferent, we have a contradiction. L
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Chapter 2

A Quantitative Approach to

Incentives: Application to Voting

Rules

Abstract

We present a general approach to quantifying a mechanism's susceptibility to strate-
gic manipulation, based on the premise that agents report their preferences truthfully
if the potential gain from behaving strategically is small. Susceptibility is defined as
the maximum amount of expected utility an agent can gain by manipulating. We
apply this measure to anonymous voting rules, by making minimal restrictions on
voters' utility functions and beliefs about other voters' behavior. We give two sets
of results. First, we offer bounds on the susceptibility of several specific voting rules.
This includes considering several voting systems that have been previously identified
as resistant to manipulation; we find that they are actually more susceptible than
simple plurality rule by our measure. Second, we give asymptotic lower bounds on
susceptibility for any voting rule, under various combinations of efficiency, regularity,
and informational conditions. These results illustrate the tradeoffs between suscepti-
bility and other properties of the voting rule.

Thanks to (in random order) Ben Golub, Elchanan Mossel, Alex Wolitzky, Anton Kolotilin,
Mihai Manea, Nathan Hendren, Yusuke Narita, Pablo Querubin, Lirong Xia, Abhijit Banerjee, Jing

Chen, Rakesh Vohra, Pablo Azar, Jim Schummer, Ivan Werning, Robert Akerlof, Glenn Ellison,
Daron Acemoglu, Horacio Larreguy, Nabil Al-Najjar, Jim Snyder, Xiao Yu Wang, Jonathan We-
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1 Introduction

1.1 Overview

It is standard in mechanism design, as elsewhere in economic theory, to assume that

agents perfectly optimize. In particular, for direct revelation mechanisms, which ask

agents to report their preferences, conventional theory requires perfect incentives - it

should be exactly optimal for agents to report truthfully. In reality, however, decision-

makers do not perfectly optimize, or at least do not optimize the material payoffs that

are usually modeled. They may not know their environment well enough to be able to

do so, and they may prefer to take computational shortcuts. Accordingly, this paper

proceeds from an alternative behavioral premise: agents will report truthfully if the

potential gains from doing otherwise - that is, from strategically manipulating the

mechanism - are sufficiently small.

Under this premise, a mechanism designer may want to mildly relax the incen-

tive constraints, rather than treat them as absolutely rigid, if doing so allows her to

improve the performance of the mechanism in other respects. This suggests quan-

titatively measuring the incentives that a mechanism provides. Armed with such a

quantitative measure, the designer can compare different mechanisms in terms of the

incentives to manipulate, and consider tradeoffs between these incentives and other

properties of the mechanism.

We propose in this paper to measure a mechanism's susceptibility to manipulation

as the maximum amount of expected utility that an agent can gain by manipulating.

That is, in very stylized terms, susceptibility is

o- = sup (E4[u(lie)] - Eo[u(truth)] (1.1)

where the supremum is taken over all true preferences the agent may have (the utility

function u, represented by the truthful report truth); all possible strategic misrepre-

sentations lie; and all beliefs # that the agent may hold about the behavior of other

agents in the mechanism. Of course, the outcomes u(lie), u(truth) depend on the
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choice of mechanism, as well as on the behavior of other agents (encapsulated in the

belief #).

The paper's mission is to advocate this approach to quantifying incentives. Issues

of motivation and methodology will be taken up in some more detail in Subsection

1.3, but the bulk of the paper is dedicated to demonstrating how our measure can be

used to obtain concrete results. For this, we apply the measure to voting rules: Given

a population of voters, each with preferences over several candidates, what voting rule

should they use to choose a winner as a function of their (reported) preferences?

The problem of choosing among voting rules provides a natural test case for any

attempt to quantify manipulation. It is one of the oldest and most widely-studied

problems in mechanism design, not to mention its wide range of applications. More-

over, the Gibbard-Satterthwaite theorem [22, 52] shows that no interesting voting

rule is immune to strategic manipulation. Since incentives for strategic behavior are

unavoidable, the need to quantify such incentives immediately presents itself in this

setting.

To operationalize (1.1) for voting rules, we need two restrictions.

" First, we need to restrict the manipulator's utility function: otherwise the utility

from a lie could be taken to be arbitrarily larger than the utility from the truth,

and hence every (interesting) voting rule would have u = o.. We therefore

impose the normalization that utility functions take values in [0, 1].

" Second, we need to restrict the belief #: otherwise the manipulator could put

probability 1 on some one profile of other voters' preferences for which he can

manipulate, and hence we would always have o- = 1. We impose the restriction

that, from the manipulator's point of view, the votes of the rest of the population

should be independent and identically distributed across voters. In fact, as we

elaborate further in Subsection 2.1, it is enough for us to require others' votes

to be IID conditionally on some aggregate state; this restriction is still quite

permissive. However, it does mean that we will restrict attention to anonymous

voting rules (those that are invariant under permuting voters): it would not be
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appropriate to assume each voter treats the others interchangeably unless the

voting rule does so as well.

We will give the precise definition of susceptibility for voting rules in Subsection 2.1,

after laying out basic vocabulary.

Our concrete results are of two sorts. First, in Section 3, we give quantitative

bounds on the susceptibility of several rules discussed in prior voting literature. We

begin by developing intuitions using simple voting systems, such as supermajority

with status quo, plurality, and Borda count. We then reconsider several voting sys-

tems which previous literature identified as resistant to strategic manipulation: the

Black, Copeland, Fishburn, minimax, and single transferable vote systems. It turns

out that under our measure, all of these are more susceptible than simple plurality

rule, unless the number of candidates is very small. Indeed, it is not trivial to supply

an interesting example of a voting system that is less susceptible than plurality rule.

We give such an example, in the case of three candidates.

Second, in Section 4, we give several theorems providing asymptotic lower bounds

on the susceptibility of any voting rule satisfying various conditions, showing how fast

the susceptibility of such rules can shrink as the number N of voters grows. These

lower bounds illustrate the tradeoffs between susceptibility and other properties of the

voting rule. For example, if the voting rule is simply required to be weakly unanimous

(a minimal efficiency condition), our lower bound is on the order of N-3/ 2 . If the

voting rule is required to be monotone, we have a much stronger bound, on the order

of N-'/2 . The latter bound goes to zero more slowly in N, and does not hold without

the monotonicity restriction. Thus, imposing monotonicity substantially limits the

voting rule's ability to resist manipulation, at least for a large number of voters. If

we impose that the voting rule be monotone, unanimous, and also tops-only (i.e. the

winner depends only on each voter's first choice), then we can solve exactly for the

minimum possible susceptibility. This minimum is also on the order of N-1/2 , and is

attained by majority rule with status quo, among others. The finding that majority

rule is optimal again contrasts sharply with results on least-manipulable voting rules

using a different measure of manipulability [34, 37]. We also give several more results
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of this flavor (see Table 4.1 for a summary).

We should emphasize that this paper focuses on voting rules mainly because doing

so constitutes a canonical theoretical exercise. Our conclusions are certainly not

meant to be read literally as policy prescriptions - in practice, individual strategic

manipulation is only one of many considerations that go into choosing a voting rule.

Our measure of susceptibility can be used to compare mechanisms and evaluate

tradeoffs in many other mechanism design settings as well. As an example, the third

chapter of this dissertation applies the same approach to study the tradeoff between

incentives and efficiency in double auction mechanisms.

We believe that the generality of our method, its connection with a positive de-

scription of manipulative behavior, its tractability as illustrated by our results here

for voting rules, and the contrast of several of our results with earlier findings using

other measures of manipulability, taken together, provide a strong case for using this

approach as one way to evaluate and compare mechanisms. In the concluding Sec-

tion 5, aside from summarizing and indicating directions for future research, we also

discuss how our approach fits into a broader program of mechanism design.

In order to avoid interrupting the flow of text with computations, most of the

proofs are only sketched in the main text. The details of the omitted proofs are in

Appendices C through H.

1.2 Related literature

The motivating viewpoint behind this paper is that quantifying strategic incentives

is important for practical mechanism design. Accordingly, this paper is allied most

closely with a literature arguing that the incentives to manipulate in particular mech-

anisms are small - beginning with the seminal paper of Roberts and Postlewaite

on the Walrasian mechanism [50] and including recent work on matching markets

[4, 25, 27, 28]. However, we build on the approach of this literature by showing how

to quantify incentives explicitly, and by introducing them into the design problem,

rather than focusing only on specific mechanisms.

Our evaluation of voting rules in terms of the incentives to manipulate is most

63



similar in spirit to a paper by Ehlers, Peters, and Storcken [18]. As in the present

paper, their notion of susceptibility is defined as the maximum utility gain from

manipulation. However, where we consider voting over a finite number of candidates,

they consider voters who must collectively choose a point in Euclidean space, and

they restrict attention to tops-only voting rules.

Recent independent work by Birrell and Pass [10] considers quantifying incentives

in voting rules, using ideas very similar to ours, but they consider probabilistic voting

rules and do not impose any restriction on beliefs. Day and Milgrom [16] and Erdil

and Klemperer [19] used quantitative measures of strategic incentives to compare

mechanisms for combinatorial auctions. Some other theoretical literature has also

constructed mechanisms with small incentives to manipulate [5, 29, 32, 33, 39, 53], but

without focusing as we do on comparisons between mechanisms or tradeoffs between

incentives and other properties.

Finally, our work also naturally brings to mind the extensive prior literature that

evaluates and compares voting systems using other measures of manipulation. By

far the most common approach is profile-counting - that is, considering all possible

profiles of voters' preferences that may occur, and measuring manipulability as the

fraction of such profiles at which some voter can benefit by manipulating. This

method appears to have been pioneered by Peleg [47] and has been followed by many

authors since [2, 20, 26, 34, 35, 36, 37, 40, 45, 55, 56]. Variations include counting

profiles in some weighted manner, e.g. weighted by the number of voters who can

manipulate, or by the number of different false preferences by which a manipulator

can benefit; or partially ordering mechanisms by the set of profiles at which someone

can manipulate [21] (see also [46] for this approach applied to matching mechanisms).

Some of the literature also considers manipulation by coalitions rather than individual

voters [30, 31, 48, 49, 51]. The measure used by Campbell and Kelly [13], like ours, is

based on the maximum gain from manipulating, but they define gain in terms of the

number of positions in the manipulator's preference ordering by which the outcome

improves. Yet another approach involves studying the computational complexity of

the manipulation problem [7, 8].
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1.3 Methodology

We now discuss in more detail the motivation behind our approach to measuring

susceptibility. Readers interested in getting to the concrete results quickly can skip

this subsection without loss of continuity.

Our measure is grounded in the following simple model of manipulation (again

expressed in terms of voting systems just for specificity). Voters face a cost of E > 0

to behaving strategically, while truthful behavior is costless. The E may be thought

of as a computational cost (to computing a strategy, or acquiring information on

other voters' preferences that is needed to strategize), or as a psychological cost of

dishonesty. Then, if the gain from strategic manipulation is sure to be less than E,

the voters will simply vote truthfully.

A planner needs to choose a voting rule for such voters. The planner cannot

anticipate the voters' preferences, beliefs, or their exact strategic behavior, and she

evaluates voting rules by their worst-case performance. The planner is, however,

certain of one thing: if she chooses a voting rule with susceptibility o- < E, voters

will vote truthfully. Truthful voting will then ensure that the result of the election

really does reflect the voters' preferences in the way specified by the voting rule. This

motivates the planner to choose a voting rule with low susceptibility, if possible.

This informal story summarizes verbal arguments in recent market design litera-

ture [4, 12, 27, 28], which use approximate strategyproofness of certain mechanisms

to advocate their use in practice. We develop the model more formally in a game-

theoretic framework in Appendix A.

In our model, the planner tries to prevent manipulation altogether. A common

critique [9, 14, 61] argues that the planner's real goal should instead be to choose

a mechanism that will ensure a good outcome in equilibrium, which may involve

some manipulation along the way. However, that criticism, applied to the present

paper, would miss the purpose. As discussed at the end of Appendix A (and further

elaborated in the third chapter of this dissertation), a similar model could be used

when the planner does have some specific theory of manipulative behavior. Our
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general point that incentives can be measured quantitatively remains valid.

In view of the long previous literature mentioned in Subsection 1.2 using other

approaches to measuring manipulation, we should also explain why we propose a

new measure rather than taking an existing one off the shelf. Our approach has the

following benefits:

" The measure of susceptibility (1.1) as the utility gain from misreporting is

portable across many mechanism design problems.

" Our measure is tied directly to manipulative behavior via the simple model of the

E cost of behaving strategically. Consequently, it acknowledges the distinction

between when manipulation is possible and when it will actually occur, in ways

that a profile-counting measure would miss.

For example, suppose that there are two candidates A, B, and suppose the num-

ber of voters is large. Each voter votes for his (reportedly) preferred candidate.

Consider the voting rule that chooses A if the number of A votes is even and B if

it is odd. This rule is manipulable at almost every profile. But if a manipulator

is fairly uncertain about the votes of the rest of the population, then it is not

immediately obvious what the strategically optimal vote is; and the benefits

from manipulation are low, because A wins with probability close to 1/2 no

matter what the manipulator does. Hence, even a small cost of strategizing can

discourage manipulation.

For another example, consider the voting rule that chooses A as winner if ev-

eryone votes for B, and B otherwise. This voting rule is manipulable at only

N + 1 out of the 2 N possible vote profiles. But voting truthfully is weakly

dominated, and the incentives to vote strategically can be very strong - each

voter is pivotal if his belief is that everyone else will vote for B - so we should

expect manipulation to be an important issue.

" Our comparison of plurality vote with other voting systems, and our identifica-

tion of least-susceptible voting rules (Theorem 4.5 in particular), contrast with
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previous results using profile-counting measures of manipulation. So even an

analyst who prefers to use profile-counting measures should still take our o- into

consideration, as it gives novel insights.

2 Preliminaries

2.1 Framework and definitions

We now review standard concepts from voting theory, and subsequently introduce

the terminology that will be needed to study our measure of susceptibility.

There is a set of M candidates, C = {A, ... , AM}. We may refer to the candidates

also as A, B, C, .. .; we will use whichever notation is most convenient at the moment.

There is also a set of N + 1 voters. (From here onwards we take the number of

voters to be N + 1 rather than N, as this simplifies calculations.) We assume M > 3

and N > 1.1 Some of our results are asymptotic; it will be understood that these

asymptotics apply with M held fixed and N -> oo.

Each voter is assumed to have a strict preference (linear order) on the set of

candidates. The symbol >- denotes a generic such preference. Let L denote the set

of all M! such preferences. A preference may be notated as a list of candidates; for

example, if M = 3, ACB denotes the preference that ranks A first, C second, and

B third. We may similarly write AC... to indicate that A is first, C is second, and

the rest of the preference is unspecified. A (preference) profile is an element of LN+1,

specifying each voter's preference. A voting rule is a map f : LN+1 -* C, choosing a

winning candidate for each possible profile. (Note that some authors use terms such

as social choice function, reserving voting rule for the special case where each voter

reports only his top choice, e.g. [18, 34]).

We restrict attention throughout to voting rules that are anonymous, meaning that

the outcome is unchanged if the voters are permuted. Consequently, we can notate

the argument of f as a list specifying the number of voters with each preference

'The case M = 2 is uninteresting in terms of incentives, e.g. using majority rule to decide between
two alternatives gives no incentives to manipulate.
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that occurs. For example, f(3 ABC, N - 2 BAC) refers to the candidate who wins

when any 3 voters report preference ABC and the other N - 2 report BAC. This

numbered list will also be called a profile. When there is potential ambiguity, we will

use nonanonymous profile for a list specifying each voter's preference and anonymous

profile if only the number of voters with each preference is to be specified. It will

be useful to think of anonymous profiles as the integer points of a simplex in M!-

dimensional space - those integer points whose coordinates are nonnegative and

sum to N + 1.

More generally, we define a K-profile (anonymous or nonanonymous) to be a list

specifying the preferences of K voters. When such partial profiles are concatenated,

we mean that the votes are to be combined in the obvious way. For example, if s

represents one voter's preference and P an N-profile describing preferences for the

other N voters, then f(-, P) is the candidate chosen when the N + 1 voters have the

specified preferences.

We will also define here a few properties of voting rules which will be useful later.

We organize these into three categories:

" Efficiency properties: A voting rule f is Pareto efficient if, for any two can-

didates Aj, Aj and any profile P such that every voter ranks Ai above Aj,

f(P) # Aj.

The voting rule is weakly unanimous if, for every preference >-, f(N + 1 >-) is

the candidate ranked first by >-. That is, if all voters have identical preferences,

their first choice wins. It is strongly unanimous if, for every profile P such that

all N + 1 voters rank the same candidate Ai first, f(P) = A2 . Clearly, Pareto

efficiency implies strong unanimity, which in turn implies weak unanimity.

" Regularity properties: One regularity condition often viewed as normatively

desirable [41] is monotonicity, which says that if the current winner's status

improves, she remains the winner. The precise definition is as follows. First,

given a preference >-, a preference >2 is an Ai-lifting of >- if the following holds:

for all Aj, Ak # Aj, we have Aj >- Ak if and only if A >-' Ak, and Ai >- Aj
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implies Ai >-' A,. That is, the position of A is improved while holding fixed the

relative ranking of all other candidates. Then, a voting rule f is monotone if it

satisfies the following: For every profile P, if P' is obtained from P by replacing

some voter's preference >- by an f(P)-lifting of >-, then f(P') = f(P).

We will also define here another very weak regularity condition (though not im-

plied by monotonicity). Say that f is simple on the pair of candidates {Ai, Aj}

if the following two conditions are satisfied:

- at any profile P where every voter ranks Ai, A, first and second in some

order, f(P) E {Ai, Aj};

- moreover, there is a value K* such that at every such profile, f(P) = Ai

if the number of voters ranking Ai first is at least K*, and f(P) = A

otherwise.

Note that the often-invoked property of Condorcet-consistency [41] - that, if a

Condorcet winner exists (see Subsection 3.2), she should be elected - implies

simplicity on every pair of candidates.

e Informational properties: We define just one property here. The voting rule f is

tops-only if the outcome depends only on each voter's first-choice candidate. In

this case we can further economize on notation, writing, for example, f(3 A, N-

2 B).

Tops-onliness is useful for intuition, because when M = 3, tops-only voting

rules can be represented graphically. Indeed, since only first choices matter,

the vote profiles now form a simplex in M-dimensional space rather than in

M!-dimensional space. With M = 3, this simplex is just a triangular grid; the

corners represent the all-A profile, the all-B profile, and the all-C profile. We

can illustrate a voting rule by coloring each cell of the grid according to the

winning candidate. For example, Figure 2.1 illustrates a supermajority rule

with N + 1 = 7 voters: either B or C is elected if she receives 5 or more votes;

otherwise A wins.
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Figure 2.1: A tops-only voting rule

For non-tops-only rules, we can draw such grids, but only for small portions of

the vote simplex.

Following [47], we will use the term voting system to denote a family of voting

rules, one for each value of N. (In fact, our examples of voting systems will generally

consist of a rule for each M and N, but this detail is irrelevant since we think of M

as fixed and N as varying.) A voting system is tops-only if the corresponding rule is

tops-only for each N, and similarly for other properties.

We can now discuss manipulation. We consider one distinguished voter, the

manipulator. The manipulator has a von Neumann-Morgenstern utility function

u : C -> [0,1].2 We say that the utility function u represents a preference >- if,

for every two candidates Ai, Aj, Ai >-- Aj implies u(A) > u(Aj). We say that u

weakly represents >- if Ai >- Aj implies u(Ai) > u(Aj).

We will use the term opponent-profile to refer to the N-profile representing the

voters other than the manipulator. Suppose that the manipulator believes that the

opponent-profile, P, follows the joint probability distribution b E A(LN). (A(X)

means the simplex of probability distributions on X.) If >- is his true preference

ranking, represented by u, then the amount of expected utility he can gain from

2Other voters may also have utility functions, but these are irrelevant from the manipulator's
point of view because we assume they may only report ordinal preferences.
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strategic manipulation is

max (E,[u(f (',P))] - ED[u(f P)).

Here the operator Eq indicates expectation with respect to the distribution 4 for P.

We focus attention on a particular class of beliefs 1, those for which the other

voters' preferences are IID. As argued by McLennan [38], this is a reasonable model of

beliefs in a large population, where each member treats the others as interchangeable

strangers.3 For any # E A(L), write IID(#) for the distribution over opponent-

profiles obtained by drawing each preference independently according to 4.

We can now formally define our measure of susceptibility to manipulation. Let

Z = {(-, >-', u, #) E L x L x [0, 11" x A((L) | u represents }.

The susceptibility of the voting rule f is

0- = sup (EIID(4)[U (f (>-' P))] - EID(4) [U- P (2.1)

In words, o- is the supremum of the amount the manipulator could gain in expected

utility u by reporting a preference other than his true preference >-, given that his

belief about P is IID(#) for some #.

The restriction to IID beliefs may seem confining. In fact we can relax it con-

siderably, to conditionally IID beliefs. That is, suppose that instead of requiring the

manipulator's belief to be IID, we allow that the manipulator has some uncertainty

regarding the aggregate distribution of preferences # in the population; but condi-

tional on the realization of #, the opponent-profile P is drawn IID(#). Then, for

any such belief, the manipulator still cannot gain more than o- expected utility by

manipulating. Indeed, suppose he manipulates by reporting >-' instead of the true

preference >-. Conditional on any value of the aggregate preference distribution #,

3It would be easy to extend the model, say, to allow each voter to have separate beliefs about a
small number of other voters, representing his friends and family.
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the expected gain from manipulating is at most o- (by definition). So, by the law of

iterated expectations, the unconditional expected utility gain from manipulating is

again at most c.

Thus, we could have defined susceptibility in (2.1) using conditionally-IID be-

liefs, rather than pure-IID beliefs; the two definitions would be equivalent. However,

the pure-IID definition is easier to work with, so we stick to it, and refer to the

conditionally-IID definition only for motivation.

We next introduce a useful alternative formulation of the definition of susceptibil-

ity. To work toward this alternative definition, we first use continuity to rewrite the

supremum over Z in (2.1) as a maximum over the closure cl(Z), and also take the

difference inside the expectation:

r = sup E(IID() [u(f(>-', P))] - EIID($) [u(f>, P)))

= max EIID()U >-' P)) - U (22)
(>-,>-',u,#)Ecl(Z) P

Here the maximum is over the set

cl(Z) = {(>-, >-', u, ) 1 u weakly represents >}.

For given >-, >-', #, the maximand in (2.2) is a linear function of the values of u,

so the maximum is attained at an extreme point of the simplex of utility functions u

weakly representing the given >-. The extreme points are those that take the value 1

for the highest-ranked L candidates, for some L, and 0 for the remaining candidates.

Hence, we can also write

a= max ( Er() [I(f(7', P) E C+) - I(f(>- , P) E C+)] (2.3)

where I(E) is the indicator function of event E, and the maximum is taken over all

>-, >-/E L, # E A(L), and C+ C C such that C+ consists of the L highest-ranked

candidates under >- for some L. This is our alternative definition.
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Expression (2.3) can be suggestively interpreted as the probability of being piv-

otal - that is, the probability (under the critical belief #) of drawing an opponent-

profile P for which the manipulation >-' changes the outcome from an undesirable

one to a desirable one (f(>-, P) V C+, f(-', P) E C+). Indeed, many of our re-

sults, especially in Section 3, will be built on this interpretation. We stress however

that the interpretation is not exactly correct, since for some opponent-profiles P the

manipulator is "antipivotal," changing the outcome from desirable to undesirable

(f(>, P) E C+, f(>-', P) V C+). Thus, (2.3) can be more accurately described as the

net probability of being pivotal.4

2.2 Analytical tools

When each voter's preference is drawn IID, the resulting profile follows a multinomial

distribution. Consequently, it will be essential to have a compact notation for such

distributions. We will write M(K; o a,..., ar) to denote the multinomial distribution

with K trials and per-trial probabilities ai,.. , a,, with E> ai = 1. We likewise write

P(xi,..., x, I K;o 1,. . .,Oar) = ,K.!a -. -- a (2.4)

the probability that the values (X1 , ... , x,) are realized in such a distribution. (This

applies when the x are nonnegative integers with E> Xz = K. For any other values

of the xi, we define P(xi,... , X, I K; ai,,. . , a,) = 0.)

If P is an (unordered) list of K preferences and # a distribution on C, then we

will write P(P I K; #) with the same meaning.5 As before, we may notate P by

simply writing out each preference with its multiplicity. Similarly # may be repre-

sented by writing each preference, preceded by its probability. More generally, we

4 Expression (2.3) is also reminiscent of the notion of influence developed by Al-Najjar and

Smorodinsky [3]. However, there are some important differences. Influence in [3] is defined with
respect to a specific belief 4, whereas we take the max over beliefs. The analysis in [3] imposes a
noise assumption on 4 - every voter must report every possible preference with probability bounded
away from 0 - whereas we make no such assumption.

5 We often use the letter a for a vector, or ai, .. ., ar for its components, to denote the parameters

of the multinomial distribution thought of as abstract quantities, and 4 for this same vector thought
of as a probability distribution on L or C.
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can concatenate probability distributions, preceded by weights, to represent convex

combinations: if #, 0' c A (L) and A C [0, 1], we may write (A #, 1 - A #') rather than

A# + (1 - A)#'. These concatenations will sometimes be written vertically rather than

horizontally, as in

K1 ABC a1 ABC

P K2 ACB N; a2 ACB .
N- K-K2 BCA a3 BCA

If S is a set of profiles, we may write P(S I K; #) for E s P(P | K; #).

Many of our results will concern asymptotics as N -> 00, so we should estab-

lish convenient notation accordingly. We are concerned not only with how quickly

susceptibility declines to zero as N --+ oo, but also with the constant factors in-

volved (when we are able to estimate them). This calls for somewhat nonstan-

dard notation. We will write F(N) ~ G(N) to indicate that F(N)/G(N) -> 1

as N -+ oo. If F and G depend on both N and M, then it is understood that M is

held fixed. We will write F(N) < G(N), or equivalently G(N) > F(N), to indicate

lim supN- F(N)/G(N) < 1.

Now that we have finished introducing notation, we can lay out the main analytical

tools that will be used in the rest of the paper. We present here a conceptual overview

and a few of the most important technical results. The proofs of these results, as well

as other useful technical computations, are given in Appendix C.

The single most important conceptual tool for our asymptotic analysis is the

central limit theorem approximation of multinomial distributions: When K is large,

the distribution M(K Iai, a 2 , ... , ar) is approximately normal with mean equal to

(Kai, Ka 2,... , Kar) and variance matrix

ai(1 - ai)K -aa 2 K - -aiaK

-a 2a 1 K a 2 (1 - a 2 )K - -a2aK

-ara1K -ara 2K - ar(1 - ar)K
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This has numerous implications. For example, if 0 < # < 1 and x is an integer

with x ~ ON, then P(x, N - x | N; 0, 1 - I) /(27rN#(1 - #)). For a precise

statement:

Lemma 2.1 Let 0 </3 < 1, and let c be a constant. For each positive integer N, let

XN be an integer with IXN - /N| < c, and let ON E [0, 1] satisfy IXN - ONNI < c.

Then

XN ON
P N-;

(N - XN N -/ON 27rN(1 - 0)

Another set of implications that will be extremely useful for Section 3, where we

bound the susceptibility of specific voting rules, is given by the following lemma. Its

statement is notationally intense, but the content is intuitive, as we explain momen-

tarily.

Lemma 2.2 Let I be a finite collection of strict linear inequalities in r free variables

/31,..., /,, each of the form co + c1/31 + --- + cr/r > 0. Let J be a compact set

of probability distributions (ai,... , of,.), satisfying all the inequalities in I. For each

positive integer N, let SN be the set of all r-tuples of nonnegative integers (X1,... , x )

summing to N, such that the numbers x 1 /N,... , x,/N satisfy the inequalities in I.

(a) There is some A > 0 such that

1 - min P(Si I N; ai,..., a,) < e-N
(a1,..,ar)EJ

(b) Fix (a1,... , a,) C J, and suppose further ai = a3 G (0, 1/2) for some i, j; and

let y be any (integer) constant. Let Tijy = {(X 1,. . .Xr) J Xi - Xj = y}. Then

1 1
P(Sy' n T-., N;ai, .. . , a) ~ f - E.

2 iraiN

Part (a) is just a strengthened form of the law of large numbers. It states that

when (X1, ... , x,) ~ M(N; a 1 ,..., ar), then each xi is close to aiN, with probability

converging exponentially fast to 1 for large N. Part (b) estimates the further prob-

ability that xi - xz takes on a particular constant value. The estimate follows from
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the fact that xi - x is approximately normal with mean 0 and variance 2azN, and

is approximately independent of all other components of x.

In many of the examples we will consider in Section 3, the manipulator is pivotal

when the number of other voters reporting some preference order >-i is exactly equal

to the number of voters reporting another order >-j. In these cases, Lemma 2.2(b) is

useful for estimating the probability of being pivotal.

We note for future reference that the pivotal probability in Lemma 2.2(b) declines

in N at rate 1/ VN, but that the constant factor depends on aj. In particular, the

smaller ai is, the higher the probability is. This is because the population shares of

>-i and s- have smaller variance, so are more likely to differ by exactly the required

constant y.

We draw attention to one peculiarity: Consider r = 2, ai = a2 = 1/2. This is

a limiting case of Lemma 2.2(b), and so one might expect that the corresponding

probability would be - (1/2) 1/7r - (1/2) - N = 1/27rN. However, the probability

is actually 0 if N is the opposite parity from y, and ~ -2/rN if N is the same parity

as y (this follows from Lemma 2.1). The discontinuity occurs because the equality

x 1 + X2 = N constrains the difference x 1 - X2 to be the same parity as N, whereas in

Lemma 2.2(b), as long as ai = a3 < 1/2, the parity of xi - xj is unrestricted.

Finally, in view of our worst-case approach to susceptibility - and particularly

interpretation (2.3), the worst-case probability of being pivotal - it is natural to

be interested in identifying the critical probability distributions for which some vote

profile is most likely.

Lemma 2.3 For given nonnegative integers x 1,...,x, with sum K, the maximum

value of P(x1,..., x, | K; a,..., ar) with respect to the ai is attained at ai = x2/K.

Lemma 2.4 The expression

K a
max P N;
mac1x N-K 1 - a

is strictly decreasing in K for K < N/2 and strictly increasing for K > N/2. In
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particular, it is minimized over K at K = N/2 if N is even, and (N ± 1)/2 if N is

odd.

3 Susceptibility of specific voting systems

Now that we have developed the basic tools, we can begin applying our measure of

susceptibility to manipulation to various voting systems.

We first develop intuitions in Subsection 3.1 by studying the susceptibility of

four simple voting systems: (super)majority with status quo, plurality, Q-approval

voting, and Borda count. Then, in Subsection 3.2, we consider several voting systems

that have been identified in previous literature as resistant to manipulation, and

find that by our measure, they are all more susceptible than simple plurality rule.

In the process, we uncover several qualitative properties that make a voting rule

relatively susceptible. Finally, the result of Subsection 3.2 raises the question of

whether there are well-behaved voting systems that are less susceptible than plurality

rule; in Subsection 3.3, we give an example of such a voting system for the case of

three candidates.

For each of the voting systems studied in this section, the winner can be identified

by checking a fixed set of inequalities (independent of N) in the population shares of

the various possible preference orderings. In thinking about such systems, the most

useful interpretation of susceptibility is (2.3), the probability of being pivotal.

3.1 Four simple voting systems

Supermajority with status quo. We begin by studying a rule for which we can

compute the susceptibility exactly. Let K be an integer with (N+ 1)/2 < K < N+ 1,

and choose any fixed candidate, without loss of generality say A. The supermajority

rule with status quo associated to K and A is the tops-only voting system defined

as follows: if any candidate other than A receives at least K first-place votes, this

candidate is chosen; otherwise A wins. (Recall Figure 2.1.) If K = [(N + 3)/2] then

we have the majority rule with status quo. If K = N + 1 then we have unanimity
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rule.

Proposition 3.1 The supermajority rule with status quo has susceptibility

07smaj{K) =P K - 1 (K - 1)/N

(N - (K -1) 1 - (K - 1)/N

The basic approach to calculating susceptibility is to identify the profiles where

opportunities for manipulation occur, and then identify a particular belief for which

such opportunities are especially likely. For supermajority rule, we can actually iden-

tify the critical distribution that exactly maximizes the probability of being pivotal.

Manipulation is possible only when the manipulator is pivotal between candidate A

and some other candidate (say C), and his true first choice (say B) cannot get elected.

The manipulator is pivotal when C has K - 1 votes among the other voters. This is

most likely to occur when each other voter chooses C with probability (K - 1)/N.

We give the full proof here.

Proof: Consider the formulation of susceptibility (2.3), as the probability that

the manipulation changes the outcome from an undesirable one to a desirable one. If

the manipulator's first choice is A, then manipulation cannot have such benefits: for

any opponent-profile P, either the manipulator can ensure A wins by voting for A, or

else some other candidate has at least K votes and the manipulator cannot change

the outcome. If his first choice is some other candidate, say B, then manipulating

to A cannot affect whether or not any candidate different from A and B wins, and

therefore cannot change the outcome except by adversely switching it from B to A.

So the only possible beneficial manipulation is when the true first-choice is some

non-A candidate, and the manipulator votes for some other non-A candidate. With-

out loss of generality, these are B and C. The manipulation can be advantageous

only if the opponent-profile P is such that the manipulation changes the winner from

A to C. This in turn happens only if C has exactly K - 1 first-place votes in P.

Let Sc be the set of such profiles. Thus, the maximand in (2.3) is bounded above by

PrIID(#)(P - SC) = P(Sc I N; #). If P is distributed according to IID(#), and #c is
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the probability (under #) of ranking C first, then the total probability that P E Sc

is P (K - 1, N - K + 1 | N; #c, 1 - 4c). So, combining these observations, we have

o-<max Pr (PESc)=maxP(K-1,N-K+1 N;#c,1-#c). (3.1)
# IID(#) #c

On the other hand, suppose the manipulator's true preferences are BCA ... and

the opponents' votes are distributed (0c C, (1 - #c) A), with #c = (K - 1)/N.

A manipulation from B to C changes the outcome from A to C if P E Sc, which

happens with probability P (K -1, N - K +1 I N; 0c, 1- 4C), and leaves the outcome

unchanged otherwise. By taking C+ = {B, C} in definition (2.3), then, we get the

reverse inequality of (3.1). Thus the inequality must hold as an equality.

From Lemma 2.3, the maximum in (3.1) is attained when #c = (K - 1)/N, giving

the result of the proposition.

From Lemma 2.4, the susceptibility oaj(K) is increasing in K. In particular,

it is maximized for unanimity rule. This contrasts with results for (nonanonymous)

profile-counting measures, where the number of manipulable profiles is lower for higher

K (compare in particular with [34, 36, 37], who identify the least-manipulable voting

rules by such measures; they look qualitatively like unanimity rules). Likewise, the

value of K that minimizes oma(K) is K = (N+1)/2 (for N odd) or N/2 (for N even).

The corresponding value will actually come up again several times, so we establish a

separate notation for it: The susceptibility of majority rule with status quo is given

by

(N N if N is even

N N ) . ((N-1)/2) (N-1)/2 (N+1)/ 2 (N+1)/ 2  if N is odd
\(N-1)/2) N N

By Lemma 2.1, o* 2/rN. This quantity will in fact appear again in the analysis

of plurality rule, which we turn to next.

Plurality rule. The definition is as follows: For each candidate, we consider the

number of first-place votes, and whoever has the most votes wins. For concreteness,

ties are broken "alphabetically" - that is, in favor of earlier-numbered candidates;

or earlier-lettered, when we use the notation A, B, C, ... for candidates. (Most of our
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results are not actually sensitive to how ties are broken).

Proposition 3.2 Let o'l denote the susceptibility of plurality rule.

(a) For each N, up"' > -*

(b) o'ur satisfies
1 1 M 1 M

< pur <2 :N ~7 N xN

The lower bounds come from considering some potential critical distributions.

One case where the manipulator has a relatively high probability of being pivotal is

essentially when the manipulator's preferences are ABC... and the other voters split

their first-place votes evenly between B and C. Note that either B or C is sure to

win, and the manipulator may want to vote for B instead of A in order to increase

the chance of B winning. This underlies part (a).

Another, related case is when the other voters split their votes almost evenly

among all M candidates, but with slightly higher (and equal) probabilities of voting

for B and C than any of the others. In this case, again the outcome will almost

certainly be either B or C (by Lemma 2.2(a)), incentivizing a vote for B instead of

A. Since the vote probabilities of B and C are equal and are approximately 1/M each,

we can estimate the probability of being pivotal using Lemma 2.2(b); this probability

is approximately (1/2) M/rNV. The lower bound in (b) follows.

It is not immediate, however, that the lower bound is sharp: By manipulating to

B, the manipulator not only has a chance of changing the outcome from C to B but

also a chance of changing from other undesirable outcomes D, E, ... to B. Any upper

bound on susceptibility must take account of all these possibilities.

The argument behind our upper bound runs as follows. Suppose the manipulator's

true first choice is A but he considers voting for B as above. Consider the critical belief

# E A(C) that maximizes his probability of being pivotal. There must be at least

one other candidate, say C, for which #c is close to #B; otherwise the manipulator

is unlikely to be pivotal. Now, beginning from any arbitrary opponent-profile, move

along the B - C axis - that is, hold constant the number of votes for all candidates
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except B and C, and vary the breakdown of the remaining votes into B and C. We

show that only one pivotal opponent-profile can be reached in this way. Consider the

conditional probability of drawing this pivotal profile, given the number of votes for

all candidates other than B and C. Either the pivotal profile either has B getting far

more votes than C, in which case it is very unlikely; or it has both of them getting

at least 1/M of the votes, in which case its probability is at most ,< VM/IrN. So

in either case, the conditional probability of the pivotal profile is ' VM/irN. It

follows that the unconditional probability of being pivotal is also 1 7M/irN, giving

the upper bound.

The full proof of the proposition is in Appendix D.

Proposition 3.2 gives two different lower bounds on o", using two different be-

liefs. For small M, the bound in (a) is stronger than that in (b). Pivotality depends

on the balance between larger population shares (1/2 for the belief used in (a), versus

1/M in (b)), which would tend to make the manipulator less likely to be pivotal

under the belief used for (a), by the logic of Lemma 2.2(b) (the difference between

these two shares has higher variance). On the other hand, in the case of (a), parity

considerations add an extra factor of 2 to the probability of being pivotal, exactly as

in the discussion following Lemma 2.2 above.

For the case of three candidates, we are able to extend this idea to show that

the bound from (a) is exact - that is, the critical belief for a manipulator with

preferences ABC is that the opponents are split evenly between B and C. However

much or little probability of A is introduced into the belief, the decrease in variance

of the B - C split is outweighed by the uncertainty over parity.

Proposition 3.3 If M = 3, o =O-

The proof is in Appendix D.

Q-approval voting. Next, we consider the voting system known as Q-approval

voting, for any given Q with 2 < Q M - 1. Each voter gives a point to each of

his Q favorite candidates. The candidate with the most points wins; ties are broken

alphabetically. In the case Q = M - 1, this system is often known as antiplurality
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voting.

Despite the superficial resemblance to plurality voting, this system is much easier

to analyze, and also gives quite different results.

Proposition 3.4 For each Q, the susceptibility of Q-approval voting is 1.

Proof: Let the manipulator's true preference be BA ... and let <p be the distribu-

tion putting probability 1 on a preference of the form AB.... So the manipulator's

belief is that everyone else will report this preference, with probability 1. If the ma-

nipulator tells the truth, then A receives N + 1 points, the maximum possible, and

hence (by alphabetical tie-breaking) A wins, regardless of the other candidates' scores.

If the manipulator instead reports any preference with B ranked first and A ranked

last, then A receives only N points and B receives N + 1, so (again by alphabetical

tie-breaking) B must win. Thus, this manipulation improves the outcome from A to

B with probability 1.

This example shows that the susceptibility of Q-approval voting is at least 1. Since

susceptibility can never be more than 1, the result follows. 0

The result is perhaps surprising, since standard approval voting (in which each

voter approves any set of candidates, and whoever receives the most approvals wins)

has often been specifically advocated as resistant to manipulation [11, 21]. We do not

analyze this version of approval voting here, because it does not fit directly into our

framework - in particular, it is unclear how a voter's default truthful vote should

be defined. Appendix B discusses possible ways of extending our methods to treat

approval voting.

Borda count. Another often-discussed voting system is the Borda count, which

determines a winner as follows. Each voter assigns M(M + 1)/2 points to the can-

didates: M points to his first choice, M - 1 to his second choice, ... , 1 point to his

last choice. For each candidate, we compute a score by totaling across voters. The

candidate with the highest score wins. Ties are again broken alphabetically.

We content ourselves to give a lower bound on susceptibility.
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Proposition 3.5 The Borda count has susceptibility

Borda> M -2 2
N ~_1 2 ,rN

The argument is analogous to that of Proposition 3.2(a). Consider a manipulator

with preferences ABC.... Let the belief be as follows: opponents are evenly split

between ABC... and BAC.... Then the winner is surely either A or B. By moving

B to the bottom of his reported preference ordering, instead of being truthful, the

manipulator can improve the score of A relative to B by M - 2 points. Hence, the

manipulator is pivotal if, among the other voters, A trails B by more than 1 point

but not more than M - 1. Our lower bound follows by estimating the probability of

this event.

The full detailed proof is in Appendix D.

To segue into the next section, we compare the results of Propositions 3.1, 3.2(b),

and 3.5. Supermajority with status quo, plurality, and Borda count all have suscep-

tibility declining as N -> o at rate i/VN; but the constant factors (relative to N)

are different. In particular, the constant factor for supermajority is constant in M;

that for plurality is on the order of v'_7; and that for Borda count is linear in M.

This allows unambiguous comparisons between these rules for sufficiently large M.

For example, the comparison between Propositions 3.2(b) and 3.5 shows that, when

M > 5, Borda count is more susceptible than plurality rule if the number of voters

N is large.

3.2 Low manipulability revisited

Next, we consider voting systems which have been specifically identified as resistant to

manipulation in previous literature, using different measures, and ask whether they

continue to fare well under our measure of susceptibility. To decide which voting

systems to examine, we turn for guidance to the work of Aleskerov and Kurbanov [2],

which appears to be the most extensive prior comparison of voting rules in terms of

strategic manipulation. Aleskerov and Kurbanov used Monte Carlo simulations, with
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small numbers of voters and candidates, to compare 25 voting systems according

to several profile-counting-based measures of manipulability. We will consider the

systems highlighted by their analysis, and give lower bounds on the susceptibility of

each of these systems. As a benchmark for comparison, we use plurality rule, which

is surely the most widespread voting rule in practice. Our lower bounds will imply

that each of the systems picked out by [2] is actually more susceptible than plurality

rule, under our measure. Table 3.1 gives a quick summary of our findings, and the

details are explained below.

Like most of our results, the comparisons will be asymptotic (in the number of

voters). For given M, we say that a voting system f is more susceptible than g if

there is a positive constant c such that the susceptibility of f is at least 1 + c times

the susceptibility of g, for all sufficiently large N. Thus, for example, we say that

Borda count is more susceptible than plurality rule (for M > 5), even though both

have susceptibility decaying at rate 1/v'W.

The comparison paper by Aleskerov and Kurbanov [2] does not conclusively favor

some particular voting system. Instead, we consider all the systems that are identi-

fied by name in their concluding section. In addition to the Borda and Q-approval

voting systems, which we have already considered, these include the Black, Copeland,

Fishburn, minimax, and single transferable vote systems.

We will define these voting systems momentarily, but we first need a couple pre-

liminary definitions. Given an (N + 1)-profile P, we say that candidate A majority-

defeats candidate A - notated Ai -+ Aj - if

* more than (N + 1)/2 of the voters rank Ai above A, or

" exactly (N + 1)/2 of the voters rank A above A, and i < j.

(The second case is used to ensure that among any two candidates, one majority-

defeats the other. Again, our results are not sensitive to how such ties are broken.)

A Condorcet winner is a candidate that majority-defeats every other candidate; if a

Condorcet winner exists, she is unique.

The voting systems we consider are defined as follows:
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" Black's system: If a Condorcet winner exists, that candidate is chosen; other-

wise, Borda count is applied.

" Copeland's system: Define the score of each candidate Ai to be the number of

candidates A, such that Ai -+ A,. Choose the candidate with the highest score

as the winner; break ties alphabetically.

" Fishburn's system (also known as the uncovered set system [56]): Say that a

candidate Ai covers another candidate Aj if, for all k such that Ak -+ Aj, we

also have Ak -+ A,. (In particular, this requires Ai -* A,.) This is a partial

ordering on the set of candidates, so there must exist at least one uncovered

candidate. This candidate is the winner. If there is more than one uncovered

candidate, we choose the alphabetically earliest.

" Minimax system (also known as Simpson's system): For each candidate Aj, let

the score be the maximum, over all j 4 i, of the number of voters ranking A,

above Aj. Choose the candidate with the lowest score as the winner, breaking

ties alphabetically as usual.

" Single transferable vote system (also known as successive elimination or Hare's

system): Each voter has one vote, initially assigned to his first-choice candidate.

For each candidate, we determine the number of votes she receives. The candi-

date Ai, with the fewest votes is eliminated; ties are broken alphabetically (that

is, in favor of keeping alphabetically earlier candidates). Each voter who ranked

A, first has his vote reassigned to his second-choice candidate. Then, among

the remaining candidates and new votes, we again eliminate the candidate Aj 2

with the fewest votes, reassign these votes, and so forth. The last candidate to

escape elimination is the winner.

These voting systems are listed in the first column of Table 3.1. In the second

column, we give an asymptotic lower bound on the susceptibility of each system. In

each case, we prove the lower bound for all M except possibly some small values. The

table indicates exactly for which M we prove the bound. (For the minimax system,
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System Susceptibility Bound rN> (1+ - c) N

Black o-Black > [,] for M > 5 M > 5

Copeland o-Copeland > [M lJ for M $ 5 M > 6

Fishburn oFishburn > (M - 3) M > 5

Minimax offnirao > n forM>4 M>4

STV STV > 2 M-1all M
_________._' 7rN all___ _ ___M_

Table 3.1: Comparison of voting systems identified in [2] against plurality rule. The
second column gives lower bounds on susceptibility. Each system is more susceptible
than plurality, for the values of M indicated in the third column.

the statement is that there is some absolute constant c such that o- > c//N for all

N and M.)

For most of the voting systems, our lower bound is decreasing in N at rate 1/v/N,

but with different constant factors. Each such constant factor grows at least linearly

in M - faster than the v/Mi factor for plurality rule (from Proposition 3.2(b)).

Therefore, each voting system is more susceptible than plurality rule when M is large

enough. Specifically, by comparing the second column of the table with Proposition

3.2(b), we get the results shown in the third column: each voting system listed is

more susceptible than plurality rule for the indicated values of M.

In particular, our lower bound for single transferable vote is exponential in M, so

that it is substantially more susceptible than plurality rule for moderately large num-

bers of candidates; and our lower bound for minimax is on the order of N-'/4 rather

than N- 1/2 , so it is much more susceptible than plurality rule, in large populations,

as long as M > 4.

Proposition 3.6 The five voting systems listed in Table 3.1 satisfy the asymptotic

lower bounds on susceptibility listed in the table. (In particular, all of them are more

susceptible than plurality rule when M > 6.)

The proof of Proposition 3.6 is in Appendix E. Here we give a sketch of the

arguments used. In the process, we highlight the insights gained about the properties

of these voting systems that make them particularly susceptible.
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Broadly, the approach is the same as for the lower bounds in Propositions 3.2(b)

and 3.5. For each system, we prove the lower bound by constructing a particular

belief # and proposed manipulation, and estimating the probability of being pivotal.

For minimax and single transferable vote, the crucial intuition is that a rule is

highly susceptible if it is sensitive to the balance between two very small shares of

the population.

In more detail: We construct the belief 4 in such a way that pivotality occurs

when the numbers of opponents reporting preferences >- and >-' are equal, for some

particular >-, >-'c L. In this belief, >- and >-' occur with equal probability a. Then,

from Lemma 2.2(b), the probability of being pivotal is ~ (1/2) 1/7raN. In par-

ticular, for small a, the probability of being pivotal is high. For these two voting

systems, we can construct beliefs with the relevant a quite small. In particular, in

the case of minimax, we achieve the N-1 /4 convergence rate by varying the belief as

N increases, so that the population shares of the two relevant preference orders go to

zero. Plurality rule, on the other hand, does not suffer from this sensitivity to small

population shares, since the opportunity to be pivotal between some two potential

winners only arises when each of them is the first choice of at least 1/M of the voters.

The Copeland and Fishburn systems are defined in terms of the majority de-

feat relation, which cannot hinge on small population shares, so we cannot use a

similar construction to show that these systems have high susceptibility. Instead,

the intuition we use here is that a rule is highly susceptible if the manipulator can

simultaneously be pivotal in many independent ways.

Specifically, for each of these systems, we construct a belief with the following

property: there are many pairs {Ai, Aj} over which the population is close to evenly

split, and if the manipulator is pivotal for any one of these pairs, he can manipulate

advantageously. For each such pair, the probability of being pivotal is ~ V2/7rN. The

number of pairs is linear in M, and pivotality for any pair is independent of pivotality

for any other pair, so that the overall probability of being pivotal is - - 2/rN times

a coefficient linear in M.

One might at first think that plurality rule allows the same construction, since,
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as pointed out in the discussion preceding Proposition 3.2, it is possible to be pivotal

in many ways simultaneously: a manipulation from Ai to Aj can change the outcome

from Ak to Aj, for each k /4 j. But these pivotality conditions are not independent

of each other, since the manipulator can only be pivotal from Ak to Aj when Ak, Aj

are the two candidates with the most first-place votes.

Finally, for Black's system, we exploit the same intuition as for the Borda count:

a manipulation can have a large effect on the relative standing of two candidates, so

that the slice of the vote simplex for which the manipulator is pivotal has "thickness"

proportional to M. Indeed, the construction we give for Black's system is based

on our construction for Borda count, with some extra foolery added to prevent the

existence of a Condorcet winner.

Before closing this subsection, we should comment on the practical significance of

a comparison like Proposition 3.6. Is it not enough to simply know that each voting

system's susceptibility tends to zero for N large?

In the context of our motivating model, with the E cost of strategic behavior,

a result comparing the susceptibility of two voting systems is most cogent if we

believe that a plausible cost of behaving strategically would be on the same order of

magnitude as the susceptibility of the two rules. In this case, there would be agents

who would consider manipulating under one system but not the other.

Consider a six-candidate election, in an organization with 2, 000 members (this

could correspond to, say, a leadership election in a modest-sized professional orga-

nization). Treating the asymptotic bounds as exact, we have from Proposition 3.2

an upper bound of 0.031 for the susceptibility of plurality rule, whereas the lower

bounds from Proposition 3.6 are 0.036 for Black and Copeland, 0.054 for Fishburn,

and 0.071 for single transferable vote. These numbers are economically distinguish-

able from zero. More precisely, the differences in susceptibility between the voting

systems are important if the voters' cost of behaving strategically is on the order of

3 to 7 percent of their concern about the outcome. This seems a reasonable estimate

in many organizations, where most members' interest in the outcome of elections is

modest.

88



3.3 A new voting system

We have now shown that a number of voting systems, previously identified as resistant

to manipulation under profile-counting definitions, are in fact more susceptible to

manipulation than the benchmark of plurality rule under our worst-case measure. A

question which naturally presents itself is: is there any reasonable voting system that

is less susceptible than plurality?

There are a couple of easy, but not entirely satisfactory, answers. In Section 4, we

will indicate how to construct a unanimous voting system whose susceptibility is on

the order of 1/N', for some r, > 1/2. Thus, such a rule is considerably less susceptible

than any of the voting systems we have considered, for large N. However, that rule

will be arguably artifical and violates almost any standard regularity condition.

Another possible answer is one we have already given, namely majority rule with

status quo; our bounds imply that it is less susceptible than plurality rule if M > 9.

However, this voting system treats the candidates in a very asymmetric manner.

We will give below a voting system that is less susceptible than plurality rule, for

the special case M = 3. This voting system is well-behaved, in the sense of being

unanimous and monotone, and arguably treats the candidates as fairly as possible.

(Complete symmetry among candidates - often called neutrality in social choice

theory - would be complicated by the need to break ties. Rather than formally

define neutrality with exceptions for tie-breaking, we just argue intuitively that our

rule breaks symmetry only in knife-edge cases.)

The construction is based on the following observation: Under plurality rule with

M = 3, the strongest incentive to manipulate arises when voters split evenly between

two candidates (see Proposition 3.3). In this case, however, deciding by majority

rule between these two candidates (ignoring the third candidate), rather than using

plurality, would eliminate the incentive to manipulate. This suggests constructing a

voting rule such that

* when two candidates are "far ahead" of the third in terms of first-place votes,

the winner is chosen by majority rule between the two leading candidates;
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" when all three candidates are roughly evenly matched, plurality rule is used;

and

* the transition between the two preceding cases is smooth enough to avoid cre-

ating other opportunities for manipulation.

We now construct a voting system f along these lines, which we will call the pair-

or-plurality voting system. For N sufficiently large, let K, L be positive integers with

2K < L < N/6. (These values can depend on N, in ways to be specified later.)

Say that a candidate Ai is viable if Ai receives at least K first-place votes. The

winner is determined as follows:

(a) If there is only one viable candidate, she wins.

(b) If there are two viable candidates, the winner is determined by majority vote

between them (with ties broken alphabetically).

(c) If all three candidates are viable, then we compute a score for each candidate.

For each candidate Ai, consider the voters ranking her first. Let the number

of voters reporting preferences AiAj Ak, AiAkA be x, y respectively. We will

award x + y corresponding points to the three candidates, as follows:

- If x + y > L, then all x + y points are awarded to Ai.

- If x + y < L, then we award

L(x + y - K) points to A,

max {;min x- (x+y-K)L K(L-xy)}} points to A o
f 2(~L - K) -

max 0, min - (xy-K)L K(L-x- y} points to Ak-
2( L - K) L - K

After doing this for each candidate Ai, ultimately we have allocated N + 1

points, corresponding to the N + 1 voters. Then the candidate with the most

points wins. Ties are broken alphabetically.
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Figure 3.1: Scoring system in case (c) of the pair-or-plurality voting rule. The level
plots show what fraction of the x + y points are allocated to each candidate, as a
function of x and y. Darker regions represent more points for the candidate indicated.
For reference, the gray lines connect the points (X, y) = (K, 0), (0, K), (L, 0), (0, L),
and (L/2, L/2).

The scoring system in case (c) is illustrated in Figure 3.1, which shows the allo-

cation of points as a function of x and y. This system achieves a smooth transition

between majority rule (in the case x + y = K, where the x + y points are awarded to

A1 and Ak based on pairwise preference) and plurality rule (when x + y > L, where

all x + y points go to Ai).

Lemma 3.7 For each N, the pair-or-plurality voting rule constructed above is mono-

tone and Pareto efficient.

We now give our main result for the pair-or-plurality voting rule. It applies when

K and L are chosen to vary in the appropriate way as functions of N.

Proposition 3.8 If K, L are chosen for each N so that L/K -+ oo and K -> oo as

N -+ o, then

1 3POP < 11 _
N ~2 ,wN'

Comparing this upper bound to Proposition 3.2(a), we see that the pair-or-

plurality rule is indeed less susceptible than plurality rule.

The proofs of both of the above results are in Appendix F.

Unfortunately, there is no obvious way to generalize the construction of the pair-or-

plurality voting rule to a system that is less susceptible than plurality rule for arbitrary
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M. For large M, the critical distribution for plurality no longer has opponents evenly

split between two candidates, so our motivating idea does not apply. Finding a well-

behaved voting system that is less susceptible than plurality rule for arbitrary M,

or showing that no such voting system exists (under an appropriate definition of

"well-behaved"), is a task for future research.

4 General lower bounds

The previous section gave comparisons of several specific voting systems. However, a

mechanism designer may often approach her problem not with particular mechanisms

in mind, but rather with a list of desired properties that a mechanism should satisfy,

and then ask how well she can do in terms of strategic incentives while satisfying those

other properties. In this section, we give several illustrative results to show how our

measure of susceptibility can be used to address such questions. Each of our results is

of the following form: for some combination of (efficiency, regularity, informational)

properties, we provide an asymptotic lower bound on the susceptibility of any voting

rule satisfying them. The properties we use are those defined in Subsection 2.1.

These lower bounds (together with some partial tightness results) offer insights

into the quantitative tradeoffs between susceptibility to strategic manipulation and

other desiderata. They can also be viewed, more pessimistically, as quantitative

versions of the Gibbard-Satterthwaite theorem, analogous to the recent results of

Isaksson, Kindler, and Mossel [26] and Mossel and Racz [40] which used a profile-

counting measure. (A version of the Gibbard-Satterthwaite theorem for our IID

setting was first proved by McLennan [38].)

For expositional smoothness, we begin by presenting all of the results, in Subsec-

tion 4.1. That subsection ends with a very brief sketch of the tools used in the proofs.

Ensuing subsections give more careful outlines of the proofs. These outlines are of

interest in themselves, as they illustrate more general techniques for working with our

measure of susceptibility. The full proofs are for the most part left to Appendix G.

As before, our results are asymptotic in N, so we treat M as fixed. Thus when
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any result in this section refers to a "constant," it is understood that the constant

may depend on M but not N.

4.1 Statement of results

The discussion here will explain the motivation behind each result. A quick summary

of the results is provided in Table 4.1 near the end of this subsection.

Since any constant voting rule obviously has susceptibility zero, some efficiency

condition needs to be imposed to obtain any interesting results. A minimal such

restriction is weak unanimity, which leads to the following general lower bound:

Theorem 4.1 There exists a constant c > 0 such that, for every value of N, every

weakly unanimous voting rule f has susceptibility o- > cN- 1 2 .

If we add tops-onliness, then we can improve the exponent from -3/2 to -1.

(Note that a less negative exponent of N means a higher value, thus a stronger lower

bound.)

Theorem 4.2 There exists a constant c > 0 such that every unanimous, tops-only

voting rule has susceptibility o- > cN'.

(We simply say unanimous because weak and strong unanimity coincide for tops-

only voting rules.)

It is unknown whether the bounds in Theorems 4.1 and 4.2 are tight. The voting

systems considered in Section 3, which all had susceptibility of order N- 1/2 or larger,

might suggest that a tight lower bound should have an exponent of -1/2. The

following result shows that such a bound actually does not hold in general:

Theorem 4.3 There exist a number rK > 1/2 and a Pareto-efficient, tops-only voting

system with susceptibility -< N-^.

The slower rate of decline in Section 3 exploited the interpretation of susceptibility

as the probability of being pivotal. Theorem 4.3 instead depends on a construction

for which the pivotal intuition does not apply.
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Instead, we construct a low-susceptibility voting system based on the following

ideas. Imagine temporarily that we allow voting rules to specify probabilistic out-

comes. Thus instead of being a function f : LN+1 -+ C, a voting rule is a function

f : LN+1 -+ A(C). With expected utility over lotteries, our definition of susceptibility

(2.1) remains applicable. But now the random dictatorship voting rule, which picks

a voter uniformly at random and then chooses that voter's first choice as the winner,

has susceptibility zero.

In this paper, we have forbidden explicitly random voting rules, so the random

dictatorship is disallowed. However, there is still room for implicit randomization, via

the manipulator's IID uncertainty about others' votes. This allows us to construct

an f that looks approximately like random dictatorship from the manipulator's point

of view: For any (N + 1)-profile P, we choose the values f(Q) for profiles Q close

to P, so that the fraction of such profiles at which any candidate Ai wins is close

to the fraction of the population voting for Ai at P. This is illustrated in Figure

4.1. The construction in Appendix H in effect achieves this for all P simultaneously,

to within an error of order strictly smaller than N-1/2 . (That construction requires

some additional details not reflected in the figure.)

A

M B

M c

B C

Figure 4.1: The approximate random dictatorship voting rule

This approximate random dictatorship is extremely sensitive to the exact vote
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profile, so that the pivotal intuition does not apply. However, one might argue that

it is not a realistic voting rule, and impose a regularity condition to rule out such a

construction. For example, monotonicity does the trick, at least as long as we are

also willing to strengthen unanimity to Pareto efficiency. This restores the N-'/2 rate

of decline in susceptibility that we saw in Section 3:

Theorem 4.4 There exists a constant c such that every Pareto efficient and mono-

tone voting rule f has susceptibility o- > cN- 2

If we impose both monotonicity and tops-onliness, the problem becomes structured

enough so that we can compute the minimum susceptibility exactly. Moreover, we

can partially characterize the voting rules attaining the minimum. Say that a tops-

only voting rule f is a majority rule if it satisfies the following: for every profile P at

which more than half the voters rank the same candidate Ai first, f(P) = Ai.

Theorem 4.5 Every unanimous, monotone, tops-only voting rule f has susceptibility

o- > o-*. Moreover, if equality holds, and N > 4, then f must be a majority rule.

Equality is attained, for example, by majority rule with status quo (Proposition

3.1). Again, this contrasts with the results of [34, 37], using a profile-counting measure

of manipulation; the least-manipulable voting rules they identify look qualitatively

like unanimity rules, not majority rules.

Theorems 4.4 and 4.5 both give bounds on the order of N-1/ 2 . The example of

Section 3.3 shows that Theorem 4.5 is not redundant: the bound there would not

hold if we did not require tops-onliness.

Finally, we give two theorems showing that the relatively mild regularity condition

of simplicity already makes some demands on incentives. By itself, it is enough to

imply an N bound (where we had N-31 2 otherwise); and combined with tops-

onliness, it gives N-1/ 2, the same order of magnitude as monotonicity.6

6 The latter result, Theorem 4.7, does not even require an explicit efficiency condition: simplicity

imposes enough efficiency to yield the bound. Note that even though simplicity only concerns two

candidates, the usual method of giving perfect incentives by using majority vote between these two

candidates is unavailable, because it violates tops-onliness.
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Theorem 4.6 There is a constant c > 0 such that every weakly unanimous voting

rule that is simple over some pair of candidates has susceptibility 0- > cN-'.

Theorem 4.7 There is a constant c > 0 such that every voting rule that is simple

over some pair of candidates and tops-only has susceptibility o- > cN-1 2 .

In proving all of these lower bounds, we focus on profiles and beliefs # that are

concentrated on just two or three preference orderings. To understand why, recall

that if we had not imposed any restrictions on beliefs in the definition (1.1) of sus-

ceptibility, then every voting rule would have susceptibility 1. Lower susceptibility is

made possible by the smoothing of beliefs that the IID restriction achieves. A belief

placing non-negligible probability on many preference orders is smoothed along many

dimensions. Beliefs concentrated on a small number of orderings give coarser smooth-

ing, and thus are more powerful in translating the discreteness of local changes in f
into lower bounds on susceptibility.

For the theorems involving monotonicity (4.4 and 4.5), the most important intu-

ition behind the lower bounds is the interpretation of susceptibility as the probability

of being pivotal. For the others, the main driving force is the coarseness of discrete

approximation described in the previous paragraph.

Efficiency Regularity Information Bound J Theorem]
Weakly unanimous 0- > cN-3/ 2  4.1
Weakly unanimous Simple o- > cN 1  4.6

Pareto Monotone o- > cN-/ 2  4.4
Unanimous Tops-only o- > cN 1  4.2

Simple Tops-only o> > cN-11 2  4.7
Unanimous Monotone Tops-only o-> uo* (- cN-/ 2) 4.5

Table 4.1: Summary of lower-bound theorems

The remaining subsections sketch these proofs. Instead of following the order

of exposition above, they are arranged in a more convenient way for presenting the

tools. Subsection 4.2 covers Theorem 4.5. Since this is an exact bound, the proof

is combinatorial. The remaining proofs are at least partly analytic, building on a
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lemma introduced in Subsection 4.3 that bounds the variation in local averages of

f in terms of the susceptibility o. Subsection 4.4 proves Theorem 4.4 for monotone

voting rules, using the lemma to help formalize the pivotal intuition. Subsection 4.5

covers the results for tops-only voting rules, Theorems 4.2 and 4.7, while Subsection

4.6 proves the more general Theorems 4.1 and 4.6. These last two subsections exhibit

a "meta-technique" for proving lower bounds on susceptibility: Begin with a proof by

contradiction showing that susceptibility cannot be zero; then introduce error terms,

and calculate how large the error terms need to be in order for the contradiction

to disappear. In particular, Subsection 4.6 builds on Gibbard's [23] classic charac-

terization of strategyproof probabilistic voting rules by including error terms in this

way.

As for Theorem 4.3, we have already sketched the main idea of the construction;

further details are left to Appendix H.

4.2 Monotone, tops-only voting rules

We begin with the proof of Theorem 4.5. Notice that for tops-only voting rules,

monotonicity means that if a candidate Ai wins at some profile P, and we change P

by replacing votes for candidates other than Ai with votes for Aj, then Ai remains

the winner.

For intuition, consider the case of three candidates; an example of a monotone,

tops-only voting rule is shown in Figure 4.2. Such a rule carves the simplex of possible

vote profiles into a region where A is chosen, a region where B is chosen and a region

where C is chosen. Focus on the B - C edge of the simplex. There is exactly one

profile along this edge where the manipulator can be pivotal between B and C -

either by changing his vote from A to B, he changes the outcome from C to B, or

else (as in the figure) by changing his vote from A to C, he changes the outcome

from B to C. Thus, if his true first choice is A, he can change the outcome from his

third to second choice by manipulating. The critical distribution < is then chosen to

maximize the probability of this pivotal profile, and the bound follows via Lemmas

2.3 and 2.4.
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A

QA

B

C

B C

Figure 4.2: A unanimous, monotone, tops-only voting rule

The full proof, which is in Appendix G, modifies this argument to allow for ar-

bitrarily many candidates. The proof also requires some extra work to deal with

extreme shapes for the boundaries between regions, particularly when proving the

equality case.

4.3 A crucial lemma

For the remaining results, we use analytic methods rather than purely combinatorial

ones. Henceforth, we will need to refer to N + 1 more often than N directly, so put

N = N + 1.

The following definitions will be useful throughout the rest of this section. For

any distribution #5 E A(L), write f(#) for the distribution over candidates induced by

f when all N + 1 votes are drawn IID from #. Also write 7A, (#) for the probability

of candidate Ai in this distribution. Rather than studying f directly, it will be more

convenient to work with 7: the latter, being a continuous object, lends itself to

analytic techniques.

From the point of view of the manipulator, reporting a preference >-', the distri-

bution over outcomes is similar, but not identical, to f(#): the manipulator reports
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>-' for sure, while the other N preferences are drawn from 4. The incentives to ma-

nipulate involve a comparison between two such distributions. As it turns out, this

difference between two distributions is exactly equal to the directional derivative of

f, in the direction of changing preferences from - to s', up to a scaling factor. More

precisely:

Lemma 4.8 Let >-, -' be any two orderings; let A C A(L) and a G [0,1]. For

x E [0, 1], define

#X = aZ((1 - x) - +x >-') + (1-a) #

Then, the components of the derivative of the function f(0px) are given by

d Ai(#)) = aN - EIrD(O)[I(f (>-', P) = A) - I(f (>-, P) = A)].dx

The proof, by direct computation, is in Appendix D.

This leads to the following key lemma, which relates rates of change of f to the

susceptibility of f.

Lemma 4.9 (Local Average Lemma) Suppose the voting rule f has susceptibility

o-. There exists a constant c, independent of N (or f or -), such that the following

hold:

(a) Let -, >-' be any two orderings; let A C A(L) and a c [0,1]. Then for any set

C+ consisting of the L highest-ranked candidates under -, for some L, we have

Sc f~~> ±(1- a)4)- S (a>+ (I1-ac) 0))<Nau. (4.1)
AkEC+ AkEC+

(b) Let -, >-' be two orderings differing only by a switch of the adjacent candidates

Ai, Aj; let # E A(L) and a G [0,1]. Then for any set C' of candidates not

containing A1 or Aj,

Sf A(a +(- -- a)#) -( f7Ak(a > +(1 - a)#) < c~aO-. (4.2)
AkEC' AkEC'
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(c) Suppose f is tops-only. Let # E A(C) and a G [0, 1]. Then for any set C' of

candidates not containing Ai or Aj,

Z fA, (aAj + (1 - a)#0) - E fA,(aAj + (1 - a)#0) < cNao-. (4.3)
AkEC' AkEC'

Proof: We focus on proving (a), then check that the other parts follow imme-

diately. Using the notation of Lemma 4.8, put g(X) = EAkCC+ Ak (#X). We then

have

dg

dx = aN -EIID(Ox) [I(f(>-', P) E C+) - I(f(>-, P) E C+)].

From (2.3), the right-hand side is at most o. Therefore, L < aNo- for all x, hencedx -

SA(a -' +(1 - a)#) - E fA(a >- +(1 - a)#) = g(1) - g(0) < a o-.

ACC' AEC'

This proves (a).

For (b), notice that if C' consists of the L highest-ranked candidates under >-

(and hence also under >-') for some L, then (4.2) with c = 1 follows from part

(a), applied once directly and once with >- and >-' reversed. If C' consists of the L

lowest-ranked candidates, then (4.2) with c = 1 likewise follows from part (a), taking

C+ = C \ C'. Finally, any C' not containing Ai or Aj can be obtained by taking unions

and differences of at most M -2 such highest- or lowest-ranked sets. Hence in general

(4.2) holds with c = M - 2, using the triangle inequality.

Part (c) is immediate from (b).

4.4 Monotone voting rules

We now take on Theorem 4.4, for monotone voting rules. Clearly it suffices to show

the result when N is sufficiently large.

Monotonicity again allows us to carve the simplex of vote profiles into regions

where each candidate wins. The intuition of susceptibility as the probability of being
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pivotal then applies: for the appropriate critical distribution, the probability of being

on the boundary of two regions is of order N /2 , and we show that some such

boundary is sloped so that a non-negligible fraction of the boundary profiles are in

fact ones where manipulation is advantageous.

Lemma 4.10 formalizes this pivotal intuition, in the form that we need. The lemma

focuses on a portion of the vote simplex spanned by three particular preferences

>'-, >-', -". We suppose that there are two candidates Ai, Aj who are ranked in the

same way by >-' and >-"; and that this simplex contains an Ai region adjacent to

an A, region, with the boundary between them sufficiently sloped relative to the

- >-" edge of the simplex. If the manipulator expects the vote profile to lie near

the boundary, he has an incentive to manipulate from >' to >-" or vice versa, in order

to help the more-preferred of the two candidates win. The size of this incentive is of

order N-1/ 2

The formal statement of the lemma below is lengthy, but the idea is as above. The

statement focuses on a parallelogram-shaped portion of the >- - >-' - -" simplex, and

assumes that throughout this parallelogram, f chooses either Ai or Ay, as illustrated

in Figure 4.3. (The parallelogram shape makes the lemma easier to state, but is not

crucial to the result.)

Condition (iii) of the lemma says the relevant regions are well-behaved enough to

talk about the boundary between them. When applying the lemma, we use mono-

tonicity to verify this condition. Conditions (iv) and (v) express that the boundary's

slope is bounded below by r, > 0.

Lemma 4.10 Let r, > 0 be a constant. There exists a constant c(K) > 0, depending

only on ri, for which the following holds.

Suppose f is a voting rule with N voters, having susceptibility -. Let "

be any three preference orderings. Let 0 < J < J < N with J - J > rN. Let

0 <K< - J. Define

R={(J,K) | J<:5J<7;0<K K;J+K j };
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Figure 4.3: Illustration of Lemma 4.10

and PJ,K =

J

K

-J-K Iifor (J, K) E R.

Let Aj, Aj be two different candidates. Suppose the following conditions hold:

(i) f (PJK) E IA, Aj} for all (J, K) E R;

(ii) >-' and >-" rank Aj, A, in the same way relative to each other;

(iii) if (J, K) E R and f(PJK) = Ai, then f(PJ+1,K) = Ai and f(PJ+1,K-1) = Ai

(whenever the relevant index pairs are in R);

(iv) f(PJK) = Aj whenever K = 0; and

(v) f (PJK) = Ai whenever K = K.

Then

o- > c(r)N-11 2
(4.4)

The lemma is proven by identifying two distributions #1, #2 on either side of the

boundary, with the distance between them on the order of N-1 /2 , such that f(# 1) ~ A_

and f(02) ~ A, (see the figure); and then applying the local average lemma. The

proof is in Appendix G, as is the full proof of Theorem 4.4.
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We proceed to describe the proof of Theorem 4.4 itself. The main strategy is

illustrated in Figure 4.4, for the case of three candidates A, B, C. We focus on the

behavior of f on the ABC-BCA-CAB, ABC- ACB-C AB, ACB-C AB-CBA,

and ACB - CBA - BAC simplices, which are shown unfolded into a single plane in

the figure. Monotonicity and Pareto efficiency give us A, B, and C regions, with the

shapes indicated. Note that B cannot win anywhere in the middle two simplices, by

Pareto efficiency. Consider the boundary between the A and C regions. If (as in the

figure) the slope of this boundary is far from zero, then we can apply Lemma 4.10

to obtain the desired cN-1/2 bound on susceptibility. (Actually, the application of

the lemma is straightforward when the portion of the boundary in the middle two

simplices of the figure is sloped. But when the sloped portion appears in the leftmost

or rightmost simplex, a more detailed case analysis is needed, as sketched in Figure

G.1 in Appendix G.)

It may be that the A - C boundary is not sloped enough to apply the argument

directly. However, Figure 4.4 shows only a part of the vote simplex. We can repeat the

construction of this figure, replacing A, B, C by B, C, A, respectively, or by C, A, B,

respectively. Thus we obtain two more such figures. The proof of Theorem 4.4 shows

that at least one of these figures contains a boundary whose slope is bounded away

from zero, and then the argument goes through.

ABC ACB BAC

Ac

BCA CAB CBA

Figure 4.4: Proof of Theorem 4.4
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4.5 Tops-only voting rules

Next, we show how to prove Theorems 4.2 and 4.7, on tops-only voting rules.

For Theorem 4.7, which gives a cN 1 / 2 bound when the voting rule is simple,

we take the approach of first sketching a proof that a > 0, and then introducing

error terms to find out explicitly how large o needs to be. Without loss of generality,

suppose f is simple over B and C, and consider the values of f at several distributions

in the A - B - C simplex, as shown in Figure 4.5. We choose #1 and #2 so that

f(#1) puts high probability on B, f(#2) puts high probability on C, and the distance

between #1 and #2 is on the order of N-1 2

Suppose for contradiction o = 0. Then f(#1) and f(#3) must put the same total

weight on A and B, by Lemma 4.9(c). Similarly, f(#2),f(#03) put the same total

weight on A and C. We conclude that f(#3) puts high probability on A. Next, again

using Lemma 4.9(c), f(0 3 ),f(#4) put equal weight on A; and (#1),f7(#4) put equal

weight on B. Then f(#4) puts high weight on both A and B, which is a contradiction.

Now, repeat the argument without assuming a = 0. Each time we apply Lemma

4.9, the conclusion remains the same as before, to within an approximation error of

order oN- 1/2 . As long as the total approximation error accumulated in the course of

the proof is smaller than some positive constant, we end with the same contradiction

as before. Thus, the contradiction arises unless o- > cN- 2

The formal proof of Theorem 4.7, following the above sketch, is short enough that

we can include it here in the text.

Proof of Theorem 4.7: Assume that f is simple over B and C, and assume

the threshold K* is < N/2 (otherwise switch B and C). Also let co be the constant

from Lemma 4.9.

We will assume that f has susceptibility

0 < V2.-N /2 (4.5)
32co

and obtain a contradiction.
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A

B

C

B

Figure 4.5: Proof of Theorem 4.7

Let

#1 = (a1 B, 1 - 0i C) with ai = ~

Then f(#) = (yi B, 1 - -y1 C), where -y1 is the probability that at least K* voters

vote B. The number K of such voters is binomial with mean Nai = K* + \ 25 and

variance Na 1 (1 - ai) N/4, so by Chebyshev's inequality,

Pr(K < K*) Pr(jK - E[K]I > \/25) < .
8

Thus, y1 > 7/8.

Let

#2 = (a 2 B, 1 - a 2 C) with

Then f(#2) = (Y B, 1-y2 C), where now

if a 2 > 0, and if a 2 = 0 then f(# 2 ) = C).

a 2 = max 0 .

y2 1/8 (this follows again by Chebyshev
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We have#1-# 2 = A(B - C) whereA= ai -<a2 <; 2 2/N. By (4.5),

1
coRZO- < .

8

Let #3 = #1 + A(A - B) = <2 + A(A - C) (this is again a valid probability

distribution). Applying Lemma 4.9(c) to #1 and #3, with the set of candidates C \

{A, B}, we find that f(# 3 ) places total weight at most 1/8 + coNAo- < 1/4 on

candidates other than A and B. Likewise, applying Lemma 4.9(c) to #2 and #3 , with

C' = C\{A, C}, we conclude that f(4 3) places total weight < 1/4 on candidates other

than A and C. Consequently, f(#3) places weight > 1/2 on A.

Now let #4 = #1 + A(A - C) = 0 3 + A(B - C). This is a valid distribution as

long as #1 places probability at least A on C. If N is large enough then

N/2 - 2N 2 2N
1-01= ~ > N >

NN

so this requirement is satisfied.

Applying Lemma 4.9(c) to #1 and 4 with C' = {B} gives that f(# 4) places weight

> 3/4 on B. Applying Lemma 4.9(c) again to #3 and # with C' = {A} gives that

f(# 4 ) places weight > 3/8 on A. Since 3/4 + 3/8 > 1, this is a contradiction. O

The proof of Theorem 4.2 builds on the above. We begin by considering various

potential manipulations when the belief # lies on the B - C edge of the vote simplex.

We show that if no such manipulation gives a gain greater than cN-1 in expected

utility, then f is "approximately simple" over B and C. From there we can repeat

the proof of Theorem 4.7. The proof of Theorem 4.2 is in Appendix G.

4.6 General voting rules

Finally, we prove our most general result, Theorem 4.1, for any weakly unanimous

voting rule. As an inexpensive by-product, we will also obtain Theorem 4.6, for simple

and weakly unanimous voting rules.

The proof is closely modeled on Gibbard's [23] proof of the characterization of
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strategyproof7 probabilistic voting rules. Gibbard shows that any such voting rule is

a convex combination of unilateral rules, in which only one agent's preference affects

the outcome, and duple rules, where only two distinct outcomes are possible. Under

our assumptions of anonymity and weak unanimity, the only such probabilistic voting

rule is random dictatorship.

The connection between Gibbard's result and ours is made by the local average

lemma, which says that if f has low susceptibility, then the probabilistic voting rule

f^(P) = f(P/N) is approximately strategyproof. We retrace Gibbard's proof and keep

track of error terms, showing that if f is approximately strategyproof then it must be

approximately a random dictatorship. Finally, we use the coarseness of approximation

(since f is deterministic) to show that f cannot be too close to random dictatorship.

At a technical level, the proof of Gibbard's characterization of strategyproof prob-

abilistic voting rules g is based on equations of the form

g(>-, P) - g(>-', P) = g(>-, P') - g(>-', P') (4.6)

for certain pairs of preferences >-, >-' and opponent-profiles P, P'. If (4.6) were to

hold for all >-, >-', P, P', it would say that g is linear (as a function of the number of

voters having each preference). Combined with weak unanimity, this linearity would

immediately imply that g is random dictatorship. In fact, Gibbard's proof only shows

(4.6) for certain >-, >-', P, P', but these cover enough cases to give the needed linearity.

Gibbard's original proof was quite involved, but our assumptions of anonymity

and weak unanimity make the argument less difficult. (See also [171 and [59] for

streamlined versions of Gibbard's argument under the unanimity assumption only.)

The key tool used in our argument - a version of (4.6) with error terms - is

given by the following lemma. The absolute value notation for vectors here refers to

the L 1 norm.

Lemma 4.11 Let >-, >-2, >3 >-4 be preference orderings, and let A, Aj, Ak, A, be

candidates (not necessarily distinct), with the following properties:

7That is, those where truth-telling is a dominant strategy.
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S > 1 , >2 differ only by a switch of the adjacent candidates Ai, Aj,;

S>3, >4 differ only by a switch of the adjacent candidates Ak, A;

e {AiAj} / {Ak, AI}.

Let # E A(L), and let a,0, ;> 0 with a+3+}= 1. Take co to be the constant from

Lemma 4.9. Then, if f is a voting rule with susceptibility o-, we have the bound

a >i 1 0 2 Si a -2

f p -3 -f -3 -f >4 +f S-4  < 16coNu. (4.7)

The proof simply involves decomposing the four-way difference on the left-hand

side of (4.7) into a sum of two differences in two ways, and applying Lemma 4.9 to

each of these differences. The details are in Appendix G.

We now outline the proof of Theorem 4.1, via three lemmas, whose proofs are again

in Appendix G. Focus on candidates A, B, C. We assume a fixed ordering for the

remaining candidates, and write expressions such as CAB... to denote a preference

beginning CAB, with the remaining candidates arranged in their fixed order.

We maintain throughout the assumption that f is weakly unanimous, with sus-

ceptibility o-.

Lemma 4.12 There is a constant c1 > 0 with the following property: if u < c1|N,

then

f(K CAB..., - K CBA...)=C for all K. (4.8)

This is easy to show using beliefs along near the CAB. .. - CBA ... edge. If (4.8)

were violated, we could find some such belief where the manipulator can increase the

probability of C by ci/N by manipulating from CAB... to CBA ... or vice versa.

Lemma 4.13 Assume (4.8) holds. Let x, y, z, x', z' be nonnegative numbers with x +
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y+z=x'+y+z'=1. Then

_ x ABC ...

(f y+z BAC ...

_/ xABC..

fB
((y + z' B AC ..

x+y ABC ... (4.9)

z BAC... )

. - x'+y ABC...( f< 192coNo-,
.z' B AC ... )

where co is the constant from Lemma 4.9.

This key step is proven by repeated applications of Lemma 4.11. The bound

(4.10) says that if we start at some distribution concentrated on the preference or-

derings ABC... and BAC..., and move some fixed amount y of mass from ABC...

to BAC..., then the change in f cannot depend too much on where we started.

More simply put, f is approximately linear along the ABC... - BAC ... edge of the

preference simplex.

Lemma 4.14 There exists some absolute constant c2, independent of N, with the

following property: for any weakly unanimous f, there exist some nonnegative values

x, y, z, x', z' with

ABC ...

BAC...)

ABC...

z' BAC ...

ABC...

BAC...

y ABC...

BAC ...

(4.10)

> c2/V N.

This simply quantifies how much the discreteness forces f to be far from linearity

along the ABC... - BAC ... edge.

Theorem 4.1 now follows directly.

Proof of Theorem 4.1: Let Co, c1 , c2 be as in the three preceding lemmas. Ei-

ther a 2 ci/N, and we are done; or else Lemma 4.12 applies, in which case the ensuing

two lemmas imply that (4.10) and (4.11) both hold, from which a 2 c2 /192coN 3 / 2 .
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If we impose the additional requirement of simplicity, the bound c2/ N on the

right side of (4.11) can be sharpened to a constant c3, because f is not close to linear

along the ABC... - BAC... edge - its values are always close to A or close to

B, except right near the threshold. By repeating the proof of Theorem 4.1, we then

find a lower bound for susceptibility of order N' rather than N 3 /2 , thus proving

Theorem 4.6. The details are in Appendix G.

5 Conclusion

5.1 Summary

This paper has advanced a new way to quantify the susceptibility of decision-making

mechanisms to strategic misbehavior, and argued its usefulness. We have focused here

on voting rules as a canonical choice of application, but our approach is applicable

quite broadly to other classes of mechanisms. Our measure of susceptibility is defined

as the maximum expected utility an agent could gain by acting strategically rather

than truthfully. To make this measure operational for voting rules, we needed a

normalization of utility to the range [0, 1], and an IID restriction on beliefs. Our

measure has a simple interpretation in terms of behavior, in which agents trade off

the benefits to manipulation against some (computational or psychological) costs.

To demonstrate the usefulness of this measure of susceptibility, we gave two classes

of results. The first consisted of concrete estimates of the susceptibility of various

voting systems. In particular (Table 3.1), we found that other systems previously

identified as resistant to manipulation, including the Black, Copeland, Fishburn,

minimax, and single transferable vote systems, actually are more susceptible than

plurality rule, by our worst-case measure of incentives. We also identified qualitative

properties of these voting systems that make them susceptible.

The second class of results consisted of lower bounds for the susceptibility of voting

rules satisfying various efficiency, regularity, and informational properties (Table 4.1).

These bounds illustrate how our measure can be used to study tradeoffs between
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susceptibility and other properties. The proofs are built on a few, widely generalizable

key ideas - such as susceptibility as the probability of being pivotal, the coarse

smoothing provided by the IID assumption, and the broader technique of introducing

quantitative error terms into impossibility proofs - thus showing how our measure

of susceptibility can be worked with in practice.

5.2 Onwards

This is an appropriate place to discuss directions for future research.

At the most immediate level, there are many ways to extend the analysis here

in technical directions. For example, one could seek lower bounds on susceptibility

under other regularity conditions, or consider probabilistic voting rules. One could

also consider different classes of probabilistic beliefs, in place of the IID model we have

used here. For example, we have stuck to a model in which the number of other voters,

N, is known with certainty, because this makes conditions such as monotonicity

easy to formulate; but one might find the Poisson model [42, 43], which describes

uncertainty about the population size as well as the distribution of preferences, to

be more realistic. Our approach could also be extended to consider manipulation by

coalitions.

A more important direction would be to apply our approach to measuring sus-

ceptibility to other classes of mechanism design problems. The third chapter of this

dissertation, which studies the quantitative tradeoff between incentives to manipulate

and efficiency in double auction environments, provides an example.

On a conceptual level, the approach to measuring susceptibility presented here

would be greatly improved by incorporating some description of the decision process

behind manipulation. The positive interpretation of our approach is based on a

comparison of costs and benefits to the manipulator, but the modeling of costs here is

simplistic - behaving strategically just always costs E. More realistically, it might be

harder to manipulate in some mechanisms than others. A computational model that

captures such distinctions would help in better understanding manipulative behavior.

Finally, a few words on how our approach fits into a broader agenda. There
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are two main paradigms in mechanism design theory. One is the dominant-strategy

paradigm [6, 58, 57]. This paradigm in effect evaluates mechanisms by their worst-case

performance. Positive results, when they exist, are extremely robust to uncertainty

about agents' beliefs, their assumptions about each other's strategic behavior, or

the details of their preferences over lotteries; but existence of dominant strategies

is a stringent requirement, and for many problems no dominant-strategy mechanism

exists.

The second paradigm is Bayesian: the theorist presumes a common prior distri-

bution over agents' types, assumes that agents maximize expected utility, and shows

how to construct a mechanism that maximizes the expectation of some objective, such

as welfare or revenue. The Bayesian paradigm allows for more positive results than

dominant strategies (e.g. [15]), but often depends on stringent common knowledge

assumptions that limit its practical usefulness [60].

The space in between the dominant-strategy and Bayesian approaches - explored

by the recent literature on robust mechanism design [9, 14, 61] - may offer new av-

enues to obtain robust positive results. The approach of the present paper fits into

this intermediate space: in the motivating model sketched in Subsection 1.3, we as-

sume that the voters are Bayesian expected utility maximizers, but the planner takes

a worst-case approach, with no probabilistic assumptions about the voters' prefer-

ences or beliefs (nor any requirement that voters' beliefs about each other correspond

to the truth). More generally, integrating elements of the Bayesian and worst-case

approaches will be valuable in bringing mechanism design theory closer to practice.
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A A consequentialist model

This appendix presents a game-theoretic model of voting rule choice by a social plan-

ner who cares about how well the outcome of the vote reflects the voters' preferences

(but not about whether manipulation occurs per se). The model fleshes out the ar-

gument sketched verbally in Section 1.3 to describe how our measure of susceptibility

would be involved in the choice of a voting rule. It is a formalization of the informal

arguments that have long been used to justify dominant-strategy mechanisms, with

a small cost of strategic behavior added in.

We imagine a planner choosing a voting rule for a society with N voters and M

candidates. After the planner chooses the rule, the voters' types - meaning their

preferences, beliefs, and their individual costs of manipulation - are realized. The

voters cast their votes, and the election result is determined.

In the main model, the planner evaluates voting rules by their worst-case perfor-

mance and is totally agnostic about what strategic voters will do, except that she

believes voters will not strategize if they cannot benefit by more than e from doing

so. This extreme agnosticism is meant to represent the idea that the planner finds es-

timating strategic incentives to be much easier than predicting in detail how strategic

voters will actually behave. (This models the trend in recent market design litera-

ture, such as [4, 12, 27, 28], which argues that incentives to manipulate in particular

mechanisms go to zero, without going into exactly what the optimal manipulations

would be.) However, our general point - that a quantitative measure of incentives

to manipulate is relevant to choice of mechanism - does not depend on extreme

agnosticism, as discussed further in Subsection A.5.

A.1 Planner's preferences

We assume the planner cares ultimately about the relationship between the voters'

preferences and the candidate who is elected. Thus, the planner has a utility func-

tion U : C x ([0, 1]M)N+1 -* R, specifying her utility for each candidate contingent

on all voters' preferences. To follow the ordinal framework of the main paper, we
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assume that the planner's preferences depend only on the voters' ordinal rankings of

candidates. So let >*: [0, 1]M -+ L be a given function, such that for each possible

utility function u C [0, 1]M, u weakly represents >-* (u). (The function >-* describes

how to convert cardinal preferences u to ordinal rankings; the choice of >-* (U) is

nontrivial only when tie-breaking is necessary.) We assume there exists a function

V: C x LN+1 -+ R such that

U(Ai; u1,..., UNV+1) - A ul), -. - -* UN+1))

for all Ai and all u1,.. ., UN+1- Let V denote the minimum value attained by V, over

all preference profiles and all outcomes A .

The planner is to choose from some nonempty set F of possible voting rules. We

assume that every f C F is surjective. We further assume that every f satisfies

V(f(P); P) > V

for every profile P. That is, the planner only considers voting rules with the follow-

ing property: as long as all voters vote honestly, catastrophically bad outcomes are

avoided.

A.2 Mathematical states of nature

The planner expects that voters will behave strategically, if doing so is worth the

cost E. In this case, she expects they will correctly solve their strategic optimization

problem. However, the planner's task of predicting voters' behavior is much more

complex than each individual voter's problem, since there may be many voting rules

that the planner could consider, and many preferences and beliefs that each voter

could potentially have. So we imagine that the planner does not know the solution to

each voter's problem. We represent the planner's ignorance by ambiguity about how

a voter's choice of vote maps to a distribution over outcomes (for a fixed distribution

over others' votes).
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More specifically, we model the planner's ignorance via mathematical states of

nature. A mathematical state is a continuous function

wK x L xA(L) -+ A(C).

(Continuity is relevant only to the third argument, since Y and L have discrete

topologies.) Let Q be the set of all possible mathematical states.

A mathematical state w has the following interpretation: in this state, if the

voting rule in use is f, a voter expects others' votes to follow distribution #, and he

reports preference >-, then he expects the outcome of the election will be distributed

according to w(f, >-, #). There is one "true" mathematical state wo, described by the

actual outcomes of each voting rule: for all f, >-, #, the distribution wo(f, >-, #) is

equal to the actual distribution over fQ-, P) that results if P ~ IID(#). But the

planner does not know the true state.

In any state w, the susceptibility of a voting rule f is given by the analogue of

(2.1):

(f)= sup (u(w(f , )) - u(w(f, >-, )).

(Here, and subsequently, we extend u to lotteries over C by linearity.) This definition

coincides with (2.1) in state wo.

We assume that, although the planner does not know the true state, she has

estimates on the susceptibility of each voting rule, which serve to narrow down the

possible states. Specifically, for each f E F, she knows that the susceptibility of

f is less than some exogenous upper bound -(f). We may have 5(f) > 1, which

corresponds to no knowledge about the susceptibility of f. (We do not model the

process by which the planner learns of these upper bounds. We could also assume the

planner knows lower bounds on susceptibilities; this would not change our results.)

With these upper bounds, the set of states the planner considers possible is

{* = {w E o r,(f) < 5(f) for all f E T}.
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We assume that the planner's bounds are consistent with the truth: wO E Q*.

We will not need to specify a prior belief for the planner over Q*, because we will

assume she has maxmin preferences, as detailed below.

A.3 Voters' preferences

Each voter has a utility function on candidates, u: C -+ [0, 1], and a cost of behaving

strategically, E E [fj]. Thus, the space of basic types of the voters is

T = [0, I]M x If

The bounds E, E are commonly known parameters, with 0 < E < i and E < 1.

We assume there is some rich type space T of possible types for each voter, a

compact Polish space, together with two continuous maps: a basic type map p : T -+

T0 and a belief map # : T -- A(T). When a voter has rich type t, p(t) is his basic

type, and he believes other voters' rich types are drawn IID from the distribution

#(t). Let p : A(T) --+ A(T) be the induced map: if t is distributed according to /

on T, then 7P(#O) is the distribution of p(t).

We assume the type space is rich enough so that the map

p x (5 o 3) : T -> To x A(To)

is surjective. That is, any combination of own basic type and (first-order) belief about

others' basic types is possible.

Voters know the true mathematical state w. 8 Thus, each voter's type in the game-

theoretic sense consists of his type in T as well as the state W E Q. A (mixed) strategy

for a voter specifies a distribution over C, as a function of t E T and w E Q.

Voters have expected utility with respect to lotteries over candidates. The lottery

that results from any particular vote is determined by the mathematical state. Thus,
8This assumption is not intended to mean literally that voters are computationally stronger than

the planner; it is simply a technical shortcut to express that each voter can solve his own optimization
problem.
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in state a, for a voter with utility function u, if he votes > and expects others to vote

according to #, then his material payoff is u(w(f, >-, #)).

A.4 The game

The full timing of the game is as follows:

* The planner publicly announces a voting rule f E F.

* The voters' types in T are realized, as is the state Lo E Q*.

(The fact that the true state is always wo will not be relevant, since we are

studying the behavior of the planner, who does not know the true state.)

" Each voter chooses a preference ordering in L to report.

* The winning candidate is determined by applying f to the reported preferences.

Now, we need to specify payoffs. Consider a voter in state u;, with utility function

u, and strategizing cost e. His utility if he truthfully reports preference >-* (u), and

other voters' votes are IID draws from #, is

U P f, Mu, #)).

If the voter reports any other preference >-', then his utility is

u(w(f, >-, #)) - E.

As for the planner, her ex post preferences (given voters' utility functions and

the outcome of the vote) are given by the function U. Her ex ante preferences are

maxmin with respect to the voters' type profile and the mathematical state of nature:

she wishes to maximize

inf E[U(f(1,..,N+1) U1,---UN+1)1 (A. 1)
(tl,...,tN+1)ETN+l

wEQ*
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where the inf is over type profiles and mathematical states; each ui is the utility

component of voter i's basic type p(ti); and the expectation is over the reported

preferences ' determined by the (possibly mixed) strategies of the voters in state W.

Finally, our solution concept is perfect Bayesian equilibrium, symmetric among

the voters. That is, in each state, the voters play a symmetric Bayesian equilib-

rium (where the incomplete information is about each other's types); and given the

strategies of the voters, the planner chooses a voting rule to maximize her utility

(A.1).

With the game laid out in detail, we can finally state the proposition tying sus-

ceptibility to the planner's choice of a rule.

Proposition A.1 If there exists a voting rule f G F whose known susceptibility

bound 5(f) is at most iE then in any equilibrium, the planner will choose such a

rule. Specifically, she will choose f to maximize minpCgN+1 V(f(P), P), subject to

(f) < g.

If no such f exists, then in any equilibrium, the planner is indifferent among all

voting rules; they all give her utility V.

The full proof is in Appendix D, but the argument is quite straightforward. If

the planner can choose a voting rule with susceptibility less than E, then she will

be certain that all voters will vote truthfully, giving the outcome that the voting

rule prescribes. On the other hand, if the planner cannot choose such a voting rule,

then she cannot rule out the possibility that the voters will manipulate in the worst

possible way, because the mathematical state and the voters' beliefs may be such that

this manipulation is optimal for each voter.

A.5 Variants

The preceding positive model gives a simple connection from our measure of suscep-

tibility to a planner's choice of voting rule. We briefly sketch here several ways to

extend the model, that would retain or strengthen this connection.
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(a) We have considered here a model of a single election, leading to the conclusion

that the planner would choose a voting rule whose susceptibility is known to

be less than e, if one exists. With a large number of elections, the model could

justify choosing a voting rule f whose known susceptibility bound oj is as small

as possible.

To be more specific, suppose that the planner anticipates the voting rule being

used for many elections, some more important than others. Importance is rep-

resented by an upper bound U on voters' utilities from the outcome. Thus for

each election there is a type space '1f, in which voters' utility functions have

range [0, U] rather than [0, 1]; whereas the bounds 6, - on manipulation costs are

constant across elections. The planner has a belief C about the distribution of U

across elections, with full support [0, oo]. The planner's total utility is the long-

run average of her utilities from each election. For a large number of elections,

we can express this as an expectation. Thus the planner's utility becomes

inf E([U (f(, . N+1);U1, - - -UN+1)) d(U)-/o (ti,...,tN+1)E'1':+1

Then the planner's choice of voting rule depends on the tradeoff between suscep-

tibility and the desirability of the outcomes that result under honest behavior.

If the planner is very risk-averse in terms of outcomes - i.e. V is very low

compared to other values of V - then in equilibrium she will simply choose a

voting rule f E F whose susceptibility bound is as low as possible.

(b) We could also suppose that the planner has some inherent preference for non-

consequentialist properties of the voting rule - say, regularity properties. This

could be represented by preferences of the form

inf E[U(f (>1, ... 'N+1)1 ul, ... , UN+1) + H(f)
(ti,---rN1)

where H : F -+ R is some function expressing the planner's preference over
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these other properties. In such a model, the choice of voting rule would depend

on the tradeoff between susceptibility and other properties.

(c) The preceding model makes extreme assumptions in terms of the players' knowl-

edge. On one hand, the voters know the mathematical state perfectly: they are

able to optimize their material payoffs exactly (if they choose to do so). On the

other hand, the planner knows nothing about how voters will behave, except

that they will not manipulate when the gain is definitely less than E.

However, in a model where agents might not manipulate optimally, or where

the planner had some idea how agents manipulate, our general approach to

quantifying incentives would remain relevant. Susceptibility would just have to

be redefined, not as the maximum incentive for any manipulation, but as the

maximum incentive specifically for manipulations that could potentially lead to

undesirable outcomes (suitably defined).

The third chapter of this dissertation, on double auctions, explores the conse-

quences of one such model in more detail. There, we assume no uncertainty

about mathematical states. On the other hand, rather than optimizing exactly,

the agents may potentially attempt any manipulation that gives them at least

E expected utility gain over truthfulness. The planner would like to minimize

the maximum amount of inefficiency that can result from such manipulations.

The analysis of this problem uses quite similar methods to the analysis of the

tradeoff between susceptibility (as originally defined) and inefficiency.

B Approval voting

In approval voting, each voter names a set of candidates, interpreted as the candi-

dates who receive his approval. Whichever candidate receives the largest number of

approvals wins. (As usual, we assume ties are broken alphabetically.)

Approval voting has often been specifically advocated as resistant to strategic

manipulation [11, 21], so it is natural to ask how it fares under our approach to
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measuring susceptibility. We have not addressed approval voting in the main paper

because it does not fit into our framework. It requires voters to submit a set of

approved candidates, rather than a ranking. More importantly, we have presumed

that there is an unambiguous way to vote truthfully, for any given utility function

u. In the case of approval voting, it is unclear how a voter should decide how many

candidates to approve. This clashes with our motivating assumption - that truthful

voting is costless - since the need for strategic calculation is now unavoidable. (Niemi

[44] also argued that approval voting actually encourages strategic behavior for this

reason.)

Still, it is possible to adapt our framework to formally cover approval voting, or

vice versa. Here we present two possible ways of doing so. The discussion will be less

detailed than in the main text.

B.1 Multiple truthful strategies

We could simply allow that multiple strategies by voters are deemed truthful. In the

case of approval voting, we might specify that it is truthful to approve a set S C C if

S consists of the L most-preferred candidates, for some L. That is, S is sincere for a

utility function u if, whenever A, E S and u(Ai) > u(Aj), then Ai E S as well. (This

is the definition used in previous literature on approval voting [11, 21].) We could

then define the susceptibility of approval voting to be the maximum gain from voting

strategically, relative to voting sincerely.

To be precise, let S denote the set of all subsets of C. The natural modification

of the definition (2.1) for approval voting would then be

0- = sup (sup(EIID() [U(f(S', P)))) - sup(EIID(#) [U(f (S, P))])), (B.1)
u,# \ S' S

where

" the outer supremum is over preferences u E [0, 1]M and beliefs # E A(S);

" the first inner supremum is over arbitrary S' C C;
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e the second inner supremum is over S that are sincere for u.

Notice that all suprema are taken over compact sets, so in fact we could write max

instead of sup. (Alternatively, we could continue restricting u to have no indifferences,

as in the main text.)

With this approach, we can show that when M > 4, approval voting has suscep-

tibility ;> 1/4. In particular, its susceptibility does not go to zero as N -- oo.

Let the manipulator's true preference be BADC..., with the utility function

u(B) = 1, u(A) = 1/2 + E, u(D) = 1/2 - E, u(any other candidate) <; E

for arbitrarily small e. Suppose the manipulator's belief # is that each other voter

approves {A, B} with probability 1/2 and {C, D} with probability 1/2.

With probability - 1/2, a majority of other voters vote {A, B}. In this case, the

manipulator is pivotal between A and B: if he votes for B but not A, then B wins;

otherwise, A wins. With probability - 1/2, a majority of other voters vote {C, D},

and the manipulator is pivotal between C and D. (The other voters may be exactly

evenly split, but the probability of this event goes to 0 as N -> oo, so we disregard

it.)

Hence, if the manipulator votes {B}, his expected utility is ~ ju(B) + lu(C) ~

1/2. If he votes {B, A, D}, then his expected utility is ~ ju(A) + lu(D) ~ 1/2. And

with any other sincere vote, his expected utility is ~ ju(A) + lu(C) ~ 1/4.

However, with the manipulation S' = {B, D}, his expected utility is ~ ju(B) +
lu(D) ~ 3/4. Thus the gain from strategic voting expressed in (B.1) is approximately

1/4 as N -> oo. Only by being insincere can the manipulator ensure that he gets the

preferred outcome in both likely situations.

Why do our results here conflict with the view of previous literature, that approval

voting resists manipulation? Unlike in Section 3, where the main issue was how to

quantify manipulation, the basic difference here is one of modeling assumptions. The

arguments in [11, 21] in favor of the strategic properties of approval voting assume

that voters partition the candidates into three or fewer indifference classes. Indeed,
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in the case M = 3, voting sincerely is always optimal (o as defined in (B.1) is

zero). However, our argument shows that this finding breaks down severely as soon

as M > 4. Indeed, Brams and Fishburn [11] were aware of this; they give an example

that is almost identical to ours.

B.2 Approval with status quo

An alternative way to model approval voting, without leaving the framework of the

main paper, would be to specify an unambiguous choice of truthful vote for each

preference order. For example, we could choose a particular candidate (here we will

use A) as status quo, and declare that voters should approve all candidates who are

preferred to the status quo.

Thus, the voting system approval voting with status quo is defined as follows:

Each voter submits a preference order. Each candidate receives a score, defined as

the number of voters who prefer her over A. The candidate with the highest score

wins; ties are broken alphabetically. If every voter ranks A first, then A wins.

Then we can apply our usual definition (2.1) of susceptibility. In this case, we

find that approval voting with status quo has susceptibility 1, similarly to Q-approval

voting. Indeed, suppose that the manipulator has preference CBA... but expects

that every other voter will vote BCA ... with probability 1. Then, with probability

1, sincere voting will lead to the outcome B (by alphabetical tie-breaking); whereas

the manipulation CA ... will lead to the better outcome C.

Thus, with this modeling approach, we again find approval voting to be highly

susceptible to manipulation.

C Computational tools

The present section gathers a collection of technical tools used in subsequent calcu-

lations. It includes proofs of the preliminary results stated in Subsection 2.2 of the

main paper.

The following notation, not introduced in the main paper, will be useful here and
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subsequently. For a vector x = (X1,... , ,.), we will write X-k for the vector of all

components except zk, and X-jk for the vector of all components except xz and Xk;

and Xijk similarly. We will write Xj+k for the sum of components x and Xk. Notice

that if Xjk and El x, are given then Xj+k is uniquely determined.

One other useful bit of notation: if f is a function of N and c a constant, we write

f(N) ~ c to say that f(N) converges exponentially fast to c, i.e. If(N) - c < e-N

for some A > 0 (as in the statement of Lemma 2.2(a)).

Lemma CA (Stirling's approximation) For any positive integer K,

K! = 42,r K(K/e)KL with 1 < t < e1/1 2K

We cite this without proof; see e.g. [1, eq. 6.1.38].

Proof of Lemma 2.1: Expand the probability explicitly, and apply Lemma

C.1 to the factorials. Since the t factors all tend to 1 as N -- oo, we get

S XN N;ON
N -xN 1 - 3N

2N N , xN(1 - N N-XN

2 7N (X N -2r(N - XN) (N-xN)N-xN

,3NN xN (1 - ON)N N-xN1

\ XN \V - XN J 2rN/3N(1 ~-ON)

We know 3 N - 43 (since ~(3 -/ 3,N)NI < 2c), so the result will follow if we can show

NN XN (1 -ON)NJN-XN

xN NV -XN
-* 1. (C.1)

Now, the logarithm of the left-hand side of (C.1) is Nh(XN/N,#fN), where

h(-y, 6) = -y(In 6 - In y) + (1 - -y)(ln(1 - 6) - ln(1 - -)).
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The derivative of h with respect to its first argument is

Oh

07

6 1 - J
= In - - In

7 1 - -Y

In particular, Oh/O-y is continuous on (0, 1) x (0, 1) and is zero when = 6. We also

have h(#N, ON) = 0, and so

Nh N ) < N N- 3N- max h (7, ON)

Oh
< c- max (,#N)

-(E [:N,3N] '9Y

Oh
-4C - (##

(9-

=0.

(The notation assumes XN/N < 3 N, but of course an identical argument applies when

ON < IN/N.) Then (C.1) follows. 0

Proof of Lemma 2.3: Taking logs and ignoring the constant, we see the problem

is to maximize E> xi In ai subject to Ei ai = 1. This is a concave maximization

problem; the solution is given by the first-order condition xo/ai = A for all i, where

A is the Lagrange multiplier on the constraint. Hence the ai must be proportional to

the x at the maximum. L

Lemma C.2 For 1 < q < r, we have

P(
X 1

Xr

K;

al

ar

-P

Xq

al

K;
aq

a

Xq+1

Xr

aq+1/a

ar/a I
where x = xq+1 + - - -+ Xr and a = aq+1 + -- -+ a. (assuming a > 0).

This is the familiar decomposition property of the multinomial distribution: given

that K - x voters are of the first q types and the remaining x voters are of the

125



remaining r - q types, the distribution of types among the last x voters is independent

of the distribution among the first K -x voters (and in particular is again multinomial

M(X; aq+i/, ... , ar /a,).

Proof: Immediate from the definitions. 0

Lemma C.3

S P(, N - x I N; a,1 - a) = (1+ (1 - 2a)N)/2.
x even

Proof: Write the right-hand side as (((1 - a) + a)N + ((1 - a) - a)N)/2; ex-

panding by the binomial theorem, the terms with odd powers of a cancel and we get

Ex even (N) (I _ a)N-xax which is the left-hand side. D

Proof of Lemma 2.2:

(a) Choose E sufficiently small such that if (a1,..., a,) c J and 113 - aj < E for

each index j, then 01,...,#3, must still satisfy the inequalities I. (We can do

this since J is compact and the inequalities _I carve out an open set.) We can

find K < 1 such that

# o(1 - #)-l < K for all o,# E [0,1] with 1/# - al > E, (C.2)

where we interpret 00 as 1. Indeed, the denominator of the left side of (C.2)

is bounded away from 0, whereas as a -+ 0 the numerator is < aE and so

converges uniformly to 0 for # E [E, 1]; likewise as a -+ 1 the numerator is

< (1 - a) E and so converges uniformly to 0 for / E [0, 1 - E]. This shows that

for some q > 0, we can choose K < 1 to ensure that (C.2) holds when a < q or

a > 1 - q. Otherwise, use the fact that the logarithm of the left side of (C.2)

is #(In a - In #) + (1 - 3)(ln(1 - a) - ln(1 - #)). This expression is continuous

on the rectangle [a, #] E [77, 1 -q] x [0, 1], and takes its maximum value of zero

only at a = 3 (by Lemma 2.3), and therefore is bounded strictly below 0 for

la - #1;> E. Statement (C.2) follows.
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Now take any (ai, ... , a,) E J. Consider any given index j, and any value xi

with |xj/N - aj > E. Let #j = x/N. The probability that the realized j-th

component is x, is

P N; X P N; x

N - X 1 - a N -z 1-#i'3

(a -(1 - 1--i

< KN

There are r possible choices of index j and at most N + 1 values x to consider

for any given j, so the total probability that some event Ixz/N - a| > E occurs

is at most r(N + I)N. This bound still decays exponentially in N, and is

independent of the choice of (ai, ... , ar) E J.

(b) Fix arbitrarily small E > 0. We will show that

1 2 1 2
- < P(SN n Ti, I N;ai .. .,) < - c ) (C.3)

2 7r (2aj + e) N ~-' 2 7r(2ai - e)N

and the conclusion will follow by taking E -+ 0.

Let SN = {(Xi,... , Xr) | (2ai - E)N < x + xz < (2ai + e)N}. By (a), the

probability of drawing a profile in SI and the probability of drawing a profile

in S both go to 1 exponentially as N -* o.

Let 57 be the set of profiles such that xi - zy - y is even, or equivalently

xi + x - y is even. Certainly Ti,, g Sr. From Lemma C.2, (Xi + Xi, kEi,j Xk)

is multinomial with parameters N; ai + aj, 1 - (ai + a3 ). So the probability

of drawing a profile in Sg' is (1 ± (1 - 2(ai + aj))N)/2, by Lemma C.3. This

converges exponentially to 1/2 as N -+ oo.

Write PN for the probability that P E Ti,,, conditional on P E SN nl S,. Be-

cause the probabilities of drawing profiles inSi, T, S' converge exponentially
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to 1, 1,1/2 respectively, it suffices to show that PN satisfies

2 2
Ce -- < PN < 2(C.4)7r(2ai + e)N r(2ai - E)N

and then (C.3) will follow.

For any given N, fix any value of the subvector x-ij, such that

(1 - 2ai - E)N < 5 Xk < (1 - 2ai + e)N
koi,j

and

zi+j = N - EXk is the same parity as y.
kji,j

Also write x" and zgi for the maximum and minimum possible values of xi+j

subject to these conditions. Note that whether or not P E S' fl Sgr depends

only on z-ig.

Conditional on the values xij, the remaining coordinates (xi, xj) are distributed

M(xi+j; 1/2,1/2) by Lemma C.2. Moreover x E Tij,v if and only if xi - zj = y,

or equivalently x = (xi+j + y)/2 (which is an integer). Hence, conditional on

x-ij, the probability that x E Tiv is

((=(i+ + y)/ 2  1/2
hpz~)= P ii -

(zi+j - y)/2 1/2

Applying Lemma 2.1 together with Xzi ~ (2ai - e)N, x"f ~ (2ai + E)N gives

2 22 -< min hz (xi+j) < max h. (zi+j )
ir(2ai + E)N xi+ Xi+j ~ r(2ai - e)N'

where the maxima are taken over xi+j E [X mn <]. For each realization

of xzig, the conditional probability of x E Ti,y lies between min hy(xi+j) and

max hy(xi+j), so the overall probability of x E Ti,y also lies in between these
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bounds. At this point (C.4) follows.

As already shown, this in turn implies (C.3), and the proof of part (b) is com-

plete.

Proof of Lemma 2.4: For any K, the maximum is attained by a = K/N by

Lemma 2.3. Hence it suffices to study the behavior with respect to K of the expression

(N) (K/N)K((N - K)/N)N-K, or equivalently of b(K) = KK(N - K)N-K/K!(N -

K)!. In particular, by symmetry it suffices to show that b(K) is strictly increasing

for K > N/2.

Put c(K) = KK/K!. Notice that c(K+ 1)/c(K) = (1 + 1/K)K which is increasing

in K (this can be verified directly by taking the logarithm and differentiating). Hence

for K > N/2 we have

b(K + 1) c(K + 1)c(N - K - 1) c(K + 1) c(N - K) >1
b(K) c(K)c(N - K) c(K) c(N - K - 1)

because K> N - K - 1. El

Next we give a simple bound on the probability of large deviations under multi-

nomial distributions.

Lemma C.4 For all N, K, a,

N(a-K/N)2

P(K, N - K I N; a, 1 - a) < e-N 2 .

(One can obtain a slightly stronger bound from Hoeffding's Inequality [24], but

the proof here is self-contained.)

Proof: Consider the function h(a) = In P(K, N - K I N; a, 1 - a), whose max-

imum is at a = K/N by Lemma 2.3, and its value there is certainly at most 0.

Moreover d2h/da2 = -(K/a 2 + (N - K)/(1 - a) 2 ). Now by Cauchy-Schwarz,

+ N - K a2 + 1-a)2) (NK + VN - K) 2>N.
a2 (1+ a)2
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Then d2 h/da2 < -N so h(a) < -N(a - K/N) 2 /2.

The next two results concern the quantity o-* , defined in Subsection 3.1.

ED

Lemma C.5
1 2 1 2N

e 3(N-1) - o 612N
rN < r(N2 _ 1).-

Proof: Put a = 1/2 if N is even and (N - 1)/2N if N is odd. By Lemma C.1,

write

[taN(aN/e)ON 27raN] -

where the three t terms

to

o-) = aaN _ (1-a)N _

LN(N/e)N 2,N aN _ (1-a)N

[t(1-)N ((1 - a)N/e)(1-a)N V27r(1 - a)N]

satisfy 1 < t, < e/12x. Cancelling common factors reduces

LN

taN t(1-a)N 27rNa(1 - a)

Both aN and (1 - a)N are at least (N - 1)/2, hence e-1/3(N-1) < tN/aNtc(1-a)N <

el/12N; and a(1 - a) E {(N - 1)2 /4N 2, 1/4}, hence the square-root term is either

V2/TrN or V2N/7r(N 2 
- 1).

Corollary C.6 o-* is decreasing in N.

Proof: For N < 15, o <o 1 can be verified by direct computation. For N > 15,
Lemma C.5 implies that it is sufficient to check that

e i N 2 _ e 3(N-2) (C.5)

or equivalently

N_ 1 N

Since ((N + 1)/N)N+l > e, we have }N/(N + 1) < e-1/ 2 (N+1), So (C.6) follows from

the inequality 1/12N + 1/3(N - 2) < 1/2(N + 1) which holds for N > 15. O

We provide a few more useful bounds.
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Lemma C.7 If x, y > K > 0, then for all a we have

P(x,y | X+y; a, 1 -a)< 'r.

Proof: By Lemma 2.3, the probability is maximized by taking a = x/(x + y). In

this case, we can write the probability explicitly using Lemma C.1 and simplify as in

Lemma C.5 to obtain

(x

P y

X/(x + y) e1 / 1 2  27r(x + y)

y/(X + y) 27rx 2iry

Either (x + y)/x < 2 or (x + y)/y < 2, so we can cancel the numerator radical with

one of the denominator radicals and a V2 factor, and the result follows. O

Lemma C.8 There exists an absolute constant c > 0 with the following property.

For every positive integer N and every nonempty subset S C {0,... , N}, there exists

a 2 max(S)/N such that

K-i

N-K+1

a
N;

Proof: It suffices to prove the lemma when S = {K}. Indeed, since P(K, N -

K I N; a, 1 - a) is increasing in K when K < a(N + 1), every term on the left-hand

side of the inequality in the lemma is nonnegative as long as a 2 max(S)/N, so it

suffices to show that the term corresponding to K = max(S) is at least c/N.

So let S = {K}. If K = N then take a = 1. If K = 0 then take a = 0. Otherwise,

let L = K + L/ K(N - K)/NJ; we will show that a = L/N does the job. (Note that
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L < N, i.e. a < 1.) We have

K-i

N-K+1

a

1-a )

N

- 1

a

1-a)

a

1-a>

K
1-

N-K+1

Now, the middle bracketed expression is a product consisting of L - K factors,

each of which is greater than

K 1-a K(N - L) 1
N-K a L(N - K) - L-K

(to verify the last inequality, cross-multiply and rearrange terms to find that it is

equivalent to (L - K) 2N < L(N - K), which is true). Hence this product is

L-K) -4

as long as L - K > 2. Otherwise, L - K = 0 and the middle product is empty, or

else L - K = 1 and the middle product equals (N - K - 1)/(N - K) > 1/2 (notice

that if K = N - 1 then L = K). Hence in every case the middle bracketed expression

is > 1/4.

It therefore suffices to show that there is some constant c' such that the bound

/
L a ~ K 1-a] c'

;N-L i-a N-K+1 a > N (C7)

always holds. We split into three cases.

* Suppose K < N/2 and L > K. The P( ... ) factor is bounded below by -* >
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1-a

P
N-

L
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(N-

K

L

N

N;

K 1-al
N-K+1 a

[L-1 k+11 -a

.k=N-k a
*1-a]



2/7rN, by Lemma 2.4. Also, L - K

L - K < K, so

K 1-a
1- -

N-K+1 a

where there last step uses the assumptioi

on the left side of (C.7) is bounded beloi

> 0 implies (1/2) K(N - K)/N <

K(N - L)
L(N - K)

(L - K)N
L(N - K)
L-K

L
L-K

2K
iNK

4 NK
11 1

n K < N/2. So each of the two factors

v by a constant times F1/N.

* Suppose K > N/2 and L > K. In this case, we apply Stirling's approximation

(C.1) as usual to observe that P(L, N - L I N; a, 1 - a) is bounded below

by a constant times VN/L(N - L). Combining with the chain of inequalities

from the previous case, we see that the left side of (C.7) is bounded below by a

constant times

N 1
L(N - L) 4

N-K 1 N N-K 1 1

NK - 4 K(N - K) NK 4K 4N

* Finally suppose L = K. This can only happen for K = 1 or N - 1, or for small

N (which we can ignore since the result is asymptotic), and so we verify (C.7)

directly in these cases. We have P(L, N - L I N; a, 1 - a) = ((N - 1)/N)N-1

1/e, a constant. If K = 1 then the second factor in (C.7) is 1/N; if K = N - 1

then this factor is 1/2.

This verifies that (C.7) holds in every case.
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Lemma C.9 Fix any positive constant c. If N is taken large enough and a - c/l VN

then
N

EP
K

N-K
N;

1
a ~

(Actually the left side goes to zero exponentially fast in VW, but this very crude

bound is all we will need.)

Proof: Put p(K) = P(K, N - K I N; a, 1 - a). We have

p(K+1) = N-K a <N-K
p(K) K+1 1-a- K

a
1-a

1

whenever K > 2Na. Since p(K) < 1 for K = |2Na~, we have by induction p(K) <

1/ 2 K-[2Na] for K > 2Na, and therefore by the expression in the lemma statement is

at most
1 1 1 1

2K2-[2a] 2 3Na]-2Na]- 1 - 2 cv--2 N'
K= 3Na]

The remaining lemmas in this section are bounds on certain alternating sums of

multinomial probabilities. These bounds are useful for the construction in Appendix

H.

If S is a set of positive integers, let u(S) and 7r(S) denote, respectively, the sum

and the product of elements of S (with o-(0) = 0, 7r(0) = 1).

Lemma C.10 Fix e > 0 and a G (0,1/2), and fix a positive integer d. There exists

a threshold No with the following property: For all N > No, all a C [a,1 - a], all

integers K, and all sets S of positive integers with |SI = d,

Z(-1)TIP
TCS

K - o-(T)

N - K +o-(T)
N < 7r(S)N-d 2 ).
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Proof: The expression inside the absolute value is (up to a sign) the coefficient

of zK in the polynomial

Qa,s(z) = [(Zs - 1)]
.sS _

-- (az + (1 - a))N

This coefficient is also expressible as

L

L Z(-KIQsaS W)

where L is any integer greater than the degree of Qc,,s and ( is a primitive Lth root of

unity. Therefore, it suffices to show that for some No the following holds: whenever

N > No, for all choices of S and a and every complex number z with IzI = 1,

(C.8)|Qa,s(z)I < -r(S) N-I A.

We consider two cases for z. Let 9 = arg z.

Suppose 101 < N-1 /2 E. Then Iz - 11 < N(/ 2-e), from which

1) < sIz - 11 < sN-(1/2-e>

and then multiplying across all s E S, together with Iaz + (1 - a)| < 1, gives

the result.

9 Otherwise, 101 > N-1/ 2-E. As long as N is not too small,

Iaz + (1 - a)|12 = (1-a+acos) 2 +(asin 0) 2

= (1- a) 2 + a 2 + 2(1 - a)a cos 0

< (1-a) 2 + a 2 + 2(1 - a)a 1 N1- 2e
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(this follows from cos 2 N- 1/2-E = 1 - sin 2 N-1/ 2-: > 1 - 1/4N- 2e)

< (1- )2 + ae2 + 2(1 - a I 1 8N1-2e:

_(1 -a)a
= 1 4N-2E

< 1 C,

where c' = (1 - a)a/4. Hence

|az + (1 - a)IN < (I - cN-(1-2e))N/2

= [( - c'N-(
1 2e)) N -2e /2 N2e

< [exp(-c')
1/ 2] Ne

< )/2

as long as N is larger than some threshold that depends only on a, E, d. Since

also Iz' - 1| < 2 for each s E S, the bound (C.8) follows.

Lemma C.11 Fix a positive integer d. For any positive integer h, there exists a

partition of the set Z = {0, 1,... , 2hd - 1} into 2h subsets Zo, Z1,..., Z 2h-1 , of size

2 h(d-1) each, so that the following property is satisfied:

For any e > 0 and a c (0,1/2), there exists a threshold No such that for all

N > No all a G [a, 1 - a], and all integers K,

K-x

N-K+x

a
N; - P

1-a sez, ( K-x

N-K+x

< 2h~d2+d-1)hNd(i-')

for any two sets Zi, Zj of the partition.

Proof: We first describe the partition. Consider each of the numbers 0,1,...,
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2 hd - 1 written out as a binary string with hd digits. We assign each such number x

to a subset Zi as follows:

9 Divide the hd digits of x into h segments of d digits each;

e next, replace each segment with a 0 or a 1, depending whether the number of

l's in that segment is even or odd;

e finally, read the resulting h-digit string as a binary number i E {0, 1, ... , 2h --11

and assign x to Zi.

It should be clear that each Zi consists of exactly 2 h(d--1) values x.

Now let No be the threshold given by Lemma C.10, with the same c, a, d as in the

current lemma. Assume N > No, and let a E [G, 1 - a] be arbitrary.

Define

E(a, Zi, N, K) = P N;.
XEZi N- K +x 1 - a

It suffices to show that if the binary representations of i and j differ by just one digit,

then for all K,

|E(a, Zi, N, K) - E(a, Zj, N, K)I < 2 h(2d1)Nd(-). (C.9)

Indeed, since one can get from any i to any j by at most h single-digit changes,

applying (C.9) repeatedly will then imply

jE(a, Zi, N, K) - E(a, Z3 , N, K)J < 2 h d2+d1)hN-d( -) (C.10)

which is exactly the assertion of the current lemma.

Without loss of generality, i has a 0 in the (r + 1)th position from the right, while

j has a 1 in that position; all other digits in the binary representations of i and j are

the same. Then define three sets Z, Zi, Zj:

e Z consists of all values of x C Zi such that the (dr + 1)th, (dr +2)th, ... , (dr +

d)th digits from the right are all 0;
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Z4 consists of all numbers that can be represented as a sum of an even number

of elements of the set { 2 dr, 2 dr+1, ... , 2 dr+d-1}

e Z consists of all numbers that can be represented as a sum of an odd number

of elements of {2 ', 2 r+1 ... 2 d+d-1}

Then, Zi consists of numbers that can be represented as a sum of an element of Z'

and one of Zj, and for each such number, the representation is unique. Likewise Zj

consists of numbers that can be represented (uniquely) as a sum of an element of Z'

and one of Zj.

Applying the conclusion of Lemma C.10 with S = {2dr, 2d+1, ... , 2 dr+d-1}, and

using the easy bound r(S) < 2d(dr+d-1), gives the following: for any K,

Y, K-x a EK-x a
EP(N N; l )-x P(N N;

xzz N-K+x 1a x E z N-K+x 1- a

< 2d rd1) N-i~. (C. 11)

Now replace K by K - y for each possible y E Z , and sum over all y. We have

E IP (\K-y-x a ) K-x a )

YEZxEZ ( N-K+y+ x 1- a EZ N-K+x 1-a

and likewise for Zj and Z-. Thus, summing (C.11) over the 2 (d-1)(h-1) choices of

y C ZO and then applying the triangle inequality gives

|E(a, Zj,N, K) -E(a, Zy,N, K)| < 2(-(-1 -2 2d~-1N-n -2

i (d-1)(h-1)+d(hd-1) -d(!~E).

Since (d - 1)(h - 1) + d(hd - 1) h(d 2 + d - 1), (C.9) follows. O

D Assorted shorter proofs

Proof of Proposition 3.2:
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(a) The argument is actually slightly more complex than that given in the main

text, because the alphabetical tie-breaking leads to different cases depending

on the parity of N.

If N is even, let the manipulator's preferences be ACB ... , and let the opponent-

profile P be distributed according to # = (1 B, 1 C) (only voters' top choices

matter). Then the manipulator cannot change the outcome except in the case

P = ($ B, E C), in which case strategically voting for C instead of A bene-

ficially changes the outcome from B to C. If N is odd, let the preferences be

ABC..., and let = (N1 B, i C). Then the manipulator is pivotal pre-

cisely when the opponent-profile is P = (N-1 B, N11 C), in which case voting

for B changes the outcome from C to B. In both cases, the probability of being

pivotal (2.3) is o-*y.

(b) First we prove the lower bound. Consider any small e > 0. Let the manipulator's

preference be ABC..., and consider a distribution # E A(C) of the other voters'

first-place votes such that B and C are each chosen with probability L +e, and

every other candidate is chosen with probabilityy- 12.

Consider susceptibility as formulated in (2.3), where the proposed manipulation

' is one that ranks B first, and the set C+ of desirable candidates is {A, B}.

Write the relevant expectation as

o- E [I(f( ',P) C+) - I(f(, P) C+)] P(P | N;). (D.1)
P

(We write > rather than =, since we are considering a specific distribution #

rather than the max.) Say that an opponent-profile P is relevant if B and

C both receive a vote share between 1/M + e/2 and 1/M + 3e/2, and every

other candidate receives less than 1/M of the vote. By Lemma 2.2(a), the

probability that the realized profile is relevant is ~ 1, so we need only consider

the contribution of the relevant profiles to (D.1). For any such profile (assuming

N is large enough), no matter what the manipulator does, the outcome will
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be either B or C. The relevant profiles that contribute to (D. 1) are exactly

the ones where the manipulator is pivotal in changing the outcome from C

to B - that is, the ones for which B receives exactly one less vote than C.

It follows from Lemma 2.2(b) that the total probability of these profiles is

(1/2) 1/r (i + E) N. (Here the lemma applies with B, C corresponding to

the indices i,j, and y = -1. Note that the definition of a relevant profile is a

set of linear inequalities on the vote shares.)

Thus we have
1 1

Taking E -+ 0 gives the lower bound in Proposition 3.2(b).

Now we prove the upper bound. For each value of N, consider the true prefer-

ence, manipulation, and belief # that attain the maximum in (2.3). (These may

vary depending on N, but we will not bother to make this dependence explicit

in the notation.) Suppose that, for a given N, the manipulator's true first choice

is Ai and the reported first choice is A,. This manipulation can be beneficial

only if it changes the outcome from Ak, for some k $ i, j, to A,. For each k, let

Sk, be the set of all N-profiles P such that f(Ai, P) = Ak and f(Aj, P) = Aj;
and let S-j = Ukzi,j Skj We wish to show that P(S_, I N; #) ,< NM/irN.

Now, consider again any fixed E > 0. For each k $ i, j, we have

max P(Sj | N; #) ~ 0. (D.2)
e: 4;>!(1+E)#k

Indeed, each opponent-profile P = (zi,..., xM) E Skj has Xj + 1, Xk ;> NIM,

and also xy = Xk or xj = 2k - 1. Consider such a profile P. Let p(Xjk) be

the conditional probability of realizing P, given that the components Xjk are

realized. By Lemmas C.2 and C.4,

xi pj I Oj+/( +k) --(xjx-#). (j ) 2/2
P(X-jk)= P ( X Xj + k/G41%+ Ok) )<e(X~kO+k
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The squared expression in the exponent is bounded away from zero, while the

Xj + Xz factor is > N/M, so the upper bound goes to zero exponentially in

N. So, given any value of x jk, the conditional probability of realizing values

of xj and Xk for which the resulting profile is in Skj is bounded above by an

expression that decays exponentially in N. Hence the unconditional probability

of Skj satisfies this same exponential bound, and (D.2) holds.

On the other hand, the worst-case belief # cannot have P(S_,j I N; #) ~ 0,

since we already proved this probability satisfies a lower bound on the order of

1/N. Thus, as long as N is large enough, there must be some k* such that

#j < (1 + E)#k.. (This k* may not be unique, and may vary depending on N.)

Next, we claim that for any value of X-jk. there is at most one way of choosing

xj, Xk. (given the additional constraint E, x, = N) so that the resulting N-

profile lies in S_. Indeed, suppose for a contradiction that (xj, Xk*, X-jk*) E

S-j, and also (xj + s, Xk. - s, x-jk*) E Sj for some positive integer s. Then,

in particular,

f(xix + 1,Xk*,Xijk*) = Aj; (D.3)

f(xi +1, x + s,Xk* - S,Xijk*) = Aj 7 A, Aj. (D.4)

If s > 2, then the profile in (D.4) gives a (weakly) greater advantage for j
relative to 1 than the profile in (D.3) does, so if plurality rule chooses A3 in

(D.3) it should choose A, in (D.4) also, a contradiction. And if s = 1, then the

profile in (D.4) differs from that in (D.3) by a vote shift from Ak* to Aj, which

cannot change the winner from A, to A, - a contradiction again. Thus the

claim holds.

Consider any X-jk* such that there exist xj, Xk* for which the resulting profile lies

in S-,j. We will again bound the probability of realizing this profile, conditional

on X-jk*. For this pivotal profile, we must have Xj+k* 2 xj 2 (N + 1)/M - 1 >

N(1/M - E) (as long as N is large). The conditional probability of realizing

141



(Xj, Xk.) given Xzjk. is

p(z-jk.) - P zj j+k. -j(j 0

k. #0./(#% + #k*)

(i) If xz > (1 + 2e)Xk* then this probability p(Xzjk*) is bounded above by

an expression that decays exponentially in Xj+k. (by Lemma 2.2(a) and

#j < (1 + e)#k*). In particular, across all choices of zXjk* such that the

corresponding profile in Sj satisfies x > (1 + 2E)Xk*, the probability

p(Xzjk*) is bounded above uniformly by a quantity that decays exponen-

tially in N.

(ii) If x3 < (1 + 2E)Xk*, then (since we also have x + 1 > Xk*) we get Xj+k. >

N(2/M - &). Hence

p(X-jk*) < max P(x, y I x + y; a., ay).
x+y2N(2/M-3e)

x (1+2c)y
y<(1+2e:)x

For given x + y, the choices of x, y, ax, ay that attain the max are given by

Lemmas 2.3 and 2.4, and we obtain

P(Xjk*) <K max P zy K; )
K>N(2/M-3e) K

with x = , y = K - x.
2+ 2E

Denote the expression inside this maximum by j(K).

We have thus shown that the conditional probability of realizing (Xz, Xk*) form-

ing a profile in S_, given Xjk*, satisfies

P(Xjk*) 5 max{ce-AN, max j(K)}.
KN(2/M -3e)

(Here c, A are some positive values.) This inequality applies to the conditional
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probability of obtaining a profile x E Sgj, given X.jk*. So it also applies to the

unconditional probability of drawing a profile in S_,:

P (S- I N; #) < max{ce-AN, max j5(K)}.
K>N(2/M-3e)

Now, Lemma 2.1 gives

~(K) 1
27K ( l I (1+2E)-

\2+2EF 2+2E/

Hence

P(S_ | N; #) < max ce-AN 27rN - - i +
(M 2+2f: 2+2e-

Clearly, for N large enough the square-root term dominates.

Finally, taking E -* 0 gives us the simpler asymptotic upper bound /M/-1rN,

which is what we wanted to show.

Proof of Proposition 3.3:

Given Proposition 3.2(a), we need only show o' ur -* Consider any true pref-

erence for the manipulator and proposed manipulation. For this proof only, label the

candidates so that the manipulator's preference is ABC, not necessarily correspond-

ing to the tie-breaking order. A manipulation from A to C can never be beneficial;

manipulation to B can be beneficial only when it changes the winner from C to B.

So we need to show that the probability of being pivotal from C to B is at most a*.

Let

SO = {(XA,XBXC) I XB = XC -1 XA},

S1 = {(A,XB,XC) I B X C XA +1}

The relevant set of pivotal profiles is contained either in So or Si (depending on which

of B, C wins a tiebreaker), so we just need to show that for any #, both So and Si
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are events of total probability at most o-*y.

Consider the # that maximizes P(So I N; #). Write # = (A, #B, c). We then

have #c > #A. Proof: Suppose not. Then

d
de[ IS N;4# --e,#B,#c +E)]

d N! (A-EIOB(C+fXZE-XBX)S XA!XB!XC!B)N - E B (X #CC -~ eSc

dexA!xB!C (O C+E OA-E

(XA,XB,XC)SO

For E close to 0, the last factor in parentheses is always positive (since xc XA

throughout So). So changing the belief from (#A, #B, #c) to (#A - e, #5B, #c + E)

increases the probability of drawing a profile in So, contrary to the assumption that

the belief was chosen to maximize this probability.

Exactly the same reasoning applies for S1. Thus it suffices to show that each of

So, Si has probability at most o-* , assuming that the belief # = (#5, #5 , #c) satisfies

OA < #c. In particular, we may assume #A < 1/2.

We need to show four things:

(i) when N is odd, the probability of drawing a profile in So is at most o0-*;

(ii) when N is odd, the probability of Si is at most o-*;

(iii) when N is even, the probability of So is at most o-*;

(iv) when N is even, the probability of Si is at most o-*.

First consider (i), so N is odd. Then, for (XA, XB, XC) 6 So, we have XA even and

at most x2 = 2 [N/6], so

P(So I N;#) = E
XA even

O<XA Xmax

XA N; P XB N-xq5B

N-XA 1-A XC C

by Lemma C.2 (where #'/ = c = -C,). Since the relevant XB, xc are equal
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or differ by 1, Lemma 2.3 gives P(XB, XC I N - XA; #,# ') I N-2A, which in turn

is at most J~yrna by Corollary C.6. Hence, the above sum is at most

0 #
P N N; 1  N

N~x #A
P XA N; O*A 0

XA even N -A 1 - A2 <XA X2"

< P(0 N; (01 - 01 max) +
N 1 A - # X

XA #A
L P L N; OI I a.

XA even N -x 1 - OA

In this last line, the first probability is (1 - #A)N, and the bracketed sum is the

probability that a binomial distribution with parameters N; #A produces an even

number of successes, which is (1 +(1 - 20A)N)/2 (Lemma C.3). Thus, the probability

of drawing a profile in So is at most

- -5A)(~ +1+ (1 -2A)N

h(#A) = (1 -#A)N *max) )N max(-* -ON A 2 0__A

Let us find the maximum of h on [0, 1/2] (since by assumption #A lies in this interval).

Differentiating gives

dh= -N [(1 - $A)N1 - Nmax) + (1- 20A)N-1 NmZ.
LO A Aj

This is negative if
(1- 2 ) N-1 A* -I 20* _X _
1 - N xA

which holds precisely when #A is sufficiently small. Therefore h is initially decreasing

and then increasing, so the maximum occurs at one of the endpoints of the interval,

h(0) = a* or h max. + 2N -ax'
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The first of these is larger as long as o* 2 o-*g /2. Using the fact that N-xy" >

2N/3 and the bounds in Lemma C.5, we can verify that this always holds. Thus, we

have shown that the probability of drawing a profile in So is

P(So | N; #) h(#A) h(O) = o-*.

That takes care of (i).

Next we turn to (ii), where we consider the probability of drawing a profile in S1.

In this case, each such profile has XA odd and at most Xzax = 2 [N/6] + 1. Hence, by

similar calculations, the relevant probability is

A A (XB #B
P X N; P N - xA;

XA odd N -XA -- A XC C

<dP ( A N- OA max

LXA odd N - xA 1 - #A ^ X

The bracketed expression is the probability that a binomial distribution with param-

eters N; #A produces an odd number of successes, which is (1 - (1 - 2#A )N)/2 < 1/2.

(Remember that OA 1/2.) Therefore the probability of drawing a profile in Si is

at most u*- rax./2. This is less than o , again by straightforward use of the bounds

from Lemma C.5.

In case (iii), the relevant set of profiles again has XA odd and at most zm' =

2[N/6] + 1, so the reasoning used for (ii) applies again word for word.

Finally, in (iv), the relevant set of profiles has XA even and at most x" = 2 [N/6].

In this case the reasoning used for (i) applies again.

This covers all four cases (i)-(iv), so the probability that the manipulator is pivotal

is never more than o-*.

Proof of Proposition 3.5: Again, the tie-breaking assumption leads us to

split into cases depending on parity. First suppose M is even. Let the manipulator's
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preferences be A1A2 ... AM. Suppose the belief <p is

SA1A 2A 3 ...Am

SA 2A1A 3 ...Am

That is, all the other voters prefer Ai and A 2 , then the remaining candidates in numer-

ical order, but are evenly split between ranking Ai first or A2 first. The manipulator

considers manipulating by moving A2 to the bottom, thus reporting A1A3 ... AMA 2-

Regardless of whether the manipulator tells the truth or lies, A, will have a higher

score than A3, ... , Am, so the winner must be A, or A2. Suppose x of the other voters

rank Ai first, and the remaining N - x rank A2 first. The difference in scores between

Ai and A2 is (x+1)-(N-x) if the manipulator tells the truth and (x+M-1)-(N-x)

if he lies. Therefore, manipulation improves the outcome from A2 to A1 if

2x- N +I <0< 2x-N+M- 1

or equivalently
N - (M - 1) N - i

2 2

Otherwise, manipulation has no effect on the outcome.

Given that x has to be an integer, the possible values of x in this range are

[N/2 - K] for K = 1, 2,..., (M - 2)/2. For each such K, Lemma 2.1 tells us that

the probability that x = [N/2 - K] is ~ 12/irN. Therefore, the total probability

of being pivotal is ~ M 2 2/irN, and the result follows via (2.3).

Now suppose M is odd. The argument is essentially the same, except that we

have to consider different cases depending on the parity of N. If N is even, then we

consider exactly the same preferences, the same manipulation, and the same belief as

before. Again, the manipulator is pivotal if (N - (M - 1))/2 < x < (N - 1)/2. The

integer values of x in this range are N/2 - K for K = 1, 2, ... , (M - 1)/2.

If N is odd, then we reverse the roles of Ai and A2 throughout. Thus, the

manipulator's belief is the same as before, but his true preference is A2A1A3 ... Am,

and the proposed manipulation is A 2A 3 ... AMA1. Let x now denote the number
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of other voters who rank A2 first. Then the score of A2 minus the score of A1 is

(x + 1) - (N - x) if the manipulator tells the truth and (x + M - 1) - (N - x) if he

lies; in view of alphabetical tie-breaking, the manipulator is pivotal if

2x-N + 1<0< 2x-N+M- 1.

The integer values of x satisfying these inequalities are x = (N + 1)/2 - K for

K = 1,2, ... , (M - 1)/2.

So for both N even and N odd, the manipulator is pivotal when x = [N/2 -K for

some K = 1, 2, ... , (M - 1)/2. The total probability of this event is ~ M-1 2/wrN.

We next prove Lemma 4.8, the ancillary result en route to the local average lemma.

We use the notation f(#), fA (#) developed in Subsection 4.3 of the main paper.

Proof of Lemma 4.8: Put g(x) = fA (#1.

The proof is based on the following observation. Consider the definition (2.4) of

P, and take the partial derivative with respect to a parameter a (ignoring the fact

that our interpretation of (2.4) required ai + - - -+ ar = 1). We obtain

aP

( x1

Xi

Xr

ai

K; a

ar

=K - P

/

1xi -

x,

K - 1;

ai

a

ar

(D.5)

]I
On the right-hand side, xi has

Now consider the function

been replaced by xi -1 and all other

of x,

zj are unchanged.

fAi(4x) = P
f(P)=Ai CP N + 1;

The sum is over all (N + 1)-profiles P such that f (P) = A2 . Differentiating this sum

148

a(1 - x)

ax

1 - a

;,J

Xi

\



term-by-term with respect to x, and applying (D.5), we obtain

d
d (fA(#)) = E (N -P(P- -/' I N; # i) - aN- P(P- >- N; #x)). (D.6)

f(P)=Ai

The interpretation of the P(P- >-' f...) term is that if P contains at least one -'

vote, then P- >-' is the N-profile consisting of P with a >-' removed, and otherwise

we simply interpret the whole term to be zero; similarly for the P(P- >|- - -) term.

Now (D.6) can be rewritten

fA(#)) = N P(PIN; #2)- I P(P I N; x).

Here the first sum is over N-profiles P with f(>-', P) = A , and the second is over P

with f(>-, P) = Aj. This in turn is equivalent to the difference given in the lemma

statement. l

We also include here the proof of the result in Appendix A. It is basically a routine

unwinding of definitions.

Proof of Proposition A.1: It suffices to show that for any symmetric equilib-

rium strategies of the voters, the following holds:

(a) if the planner chooses a voting rule f with 0(f) f then her utility is given by

minppgN+1 V(f (P), P);

(b) if she chooses f with (f) > E, then her utility is V.

Statement (a) holds because the voters will never manipulate. Specifically, suppose

the state is w C Q*. Then, o7(f) < -(f) < e. Consider a voter with utility function

u, manipulation cost E, and belief # about the types of the other voters. Composing

the strategy T of the other voters with 0 gives a probability distribution # E A(L),

so that other voters' actual reports are expected to be independent draws from 4.

Consider any manipulation >-'E L. From the definition of o-(f) we have

u(w(f, >', #)) - u(W(f, >-* (u), #)) os(f) < f < E.
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Equivalently,

U P , #0)) -e < U(w(f, >-* (n), )).

So the voter will choose to simply report the true preference >-* (u). Thus, in all

possible states w c Q*, each equilibrium strategy T of the voters will specify that

they always tell the truth. Then, whenever the voters' true preferences realize the

(ordinal) profile P, the planner's utility is V(f(P), P), regardless of the state. From

the maxmin specification of the planner's utility, claim (a) follows.

For (b), consider any f with -(f) > e. We know that there exist some preferences

>1,... , >-N+1 and reports ,..., >--N+1 such that

V(f(' 1 , ... , 'N+I)i 1, ... ,>-N+1) = V-

(This follows from the definition of V as the minimum value of V, and the fact that

f is surjective.) So our strategy will be to construct some state w C Q*, and some

types ti C T for the voters, such that each voter i has true preference >i but reports

>i in any equilibrium.

First we construct the state w, as follows. Fix a number a with e < a <

min{1,3(f)}. We first define ( : E x A(L) -> A(C) to be any continuous function

such that for all preferences >-, >-', >-"E E,

S( 2 , 1 , the top candidate in >-', with certainty if >- =>;

3 3 the bottom candidate in >-', with certainty otherwise.

This can be done, since we have only specified the values of ( at finitely many points.

Now, for the given voting rule f, we define w(f, A,) E A(C) for all preferences

>- E 2 and all beliefs # C A(E), by

w(f, ,>-# ) = 5((>-,# ) + (1 -5) A1 .

That is, if the voting rule is f, then w chooses the output of ( with probability 5,

and otherwise just chooses the fixed candidate A1 as winner.
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For every other voting rule f' =f , any - E L and any # EA(L), put

W(f', >-, ) = wo(f', >-, #).

This completes the definition of w. It is straightforward to check that W is indeed a

continuous function: we need w(f, >-, #) to be continuous in #, but this follows from

continuity of (; and for each f' : f we need w(f', s,#) to be continuous in #, but

this follows from continuity for wo.

We check that w E Q*. Notice that under voting rule f in state W, each voter

cannot affect more than i probability mass of the outcome by changing his vote. It

immediately follows that

og(f) < < jf)

And for any other voting rule f', we have

w(f') = o (f') < (f')

by the assumption wo C Q*. Thus, the susceptibility bounds are satisfied, and W E Q*.

Next, for each voter i, we construct a type tj as follows:

" the utility function ui represents the preference >-j, and values the top candidate

at 1 and the bottom candidate at 0;

" the manipulation cost is E;

" the first-order belief about others' preferences is that every other voter

- with probability 2/3, has a utility function that represents >-i and has

range smaller than E; and

- with remaining probability 1/3, has a utility function that represents >i

and has range smaller than e.

(The first-order belief about others' manipulation costs may be arbitrary.)
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By the richness assumption, there exists a type ti C T having this basic type and

first-order belief.

Now we consider ti's equilibrium behavior in state w. First, in any equilibrium,

any voter whose utility function has range smaller than E always votes truthfully

(since his material gain from lying is less than E). Therefore, voter i's induced belief

# about others' behavior is that each other voter will report >-i with probability 2/3

and report 9 with probability 1/3. Then:

Sw(f, Sj, #b) is the distribution that chooses the candidate ranked first by >-i with

probability 5, and chooses A1 with remaining probability 1 - 5. Thereforefore,

if voter i reports 'i, his expected material utility is a + (1 - 5)ui(A1).

e For any >-'# >j, w(f, >'-, #) chooses the candidate ranked last by >-i with prob-

ability 5, and Ai with remaining probability 1 - 5. Therefore, i's expected

material utility from reporting any such >-' is (1 - 5)ui(A1).

Since a > E, voter i's unique best reply is to report ' .

Thus, in state w E Q*, the types ti,..., tN+1 of the voters have true preferences >-1

, ... , >N+1 but necessarily report >1,... ,>-N+1. This leaves the planner with utility

V(f(>'1,7... ., >'N+1- >-1, -NI Vi>+

her worst possible. Statement (b) follows. El

E Proofs for comparison of voting systems

Here we prove Proposition 3.6, giving lower bounds on the susceptibility of five voting

systems from [2].

Proof of Proposition 3.6: We give the proofs for the voting systems one by

one in order.

Black's system. This is just an embellishment of the construction given for the

Borda count, performed so as to ensure the nonexistence of a Condorcet winner (with
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probability close to 1). We first present the construction for M = 5. For readability

we refer to the candidates using letters A, B, C, D, E. Take small E > 0. Consider the

following belief of the manipulator: the other voters report

CDABE DEABC ECABD1
each with probability 1/12 + e;

CDBAE DEBAC ECBAD J
CABDE ABDEC ABECD1

each with probability 1/12 - e.
CBADE BADEC BAECD

Each other voter then:

" prefers C over D with probability 2/3;

" prefers D over E with probability 2/3;

" prefers E over C with probability 2/3;

" prefers C over A and B with probability 1/2 + 2E.

By Lemma 2.2(a), with probability converging exponentially to 1, each of these pair-

wise preferences will be held by a share at least 1/2 + E of opposing voters, so no

matter what the manipulator does we will end up with C - A, B, D; D -+ E; and

E -+ C. In particular, no candidate can then be a Condorcet winner.

Also, each other voter awards, on average,

* 40/12 - 10E points each to A and B;

* 36/12 + 4E points to C;

* 32/12 + 8E points each to D and E.

Using Lemma 2.2(a) again, we see that with probability exponentially converging to

1, candidates A and B will end up with higher scores than C, D or E, no matter what

the manipulator does.

So, neglecting events of exponentially small probability, we can focus on the re-

alizations where there is no Condorcet winner and only A or B can win whatever
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the manipulator does. Then, if N is even, let the manipulator's true preference be

ABCDE and consider the manipulation ACDEB; if N is odd, let the true preference

be BACDE and the manipulation be BCDEA. Exactly as in the proof of Proposition

3.5, the manipulation improves the outcome from the manipulator's second-ranked to

his first-ranked candidate with probability ~ 2/ 2/7rN, and has no effect otherwise.

This covers the case M = 5. For M > 5, construct a belief by supposing each

other voter ranks the first five candidates A 1, ... , A5 (= A, ... , E) at the top according

to the distribution above, and then has all remaining candidates in numerical order

after them. Then none of the extra candidates can ever be a Condorcet winner,

nor a Borda winner, since they receive lower scores than (say) A1. So again, with

probability converging exponentially to 1, the winner will be either A1 or A2 no

matter what the manipulator does. Let the manipulator's preferences and proposed

manipulation be as for Proposition 3.5; then manipulation succeeds with probability

[((M - 2)/2)] /2/irN by the same argument as before.

Copeland's system. We will give a construction supposing that M = 3K - 1,
where K > 3. If M > 9 is instead of the form 3K or 3K + 1, then we can modify the

construction by the usual method of appending the extra one or two candidates at

the end of everyone's preferences, and the same argument will apply. At the end of

the proof we will also show how to modify the construction for the remaining cases

M = 3,4,6, 7.

It will be convenient to depart from our usual notation for candidates and instead

let the candidates be called A, B, C1,... , CK, D1 ,... , D2K-3, where ties are broken

in that order. We will also let the D-candidates be numbered cyclically, so that

Di+(2K-3) = Di.

Let the manipulator's true preference be C1 ... CKD1 ... D2K-3AB. To describe

the belief #, we will not list out all the preferences that other voters may have, as there

are too many to list individually; instead, we will describe a process by which a random

preference is constructed. In this description, we will refer to choosing a random cyclic

permutation of the Di, which means an ordering of the form DjDj+1 ... Dj+2K-4,

where each possible value of j c { 1, 2,... , 2K - 3} is chosen with probability 1/ (2K -
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3).

* With probability 1/3, do the following: Begin with BA, then, for each i =

1,... , K, append Ci either at the beginning or at the end, independently each

with probability 1/2. Finally, attach a random cyclic permutation of the Di at

the beginning of the preference order.

" With probability 2/3, do the following: Begin with BA, immediately followed

by a random cyclic permutation of the Di; then successively append each Ci

either at the beginning or at the end, each with probability 1/2.

Whenever one candidate is preferred to another candidate with probability strictly

greater than 1/2 under this distribution, the usual application of Lemma 2.2(a) en-

sures that the former candidate majority-defeats the latter with probability ~ 1.

Thus, we can see that with probability ~ 1, all of the following majority-defeat rela-

tions hold:

" B-+A;

" Di -+ Di+I, Di+2 ,.. , Di+K-2, for each i;

* B, A --+ Di for each i;

" Di -+ Cj, for all i and j.

We henceforth assume that these relations hold. Moreover, for each Cj, each of the

other voters either prefers both A and B over Cj or prefers Cj over both A and B;

each case occurs with probability 1/2.

Each candidate Di majority-defeats exactly half of the other D-candidates and

all of the C-candidates, for a Copeland score of 2K - 2. Each of the C-candidates

is majority-defeated by all of the D-candidates and so has a score of no more than

K + 1 < 2K - 2. On the other hand, B defeats all of the D-candidates and A, and

so has a score of at least 2K - 2. So by alphabetical tie-breaking, no matter what

the manipulator does, either A or B must win.
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Call a candidate C, defeated if there are at least [N/2] + 1 other voters ranking

A, B above Cj. Let d be the number of defeated candidates. If the manipulator

tells the truth, then A majority-defeats all the Di and the defeated Cj, for a score

of 2K - 3 + d; B majority-defeats all the Di, the defeated C, and A, for a score of

2K - 2 + d. So B wins.

Now suppose the manipulator reports the ranking AC1 . .. CKD 1 ... D 2K- 3B. Say

that the manipulator is pivotal for C, if there are exactly [N/2] other voters ranking

A, B above C,. If the manipulator is pivotal for c candidates, then B still has a

score of 2K - 3 + d, but A now majority-defeats all the candidates for which the

manipulator is pivotal and so has score 2K - 3 + d + c. Thus, A wins if c > 1.

The probability of being pivotal for any given C is ~ /2/irN, and pivotality for

C, is independent of pivotality for Ck for j / j. Hence, the probability of being pivotal

for at least one candidate C is ~ KV2/irN. The lower bound for susceptibility

follows.

We still need to give the construction for the cases M = 3, 4,6, 7. For M = 6,

let the candidates be A, B, C1, C2, D, E, and let the true preference be C1C2DEAB.

The belief # is given as follows:

" With probability 1/3, do the following: Begin with BAE; successively append

C1 and then C2 either at the beginning or the end each with probability 1/2;

finally, append D at the beginning.

" With probability 1/3, do the following: Begin with BADE; then successively

append C1 and then C2 either at the beginning or the end each with probability

1/2.

" With probability 1/3, do the following: Begin with BAD; successively append

C1 and then C2 either at the beginning or at the end each with probability 1/2;

finally, add E at the beginning.

Now with probability ~ 1 we have the following majority-defeat relations:

e A-> D,E;
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* B - A,D,E;

* D -+ C1, C2, E;

* E-C 1,C2.

Then C1, C2 both have score at most 3 since they are majority-defeated by D and

E. Under truth-telling, A, B, D, E have respective scores 2 + d, 3 + d, 3,2, so that B

wins. Under the proposed manipulation, A, B, D, E have scores 2 + d + c, 3 + d, 3,2,

so that A wins if the manipulator is pivotal for either C1 or C2. The same argument

as before shows that this occurs with probability - 2 /2/7rN.

If M = 3, let the manipulator's true preference be CBA, and the belief # be

1/4 ACB, 1/2 BAC, 1/4 CBA.

With probability r~ 1, the resulting profile will have B -* A -> C. If exactly [N/2] of

the other voters have B >- C, then the manipulator is pivotal for this pair: Telling the

truth leads to C -* B, in which case A is the winner; manipulation leads to B -* C,

so that B wins, a more preferred outcome. If the manipulator is not pivotal, then the

manipulation has no effect. So the manipulation is successful when the manipulator

is pivotal, which happens with probability - V/2/irN.

Finally, for M = 4 or 7, we take the construction for 3 or 6, respectively, and add

an extra candidate at the end of everyone's preference ranking.

Fishburn's system. Assume M > 4, since the statement is trivial for M = 3.

We return to the usual numerical labeling of the candidates. Let the manipulator's

true preferences be A1A2 ... Am. As with the Copeland system, in order to describe

the belief #, we give a process for generating a random preference, and let # denote

the resulting distribution over L.

e With probability 2/3, we construct a preference as follows: Begin with A2 A1A3 ,

and then for each i = 4, ... , M in succession, randomly append Ai either at the

beginning of the existing ordering or at the end, independently with probability

1/2.
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* With probability 1/3, we instead do the following: Begin with A2A1, then for

each i = 4, ... , M in succession, append Ai either at the beginning or the end,

independently with probability 1/2; finally, append A 3 at the beginning.

A preference - drawn according to this distribution has the following properties:

" With probability 1, A 2 >- A1 .

" With probability 2/3, A1 , A2 >- A3 -

" For each i > 4, with probability 2/3, A3 >- A,.

* For each i > 4, with probability 1/2, A 1 , A 2 >- Ai; and with probability 1/2,
A2,A 1 >- A,.

Let the proposed manipulation consist of moving A2 to the bottom of the ranking,

thus reporting A1A3 ... AMA 2. Let the utility u be 1 for A1 and 0 for every other

candidate, so the manipulator is concerned only with the probability of A1 winning.

As usual, with probability ~ 1, we have A 2 -+ A1 , A 1 -+ A 3, A2 -+ A 3 , and

A3 -- A, for all i > 4. We may assume these relations hold.

If the manipulator tells the truth, then for each i > 4, either A1 , A 2 both majority-

defeat Ai, or both are majority-defeated by Ai. In this case, A1 is covered by A2 , and

so cannot win.

Now suppose the manipulator lies. For each i > 4, if there are exactly [N/2]
other voters who report A2 > Ai, then the lie leads to A1 -+ A, -+ A2 in the resulting

profile. Say that the manipulator is pivotal for A, if this occurs. In this case, A2 no

longer covers A1. Notice that A3 also cannot cover A1, nor can any A, for j > 4,
since A1 - A3 -+ Aj. Hence, A1 is uncovered and so wins.

So the manipulation is successful whenever the manipulator is pivotal for any Ai,

i > 4. For each such Ai, the probability of being pivotal is ~ V2/rN. Moreover,

for distinct i, j > 4, our construction of the opponents' preferences assigned A, to

be ranked above or below A2 independently of Aj; as a result, pivotality for A, is

independent of pivotality for Aj. Consequently, the probability of being pivotal for

both A, and A, simultaneously is ~ 2/rN. So as N becomes large, the probability
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of being pivotal for more than one Ai becomes negligible compared to the probability

of being pivotal for any given Aj, and so the probability of being pivotal for at least

one Ai is asymptotically (M - 3) times the probability of being pivotal for any given

Aj; that is, - (M - 3) /2/IrN.

Minimax system. The argument here is similar to that used for Black's system

above, and for single transferable vote below, but we vary the beliefs # as N varies.

Doing so allows us to obtain a lower bound on susceptibility that converges more

slowly than N- 1/ 2 , but at the cost of requiring some additional computation.

For any given candidate Aj, we will use the term defeater of Ai to refer to any

candidate A3 achieving the maximum, over j =4 i, of the number of voters preferring

A, to Aj.

We first prove the bound for M = 4, with the candidates labeled A, B, C, D. Let

the manipulator's preference be ABCD, and take the set of desirable candidates in

(2.3) to be C+ = {A}. Consider the following belief #:

1

1 1
2 y

2 ~7

ACBD

ADBC

CBAD

DBAC

Let the proposed manipulation be ACBD.

In order to keep track of the consequences of manipulation, let the number of

other voters reporting each of the four preferences be w, x, y, z, respectively. Then,

the score of each candidate under truth-telling and under manipulation are as follows:

Truth Manipulation

A y + z y + z

B max{w + x+1,w + y, X + z} max{w + x +1, w + y +1, x + z}

C w+X+z+1 w+X+z+1

D max{w+x+y+1,w+y+z+1} max{w+x+y+1,w+y+Z+1}

(These values are obtained after performing obvious restrictions on the set of

defeaters for each candidate. For example, every voter who ranks either C or D
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above A also ranks B above A, so B is always a defeater for A, making the score of

A necessarily y + z. Likewise, A is always a defeater for C, and either A or B is a

defeater for D.)

We see that the only possible effect of manipulation is to increase the score of B

from w + y to w + y + 1. Hence, manipulation can change the outcome of the vote in

only two situations:

* Manipulation can change the outcome from B to A if it causes A and B to

have equal scores, and C's score is at least as high. This requires w + y >

w + X + 1, x + z; w = z - 1; and y < w + x + 1.

If w = z-1 then w+x+1 = x+z, so we actually need only x+1 < y w+x+1

and w = z - 1.

" Manipulation can also change the outcome from B to C. However, since both

B and C are undesirable outcomes, this case contributes nothing to the expec-

tation in (2.3).

Thus, we are left to estimate the probability that x + 1 < y w + x + 1 and

w = z - 1.

Write s for the sum w + z, and t for N.- s = x + y. We use Lemma C.2 to

decompose the probability of a profile (w, X, y, z) into the probability of given values

of s, t, times the probabilities of w conditional on s and of y conditional on t. Thus,

the probability we want becomes

s 2/VX (s-1)/2 1/2

P N; )x P( 1/2Sodd L t 1 - 2/ 5- (s +1)/2 1/2
t=N-s~

x P t; 1/2 (E.1)
1 <t<_++1 t - y 1/2

A lower bound for this outer sum is given by considering only the terms where VW <

s < 3VN. In this case, by Lemma 2.1, min, P((s - 1)/2, (s + 1)/2 | s; 1/2,1/2) ~
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2/37r N. Also, the probability in the inner sum of (E.1) is decreasing as a function

of y for y > t/2, so each such term is at least

P (
[(2t + s + 1)/41

t - [(2t + s + 1)/4]
t;

[t/2]

(t/2]

min

t=N-s

t-

[
min

N-3VN<t<N

1/2

1/2 ) [(2t+s+1)/41

H
k=1

Ft/21
[t/2] + 1 - k

Ft/21 + k

([t/2]
( t-.

- (t/21

[t/2] 1/2

~2x e-6

Hence the expression in (E.1) is

2/V

1 - 2/N)

2
x x

37r x

> P
S Odd

. fN<s<3VN-

N;
N S

2/

1 - 2/ vN)I e-6
x

To evaluate the bracketed probability sum, notice that if (s, N - s) follows a binomial

distribution M(N; 2/vN, 1 -2/V/N) then s has mean 2V'N and variance 2V'N-4 <

2V'N; by Chebyshev's inequality, the probability that it differs from its mean by more

than V/H is less than 2/V/H. Hence this probability sum is - 1. Consequently, the

probability that the manipulator is pivotal, given by (E.1), is

e-6 1
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t=N-s
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(s

t
N;

s+l1

4 _L e-6 2
7rN

>
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Thus, the susceptibility is asymptotically bounded below by this quantity, as claimed.

Finally, if M > 4, simply modify the belief # above, the manipulator's true pref-

erence, and the proposed manipulation by appending each of the extra candidates in

order at the end of each ranking. None of the extra candidates can ever win (they all

receive a score of N), so the rest of the preceding analysis applies unchanged.

Single transferable vote system. Fix small E > 0. Let the manipulator's true

preferences be A 1A2 ... AM, and let the belief # be as follows:

2A-1+eA 1A2A3 ...

2TM +6 A 2 A 3 ...

2 M-2 - M2 2 A 3 A 2 ...

2 M-3 - M-2 E A4 A 2 A3 .-..-

2 2M - M22 A A2 A3 ...
1~ 2

M-2 M2E AMA 2A 3 ...

The end of each preference ranking (denoted by ... ) may be filled in arbitrarily. (In

case the pattern is unclear, the first 3 preference types are A 1 A 2 A 3 ... , A 2 A 3 ... , and

A3A2 ... , and then the remaining preferences - if M > 3 - are all of the form

Aj A2A3-....)

By the usual application of Lemma 2.2(a), for N large, we can focus on the

realizations such that for each preference ordering >-, the share of the population

reporting >- is within E/M 2 of the weight put on >- by distribution #.
In this case, the single transferable vote procedure follows one of two possible

executions. Either A1 or A2 is eliminated in the first round.

* Suppose A1 is eliminated first. Then the candidates A1 , A3, A 4, A, ... , AM

are eliminated in succession. Indeed, we can show by induction that at the

beginning of the kth round of elimination (k > 1) that candidates A2 and

Ak+, - - , AM remain. If this holds for some k, then A2 receives the votes

of the first k preference types of voters, thus getting a vote share of at least
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1 / 2 M-k + 2e - (k - 2)2E/(M - 2) - ke/M 2 > 1/ 2M-k. Ak+1 has a vote share at

most 1 / 2 M -k - 2e/(M - 2) + E/M2 < 1/ 2 -k , and each of the other remaining

candidates has vote share at least 1 / 2 m-k-1 - 2e/(M - 2) - e/M 2. Thus,

Ak+1 is eliminated next, and the voters who ranked Ak+1 first have their votes

transferred to A2, giving the induction step.

Thus, in this case, A2 ends up winning.

e Suppose A2 is eliminated first. Then the voters who ranked A 2 first have their

votes transferrred to A3. In the second round, A1 is eliminated, and the voters

who ranked A1 first have their votes transferred to A3. An induction identical

to the previous case now shows that A 4, A 5 ,.. , Am are eliminated in successive

rounds. Thus A3 ends up winning.

Consider a proposed manipulation of the form A2 A3 .... The manipulator is piv-

otal either when A1 and A2 receive the same number of first-place votes among the

other voters, or when A2 receives one more first-place vote than A1 . In both cases, if

the manipulator tells the truth then A 2 is eliminated in the first round, hence A3 ends

up winning; under the proposed manipulation, A1 is eliminated in the first round,

and A2 ends up winning. Hence, the manipulation is indeed beneficial.

By Lemma 2.2(b), we know each of the two pivotal scenarios happens with proba-

bility - (1/2)1 /r(1/2M1 + E)N. Therefore, the total probability that the manip-

ulator is pivotal is twice this quantity. We have thus shown

STV> 1
-N ~j 27-1 +E)N'

Taking E -- 0 gives the result. l

F Analysis of the pair-or-plurality voting system

Proof of Lemma 3.7: For readability, we will refer to the candidates as A, B, C,

with the understanding that this does not necessarily represent the tie-breaking order
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Pareto efficiency is immediate: if all voters rank A above B, then B is not viable

and so cannot win. Hence we focus on monotonicity.

Consider a profile P at which some voter reports preference ABC. We need only

consider what happens when this voter changes her preference by transposing the

winner f(P) with the candidate ranked immediately above him.

If f(P) = C, and the voter changes his preference to ACB, this cannot change

the set of viable candidates, nor can it cause C to lose in a majority vote against

another candidate given that C previously won this pairwise contest. This leaves

only the case in which all three candidates are viable; in this case, the change can

only increase C's score and decrease B's (while leaving A's unchanged), so that C

remains the winner.

It remains to consider the case in which f(P) = B, and the voter changes his

preference to BAC. Let P' be the resulting profile. The change cannot affect the set

of viable candidates except by making A inviable. If this happens, A gets exactly K

first-place votes at P. Suppose that f(P') = C (otherwise f(P') = B and we are

done). Then, A, B, C are all viable at P, while only B and C are viable at P'.

We claim that B and C both have at least L first-place votes at P. If B has less

than L first-place votes, then C has at least N + 1 - K - L > (N + 1)/2 first-place

votes and so gets at least half the total points, giving f(P) = C, a contradiction. If C

has less than L first-place votes, then B likewise has more than (N + 1)/2 first-place

votes and so f(P') = B.

Hence, at P, all the points from voters ranking B first go to B, and all the points

from voters ranking C first go to C. Since there are K voters ranking A first, their

points go to B and C in the same quantities as rank B or C second, respectively. So

the outcome is effectively determined by a pairwise vote between B and C - exactly

the same as at P'. Thus f(P) = f(P'), a contradiction.

Thus we can assume that the same set of candidates is viable at P as at P'. Since

the change from ABC to BAC can only improve B's standing in a pairwise majority

vote, we only need to concern ourselves with the case where all three candidates are

viable at both P and P'.
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Let us consider then the effect of changing ABC to BAC on each candidate's score.

Let sA(A), sA(B), sA(C) be the number of points awarded to A, B, C, respectively,

from the voters ranking A first. Let us consider the effect of removing an ABC

vote on the vector SA = (sA(A), sA(B), sA(C)). If this leaves at least L total voters

with A as their first-place vote, the net change in SA is (-1, 0,0). Otherwise, sA(A) is

changed by -L/(L -K) and sA(C) is changed by L/2(L -K), so sA(B) is changed

by > -1 - (-L/(L - K)) - (L/2(L - K)) = (2K - L)/2(L - K). In short, the net

change in SA is of the form

L 2-L L
ASA = (-1,0,0) or (L±K' 2(L-K)'asA -,0,0) CI ~L - K' 2( L - K)' 2( L - K))'

(F. 1)

Now consider the effect of adding a BAC vote on the corresponding vector SB =

(sB(A), sB(B), sB(C)) of points from the voters ranking B first. If there are initially at

least L such voters, the net change is (0, 1, 0); otherwise, SB(B) changes by L/(L -K),

SB(A) changes by at most (L - 2K)/2(L - K), and sB(C) changes by at most 0. So

the net change in sB is

ASB = (0,1,0) or < L , , 0). (F.2)
L-K 'L-K -)

Finally, when one voter's preference changes from ABC to BAC, the net effect

on the scores of the three candidates is given by the vector sum As = ASA + AsB.

From (F.1), AsA(B) ASA(A), and from (F.2), ASB(B) ASB(A); thus As(B)

As(A). From (F.1), ASA(B) ASA(C) - 1, and from (F.2), ASB(B) ASB(C) + 1;

thus As(B) > As(C). We conclude that the net change in B's score from P to P' is

at least as large as the net change in A's score or C's score. Since B was the winner

at the original profile P, then, B again wins at P'. So we have f(P') in this case as

well, as required.

The proof of Proposition 3.8 will make use of the following two lemmas.

Lemma F.1 Let XN, YN be a sequences of positive integers with (YN - XN)/N > e,
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where e > 0 is some constant; YN <N - XN; and XN -4 oo as N -> oo. Also let b be

a fixed positive integer. Then

max b P N; 1. (F.3)
"'" N<X<YN N - x 1 -

xa ( mod b)

(Here the maximum is taken for a fixed N, over all choices of integers a and proba-

bilities a.)

Proof: The sum of P(x, N - x | N; a, 1 - a) over all x congruent to a mod b,

without the restriction zN < x < N - XN, is equal to

-"i(a(i+ (1 - a))N (F.4)
i=0

where ( is a primitive complex b-th root of 1. (This can be checked by expanding

using the binomial theorem and cancelling terms where the powers of ( sum to 0, as

in the proof of Lemma C.3.) Fix any positive integers K, L. For a < K/N, then

Ex<L P(x, N - x | N; a, 1 - a) is asymptotically bounded below, for N - oo, by

the probability that a Poisson variable with parameter K takes on value at most

L. In particular, for any fixed K, choose L large enough so that the latter Poisson

probability is greater than 1-1/b, then we certainly have maxa<K/N ZX>ZN P(x, N -

x | N; a, 1 - a) < 1/b for N large enough, since eventually zN > L. Hence, for any

fixed K, we can restrict attention to a > K/N, and likewise a < 1 - K/N. In this

case, the term in the sum (F.4) corresponding to i = 0 is equal to 1, and all other

terms are bounded above in absolute value uniformly by e-AK for some constant A > 0

that depends only on b. So for each K, the left side of (F.4) is < (1 + (b - 1)e-AK)/b

for N large enough and all a E (K/N, 1 - K/N). Then, the maximum on the left

side of (F.3) is also bounded above by 1 + (b - 1)e-AK for all N large enough. By

choosing K arbitrarily large, we see that this maximum is < 1.

To see that it is > 1, simply take a = (XN + yN)/2N and apply (F.4) to obtain

Zx-a ( mod b) P(x, N-x | N; a, 1-a) -* 1/b, and note that the probability of realizing
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a value X < XN or x > YN is ~ 1 by Lemma 2.2(a).

FD

Lemma F.2 Let S be a set of profiles (x 1,..., x,) each

for some integer K. Then for any distribution a,

zE
(x1..,Xr)CS

-I,

P

X1

x 2

X 3

Xr

N; a

/

P

xi +

x 2 -

X 3

zr

1

1

of which satisfies X1, X2 > K,

V

Proof: We first prove the result for r = 2. In this case, taking N and a as fixed,

the expression h(x) = P(x, N - x | N; ai, a2) is unimodal as a function of x. Calling

its maximum x*, the specified difference is negative for x < x* and nonnegative

for x > x*, so the sum in the lemma statement is maximized when S is the set of

pairs whose xi-values are x*, x* + 1, ... , x* - K. In this case, the sum of differences

telescopes and the sum is simply h(x*) - h(x* - K + 1) < h(x*). It follows from

Lemmas 2.3 and C.7 that h(x*) < e1/12 / VqK. This completes the proof in the case

r = 2.

For the general case, let S' be the set of all values of the (r - 1)-tuple x' =

(xi + X2, X3 ,... , Xr) for (Xi,... , Xz) E S. For each such x' c S', let Sz' be the set of

pairs (X1, X2) such that (X1 , X2, . .. , X,) S.

By Lemma C.2, we can rewrite the sum in the lemma statement as as

(Xi,...,Xr)CS

X1 + x 2  ai + a2

X3 N; x3

Xr OZ r

P x1 +2; P IX1+2;)]

z 2 /32 ( 2 - 1 02
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(with #1 = 1/(a 1 + a 2 ) and #2 similarly)

af1 + aZ2

N; a3

ar

+2; P X1+2;

#2 X2 -1102

By the r = 2 case, the expression in square

whole sum is

ei./12

VW K~~~~ ~ ~ f= l 273.. r) S

brackets is at most e1/ 12/x/7K, so the

N-

a 1 + a 2

a 3

ar

Since the sum of probabilities is at most 1, we are done.

Proof of Proposition 3.8: We will prove the following claim: If A is an integer

such that L/K > A for each (sufficiently large) N, and K -- oo as N -> oo, then the

pair-or-plurality voting rule satisfies

POP <1
N ~L2 A -I grN(4- )

The desired bound will then follow by taking A -+ 00.

Our proof will make frequent use of the following observation: At any profile

where all three candidates are viable, if a candidate Ai wins, then Ai must have score

at least (N + 1)/3. For each A, / Aj, the voters ranking Aj first can contribute at

most K points to Aj, so there must be at least (N + 1)/3 - 2K > L voters ranking

Ai first. In particular, all the points from these voters are awarded to Aj; and even if
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we change one of their votes, the other such voters still award all their points to Aj.

Henceforth, as in the proof of Proposition 3.3, we will notate the manipulator's

true preference as ABC for readability; this does not necessarily correspond to the

tie-breaking order.

We first restrict the set of manipulations that need to be considered. With refer-

ence to (2.3), we have either C+ = {A} or C+ = {A, B}. In the first case, the manipu-

lator wishes to maximize the probability of A winning; by monotonicity (Lemma 3.7)

the optimal manipulation ranks A first, so we need only consider the manipulation

ACB. In the second case, the manipulator wishes to minimize the probability of

C winning; again by monotonicity, this is best done by ranking C last, so we need

only consider the manipulation BAC. So we need to show that in each of these two

cases, the probability that the manipulation succeeds (under the worst-case belief #)

is < [1/2 + 1/(A - 1) ]12/irN(4 - 1/4A2). (We will henceforth denote this expression

by AUB(N), for "asymptotic upper bound.")

First we consider the case of a manipulation from ABC to ACB. For any re-

alization of the opponent-profile, this manipulation cannot change the set of viable

candidates. If only one or two candidates are viable, the manipulation has no effect

on whether A wins or not, since it does not change the result of a pairwise vote be-

tween A and either of the other candidates. Suppose all three candidates are viable.

The manipulation cannot improve the outcome from C to A, by monotonicity; so we

need only consider whether it can improve the outcome from B to A. Consider any

opponent-profile P at which f(P, ACB) = A. By our initial observation, the voters

ranking A first assign all their points to A, at both (P, ABC) and (P, ACB). So the

manipulation from ABC to ACB actually can have no effect on any candidate's score

and thus no effect on the outcome.

This leaves us to consider manipulations from ABC to BAC. The manipu-

lation cannot improve the outcome from C to A, again by monotonicity, so we

need only show that the probability that it improves the outcome from C to B is

< AUB(N). Let S be the set of all opponent-profiles P such that f(ABC, P) = C
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and f(BAC, P) = B. We want to show that

E P(P I N; q) < AUB(N),
PES

where < is taken to be the belief that maximizes this sum.

If the manipulation does not change the set of viable candidates, and one or two

candidates are viable, then as in the previous case, manipulation cannot improve the

outcome from C to B. If the manipulation does change the set of viable candidates,

then it can only make A inviable: P must be such that all three candidates are

viable at (ABC, P) but only B, C are viable at (BAC, P). Then P contains exactly

K - 1 first-place votes for A. For B to win at (BAC, P), then B must have at least

(N + 1) - (K - 1) > L + 1 first-place votes. For C to win at (ABC, P), it must

also have more than L first-place votes, by our initial observation. Hence, at both

(ABC, P) and (BAC, P), all the voters ranking B or C first award all their points to

their first-choice candidate. But at (ABC, P), since A has exactly K first-place votes,

these voters each award one point to their second-choice candidate, so the outcome is

given by a pairwise vote between B and C - exactly as at (BAC, P). So the winner

is the same at both profiles.

Consequently, for every P E S, all three candidates are viable at (ABC, P) and at

(BAC, P). Since f (ABC, P) = C and f (BAC, P) = B, by our initial observation, P

contains at least L first-place votes for B and for C. Let w, x, y, z, respectively, denote

the number of ABC votes, the number of ACB votes, the number of first-place votes

for B, and the number of first-place votes for C in profile P.

Let SA be the set of pairs (w, x) such that there exist y and z with (w, x, y, z) C S.

For each such (w, x) there exists at most one such pair (y, z), by monotonicity; regard

y and z then as functions of (w, x). We can write the desired probability as

w aw

P X N; a2 P y + z; a~e z

(w,X,y,z)es P z N y+z; az/(ay + az)
yS+ z/(a+7+
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ES C
(W,X)ES^

w

x

N - (w +x)

a'

Nvi ax x

1 - (aw + ax)

P y(wX)N - (W + )
z(w, X)

with # = aY/(a + az).

Moreover, since

awarded to C from

jy - z| < K + 1.

(w, x) C SA, for the

the absolute difference between points awarded to B and points

the voters who rank A first is always at most K, we must have

We can use this to obtain a uniform upper bound, across all

second factor in (F.5). The bound we will use is

max P
f3;y,z zy+z>(2N-1)/3

ly-zl<K+1

y + z;
12

rN(4 - 9,2)
(F.6)

where K is a number such that K/N < x, for each N. (Here the asymptotics are

with respect to N as usual.) To see that (F.6) holds, fix s > (2N - 1)/3 and

consider maximizing with respect to y, z, #, subject to the conditions y + z = s and

y, z < (2+3K')s/4, where W' is a number such that (K+ 1)/(2N- 1) W'/2. Note that

the condition y, z < (2+3')s/4 is implied by y+z = s and ly-z 5 K+1 < 3's/2, so

these new conditions are a weakening of the original conditions for the maximization

in (F.6). The maximum is given by 0 = y/s (by Lemma 2.3), and given this, the

maximum over y, z is achieved by making y as large as possible (from Lemma 2.4),

i.e. y = L(2 + 3')s/4]. From Lemma (2.1) we get

L(2 + 3K')s/4] 89K, 2 )

- [(2 + 3K')s/4] 1- # J rs(4

Plugging in s > 2(N - 1)/3, and noticing that r,' can be made arbitrarily close to K

for N large, gives us the upper bound in (F.6).

Now, L/K > A gives (K + 1)/N ;< 1/6A, so we can take K arbitrarily close
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to 1/6A in (F.6). To apply (F.6) to our problem we also need to know that the

inequality y + z > (2N - 1)/3 holds for all (w, x, y, z) C S. But if this is false, then

W + X > N/3 > L, so all the voters ranking A first award all their points to A, and

the winner is simply determined by plurality rule at both the profiles (ABC, P) and

(BAC, P). Since f(ABC, P) = C, C has at least (N + 1)/3 first-place votes; since

f(BAC, P) = B, B has at least (N - 2)/3 votes in P, giving y + z > (2N - 1)/3

after all.

Combining with our previous observation Iy - zj < K + 1 for (w, x, y, z) E S, we

see that the second probability factor in (F.5) is indeed a value of the maximand in

(F.6), so the bound (F.6) applies with an appropriate value of K. To determine such

a value, notice that L/K > A gives K/N < 1/6A, so we can take K arbitrarily close

to 1/6A in (F.6). Using this bound in (F.5) leads to

EP(P | N;0#) < (F.7)
PES

W aw

P N; a12

[(W)sa (N rN (4 - )
N- (w+x) aW+X _

This means we just need to focus henceforth on the first factor on the right side

of (F.7). If we can show that

W a I

P x N; ax < I + 1 (F.8)
, )+ 2 A - 1

(WX)SA N - (w+ z) 1 - aW+X

then the upper bound in the proposition will follow from (F.7), and the proof will be

complete.

To further save on notation, we will henceforth write P(w, x) rather than write

out P(w, x, N - (w + x) | N; an, ax, 1 - aw+,); the extra arguments will be implied.

From now on we will assume that ties between B and C are broken in favor of B.

(The case where they are broken in favor of C is essentially identical.)
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Break the set of pairs of nonnegative integers (w, x), with w + x > K, into four

regions:

e R1 : w+x<Landw>x(1-2K/L)+K.

For (w, x) in this region, the scores of B, C associated with the true profile and

the manipulated profile are

(ABC, P):

(BAC, P):

K(L - w - x - 1) +y for B,
L-K

K(L - w - x) +Y+1 forB,
L-K

Thus, for (w, x) in this region, the manipulation increases B's score by L/(L-K)

and leaves C's score unaffected.

* R 2 : w +x < L and x > (w+1)(1 - 2K/L)+K. In this case, the scores of B, C

(ABC, P):

(BAC, P):

y for B,

y + 1 for B,

K(L - w - x- 1) + z for C
L-K

K(L-w-x)+ z for C.
L-K

Thus, for (w, x) in this region, manipulation increases B's score by 1 and C's

score by K/(L - K).

9 R 3 : w + x < L, w < x(1 - 2K/L) +K and x < (w+1)(1 - 2K/L)+K. In this

case, the scores of B, C are

(w + x + 1 - K)Lf
(ABC, P) : w+1- 2(L-K)+y for B,

(BAC, P) : w- xK)+y+1 for B,
2(L - K)

(w + x + 1 - K)L forC
2(L - K)

x (W+ - )L+z for C.
2(L - K)

Thus, for (w, x) in this region, manipulation has no effect on the difference

between B's and C's scores, so it cannot change the winner from C to B:

SAn R3 =0.
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o R4: w + x > L. In this case, the scores are

(ABC, P): y for B, z for C

(BAC, P) : y + 1 for B, z for C.

Thus, for (w, x) in this region, manipulation increases B's score by 1 and leaves

C's score unaffected.

Let T be the set of all pairs (w, x) such that w + x > K and N - w - x is odd.

We know that the maximum probability of drawing (w, x) E T is - 1/2, by

Lemma F.1. Our strategy will be to show that the probability of (w, x) E SA and the

probability of (w, x) E T are close.

We begin by showing that the probability of (w, x) E R1  SA and the probability

of (w, x) E R1 nT are close.

First consider the probability that

(w) E R1 n SA and (w + 1,x) c R1 n SA. (F.9)

Notice that if [K(L - w - x - 1)/(L - K)] = [K(L - w - x)/(L - K), then (F.9)

cannot occur. Indeed, (w, x) E R1 n SA means that for suitable choices of (y, z),

K(L - w - x - 1) but K(L - w - )
L-K L-K

which means that [K(L - w - x)/(L - K)J + y = z - 1. Then [K(L - w - x)/(L -

K)] +(N-w-x) must be odd (since N-w-x = y+z). Likewise, (w+1, x) E RinSA

requires [K(L-w-x-1)/(L-K)J +(N-w-1-x) to be odd. But these expressions

cannot both be odd if LK(L - w - x - 1)/(L - K)J = [K(L - w - x)/(L - K)].

Let ( K -- 1) KL v)
V= v [K(L ]< [K(L.

L-K L-K

Thus, the probability that (F.9) arises is at most the probability that w + x E V,

given that (w + x, N - (w + x)) is drawn from M(N; a,, + ax, 1 - (a, + ax)). Write
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cxv = cw ± ax.

Since (L - K)/K > A - 1, it follows that of any A consecutive integers, at most

one can be in V.

Now, we claim that for any set V with this property, there exists a such that

EP ( N; <; P ( N; av
vV N -v - av K<v<N-K N-v 1 - av

V=a mod A-1
(F.10)

Indeed, choose a to be the value of v E V for which bP(v, N - v | N; av, 1 - a,)

is maximized. Since this latter expression is unimodal in v, for any two consecutive

elements of V that differ by more than A -1, either the lower element can be increased

by 1 or the higher element can be decreased by 1 in such a way that the expression

on the left side of (F.10) is increased. We thus replace V by a new set for which

the left-hand side of (F.10) is higher than before. This operation cannot be repeated

forever; when it terminates, it must be that every two consecutive elements of the

current set differ by A -1. The resulting set clearly satisfies (F. 10), and so the original

set V did as well.

By Lemma F.1, the right-hand side of (F.10) is < 1/(A - 1). Hence, the same

holds for the probability of (F.9), since w + x E V is a necessary condition for (F.9).

Notice that

P (K< P +
(w,x)E R~nsA X (w,x)ER 1 fnT

w W + 1
P -P +

(w,x)ERlnSA\T
(w+1,x)ERnT\SA

P +
(w,x)ER1nSA\T X

P.

(w,x)ER1nSA\T
(w+1,x)(RinT
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The second sum on the right-hand side is at most ei/12//2rK, by Lemma F.2 (notice

that (w, x) E R1 ensures w > K). The third sum consists of those pairs (w, x) satis-

fying (F.9), which have a total probability < 1/(A - 1), by the preceding argument.

For the fourth sum, notice that if (w, x) E Ri \T then (w +1, x) E T, so the only pairs

counted by this sum are those for which (w + 1, x) V R1 - that is, w + 1 + x = L.

By Lemma C.7, these pairs have a total probability < ei/ 12 /rf.

The bounds ei/ 12 /VirK, e1/12 / 2wL both go to 0 as N -+ oo, and thus we get

I: P - E P W. (F. 11)
(w,x )E R~nSA ( (w,x) ER RnT x)

This takes care of R1 SA for now. Next let us perform a similar analysis for pairs

(w,x) E R2O SA.

Consider the possibility that

(w,x) E R2f SA and (w,x+ 1) E R 2 SA. (F.12)

If (w, x) E R 2 f SA, then for suitable choices of (y, z),

K(L-w-x-1) K(L-w-x)
L-K - L-K

This means that

[K(L-w-x-1)1 = [K(LW-c)1 =-w -x.
L-K L-K =y z 1

Hence, FK(L-w-x)/(L-K) +(N-w-x) must be odd; and if (w, x+1) E R2flSA,

then [K(L - w - x)/(L - K)1 + (N - w - x - 1) must be odd. These quantities

cannot both be odd, however. So we see that (F.12) can never occur.

Thus, we can perform an analysis for the probability of (w, x) E R 2 f SA that is

entirely analogous to what was done for (w, x) E Ri n SA, but our life is now simplified

by the fact that (F.12) has probability zero (unlike its counterpart (F.9)). The result
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E P (
(w,X)E R2nSA (

( i1/12 T1/12
P < + -0.

(w,x)inR2nT x)

Next we turn to R 3. Since R 3 f SA = 0, we simply have

P = 0 < P .

(w,x)ER3nSA xJ (w,x)ERanT (

(F.13)

(F.14)

Finally, we claim that R4 n SA C T. Check: if (w, x) E R 4 f SA, then y < z but

y + 1 > z, so integrality implies y = z - 1, and hence N - w - x = y + z is odd. So

it is immediate that

E) P <

(w,X)E R4nS A ( x

(F.15)E, P .
(w,X) ER4nT x)

Finally, using the fact that every (w, x) c SA must lie in one of the regions

R1, .. ., R 4, we can combine (F.11), (F.13), (F.14), (F.15):

4 /
E I: P

4 W'~=1(55~ R 1 n-A
< E E P +

i=1 (W,X 6 RinT )

< ~ 1:P

(w,x)ET x

1 1
'~' 2 A-I

Thus, we have proven (F.8). Combining with (F.7), as previously mentioned, gives

the result.

LI
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G Proofs of lower bounds

The proofs of the results from Section 4 are in this appendix (except for results that

are proven in the main text). We present the proofs in the same order that they are

sketched in the text.

Proof of Theorem 4.5: For any two candidates A, B, let K*(A; B) be the

maximum number K such that f(K A, N+1-K B) # A. By unanimity, K*(A; B) <

N+ 1.

Let us first assume that there are three candidates - which we may, by relabeling,

call A, B, C - such that

f (1 A, K B, N - K C) # A for all K. (G.1)

Note that this also implies f(K B, N + 1 - K C) $ A for all K (otherwise, change

one of the B or C votes to A, and monotonicity implies that (G.1) is violated).

Write K* for K*(B; C). Also write K* for the maximum value of K such that

f (1 A, K B, N - K C) $ B.

We have

f(K B, N + 1 - K C) =B for all K > K* (G.2)

by definition, and

f(K B,N+ 1 -K C) B for all K < K* (G.3)

since otherwise monotonicity would imply f(K* B, N + 1 - K* C) = B, a contradic-

tion. By similar arguments,

f(1 A, K B, N - K C) = B for all K > K*; (G.4)

f(1 A,K B,N - K C) $ B for all K <K*. (G.5)

Notice that K* > K* - 1, since otherwise f(1 A, k* + 1 B, N - k* C) = B and
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f(K* B, N + 1 - K* C) / B would violate monotonicity. We split into three cases:

(i) Suppose K* = K* - 1. Let the manipulator's true preference be any ordering

with A ranked first and B last; let the proposed manipulation be a vote for

C; and let the manipulator's belief be # = (aB B, (1 - aB) C) with aB =

K*/N. Since the other voters all vote for B or C, (G.2)-(G.5) imply that the

manipulator cannot affect whether B wins, unless the realized opponent-profile

is (K* B, N - K* C), in which case a vote for A leads to B winning and a vote

for C leads to B losing. So considering the definition (2.3) of susceptibility with

C+ =C\{B}, we have

0- > P(K* B, N - K* C | N;

which is > o-* by Lemma 2.4.

(ii) Suppose K* = K*. Let the manipulator's true preference be any ordering with

A ranked first and B second; let the proposed manipulation be a vote for B; and

again let the manipulator's belief be # = (aB B, (1 - aB) C) with aB = K*/N.

From (G.1) and the observation following it, no matter whether the manipulator

votes for A or B, A cannot win. Again, (G.2)-(G.5) imply that the manipulator

cannot affect whether or not B wins, unless the realized opponent-profile is

(K* B, N - K* C) in which case a vote for A leads to B losing and a vote for

B leads to B winning. So considering (2.3) with C+ = {A, B}, we again have

> P(K* B, N - K* C | N; #) >o-*.

(iii) Suppose K* > K*. Let the manipulator's true preference be any ordering with

C ranked first and B last; let the proposed manipulation be a vote for A; and

let the belief be # = (aB B, (1- aB) C) with aB = (K* + 1)/N. Once again, the

manipulator cannot affect whether or not B wins, unless the opponent-profile

is (K B, N - K C) for some K with K* < K < K*, in which case a vote for C

leads to B winning and a vote for A leads to B losing. Considering (2.3) with
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C+ = C \ {B}, we again have

Te

O,>( P(KB,N-KC|N;$)>P(K*+1B,N-K*-1C|N-p)>o-*.
K=K*+1

This completes the proof of the inequality in case A, B, C can be chosen so that

(G.1) holds.

Now suppose no such A, B, C exist. Choose A, B, C so that f(1 A, K B, N -

K C) = A for K as large as possible. By assumption, there also exists K' such

that f(1 C, K' B, N - K' A) = C, and by maximality K' < K. If K < N, then

monotonicity implies f(N - K' A, K' B, 1 C) = A, a contradiction. Therefore K =

N, so that f(1 A, N B) = A. Again by assumption, there exists K" such that

f(1 B, K" C, N - K" A) = B. If K" < N then monotonicity implies f(1 A, N B) =

B, a contradiction. So K" = N, or f(1 B, N C) = B. By monotonicity again,

f(N B,1 C)= B.

Suppose the manipulator's true preference ranks C first and B last; let the pro-

posed manipulation be a vote for A, and let the belief be that everyone else votes

for B with probability 1. Then a truthful vote for C leads to B winning, while ma-

nipulation leads to A winning, hence (taking C+ = C \ {B}) we have susceptibility

0 = 1.

This proves that the inequality o > ,u always holds.

It remains to study the equality case. This proof roughly follows the above case

analysis but requires further splitting into subcases. We wish to show that the in-

equality is strict if f is not a majority rule. So there is a profile at which strictly more

than half the voters vote for some candidate - say C - but some other candidate

wins - say B. We may assume B and C are chosen so as to maximize the number

of voters voting for C with B winning.

By monotonicity, B still wins when all the non-C votes are replaced by B's, and

it follows that K*(B; C) < (N - 2)/2. Let A be an arbtirary candidate distinct from

B and C. Define K* as before. We review the cases from the preceding analysis,

making amendments as needed. Note that assumption (G.1) was only used in case
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(ii).

* In case (i), the same argument as before applies. Since K* < (N- 1)/2, Lemma

2.4 implies that the inequality at the end of case (i) holds strictly.

* In case (ii), if (G.1) holds, then the analysis goes through as before and again

the final inequality holds strictly.

Suppose (G.1) fails. Then we have f(1 A, K B, N - K C) = B whenever

K > K*, and f(1 A, K B, N - K C) = C whenever K < K* because the

extremal choice of B and C implies that C wins whenever at least N + 1 - K*

voters vote for C. Hence, the failure of (G.1) can only happen for K = K*:

f(1 A, K* B, N - K* C) = A. By monotonicity, we then have

f(J A, K B, N +1 - J - K C) = A for all K < K* J + K - 1 > K*.

(G.6)

And the extremal property of B and C implies that

f(J A, K B, N+ 1 - J - K C) = C whenever J+K-1<K*. (G.7)

If K* > 1 then (G.6) and (G.7) imply that we can use the triple (B, A, C)

instead of (A, B, C): this triple has the same value of K*, but falls into case (i),

from which the proof is complete.

Finally suppose K* = 0. Then we have f(1 A, 1 B, N-I C) = B; f (1 A, N C) =

A (and by monotonicity f (K A, N+1-K C) = A for all K > 1); f (1 B, N C) =

B; and f(N + 1 C) = C. Let the manipulator have true preference ranking C

first, B second, and A last; let the proposed manipulation be a vote for B, and

let the belief # be 1/N A, (N- 1)/N C. If the realized opponent profile is that all

others vote for C, then truthful voting leads to C winning, while manipulating

leads to B winning. For any other possible opponent-profile, telling the truth

leads to A winning, and at least when the opponent-profile is 1 A, N - 1 C,

manipulation leads to B winning instead. It follows by taking C+ = C \ {A}
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that

0- > P(1 A,N- 1 C N;#) > *

* In case (iii), if K* < (N - 4)/2, then the final inequality in case (iii) becomes

strict, again by Lemma 2.4. So we may assume K* > (N - 4)/2 > 0.

If f(1 A, K* B, N - K* C) = A, we again have (G.6) and (G.7), so that just

as in case (ii) above, we can replace the triple (A, B, C) by (B, A, C), and end

up in case (i), for which the proof has been completed. (Note that this uses the

assumption K* > 0.)

Finally, suppose f(1 A, K* B, N - K* C) / A. We also have f(1 A, K* B, N -

K* C) # B by the assumption of case (iii).

As before, the extremal property of B and C implies f(1 A, K B, N-K C) = C

for K < K*. In this case, consider the same preferences, belief, and proposed

manipulation as in the original analysis for case (ii). If the realized opponent-

profile is (K B, N - K C) for K < K*, then C wins regardless of whether the

manipulator votes for A or B. Otherwise, a vote for B will ensure that B wins,

while a vote for A will fail to ensure an outcome in C+ = {A, B} if the realized

opponent-profile is (K* B, N - K* C). Hence (2.3) with C+ = {A, B} gives

o- > P(K* B, N - K* C l N;q#) > -*.

This shows that o > o-* in every possible case.

Next we proceed to the proof of Theorem 4.4. This proof makes reference to proof

techniques from Theorem 4.7, which was given in the main text.

Proof of Lemma 4.10: For each K = 0,... , K, let J(K) be the highest

value such that f(PK) = Aj, or J(K) = J - 1 if no such value exists. By (i) and

(iii), f(PJK) = Aj for J < J(K) and = Ai for J > J(K). Also (iii) ensures that

J(K - 1) < J(K) + 1 (whenever these quantities are defined).

Choose integer values 0 = K0 , K 1, K 2 ,..., K, = K, where any two successive Ki
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differ by at most 40VN/r, and with r < Nr/20. Certainly this can be done, as

long as N is sufficiently large.

Now, by (iv), J(0) = J, while by (v), J(K) = J - 1. Therefore

J(0) - J(K) > j - J > ,sN.

Therefore, there exists some i E {1..., r} such that

J(Ki_1 ) - J(Ki) > 'N> 20bK.
T

Put
J(Ki_ 1) + J(Ki)

2N

Ki_1 + f-
N 1--i >24,

Ki - f2NV
52= min K ,-7

N
J2 >'

1- - 62 >"

It is straightforward to check that #1 and #2 are legitimate probability distribu-

tions (that is, all entries are nonnegative); the only nontrivial part is Ki - 2 > 0

which follows from Ki - Ki_ 1 > J(Ki_ 1) - J(Ki) > 201W.

We will show that

(G.8)

and

(G.9)

Suppose that the K-profile P = (x >-, y >-', z >-") is drawn according to IID(#1).

If the inequalities

x > J (G.10)
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(G.11)

(G. 12)x + y KI- 1 + J(Ki_ 1)

are satisfied, then we must have f(P) = A1 , using f(J(Ki_ 1)

>") = Ai and the monotonicity relation (iii). Notice also that if

x < (3J(Ki- 1) + J(Ki))/4 (G. 13)

(G.14)K -1 + 4

are satisfied, then (G.12) will automatically hold.

Now we apply the same Chebyshev argument as in the proof of Lemma 4.2. We

have (x, N-x) ~ M(N; -y, 1-X), so (G.10) and (G.13) are satisfied unless Ix-E[x]|
(J(Ki- 1) - J(Ki))/4, which happens with probability

Var(x)
(J(Ki )-J(Ki) 2

N/4

(5\ N)2

1
100

Likewise, (y, N - y) - M(9; J1, 1 - 61), to (G.11) and (G.14) are satisfied unless

|y - E[y] I % 29, which happens with probability

Pr(ly - E[y]|> 2N-) < Var(y)
( 2N) 2

N/4 1

2N 8

We conclude that (G.10), (G.11), (G.13), (G.14) are all satisfied - and hence f(P) =

A3 - with probability at least 1 - 1/00 - 1/8 > 3/4. This gives (G.8).

Similarly, suppose that the N-profile P = (x >-, y >-', z >-") is drawn according

to IID(#2 ). If the inequalities

x <7

y < Ki

(G.15)

(G.16)

(G.17)x + y > Ki + J(Kj)
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are satisfied, then we must have f (P) = Aj, using f(J(Ki) + 1 -, Ki s',N -

J(K) - Ki - 1 >-") = Ai and the monotonicity condition (iii). (Note that we cannot

have J(Ki) + Ki = N, because then f(J(Ki) >-, Ki >'-, 0 >-") = Aj, together with

f(N - K ,K -',0 >") = Ai from (v), would give a contradiction to (iii).)

Notice also that if

X > (J(Ki_ 1) + 3J(K2 ))/4 (G.18)

y> K - 4VN (G.19)

are satisfied, then (G.17) will automatically hold.

If J2 = (Ki - 2N)/N, then exactly the same Chebyshev arguments as before

give that (G.15), (G.16), (G.18), (G.19) are all satisfied - and hence f(P) = A -

with probability greater than 3/4. Otherwise, we necessarily have X + y = N so that

(G.17) is always satisfied, and then the same arguments show that (G.15), (G.16) are

both satisfied with probability greater than 3/4. In either case, then, we get (G.9).

Now that (G.8) and (G.9) are proven, we use Lemma 4.9 to complete the argument.

Notice that #2 - 1 = A(>-' - >-"), where

Ki Ki_1  40

N N -/7r

By (ii), preferences >-' and >-" rank Ai and Aj in the same way. If they both rank

A above Aj, then let C+ be the set of candidates weakly preferred to Ai under >-".

Lemma 4.9(a) gives

f fA(#2) - YA (41) < NAo-. (G.20)
AEC+ AEC+

By (G.8) and (G.9), the left-hand side of (G.20) is at least 3/4 - (1 - 3/4) = 1/2, so

1 < <_o- < z7o-.

If >-' and >-" both rank Aj above Aj, then let C+ be the set of candidates weakly
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preferred to A- under >-'. Lemma 4.9(a) gives

E A (A1) N02 -< fNGo)
AEC+ AEC+

and we again arrive at 1/2 < VHN(40/1 r)o-. Thus in either case we have

o- ;> r'gV-1/2
80

which is the promised result.

Proof of Theorem 4.4: We first suppose there are just three candidates,

C = {A, B, C}. For every K, we have f(K ABC, N - K BCA) E {A, B} by Pareto

efficiency (and moreover it is B when K = 0 and A when K = N). Moreover, by

monotonicity, if this expression equals A for some K then it also equals A for all

higher K. So, writing

K ABC
KAB= max K f -(=B],

I (N - KBCA A

we have f(K ABC, - K BCA) = B if K < KAB and A if K > KAB. Likewise

define

K BC A
KBC =max K f - =KCB,

N-KCAB

K C AB
KcA =max K f ( =A,

N - KABC

K CBA
KcB =max K | f - BAC B

K BAC
KBA =max K f ( =A,

1 N - K ACB
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KAC = max K f (
K ACB

N-K CBA

We now have two cases.

(i) KAB + KBC + KCA + KCB + KBA + KAc > 7/2.

In this case one of the three quantities KAB + KBA, KBC + KCB, KCA + KAc

is greater than 7N/6. Without loss of generality we will assume KCA + KAC >

7N/6, which is the case shown in Figure 4.4.

Let

As before, f(K

Then one of the

K* =max K f ( AB
(N - K ACB

CAB, - K ACB) = A for K < K

following two inequalities must hold:

=A

and = C for K > K*.

KCA-K*> N
12

We assume henceforth that the first inequality holds (otherwise, the argument

is the same with A and C reversed).

Now we apply Lemma 4.10 with

>-= CAB, >-'= ACB, >- "= ABC,

J=K* +1 J = KCA,
1

Ai= C, A 3 =A.

The condition - J > KN is evidently satsified (as long as N is large), so we

need to verify conditions (i)-(v) of the lemma. (i) follows from Pareto efficiency.

(ii) is immediate. (iii) follows from monotonicity. (iv) is the definition of KCA

(and our monotonicity observation earlier). (v) is the definition of K*. Hence,

the lemma applies, and o- is bounded by a constant times N- 1/ 2 . This takes
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care of case (i).

(ii) KAB + KBC +KCA+KCB +KBA+KAc < 7S/2.

In this case one of the quantities KAB + KBC + KCA, KCB + KBA + KAC is at

most 7N/4. Without loss of generality we will assume

KAB +KBC +KCA < 7N (G.21)
-4

We can now focus our attention on the ABC - BCA - CAB simplex.

We will also assume for now the inequalities

89
KAB +KBC,KBC +KCA,KCA +KAB> - . (G.22)

90

Afterwards we will come back to address the (easier) case where one of these

inequalities is violated.

An outline of our argument is illustrated in Figure G.1. In the top-left panel,

the dots marked on the edges of the simplex are the profiles (KAB ABC, N -

KAB BCA), (KBC BCA, N - KBc CAB), and (KCA CAB, N - KCA ABC).

The assumption KAB+KBC+KCA 7N/4 ensures that the downward-pointing

triangle in the figure has side length at least N/4. Consider the profile at the

center of the triangle, and without loss of generality assume that the winner

there is A. Then consider the smaller downward-pointing triangle (shown in the

bottom two panels). Using monotonicity we can show that at each profile in

the smaller triangle, f must choose either A or B. If f chooses A at the center

of the smaller triangle, then consider the shaded trapezoid in the bottom-left

panel of Figure G.1. By monotonicity arguments, f chooses either A or C at

each profile in the trapezoid, and chooses A near the left edge and C at the right

edge. Then we can apply Lemma 4.10 to this trapezoid. If instead f chooses B

at the center of the smaller triangle, then we consider the parallelogram shown

in the bottom-right panel, and similarly apply Lemma 4.10.
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ABC

BCA CAB

Figure G.1: Proof of Theorem 4.4 (case (ii))
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Now we begin the proof properly. Let Po be a profile with

xO ABC (N + KAB + KBC - 2KcA)/3 ABC

Po= yo BCA (N +KBC + KCA - 2 KAB)/ 3 BCA

zo CAB (N + KCA + KAB - 2 KBC)/3 CAB

where the approximation means that we add or subtract at most 1 to each

component to ensure xo, yo, zo are integers. Inequality (G.21), together with

(G.22), ensure that xO, yo, zo are all positive. We have f(Po) = A, B, or C.

Without loss of generality, suppose henceforth that f(PO) = A.

Now take

-s - t ABC

T= s-BC A s < yo,t < zo, s +t > KCA}.

t C AB

Note that any profile P C T for which t = zo is obtained from P by changing

some BCA votes to ABC, so by monotonicity f(P) = A. Consequently, we

cannot have f(P) = C for any P E T: if f( -s-t ABC, s BCA,t CAB) = C,
then by monotonicity f(N - s - zo ABC, s BCA, zo CAB) = C, but this profile

is also in T and we showed that A must win there, a contradiction. Hence,

f(P) c {A, B} for all P E T.

Let P1 be a profile with

x 1 ABC (7N + KAB+ KBC - 8KcA)9 ABC

= y1 BCA ~0 (N - 5 KAB + 4KBc+4KcA)/9 BCA

z1 CAB ( + 4 KAB - 5KBc + 4KcA)/9 CAB

This profile is the "center of the smaller triangle" in Figure G. 1. Again, one can

verify that all components are positive. Moreover, P1 G T: all of the relevant

inequalities reduce (up to negligible rounding error) to KAB+KBC+KCA 2N,

which is true by (G.21). Therefore, f(P) E {A, B}. We have two cases.
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If f(P) = A, then we will apply Lemma 4.10 with

= ABC, BCA, CAB,

_ ~1 --

J = x1, J N - KcA - 4, 0= 4, K=y1- (N-KcA-4-xl),

Ai = A, Aj = C.

The required inequality J - J > iN follows directly from (G.21). We proceed

to verify conditions (i)-(v) of the lemma.

To verify condition (i), suppose for contradiction that f(J ABC, K BCA, N -

J - K CAB) = B for some J < J <J and 0 < K < K. By monotonicity,

f(J ABC, yi BCA, N - J - y1 CAB) = B also. (Note that K < K yi;

and this profile is well-defined since (G.21) and (G.22) imply J + y1 < N). But

since J > x1 , f(P) = A and monotonicity imply f(J ABC, y1 BCA, N - J -

y1 CAB) = A, a contradiction. Thus condition (i) of Lemma 4.10 holds.

Condition (ii) is immediate. (iii) follows from monotonicity given (i): if f(PJK)

= A then f(PJ+1,K-1) = A by monotonicity, and f (PJ+1,K) cannot equal C be-

cause then monotonicity would require f(PK) = C, so f(PJ+1,k) = A instead.

(iv) follows from the definition of KCA. And (v) holds because each of the rel-

evant profiles Pjx lies in the set T (checking the relevant linear inequalities is

straightforward), hence f(Pjg) = A or B; since we have already ruled out B

with condition (i), we must have f(Pj,-) = A for each J, and condition (v) is

satisfied. This checks all the conditions to apply Lemma 4.10, and we conclude

that o- is bounded below by a constant times N~11 .

If on the other hand f(P) = B, then we will apply Lemma 4.10 with

>= BCA, Y'= CAB, >"= ABC,

1 -

J=yi, J = yo - 4, K =R = zi,40

A = B) A=A.
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Again, the requirement J- J > riN follows from (G.21), so we proceed to verify

conditions (i)-(v).

If f (J BCA, K CAB, - J - K ABC) = C for some (J, K), then by

monotonicity we also have f (J BCA, zi CAB, N - J - zi ABC) = C. ((G.21)

and (G.22) ensure this is a valid profile.) But this profile lies in T, so we

should have f(J BCA, z1 CAB, N - J - zi ABC) E {A, B}, a contradiction.

This shows that condition (i) is satisfied. Condition (ii) is immediate. (iii)

follows from monotonicity given (i): if f(PJK) = B, then f(PJ+1,K-1) = B

by monotonicity, and we cannot have f(PJ+1,K) = A since then monotonicity

would imply f(PJK) = A as well, so we must have f(PJ+1,K) = B. (iv) follows

from N - 7 > KAB (which in turn follows from (G.21)). Finally, f(PjK) =

f(P) = B, so f(Pjkg) = B for all J (by condition (iii)), verifying (v). So we

have checked all the conditions, and Lemma G.21 applies. We again conclude

that o- is bounded below by a constant times N-1/ 2.

This completes the proof of case (ii) of the theorem as long as (G.22) is satis-

fed. It remains to address the case where (G.22) is violated. Without loss of

generality, we assume that

KCA + KAB < N.
90

Then we can apply Lemma 4.10 with

-= ABC, >'= BCA, "= CAB,

1 --
J = KAB +, ~- N - KcA - 1, -= , K = N - KAB - 1,

Ai = A, Aj = C.

It is clear that J - J> Kj-N as long as N is large, so we check (i)-(v).

For (i), suppose f (J ABC, K BCA, - J - K CAB) = B for some J, K

with J > KAB + 1. By monotonicity, f(J ABC, N - J BCA) = B also.
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This contradicts J > KAB. Then (i) follows. (ii) is immediate. (iii) holds by

monotonicity: if f(PJK) = A, then f(PJ+1,K-1) = A by monotonicity directly;

and f(PJ+1,K) = C would imply f(PJK) = C by monotonicity, a contradiction,

so from (i) we must have f(PJ+1,K) = A instead. (iv) follows from the definition

of KCA, and (v) follows from the definition of KAB. Thus all the conditions hold

and once again Lemma 4.10 assures us that o- is bounded below by a constant

times N1 /2 .

This completes the analysis of cases (i) and (ii). We have had to apply Lemma

4.10 with only finitely many values of K, so if we simply let c be the smallest of the

corresponding values of c(r,), then we have o > cN"1/2 in every subcase (as always,

assuming N is sufficiently large).

Finally, the foregoing analysis assumed that C consisted of just three candidates.

If there are more than three candidates, then let A, B, C be any three of them, and

restrict attention to (N + 1)-profiles (and beliefs) at which each voter ranks A, B, C

higher than any other candidate, with the remaining candidates all ranked according

to some fixed order. By Pareto efficiency, only A, B, or C can win at any such profile.

Then, all of the preceding analysis carries through directly, with the preferences ABC

replaced by ABC..., BCA replaced by BCA..., and so forth.

Next, we round out Subsection 4.5 by supplying the proof of Theorem 4.2.

Proof of Theorem 4.2: Let ci be the constant given by Lemma C.8. Take

A, B, C to be any three different candidates. We consider two possibilities.

(i) Suppose there exists some K such that f(K B, N + 1 - K C) V {B, C}. Let

S G {1, .. ., N} be the set of all such values. Let a be the value given by Lemma

C.8 for the set S. Put <p = (a B, 1 - a C). The conclusion of the lemma can

be written as

Pr (f (C, P) {B, C}) - Pr (f (B, P) {B, C}) > ,
IID(#) ID(#) N
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where the probabilities are over opponent-profiles P drawn according to IID(#);

or equivalently,

Pr (f(B, P) C {B, C}) - Pr (f(C, P) c {B, C}) > '
IID(#) IID(#) N (G.23)

If the manipulator's true preference ranks C first and B second, then consider

the manipulation to reporting C, with the top-set C+ = {B, C}. The left side

of (G.23) is < o-, by (2.3). So we get o- > ci/N in this case.

(ii) Suppose that f(K B, N + 1 - K C) E {B, C} for all K. Assume that o- <

1/(N + 1) (otherwise we are done). We will first show that there exists exactly

one value of K such that f(1 A, K B, N - K C) V {B, C}.

For any a C [0, 1], consider (2.3) for a manipulator with true preference B... C,

considering a manipulation to A, with belief # = (a B, 1 - a C) and C+

C \ {C}. We get

N Ka
EP N;

K=0 N -K 1-a

I~ A
I fK B C C+

N-KCj

K + 1 B-IN - K C+ ]
< 0-

1
<N +l'

Now integrate over a from 0 to 1, using the well-known identity f (NaK(1 _

a)N-K da = 1/(N+ 1). (The identity can be proven by showing that the integral

is equal at two successive values of K, since the difference of the integrals at K
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and K ± 1 is N+ J)aK+1(1 - a -)N-K I = 0.) This gives

1 A

KB

N-KC

EC+ _-I f K G C+

1+K l<N±+1I

Applying (2.3) for a manipulator with true preference A ... C, considering a

manipulation to B, gives the same inequality with the left-hand side negated.

Hence, after multiplying through by N + 1, we get

N

EI f
K=0

1A

KB

N-KC

N K + 1B
C -(I f K #C <1.

K=) N-K C

The left side is an integer, so it must be zero.

Subtracting both of the sums from N + 1, we get the simpler equation

N

EI f
K=0

1 A

K B

N-KC

N

=C -(I f
K=0 (

K+1B

N-KC ) =C) =0.

Thus, the number of profiles with one A vote and all other votes B or C, such

that C wins, equals the number of profiles with all B or C votes, and at least one

B vote, such that C wins. This is in turn equal to the total number of profiles

with all B or C votes, such that C wins, minus one (since f(N + 1 C) = C by

unanimity).

By the same argument with B and C reversed, we see that the number of profiles

with one A vote and all other votes B or C, such that B wins, equals the total

number of profiles with all B or C votes, such that B wins, minus one.

Adding these two quantities, and using the fact that f(K B, N + 1 - K C) E
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{B, C} for all K by assumption, we see that there are exactly N profiles of the

form (1 A, K B, N - K C) at which either B or C wins. Hence, there is exactly

one profile of this form at which some other candidate wins, as claimed.

Let K* be the unique value for which f(1 A, K* B, N - K* C) ( {B, C}.

Now let KB be the minimum value such that f(KB B, N-KB C) = B. Let KC

be the maximum value such that f(KC B, N - KC C) = C. If f were simple

over B, C, we would have KB = Kc +1; but we no longer have this assumption.

Instead, we will show that KB and KC are both close to K*, and therefore close

to each other; this in turn will allow us to repeat the argument from the proof

of Theorem 4.7.

Let S = {K | f(K B, N+1 - K C) = C}. Let ac ;> Kc/N be the value given

by Lemma C.8 for this set. Assume that o- < ci/3N (otherwise we are done).

Consider a manipulator with belief #c = (ac B, 1 - ac C), preference A ... B,

manipulating to C. We will write P[K) rather than P(K, N - K I N; #c) to

save on notation. The manipulation cannot decrease the probability of B by

more than o-, hence

N11A
N 1AK B
ZP[K] I f KB =B -I f =B

K=0 N +1- K C
N-KG

< . (G.24)

Similarly, a manipulator with the same belief and preference A ... C, manipu-

lating to B, cannot decrease the probability of C by more than o-, hence

1 A
N K+1IB cl

SP [K] I f K B =C -1I f = C < 3*.
K=0 K N - KC 3N

(G.25)

Now add (G.24) and (G.25). Notice that the f(1 A, K B, N - K C) terms add
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up to cover each possible value of K exactly once, except for K = K*. Thus

we get

N

1 -P[K*] - P[K] x
K=O

K B
If

N (N+1-KC

< 2c .

3N

=B) +I (f ( K+1B

N+1-KC)

But the remaining terms on the left side come under control because

I (f( K B

L +-N+1-K

N

=ZP[K] 1-I f
K=0 L

=B)

KB

N+1-K C

+I (f

)
(N-KC)

I f K+1 B C
N-K C

N KB
=1+Z [P[K-1]-P[K]]I =C

K=0 N+1-K C

<1-
N

where the second equality comes from reindexing the sum, and the final inequal-

ity comes from Lemma C.8.

Combining with (G.26) gives

1 - P[K*] - 11 - < 3

or, finally,

P
K*

N - K*
N-

ac Cl

1-ac 3N
(G.27)
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Now combining (G.27) with Lemma C.4 gives

c1 3 NN(c-K*/N)2

3N

from which
K*

ac - N
in N - ln(c1/3)

N

As long as N is sufficiently large, the right-hand side is < N-1/3 . So we can

conclude

K c < acN < K* + N 2/3 .

Now, exactly the same argument with the roles of B and C reversed leads to

the conclusion that

KB K* - N2 /3

Therefore, we have

Kc - KB < 2N 2 /3 . (G.28)

This is the assertion that KB and Kc are close to each other, as promised.

(Notice also from the definitions that KB Kc + 1.)

From here, we will assume that f has susceptibility o- < 1/N and obtain a

contradiction, following the same steps as for Theorem 4.7. As long as N is

large enough, we may assume that KB < 2N/3 (otherwise KC > N/3, so just

switch B and C). Let

#1 = (ai B, 1 - a, C)
Kc + V2

with a, = min{ ,1}.
N

Whenever more than Kc voters vote for B and the rest vote for C, B wins; so

the same Chebyshev argument as before gives f(# 1) = (-y B, 1 - 71 C) where

7y1 7/8. Let

#2 = (a 2 B, 1 - a2 C)
KB- \2N

with a 2 =max{ ~ 0},
N
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and obtain f(# 2) = (72 B, 1 - 'Y2 C) where Y2 < 1/8.

Write 1 - 2= A(B - C). On account of (G.28), we have

A =ai - a 2 < 2v/2g-11 2 + 29-1/ 3 < 3V-1/3

as long as N is large. Again taking co to be the constant from Lemma 4.9, we

have

coNAo < 3coN-1/ 3  1
8

as long as N is large. Exactly as before, we now define #3 = #1 + A(A - B) and

#4= #1 + A(A - C), and apply Lemma 4.9 to each of the pairs connected by

thick lines in Figure 4.5, obtaining constraints on the values of f(#3) and f(# 4)

until we reach a contradiction.

Finally, we give proofs of the ingredients for Theorem 4.1. We begin with Lemma

4.11.

Proof of Lemma 4.11: Let v denote the four-way difference on the left-hand

side of (4.7).

Put

W2 >3-4 f >

Apply Lemma 4.9(b) twice to the difference represented by wi: once letting C' be

the set of candidates A $ A , Aj such that (Wi)A > 0, and once letting C' be the set

of candidates A 4 Aj, A, such that (wi)A < 0. We obtain

E (wi)A 2coNaou < 2coTc.
A#Ai,Aj
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Likewise,

( |(w2)J 2coN-u.
A54Ai,Aj

Then, since v - w2 , we get

> Ivl < 4cN-R. (G.29)

Now put

a >-1 a >-1

W3= f 3-3 -f #-4 ,

a >-2 ae >-2

W4 = #3 >3 - f 4 -4

Using v = W- w4, analogous computations give

Z IVAI 4cNu. (G.30)
A#Ak,Ai

Now if {Ai, Aj} is disjoint from {Ak, Al}, then (G.29) and (G.30) immediately

lead us to EAC vAl < 8coNo- which is stronger than (4.7). Otherwise, {Ai, Aj} and

{Ak, Al} have one element in common - say Ai - in which case (G.29) and (G.30)

give EA$Ai |VA I 8coNo-. Since the sum of the components of v is zero, we also have

|VA I< 8coNu, and (4.7) follows.

We now prove the three main lemmas that combine to give the theorem.

Proof of Lemma 4.12: Suppose the conclusion does not hold. Then the same

reasoning as in case (i) of Theorem 4.7 gives a distribution 4 such that

Pr (f(CAB,P) = C) - Pr (f(CBA,P) = C) > c
fID(#) IID() N

If we consider a manipulator with true preference CBA, manipulating to CAB, with
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top-set C+ = {C}, then this gives us - > ci/N, contradicting the given.

Proof of Lemma 4.13: Define the following vectors in RM:

x ABC ...

y BAC...

z BAC...)

x ABC...

y ABC...

z BAC...

(we write e.g. (x ABC...,y BAC..., z BAC...) rather than (x ABC...,y +

z BAC...) to aid readability; no confusion should result)

x ACB...

y BAC...

z BAC ...

x CAB...

y BAC...

z BAC...

x CAB...

y BAC...

z BCA...)

x CAB...\

y BAC...

z CBA...

-T(

x ACB...

y ABC...

z BAC...

x CAB...

y ABC...

z BAC...

x CAB...

y ABC...

z BCA...

x CAB...

y ABC ...

z CBA...

By applying Lemma 4.11 repeatedly, we get

|vi - v21 16coNo-;

Iv3 - v4 1 5 16coNo;

|V2 - v 3 1 16coNo;

|v4 - v5 l 16coN-.
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V5 = f
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Adding these and using the triangle inequality gives

|v1 - v 5 | 64coNo-.

Next, define

v'=IT(

x' ABC ...

y BAC...

z' BAC... )
x' CAB...

v = Z y BAC...

z' CBA...

Then the above reasoning also gives

x' ABC ...

y ABC ...

z' BAC ...

x' CAB...

y ABC ...

z' CBA ...
1J

Iv' - V1 < 64coNo,

and hence we obtain

I(v - V') - (v5 - v)I 128coo-.

Now define

x CAB...

W1 = y BAC ...

z CBA...

x CAB...

W2 =zf y BCA...

z CBA...

x CAB...

W3 =f y CBA...

z CBA...

)

x'CAB...

-Z y BAC ...

z' CBA...

x'CAB...

-f y BCA...

z' CBA...

x' CAB...

-I y CBA...

z' CBA...
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Then Lemma 4.11 gives

jwi - w2 1 16coNo-; |w2 - w31 < 16coN-,

so by the triangle inequality,

|Wi - w 3 1 32coNo-.

However, w 3 = 0, because our assumption (4.8) implies that both f(---) values in

the definition of w3 are just C with probability 1. Thus we actually have

wit 32coNo-. (G.32)

Similarly define

W4 = (

W5 = f

W6(

x CAB...

y ABC...

z CBA...)

x CAB...

y ACB...

z CBA...)

x CAB...

y CAB...

z CBA...

Lemma 4.11 gives

-i(

-'C
-'C

x' CAB...

y ABC...

z' CBA...

x' CAB...

y ACB...

z' CBA...

x' CAB...

y CAB...

z' CBA...

|w4 - W5 1 16coNo-,

|w5 - W6 < 16coN-,
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and as before we actually have w6 = 0, so we conclude

1w41 32c0 NR. (G.33)

Notice now that v5 - v' = Wi - w 4, so (G.32) and (G.33) give us

|v5 - v5| < 64coNo-,

and combining this with (G.31) we obtain

lvi - v'| 192c 0 No. (G.34)

This is exactly what we sought to prove. l

Proof of Lemma 4.14: We proceed by considering the behavior of f near the

endpoints of the ABC... - BAC ... edge, showing that f cannot be very close to

linearity.

Given f, let M denote the supremum of the left-hand side of (4.11), over all choices

of X, y, z, x', z'. We consider two cases.

(i) There is some K < such that f (K BAC..., - K ABC ... ) $ A. In

this case, as long as N is sufficiently large, we have

- 1- K/S ABC ... R- K ~ 1- K|N
fA < 1-P N;

K/N BAC... K KI

< 1-NTy

< 1
f2N

by Lemma 2.4 and the asymptotic behavior of au. Therefore by taking x =

1 - K/N, y = K/N, z = 0, and noting f(x + y ABC..., z BAC...) =A by

weak unanimity, we get
1

(V)A 2-
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It follows that for any choices of x', z' > 0 with x' + z' = 1 - K/N,

(vI)A <-
N2NV

+ M.

In particular, for any positive integer r < L2VN], we may take x' = 1 -

rK/N, z = (r - 1)KN to obtain

_ (
(1 - rKN) ABC.

rK/N BAC...

If we apply this inequality for r = 1, 2,

-fA

1
2N

(1- (r - 1)K/) ABC

(r - 1)K/N BAC... )
+ M.

... ,r = L2vfNj and telescope, we obtain

fA

(1- TK/N) ABC...

TK/N BAC... ) 1 ABC...

0 BAC...

The left side cannot be lower than 0 - 1 = -1, so

-1 < T -;

which leads to
1

M>N

1

1 (

+ M)

A/2 - 1

(ii) For all K < \/NN/2, f(K BAC..., N - K ABC ... ) = A. Then apply Lemma

C.9 with c = 1/6 to conclude that if an N-profile P is drawn IID(a BAC ... , 1-

a ABC...) for any a < 1/61K, then the probability that f(P) 74 A is at most

1/N, as long as N is sufficiently large.

Let s be an integer with 6\/K < s < 7\1N. Then taking x = 1 - 1/s, y = 1/s,

z = 0, and again using f(x + y ABC... , z BAC .. .) = A by weak unanimity,
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we get
1

(V)A >-~.
N

So for any choices of x', z' > 0 with x' + z'= 1 - 1/s, we have

1
(VIDA > - M.

N

In particular, for any r = 0, ... , s - 1, we can take x' = (s - 1 - r)/s and

z= r/s to obtain

- 1 -(r +1)|s ABC... _ 1- rs ABC ... 1
f A (- fA ) ~> M.

(r +1)/s BAC ... r/s BAC... N

Summing for r = 0,... , s - 1 and telescoping gives

0 ABC... - 1ABC... 1
fAt I -f S M 1 .

1 BAC ... /0 BAC... / N

Using weak unanimity, the left side equals 0 - 1 = -1, so

-1 s ( - M)

from which
1 1 1

M> ~>
s N "-yV/

In both cases (i) and (ii), we showed that M was bounded below by a function of

N that is asymptotically equal to a constant times i/11i, which is exactly what the

lemma claims.

Now we give the proof of Theorem 4.6. Essentially, we just need to replace Lemma

4.14 with a corresponding statement giving a sharper bound for simple rules:

Lemma G.1 There exists some absolute constant c3 , independent of N, with the

following property: As long as N is large enough, for any f that is simple over A and
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B, there exist some nonnegative x, y) z, x', z' with

x ABC...

y+z BAC..

(
) x+y ABC...

z BAC...

x' ABC ...

y+ z' BAC.. ) x'+ y ABC.

z' BAC...

Proof: Let K* be the threshold such that f(K ABC...,N - K BAC...) = A

iff K > K*. Just as in the proof of Theorem 4.2, assume that K* < N/2 (otherwise

switch A and B), and put

#1 = (a1 ABC..., 1 - ai BAC...)

42 = (a 2 ABC...,1 - a 2 BAC...) w

with
K* + 2N

afi = ~

ith a2 = max{K* - 2
N

By simplicity, f(#1),f(2) both put positive weight only on A and B, and by the

same Chebyshev argument as in Theorem 4.2, f(#1) puts probability at least 7/8 on

A, while f(# 2 ) puts probability at most 1/8 on A.

Next put

#3 = (a3 ABC...,1 - a 3 BAC...) with a3 = 2ai - a 2.

Since a3 > ai, the same Chebyshev argument gives that f(#3) puts probability at

least 7/8 on A (and the remaining probability on B). We now have

|f(#1) - f(#2)| 2 3/2,

If (43) - f(#1)| 1 1/4.

Now take

x = ai, y = a 2 - a 1 z = 1 - a 2 ,
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X = a3 , z'= 1 -a 1 .

The expression on the left side of (G.35) reduces to

- -- 3 1 5
|(f (#1) - f(#2)) - (f (#3) - f(#1)) - - - -2 4 4

which proves the lemma. L]

Proof of Theorem 4.6: As usual, it suffices to assume N is large enough so

that Lemma G.1 applies. Assume A, B, C are chosen so that f is simple over A and

B. Let co, ci, c3 be as in Lemmas 4.12, 4.13, G.1. Either o- 2 ci/N, and we are done;

or else Lemma 4.12 applies, in which case (4.10) and (by simplicity) (G.35) apply;

combining these gives o- > c3/192coN. L

H Construction for quickly-decaying susceptibil-

ity

We provide here the construction of a tops-only voting rule that attains susceptibility

on the order of N- with r > 1/2, as required by Theorem 4.3. The actual con-

struction is more elaborate than the approximate random dictatorship sketched in

the main paper, so we first give a more detailed overview.

The main idea behind the construction is to subdivide the simplex of vote profiles

into blocks as illustrated in Figure H.1. Within each block, we then assign winners

A1 , ... , Am to the various profiles, in proportions that correspond to the position of

the block in the vote simplex.

More specifically, in order to avoid creating especially large opportunities for ma-

nipulation near the edge of the vote simplex, we need to focus on viable candidates

at each vote profile, as in the construction of the pair-or-plurality system in Subsec-

tion 3.3. Roughly speaking, each candidate needs to get more than some threshold

number of votes to be considered viable; the threshold will be taken to be (asymptot-

ically) some constant A times N. Then, for each set C' of candidates, we consider the
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A

B C

Figure H.1: Sketch of the construction for Theorem 4.3

subspace of vote profiles in which the viable candidates are precisely the members of

C', and carve up this set of profiles into blocks, depending on how many votes each

viable candidate receives. All blocks have equal size S along each of the dimensions

corresponding to a viable candidate.

For any given block, we define a weight for each viable candidate by subtract-

ing AN from her vote total. We then assign each viable candidate to some profiles

within the block, so that the fraction of profiles assigned to a given candidate is ap-

proximately proportional to her weight. Within the block, we use Lemma C.11 to

determine exactly which profiles are assigned to each candidate so that the difference

between a candidate's relative probability and her weight is kept small.

Consider now the susceptibility of a voting rule defined in this way, with blocks of

size S. When the manipulator changes his vote, this affects the distribution over real-

ized vote profiles in two ways: it changes the distribution over blocks, and it changes

the distribution over profiles within each block. By considering the distribution within

each block, we show that the distribution over winning candidates equals the distri-

bution is pinned down by the distribution over blocks to within order SdN-(d-2)/2

(ignoring constant factors). Here d is the value used in applying Lemma C.11. We

also show that the change across blocks affects the distribution over candidates on the
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order of S-1/dN-1/ 2 . Hence, our construction gives an upper bound for susceptibility

that is approximately on the same order as max{SdN-(d- 2 )/2 , S- 1/"N- 1/ 2}. In order

to achieve the fastest possible rate of decline in susceptibility as N -+ 00, we choose

d = 6 and S ~ N 9/37 , with the resulting rate of decline N 20/37 . We will henceforth

use these numbers for concreteness. 9

Proof of Theorem 4.3: We first give the exact construction of the voting

system. Fix constants A, p with 0 < A < 1/M and 0 < p < 1 - MA. Also fix a with

0 < a < min{A/3, p/3, (1 - MA - p)/(M + 1)}.

For each value of N, choose integers SN, LN, RN such that

S SN - 2 6h for some integer h and N9/ 3 7 < SN 26 /37

" LN ~AN;

e RNSN ~ pN.

We will henceforth refer to these as S, L, R, with the dependence on N implicit.

Verbally, we refer to them as the block size, viability lower bound, and number of

blocks (in each dimension).

A block label is a sequence consisting of M- 1 or fewer (possibly zero) nonnegative

integers, whose sum is at most R.

Given a profile P = (xi Ai, ... , XM AM), we compute a corresponding block label

BL(P) by the following algorithm:

1. For each i = 1,... , M, if x < L, put Ai = 0. Otherwise, put Ai = L(xi -

L)/SJ + 1.

2. Let t be the smallest index such that Ai + ... + At > R. Notice that t must

exist, since

A1 + - -- + Am 1 + + xM - ML (1 - MA)N 1 - MA
R RS RS yL

91t is possible to achieve faster rates of convergence through minor improvements on the con-
struction, but we do not bother doing so here, since we have not found a construction showing that
the exponent -1 in Theorem 4.2 is tight.

210



Then define BL(P) to be the (t - 1)-term sequence (A1,.. ., At_ 1).

Given a block label A, we define the corresponding block as BL-'(A), obtained

by inverting the above procedure. For each candidate Ai we construct a lower bound

x and an upper bound Ti on the number of votes: If A = (A 1, . . . , At_ 1), then

" if i < t - 1 and Ai = 0, put z. = 0 and Y = L - 1;

" if i < t - 1 and Ai > 0, put xi = S(Aj - 1) + L and 2 = SAi + L - 1;

" fori=t, put xi=S(R-EAj)+Land i =N+1;

e fori>t,putzj =0andi= N+ 1.

Then one readily checks that BL 1 '(A) is the set of all (N + 1)-profiles of votes

(Xi, ... , XM) such that zi xi < Tj for all i.

We also define weights W(A), for each block label A and each candidate Aj: if

A = (A1 , ... , At_1 ) then

* for i < t - 1, Wi(A) = Ai/(R + 1);

* for i = t, Wi(A) = 1 - Z, Aj/(R + 1);

e for i > t, W(A) = 0.

Thus we always have Ej Wi(A) = 1.

We further modify these weights by rounding down to integer multiples of 1/ 2h:

for each i < M, define the rounded weight W(A) = L2 W(A)]/2h, and put WM(A) =

1j- E1 1 W (A).

Let S = 2 6h, and let Z = {0, 1,... , 26h - 1} be partitioned into 2 h subsets

Zo,..., Z 2 h- 1 according to Lemma C.11. For each block label A, we let gA be any

function from {0, 1,... ., 2 h -} -+ C such that IgA'(Ai)| = 2hW (A) for each candidate

Aj. Thus, the proportion of values of y on which gA takes the value Ai equals the

rounded weight of Ai.

Finally, we are ready to define the voting rule f. Given a profile of votes, P =

(xi A1 ,... , xm AM), we define f(P) as follows:
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* Let (A,..., At- ) = A = BL(P) be the block label.

" If every term Ai is zero, then let f(P) = At.

" Otherwise, consider the smallest i such that Ai > 0. Let

Xi = (xi - L) - S * .

Then si is an element of Z. So Yi c Z. for exactly one y. Put f(P) = gA(Y).

This defines the voting rule. The statement of Theorem 4.3 promised that it

would be Pareto efficient and tops-only. Tops-onliness is clear from the construction,

so we should check Pareto efficiency. Evidently we must check that f(P) is always a

candidate who gets at least one vote in profile P. If every term Ai of the block label

BL(P) is zero, then At > R > 1 so that xt > 0. Otherwise, notice that whenever Ai is

a candidate with Ai = 0, then W(A) = 0, and so gA(y) # Ai for all y. Consequently

we cannot have f(P) = Ai for any such i. Thus, f(P) must be a candidate Ai for

whom Ai > 0, implying xi > 0.

Our remaining task is to prove the susceptibility bound. The proof of the bound

is based on two claims. Let f be an arbitrary small positive constant.

Claim I. There is a constant c, such that the following holds. For all distributions

# E A(C), all candidates Aj, Aj,

Pr4(f(Aj, P) = Aj) - E Pr,((Aj, P) G BL-1 (A))Wi4(A) < cN- / -E.
A

Here the Pr-(... ) expressions refer to probabilities concerning the profile (A,, P),

given that P is formed by having each of the N other voters drawn independently

from #.

Claim II. There is a constant crr such that the following holds. For all distribu-
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tions # e A(C), and all candidates Aj, Aj, Ak,

Z Pr((Aj, P) E BL-'(A))Wi(A) - ZPro ((Ak, P) C BL-'(A))Wd(A)
A A

< cIIN-( 20/ 37 -e). (H.1)

We shall prove these two claims, then show how this quickly completes the proof

of the theorem.

Proof of Claim I. We rewrite the expression inside the absolute value as

[Pro((Aj, P) E BL-'(A) and f(Aj, P) = Aj) - Pro((Aj, P) E BL1(A)Wi(A))].
A

For each block label A consisting of zeroes, the relevant difference is zero. (If t - 1

is the length of A, then Wt(A) = 1, while wi(A) = 0 for i # t; and f takes the value

At throughout BL-'(A).) So we can restrict to the sum over A having a nonzero

component.

For each candidate Ak, k < M, let ek,t be the set of all block labels A with length

t - 1 such that A, = 0 for all 1 < k, but Ak > 0. It suffices to show that there is a

constant c', independent of #, such that

E [Prg((Aj,P) E BL-1 (A) n f1 (Ai)) - Pr((AjP) E BL'(A))Wi(A)]
AEEk,t

< c'N-(/3-) (H.2)

First consider any distribution # such that #t < a. If P ~ IID(#), then the

number of votes received by candidate At in P has expectation #$N < aN and

variance #t(1 - #t)N < aN, so by Chebyshev, the probability that At's vote count is

at least 2aN is < 1/aN. Consequently, the probability that (Aj, P) gives At at least

2aN + 1 votes is < M/gN. Notice that at every profile in any block A E ek,t, we
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must have At 2 1 from which xt > L > 2&N + 1. Thus

S Pro((Aj, P) C BL-1(A)) M/gN. (H.3)
AEEk,t

But both probabilities on the left side of (H.2) are bounded above by the sum in

(H.3), hence (H.2) holds in this case (with the appropriate choice of c').

Similarly, consider any distribution 4 such that #k < a. Because every block

A E 6k,t must have Ak 1, from which any profile in such a block must have

Xk L > 2qN + 1, we can follow the same argument to show that (H.2) is satisfied

again.

This means we can henceforth restrict to distributions # such that

#t > a and #k k a.

For any #, let I be the highest index such that #1 2 q; thus 1 > t.

Consider any block A = (A1 ,... , At_1) E Ek,t. For each s = 1,... , M, define

bounds I, ,, as in the computation of BL-1 (A) above. Consider any given values

x, with x, < XS < T., for each s 74 k, 1; write X3 k1 for the vector of such values.

Define [x-k1] to be the set of all profiles having the specified number of votes for each

candidate A,, s $ k, 1.

We further break down the left-hand side of (H.2) by summing over different values

of Xkl. Define notations

fl 1 (A, aXkl) = Pro ((Aj, P) E BL-1(A) n [X 1] fn f-'(Aj))

Ul2(A, x-kl) = Pro ((Aj, P) E BL-1(A) n [X{ I]) -W(A).

Then in the left-hand side of (H.2), the first expression is EX-kl f 1 (A, Xkl) (where the

sum is over all possible vectors Xkl), and the second expression is Z U H 2(A, X-kl).
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Thus, (H.2) is equivalent to

[iH1(A,X-zkt) - fl 2 (A, X-kl)] <'N (.4)
AEEk,t

X-kL

We prove this by breaking into several cases depending on the choice of A and

X-kI. We first deal with cases that have low probability, so that their contribution

to the sums of 111, 12 in (H.4) is small; and then we can deal with the substantive

case where we actually make use of the elaborate construction behind f within each

block.

(i) First, for each s :A k, 1, consider choices of X-kl that have Ix, - #8N > ceN/M.

The probability that (A,, P) gives candidate As such a number of votes is at

most the probability that P gives A. a number of votes within aN/2M of #,N.

By the usual Chebyshev argument, this probability is < 4M 2 /aN.

Since EA 1 (A, x-k) < Pro ((Aj, P) c [xuk1]), the sum of Il1 (A, Xzk) over all

A and all Xkl with Ix. - # 81NI > aN/M is at most 4M 2/aN. Similarly, the

same holds for 12. Thus, all the pairs (A, Xkl) for which Ix, - #,Nj > aN/M

make a total contribution to the left side of (H.4) that is bounded above by a

constant times N- 1.

(ii) Next, consider choices of A that have I(S(Ak - 1) + L) - #kNI > aN/M. If

(A,, P) is in such a block BL 1 (A), then the number of votes for candidate Ak

is between xk = S(Ak - 1) + L and yk = SAk + L - 1. For N sufficiently large,

this means that the number of votes for Ak in P is more than (q/2M)N away

from #kN. Again, this occurs with probability < 4M 2/gN.

Since EXk, Il 1 (A, Xkl) < Pro((Aj, P) E BL- 1(A)), and similarly for r12, the

pairs (A,X kl) for which I(S(Ak - 1) + L) - #kN| > aN/M make a total con-

tribution to the left side of (H.4) that is bounded above by a constant times

N- 1.

From this and the previous bullet point, we see that in proving (H.4) it suffices
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to restrict attention to pairs (A, Xkl) for which

Ix - #sN| 5 N/M for all s # k, 1; (H.5)

|(S(Ak - 1) + L) - $kN| < N/M. (H.6)

That is, the contribution of all other pairs to the sum in (H.4) is negligible.

(iii) We will show that (H.5) and (H.6) imply

II, (A, Xkt) - 12(A, Xzk1)| c"N-(48 /37 -')Pr4((Aj, P) c [X-kl]) (H.7)

where c" is a constant not depending on #, N, or Xzkl.

We proceed by first showing that BL-1(A) n [zX-k] contains exactly 2k - lk + 1

profiles. That is, for every choice of Xk with k5 k -< Xk, there is exactly one

choice of x, such that the profile (Xk, X1, z.kl) is in BL- 1(A)n[X-k]. The relevant

choice of x, would of course be xz = Xk+1 - Xk, where Xk+1 = N + 1 - Esok,l Xs,

so we just need to check that this value of x, always lies between the bounds x_

and Y1.

There are two cases for the lower bound:

- If 1 > t, then xi = 0. We have

z = N+1- EXs -Xk
sAk,l

> N+1-Z(psN+N/M)- k
s#k,l

> ($k - $I)N - (M - 2)aN/M - SAk - L

> (Ok + $ N - (M - 2)qN/M - (S - L +4 kN + |MN) - L

= piN - (M - 1)qN/M - S

> aN/M - S

> 0
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as long as N is sufficiently large.

- If 1 = t, then x = S(R - Est A,) + L. We also know, by definition of 1,

that <p < a for each s > t, so (H.5) implies x. < q(1 + 1/M)N for each

such s.

Let v be the constant 1 - a(M + 1) - (MA + p) > 0. We have

,= N+1-ZXs
s~t

> N+1-( Y-
s<t

> N+1-Z(SAs
S<t

E(l + 1/M)N
s>t

+L- 1)-a(M+1)N

> N(1- g(M+1))-SEAs-(M-1)L
s<t

=(MA+p~t)NSZA,-ML+L

S<t

> ML+RS-SZAs-ML+L
s<t

(when N is sufficiently large)

= S(R-ZAs)+L.
s<t

Thus the lower bound is satisfied when 1 = t as well.

As for the upper bound, in both cases, , = N + 1. Then

x=N+1-( ZXs-k N+1
s#k,j

so the upper bound is always satisfied.

Thus BL-1 (A) n [Xzk1] contains exactly Xk - _k + 1 = S profiles.

For each profile (Xk, X1, zX_), we will explicitly write out the probability of this

profile being the realized value of (A,, P). Specifically, let (Xz, X, Xzl) be

identical to (Xk, XI, X-k) except that the j-component has been decreased by

1. (There is no more succinct way to write this without breaking into cases
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dependinding whether j = k, j = 1, or neither.) Likewise put X-+t = -I+ x,

and #k+l = #k +# 1 and #_k1 for the vector of other components of #. Then the

probability of achieving (Xk, XI, X-k) is

xk

xk+ Nk+I i\xk #k/k+lP g N; # = PN; P5k) K xi±l;
1x-k # xl- #i/#1'kI /0 kI I

Xk1

by Lemma C.2.

For succinctness, write

4 ~ _0 +tN k+1

ZikI 0-k1

for the first factor, which is independent of Xk, and

Xk Okl#k+l
P(xk ) = P xk+l)

xk±V - Xk

for the second factor.

Let x- = Xk or x - 1 (depending whether j = k or j # k). Then the possi-

ble values of xk corresponding to profiles (Xk, XI, X-k) c BL-1 (A) n [x-kl] are

exactly the numbers x- +z, for z E Z. (Recall we defined Z = {0, 1,.. , S- 1}.)

Now, we have #k/#k+ 2 #4 o, and likewise #1/k+1 > Q. We also have

Xk+l - #k+N - aN - 1 (using (H.5)) > aN - 1, a lower bound that grows

linearly in N.

Consequently, we can apply Lemma C. 11, with d = 6. As long as N is greater

than some absolute threshold No, we have the inequality for any two values

Yy E0 {I,1...,72h - 1

S P(xi + z) - 5 (x-+ z) <; 241hN-6(!-n). (H.8)
z+Z ze<21
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This inequality is the key step in the proof of Claim I; it was for this reason

that we needed to use the sets Z,, in constructing f.

Since h < In(N) < N'/ 3 for large N, and

2 41h = S 4116 (constant) -N 23 / 74 ,

we can simplify the right side of

Z(1k + z)
zEZy

-
zEZyr

(H.8) to give

P(zk + z)

Next, sum over all choices of y' E {0, 1, ... , 2' - 1} and use the triangle inequal-

ity. Since 2 h = S1/6 > N 3 /74 , we obtain

P(x- + z)
zEZy

2 6h_ 1

- E (4O +
z=0

z) (constant) -N ).

Sum again over all y with gA(y) = Aj, and then also divide by 2h. The right-

hand side has been multiplied by VVj(A)/2h < 1, and so we get

<_ (constant) - N( E) (H.9)

(after simplifying the exponent on the right side).

Now we return to the definitions of Hi and 112. Notice that H, (A, X-k1) is the

sum of the probabilities of profiles (Xk, X1) X-kl) c BL- 1 (A) n [zaXk] on which f

takes the value Aj. Writing f^(rk) for f(Xk, Xk+ - k, Xkl), we have

HI,(A,X k) = /3P(x + z).

z:f(lk+z)=Ai
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Moreover, by assumption Ak > 0, while A, = 0 for all 1 < k. Therefore, the

construction of f on the block BL- 1 (A) implies that f^(1k + z) = A, if and only

if z E Z. for some y such that gA(y) = A2. That is,

U1i(A, x_ c) = #P(X- + z).
yCg '(Aj)

zczy

Meanwhile, 11 2 (A, Xkl) is the sum of the probabilities of all profiles in BL-'(A)fn

[X-kl], regardless of the corresponding values of f, multiplied by W (A). This

can be written as

2 6h-1

U2(A,~~ za)= #(zI + z) -W(A).

z=O)

Now we see that multiplying (H.9) by # gives

IH1(A,x zkl) - r 2 (A, x)1 (constant) -# - N-0.

Since /= Prp((Aj, P) E [2Xki], we see that this is exactly (H.7), as promised.

This completes the main goal of item (iii). Before leaving this case, however,

let us consider what happens when we hold fixed X-Lk and sum over A. If

BL-1(A) n [xk1] = 0, then Hl(A, x-kl) = fl2(A, Xzkl) = 0, so these choices of A

will contribute nothing to the sum on the left-hand side of (H.4). How many

block labels A make a nonzero contribution, i.e. satisfy BL-1 (A) n [Xz1j # 0?

Suppose A is such a block label, with length t - 1. For each s < t - 1 except for

s = k, the value of A, is uniquely determined by the constraint x. <x x, V".

(Recall that 1 > t.) This determines every component of A except for Ak, and

so we get at most R + 1 such block labels.
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Now we are ready to complete the proof of (H.2). Consider the sum

E[fl1(A, X_ k) - U2(A, z._I)]
AcEk,t

X-kL

on the left side of (H.2). Each term of the sum is indexed by a pair (A, X3kl). Again,

we can consider only terms with BL- 1 (A) n [x-] =,A 0, because the other terms are

all zero.

All the terms for which X-Yk violates (H.5) have a total sum whose absolute value

is bounded by a constant times N'1 (this was case (i)). All the terms for which A

violates (H.6) have a sum that is again bounded by a constant times N-1 (this was

case (ii)). For the remaining terms, we apply case (iii). Consider any X-kl satisfying

(H.5). Sum over all A that satisfy (H.6). Using (H.7), and our previous observation

that at most R + 1 choices of A make a nonzero contribution to the left-hand side,

we get

E
AcEk,t

A satisfies (H.6)

[H1l(A, x-kI) - U2 (AIxk)]I

" (constant) -N- Pro ((Aj, P)

" (constant) - N- Pro((Ay, P)

E [X-k] ) - (R + 1)

E [x-kl])

since R + 1 < (constant)

obvious fact that

- N28/37 . Summing over all choices of X-kI, and using the

E
Xki satisfies (H.5)

Pro((Aj, P) C [xI]) < 1,

we obtain

E
AEEk,t satisfying (H.6)
x-kl satisfying (H.5)

[IH1(Ajxut) - fl2 (A,X.k)] (constant) -N-(2-').

These three cases together cover every possible pair (A, X-kI). So, adding them
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together, we obtain (H.4). We already saw that (H.4) was equivalent to (H.2), so we

have proven (H.2) and the proof of Claim I is complete.

Proof of Claim II. Rewrite the asserted bound as a sum over all N-profiles P:

( Pro(P)WV(BL(Aj, P)) -3 PrO(P) WV(BL(Ak, P)) < c1 N-( 20 / 37 -e)

P P

or equivalently

P (P I N; <) [iW(BL(Ay, P)) - NW (BL(A,, P))] < ciN-(2 0 /3 7 e). (H.10)
P

Notice that the P term on the left side can only be nonzero if (Aj, P) and (Ak, P) are

in different blocks. In fact, it is necessary not only that these two terms be in different

blocks but that these blocks have different rounded weights for A. We will bound

the left side of (H.10) by bounding both the probability of drawing a P for which

BL(Aj, P) and BL(Ak, P) have different rounded weights for Aj, and the amount by

which these rounded weights can differ.

Specifically, we will show

PrrD(4,f)(W (BL(Aj, P)) $ W(BL(Ak, P))) < (constant) -N~(1/2-e) (H.11)

and

W (BL(Aj, P)) - Wi(BL(A,, P)) < (constant) -N-3/7 4  for each P. (H.12)

First, we prove (H.11). Without loss of generality we may assume j < k.

Define A1,..., Am from the profile (A3 , P) following the block label algorithm,

and put A = (A 1,..., At_ 1 ) = BL(Aj, P). Similarly define A' ... , A' from (Ak, P),

and put A' = (A',..., A',_1 ) = BL(Ak, P). Notice that A, = A' for each s, except

possibly if s = j or s = k, in which case we may have A' = Aj - 1 or A' = Ak + 1,

respectively.

We consider all the cases in which W(A) $ W (A'). There are several possibilities,
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depending whether the lengths t, t' are different or equal.

(a) It may be that t < t'.

(b) It may be that t > t'.

If t = t', then we must have j < t and 14/ (A) # W, (A'), or else k < t and

Wk(A) $ Wk(A'): otherwise, W,(A) = W,(A') for all s. Thus we have just two

remaining possibilities:

(c) j < t and W, (A) $ Wj (A').

(d) k < t and Wk(A) Wk (A/).

We will deal with each of these cases in turn, and show that the probability of

each one is bounded above by a constant times N-(/2e>

(a) If t < t', then Ai+---+At > Rbut A'+---+A' < R. This canonlyhappen if

j < t, A = Aj - 1 and A1 + - - -+ At = R + 1. We will estimate the probability

of these latter two equalities jointly occurring, for any fixed value of t > j.

Write (Aj, P) = (xi A1,..., xm AM) as usual. To have A = Aj - 1 we must

have xi = L+ A3S exactly. We claim that we need only worry about values of xj

that are within 2N1//2  n N of #jN. Indeed, using Lemma C.4, the probability

of realizing any given value of xj outside this range is at most

-N- (2N-
1

/
2 

/n-N)
2  

-2lnN _ -2e 2e -N ,

so the total probablity of realizing all such xj is at most N-1.

We may also assume that a < #3 < 1 - a. For if #3 < a andx. y <#N +

2N1/ 2 ln N, then x < L (as long as N is large enough); and if #j > 1 - a and

zy ;> pyN - 2N1/2f1_nN, then zy > L + RS > L + AjS (again for large N).

The number of possible values of x = L + AjS that are within 2N1/ 2v/niN of

#5N is at most a constant times N'/S/In N/S < Ni/ 2 +E/S. Moreover, for each

such value, the probability of realizing it is at most a constant times N- 2 ,
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by Lemma C.7. (Note that x < L ~ AN and N - xz < N - (L + RS)

(1 - A - p)N.)

Therefore,

PTIID(<p)(j = L + AS) (constant) N6/S.

Now, conditional on the value of xi = L + A S, the remaining terms xj are

distributed multinomially (by Lemma C.2). What is the probability that A1 +

- -- + At = R + 1?

As long as Aj < R + 1, we are looking for the probability, under the specified

multinomial distribution, that

E AS=R+1-Ai.
1<s<t

Consider any realization of the profile for which this occurs. If we let F be

the set of indices s (1 < s < t, s 5 j) such that A, > 0, then we also have

sEr As = R + 1 - A, > 0.

Consider any possible choice of the nonempty set F not containing j, and es-

timate the probability that EsEr As = R + 1 - Aj, conditional on the value of

zj = L + AjS. Since |x, - L - S(As - 1)| < S for each s E F, the desired event

can happen only if

( zS - (|r|IL + S( R + 1 - Aj -|T|F)) < |F| - S.
sEr

This requires that the sum EsEr XS - which is binomially distributed - should

lie between the lower bound

|FIL + S(R +1 - Aj - Fl) - FIS
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and the upper bound

IFIL + S(R +1 - A, - FI)+ iIS.

The lower bound is at least

FIL + S(1 - 2M) > -N2

when N is large, and the upper bound is at most

IIL+S(R+ 1 +M) < ML+ RS+ (M+ 1)S
<1+ A + N

2

when N is large. Therefore, each realization of Eer x, has probability bounded

by a constant times N-1 2 by Lemma C.7, and so their total probability is at

most

(2|J'I -S + 1) - (constant) - N-

Summing over all possible sets 17 (there are certainly at most 2 M-1 possibilities),

we see that

PrIID(4) (As = R+ 1 - Ai
\ser

for some set F,j OF xj =L+

< (constant) -S - N-11 2  (H

for each fixed choice of Aj < R + 1.

Therefore,

PrIID(+) (A1 + .- -+ At = R + 1 | = L + AjS) (constant)-N-1/2

for each fixed choice of A, < R + 1.

.13)

225

AS)



Finally,

PrIID()(A =Aj+ and A, +--.+At =R+1)

< EPrIID(#)(xj = L + AjS and A,+ -+ At = R +1)
Aj

<( Z PrIID(p) (X= L + AjS) x
Aj<R+1

PrIID(#)(Al + + At= R + 1 Ixj = L + AS))

+PrIID(p)(xj = L + (R + 1)S)

< E PrTIID($)(Xj = L + Aj S) - (constant) -N-1/2S
Aj<R+1

+(constant) - N 112

< (E PrIID(p)(Xj = L + AjS)) (constant) -N-1/2S

Aj

+(constant) - N-112

< (constant) - (N'/S) -N-1 2S + (constant) -N-112

< (constant) - N-

This shows that the total probability of case (a) is at most a constant times

N-(12e

(b) If t > t', then A1 + - - -+ At, < R but A'1+ - + A', > R. This can only happen

ifk<t, A' Ak +1 and A'1+ + A', = R + 1. From here we proceed exactly

as in case (a), with A and A' interchanged, and with the role of j played instead

by k. We thus see that the probability of case (b) is also at most a constant

times N-(/2 e)

(c) Suppose j < t. If W47(A) # WVj(A'), it must certainly happen that W(A) 7

W (A'), which requires A3 74 A (since j < t). As in (a), this requires A' = A - 1

and xj = L + A, S exactly. Also as in (a), we need only worry about values of xj

that are within 2N'/ 2 /ln N of <pN, because the total probability of all other

226



values of xj is at most N- 1. Note that

|xj - #5NI < 2N1 2 IlnN

is equivalent to

pj N-L <
S

However, A' = Aj -

2N1/ 2 inN

S

1 implies W (A') = Wj (A) - 1/(R + 1), and therefore

2hWy(A') = 2hW(A) - .

For the rounded weights to differ, 1j (A') / 1, (A) or equivalently

(2hW,(A)J / L2hW (A)],

it must be that
h 2^

K < 2hW (A) < K + 1

for some integer K. Writing this in terms of Aj, we have

K < 2hlA
~R+1

K +
R+1I

Now, for each integer K, we get exactly one choice of Aj that satisfies this.

Moreover, the difference between two successive such values of Aj is at least

I / J > [(constant)
2h/(R + 1)-~

.N/S
-SJ = L(constant) - N 53 '74].
S1/6

For N sufficiently large, this is bigger than the width of the window in (H.14),

since the latter is
2N 1/ 2 ,/inN < N'/22 ~

Therefore, for N sufficiently large, there is only one possible value of Aj - say

A* - that falls in the window (H.14) and allows W(A) $ Wj(A').
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We also know that a realization of this case requires A, > 0 (since A' = Aj -1),

and A < R (since j < t). Thus, using the same arguments as in case (a),

(L + A*S)/N is bounded strictly between 0 and 1, and so the probability of

realizing x = L + A*S is bounded by a constant times N-1/ 2.

In summary: for case (c), to happen, either (H.14) must be violated, which

happens with probability at most N-1 ; or we must have xz = L + A*S for

a specific value 0 < A; < R (although this value may depend on <p), which

happens with probability at most a constant times N-1 2 . This shows that the

total probability of case (c) is at most a constant times N-1/ 2.

(d) For this case to happen, we must have Ak = A' - 1. From here we proceed

exactly as in (c), with the roles of A and A' interchanged, and the role of j

played by k.

This covers all four cases (a)-(d), completing the proof of (11.11).

Next we prove (H.12). We retain the notation A, A', and so forth from the proof

of (H.11). We regard j, k, P as fixed, and prove that (H.12) holds for every possible

choice of i = 1, .. . M,

Suppose i < min{t, t'}. We have three cases:

" If i $ j, k, then W(A) = Ai = A' = W(A') and so W(A) = Wi(A').

" If i = j, then either Ai = A' and so W(A) = W(A') again, or else A' = Ai - 1.

In the latter case,

21h S116
2hW (A) - 2hW (A') - < (constant) -/ < 1

R + 1 N/S

for large enough N; hence

0 < L2hWi(A)J - [2hWi(A')J < 1

and so

Wi(A) - W(A') = L2W(A)] - L2W(A)
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lies between 0 and

1 31

= S < (constant) - N

* If i = k, then either Ai = A' or Ai = A' - 1, and we proceed as in the previous

case.

Suppose i > max{t, t'}. Then we have W(A) = 0 = W(A'), so W(A) = W (A').

If t = t', then we have shown that (H.12) holds for every i / t. By the identity

W(BL (Aj, P)) - W (BL(Ak, P))) = 1 - 1 = 0 (H.15)

we conclude that (H.12) holds for i = t as well.

This leaves us only to deal with the case t $ t'. Suppose that t < t'. As in case

(a) of the proof of (H.11), this implies j < t, A' = Aj - 1 and A1 + -- -+ At = R +1,

whereas A' = A, for every s < t, s 4 j. Hence Al + + A' = R, and then A' = 0

for all t < s < t' (because otherwise we would have A' + - + A' > R contradicting

the minimality of t').

The above analysis showed that (H.11) holds for every i < t and i > t'. Moreover,

since A1+---+At= R+1, we have

W(A) =1 t-R R+1'

while also W(A') = A'/(R + 1); and so the same logic used for the case i < t shows

that (H.11) holds for i = t also. And if t < i < t' then W(A) = 0 = W(A'). Thus,

(H.11) holds for every i / t. By (H.15), it holds for i = t' as well.

This covers the case t < t'. The case t > t' is identical, with the roles of A and A'

interchanged and k in place of j.

This completes the proof of (H.12). Now we can prove (H.10). Let Q be the set
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of all N-profiles P for which W(BL(Aj, P)) # W(BL(Ak, P)). We have

ZP(P I N;p) [W (BL(Aj, P)) - i(BL(A, P))]
P

= P(P I N; 4) [WV(BL(Aj, P)) - W (BL(Ak, P))]
PEQ

3
Pr!D(4)(P G Q) - (constant)- N-7

by (H.12)

(constant) -N-("E)-

by (H.11).

This gives (H.10), and so Claim II is proven.

Completion of Proof of Theorem 4.3. Suppose the manipulator has belief #
and considers a change in his vote from Aj to Ak. We show that this manipulation

can change the probability of any candidate Ai winning by (asymptotically) no more

than a constant times N-( 20/ 37 -e). We have

= Aj) - E Pro(Aj, P)
A

$ crN~(20/
3 7 -E)

by Claim I;

E Pro ((Aj, P)
A

E BL-(A))W(A) - EPre((Ak, P) E BL-1 (A))Wi(A)
A

$ c 1rN-( 20 / 37 -E)

by Claim II;

Pro((Ak, P) E BL-1 (A))W(A) - Prp(f (Ak, P) = Aj) $ crN-(2013

A

by Claim I again. The triangle inequality then gives

IPro(f (Aj, P) = A ) - Pro (f (Ak, P) = A)I < (2c1 + c1 1)N~( 2 0 / 3 7-e)
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The theorem follows, with (say) r, = 20/37 - 2f.

F]
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Chapter 3

The Efficiency-Incentive Tradeoff

in Double Auction Environments

Abstract

We consider the tradeoff between efficiency and incentives in large double auction
environments with weak budget balance. No mechanism simultaneously gives agents
perfect incentives to be truthful and ensures first-best efficiency, but a planner de-
signing a mechanism may be willing to compromise on either of these dimensions for
improvements along the other. She would then naturally wish to find where the pos-
sibility frontier lies with respect to incentives and efficiency. We make inroads on this
question: our main result locates the frontier to within a factor that is logarithmic in
the size of the market.

Thanks to (in random order) Alessandro Bonatti, Xiao Yu Wang, Ruitian Lang, Glenn Elli-
son, Parag Pathak, Rakesh Vohra, and Juuso Toikka, as well as an anonymous referee, for helpful
comments and advice.

1 Introduction

1.1 Overview

Economists have known since Akerlof [2] that private information can prevent markets

from reaching efficient outcomes. Moreover, the results of Myerson and Satterthwaite

[24], among many others, show that this inefficiency is not specific to competitive

239



markets but rather is unavoidable under any possible mechanism for allocating goods.

However, some mechanisms lead to more severe inefficiency than others, and so the

natural next question is what second-best mechanism achieves outcomes that are

as efficient as possible. A large literature addresses this question in many different

settings.

Customarily, the mechanism design literature assumes that agents optimize per-

fectly. In particular, applying the revelation principle, it is standard to take as a

given constraint that each agent's best possible strategy should be to truthfully re-

veal his private information, and then describe the optimal mechanism subject to this

constraint.

However, in practice, human decision-makers are not perfectly strategic, or at least

do not perfectly optimize the material payoffs that are usually modeled. Accordingly,

a planner could offer a mechanism asking agents to report their preferences, in which

reporting truthfully is not exactly optimal, but the incentives to behave strategically

instead are small. The planner might then expect that agents will report truthfully,

rather than go to the trouble of figuring out how to strategically manipulate the

mechanism. This notion leads to a tradeoff between incentives and efficiency, and

motivates a quantitative examination of the tradeoff.

The present paper makes initial inroads into quantitatively studying this tradeoff,

in the specific context of large double auction environments with quasilinear prefer-

ences and weak budget balance. This is one of the most widely studied economic

environments for mechanism design, and can be viewed as an analytically convenient,

stylized model of an exchange economy.

By studying the incentive-efficiency tradeoff, we bridge two branches of theoretical

research on mechanisms for large markets. On one hand is the literature, going back

to Roberts and Postlewaite [26], showing that in large exchange economies, under the

competitive equilibrium mechanism, the incentives for strategic misreporting of pref-

erences (assuming other agents are truthful) go to zero. On the other hand is a recent

literature studying exact equilibria of large markets and showing that the inefficiency

goes to zero [15, 16, 27]. In particular, part of that latter literature [12, 28] takes a
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mechanism design approach and identifies the optimal rate at which any mechanism

can converge to full efficiency as the market becomes large. However, no previous

work has explored the space in between these branches, looking for compromises be-

tween perfect efficiency and perfect incentives. If it turned out that large gains in

efficiency could be achieved at the cost of a very small relaxation of incentives, that

would cast a new light on the existing convergence-rate bounds. Conversely, if this

were not possible, the existing impossibility results would be strengthened.

Our modeling framework is fundamentally non-equilibrium-based, intended to

study design of market institutions for agents who are not perfectly familiar with

their environment. Indeed, our basic motivating assumption - that agents do not

effortlessly know how to manipulate to their advantage - would be difficult to jus-

tify in an equilibrium model. On the other hand this assumption is reasonable for

describing plenty of exchange in real-world markets. The typical shopper at the gro-

cery store is unlikely to think about the demand curve of other shoppers for a pint

of strawberries, or to know how he might profitably deviate from pure price-taking

behavior so as to influence the prices he faces - or to even want to bother thinking

about how he might go about strategically deviating.

To explore quantitatively the tradeoff between incentives and efficiency, we need

ways to measure both. As in the second chapter of this dissertation, we work in a

direct revelation framework, where a mechanism asks each agent his value for the

good being exchanged, and determines trades accordingly; and we take a worst-

case approach to the definition of incentives. The susceptibility to manipulation of a

particular market mechanism is the largest amount of expected utility any agent could

possibly gain by reporting his value strategically instead of truthfully; the maximum

is taken over all possible beliefs about the distributions from which other agents'

behavior is drawn. Likewise, we also use a worst-case measure for inefficiency: it is

the largest value, over all possible distributions of agents' valuations, of the expected

shortfall in surplus realized by the mechanism compared to the first-best (assuming

that agents report truthfully). 1

'We measure inefficiency using the allocation of goods, not the sum of the agents' utilities. These
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Our worst-case methodology is appropriate for a planner choosing a trading in-

stitution to be used in the future, when she does not have clear priors over agents'

valuations or their strategic behavior, and wants to be sure that her mechanism will

perform well. (The second chapter of this dissertation fleshes out in detail a posi-

tive model of such a planner's choice of mechanism, showing how our measurement

methodology fits in.) In addition, when defining susceptibility, note that we take the

worst case over beliefs: there is no presumption that agents know the true distribution

of others' behavior. This is in keeping with our non-equilibrium framework, in which

agents may not accurately know the details of their environment.

Two mechanisms in the existing literature represent polar cases with respect to

the efficiency-incentive tradeoff. On one end is the k-double auction, a version of the

competitive mechanism; where the goods are given to the traders whose (reported)

values are highest, and trades take place at a market-clearing price. This mecha-

nism achieves first-best efficiency if traders are truthful, but does not provide perfect

incentives for truthfulness. On the other end is McAfee's [22] dominant-strategy dou-

ble auction, which provides perfect incentives, but may fail to realize (at most) one

profitable trade.

Our results, presented in Section 3, describe the asymptotic behavior of suscepti-

bility or inefficiency as the number of agents becomes large. We consider environments

in which buyers' valuations are independently drawn from one distribution, sellers'

valuations are independently drawn from another distribution, and these two distri-

butions are not too dissimilar. More precisely, the distributions have densities that

differ everywhere by at most some fixed ratio. Then the k-double auction has suscep-

tibility on the order of 1/vN, and McAfee's double auction has inefficiency on the

order of 1/V7, where N represents the size of the market. Our main result (Theo-

rem 3.3) shows that both mechanisms are close to the possibility frontier: There is a

constant c such that any mechanism has either susceptibility or inefficiency at least

c/(v'N log N).

measures are different if the mechanism runs a surplus. Our measure implicitly assumes that the
surplus can be paid to someone outside the mechanism.
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The assumption of similar distributions is necessary. If we allow the buyers'

and sellers' valuations to come from arbitrarily different distributions, then the lower

bound on susceptibility or inefficiency does not go to zero as the market grows (Propo-

sition 3.4).

In Section 4, we address a possible "consequentialist" critique of our methodology:

Perhaps a planner designing mechanisms should not be concerned with incentives for

strategic manipulation per se, since agents might manipulate in a way that does not

adversely affect the outcome of the mechanism. Instead, she should be concerned with

the inefficiency that will result from manipulation. It turns out that our results with-

stand this critique, as long as we make reasonably conservative assumptions about

how agents might try to manipulate. Specifically, we allow that agents may attempt

any manipulation that gives them a sufficiently large gain in expected utility (they

will not necessarily find the optimal manipulation), and we consider the inefficiency

that may result. In this formulation, instead of a tradeoff between efficiency under

truthfulness and incentives for truthfulness, we have a tradeoff between efficiency

under manipulation and the planner's confidence about agents' cost of strategic be-

havior. Only a little extra work is needed to reformulate our main results in these

terms.

In addition to the results themselves, the method of proof for the lower bounds

merits attention. We use a straightforward variation on a standard proof of the

impossibility of attaining both first-best efficiency and perfect incentives. That proof

uses the usual integral formula derived from the envelope theorem to compute the

utility that each type of each agent would need to receive, and verifies that the

total surplus in the market is not enough to provide that utility to each agent. We

introduce error terms into the proof, representing inefficiency and susceptibility to

manipulation. By continuity, the same contradiction is still reached if the error terms

are sufficiently small; we simply track them explicitly to find out how large they need

to be to avoid a contradiction. Some care is needed in working the error terms into the

integral formula: it turns into a discrete approximation, and one needs to choose the

approximation points appropriately. However, the fact that we can readily adapt a
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standard argument to obtain our results is encouraging, since it suggests that similar

methods can be applied to study tradeoffs involving incentives in other mechanism

design domains.

1.2 Literature review

The question of incentives for truthfulness in large markets can be traced back to

Roberts and Postlewaite [26], who showed that the benefits from misreporting one's

demand function in an exchange economy (under the Walrasian mechanism) go to

zero as the economy is replicated. More recent work in the market design literature

gives similar results for matching mechanisms [3, 14, 17, 18], argues that this property

makes the mechanisms suitable for use in practice. A variety of other literature has

also considered mechanisms with small incentives to manipulate [7, 11, 19, 20, 21, 23,

29], but without looking at the possibility frontier between these incentives and other

properties of the mechanism, as we emphasize here.

In contrast to this approach, much of the recent work on double auctions has

assumed that agents perfectly optimize - thus imposing Bayesian Nash equilibrium,

with given valuation distributions - and examined either behavior in specific mech-

anisms or the design problem of finding the optimal mechanism. Several relevant

papers studied rates of convergence to perfect efficiency. In the model of Rustichini,

Satterthwaite, and Williams [27], equilibrium behavior in the k-double auction leads

to inefficiency tending to zero as the market grows, at rate 1/N. McAfee's dominant-

strategy double auction [22] also attains rate 1/N. Satterthwaite and Williams [28]

showed (for the uniform distribution) that any mechanism has inefficiency of order at

least 1/N, so that the the two mechanisms just described are asymptotically optimal,

to within a constant factor. (These results appear to contradict our Theorem 3.3

below, which implies worse rates of convergence. The discrepancy arises because we

allow for a broader class of value distributions.) There is also recent work on large

double auctions with interdependent values, e.g. [25]. However, our focus here is on

environments with private values.
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2 Model

2.1 Elements

We consider double auction settings with unit capacity, private values, and quasilinear

utility. Thus, there are N sellers who each have a good to sell, and N buyers who

each would like to buy a good. Write bi for the value of the good to buyer i, and si for

the value to seller i. These values are normalized to lie in [0, 1]. We write pb, p, for

profiles of buyers' and sellers' valuations, (bi)i=1,...,N and (si)=1.N, and P = (Pb, PS)

for the profile of all 2N agents' valuations. Then pb. denotes the profile of valuations

of all buyers except the ith, and Psi similarly.

We focus attention on direct mechanisms. (This, and other assumptions, will be

discussed in Subsection 2.2.) Thus, a mechanism elicits each agent's valuation, and

determines an allocation of the goods (possibly probabilistic) and expected trans-

fer payments as a function of the reported valuations. Formally, a mechanism is a

collection of 4N functions,

M = (pI, P1, tl, tii=1,...,N

where

[Oj2 __4 [0, 1]p, p A : [0,7 1]2N

denote each agent's probability of exchange (i.e. p' is buyer i's probability of receiving

a good, and pf is seller i's probability of giving up a good); and

i i [0, 1]2N

denote the net payment made by each agent. We require the functions pb, pi, t , iV to

be measurable. We also impose the feasibility conditions

pP) p (pP)
A
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for every profile of valuations P E [0, 1 ]2N

We do not allow the mechanism to run a deficit, but we do allow a surplus; thus

we impose weak budget balance:

t (P)+ ts(P) > 0
tj

for all P. (With deficits allowed, the Vickrey-Clarke-Groves mechanism [9, 13] would

achieve full efficiency in dominant strategies, so the tradeoff between efficiency and

incentives would be uninteresting.)

If the profile of reported valuations is P, then the utilities of buyer i and seller i,

respectively (relative to not participating in the mechanism), are

U(P) = bip (P) - t (P), Uf (P) = -sipi(P) - ts(P).

In addition to feasibility and weak budget balance, we also require mechanisms to

satisfy ex post individual rationality:

U(P), U(P) > 0

for all profiles P and all i. Note that individual rationality and weak budget balance

imply that the transfers t (P), t (P) are bounded.

In the operation of a mechanism, we assume that the buyers' valuations are drawn

independently from a distribution Fb on [0, 11, and the sellers' valuations are drawn

independently from a distribution Fs. We will in general not presume these distri-

butions are known, either to the planner or to the agents, but rather allow a set F

of possible pairs (Fb, FS). We will assume that for all possible pairs, Fb, FS are rep-

resentable by bounded density functions on [0, 1]. Our results would be unchanged

(and indeed simpler to prove) if we allowed for atoms in the distributions, but by

requiring continuity we make clear that atoms are not driving the results. We will

sometimes write fb, fS for the respective density functions.

The utility achieved by buyer i when the reported profile is P but his true valuation
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is bi is

U5(Zlbi) = bip (Z) - t (P).

Similarly define

Uf (Pjs2) = -sip'(P) - t'(P).

We define the susceptibility to manipulation of a mechanism M as the strongest

possible incentive faced by any agent to misreport his valuation. Formally, for a given

set F of distribution pairs, the buyer-susceptibility is

7 = sup i(E(FbFs)[Ui(O, P P"|b)] - (FbFs)[U(Pbi)]
ii,bbA,(F ,FA) F1)M iT b,-[U

where the supremum is over buyers i, true valuations bi E [0, 1], possible reports

bi c [0, 1], and distribution pairs (Fb, F) C F. The expectations are with respect to

other agents' reported types, where we assume other buyers' reports are drawn from

Fb and sellers' from F" (all independently). Similarly the seller-susceptibility is

o= sup (E(Fb,F) [JSb,Pisis)] - E(Fb,F)[UZ(Psi)]).
i,sj,sij,(Fb,F5)

The susceptibility is then

o- = max{orb, o-"}.

The motivating story behind this definition is simple: Suppose a planner knows

that agents face a psychological or computational cost of at least e to behaving strate-

gically. If the planner chooses a mechanism whose susceptibility is known to be less

than e, then agents will not bother to behave strategically and instead will simply

report their true valuations. This is discussed in more detail in the preceding chapter

of this dissertation, which also shows how the above definition of susceptibility is

equivalent to one in which players are allowed to be uncertain about the distribution

pair (Fb, F*).

We define the inefficiency of a mechanism using an analogous worst-case formula-

tion. For any profile P of valuations, define the first-best welfare WFB(P) to be the
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sum of the N highest valuations, and the welfare WM(P) achieved by the mechanism

as EZ bip!(P) + Ei si(1 - p (P)). Note that

W M (P)= [ZUb(P) +( Uis(P) + t (P)+( ts P +

The second bracketed expression is the surplus accrued by the mechanism; we im-

plicitly assume when computing welfare that this surplus can be paid to an outside

agent. The third expression is independent of the choice of mechanism, so it does not

affect the shortfall relative to first best, WFB(P) - WM(p).

The inefficiency of M relative to F is then defined as

sup (E(Fb,Fs)[W FB(P) - WM(P),
(Fb,Fs)

where the supremum is over (Fb, FS) C T, and the expectation is with respect to

valuation profiles where each bi is drawn from Fb and each si is drawn from FS (in-

dependently). In particular, this definition of inefficiency assumes truthful reporting;

we will address this issue in Section 4. Also, the definition is absolute (not normal-

ized by the size of the market), though our results could just as well be formulated

in terms of relative inefficiency.

We will be mainly concerned with a set of distribution pairs F in which the

buyers' and sellers' value distributions are not too different. Specifically, let A > 1 be

an exogenously given constant; then define FA to be the family of distribution pairs

(Fb, FS) whose densities satisfy fb(x)/A < fs(x) Af b(X) for all x C [0, 1]. (As a

special case, A = 1 means that the buyers' and sellers' values are drawn from the

same distribution.) Our main results apply to FA. However, we will also consider

the set Fo, of all possible pairs (Fb, F8 ) of distributions representable by bounded

density functions on [0, 1].

Note that we have not required mechanisms to be anonymous - that is, to treat

all buyers and all sellers identically. Formally, a mechanism M is anonymous if, for
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all profiles (bi, si) and all permutations 7rb, 7rS of {1,.. , N}, we have

pb(bati), brb(N), S(1), . . . , S s(N) p b(j)(b1, - - - , N, 1 . . . , SN)

for each i, and similarly for the functions p , t , tq. However, to study the inefficiency-

susceptibility frontier, it is enough to consider anonymous mechanisms. Indeed, if M

is any mechanism with susceptibility o- and inefficiency q, we can define an anonymous

mechanism M by randomly permuting the buyers and the sellers and then applying

M: that is,we define

p^ (b, bN, 81, - ,) SN N[ 2 b)-I()( . . . , bb(N), S3,7r(1 ), . . .

and define s, ti, t likewise; these comprise the mechanism M. Then M is an average

of (N!)2 mechanisms, all of which (by symmetry) have gains at most o- to any agent

from manipulating and all of which have an expected welfare loss at most 7 relative

to the first-best, so the same is true of M. Thus we have an anonymous mechanism

whose susceptibility and inefficiency are at most those of M.

Given this, we will henceforth restrict attention to anonymous mechanisms with-

out further comment.

2.2 Discussion

There are a couple of assumptions implicit in the above modeling framework which

call for elaboration. Our restriction to direct mechanisms really entails two assump-

tions: first, that each agent's strategy depends only on his valuation (and no other

information); second, that the strategy space can be taken to be the space of valua-

tions, with honest reporting as the default behavior of agents who do not strategize.

The second assumption is actually not a serious restriction. We view double

auction environments as a stylized model of competitive markets, and truthfulness as

a metaphor for price-taking. This seems a natural assumption about default behavior

(especially for inexperienced participants). But more generally, we could take an
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indirect-mechanism approach, allowing a mechanism M to specify any strategy space

for each player, together with probabilities of trade and transfers as functions of the

strategy profile, and a specification of a default strategy for each player (possibly

mixed) that depends on that player's valuation. By a straightforward variation of the

usual revelation principle, M could be converted into a direct mechanism M', where

default behavior consists of honest reporting, and where M' has the same inefficiency

as M and susceptibility no higher than M (it may have strictly lower susceptibility,

due to the elimination of strategies in M that were not default strategies for any

type). Since we are concerned only with the inefficiency-susceptibility frontier, it

suffices to focus on direct mechanisms as we have done above.

The assumption that players' behavior depends only on their valuations is more

serious. This assumption invites the critique of Bergemann and Morris [6] that a

planner could potentially do better by designing a mechanism in which agents also

condition their strategies on their beliefs about other agents' behavior. If we were to

formulate the mechanism design problem in full generality taking this into account,

a direct mechanism would have agents report their full types, where a type consists

not only of a valuation but an entire belief hierarchy (including beliefs about any

parameters relevant to agents' manipulative behavior - see the discussion in Section

4 below).

However, recall that we have chosen to make no assumptions about the correctness

of agents' beliefs about others' behavior. The appropriate worst-case measure of

inefficiency in this framework would specify that for a mechanism to have inefficiency

at most q, the expected welfare loss relative to first-best should be at most q for

every possible distribution of buyer and seller types, regardless of whether or not

their beliefs reflected the true distribution. With such a definition, it turns out

that our results would remain valid even in this more fully-specified setting. This

is because the proofs of our lower bounds rely only on a single "true" distribution

pair (Fb, FS) when analyzing the incentive to misreport, and so these lower bounds

actually hold for the subset of the type space on which it is common knowledge among

the agents that values are drawn from this (F6, F). On this subset, two types of a
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given agent differ only in their valuation, so assuming that agents report only their

valuations is without loss of generality. (However, the proofs do analyze inefficiency

using distributions other than the fixed (F, FS), so it is crucial that the definition

of inefficiency allows the "true" distribution to be different from the one that agents

believe to be correct.) Thus the critique of [6] does not bind here. The formal details

of this argument would be notationally involved and not relevant to the main point

of this paper, so we omit them.

We should also comment here on the interpretation of the individual rationality

constraints, which we have written in an ex post form. These can be thought of as

normative constraints on acceptable mechanisms. They can also be viewed in positive

terms, if agents have the opportunity to renege after the mechanism has operated.

However, this latter interpretation is less tidy: as pointed out by Compte and Jehiel

[10], the proper formulation of such a constraint is as a veto constraint, which not

only requires ex post individual rationality but also imposes stronger incentive con-

straints - agents should not be able to benefit by misreporting their valuation and

then potentially vetoing the outcome depending on the realizations of other agents'

types. This distinction turns out to be immaterial for our results, however: our neg-

ative results under individual rationality still hold a fortiori under the stronger veto

constraint, and it can be checked that our positive results also hold, since the relevant

mechanisms (the McAfee and k-double auctions) satisfy the veto constraint.

Alternatively, using a richer type space as outlined above, in which strategies

reflect an agent's full type, would allow us to instead use an interim version of the

individual rationality constraints - each agent has nonnegative expected utility from

participation - in which case the positive interpretation would be straightforward.

Our lower bounds would still hold with these weaker constraints rather than the ex

post constraints, again for the reason that the proofs invoke the constraints only for

agents whose beliefs coincide with the true distributions (F, FS). Again, we omit

the details.
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2.3 Polar mechanisms

We now describe in precise terms our two polar mechanisms. We will content ourselves

with verbal descriptions, rather than tediously write out all the algebraic expressions.

For any k E [0, 1], the k-double auction (described e.g. in [27]) is as follows. For

any profile P of 2N reported valuations, sort them as v(i) > V( 2 ) - - - V(2N), and

define the price p* = kv(N) +(1 - k)v(N+1). Allocate the goods to the agents with

the N highest valuations. (If there is a tie at V(N), ration uniformly at random; ties

are not really important since they occur with probability zero in our model.) Every

buyer who receives a good pays p*, and every seller who sells a good receives p*.

It is clear that this mechanism satisfies feasibility, budget balance, and individual

rationality, and that it achieves inefficiency of 0.

McAfee's double auction, from [22], is a bit more complex. The rules are as follows.

Sort the buyers' reported valuations in decreasing order, b(i) 2 - -- > b(N), and the

sellers' in increasing order, s(l) - - - s(N). Also define b(o) = S(N+1) = 1 and

b(N+1) = s(o) = 0 for convenience. Let k be the highest value satisfying b(k) s(k);

this is the efficient number of trades. We have 0 < k < N. Define the price p* =

(b(k+1) + s(k+1))/2.

If p* C [s(k), b(k)], then have the k highest-value buyers buy the good from the k

lowest-value sellers at price p*. (Again, break ties uniformly at random.) Otherwise,

note that k > 0, and have the k - 1 highest-value buyers each receive a good and

pay b(k), while the k - 1 lowest-value sellers each sell their good for price s(k). The

mechanism thus carries out k-I trades and earns a budget surplus (k-1) (b(k) -S(k)) >

0.

This mechanism is again feasible, weakly budget-balanced, and individually ratio-

nal. It has been established that reporting truthfully is a dominant strategy for all

agents in this mechanism [22, Theorem 1]. Therefore, it has a susceptibility of 0.

3 The efficiency-incentive tradeoff

We can now properly introduce our results on the efficiency-incentive tradeoff.
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The results are illustrated in Figure 3.1, where the gray region represents the

(inefficiency, susceptibility) pairs (7, o-) attained by some mechanism. The frontier

must be convex, as shown in the figure: If mechanism M has inefficiency ?7 and

susceptibility o, and mechanism M' has inefficiency 7' and susceptibility o', then for

any a C [0, 1] we can take the convex combination (1 - a)M+aM' (defined by taking

corresponding convex combinations of the pib, p,, tb, t functions), and this mechanism

has inefficiency at most (1 - a) + a?' and susceptibility at most (1 - a)o- + au'.

inefficiency

Figure 3.1: The possibility frontier

For the main results, we consider the class of distribution pairs F\, in which some

similarity is imposed between the buyers' and sellers' value distributions. We give the

approximate locations of the two polar mechanisms, which lie on the two axes of the

possibility set, at a distance of order 1/ vN from the origin. On the other hand, we

identify a point lying below the possibility set (indicated by the star in the figure),

whose coordinates are of order 1/(vW log N). Thus, these results together pin down

the location of the possibility frontier to within a factor that is logarithmic in the size

of the market.

If we look at the class of distribution pairs .Fo, where the distribution of buyers'

values can be arbitrarily different from the distribution of sellers' values, then a

253



similar picture applies but on a different scale: the lower bound on inefficiency or

susceptibility (the star point) does not go to zero as the market becomes large. This

will be shown in Subsection 3.2.

3.1 Main results

We first bound the inefficiency attained by the McAfee double auction, over FA. As

the number of agents grows, the inefficiency shrinks on the order of N- 1/ 2. More

specifically:

Proposition 3.1 There is a constant c such that the McAfee double auction has

inefficiency at most c/vfN on F. (The value of c depends on A.)

The calculation is routine, but rather lengthy, so we leave it for Appendix A.

For a quick overview: Inefficiency is at most the value of the least valuable trade; a

change-of-variables argument implies that this value is no greater than the probability

that the least valuable trade involves of a buyer with value above x* and a seller with

value below x*, for a suitable (fixed) x*. For this to happen, in turn, it must be that

either (a) the number of agents with values above x* is close to N, which happens

with probability on the order of N- 1/2 by a law-of-large-numbers argument; or (b)

when all 2N agents are arranged from highest value to lowest, there is a long run of

consecutive buyers or consecutive sellers, which happens with probability decreasing

exponentially in the length of the run.

We can also bound the susceptibility of the k-double auction; it is also on the

order of N-'/2 . This is because the probability that any given misreport is pivotal -

that is, that it advantageously changes the market price - is of order at most N-1 /2 ,

by a central-limit-theorem argument.

Proposition 3.2 There is a positive constant c such that the k-double auction has

susceptibility at most cN-1/ 2 . (Again, c may depend on A.)

Proof: Consider a buyer with value b, reporting a false value b. We may assume

b < b, since reporting b> b can never be profitable: holding fixed the realizations of
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other agents' reports, such a misreport cannot decrease the price, nor can it change

the buyer's outcome from not receiving a good to receiving one, unless the trade

occurs at a price higher than b.

Moreover, again holding fixed the other agents' reports, the misreport can only

be beneficial if is pivotal - more specifically, if exactly N - 1 other agents report

values higher than b. Indeed, if more than N - 1 other agents report higher values,

then the misreporting buyer gets no good and hence utility zero; if fewer than N - 1

other agents report higher values, then the misreport has no effect on the price at

which he trades.

Since the buyer's realized utility is always between 0 and 1, his expected gain from

misreporting is at most the probability that exactly N - 1 other agents report a value

greater than b. Letting J be the number of other buyers whose values are less than

b, we can express this probability as a sum over possible values of J:

(N - 1) ( F)F N-J(1 - F((N))NJ(1 - Fs( ))j. (3.1)
J=o

We finish by invoking Lemma A.2 in Appendix A. If Fb(i) 1/2, then using
1y) < ( c), the expression in (3.1) is

(NN N

2E ) F(b)JFs()NJ(1 - Fb(b)NJ(1 - F(b))J
J=o

which, according to the lemma (with rs = 1/2, say, and K = 0), is at most cVA/N

for some absolute constant c. This certainly implies the desired bound on the buyer's

probability of being pivotal.

If Fb(b) > 1/2, then using (N) ), the expression in (3.1) is

5 2 F (b)mF"(b)N-J(1 - F())N-1-J(l -

J=O +
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and by a change of variable, this is

= 2 (1 - F(b))N-J(1 - Fb -JF"(b)JFb' N-J+1

J=1 )()

which, again according to the lemma (with K = 1), is at most c A/N for an absolute

constant c.

This shows in both cases that the buyer-susceptibility of the k-double auction

satisfies the bound. The argument for seller-susceptibility is identical.

LI

Having established these estimates for the two polar mechanisms, we can proceed

to our main result: a lower bound showing that the two polar mechanisms are close

to the optimal rate of convergence of inefficiency or susceptibility as the number of

agents becomes large.

Theorem 3.3 There exists a positive constant c such that, on F1, every mechanism

has either inefficiency at least c/(/N log N) or susceptibility at least c/(v/ log N).

Of course, the same bounds a fortiori hold for any FX, A > 1.

The idea behind the proof is as follows: Consider the incentives facing a given

agent - say, a buyer - when he believes the other agents' values are drawn from a

distribution with mass concentrated near 0 and 1. Let Pb(b) be the probability that

the buyer gets a good when his value is b (and he reports truthfully). Let Vb(b) be

the expected utility he attains if his value is b. Similarly define PS(s) and U'(s).

Suppose the mechanism were to have inefficiency and susceptibility zero. Then the

first-best allocation would determine P b and P" completely. In turn, these determine

the functions Ub and U3 via the familiar integral formula coming from the envelope

theorem (up to a constant, which is bounded below by individual rationality). These

expected utility functions are not consistent with weak budget balance - there is

not enough expected surplus in the market to give all agent types the needed utility

levels.
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Let pb* V* U , U'* be the functions obtained in the above calculations assuming

zero inefficiency and susceptibility. With a small amount of wiggle room, we know

only that pb and p have to be close to p'* and pS*, and in turn that U , Us have to

be close to U , U . Requiring the agents' expected utility levels to be far enough

-b* -s*from U , U to avoid exceeding the total surplus in the market then leads to a lower

bound on either inefficiency or susceptibility.

Proof of Theorem 3.3: It is enough to prove the result for N sufficiently large;

we can then adjust the constant c to ensure the result holds for small N as well.2

Suppose that the number c is such that some mechanism M has susceptibility o-

and inefficiency y both less than c/(V'N log N). Our goal is to show that c must be

larger than some absolute constant. Specifically, we will show that c > 1/7000. (This

is far from best possible, but we are not concerned here with fine-tuning constants.)

Thus, suppose that c < 1/7000, and seek a contradiction.

Let y be a sufficiently small positive number. At several points in the course of

the proof, we will use the fact that -y is smaller than various functions of N, y, and c.

Rather than writing out explicit bounds here, we will simply assume without further

comment that all needed bounds are satisfied (there will be only finitely many of

them, so this assumption is safe).

Define the density function f by

1/2-y, 0 < x < y;

f(x)= 0, Y < X < 1 - Y;

1/2-y, 1 - y < x < 1.

Let F be the corresponding cumulative distribution function. We focus on the in-

centives facing a given agent when all other agents' reports are independently drawn

from F.

2 To be precise, this requires knowing that for each small N, either inefficiency or susceptibility
must be bounded away from 0. By continuity arguments, it is enough to show that there is no
mechanism with inefficiency and susceptibility both 0. This can be proven e.g. by using revenue
equivalence to show that any such mechanism would have to be equivalent to a VCG mechanism,
which always runs a deficit; see [31].
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Step 1 (buyers). As in the sketch above, let pb(b) be the probability that buyer

i receives a good, when his value is b. (By anonymity, this is independent of i.) In

this first step, we use efficiency to show that Pb is close to its first-best value.

However, because we are working with continuous distributions, efficiency in ex-

pectation imposes no restrictions on pb(b) itself for any single value of b. Instead, we

need to talk about averages. Accordingly, for 2 < b < 1 - ^, define

- (b) = j b(b) db'.

We will show that p"(b) is approximately bounded below b times 1/2 minus a

constant times q/b. Specifically, for any b > 3 -y/2 ,

1 167
p (b) > - b - (3.2)

-2 b - 3-y/2'

To show this, suppose otherwise, so that

' b -, -bp (b) > 77. (3.3)

Define a density function g by

gXx)= y> 2 21

0 otherwise.

Define the density h(x) = (1 - ) f(x) + (k) g(x). Let G, H be the distributions

associated with g, h.

Suppose that we draw all 2N agents' values independently from H. This is equiv-

alent to generating values as follows: we mark each agent as an F-type or G-type

agent, randomly with probability 1 - or y respectively, and then draw the valu-

ations from F or G accordingly. Let E denote the event that there is exactly one
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G-type buyer and no G-type seller. We have

Pr(E = - 1- - 1 - - > -. (3.4)PrE) N I N N N ~16

Conditional on E, the G-type buyer receives a good with probability Pi(b).

On the other hand, conditional on E, all F-type agents have values distributed

uniformly on the set [0, 7y] U [1- , 1]. In this case, the probability that at least half the

F-type agents have values in [0, -y] is 1/2, by symmetry. Thus, conditional on E, we

have probability at least 1/2 that the G-type buyer is among the top N values, and

the next lower value is at most -y. In particular, conditional on E, there is probability

at least 1/2 - -b(b) that the G-type buyer is among the top N values but does not

receive a good, and the next highest value is at most -/. When this occurs, there is

an efficiency loss (relative to first-best) of at least b - 3.

Therefore, conditional on E, we have an expected efficiency loss (relative to first-

best) of at least (j - -'(b)) (b - 3). Since Pr(E) 2 1/16, we have an unconditional

inefficiency of at least ( - p(b)) (b - L). But this amount is greater than q by

(3.3). We have a contradiction. Therefore, (3.2) must hold.

In fact, we have the simpler bound

1 32y
b(b) 2 2 ,b (3.5)

(as long as -y < 647/3). Indeed, (3.2) implies (3.5) for b > 3 -y, and for b < 3-Y the

right side of (3.5) is negative, so the inequality holds trivially.

Henceforth we will only need this latter bound.

Step 2 (buyers). We next construct a discrete approximation for the standard

integral formula, leading to a lower bound on the utilities of buyer types with high

values. Specifically, we will show that buyers with values in the interval [1 - -Y, 1]

must, on average, achieve utility at least 1/2 - 1/20vNW.

To this end, let t (b) be the expected payment by buyer i, when his value is b, and

other values are drawn independently from F. Again, this is independent of i. Let
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Ub(b) = bp-b(b) - 1(b) be the expected utility achieved by a buyer with value b.

Take K =[log NJ. Define buyer values bo, bi,... , bK by

bj= (1 - .
\ 2/ 2 0 v--

(The subscripts here simply index the values; they do not denote different buyer

identities.) These buyer values will essentially serve as the interval endpoints in our

approximation to the integral formula. However, instead of using these values exactly,

we will need to average over small perturbations of the values. This is because our

available bounds on probabilities of trade apply to the averages Pb, not to Pb for any

single type.

Define p to be the ratio of successive bj's:

b- 1_1 2 1/K
) _ 2

P =bj+1 1/20 v/N '

and note that

p < (20v)1/K < 2 02/log N (J)2/ log N 2 0 2/ log N < 3 (3.6)

(as long as N is large enough, as usual).

Now, by definition of o, for any r E [-7/2, -y/2], a buyer of type bj + r (for any

j) cannot benefit by more than o- from misreporting as type bj+ 1 + r.

Consider any such r . We have

Ub(by + r) = (bj + r)Pb(bj + r) - tb(by + r)

> (bj + r)pb(bj+1 + r) - ib(bj+1 + r) - o-

- F (bj+1 + r) + (bj - bj+ 1)pb(bj+ 1 + r) - o-
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for each j. By combining these inequalities for each j we get

K-1

7b (bo + r) Ub(bK + r) + (bj - bj+1 bj+1 + r) - Ko-
j=0

K-1

> Z(b - bj+1)p (bj+1 + r) - Ku
j=0

where the last step is by individual rationality.

Now average over [--y/2,y/2]. For each j, we know from (3.5) that

1
-

S bfb~bj+ + r) dr
_-2

1 32r/

2 bj+1

Therefore,

- U (bo +r) dr > -bj+1) dr] - Ko-
j=O

K-1

> E (bj
j=0

-bj+ 1 ) 2
32 C

= (bo-bK) (

7-
2

1
2 0[ V}

-K(p- 1)(32r/) -

1)2 - (log N)

C

64 C

\64 log NJ
1 1 70c

2 40'/ VK
1 1
2 20O/H

(3.8)

(The fourth line uses (3.6), and the sixth uses the assumption c < 1/7000 < 1/2800.)

Now, to wrap up this step of the proof, consider the expected utility accruing

to buyer i, when all agents' values are drawn independently from F (and all agents

report truthfully). With probability 1/2, buyer i has a value in the interval [1 - -y, 1];

and conditional on being in this interval, buyer i's value is uniformly distributed on
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the interval. Therefore, buyer i's unconditional expected utility is at least

11 )1 1
2 \2 ~20 / 4 040VH

Steps 1, 2 (sellers). The analysis up to this point has focused on incentives for

buyers. However, exactly the same calculations can be performed with incentives for

sellers. We briefly outline the arguments. Let PS(s) be the probability that a seller

with value s sells his good, when all other agents' values are independently drawn

from F. Define

+(s) = (S') ds'.
2

We can use the same efficiency arguments as before to obtain a counterpart to (3.5):

1 32r (39)
2 1-s

Now define T"(s) be the expected net transfer paid by a seller with value s, and let

U'(s) = -,s(s) - is(s) be the expected utility such a seller attains. Define K as

before, and define the seller values sO,..., SK by

2 2 0 f

As before, for any r E [--/ 2 ,-/ 2])

U'(sj + r) > U'(sj+ + r) + (sj+1 - Sj)p"(sj+1 + r) - o-

for each j. Summing over j, averaging over r C [-i, j, and applying (3.9), we

obtain
1 2 -S1 1 70c 1 1
- U (so +r)dr> N> - 2 VN

Finally, as with the buyers, we conclude that when all agents' values are independently

drawn from F, each seller's expected utility is at least 1/4 - 1/40VN.
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Step 3. To complete the proof, we use the lower bound on each agent's utility from

Step 2, compare to the total expected surplus available, and obtain a contradiction.

The lower bound of 1/4 - 1/40s/N obtained at the end of Step 2 holds for each

of the 2N agents, and therefore the expected surplus generated by the mechanism -

that is, the expected sum of the agents' utilities - is bounded below as

(3.10)i 2

On the other hand, due to weak budget balance, the surplus at any profile P

satisfies

U (P) + Us (P) bip1(P) - sipi(P) < WFB(p) Z Si. (3.11)

Let's bound the expectation of the first-best welfare WFB. Each agent's value

is either in [0, -y] or in [1 - -y, 1], independently with probability 1/2. Letting K be

the number of agents with high values, we can bound the first-best by summing over

possible values of K:

E[WFB (P)] 2N 2N 2( ( [min{N, K} 1 + (N - min{N, K}) - y]
K=0

2N

< NY + 2) ( 1 2N min{N, K}.
K=O

Break the sum into terms with K < N - [v'N/4] and K > N - [N/4J,

rearrange, and then use Lemma A.3 from Appendix A (a crude central-limit-theorem
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approximation) to bound from below the probability that K < N - Lv/N/4J:

N- [vN/4

K=O

2N

= Ny+ E
K=0

< N 1 +N-

20

2
KA

) N ,12N

K J2

2N

+ E
K=N-LvlN/4] +1

N , 2 1 2 N
7) (1)-N

N--[vR|4J 2N

K=KO
K=0

- N- ()

2N) 1 2N.N

K) 2 -

J 1 2N V4j
2) 4

This bounds the expectation of WFB(p).

The expression (3.11) also involves a Z si term. But since each seller has expected

value N, the expectation of this sum is simply N/2. Consequently, (3.11) implies that

the expected surplus is less than

N VN
2 20

Comparing with (3.10), we have a contradiction, which completes the proof.

0

3.2 Unrestricted distributions

We now show how the results change when no restrictions are imposed on the pair of

distributions - we use the full class 1Fo, rather than FA

Trivially, the McAfee double auction has inefficiency at most 1 (since it omits at

most one desirable trade), and the k-double auction has susceptibility at most 1 (since

no agent can ever achieve utility greater than 1). Thus, it is possible to achieve zero
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inefficiency or susceptibility and a constant, independent of the market size, along

the other dimension. The following result shows that it is not possible to do better:

Proposition 3.4 There exists a positive constant c such that, on JFo, every mecha-

nism has either inefficiency or susceptibility at least c.

The argument is somewhat similar to that of Theorem 3.3, but simpler. Since the

proof is relatively brief, we will not bother explicitly breaking it into steps.

Proof: We will give a proof with c = 1/128. So suppose for contradiction that

some mechanism M has susceptibility a and inefficiency r/ both less than 1/128. Let

y be a positive number, chosen to be very small; as in the proof of Theorem 3.3, we

will not bother being explicit about the bounds needed on y.

Let the distributions Fb, F be given by the densities

P(X) 1/7, 1 - 7 < X < 1;

0, 0 < x < 1-

PX 1/h, 0 < X < 7

0, -/ < < 1

Also let Gb be the distribution with density

0 otherwise,

and take Hb(x) = (1 - I) Fb(x) + (1) G'(x). Drawing a buyer's value from Hb is

equivalent to designating the buyer as Fb-type or Gb-type, with probabilities 1 - N

or 1 respectively, and then drawing the value from Fb or G6 accordingly.

Suppose all buyers' values are drawn from Hb and all sellers' values are drawn

from F. Let E be the event that there is exactly one Gb-type buyer. By calculations

similar to (3.4), we have
1

Pr(E) ;>-.
4
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Whenever E occurs, the first-best allocation assigns all the goods to the buyers,

and any failure to assign a good to some buyer entails an efficiency loss of at least

(1/4 - -y) - (y) 2 1/8. In particular, if r is the probability that the Gb-type buyer

ends up with a good (conditional on E), we have

1 1 -w7
r/ > Pr(E) - (1 - 7r) -> -8 32

from which
3

7r > 1 - 32r/ > .
4

Now let pb(b) denote the probability that a buyer receives a good, when he reports

b and all other agents' reports are drawn from (F", FS). The above implies that the

average of p"(b) with respect to Gb is at least 3/4:

1 3

-P6(b) db > -.

4-

Let U"(b) be the utility attained by a buyer with value b, when other agents'

reports are drawn from (Fb, FS).

For any r E [0, y], a buyer of value 1 - r cannot benefit by more than a by

misreporting as value 1/4 - r. And so, as in Step 2 of the proof of Theorem 3.3, we

have

_U (b -r) > U (r) + (~)(!r)-.

Averaging over r E [0, -y] gives

1 f -

7- Ub)bdb
1 J- -b 3 1 4p

31
* - - "(b)db+ -o(b)-db -

4 7 _
* 3 4 Pbb db] -o-

9
-- 01

- 16
1
2
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Now finally suppose all agents' values are drawn from (Fb, F8 ). Each buyer's

expected utility from the mechanism is (1/i) f U b(b) db, which is greater than 1/2,

by the above calculation.

By identical arguments, each seller's expected utility is also greater than 1/2.

But this means that when all agents' values are drawn from (Fb, FS), the total

expected surplus generated by the mechanism must be more than 2N -1/2 = N. Since

it is never possible to generate a surplus of more than N, we have a contradiction.

E

4 A consequentialist approach

The exposition so far has focused on incentives for truthful reporting. This follows a

substantial literature that treats strategyproofness as a basic normative criterion for

evaluating mechanisms (see [5] for a survey, and [4] for a succinct summary of sev-

eral justifications). However, others [6, 8] have raised the criticism that truthfulness

should not be an end in itself; rather, what matters is the outcome that occurs as a

result of any manipulations. In particular, in the double auction environment, there

is an unambiguous objective available to a planner with such a "consequentialist"

philosophy - namely, the efficiency of the realized allocation of goods - and so it is

especially natural to frame the design problem in terms of this objective.

Fortunately, it turns out that there is a close connection between our formulation

of the efficiency-incentive tradeoff and an alternative formulation that focuses on

outcome efficiency. To motivate the latter formulation, imagine a planner who wants

to ensure an allocation within y of the first-best welfare, and who is uncertain not

only about the distributions (Fb, FS) but also about the agents' strategic behavior.

Thus, the planner wants to ensure that no matter what manipulations the agents

perform, welfare is always within q of the first-best (in expectation over realizations

of the agents' types).

To describe the planner's problem, we must specify how she expects agents to

manipulate. As sketched in Subsection 2.1, we presume there is a computational
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cost of at least e to behaving strategically, so the planner is confident that agents

will not manipulate if they cannot gain more than e expected utility by doing so.

What if they can gain more than E? We could assume that agents will choose the

manipulation that is optimal (with respect to their beliefs), but this would stray

from our motivating notion of inexperienced, boundedly-rational agents. Instead we

will take a more agnostic approach: agents may potentially make any misreport that

would gain at least E expected utility.3

We formalize this approach as follows. Given a mechanism M, a class F of

distribution pairs, and a minimum manipulation cost E, define the manipulation set

for each possible buyer's valuation bi E [0, 1] as

Wb(bi; E) = {bi} U

{bi | E(Fb,Fs) [Ui'(bi, Pf!i, P*|bi)] - E(FbF [U(bi, P'., Ps)] >

for some (Fb, F*) E F}.

(This is independent of i, by anonymity.) This set represents the set of all valuations

that the planner believes a buyer might report, given that his true valuation is bi.

Note that we always include bi: no matter what the mechanism is, we allow for the

possibility that strategizing is so costly that the buyer just tells the truth. Similarly,

for each seller's valuation si we define

Ws(si; E) = {sj} U

{si | E(Fb,F)[US(Psi, Pisi)] - E(Fb,Fs)[Uis(Pb, s , P* )] 6

for some (Fb, Fs) c F}.

From the planner's point of view, each buyer's true valuation and his report are

drawn from a joint distribution Hb on [0,1] x [0, 1], independently across buyers. We

say that such a joint distribution Hb is possible if it places probability 1 on the set of

3 In the preceding chapter of the dissertation, we gave a positive model that effectively assumes
the planner considers any misreport to be possible if she is not certain that the agents cannot gain
more than E. The model here is more refined.
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pairs (b,b) such that b E Wb(b; e); and similarly for joint distributions HS of sellers'

valuations and reports.

The planner's measure of inefficiency is given by the worst case over all possible

joint distributions Hb and H'. For any profile P of true valuations and P of reports,

define the realized welfare WM (P IP) as 4j bip;(P) + >4 si(1 - p (P)). Then define

the consequentialist inefficiency of the mechanism M (with minimum manipulation

cost e) as

= sup (E(Hb,H")[WFB(P) - WM(PIP)]),
(Hb,HS)

where the expectation is over true profiles P and reported profiles P obtained by

drawing each (bi,bi) ~ H b and each (si, si) ~ HS independently, and the supremum

is over pairs such that

* Hb is possible for the buyers,

" Hs is possible for the sellers, and

" the marginals Fb of Hb and F of H' on true valuations satisfy (Fb, F-) E F

The value of q' of course depends on e. The higher e is, the smaller the manipulation

sets are, the smaller the set of (Hb, HS) over which the sup is taken, and so the smaller

is consequentialist inefficiency. Note also that the consequentialist inefficiency 7c is

always at least as large as the truthful inefficiency 77.

This leads to our main definition: we say that a mechanism M has a (o, 7) conse-

quentialist tradeoff on the class of distribution pairs F if, for any manipulation cost

e < o-, the mechanism's consequentialist inefficiency on F is at least q. This expresses

the tradeoff faced by a planner: she must either be willing to assume that agents have

a manipulation cost at least o-, or accept an allocative inefficiency of at least q.

With these definitions behind us, we can proceed to convert our results into the

consequentialist framework. Our earlier results were of the form

for a given class of distribution pairs 7, every mechanism either has inef-

ficiency greater than [bound/ or susceptibility greater than [bound].
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We would now like to have results of the form

for a given F, every mechanism has a ([boundj,[boundf) consequentialist

tradeoff.

To make this leap, we focus on misreports that are not too small. The intuition

is as follows: Suppose a mechanism makes a buyer of value b willing to misreport

as a value b, and b is far from b - say b < b for example. Then when all other

agents report values in between b and b, the mechanism cannot distinguish whether

the buyer reporting b actually has value b (in which case efficiency would imply that

the buyer should not get the good) or actually has value b (in which case the buyer

should get the good). So whatever allocation the mechanism specifies will be bounded

away from efficiency in one of the two cases.

Once again, the intuition requires some elaboration because of our restriction to

continuous distributions - misreports by just a single type, or by a finite set of types,

have zero effect on expected efficiency. The technical apparatus needed to make the

argument work is as follows.

We define a quasi-misreport for a buyer to be a triple (b,b, 6), where 6 c [0,1]

and b,b E [5, 1 - 6], and b # b. The interpretation of a quasi-misreport is not just

that buyers of type b are willing to misreport as b, but rather that a positive measure

of types b' within 6 of b are each incentivized to misreport by the amount b - b. A

quasi-misreport for a seller is analogously a triple (s, s, 6).

Formally: we say that the mechanism M is o--susceptible to the quasi-misreport

(b, b, 6) of a buyer under F, if the set

{b' c [b - J,b+6] | b' + (b- b) G Wb(b'; a)

has positive Lebesgue measure. We define o--susceptibility to quasi-misreports of a

seller analogously.

It is clear that if a mechanism is o--susceptible to any quasi-misreport, then it has

susceptibility at least o-. Thus we can think of susceptibility to a particular set of

quasi-misreports as a strengthening of susceptibility. This strengthening ties in with
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consequentialist inefficiency via the following lemma:

Lemma 4.1 Assume N > 2. Let F be a set of distribution pairs with .F1 C .F.

If M is --susceptible to the buyer's quasi-misreport (b,b, 6), and

b - b - 46
64< (4.1)64

then M has a (o-, ,) cons equentialist tradeoff over .F. Similarly, if M is o--susceptible

to the seller's quasi-misreport (s, S,), and

< , (4.2)64

then M has a (o-, q) consequentialist tradeoff over F.

Proof: We give the proof for (4.1); the argument for (4.2) is essentially identical.

Note (4.1) implies b - b> 4J.

Let R be the set of values r E [-6,6] such that a buyer of type b + r can benefit

by at least o- from misreporting as b + r, for some distribution pair in F. Thus, for

every r E R, the manipulation set Wb(b + r; o-) contains b + r, and R has Lebesgue

measure y > 0.

Define density functions f, g as follows:

2/6, 6+ u-J<x< -+ 6 ;

0 otherwise;

g(z) = 1/p, x=b+rforsomerCR;
0 otherwise.

Define the density h(x) = (1 - 1) f(x) + (1) g(x). Let F, G, H be the associated

distributions.

Drawing an agent's value from H is equivalent to designating the agent as "F-

type" or "G-type" with probabilities 1 - 1/N or 1/N, respectively, then drawing a

valuation from F or G accordingly.
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Certainly (H, H) c F. Suppose all agents' values are drawn independently from

H, and that the agents report as follows: any G-type buyer misreports by b - b (so

if his true value is b + r, he reports b + r); all other agents report truthfully.

Let E denote the event that there is exactly one G-type buyer, and the 2N - 1

other agents are all F-type. As in (3.4), we have

1
Pr (E) 2 -.* (4.3)

16

Conditional on E, let 7r be the probability that the G-type buyer ends up with a

good under the mechanism. Notice that in event E, the first-best always requires this

buyer to receive a good; when he does not, the resulting efficiency loss is at least as

large as the difference between his value and the next-highest value, which is at least

(b(- J) - +b - 26.
2 2

Therefore, the consequentialist inefficiency of the mechanism (with minimum manip-

ulation cost o) satisfies the lower bound

b -b 25
r' > Pr(E) - (1 - 7r) - -2 6  2 (1 - r). (4.4)

2 16

On the other hand, let ' be the density defined by

x) = y 1/=, = + r for some r E R;

0 otherwise.

and h(x) = (1 - y) f(x) + (k) g(x). Define G, H the distributions associated with

', h. Note that G represents the distribution of reports by a C-type buyer in the

previous scenario who misreports his value.

Suppose now that all agents' values are drawn from H, instead of H, and that

all agents report truthfully. We can label agents as F-type or C-type, as before.

Let E denote the event that there is one C-type buyer and all other agents are
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F-type. We then have Pr(E) 2 1/16 once again. Moreover, the distribution of

profiles conditional on Z, when values are drawn from H, is exactly the same as the

distribution of reported profiles conditional on E, when values were drawn from H

and when G-type buyers were misreporting. Consequently, conditional on E, the

probability that the C-type buyer receives a good is again ir.

However, conditional on E, the first-best requires that the C-type buyer never re-

ceive a good; and when he does receive one, the efficiency loss is at least the difference

between his value and the next higher value, which is at least

b__ b-bb+b- 6 - b + J) = - 2J.
2 2

So we have

_ _ Pr(_) -7r - 2J > 2 6- r. (4.5)

Adding (4.4) and (4.5), and dividing by 2 gives q' > (b- b - 4J)/64. Combining with

(4.1), we see that the mechanism has a (o-, ,) consequentialist tradeoff, as claimed.

D

We can now use Lemma 4.1 to restate our main results from Section 3 in terms

of consequentialist tradeoffs. The following theorem extends Theorem 3.3:

Theorem 4.2 There exists a positive constant c such that every possible mechanism

has a (c/(VN log N),c/(fNlogN)) consequentialist tradeoff on.F1.

Proof: Suppose not: some mechanism M has consequentialist inefficiency qC less

than c/(VN log N) for manipulation cost o- < c/(VV log N). We repeat exactly the

steps of the proof of Theorem 3.3. Since 7 < rf, the only assumption from that

theorem that is no longer present was the assumption that each agent can gain at

most o- by misreporting. That assumption was used only once in the original proof

- in Step 2, in the line "a buyer of type by + r (for any j) cannot benefit by more

than a from misreporting as type bjai + r" (and the analogous argument for sellers).

This line now requires elaboration. In particular, it must be reformulated in terms of

quasi-misreports.
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We claim that for each j, the mechanism M cannot be o--susceptible to the quasi-

misreport (bj, bj+1, 2). For suppose otherwise. Then by Lemma 4.1, we have

77bj - bj+1 -- y bj - bj+1
- 64 70

Now, the ratio p satisfies the lower bound

3 __IK>
p > (20vN)1/K 1/ log N= e1/2 6 (4.6)

-4 4 4 5

which gives us

bj - bj+1 = (P - 1)bj+1 bj+1 1

5 IOOvNW

and therefore

1 /100v/NI_ 1
70 7000 N

Since y < c/(vN log N), we obtain c > 1/7000 (as long as N > 3), contradicting our

assumption at the beginning of the proof.

Thus, M is not susceptible to the quasi-misreport (bj, bj+ 1, 2). So it remains true

that for almost all r C [--y/2, 'y/2], a buyer of type bj + r (for any given j) cannot

benefit by more than o- from misreporting as type bj+1 + r. Hence, for almost all r,

this holds for all j simultaneously.

For each such r, the argument leading to (3.7) remains valid. Then (3.8) continues

to hold as well, since that inequality is derived by integrating over r E [--y/2, -y/2]

(and the integrand is bounded). Thus, the conclusion of Step 2 on the average utility

of each buyer still applies. An entirely analogous argument shows that we also still

have the same lower bound on average utility for the sellers.

From there, the rest of the argument for Theorem 3.3 leads to the same contra-

diction as before. l

Similarly, the following result extends Proposition 3.4 to the consequentialist

framework:

Proposition 4.3 There exists a positive constant c such that every mechanism has
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a (c, c) consequentialist tradeoff on Fo.

Proof: We prove the proposition with c = 1/128. Thus suppose for contradiction

that some mechanism has consequentialist inefficiency if < 1/128 with o- < 1/128.

Again, we repeat line-for-line the proof of Proposition 3.4, making a change analogous

to the one we applied to prove Theorem 4.2.

Specifically, the only line in the proof of Proposition 3.4 that needs to be changed

is the assertion "for any r E [0, -y], a buyer of value 1 - r cannot benefit by more than

o by misreporting as value 1/4 - r." Instead, this line now only holds for almost

all r E [0, 7]; that is, the mechanism is not o--susceptible to the quasi-misreport

(1- , 1- 2, -). Proof: if it were u-susceptible, then by Lemma 4.1, we would have

3/4 -2> 1
64 128'

contrary to assumption. (An analogous change would be made in the argument for

sellers.)

Again, the fact that misreports are prevented for almost all r C [0, -y] rather than

all r is immaterial, since the proof of Proposition 3.4 then proceeds by integrating over

r. The rest of that proof then carries through, and we reach the same contradiction.

To summarize this section: although our main results were originally expressed

in terms of the tradeoff between incentives for strategic manipulation and efficiency

under truth-telling, they can be easily rephrased in terms of the tradeoff between

costs of strategic behavior and efficiency under manipulation. The proofs carry over

with only minor enhancements needed.

Before closing, we should mention that all of the above discussion has used only

the allocation of goods as the relevant welfare criterion. In fact, with our assumption

that agents face a cost to behaving strategically, it would arguably be appropriate to

count this cost as a welfare loss whenever it is incurred. Of course, doing so would

only strengthen our lower bounds on consequentialist inefficiency.
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5 Onwards

In this paper, we have looked at the tradeoff between efficiency and incentives for

strategic manipulation in large double auction mechanisms. In so doing, we have

begun to fill a gap between two earlier literatures on large double auctions - one

looking only at incentives for manipulation, and one looking at inefficiency in perfectly

incentive-compatible mechanisms. By looking at the tradeoff, we have addressed the

question of whether it would be possible to achieve much-improved convergence to

full efficiency by making a small sacrifice in terms of incentives for truthful behavior.

Our main result, Theorem 3.3, gives a negative answer to this question, by providing

a near-optimal bound for the rate at which either the inefficiency or the susceptibility

to manipulation of any mechanism can converge to zero as the size of the market

becomes large. We have also reinterpreted the bound in terms of the severity of

inefficiency that may result when agents actually do manipulate (Theorem 4.2).

There are several clear technical directions in which to extend this paper. One di-

rection would be to strengthen Theorem 3.3 to give a sharp bound on the inefficiency-

susceptibility tradeoff. Ideally, it should be possible to parameterize the curve to

which the inefficiency-susceptibility frontier (depicted in Figure 3.1) converges as N

becomes large, analogously to the deficit-inefficiency frontier parameterized by Tatur

[30].

One might also wish to give analogous bounds for other classes of distribution

pairs F, besides those we have looked at. For example, one might consider the family

of all pairs (Fb, FS) given by continuous densities taking values in some interval [p, P],

where 0 < p < p are fixed; this would be more comparable with previous literature

[12, 22, 27, 30].

The present paper fits into the program advanced in the previous chapter of this

dissertation, which argues that it can be useful to quantify incentives for strategic

behavior in mechanisms, and that a natural approach to doing so - defining a mech-

anism's susceptibility to manipulation as the maximum expected utility an agent

could gain by manipulating - is analytically tractable. By looking at incentives in
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this way, rather than treating incentive constraints as rigid, we open up a new quanti-

tative dimension to mechanism design. Understanding this dimension may be useful

in designing and evaluating mechanisms for practical use.

A Omitted proofs

We begin by introducing some asymptotic notation used in the proofs. We follow the

conventions of the previous chapter and keep explicit track of constant factors. Specifi-

cally, for functions F(N), G(N), we write F(N) - G(N) to mean that F(N)/G(N)

1 as N --+ oo, and F(N) ,< G(N) to mean limsupN-, F(N)/G(N) < 1.

Now, we prove a technical result, Lemma A.2, that is used in the proofs of Propo-

sitions 3.1 and 3.2. It provides a central-limit-theorem-style approximation on the

probability of a given split between the number of high-value and the number of

low-value agents.

We first need the following preliminary calculation:

Lemma A.1 Fix 0 < , < 1. Then

max N'V) KJ K)N-J<
0<J<N 27_rK(1- K)N

Proof: The maximum of the left-hand side over J is attained at J = [(N + 1)uj

(this can be proven by computing the ratio of its values over successive J). Now

expand explicitly, use Stirling's approximation [1, eq. 6.1.38] for the factorials, and

simplify. D

Lemma A.2 Let 0 < r < 1 and A > 1 be given. There exist a constant c and an

integer No with the following property: For all N > No, all K < (1 - K)N, and all

a, b G [0,1] such that

b < Aa, 1-b< A(1-a),
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we have the inequality

N -

J_ KaN-JbJ-K A -+K)-j J-(1- a)j(1 - b)N-J+K < cF

Proof: We consider three cases, depending on the values of a and b.

(i) Suppose that a < K/4A. Then b < r/4. For every J we have either

K N - J
-K<
2A N

or
K J-K
2 N

since otherwise adding would give -K< 1+1/A < K, a contradiction.N 2

If (A.2) holds then consider

(N)

(A.1)

(A.2)

(A.3)

aN-J -

which is log-concave in a, maximized at a = (N - J)/N. The constraint a <

K/4A then implies

N NaN- ) a N-J K )J

4AJ 4A
1

V27rN () (1a - 4K)

using Lemma A.1.

If (A.3) holds then consider

( bJ-K(1_
b)N-J+K

which is log-concave in b, maximized at b = (J - K)/N. The constraint b < K/4
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implies

N K)bJ-K
K) N-J+K

4/
- b)N-J+K

K

2rN (t4)1

again by Lemma A.1.

So there is an absolute constant c such that, for every J, one of the two factors

aNJ(I - a)J, ( J NK)bJK(I 
- b)N-J+K

is at most c/A/sI'N (as long as N is large enough). Then the sum in (A.1) is

at most

S A
N

-a))N]=<c [(b+ (1 - b)

) N-J

2cl -

(ii) Suppose that 1- a < K/4A. Then 1 - b < K/4. Here the analysis is quite similar

to case (i): For every J we have either

1 J
2 N

(A.4)

1 -N-J+K

If (A.4) holds then

(N)
aN-J(1 - a)"

(N7)i

or

2 N
(A.5)

<(N
( )

2r (1 -n n
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a)J- )N-

- K N-J
-A

< jN (,J-K

J-K) \4

J -K bJ-K I

-J=K



and if (A.5) holds then

0 - K - b)N-J+K J (I - )JK ()NJ+K

J 27rN - ) ( )<1

This case is completed exactly as in the previous case.

(iii) The remaining possibility is K/4A < a < 1 - t,/4A. In this case, we hold a fixed

and let N and J vary. We use Lemma A. 1, which gives

N1A
max aNN-J1 Jma()aN( - a)J < < C

J J~y27rNa(1 - a) - N

for an appropriate constant c. Then the sum in (A.1) is at most

N _ _b-( )NJK<C)]C

c J - K N-J+K < [ (b + (1 - b))N
c)N K-J=K J N

Proof of Proposition 3.1: We will show the following stronger result: there is

an absolute constant c such that the expected value of the least valuable trade, under

any distribution pair (Fb, FS) E FA, is at most cA5/ 2N-1/2, as long as N is sufficiently

large relative to A. Denote this expected value by ((Fb, Fs).

First, fix any N and any (Fb, FS) C F. For each x E [0,1], let H(x) denote the

probability that s(k) < x < b(k), where S(k), b(k) denote the values involved in the

lowest-value trade as in Subsection 2.3. Conditional on the realized profile, the value

of this lowest-value trade, b(k) - s(k), equals the probability that s(k) < x < b(k) when

x is drawn uniformly from [0, 1]. Hence, the unconditional expected value of b(k) - S(k)

is just the expected value of H(x), over x - U[0, 1]. That is,

((Fb, Fs) = E[b(k) - 8(k)] = j H(x) dx.
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So it suffices to show that max[o,i1 H(x) is bounded above by cA5/ 2N-1/ 2.

Thus, fix x* E [0, 1]. Call a valuation high if it is in [x*, 1] and low if it is in [0, x*).

Notice that b(k) is the lowest buyer's value among the top N values, and s(k) is the

highest seller's value among the bottom N values. Therefore, S(k) < x* < b(k) if and

only if all buyers among the top N values are high and all sellers among the bottom

N values are low. Call this event E*. Thus, H(x*) = Pr(E*).

To bound the probability of E*, we define the following events:

" EK, for each integer K = -N, -N+1,... , N, is the event that there are exactly

N + K high values.

" E, for K = 0,.. ., N, is the event that EK happens and the (N+1)th, . .. , (N+

K)th highest values are all buyer values.

" E<, for K = -N,..., -1, is the event that EK happens and the Nth, (N- 1)th,

... , (N + K + 1)th highest values are all seller values.

Note that E* is contained in the union of the E<.

We claim that for |KI 5 N/2, Pr(EK) < cA 1 / 2N- 1/2 , where c is an absolute

constant (as long as N is large enough). Indeed, if we let J denote the number of

high buyer values, we can sum over possible realizations of J to obtain (when K > 0)

the equality

Pr(EK) N +K - J F'(_)N-JFs M J-K(1- FbYJ(1-Fs _N+K-J.

J=
(A.6)

A direct application of Lemma A.2, with n = 1/2, then implies that Pr(EK) <

cA1/2N-1/2 as claimed. The argument for the case K < 0 is identical.

Next, we claim that

Pr(EkJEK) 1 + 2 2), for |Kj < . (A.7)

To show this, we argue in terms of the joint density of the 2N values (bi, si). We will

again assume K > 0; the argument for K < 0 is identical.
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For any weakly decreasing sequence of values v = (v(1) - - - >v-(2N)) and any

sequence of labels t = (t(),... ) t(2N)) with each t(i) C {b, s}, let

Q(v,t) = J fb(~) sJ fv)
i: t)=b i: tw=s

If the buyers' and sellers' values are drawn independently from F6 and F', then

the probability density of a given profile P of values is exactly Q(v, t), where v

consists of the values in P sorted in decreasing order, and t(i) = b if the value

v(i) belongs to a buyer and s if a seller. For any set T of label sequences t, let

Q(V, T) = EtCTQ(v,t). For J = 0,...,K, let Tj be the set of label sequences

consisting of N b's and N s's, such that exactly J of the labels t(N+1),- - ,t(N+K) are

equal to s; and let Tu j=U0 Tj, the set of all label sequences consisting of N b's

and N s's.

Let VK be the set of value sequences consisting of N + K high values and N - K

low values. Then

Pr(EK) = (N!)2 j Q(v, Tu) dv. (A.8)

(The (N!)2 factor comes from the fact that each sequence v of distinct values and label

sequence t distinguishing the buyer values from the seller values should be counted

multiple times, once for each of the N! possible assignments of buyer identities to

buyer values and N! assignments of seller identities to seller values.) Similarly

Pr(E1) = (N!)2  Q(v, TO) dv. (A.9)
K~ fVK

On the other hand, for any fixed v and any fixed J E {o,... , K - 1}, we can

relate Q(v, TJ) with Q(v, TJ+ 1 ) as follows. Call an element tj E Ty and tJ+1 E

connected if tj+1 is obtained from tj by switching some t(i) from b to s, where i E

{N+1, ... , N+K}, and switching some t(j) from s to b, where j V {N+1,... , N+K}.

Each element of Tj is connected to exactly (K - J)(N - J) elements of Tj+1, and

each element of TJ+1 is connected to exactly (J + 1)(N - K + J + 1) elements of

Tj. Moreover, if tj+1 is connected to tj, then Q(v, tj) <; A2Q(V, tj+1), since the ratio
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between fb and fS is always bounded by A. Summing over all connected pairs, we

have

(K - J)(N - J) ZQ(v,j) <; (J+ 1)(N - K + J+ 1)
tjcTj

E
tJ 1 6ETJ+1

from which

Q(v, TJ+1)
(J+

Since N > 2K and J < K - 1 this gives

Q(v, Tj+1)
K-J
J + 1

1 (K

1AQ(v,Tj)= (i
I

2A2Q(V, TJ).

Now by induction we have

Q(v, TO)

for all J. Summing gives

Q(v, Tu) =
K

ZQ(vl Tj) >(I
J=O

+ QV, TO).

Combining with (A.8) and (A.9) gives

Pr(EK) 1 + 1 
K

2A2
Pr(E().

This is exactly (A.7) for K > 0. The K < 0 case is identical.

In addition, if K > N/2, then any draw in Ek requires the (N+1)th,..., L3N/2]th

highest values all to be buyer values; so an identical argument gives

Pr(EIEK) I +
1 ) -[N/21

2A2A

for K > N/2. And by the same argument, this conclusion also holds when K < -N/2.
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A2Q(V, tJ+1)

1)A 2Q (V, Tj).

Q(V, Tj) 2! -K _



We conclude that

N

Pr(E*) < ( Pr(EK)
K=-N

[N/2]

< E/cA1/2
K=-LN/2)

N -1/2 - + 2

00 /-K

S2E (I + 2A2
K=O

< 7cA5/ 2 N 1 /2

- ci/2 N-1/2 + (NP

-LN/2)

+ 1 (i+-)
-N<K<N

|K|>N/2
+-N/2]

2 A2

The last inequality holds because E 0 (1 + 1/2A2)-K - 2A2 +1 < 3A 2 , and the final

term (N+2)(1 + 1/2A2)-LN/2] is exponentially decreasing in N, so is certainly at most

cA 5/ 2 N-11 2 when N is large enough.

Thus we have shown that there is an absolute constant c for which H(x*) =

Pr(E*) < cA/ 2N- 1/ 2 when N is large enough. Moreover, at no step in the proof

did we use the specific value of x* or the distribution (Fb, Fs) C F; therefore the

constant c and the threshold for N are independent of these choices. We conclude

that sup(Fb,Fs)EF ((F, FS) < cA 5/ 2 N-1/2, which is what we wanted.

Finally, we prove a simple central-limit-theorem approximation used in the proof

of Theorem 3.3.

Lemma A.3 If N is sufficiently large, then

N- [VN/4) 2N

K(K)
(1 2N

2 -4

Proof: From Stirling's approximation, we have

(1)2N 2
2 ~~ xN

2N) 
1)2N 

2NK 2 -IN
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and in particular

2 N) (1) 2 NK 2

for all K, as long as N is large enough. Then, we have

2N) (1)2N
K2N

N

K=O
K)2N
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N-[V/N|4]

K=O

VN|4]
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