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ABSTRACT

Metabolic syndrome describes a complex set of obesity-related disorders that enhance diabetes,
cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase lb
(PTPlb) deletion mice (L-PTPlb-/-) suggests that hepatic PTPlb inhibition would mitigate
metabolic syndrome progression through amelioration of hepatic insulin resistance, endoplasmic
reticulum stress, and whole-body lipid metabolism. However, the network alterations underlying
these phenotypes are poorly understood. Mass spectrometry was used to quantitatively discover
protein phosphotyrosine network changes in L-PTP lb-/- mice relative to control mice under both
normal and high-fat diet conditions. A phosphosite set enrichment analysis was developed to
identify numerous pathways exhibiting PTPlb- and diet-dependent phosphotyrosine regulation.
Detection of PTP lb-dependent phosphotyrosine sites on lipid metabolic proteins initiated global
lipidomics characterization of corresponding liver samples and revealed altered fatty acid and
triglyceride metabolism in L-PTPlb-/- mice. Multivariate modeling techniques were developed
to infer molecular dependencies between phosphosites and lipid metabolic changes, resulting in
quantitatively predictive phenotypic models.
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Title: Associate Professor of Biological Engineering
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1. Introduction: Novel Mechanisms of Cellular Signaling and
Metabolic Control

Introduction

Cellular signaling mechanisms enable living organisms to sense and respond to diverse

environmental cues. Example cues include light, nutrients, and hormones; example cellular

responses are movement, production of nutrient-metabolizing enzymes, and proliferation. Cues

drive down-stream networks of chemically-driven molecular events, or cellular signaling

mechanisms, that lead to a response.

One key cellular signaling mechanism involves classes of proteins known as kinases and

phosphatases. In concert, they are responsible for the addition and removal of phosphate groups

to and from particular sites on proteins. The addition or removal of the phosphate group has

diverse effects on a protein's state, including enhancement or inhibition of enzymatic activity,

change in cellular localization, and/or interaction with another molecule. External cues can

result in robust phosphorylation changes on more than hundreds of proteins (Schmelzle et al.,

2006; Zhang et al., 2005). Perturbation of these phosphorylation signaling networks by mutation

of phosphosite or modulation of kinase or phosphatase protein levels can drastically alter cellular

response and whole-body phenotype (Elchebly et al., 1999; Huang et al., 1997; Nakatani et al.,

2004). The network of protein and molecular interactions underlying these coordinated,

multicomponent phosphorylation changes are the subject of intense scientific research and of

particular importance to human health. Aberrant phosphatase and kinase activities are well-

documented drivers of diseases, including cancer and diabetes (Blume-Jensen and Hunter, 2001;

Cohen, 2006).
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Recently, the important roles of other protein post-translation modifications (PTMs) in cellular

signaling have been highlighted. These PTMs include protein acetylation, methylation,

glycosylation, ubiquitylation, and protein cleavage; these mechanisms have also been shown to

play critical roles in the regulation of cellular responses. Individual proteins often contain

multiple sites for modification by diverse PTMs, and the control of protein behavior as a function

of these interacting modifications will fundamentally progress our understanding of cellular

signaling transduction and control.

Significant progress in understanding protein PTM-mediated cellular signal transduction has

been accomplished using traditional biochemistry and molecular biology techniques, which tend

to be low throughput, qualitative and largely limited to univariate lines of inquiry. However,

recent advances in biotechnology have enabled quantitative PTM measurements of increasing

scale, both in number of conditions and site-modifications measured (Del Rosario and White,

2010). Of particular importance have been breakthroughs in electro-spray ionization liquid-

chromatography coupled to tandem mass spectrometry (ESI-LC-MS/MS), which, in tandem with

PTM enrichment techniques (especially immobilized metal affinity chromatography (IMAC) and

PTM peptide immunoprecipitation (IP) reactions), have enabled the identification of thousands

of PTMs (Ficarro et al., 2002; Kim et al., 2006). Development of isotopic labeling techniques,

such as Stable Isotope Labeling by Amino acids in Cell culture (SILAC) and Isobaric Tag for

Relative and Absolute Quantification (iTRAQ), enable simultaneous quantification and

identification of phosphopeptides across multiple conditions. Quantitative MS techniques allow

network-level characterization of hundreds of PTMs in response to diverse stimuli and contexts

(Mann, 2006; Wolf-Yadlin et al., 2007; Zhang et al., 2005). Global MS-based methods have

been adapted for the detection and quantification of protein phosphorylation, lysine acetylation
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and cleavage in response to cellular signaling cues (Dix et al., 2008; Owens-Bryson; Wolf-

Yadlin et al., 2007).

One particular advantage of MS-based, PTM analysis is that they enable detection and

quantification of any modified site on theoretically any protein. In contrast, other high-

throughput approaches typically measure a much more limited set of PTMs for which site-

specific antibodies already exist (Wolf-Yadlin et al., 2009). In these experiments, measured

posttranslational modification must be selected a priori, placing significant constraints on

biological exploration. In contrast, MS-based techniques enable global, systematic exploration

of cellular cue responses. Often, when an allegedly well-characterized PTM-based cellular

response network is re-examined by MS-based analysis, novel cue-responsive PTMs and protein-

protein interactions are revealed, leading to a more nuanced biological network picture (Huang et

al., 2007; Schmelzle et al., 2006).

In addition to impacting the traditionally "protein-centric" field of cellular signaling, mass

spectrometry advances have also revolutionized and revitalized the study of metabolism, often

mistakably considered to be a well-understood domain of biology. Similarly to genomics and

proteomics, the nascent field of metabolomics is focused on global metabolic measurements

across cells, tissues, and fluids. Metabolites are defined broadly as peptides, carbohydrates,

lipids, nucleosides, and catabolic products of exogenous compounds (Saghatelian and Cravatt,

2005). In this field, MS-based techniques continue to reveal novel classes of metabolites and

uncover significant roles for both novel and well-studied metabolites as cellular signaling

molecules in human health and disease (Cao et al., 2008; Nomura et al., 2010; Spite and Serhan,

2010).
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Individually, proteomics- and metabolomics-based analyses have revealed important connections

between physiological response and diverse cellular signaling molecules and mechanisms. Here,

I highlight two classes of PTMs, tyrosine phosphorylation and lysine acetylation, that have

recently been found to control cellular metabolism via direct modification of metabolic enzymes

in addition to their relatively better-characterized, indirect modes of action, through canonical

signaling cascades and nuclear control of transcriptional regulation, respectively. In addition, I

highlight fatty acids as a class of signaling-molecule metabolites whose mechanisms of action

depart from the traditional perspective of metabolite signals as allosteric modulators of upstream

and downstream metabolic enzymes only.

Regulation of metabolic enzymes by tyrosine phosphorylation

Protein tyrosine phosphorylation in growth factor and insulin signaling plays an indisputably

central regulatory role in the determination of cellular metabolic response to nutrient cues. In

growth factor and insulin signaling pathways, ligands activate receptor tyrosine kinases (RTKs)

and ensuing tyrosine phosphorylation changes on downstream proteins lead to activation of

multiple signaling pathways. The two most well-studied downstream signaling pathways are

those leading to activation of the Erk-mitogen activated protein kinase (MAPK) and the

phosphatidyl-inositol-3 kinase (PI3K)/Akt pathways (Saltiel and Pessin, 2002). Erk and Akt are

serine/threonine kinases that serve as central signaling hubs, and many serine and threonine

phosphorylation sites on metabolic enzymes downstream of these kinases have direct and well

characterized effects on metabolic enzyme activity (Boulpaep et al., 2003). Tyrosine

phoshorylation also leads to transcriptional regulation of metabolic enzymes. Growth hormone

and insulin signaling, in addition to other important metabolic signaling cues, such as leptin and

cytokines, promote tyrosine phosphorylation and activation of the Janus kinase (JAK) - signal
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transducer and activator of transcription (STAT) pathways, leading directly to transcriptional

regulation of metabolic enzymes (Richard and Stephens, 2011).

In contrast to these well-established mechanisms, experimental evidence for direct tyrosine

phosphorylation of metabolic enzymes in modulating metabolic control is recent. In 1983,

tyrosine phosphorylation of three glycolytic metabolic enzymes was discovered in cells

transformed by the Rous sarcoma virus (Cooper et al., 1983). Although authors conceded that

tyrosine phosphorylation of these enzymes could be "gratuitous", they also postulated that these

post translation changes might contribute to aerobic glycolysis, or the Warburg effect, in

transformed cells. These first tyrosine phosphorylated enzymes were resolved using 2D gels and

silver-staining. In the last decade, due to the technical breakthroughs described above, hundreds

of tyrosine phosphorylation sites on metabolic enzymes have been reported (Hornbeck et al.,

2012; Naegle et al., 2010). In addition, several quantitative MS experiments have shown that

tyrosine phosphorylation sites on metabolic enzymes are dynamically regulated in response to

growth hormone or insulin stimulus, as well as other metabolism-altering contexts, such as

cancer (Huang et al., 2007; Schmelzle et al., 2006; Zhang et al., 2005).

Although quantitatively measured response to metabolism-altering cues suggests a functional

role for these phosphotyrosine sites on metabolic enzymes, it has only been in the last several

years that molecular biology experiments have convincingly established important metabolic

roles for site-specific phosphotyrosine regulation of metabolic enzymes. Most of this work has

been motivated by a desire to understand the role of tyrosine phosphorylation of metabolic

enzymes in cancer cell metabolism.
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Tyrosine phosphorylation of pyruvate kinase (PK) isoenzyme M2 (PKM2) promotes cancer cell

metabolism and growth (Hitosugi et al., 2009). While PK isoenzyme M1 (PKMl) is

constitutively active and expressed in non-proliferating, differentiated cells, PKM2 requires

allosteric activation by fructose-bis-phosphate (FBP) and is expressed during development, in

highly proliferative tissues and in tumor cells. PKM2 exists as an active tetramer or as a lower

activity dimer. Because PKM2 catalyzes a rate-limiting step in glycolysis (conversion

phosphoenolpyruvate (PEP) to pyruvate), it was initially unclear why cancer cells, which rely on

high levels of ATP, would preferentially express the less-active isoenzyme. However, relative to

PKM1, the PKM2 tetramer was found to favor glycolysis and lactate production, while the less-

active PKM2 dimers favored the diversion of trioses toward biosynthesis of amino acid and

lipids, processes critical to proliferation and growth. Replacement of PKM2 with PKM1 in

tumor cell lines reduced aerobic glycolysis and sizes of tumors in xenographs, suggesting an

important role for PKM2 in mediating the Warburg effect and proliferative advantage (Dang,

2009).

PKM2 activity is inhibited by interaction with specific tyrosine-phosphorylated peptides as well

as phosphorylation of PKM2 Y105 (Hitosugi et al., 2009). Site-specific mutation of six tyrosine-

phosphorylated residues to phenylalanine revealed that Y105 uniquely decreased PKM2 activity.

This site was found to be phosphorylated in multiple cancer cell lines and by several oncogenic

kinases, including fibroblast growth factor receptor I (FGFR1). Authors also demonstrated that

Y105F PKM2 expression in H1299 cells specifically reduced Warburg hallmarks relative to WT

PKM2 and conferred proliferative disadvantages in xenograph growth models, demonstrating the

functional importance of PKM2 Y105 phosphorylation (Hitosugi et al., 2009).
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However, it is often argued that the stoichiometry of metabolic enzyme tyrosine phosphorylation

is too low to have cellular-level metabolic effects. Evaluation of the molecular mechanism by

which PKM2 was inhibited by pY105 resulted in a model that more broadly addresses a means

by which some low-stoichiometry tyrosine phosphorylation events on metabolic enzymes might

potentiate physiological consequences. Authors used '4C-FBP to show that incubation of WT

PKM2 with the pY1 05-peptide destabilized the allosterically-activating binding of FBP to PKM2

(Hitosugi et al., 2009). They also demonstrated that PKM2 catalytic activity increased upon

FGFR1 inhibition for WT and mutant-control Y390F PKM2, but not Y105F or the K433E

PKM2 mutant, the latter of which cannot bind phosphorylated peptide; this suggested that

pYl05-mediated PKM2 inhibition required binding of pY105-phosphorylated PKM2. Together,

these findings suggest an "intermolecular" or "transprotein" FBP-release model across PKM2

dimers and tetramers, by which one phosphorylated PKM2 monomer can destabilize FBP

binding and inhibit non-phosphorylated PKM2 monomers. This model might explain how other

low stoichiometric phosphorylation events could potentiate large scale changes in metabolic

activity (Hitosugi et al., 2009). As discussed, PKM2 is also inhibited by binding to other

tyrsoine phosphopeptides, and thus tyrosine phosphorylation sites on other proteins and peptides

may synergize with low-stoichiometry, phosphorylated enzymes to significantly impact

metabolism.

Another study demonstrated a role for tyrosine phosphorylation of lactose dehydrogenase A

(LDH-A) in the control of NADH/NAD* redox homeostasis in cancer cells (Fan et al., 2011).

LDH converts pyruvate to lactate, a reaction that regenerates the NAD* required for glycolysis.

LDH had previously been implicated in tumorogenesis, potentially contributing to aerobic

glycolysis. Similarly to the PKM2 study, authors established that multiple oncogenic tyrosine
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kinases could phosphorylate LDH-A, and they developed site-specific mutants to test for effect

of tyrosine phosphorylation on LDH-A activity. LDH-A phosphorylation of two sites, Y10 and

Y83, were necessary for increased enzymatic activity in vitro. LDH-A pYlO was detected in

several cancer cell lines, and a gel filtration chromatography experiment following by an in vitro

FGFR kinase assay with WT or Y OF LDH-A suggested that pY10 increased LDH-A activity by

promoting tetramer formation. LDH-A Y 1 OF site mutant expression in cancer cell lines resulted

in decreased glycolytic metabolism and increased oxygen consumption, as well as higher

NADH/NAD* ratio under normoxic and hypoxic conditions. Without pY10 LDH-A to sustain

the redox balance required for aerobic glycolysis, LDH-A Y1OF mutants exhibited a growth

disadvantage in xenograph models relative to control. Thus, by distinct mechanisms, PGM-2

and LDH-A tyrosine phosphorylation both modulate cellular metabolic state and tumor fitness.

Another recent study demonstrated that several oncogenic tyrosine kinases translocate to the

mitochondria to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1), a serine/threonine

kinase that most notoriously inactivates pyruvate dehydrogenase (PDH). Some of the oncogenic

tyrosine kinases were constitutatively active mutants, but authors also detected full-length FGFR

as tyrosine phosphorylated in the mitochondria of H1299 cells, suggesting that FGFR1 may have

a basal level of mitochondrial tyrosine kinase activity that is ligand independent. In addition, the

tyrosine kinases were localized to distinct mitochondrial locations (outer membrane or matrix),

and the location of the measured PDH activity corresponded to tyrosine kinase location (Hitosugi

et al., 2011). Together, these data suggest that tyrosine phosphorylation of mitochondrial

proteins may (1) occur outside of the context of oncogenic mutant RTKs and (2) be highly

spatially regulated. Tight, spatial regulation provides another argument for a significant
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functional role of tyrosine phosphorylation sites on metabolic enzymes, even in the context of

inferred low-stoichiometry from whole-cell lyastes.

As a final example, Src tyrosine kinase and potentially other family members translocate to the

mictochondria to regulate cellular-level metabolism. Most significantly, Src phosphorylates

adenine nucleotide tranlocator 1 (ANTI) on Y190 and Y194, and these sites modulate

mitochondrial ADP/ATP exchange (Feng et al., 2010). Src may also modulate cellular redox

metabolism by direct phosphorylation of several other mitochondrial enzymes. Inhibition of Src

activity has been shown to decrease mitochondrial respiration via complex 1, complex IV, or

both complex IV and V activities in cancer cells, osteoclasts, and rat brain mitochondria,

respectively. In vitro kinase assays coupled with in vitro enzyme activity assays have suggested

that particular tyrosine phosphorylation sites on these respiratory-chain complex proteins

modulate enzyme activity (Hebert-Chatelain et al., 2012). However, the redox environment of

tissue culture is distinct from an in vivo environment, and it remains to be seen whether these

Src-dependent mitochondrial redox phenotypes extend in vivo.

Together, these studies highlight the importance of site-specific tyrosine phosphorylation on

metabolic enzymes in modulating cellular-level metabolism. Most of these studies have focused

on metabolic enzyme tyrosine phosphorylation in the context of cancer cell metabolism and

proliferation. Normal physiological and other pathophysiological conditions present exciting

opportunities for the exploration of phosphotyrosine regulation of metabolic enzymes.

Regulation of metabolic enzymes by acetylation

Protein lysine acetylation was first discovered almost 50 years ago, and research in this field has

defined a crucial role for lysine acetylation of transcription factors and histones in nuclear
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control of gene expression (Spange et al., 2009). In 1997, the NAD-dependent protein lysine-

deacetylase Sir2p was discovered to slow aging in yeast, and the mammalian homolog SIRT1,

highly induced upon calorie restriction (CR) in mice, demonstrated similar capacity (Guarente,

2011 b). Thus, a role for lysine acetylation in metabolism was hypothesized. Analogously to

protein tyrosine phosphorylation, SIRTi control of cellular metabolism under CR was first

shown to be mediated by a well-established acetylation mechanism; some of the first important

SIRT1 substrates, forkhead box (FOX) 01, FOXO3, and proliferator-activated receptor-y la

(PGCla), were nuclear transcription factors (Guan and Xiong, 2011). However, the recent

advent of an LC-MS/MS protocol involving IP enrichment of lysine-acetylated peptides spurred

the identification of thousands of protein lysine acetylation events, and these events extend well

beyond the nucleus (Kim et al., 2006).

In particular, a preponderance of acetylation on metabolic proteins in the cytosol and

mitochondria has been reported, and several molecular and biochemical studies have

demonstrated important roles for this modification in enzyme function. Similar to

phosphorylation, acetylation has been shown to decrease or increase enzyme activity. In

addition, acetylation of glyceraldehydes 3-phosphate dehydrogenase (GAPDH) was found to

regulate the direction of carbon flux in Salmonella enterica (Guan and Xiong, 2011), suggesting

another intricate mode of metabolic control.

Interestingly, in the cytosol, entire metabolic pathways are acetylated under certain metabolic

perturbations, while, in the mitochondria, acetylation trends are less uniform (Guan and Xiong,

2011). A network perspective provides insight (Guarente, 2011 a). Under glucose-rich

conditions, glycolytic enzymes are heavily acetylated, and this modification generally appears to

promote glycolysis. Glucose metabolism is often coordinated with lipogenesis, and it has been
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shown that flux through ATP citrate lyase (ACLY) promotes protein acetylation, as ACLY

converts citrate to acetyl-CoA for fatty acid synthesis (Wellen et al., 2009). An acetylation-

driven positive feedback loop is likely to promote glycolysis under glucose-rich conditions: (1)

the glycolytic product pyruvate is shuttled to the mitochondria for oxidation by the TCA cycle,

(2) citrate from the TCA cycle is shuttled to the cytosol for ACLY-mediated conversion to

acetyl-CoA, (3) lysine-acetyl transferases utilize the cytosolic acetyl-CoA to enhance the activity

of glycolotic enzymes. In addition, these metabolic pathways increase NADH:NAD* ratio,

potentially limiting the activity of SIRTI by reducing the availability of its cofactor NAD*. In

contrast, under starvation conditions, SIRTI becomes active, and de-acetylation of cytosolic

enzyme substrates not only inhibits anabolic metabolic pathways but also releases acetate, which

can feed into mitochondrial fatty-acid oxidation pathways. Consistent with this notion is the role

of a second deacetylase, SIRT3, also active under starvation conditions; SIRT3 activates long-

chain acyl dehydrogenase (LCAD) and acetyl-CoA synthetase (ACS), which facilitate

mitochrondrial metabolism of acetyl-CoA derived from both fatty acids and acetate, respectively.

In the mitochondria, pathway acetylation patterns may be more complex (less uniform) than

cytosolic trends due to both the flux of acetate to the mitochondria and regulation by multiple

mitochondrial sirtuins (Guarente, 2011 a). Hybrid feedback loops, composed of large-scale

acetylation changes and metabolic fluxes, may be a paradigm for metabolism and PTM

regulation in a broader context.

Thus, protein lysine acetylation not only coordinates metabolic responses via transcription factor

and histone regulation but also through direct biologically functional modification of metabolic

enzymes. As evidenced by recent MS experiments, the acetylation of metabolic enzymes is

extensive (Guan and Xiong, 2011). In response to nutrient cues, acetyl-lysine modifications span
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individual enzymes to entire pathways. The first quantitative MS-based analysis of protein-

lysine acetylation was recently published (Choudhary et al., 2009). Additional quantitative

characterizations of cellular responses have the potential to provide network-level insight into the

restructuring of metabolism by acetyl-lysine modification.

Saturated fatty acid signaling molecules and ceramide derivatives

The traditional role of fatty acid signaling is generally limited to allosteric inhibition of upstream

and downstream metabolic enzymes. It is increasingly appreciated that certain fatty acids

coordinate many metabolic pathways globally, and this large-scale regulation of multiple,

indirectly-related metabolic pathways places these molecules in the realm of canonical signaling

proteins. In addition, several fatty acids control pathways that are not traditionally considered

metabolic.

A role for fatty acids (FAs) in the regulation of inflammatory pathways emerges from the study

of obesity, a state characterized by increased FA storage, expanded adipose tissue mass, and

chronic activation of inflammatory pathways (Konner and Bruning, 2011). In particular, obesity

(1) results in increased expression and secretion of TNFa and IL-6 from white adipose tissue, (2)

leads to the dysregulation of cellular homeostatic mechanisms, such as the endoplasmic

reticulum (ER) stress response, and (3) is associated with increased levels of FAs that promote

inflammation and contribute to the development of insulin resistance (Konner and Bruning,

2011). These processes are accompanied by activation of downstream cellular stress kinases,

such as c-Jun N-terminal kinase (JNK) and IKB kinase (IKK), which show promise as

therapeutic targets (Cai et al., 2005; Nakatani et al., 2004). Of equal importance, however, are

the upstream pathways leading to activation of these kinases, and, in that regard, fatty-acid
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activation of Toll-like receptors (TLRs) appears to play a critical role (Konner and Bruning,

2011).

TLRs are pattern-recognition receptors (PRRs) involved in innate immune recognition of

pathogenic microbial infection. They bind to lipopolysaccharides (LPS), a component of Gram-

negative bacterial cell walls, and, in a macrophage cell line, the medium-chain FA component of

LPS, lauric acid (C12:0), has been shown to trigger a TLR4 response (Konner and Bruning,

2011). Further studies have shown that saturated fatty acids (SFAs) but not unsaturated fatty

acids (USFAs) activate TLR4 signaling in macrophages and adipocytes, and TLR4 deficiency

blocks FA-mediated inflammatory signaling in the same cells (Konner and Bruning, 2011). In

vivo, a study of TLR4 deficient mice compared the effects of SFA-rich to USFA-rich HFDs and

demonstrated that TLR4 is required for SFA-induced insulin resistance, adiposity, and adipose

macrophage invasion. Interesting, TLR4 deficiency did not protect against these phenotypes on

the USFA-rich HFD (Davis et al., 2008). This highlights the diversity of pathological

mechanisms in obesity as well as the specificity of TLR4-mediated inflammation for SFAs. In

addition to acyl-chain saturation, induction of a TLR4 response is specific to SFA chain length.

Laurate, myristate (C14:0), and palmitate (C16:0) activate TLR4-dependent inflammation in

adipocytes, wherease stearate (C18:0) does not. Furthermore, the specificity for chain length is

cell-type dependent. In contrast to adipocytes, macrophage TLR4-dependent inflammatory

response is stimulated by both palmitate and stearate (Chait and Kim, 2010). Together, these

findings suggest a steriospecific rather than a fuel-related mechanism for SFAs in TLR4-

mediated inflammation.

It was originally thought that SFAs were TLR4 ligands. However, radio-labeled SFAs fail to

bind TLR4, and numerous alternatives have been proposed (Chait and Kim, 2010). These
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mechanisms are controversial and include SFA promotion of TLR4 dimerization, SFA induction

of TLR4 surface expression, and SFA mediation of lipid-raft-dependent TLR4 activation (Chait

and Kim, 2010). Recently, another possibility has been introduced (Schwartz et al., 2010). In

this study, authors primed macrophage/monocyte cell lines and primary human monocytes with

SFAs and then stimulated with a low dose of lipopolysaccharide (LPS). The combination of

SFA and low-dose LPS synergistically amplified the inflammatory response. The amplified

response was dependent on SFA metabolism to ceramide. In addition, SFA and ceramide both

stimulated cellular signaling cascades not typically associated with TLR4; SFA and ceramide

treatment resulted in activation of protein kinase C (PKC) Q and the MAPKs Erk, JNK, and p38.

Inhibition of these kinases, in turn, blocked the SFA-enhanced inflammatory response to LPS.

In the context of obesity, these results suggest another model for SFA-induction of inflammation.

On a regular basis, low-level LPS leaks into the circulation, due to absorption of gut bacteria,

minor infection or food contamination. Low-level LPS in combination with HFD-induced

elevation of SFAs could amplify inflammatory gene expression in macrophages and other tissues

through the convergence of TLR4 with other signaling pathways (Chait and Kim, 2010). This

study also highlights the role of ceramide as an important downstream signaling derivative of

SFAs. Indeed, murine studies indicate that ceramide synthesis is required for TLR4-induced

insulin resistance. At the same time, TLR4 is necessary for palmitate-induced insulin resistance

and ceramide synthesis, and, thus, all three of these signaling molecules are necessary for

induction of the insulin-resistance stress response (Bikman and Summers, 2011).

Ceramides accumulate in response to many other stress stimuli, including inflammatory

cytokines, glucocorticoids and chemotherapy, and they regulate diverse metabolic phenotypes

and signaling pathways (Bikman and Summers, 2011). Ceramides are formed de novo from
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serine and palmitate in a sequence of four reactions. They can also be synthesized directly from

sphingomyelin, the most abundant sphingolipid in mammals, and indirectly from catabolism of

complex sphingolipids in salvage pathways. Thus, tight, hormonal regulation rather than

substrate availability controls ceramide synthesis (Bikman and Summers, 2011).

Ceramide accumulation broadly inhibits cellular uptake of key nutrients, including glucose,

amino acids, and fatty acids (Bikman and Summers, 2011). Short-chain ceramide mimetics

prevent insulin-stimulated translocation of GLUT4 glucose transporter to the plasma membrane,

while treatment of rodents with an inhibitor of de novo ceramide synthesis promotes insulin-

dependent glucose uptake, even in the context of insulin-resistance causing factors, such as

SFAs, glucocorticoids, and HFD. Although ceramides require intracellular FAs for synthesis,

ceramide analogs inhibit the FA translocase CD36 from actively transporting FAs across the cell

membrane. This occurs in a dose- and time-dependent manner and in the absence of CD36

mRNA expression changes, suggesting a real-time, protein-mediated response. Finally, in

muscle cells, ceramide diminishes both basal and insulin-stimulated uptake of amino acids by

decreasing the membrane (but not total cellular) levels of sodium-coupled neutral amino acid

transporter 2 (SNAT2). Via control of central nutrient import, ceramides are important

modulators of cellular survival. In addition, ceramides inhibits Akt, a major signaling protein

involved in cellular survival, growth, and a variety of other responses. Ceramide inhibition of

Akt is mediated by two pathways, whose relative importance varies by cell type. These

pathways lead to activation of protein phosphatase 2A (PP2A) or PKC(. The PKCQ-dependent

pathway requires functional caveolae, small (50-100nm) lipid rafts that cause invagination of the

plasma membrane. In general, lipid rafts may be an important means for cross-talk between lipid

metabolic and protein signaling molecules. Interestingly, ceramide synthesis is inhibited by
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expression of a constitutively active Akt, suggesting a mutually antagonisitic ceramide-Akt

relationship (Bikman and Summers, 2011).

The specificity of TLR4-induced inflammatory response for particular SFAs provides evidence

that the role of SFAs in inflammation is stereospecific and may occur synergistically through

activation of cellular signaling pathways independent of TLR4. In addition, de novo synthesis of

ceramide from SFAs parallels a signal transduction cascade, where ceramide, as described

above, shares signaling effector properties potentially as far reaching as its mutual-antagonist

Akt.

Monounsaturated fatty acids as signaling molecules

Studies involving inhibition of stearoyl-CoA desaturase (SCD) have demonstrated a role for

monounsaturated fatty acids (MUFAs) in the control of cellular metabolism, and, intriguingly,

sometimes the origin of the MUFA, endogenous versus exogenous, is a key determinant of

cellular phenotype. SCD is a A9-desaturase, ER-membrane protein that catalyzes the

biosynthesis of MUFA (oleate (C18:1 co9) and palmitoleate (C16:1 o7)) from stearate (C18:0)

and palmitate (C16:0). Substantial insight into the physiological roles of MUFA comes from

studies of mice with whole-body and tissue-specific SCD deficiency as well as mice treated with

antisense oligonucleotides (ASO) against SCD.

Diets high in saturated fatty acids promote lipogenesis via activation of the master lipogenic

transcription regulator sterol regulatory element-binding protein- 1 c (SREBP 1 c), and this effect

was originally thought to be mediated by stearate. However, SCD-/- mice, deficient in MUFA

synthesis, are resistant to SFA-induced lipogenesis, demonstrating that MUFA are somehow

involved in activation of SREBP 1 c. Equally surprising, in the absence of MUFA, SFAs induce a
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diametrical metabolic response: activation of AMP-activated protein kinase (AMPK) and fatty-

acid oxidation (Sampath et al., 2007). In addition, SCD-/- mice and SCD-ASO treated-mice are

resistant to lipogensis and obesity even on a high fat diet (HFD) that consisted of 40-50%

MUFA. This suggests that endogenous MUFA synthesis yields a pool of MUFA distinct from

dietary, and the endogenous pool dictates the balance between energy storage and catabolism

(Jiang et al., 2005; Ntambi et al., 2002).

Characterization of hepatic SCD deletion (L-SCD-/-) mice refines the mechanism of endogenous

MUFA in metabolic control and reveals a novel role for the MUFA oleate (Miyazaki et al.,

2007). First, L-SCD-/- on HFD are not resistant to obesity, and, more significantly, hepatic

steatosis develops, indicating that hepatic lipogenesis continues in the absence of locally

(hepatocyte-) synthesized MUFAs. Authors hypothesize that endogenous MUFAs from other

tissues must compensate for loss of liver-produced MUFAs. The fundamental difference between

endogenous and dietary MUFA in metabolic regulation is a mystery; perhaps endogenous

MUFAs from extrahepatic tissues are secreted with cofactors that enable hepatic utilization for

lipogenesis.

Additional insight into MUFA-dependent metabolic regulation is gained from L-SCD-/- mice on

high-carbohydrate diets (HCD). Under normal circumstances, a HCD should potently activate

hepatic SREBPlc as well as carbohydrate regulatory element-binding protein (ChREBP),

leading to transcription of lipogenic enzymes, hepatic steatosis, and other metabolic syndrome

symptoms. A high-sucrose, very low-fat (HSLVF) diet is an extreme form of the HCD, but L-

SCD-/- mice have severely limited lipogenesis and hepatic steatosis even under this condition.

In addition, L-SCD-/- have reduced triglyceride secretion and are hypoglycemic. Supplementing

the HSLVF with 20% triolein (a triglyceride composed entirely of oleate acyl chains) but not
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20% triostearin (stearate triglyceride) rescues all of the described HSLVF-induced phenotypes.

Somehow supplementation with oleate, but not stearate, results in restored transcription and

activation of SREBPlc and ChREBP. Activation of SREBPlc is a multi-step process that

involves proteolytic cleavage and translocation to the nucleus. Authors suggest that oleate is

involved in post-transcriptional processing of SREBP, because hepatic lipogenesis can be

restored in global SCD-/- mice by expression of a constitutively active nuclear form of SREBP 1 a

in liver. Oleate supplementation also resolved hypoglycemia and restored the gluconeogenic

metabolites in L-SCD-/- mice on HSLVF, extending the known regulatory function of oleate to

include carbohydrate in addition to lipid metabolism. This novel oleate-gluconeogenesis

connection offers a potential explanation for oleate-mediated lipogenesis. The gluconeogenic

metabolites glucose and glucose-6-phosphate (G6P) are agonists of the liver X receptor (LXR) ,

which promotes transcription of SREBP1c and ChREBP, although the link between oleic acid

and gluconeogenesis is unknown. Yet another potential mechanism connecting oleate to

lipogenesis could be alteration in membrane biomechanics due to incorporation of oleate in

membrane phospholipids, which, in turn, could affect SREBP1 maturation and translocation

(Miyazaki et al., 2007). It remains to be seen if SCD's other MUFA product, palmitoleate,

would also restore hepatic lipogenesis and gluconeogenesis on HSLVF. If the described

regulatory functions are unique to oleate, then the location of the o bond (o9, as opposed to o7

in palmitoleate) likely mediates some aspects of the regulatory mechanism.

Thus, murine models of SCD inhibition have highlighted the MUFA oleate as a signaling

metabolite that regulates diverse metabolic pathways: gluconeogensis and lipogenesis. Oleate

regulation of lipogenesis may involve both transcriptional and post-transcriptional control; both

mechanisms extend beyond allosteric inhibition of dedicated metabolic enzymes.

27



Polyunsaturated fatty acid signaling molecules and eicosanoid derivatives

The historical appreciation of polyunsaturated fatty acids (PUFAs) as more than a fuel source

dates back at least 35 years (Bang et al., 1976). In an effort to understand the low incidence of

cardiovascular mortality among Greenland Inuits, the lipid composition of their seafood-rich

diets was compared to a typical Western diet, and o3 PUFA content, elevated in the Inuit

population, was hypothesized to promote cardiovascular benefits (Bang et al., 1976).

Subsequent clinical trials demonstrated the value of O3-PUFA diet supplementation in the

promotion of cardiovascular health, and, in the last decade, insight into the molecular means by

which PUFAs exert their physiological effects has developed (Arnold et al., 2010).

The roles of specific species and classes of PUFAs are functions of their chain length, degree of

desaturation, and double-bond locations (especially the final (o) double-bond location). The

bioactivities of o3 and o6 PUFAs are the most well characterized, and, in mammals, these

PUFA are products of essential fatty acids a-linolenic acid (LNA, C 18:3 o3) and y-linoleic acid

(GLA, C 18:2 o6), respectively. o7 and o9 PUFA are products of oleic acid (OA, C 18:1 o9) and

palmitoleic acid (POA, C16:1 o7), precursors supplied by diet or de novo lipogenesis via SCD

A9-desaturase activity. All PUFAs, regardless of precursor, are products of the same

biosynthetic pathways, which take place in the ER and are composed of elongases and two

desaturases, Fadsl (A5) and Fads2 (A6) (Guillou et al., 2010). However, PUFA synthesis is not

entirely contained in the ER, as the synthesis of docosahexanoic acid (DHA C22:6 o3) and

docosapentanoic acid (C22:5 o6) requires C24 precursor transport to the peroxisome for p-

oxidation. Cellular PUFA are stored as phospholipids, and cellular concentrations are tightly

controlled by binding proteins (fatty acid binding proteins (FABPs) and acyl-CoA binding

proteins (ACBPs)). Well-established modes of signaling include the activation of phospholipids

28



(i.e., to diacyl glycerol and inositol triphosphate) and lipase-mediated release of PUFAs from

phospholipids for oxidative metabolism to eicosanoids, pluripotent paracrine and autocrine

signaling molecules. However, PUFA also have direct cellular signaling roles, which were first

discovered in the context of nuclear-hormone-receptor control of gene expression (Sampath and

Ntambi, 2005).

Inhibition of hepatic lipogenesis by (3 and o6 PUFA is potent enough to overcome prolipogenic

signaling of postprandial insulin and carboyhydrates (Sampath and Ntambi, 2005). These PUFA

reduce cellular fat stores doubly, through simultaneous activation of fatty-acid P oxidation and

inhibition of fatty acid synthesis (Sampath and Ntambi, 2005). PUFA regulation of gene

expression occurs on the order of minutes, a timescale consistent with ligand-mediated

regulation (Benatti et al., 2004). Indeed, (3 and o6 PUFA bind to and activate the peroxisome

proliferator-activated receptor a (PPARa), a nuclear hormone receptor that promotes expression

of genes involved in mitochondrial and peroxisomal FA oxidation (Sampath and Ntambi, 2005).

Numerous o3 and o6 PUFA bind PPARa, but with varying affinities. For example, in primary

hepatocytes, eicosapentanoic acid (EPA, C20:5 o3) is a much stronger PPARa agonist than

arachidonic acid (AA, C20:4 o6). Importantly, transactivation assays show that many 03 and

o6 PUFA activate PPARa at an order of magnitude lower concentration than that found in

human serum, indicating a physiological role for PUFA-receptor binding (Sampath and Ntambi,

2005).

o3 and o6 PUFA also potently inhibit the master lipogenic transcription factor, SREBPlc, in

liver. Evidence suggests that this regulation is mediated by enhanced decay of SREBP 1 c mRNA

and proteasomal degradation of active, nuclear SREBPlc, although the molecular detail of these

mechanisms is unknown (Jump et al., 2005). The mechanism does appear to be PUFA-species

29



specific. The hierarchy of PUFA-mediated SREBP 1 c mRNA degradation was found to be: EPA

= AA > GLA > oleic acid (Benatti et al., 2004). Thus, PUFA regulation of gene expression is

mediated by diverse and PUFA-species-specific mechanisms.

PUFA control more than gene expression, however, as transcriptional control does not entirely

explain PUFA-mediated inhibition of hepatic triglyceride secretion (Pan et al., 2004). In order to

elucidate the non-transcriptional mechanism of o3 PUFA inhibition of triglyceride secretion,

authors treated primary hepatocytes with DHA and evaluated several hypothesized mechanisms.

They found that DHA treatment resulted in lipid peroxide formation and oxidative damage to

apolipoprotein B (ApoB), the critical apolipoprotein in very-low-density lipoprotein (VLDL)

particles. Oxidation of ApoB lead to its degradation and diminished VLDL secretion.

Interestingly, ApoE, the core component of high-density lipoprotein (HDL) particles was

resistant to DHA-induced oxidative damage and degradation, suggesting that this mechanism is

specific to control of VLDL. In addition, by treating the hepatocytes with other fatty acids,

authors showed that ApoB secretion inversely correlated with acyl-chain desaturation,

independent of the o-bond position (Pan et al., 2004). Although authors limited their study to

3 and w6 PUFA, this mechanism could feasibly extend to w7 and o9 PUFA.

Although PUFA, especially the well-characterized 3 and o6 species, directly modulate many

facets of cellular behavior, additional consideration of PUFAs as initiators of eicosanoid

signaling strengthens their classification as signaling molecules. Technically, an eicosanoid is

any long-chain oxygenated PUFA product; however, the "quintessential properties of 'true'

eicosanoids are their stereochemical precision in formation and recognition, their potency in the

nanomolar range in vitro, and their bona fide biological activities" (Funk, 2001). Eicosanoids act

in an autocrine or paracrine manner and are rapidly synthesized de novo from lipase-mediated
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membrane release of PUFAs, stimulated by mechanical stress and other cellular cues (i.e.,

growth factor, cytokine). There are three major branches of eicosanoid signaling:

prostaglandins, leukotrienes, and other cytochrome P450 pathways, each of which contains

subpathways, resulting in myriad eicosanoid products, each with diverse and specific

bioactivities (Arnold et al., 2010).

In addition to the diversity of biochemical pathways, eicosanoid responses depend upon the

PUFA precursor, stimulus, and cell type (Funk, 2001). AA (C20:4 o6) is the prototypical PUFA

precursor of eicosanoids, and it is typically involved in promotion of inflammation. Other (o3)

PUFA, such as EPA and DHA, were initially thought to mediate anti-inflammatory effects by

AA-substrate competition in the eicosanoid biosynthetic pathways. However, it is now

appreciated that the eicosanoid products of EPA and DHA, suggestively named resolvins and

protectins, independently promote inflammation resolution and are biologically active lipid

mediators in their own right (Arnold et al., 2010; Spite and Serhan, 2010). In addition, other

PUFAs are processed into potent eicosanoids. For example, a recent study revealed that 5-oxo-

C20:3, the 5-oxo product of the o9-PUFA mead acid (MA, C20:3), activated eosinophil

chemotaxis via the 5-oxo-ETE receptor with potency equivalent to 5-oxo-ETE, the AA product

for which the receptor was named (Patel et al., 2008). This is a rare example of a species-

specific, o9-PUFA signaling mechanism. As the field grows, it is likely that many more roles

for PUFA species in nuclear hormone activation, post-transcriptional regulation, eicosanoid

signaling, and other facets of cellular regulation will be discovered.
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Conclusions

Large-scale, MS-based characterizations of protein PTMs and metabolites have identified an

astonishing diversity in protein and metabolic states. These MS experiments have prompted

molecular-level investigations. Even though these studies seem limited in the context of so

many newly-discovered and uncharacterized biomolecules, they clearly indicate that (1)

metabolites must be considered as cellular signaling molecules in addition to energy sources and

(2) PTM of metabolic enzymes is not gratuitous, even if that particular class of PTMs has

historically been characterized in the regulation of metabolic control by other means. These

conclusions present a more nuanced model of cellular control. An understanding of metabolism

would be incomplete without consideration of enzyme PTMs and, likewise, prediction of cellular

response relies upon incorporation of novel metabolite signaling mechanisms into known cellular

signaling pathways. As potentially "complicating" as large-scale measurement of PTMs and

metabolites are to prior models, they will fundamentally contribute to our understanding of

cellular signaling networks and human health and disease.-

The network-level acetylation changes that accompany the switch from fed to fasting metabolism

present an interesting concept for PTM-metabolite coordination. Simultaneous consideration of

protein acetylation and metabolic flux in the glucose-dependent context offers a glimpse of

PTMs as protein metabolites and metabolites as protein modulators, and, together, suggests

evidence for potent metabolite-PTM feedbacks. In the context of cancer, tyrosine

phosphorylation is often dysregulated (Blume-Jensen and Hunter, 2001), and evidence suggests

that tyrosine phosphorylation of metabolic enzymes plays a crucial role in the switch from

oxidative phosphorylation to aerobic glycolysis (Hitosugi et al., 2009). In the context of cancer,

it is tempting to speculate about the existence of large-scale, full-circle metabolite-
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phosphotyrosine (as well as other PTM) feedbacks. These feedbacks may be more apparent

upon metabolic perturbations (i.e., hypoxia). Conversely, perturbations of PTM-modulating

proteins can result in dramatic metabolic changes (Banno et al., 2010; Bence et al., 2006), and

these perturbations present a complementary approach for exploration of metabolite-PTM

interactions.

Chapter 2 describes a study whose aim is to systematically develop a molecular-network

understanding of a single genetic perturbation to a protein tyrosine phosphorylation network; this

perturbation had previously been shown to promote metabolic changes at the physiological level

by unknown molecular means (Delibegovic et al., 2009). In this study, global MS-based

analyses are used to quantitatively measure site-specific protein-tyrosine phosphorylation and

molecularly-resolved metabolic changes in response to this genetic perturbation in vivo. The

system is additionally characterized in the context of a nutrient challenge, high fat diet.

Surprisingly, HFD promotes network-level phosphotyrosine changes that scale with the more-

direct phosphotyrosine perturbation, phosphatase deletion.

Given the breadth of the MS-based experimental analyses, several modes of statistical modeling

techniques were developed to detect pathway-specificity in tyrosine phosphorylation network

changes and to infer multivariate relationships between molecular measurements and metabolic

phenotypes. The results from the computational analysis are described briefly in Chapter 2. In

Chapter 3, these computational methods are described and motivated in full. Chapter 4 describes

both contributions and limitations of Chapters 2 and 3 results. In addition, Chapter 4 proposes

new research directions that develop from their consideration.
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Introduction

Metabolic or insulin resistance syndrome describes a group of commonly associated disorders,

including central obesity, hyperglycemia, hyperinsulinemia, dyslipidemia, and hypertension, that

promote the development of Type 2 Diabetes Mellitus (T2DM), cardiovascular disease (CAD),

cancer, polycystic ovarian disease, and nonalcoholic fatty liver disease (NAFLD) (Biddinger and

Kahn, 2006; Kashyap and Defronzo, 2007). It is associated with 50% increased risk of

cardiovascular mortality and 30% enhanced risk of mortality from all causes (Sidorenkov et al.,

2010). In tandem with obesity, metabolic syndrome and its comorbidities have spread

worldwide, affecting individuals across all socioeconomic circumstances (Popkin et al., 2012).

In the last twelve years, the liver has emerged as both a preeminent contributor to metabolic

syndrome pathogenesis and a target tissue for therapeutical intervention (Rutter, 2000). These

roles are consequences of hepatic insulin signaling, which critically mediates homeostatic

changeover from the fasted to fed state. In response to nutrient cues, insulin is secreted from the

pancreatic P cells directly into the portal circulation. The resulting high portal insulin levels

prime the liver for rapid metabolic transition, stimulating fuel storage (via glycogen synthesis,

lipogenesis, and lipoprotein synthesis) and suppressing pathways that supply fuel to the rest of

the body (gluconeogenesis, glycogenolysis, and very low density lipoprotein (VLDL) secretion)

(Michael et al., 2000).

Insulin signaling is initiated by the extracellular binding of insulin to insulin receptors (IRs),

transmembrane receptor tyrosine kinases (RTKs), expressed on the surface of responsive cells.

Ligand binding induces IR transphosphorylation of cytosolic tyrosine residues, which enhance

IR kinase activity and promote localization and tyrosine phosphorylation of IR substrates,
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including insulin receptor substrates (IRSs) and Shc. The IRSs serve as key scaffolds for the

binding and activation of additional signaling proteins and cascades, which orchestrate metabolic

transitions (Saltiel and Pessin, 2002).

In the context of metabolic syndrome, liver and other insulin-sensitive tissues become insulin-

resistant. Hepatic insulin resistance results in unchecked gluconeogenesis, driving

hyperinsulinemia and hyperglycemia. In metabolic syndrome, the liver tissue itself accumulates

lipid as a result of free fatty acid (FFA) flux from insulin-resistant adipose tissue and altered

hepatic lipid metabolism (Samuel et al., 2004). Accumulation of hepatic lipid (steatosis) is

associated with inflammation and compromised liver function (Coleman and Lee, 2004). While

the mechanisms of insulin resistance are the subject of intense debate, there is a consensus that

insulin resistance develops from impaired cellular signaling downstream of the IR (Taniguchi et

al., 2006).

In the context of metabolic syndrome in the liver, pathways downstream of the insulin receptor

exhibit differential insulin resistance (Shimomura et al., 2000). In genetic mouse models of

obesity and lipodystrophy, leptin deficiency led to hyperphagia and the hallmarks of T2DM:

hyperglycemia, hyperinsulinemia, and hypertriglyceridemia. Livers were enlarged with

steatosis, and there was an increase in mRNAs encoding endogenous sterol response element

binding protein-1c (SREBPlc), an insulin-responsive, transcriptional regulator of lipogenesis.

Insulin signaling also regulates FOXOl, a gluconeogenesis-promoting transcription factor,

through inhibitory phosphorylation. Intriguingly, whereas both Fox01 and SREBPlc are

regulated by insulin, livers in both models were resistant to insulin suppression of

gluconeogenesis (via FoxO 1) but responsive to insulin promotion of lipogenesis (via SREBP 1 c)

(Shimomura et al., 2000).
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This phenomenon of pathway-selective hepatic insulin resistance is also relevant to metabolic

syndrome in humans. A more recent study, using stable isotope feeding followed by liver biopsy,

found that liver lipogenesis is not sensitive to nutritional state in obese patients with NAFLD and

elevated insulin resistance (Donnelly et al., 2005). In contrast to healthy patients, whose rate of

lipogenesis cycles up and down with feeding and fasting, obese, insulin resistant patients' rate of

lipogenesis remained constant and did not decrease with fasting. Several rodent models of diet-

induced hepatic insulin resistance also demonstrate selective hepatic sensitivity to insulin

promotion of SREBP I c (Samuel et al., 2004; Shimizu et al., 2003). Orthogonal evidence for

selective insulin resistance in liver comes from studies in liver-specific, insulin-receptor-knock-

out (LIRKO) mice, which develop severe whole-body insulin resistance due to defective hepatic

insulin signaling (Michael et al., 2000). Unlike other models of obesity and insulin resistance,

SREBPlc is down-regulated in LIRKO mice relative to controls. NAFLD and

hypertriglyceridemia do not occur, because LIRKO mice have absolute inhibition of hepatic

insulin signaling (Biddinger et al., 2008).

Selective insulin resistance has implications for metabolic syndrome and T2DM therapy. "Brute

force" treatment of T2DM with large doses of insulin may effectively control blood glucose, but

high doses of insulin may also enhance hepatic lipogenesis, and thereby increase lipotoxicity and

development of NAFLD. Treatments that selectively improve insulin sensitivity in the hepatic

gluconeogenesis pathway are preferred. With such a treatment, insulin levels and hepatic

SREBPlc levels would fall, effectively curbing NAFLD development (Brown and Goldstein,

2008).

Evidence suggests that treatment targeting inhibition of hepatic protein-tyrosine phosphatase lB

(PTP1B) would not only selectively improve insulin sensitivity in the pathway leading to
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suppression of hepatic gluconeogenesis but may also selectively and independently decrease

hepatic SREBPlc expression (Delibegovic et al., 2009). Liver-specific PTP1B deletion mice (L-

PTPlb-/-) show clinically attractive metabolic phenotypes under HFD stress. In comparison to

control mice, they exhibit improved glucose homeostasis, lipid metabolism, and resistance to

HFD-induced endoplasmic reticulum (ER) stress. Importantly, L-PTPlb-/- mice have

comparable weight gain to control on HFD, suggesting that these phenotypes are the result of

altered cellular signaling and metabolism, rather than secondary effects of reduced adiposity

(Delibegovic et al., 2009).

PTP1B is most notably a negative regulator of insulin and leptin signaling, as whole-body

PTP lB-/- mice are lean, hypersensitive to insulin, and resistant to diet-induced obesity (Elchebly

et al., 1999). PTPlb is a -50kDa protein anchored to the cytoplasmic face of the endoplasmic

reticulum (ER) and is a well-established negative regulator of insulin signaling, via

dephosphorylation of tyrosine residues on IR and potentially insulin receptor substrate 1 (IRS-1),

and leptin signaling, via dephosphorylation of tyrosine residues on Janus kinase 2 (Jak2). In

addition, PTP1b regulates specific phosphotyrosine sites on proteins in other pathways (Src,

MAPK, cell adhesion and motility) (Yip et al., 2010) which may also physiologically impact

PTP1b-/- mice.

Hepatic PTP1b deletion potentiates insulin signaling, which leads to nutrient-dependent

inhibition of hepatic glucose production and whole-body improvements in glucose homeostasis

in the context of obesity. Multiple measurements indicate improved lipid metabolism in L-

PTPlb-/- mice relative to control mice. Gene expression of SREBPlc is decreased relative to

control, as is a master cholesterol biogenesis regulator, SREBP2. Physiological measurements

corroborate the gene expression data; L-PTPlb-/- mice have significantly decreased serum
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triglyceride and cholesterol, as well as decreased liver cholesterol content. In addition, at five

weeks of HFD but not at 16 weeks, L-PTPlb-/- mice have decreased hepatic steatosis

(Delibegovic et al., 2009).

The resistance to HFD-induced ER stress in L-PTP lb-/- mice is therapeutically attractive as well.

Over the last decade, ER stress, in the context of inflammation and lipotoxicity, has emerged as a

crucial component of metabolic syndrome pathogenesis (Ji and Kaplowitz, 2006; Ozcan et al.,

2004). The ER plays a central role in the cellular stress response (Zhang and Kaufman, 2008).

Pathological stress conditions, including excess lipid accumulation and abnormal intracellular

energy fluxes, disrupt ER homeostasis and lead to accumulation of misfolded proteins in the ER

lumen (Ozcan et al., 2004). ER stress sensors, embedded in the ER membrane, activate signal

transduction pathways to regain ER homeostasis. Chronic obesity-induced ER stress leads to

activation of stress kinase JNK and NFiB-dependent expression of inflammatory cytokines (i.e.,

11-1p , 11-6, and TNFa), which cause and exacerbate insulin resistance (Gregor and Hotamisligil,

2011). In fact, inhibition of hepatic NFKB or JNK is sufficient to protect mice from HFD-

induced insulin resistance (Cai et al., 2005; Nakatani et al., 2004). Hepatic PTP1b deletion

disrupts activation of all three ER stress sensors (IRE la, PERK, and ATF6)(Agouni et al., 2011;

Delibegovic et al., 2009). Thus, in terms of both whole-body and liver-specific physiology,

deleting or inhibiting hepatic PTPlb holds apparent therapeutic potential for treatment of

metabolic syndrome.

While hepatic PTPlb inhibition or deletion has been associated with positive physiological

effects, the underlying molecular mechanisms are not well understood. Reasoning that the

phenotypic effects of PTPlb deletion were likely due to altered tyrosine phosphorylation of

protein signaling networks, we coupled statistical modeling techniques with quantitative, mass-
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spectrometry (MS)-based measurement of hepatic protein tyrosine phosphorylation to determine,

in an unbiased and site-specific manner, the phosphotyrosine network drivers mediating

resistance to HFD in L-PTPlb-/- mice. These studies revealed that hepatic phosphotyrosine

networks are sensitive to both PTPlb deletion and HFD, and that the PTPlb-dependent

phosphorylation sites are significantly enriched on enzymes with diverse lipid metabolic

functions. To elucidate a role for this largely uncharacterized set of PTPlb-dependent

phosphosites in lipid metabolic control, we globally profiled hepatic lipids and found that hepatic

PTPlb deletion alters metabolism of fatty acids and triglycerides. To determine the

phosphorylation network states associated with altered lipid metabolism, multivariate statistical

models were developed. These models not only highlight the mechanistic underpinnings

connecting PTPlb deletion, altered tyrosine phosphorylation signaling and altered lipid

metabolism, but also offer quantitative predictions for selected network perturbations.

Results

Study design

L-PTPlb-/- mice were generated by crossing PTPlb-floxed (PTPlb-fl/fl) mice with mice

expressing Cre recombinase under the control of the albumin promoter (Alb-Cre), resulting in

Alb-Cre PTPlb-fl/fl mice that specifically lack hepatic PTPlb expression (Delibegovic et al.,

2009). Twenty-one L-PTPlb-/- and 28 Alb-Cre control mice were fed a normal chow (NC) diet

(14% kcal from fat) until 12 weeks of age, at which point mice were placed on either HFD (55%

kcal from fat) or continued on NC. These diets were maintained until 19.5 weeks of age (Figure

2.1A). To gauge the physiological consequences of HFD, relevant quantitative physiological

measurements, including serum markers of insulin sensitivity and lipid metabolism, were made
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at 17.5 and 18.5 weeks. As expected, both L-PTPlb-/- and control mice had elevated levels of

fed insulin, glucose, and leptin on HFD relative to NC, indicating that insulin and leptin

resistance developed during the course of the diets (Table 2.1). While L-PTPlb-/- and control

mice had similar fed glucose and insulin for a given diet, L-PTPlb-/- mice had significantly

elevated fasted glucose relative to controls on both diets and reduced fasted insulin on NC (Table

2.1).

At 19.5 weeks, mice were sacrificed and their livers flash-frozen for biochemical analysis. To

determine the molecular effects of PTPlb deletion and HFD on insulin response, liver was

harvested under either basal or insulin stimulation conditions (Figure 2.1 A). Each combination

of experimental conditions (genotype, diet, and stimulation) included 3-8 mice, thereby enabling

statistical analysis for each condition.

HFD and genotype drive global phosphotyrosine network changes

Relative quantification of protein phosphotyrosine levels across each individual liver sample was

accomplished by combining results from ten 8-plexed, phosphotyrosine-immunoprecipitation

(IP)-Immobilized Metal Affinity Chromatography (IMAC)-Liquid Chromatography (LC)-

Tandem MS (MS/MS) experiments (Figure 2.1 B) (Zhang et al., 2005). This analysis resulted in

the identification and quantification of 301 tyrosine phosphosites on 266 proteins (data available

upon request). To visualize the most important trends across the multidimensional

phosphotyrosine datasets, we applied principle component analysis (PCA). The most dominant

phosphosite trends dictate the locations of liver samples in the principle component plane, and

here the plane naturally segregates liver samples according to diet and genotype conditions for

both the insulin-stimulated and basal datasets (Figure 2.2A). This suggests that diet and

genotype are the dominant causes of phosphotyrosine network perturbations. In fact,
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individually, genotype and diet explain 21-23% and 15-17% of the phosphorylation variance.

The PCA plot demonstrates that the phosphorylation data, by itself, is sufficient to distinguish

genotype and diet among the various mice.

Correlation-based statistical analysis was used to detect and order PTPlb-dependent and diet-

dependent phosphorylation sites in heat maps (Figure 2.2B and Supplementary Figure 2.1,

respectively). Due to the intrinsic irreproducibility of data-dependent mass spectrometric

analysis (Wolf-Yadlin et al., 2007), the data set is somewhat sparse, with many of the

phosphorylation sites measured in only some of the mouse livers. However, using the

correlation-based analysis, we identified large clusters of PTPlb-dependent and diet-dependent

sites. It is important to note that alterations in the phosphorylation network reflect rewiring of

the signaling network over time, leading to increased phosphorylation on some sites and

decreased phosphorylation on others in response to chronic hepatic PTP1b deletion.

PTP1b-dependent phosphosites are enriched for insulin signaling, REDOX, and lipid

metabolic pathways

We adapted a gene set enrichment analysis framework (Subramanian et al., 2005) for analysis of

our quantitative protein phosphorylation data (Chapter 3) and identified several protein pathways

that were enriched for PTPlb-dependent phosphotyrosine regulation. In total, we tested for

PTPlb-dependence in 59 hand-curated phosphosite sets, composed of protein pathway

annotations from Kegg, cellular locations from GO, protein structural information (PFAM and

SwissPro), a curated list of PTP1b substrates (Ren et al., 2011), as well as a set of insulin-

sensitive phosphorylation sites from a previous study (Schmelzle et al., 2006). In this analysis,

the direction of PTP lb-dependence was taken into account, as we searched for phosphosite sets

that showed a concordant increase or decrease in phosphorylation upon PTP1b deletion. Seven
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phosphosite sets show significant PTPlb-dependent tyrosine phosphorylation (FDR<0.01, Table

2.2). Consistent with its role in regulating insulin sensitivity, phosphosites involved in insulin

signaling have increased phosphorylation upon PTPlb deletion; these include sites on the

receptor (IR), receptor substrates (IRS 1, IRS2, Shc), and several other canonical insulin signaling

proteins (P13K, Erkl, Erk2, and others). Enrichment of PTPlb-dependent phosphosites on

proteins localized to the ER and cytosol is in agreement with the cellular localization of PTPlb

to the cytoplasmic face of the ER, providing further confirmation that this approach identifies

relevant connections among the PTP lb-dependent sites.

In our analysis we detected and quantified phosphorylation of eleven of the 18 PTPlb substrate

proteins and seven of the 25 PTPlb-substrate phosphosites verified in (Ren et al., 2011). These

sets of phosphorylation sites were tested for PTP lb-dependence, but neither set was significantly

enriched among PTPlb-dependent phosphosites. The lack of PTPlb-dependent phosphorylation

on some PTPlb substrates suggests compensatory modes of regulation (e.g. through other PTPs

and kinases) and that the PTPlb-dependent phenotypes are due to phosphorylation changes on

additional proteins and pathways. This complexity makes it challenging to identify direct

substrates of PTPlb, but the network-level phosphosite measurements provide direct insight into

the particular proteins and pathways that are modulated by chronic PTPlb deletion or HFD in

vivo.

Our unbiased, network-level approach identified several novel sets of PTPlb-dependent

phosphosites, including those on proteins involved in metabolic processes, oxidation-reduction

(REDOX) and lipid metabolism. Given that beneficial lipid metabolic changes had been

previously reported in L-PTPlb-/- mice on HFD (Delibegovic et al., 2009), we were particularly

interested in the enrichment for PTPlb-dependent phosphosites on lipid metabolic proteins
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(highlighted in Figure 2.2B). These proteins span a diverse set of lipid pathways, including fatty

acid metabolism and transport (acyl-coA binding protein (ACBP), Fatty Acid Synthase (FAS),

ATP citrate lyase (ACLY), cytochrome b5 (CYB5A), and cytochrome P450 2el (CYP2El)),

triglyceride synthesis, storage and transport (long-chain fatty acid-CoA ligase 5 (ACSL5), high-

density-lipoprotein binding protein (vigilin)) and phospholipid metabolism and transport

(peroxiredoxin 6 (PRDX6), staphylococcal nuclease and tudor domain containing 1 (SND1) , S-

adenosyl homocysteine hydrolase (SAHH)). Independently, phosphosites limited to proteins

involved in fatty acid metabolism only are also significantly PTPlb-dependent (FDR<0.05),

highlighting potential PTPlb-dependent regulation of fatty acids in particular. Some of these

phosphorylation sites have been identified in previous large-scale studies, but their functions

have not been characterized. Determining the role of PTPlb deletion in lipid and fatty-acid

metabolism will require functional analysis of these phosphorylation sites.

The enrichment of PTP lb-dependent phosphosites on proteins involved in REDOX is intriguing

as well, given that oxidative stress plays an important role in obesity-induced inflammation and

ER stress (Zhang and Kaufman, 2008). These phosphorylation sites are on proteins typically

thought of as metabolic enzymes rather than signaling molecules (e.g., 4-hydroxyphenylpyruvic

acid dioxygenase (HPD) Y221, aldehyde dehydrogenase la7 (ALDH1A7) Y484), and the

functions of these sites as well as the contributions of these proteins to inflammation and ER

stress are largely uncharacterized. Although numerous and diverse metabolic enzymes are

expressed in liver tissue, enrichment for metabolic proteins among PTPlb-dependent

phosphosites was unexpected. In addition to REDOX and lipid metabolic proteins, other

metabolic processes that show PTPlb-dependent phosphorylation (FDR < .05) include arginine

and proline metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis. The roles
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that perturbation of PTP1b plays in these pathways, as well as the functions of these

phosphosites, are unexplored. However, recent work demonstrates that site-specific tyrosine

phosphorylation of other metabolic enzymes critically modulates enzyme activity, affecting

metabolism, REDOX environment, and growth at the cellular level (Fan et al., 2011; Hitosugi et

al., 2009).

In contrast to PTP lb-dependent sites, phosphosite set enrichment analysis of diet-dependent sites

yielded only enrichment for mitochondrial proteins (FDR < .01, Table 2.3, highlighted in

Supplementary Figure 2.1) (note that the lack of detection reflects MS experimental design rather

than a lack of pathway-specific HFD-mediated phosphotyrosine changes (discussed in

Methods)). Tyrosine phosphorylation of mitochondrial proteins has been implicated in the

context of cancer, as oncogenic RTKs and Src family kinases have been shown to translocate to

the mitochondria and directly phosphorylate and modulate mitochondrial metabolic enzymes

(Feng et al., 2010; Hitosugi et al., 2011). Interestingly, here we have determined that HFD also

increases tyrosine phosphorylation on mitochondrial proteins, revealing a potential link between

cancer and obesity. Further investigation of these phosphorylation sites might reveal

mechanisms by which obesity promotes cancer metabolism.

PTP1b-deficient livers have an overabundance of free PUFA

Although lipid and fatty acid metabolic pathways show significant PTPlb-dependent

phosphotyrosine regulation, the effects of these phosphorylation events have not been

characterized. To gain insight into the potential roles of these sites and determine whether

altered phosphorylation impacts hepatic lipid composition, we performed quantitative lipidomic

analyses of the liver samples. Given the diversity of lipid metabolic proteins with PTP1b-

dependent phosphorylation, we applied a global LC-MS-based lipidomics strategy that enables
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de novo discovery of differentially abundant lipids among samples (Figure 2.3) (Homan et al.,

2011). Through this approach, we were able to monitor quantitative changes in lipids between

L-PTPlb-/- and control mice. On HFD, the most significant PTP1b-dependent lipid metabolic

changes involved sets of polyunsaturated fatty acids (PUFA) in the free-fatty-acid (free-FA)

pool. To examine these changes more closely, a calibration curve, composed of isotopically

labeled FA standards, was used to more accurately quantify FAs detectable by our method (28

structural isomers, ranging from C16 to C24 acyl-chain lengths and spanning four orders of

magnitude in abundance (Table 2.4)). Interestingly, PTPlb deletion altered the FA pool

composition rather than pool size, as total FAs were similar between L-PTPlb-/- and control

(Table 2.4). To visualize these results, we plotted each FA on a volcano plot as a function of

compositional fold-change (L-PTPlb-/- relative to control) and corresponding statistical

significance (Figure 2.4A). Many of the unsaturated FAs had ion chromatogram elution profiles

with multiple peaks (Figure 2.3B and Supplementary Figure 2.2); each peak corresponds to a

particular isomer whose elution time is dependent on the position of the final (o) double bond in

the acyl chain. Double bond location is a critical determinant of physiological function. For

example, C20:3 o6 is the anti-inflammatory lipid dihomo-y-linolenic acid, while C20:3 o3 is a

precursor of the anti-lipogenic PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA). The potential physiological roles of C20:3 o7 and o9, on the other hand, are less-well

studied. As can be seen in the upper-right-hand corner of Figure 2.4A, several PUFAs were

significantly increased in the L-PTPlb-/- livers relative to control, including C18:3, C20:3,

C22:3. Particular isomer peaks for each of these PUFAs were PTP1b-dependent, and thus

determination of double bond location was necessary to understand the physiological

implications of these changes.
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To determine the identities of the PTPlb-dependent C18:3, C20:3 and C22:3 isomer peaks, co-

injection of commercially available isomer standards was performed (Supplementary Figure 2.2

and Methods). Because standards were not available for confirmation of all assignments,

uncertainty in o-bond assignment is denoted with an asterisk. The most significantly PTP1b-

dependent PUFA (C18:3, C20:3, and C22:3) species were determined to be o9 or a combination

of o9 and o7 species and, in addition to total C20:2 (for reasons described below), are referred to

as "oi7+o9 PTP1b PUFA" (denoted in red, Figure 2.4A). The other PTPlb-dependent PUFA

species (C24:6, C24:5, C24:4, C20:3, C22:3, colored in green in Figure 2.4A) were determined

to be o3 and/or o6 and are subsequently referred to as "o3+o6 PTPlb PUFA". Although the

physiological roles of these isomers are not well-characterized, increasing levels of selected

o3+zo6 or o7+o9 PUFAs in the L-PTPlb-/- mice might have pleiotropic effects, as discussed

below.

To gain insight into the unknown physiological functions of the PTPlb-dependent PUFA

isomers, correlation-based clustering was applied to the percent fatty acid compositions of HFD

and NC livers. PTPlb-dependent PUFA clustered with several better-characterized PUFAs

(Figure 2.4B). All o3+o6 PTPlb PUFA, including the poorly characterized C24 PUFA series,

coherently cluster with o3 and o6 PUFAs whose physiological effects have been characterized,

including anti-lipogenic/anti-inflammatory DHA (C22:6 o3) and EPA (C20:5 o3), for which the

o3 PTP lb-dependent PUFAs (C18:3, C20:3, and C24:6) would all be precursors. As might be

expected, this cluster of PUFAs, several of which are associated with physiological benefit, is

significantly depleted in the HFD mouse livers relative to NC (Table 2.4).The high level of

correlation between the fatty acids in this cluster suggests a positive metabolic function for the

03+o6 PTPIb PUFAs.
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In contrast, the C20:3 o9/o7* isomers are barely detectable under NC conditions, while C 18:3

o7* and C22:3 o9*/o7* isomers are not detected at all (Table 2.4), suggesting that these species

are byproducts of HFD metabolism. C20:3 o9/o7* clusters with C20:2 and monounsaturated

fatty acids (MUFAs): C16:1 o7, C18:1 o9 and C20:1 (Figure 2.4B). Given that o7/o9 MUFA

are products of the A9 desaturase, stearoyl-CoA desaturase (SCD), we quantified the SCD Index,

which is often used as a surrogate for SCD activity (Stefan et al., 2008). The C18 SCD Index, a

ratio of SCD's major product (oleic acid) to substrate (stearic acid), was quantified for each

mouse under both basal and insulin-stimulation conditions. In agreement with the increased

abundance of the (o7/ o9 PTPlb PUFAs, the SCD Index is elevated in both NC and HFD L-

PTPlb-/- mice relative to control under basal conditions (Figure 2.4C). However, the trend

changes upon insulin stimulation. Although insulin stimulation does not appear to affect the

SCD index for control mice, the SCD index of the PTPlb-deletion livers is dramatically reduced

upon insulin stimulation (P < .05, combined p-value for insulin-dependence in HFD and NC L-

PTPlb-/- livers). This result was initially surprising, as insulin should promote lipogenesis and

SCD activity, and PTPlb deletion enhances insulin sensitivity. However, the dose of insulin-

stimulation was hypoglycemia-inducing (lOmU/g, 10min.). Given that the L-PTPlb-/- livers

are more sensitive to insulin, it is likely that they became hypoglycemic more quickly, leading to

rapid suppression of SCD activity via hypoglycemic stress response. In support of insulin-

induced hypoglycemic stress, the ratio of pT 172 AMPK to total AMPK is dramatically elevated

in the insulin-stimulated livers (Figure 2.4D). Thus L-PTPlb-/- mice might have increased

hepatic SCD activity under physiological conditions.

53



PTP1b-deficient livers have altered triglyceride metabolism on HFD

MS-based lipidomics analysis revealed that L-PTPlb-/- mice have an approximately 2-fold

increase in total hepatic triglycerides relative to control mice following HFD (Figure 2.5A). This

trend was initially uncovered in a preliminary MS-lipidomics analysis of a subset of thirteen

HFD liver tissue samples, verified in quantitative MS-lipidomics analyses (with triglyceride

standard) and further validated with a more conventional, enzymatic assay, which correlated well

with MS results (p = .96). These results were unexpected, given that we previously found a

decrease in L-PTP lb-/- hepatic triglycerides on HFD at an early time point (8 weeks of age) and

no difference at 21 weeks, a time point more similar to this study (19.5 weeks)(Delibegovic et

al., 2009). Given this discrepancy and to verify that the trends were accurate, the quantification

of liver triglycerides was extended to include all HFD liver tissues in the study (12 L-PTP lb-/-,

15 control) as well as a second cohort of HFD mice (4 L-PTPlb-/-, 4 control). These additional

samples confirmed that hepatic triglycerides were elevated in L-PTP lb-/- mice (combined data

shown in Figure 2.5A). These data are even more striking when liver triglyceride content is

plotted as a function of mouse weight. For weight-matched pairs of mice, L-PTPlb-/- mice have

dramatically more hepatic triglyceride content (Figure 2.5B) with surprisingly little correlation

between total hepatic triglycerides and serum triglycerides measurements (Figure 2.5C). This

disparity between hepatic and serum triglycerides is consistent with the later time point in the

previous study (Delibegovic et al., 2009), where L-PTPlb-/- mice had significantly lower serum

triglycerides but similar hepatic triglycerides relative to control. Across studies, the lack of

correlation between hepatic and serum triglycerides suggests a PTPlb-dependent defect in

hepatic triglyceride secretion that increases with age. Because liver steatosis is often implicated

in compromised liver function and inflammation, we measured molecular markers of
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inflammation: IL-6 and IL-lb, the marker of macrophage infiltration MCP-1, and

phosphorylation of the stress kinase p38 (Supplementary Figure 2.3). Despite elevated steatosis,

we did not detect increased inflammation in the L-PTPlb-/- mice, which is consistent with the

muted ER stress and inflammation responses observed in these mice previously (Agouni et al.,

2011; Delibegovic et al., 2009).

In addition to total triglycerides, MS analysis provided quantification for 28 triglyceride

structural isomers (Table 2.5). Each structural isomer is characterized by the sum of carbons and

double bonds in the acyl chains. Detected triglycerides ranged from 48 to 56 total acyl carbon

length and contained a total of one to ten desaturations. Statistically significant PTPlb-

dependent changes in triglyceride composition were visualized in a volcano plot (Figure 2.5D).

As a fraction of the total pool, triglycerides with many sites of desaturation, or "PUFA-rich"

triglycerides, are specifically reduced in L-PTP lb-/- livers relative to control. In fact, the number

of double bonds in the triglycerides correlates with the compositional depletion of that

triglyceride in the L-PTPlb-/- livers (P<10-5).

Longer chain, PUFA-rich triglycerides constitute a larger percentage of triglyceride composition

in NC relative to HFD mice, regardless of PTPlb deletion. As highlighted by the heatmap of

clustered triglyceride compositions (Figure 2.5E), the distinction between NC abundance and

HFD depletion of these metabolites is much more pronounced than the compositional difference

between HFD L-PTPlb-/- and control. On HFD, esterification of diet-derived FAs into

triglycerides may limit cytotoxic effects. The resulting build-up of shorter-chain triglycerides

with fewer sites of desaturation would explain the lower fraction of longer-chain-PUFA-rich

triglycerides in HFD versus NC mice.
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While the physiological significance of the L-PTP lb-/- liver triglyceride compositions on HFD is

unknown, serum depletion of PUFA-rich triglyceride species is positively predictive of T2DM

development in humans (Rhee et al., 2011). To determine whether the compositional depletion

of PUFA-rich triglycerides in the L-PTPlb livers was associated with similar serum

compositional changes, we assayed serum triglycerides by MS (Table 2.6, Supplementary Figure

2.4) and detected a parallel compositional depletion in PUFA-rich triglycerides (P<10-",

correlation between triglyceride double bond number and depletion in L-PTP lb-/- mice).

Although total liver and serum triglyceride measurements suggest a triglyceride secretion defect,

the alteration in triglyceride compositions (depletion of PUFA-rich and elevation of MUFA-rich

triglycerides) suggests that elevated hepatic lipogenesis might also contribute to liver steatosis in

the L-PTPlb-/- mice on HFD. For this reason, we measured the ratio of pS79 acetyl-CoA

carboxylates (ACC) to total ACC, a marker of lipogenesis inhibition (Supplementary Figure 2.5).

Although total pS79 ACC was significantly increased in L-PTPlb-/-, the ratio of pS79 ACC to

ACC was not significantly elevated. This result is consistent with hepatic lipogenic mRNA

expression measurements in the previous study (Delibegovic et al., 2009). Thus, the

compositional triglyceride changes in L-PTPlb-/- mice might reflect an increased capacity to

store diet-derived FAs as neutral triglycerides. Altered acyl chain compositions in other complex

lipid classes were not detected.

Modeling the relationships between protein phosphorylation and lipid metabolites

To gain insight into the phosphorylation sites that might potentiate PTPlb-dependent

phenotypes, computational models of the phosphorylation and lipidomic datasets were

constructed. Given the size of our study and the biologically uncharacterized nature of the

measurements in the phosphotyrosine and lipidomics datasets, we built multivariate regression
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models that leverage mouse-specific variation and are predictive of the novel PTP lb-dependent

phenotypes. We specifically selected multivariate regression, because it is capable of

predictively modeling phenotypes as the result of multiple underlying factors, and, in this way,

comes closer to capturing the complex, multifactorial nature of biological systems.

As PTPlb-dependent phosphotyrosine network alterations were likely drivers of the observed

lipid metabolic changes, our model-building efforts focused on predicting lipid metabolic

phenotypes as functions of the 228 tyrosine phosphorylation site measurements in the HFD basal

dataset. Final, independent models of steatosis, o7+o9 PTPlb PUFA, and the o3+o6 PTPlb

PUFA were built on reduced sets of molecular determinants (ten or fewer). Model cross-

validation indicated that these models had good predictive power (Q2 = .54, .66, .52,

respectively) (Figure 2.6B). In Figure 2.6A, the reduced sets of molecular determinants for

models are displayed graphically for each phenotype.

The o7/o9 PUFA clusters and io3/o6 PUFA clusters have several predictive phosphorylation

sites in common. These lipids have significant overlap in biosynthetic and metabolic pathways;

thus, common sites are likely to contribute to processes governing both sets of lipids. CYP2E1

Y426, ACLY Y672, enolase 1 (ENO1) Y25, glutamine synthase (GLUL) Y336, and keratin 8

(K8) Y210 strongly contribute to both models. Although all of these sites have unknown

function, we have attempted to infer functionality from the characterized role of the protein. For

instance, CYP2E1 has stereospecific hydroxylase and epoxidase activity for PUFAs. CYP2E1

Y426 is hyperphoshorylated when PTPlb is deleted, and, were this site inhibitory, decreased

CYP2E1 PUFA metabolism might contribute to the increased levels of both o3/o6 and o7/o9

PUFA. ACLY converts cytosolic citrate to acetyl-CoA and represents a potential control point

in lipid metabolism. ACLY protein and activity were elevated in livers of db/db mice, and

57



shRNA depletion of ACLY dramatically improved steatosis through repression of PPARy and

many other lipogenic genes (Wang et al., 2009). Given that the expression of lipogenic genes

was decreased in two previous studies of L-PTP1b-/- mice (Agouni et al., 2011; Delibegovic et

al., 2009) and that ACLY pY782 is hyperphosphorylated in these livers, this site could be

inhibitory. However, ACLY can directly affect the levels of acetyl-CoA and protein acetylation

(Wellen et al., 2009), and therefore we cannot rule out a pleiotropic effect, where altered

acetylation of multiple lipid metabolic enzymes might influence both 03/o6 and o7/o)9 PUFA.

Additional phoshorylation sites in the io7/o9 PUFA model are implicated in lipid metabolism.

For example, CYB5 is an electron-transporting heme protein of the ER that co-localizes with A5,

A6, and A9 desaturases (Koltun et al., 2009; Schenkman and Jansson, 2003). These enzymes, in

coordination with elongases, are required for the biosynthesis of long-chain PUFA (Guillou et

al., 2004; Guillou et al., 2010). CYB5 is necessary for SCD function and it promotes A6

(FADS2) desaturase activity (Guillou et al., 2004). Because both SCD index and Cyb5 Y 11

phosphorylation are elevated in L-PTP lb-/- livers, increased phosphorylation of Cyb5 Y 11 may

potentiate SCD activity. At this point, we cannot distinguish between direct effects on enzymatic

activity of CYB5 versus altered protein-protein interactions regulating the activity of the

desaturase complexes. Additionally, CYB5 contributes to fatty acid metabolism via interaction

with cytochrome P450s, including CYP2E1, described above. It is possible that the altered

phosphorylation of CYB5 Y1 1 modifies multiple aspects of lipid metabolism simultaneously.

As points of comparison, models of steatosis as functions of metabolites were also built. Two

models were built for steatosis as a function of (1) percent fatty acid composition and (2) percent

triglyceride composition (Q2 = .37, .82, respectively). The predictors from the fatty acid model

of steatosis are not limited to one class of fatty acids (i.e., o7/o9 or 03/o6), which suggests that
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both classes of molecules are important for prediction. The steatosis model as a function of

triglyceride composition actually has the greatest predictive power relative to the other models.

The most predictive triglycerides were the most long-chain and desaturated PUFA-rich structural

isomers detected: C56:9, C56:8, and C54:7. This supports a connection between PTPlb-

dependent steatosis and depletion of long-chain PUFA triglycerides (Figure 2.6).

Although the multivariate models of o7/o9 PUFA, c3/o6 PUFA, and steatosis were built on a

reduced subset of most predictive phosphorylation sites, all phosphorylation sites were ranked

according to predictive power in the model-building process. To globally discover protein

pathways whose tyrosine phosphorylation patterns were predictive of phenotypes, we applied

phosphosite enrichment analysis to these ranked lists of phosphosites (Tables 2.7-2.9). From this

analysis, REDOX proteins were significantly enriched at an FDR of .01 for all three models.

The balance of oxidation and reduction is a pivotal driver of metabolic state; desaturation of fatty

acids and CYP2El oxidation of PUFA, for example, depend on conversion of NADH to NAD+.

Oxidation also modulates liver triglyceride secretion and hepatic steatosis (Pan et al., 2004).

Therefore, net changes in oxidation and reduction mediated by tyrosine phosphorylation of

REDOX enzymes could play a significant role in lipid metabolism.

Discussion

PTPlb inhibition continues to be a focus of drug development efforts to therapeutically manage

obesity-related diseases, and an anti-sense oligonucleotide inhibitor of PTPlb has advanced to

phase II clinical trials (Haque et al., 2011). In this study, for the first time, the effect of PTPlb

inhibition on liver tissue has been characterized at the molecular network level in a broad and

unbiased manner. Using MS-based technology, we profiled changes in protein tyrosine
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phosphorylation in vivo, across 50 mouse livers under different conditions of diet and genotype.

The scale of this study was crucial to developing the statistical power required to gain confidence

in phosphorylation trends uncovered, detect PTPlb-dependent pathways, and to construct

multivariate models of lipid metabolic phenotypes as functions of the underlying molecular

network.

Our results establish new roles for PTPlb deletion in modulating hepatic lipid metabolism.

Multiple phosphorylation sites on proteins involved in lipid metabolism were found to be

significantly affected by PTPlb deletion, and comprehensive lipidomics analysis demonstrated

that L-PTPlb-/- mice have several metabolic abnormalities. For instance, although total levels

of fatty acids are similar between L-PTPlb-/- and control mice on HFD, L-PTPlb-/- have an

overabundance of longer-chain PUFAs, including o7/o9 PUFAs and select o3/o6 species.

Unfortunately, the physiological roles of most of the PTPlb-dependent PUFAs are not well

characterized. However, when HFD and NC fatty acid measurements are clustered, PTPlb-

dependent 3/ o6 species cluster with DHA and EPA, suggesting anti-lipogenic and/or anti-

inflammatory roles for these species.

Multivariate regression models suggest multiple mechanisms by which altered tyrosine

phosphorylation levels might lead to altered PUFA profiles in the L-PTPlb-/- mice (Figures

2.6A and 2.7). Foremost is the hypothesis that PTPlb deletion leads to a general increase in

desaturase activity, potentially via CYB5 Y11 and interaction with the FADS1, FADS2 and

SCD. As discussed, SCD is dependent on CYB5 for its activity, and, indeed, the L-PTPlb-/-

have elevated C18 SCD indices under NC and HFD basal conditions. Given the role of SCD in

triglyceride synthesis (Man et al., 2006), an increase in SCD activity could also contribute to the

compositional build-up of MUFA-rich triglycerides in L-PTPlb-/- mice. Elevated SCD activity
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would also limit the cytoxicity of diet-derived saturated fatty acids (SFAs), as MUFAs are

typically less toxic than SFAs and triglycerides are inert (Coleman and Lee, 2004; Liu et al.,

2011) (Figure 2.7). Other PTPlb-dependent phosphosites might contribute to an excess of

PUFA via defects in pathways leading to complex lipid formation. ACBP, which binds acyl-

CoA esters (C14-C22) with high specificity and affinity (Kd<.05nM)(Oikari et al., 2008), is

hyperphosphorylated on pY29 upon PTPlb deletion (Figure 2.1B). The crystal structure for

ACBP is available, and Y29 stabilizes the 3' ribose phosphate of the acly-CoA (Taskinen et al.,

2007). Phosphorylation of Y29 would electrostatically repel the 3' ribose phosphate, potentially

destabilizing the binding of acyl-CoAs to pY29-ACBP. If pY29-ACBP has compromised acyl-

CoA binding, free PUFA in PTPlb-deletion livers might abound because (1) transport of acyl-

CoAs to cellular sites of complex lipid synthesis is impaired and (2) untransported acyl-CoAs

would cause a build-up of PUFA due to an inhibition of their activation to acyl-CoAs by long-

chain acyl-CoA synthetases. This mechanism would also be consistent with the compositional

depletion of long-chain PUFA-rich triglycerides in L-PTPlb-/- livers. PTPlb-dependent

phoshorylation of PRDX6 (Y89), a bifunctional protein with glutathione peroxidase and

phospholipase A2 activities (Manevich et al., 2007), was also detected. A pY89-dependent

increase in phospholipase activity could also contribute to the PTPlb-dependent PUFA

accumulation. Given the diverse roles of proteins with altered tyrosine phosphorylation, it is

likely that altered PUFA composition in the L-PTPlb-/- livers is due to multiple mechanisms,

including an increase in desaturase activity (CYB5 Yl 1), decreased PUFA metabolism (CYP2E1

Y426, discussed in results), increased lipase activity (PRDX6 Y89) and modulation of pathways

leading to complex lipid synthesis (ACBP Y29, ACSL5 Y69 and/or SND1 Y908) (Figure 2.7).
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L-PTPlb -/- livers are ~2-fold more steatotic than controls on HFD. Elevation of liver

triglycerides did not correlate with markers of lipogenesis or inflammation, suggesting that the

steatosis was not associated with compromised liver function. Comparison of total liver and

serum triglycerides in L-PTPlb-/- mice indicates defective triglyceride secretion, which could

contribute to steatosis (Figure 2.5C). In addition, MS-based analysis of serum and liver

triglyceride compositions in conjunction with measurement of lipogenic markers (Figure 2.5D,

Supplementary Figures 2.3, 2.4) suggests that increased formation of "MUFA-rich triglycerides"

from diet-derived FAs may also promote hepatic steatosis (discussed in Results). This could

potentially be mediated by increased SCD activity and funneling of MUFA products to DGAT2,

as DGAT2 targets triglycerides to cytosolic storage rather than VLDL secretion (Yamazaki et al.,

2005).

Elevated PUFAs could contribute to defective triglyceride secretion in L-PTPlb-/- mice. o3

PUFA not only decrease hepatic triglyceride output via suppression of lipogenesis but also

independently inhibit triglyceride secretion (Ginsberg and Fisher, 2009). DHA inhibition of

triglyceride secretion was shown to be mediated by peroxidation of lipids followed by the

degradation of apolipoprotein B (apoB), the central component of VLDL particles, which was

specifically sensitive to the PUFA-mediated oxidative damage (Pan et al., 2004). In this same

study, several other dietary PUFAs, including linoleic acid (C18:3 o3) and arachidonic acid

(C20:4 o6), were shown to promote apoB degradation via peroxidation. Lipid peroxide

formation was positively correlated with polyunsaturation of fatty acids, independent of the

double bond position. In the current study, we suspect that PTPlb-dependent increase in PUFA

might inhibit VLDL secretion by lipid peroxidation and oxidative degradation of ApoB,
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potentially through altered activity of CYP2E1 and other proteins whose phosphorylation

patterns were predictive in the steatosis model (Figure 2.7, Table 9).

Our study also demonstrates the utility of computational approaches to gain biological insight

from complex multivariate datasets. First, we adapted gene set enrichment analysis for the

discovery of PTPlb-dependent pathways from the phosphotyrosine measurements. Using this

approach, we recovered known PTPlb-dependent pathways (insulin signaling) and discovered

novel PTPlb-dependent pathways: redox homeostasis, amino acid metabolism, and lipid

metabolism (particular fatty acid metabolism). In addition, we developed multivariate regression

models that predict lipid metabolic phenotypes as functions of underlying tyrosine

phosphorylation sites, providing biological insight in a quantitative and unbiased way.

Although our discussion has mainly focused on PTPlb-dependent phosphorylation of proteins

involved in lipid metabolism, PTP lb-dependent phosphosites are present on a much larger set of

proteins. There is much to be learned about the roles that these phosphorylation sites might play

in the context of metabolic syndrome. It is our hope that this study will stimulate further

research of the diverse pathways and surprising phenotypes modulated by PTPIb inhibition.

Methods

Animal studies

PTPIb-liver-specific-deletion mice were generated by crossing PTPIb-floxed (PTPlb-fl/fl) mice

with mice expressing Cre recombinase under the control of the albumin promoter (Alb-Cre),

resulting in Alb-Cre PTPlb-fl/fl mice that specifically lack hepatic PTPlb expression

(Delibegovic et al., 2009). Albe-Cre mice were used as controls. Genotyping for the PTPlb

floxed allele and the presence of Cre was performed by PCR. Hepatic PTP lb protein expression
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was accessed at the end of the study, by quantitative immunoblotting (PTP1b antibody AF13661,

R&D Systems). Mice were maintained on a 12-hour light/dark cycle in a temperature-controlled

barrier facility with water and food freely accessible. All mice were maintained on a normal

chow (NC) diet (Prolab Isopro RMH 3000, 15% calories from fat) until twelve weeks of age, at

which point mice either continued on NC or were placed on high fat diet (Teklad TD.93075,

55% calories from fat). Mouse procedures were performed in accordance with the guidelines

and approval of the Institutional Animal Care and Use Committee at the University of

Massachusetts Medical School and the Ontario Cancer Institute.

Serum measurements

At 5.5 and 6.5 weeks of NC or HFD, fed and fasted serum samples, respectively, were collected

from the tail veins of mice. Adiponectin, glucagon, cholesterol (total, HDL, and LDL) were

measured in the fasting serum samples. Insulin and glucose were measured in both fasted and

fed serum samples. Serum hormones (insulin, glucagon, leptin, adiponectin) were measured

using reageants purchased from Millipore and run on a Bio-Plex 200 System; hormone levels

were determined by a logistic 5pl standard curve fit. Lipid analysis was performed on a Roche

Cobas cl 11 chemistry analyzer. Glucose was measured using an Analox glucometer.

Phosphotyrosine analysis

Harvesting of liver tissue. At 19.5 weeks of age, mice were fasted overnight and their tissues

harvested. Based on preliminary optimization of insulin stimulation conditions, 1 OmU/g insulin

(Novo Nordisk Novolin R) was i.p.-injected 1 0min. prior to tissue harvesting. All mice received

i.p.-injection of 150mg/kg pentobarbital sodium (Nembutal Lundbeck, Inc) 2min. prior to tissue

harvesting. While mice were unconscious, the abdominal cavity was opened and livers were

64



snap-frozen and extracted using liquid-nitrogen-chilled freeze clamps. Tissues were stored for

subsequent biochemical analyses at <-70C.

Peptide sample processing. In a 4C room, aliquots of frozen liver tissues, at an estimated mass

~100mg, were placed in 5mL round-bottom polypropylene tubes containing 3mL ice-cold 8M

urea and immediately homogenized using a Polytron homogenizer. Protein concentration was

estimated by bicinchoninic acid (BCA) assay (Pierce). Sample proteins were reduced (1hr,

10mM, DTT, RT), alkylated (lhr, 55mM iodacetamide, 56C), and digested (1:50 protein to

modified trypsin (Promega) ratio, in ammonium acetate buffer pH 8.9 added to original tissue

lysate such that urea concentration in final solution was reduced to 800mM; reaction ran on a

rotor for 20 hrs. at RT and was stopped by addition of lmL acetic acid (99.99%)). The digests

were centrifuged, and supernatants were desalted and fractionated on C18 Sep-Pak Plus

cartridges (Waters). Peptides that eluted with 25% acetonitrile in .1% acetic acid were

lyophilized. Peptide sample aliquots (corresponding to 800ug of starting protein) were labeled

with 8-plex iTRAQ (2 aliquots of label per peptide sample). Sets of eight distinctly labeled

peptide samples were combined. For both insulin-stimulated and basal conditions, one liver

sample was selected as a control and included in all insulin-stimulated or basal experiments to

enable quantification across experiments.

Enrichment of phosphotyrosine peptides. A phosphotyrosine peptide IP was performed, as

described in (Zhang et al., 2005), with slight modification to the anti-phosphotyrosine antibodies

used. Here, antibodies included 12ug 4G10 (Millipore), 12ug PY100 (CST), and 12ug PT66

(Sigma), with 60uL protein G agarose beads (Calbiochem). Peptides were eluted from the

antibodies with 70uL 100mM glycine, pH 2.1. To address non-specific binding from the

phosphotyrosine peptide IP, an immobilized metal affinity chromatography step (IMAC) was

65



used for further enrichment of phosphopeptides (Zhang et al., 2005). Phosphopeptides were

eluted from the IMAC column to a capillary precolumn.

LC-MS/MS. The capillary precolumn (1 00um i.d., packed with 10cm of ODS-A, 12nm, S-I Oum

beads (YMC)) was connected to a capillary analytical column (50um i.d., packed with 10cm of

ODS-AQ, 12nm, S-5 ptm beads (YMC), with a laser-pulled (Model P-200; Sutter Instrument)

electrospray ionization emitter tip (<lum diameter)) (Martin et al., 2000). Peptides were eluted

(flow rate ~ 20nL/min) from the liquid chromatography column to an LTQ Orbitrap XL mass

spectrometer (Thermo Fisher Scientific) with the following gradient: Omin: 0% B; 10min: 13%

B; 105min: 42% B; 115min: 60% B; 122min: 100% B (solvent A = .2 mM acetic acid and

solvent B = 70% acetonitrile, 2mM acetic acid). Data were collected using a data-dependent

acquisition mode: a high resolution MS 1 scan on the Orbitrap was followed by up to 10 pairs of

data-dependent MS/MS scans of the most abundant MS1 precursor ions. Each MS/MS pair

consisted of one MS/MS scan on the LTQ (isolation width 3m/z, CID fragmentation, 35%

collision energy) and a second MS/MS scan on the Orbitrap (isolation width 3m/z, HCD

fragmentation, 75% collision energy). The Orbitrap MS/MS provided high-resolution iTRAQ

quantification, while the LTQ MS/MS scan provided better sequence information. Dynamic

exclusion for the data-dependent scans was set to 120sec.

MS Data processing. Xcaliber (.raw) data files were converted to MASCOT generic format

(.mgf) with DTASuperCharge (version 1.19) and searched with MASCOT v2.1 (Matrix Science)

against the National Center for Biotechnology Information (NCBI) mouse proteome with peptide

tolerance of 10ppm, MS/MS tolerance of .8 Dalton, 1 missed cleavage, fixed modifications

(methyl-cysteine and 8-plex iTRAQ), and variable modifications (methionine oxidation, tyrosine

phosphorylation, and serine/threonine phosphorylation). Mascot peptide identifications,
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phosphorylation site assignments and quantification were verified manually. Phosphorylation

site assignments were made using PTMScout (Naegle et al., 2010).

Relative quantification ofphoshotyrosinepeptides. Given the high resolution of the Orbitrap, the

peak heights of iTRAQ reporter ions were used to quantify the relative amounts of

phosphopeptides across an 8-plex experiment. Peak heights in a spectrum were normalized to

mean iTRAQ peak intensity. If multiple, validated spectra existed for the same phosphosite,

these spectra were averaged. For normalization of phosphorylation measurements, 1/500th of the

supernatant from the phosphotyrosine-peptide IP was also analyzed by LC-MS/MS. This

provided quantitative information for the most abundant (unphosphorylated) peptides in the

sample, which were assumed, on average, to be constant across all samples (with the exception

of blood proteins like hemoglobin and blood serum albumin, which were excluded from the

analysis). The supernatant iTRAQ peak heights were normalized relative to the mean iTRAQ

peak height for each spectrum, resulting in -1000, 8-dimensional peptide ratios. The median of

the 90% least-outlying peptide ratios (outlying by multivariate T2 statistic) was used as a

normalization factor for the phosphopeptide quantitation. After relative quantification was

achieved within each individual phosphotyrosine analysis, relative quantification across analyses

was accomplished by normalizing each individual analysis to the control livers. Associated error

was determined by calculating the relative standard deviation for samples run multiple times but

in separate phosphotyrosine peptide quantification experiments. The mean absolute and relative

standard deviations were .10 +/- .10 and 10% +/- 10%, respectively.

Principle component analysis and variance explained by diet and genotype

Principle component analysis (Wold et al., 1987) was used to decompose the insulin-stimulated

(insulin) and basal phosphotyrosine data matrices independently. The principle components

67



define a linearly independent set of axes composed of linear combinations of the phosphosite

profiles and onto which the mouse liver tissue samples can be plotted. The first principle

component captures the most important data variance trends, and each subsequent principle

component captures the next most important variance trend that was not described by the

previous principle component(s), until all data variance is explained. The contributions of all

sites to each of the principle components is preserved in the loadings matrix, P, and the position

of each of the liver tissue samples in principle component space is contained in the scores matrix,

T. The relationship among P, T, and the corresponding data matrix, X, is:

X=TPT,

where the dimensions of X, T, and P are [N x M], [N x p], and [M x p] and N, M, p are the

number of liver tissue samples, number of phosphosite measurements, and the number of

principle components used, respectively. (PT is the transpose of P.)

This analysis requires that the data matrix be complete, and, given the missing data points in the

phosphotyrosine datasets that result from the merging of multiple data-dependently acquired

MS/MS experiments, missing data techniques were required for application of PCA. Analysis

was limited to phosphorylation sites that had data for at least 70% of the liver samples in the

insulin-stimulated or basal datasets. Multiple random imputation was used to deal with the

remaining missing data points, as this approach makes minimal assumptions, namely, that the

distribution of each missing phosphosite can be randomly approximated by the observations

present for that phosphosite (Rubin, 1987). This procedure was repeated for multiple iterations

(1000). A complete data matrix, Xc,i, was randomly imputed from the incomplete data matrix,

X1, and decomposed into corresponding scores and loadings matrices Tc,i and Pc.i, (i = 1,2,...
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1000). Estimates of the scores and loadings, Test and Pest, were calculated as the average of the

Tc,j and Pc.i , respectively. The columns of Test and Pest were made orthogonal and orthonormal,

respectively. The locations of the liver tissue samples plotted in the principle component plane

(Figure 2.2) correspond to Test.

The variance explained by factors (diet, genotype or both diet and genotype) was estimated as

follows:

Vare = 1 - Z=>1 =(phosjj - phosj,est(i))2

Var =l 1 ~hoi - h
exp = 1 (phosij phSi,mean)2

where M is the total number of phosphosites in the dataset, phosij is the phosphorylation level for

the ith phosphosite in the jth sample (j = 1,.2,...N), phosi,mean is the mean for the ith phosphosite,

and phosj,est(i) is the estimate of phosij resulting from regression of the ith phosphosite

phosphorylation levels onto a corresponding indicator vector of factors (genotype or diet). Note

that complete data is not required for this calculation, as phosj,est(i) is calculated independently for

each phosphosite, using only the data points for the ith phosphosite that are present. This as well

as all subsequent computational and statistical analyses were performed in Matlab Student

Version 7.10.0.499 (R2010a).

Unsupervised clustering analysis

The affinity propagation (AFP) algorithm was selected for clustering analysis, because this

algorithm does not require a complete data matrix as input but rather a matrix of similarities

between measurements, where the similarity between all measurements need not be specified. In

addition, despite the limited input requirements, this algorithm performs very well in comparison

to other algorithms (Frey and Dueck, 2007). For clustering, measurements in datasets were

69



scaled using (1) the 10g2 fold-change relative to the mean or (2) a z-score for each measurement.

(A z-score is calculated by subtracting the mean value of a particular measurement and then

dividing by the corresponding standard deviation.) Both phosphotyrosine and lipidomics dataset

measurements were clustered using correlation as the metric of similarity. For improved data

visualization, measurements within AFP-derived clusters were re-ordered using hierarchical

clustering with correlation distance.

Supervised clustering of genotype- and diet-dependent phosphorylation sites

To specifically and comprehensively visualize factor-dependent phosphorylation sites,

phosphorylation sites were ranked according to factor dependence and the most highly ranked

phosphosites were incorporated into heatmaps. Typically, calculating a correlation coefficient

between a feature (phosphosite) and factor and then ranking the factors according to correlation

value or corresponding p-value would be sufficient. However, the insulin and basal

phosphorylation datasets are independent, and, in addition, factor-dependence may be context

specific. For example, some phosphosites maybe PTPlb-dependent only in the context of HFD.

To enable detection and visualization of all of the factor-dependent features in both global and

condition-specific contexts, a procedure, involving Fisher's method, was developed to cull

factor-dependencies from independent datasets as well as context-specific subsets.

For detection of genotype-dependent phosphosites, we estimated a correlation coefficient and

corresponding p-value for each genotype-phosphosite pair across the following, independent data

subsets: HFD/basal, NC/basal, HFD/insulin, and NC/insulin. Then, p-values for each genotype-

phosphosite pair were combined, using Fisher's method, to create p-values for each of the

following situations: PTPlb dependence across all datasets, NC-only PTPlb dependence, HFD-

only PTPlb dependence, PTPlb dependence under insulin-stimulation only, PTPlb dependence
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under basal conditions only, and HFD/basal, NC/basal, HFD/insulin or NC/insulin conditions

only. For example, to calculate a p-value for the "PTPlb-dependent under insulin-stimulation

only" context, Fisher's method was used to combine p-values from the HFD/insulin and

NC/insulin correlation coefficients. Importantly, the direction of the correlation is taken into

account when applying Fisher's method. Then, after estimating p-values for the many possible

context-specific correlations, the most significant correlative p-value for a given phosphosite-

genotype pair was used to rank all phosphosite-genotype pairs.

In a similar manner, for detection and ranking of the most diet-dependent phosphosites,

correlation coefficients and p-values were calculated for the following, independent data subsets:

basal/PTPlb~/~, basal/control, insulin/PTPlb-/- and insulin/control, and overall p-values were

estimated analogously to the genotype case. A raw p-value cutoff of .025 was selected for the

heatmaps in Figure 2.2 and Supplementary Figure 2.1.

Lipidomics analysis

Lipid extraction. In a 4C room, aliquots of frozen liver tissues were weighed (-120mg per tissue

sample) and placed on dry ice. Lipids were extracted in 6mL of a 2:1:1 solution of CHCl3 :

MeOH : H20. To quantify the absolute abundances of select lipids, reference standards were

spiked into the chloroform phase (670nmol (HFD) or 330nmol (NC) glyceryl triheptadecanoate

(Sigma), 1.5umol (HFD) or .75umol (NC) Cholesterol-25,26,26,26,27,27,27-d7 (C/D/N

Isotopes), 5nmol UC13 -oleic acid (Spectra Stable Isotopes), 500pmol UC 13 -palmitic acid (Spectra

Stable Isotopes), 50pmol arachidonic acid-5,6,8,9,11,12,14,15-d8 (Cayman Chemical), and

5pmol eicosapentaenoic acid-19,19',20,20,20-d5 (Cayman Chemical)). Frozen tissues were

placed into a 15-mL dounce tissue grinder and homogenized in the extraction solution on ice.

The extract was transferred to a glass vial and centrifuged at 2,500G, 4C for 5min to separate the
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organic and aqueous layers. Twice the organic layer was transferred to fresh glass vials by

Pasteur pipette. The final glass vial was placed under a stream of nitrogen until the organic

phase evaporated. Samples were stored at -80C and later dissolved in chloroform for LC-MS

analysis (Vinayavekhin and Saghatelian, 2011).

LC-MS analysis. LC-MS analysis was performed using an Agilent 6220 LC-ESI-TOF

instrument. For LC analysis in negative ion mode, a Gemini (Phenomenex) C18 column (5um,

4.6mm x 50mm) was used in combination with a precolumn (C18, 3.5um, 2mm x 20mm).

Mobile phases A and B were 95:5 water:methanol and 60:35:5 isopropanol:methanol:water,

respectively; both contained .1% ammonium hydroxide. For positive-mode LC analysis, a Luna

(Phenomenex) C5 column (5um, 4.6mm x 50mm) was used with a precolumn (C4, 3.5um, 2mm

x 20mm). Mobile phase A and B had the same solvent compositions as negative mode, except,

A and B were both supplemented with .1% formic acid and 5mM ammonium formate instead of

.1% ammonium hydroxide. For both analysis modes, a 60min gradient was used: 100% A, flow

rate .1 mL/min from 0-5min, a linear increase in solvent B from 20% to 100% at .4mL/min from

5-45min, isocratic 100% solvent B for 7min at .4mL/min, and equilibration with 100% solvent A

at .5mL/min for 8min (Vinayavekhin and Saghatelian, 2011).

For preliminary, discovery-motivated experiments, 1/6h sample amounts were run in a 30uL

injection volume for both modes. In quantitative, follow-up positive mode analyses focusing on

triglycerides, 1/2 4 0th (HFD) or 1/80th (NC) of the sample extract was injected in 30uL. In

quantitative, follow-up negative mode analyses focusing on fatty acids, two analyses were

required because fatty acid abundances span more than four orders of magnitude. In the first

analysis, to avoid saturation of the most abundant fatty acids (oleic, stearic and palmitic), sample

amount was limited to 1/8 0 tht1 2 4 0 ,h of the extract, and a 15uL injection volume was used. In
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addition, the LC lines were typically coated with a significant background of palmitic and stearic

acid, so the lines of the LC were purged overnight with a 1% acetic acid DMSO solution to

ensure that background from stearic and palmitic acids was < 20% of sample signal the next day.

For the second analysis and to better separate isomers of low abundant fatty acids, 1/6h of the

sample extract was injected using 5uL volume and an 80min gradient was developed: 0-5min

100% A at . lmL/min, linear increase in solvent B from 20% to 40% from 5-15min at .4mL/min,

(slower) linear increase in solvent B from 40% to 80% from 15-55min at .4mL/min, linear

increase in solvent B from 80% to 100% from 55-65 at .4mL/min, isocratic 100% B from 65-

73min at .4mL/min and finally a 7min equilibration step with 100% A at .5mL/min.

MS analysis was performed with an electrospray ionization (ESI) source. The capillary voltage

was set at 4kV and the fragmentor voltage to 100 V. The drying gas temperature was 350C at a

flow rate of 1OL/min. The nebulizer pressure was 45psi. Data were collected in both centroid

and profile modes with a mass range of 100-1 500Da.

Automated discovery of differential metabolites. XCMS (Smith et al., 2006) was used to match,

quantify, and compare peaks across an initial, exploratory lipidomics analysis of six L-PTPlb-/-

mice and seven control mouse livers under HFD, basal (HFDB) conditions. Agilent

chromatogram data files (.d) for both positive and negative mode 60min-gradient analyses were

obtained from Agilent MassHunter and converted to mzXML files by the software program

Trapper. The mzXML files were analyzed by XCMS using the default parameters. The final

output file contained ion m/z ratio, average retention time, integrated mass ion intensities (peak

area), and a p-value corresponding to a t-test to determine whether the ion was differentially

abundant between L-PTPlb-/- and control mice. Ions that XCMS indicated might be

differentially abundant were then examined individually for verification by hand.
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Absolute quantification of hepatic triglycerides and cholesterol. Detectable hepatic triglyceride

species ranged from total acyl change carbon length of 48 to 56. Manual integration of ion

chromatograms (20 ppm m/z window) was performed with care, so that only ion chromatogram

area corresponding to the monoisotopic peak of the triglyceride was included in the integration.

In addition, triglyceride peak areas from sample analyses were compared to background from

blanks, and several triglycerides were excluded from the dataset (i.e., C48:0, C50:0), as

background was >20% of the signal. Integrated peak areas were then (1) normalized to the peak

area of the glyceryl triheptadecanoate standard and (2) normalized to the starting tissue mass to

obtain absolute quantification in nmol triglyceride / mg tissue. Total triglyceride amount was

obtained by summing all triglyceride species quantified. Percent triglyceride composition was

calculated by dividing each triglyceride structural isomer by total triglycerides. For liver tissue

samples with replicate analyses, these replicates were combined using the principle component

alignment method described below.

Absolute cholesterol quantification was obtained by normalizing to the cholesterol-d7 standard

and starting tissue masses.

Absolute quantification of hepatic fatty acids. LC-MS data was inspected manually and ion

chromatograms were integrated with 20ppm m/z tolerance, as above. As described above, two

separate MS runs were required for quantification of high abundance and low abundance species,

so that the former did not saturate the detector and the latter were detectable. The original plan

for combining quantification of low and high abundance runs for single sample was to quantify

each run independently: construct standard curves from the four fatty acid standards (spike into

samples before processing and spanning four orders of magnitude), quantify the fatty acids using

the run-specific standard curve, and average fatty acids that were quantified in both high-
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abundance and low-abundance runs. However, for the analyses of highly abundant fatty acids,

which were limited to small sample amounts, often only two standards were detected. As one

might expect, the standard curves (in log-log space) were very sensitive to noise in the

measurement of those standards. Similarly, the most abundant fatty acid standard often saturated

in analysis of the low-abundance fatty acids, resulting in a calibration curve of three points,

which was also very sensitive to measurement noise.

To overcome this issue, a new method for integrating the high and low abundance datasets was

devised. Rather than limit calibration curve-fitting to the four or fewer standard fatty acids

detected per run, our method incorporates all fatty acids common to both high- and low-

abundance runs (> 10 fatty acid pairs) into each sample calibration. Principle component

analysis is used to find one principle component (fit a line) from the paired peak areas from high

and low abundance analyses. The fatty acids not common to both runs are then projected onto

the first principle component, so that all of the fatty acids have positions on the principle

component. The positions of the standards are used to determine the linear relationship between

principle component position and absolute units of quantification (pmol). We found that this

approach was more robust to noise in standard measurements, because it made use of more data

points and resulted in a global fit. In addition, often there were more than two MS analyses per

sample, and this method of principle component alignment was easily extended to enable global

alignment of multiple runs.

After calibration to standards, fatty acid abundances were normalized to starting tissue mass to

obtain absolute quantification (pmol fatty acid / mg tissue). Percent composition was obtained

by dividing each fatty acid by the sum total of all fatty acid abundances.
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Identification of selected fatty acid isomers by co-injection. C18:3 o3, C18:3 o6, 18:3 o9,

C20:3 o3, C20:3 o6, C20:3 o9, C22:3 o3 standards were purchased from Cayman Chemicals,

while C24:6 o3 was purchased from Laradan Fine Chemicals AB. The LC-MS protocol used for

all co-injection experiments was the same as described for analysis of low abundance fatty acids

above. For each fatty acid species, the following runs were done: each standard was run

individually (1 Opmol), all isomers of that species were run together (1 Opmol each), an HFD liver

tissue sample was run individually (1/6 sample), and finally 1/6 sample of HFD liver tissue was

run co-injected with amounts of isomer standards titrated so that the co-elution of standard with

particular endogenous peaks could be identified.

For C18:3, two sets of standard concentrations were used in the co-injection experiments to

identify the 3rd isomer peak: (1) 1.25pmol C18:3 (93, C 18:3 o6, and C 18:3 o9 and (2) 2.5pmol

C 18:3 3 and C 18:3 o6 with 6.25pmol C18:3 o9 (Supplementary Figure 2.2A, red and purple

lines, respectively). None of the standards co-eluted with the PTPlb-dependent isomer peak.

Because (1) isomer standards elution times increased with 0o-bond distance (i.e., eluted in the

order 03, a)6, 09), and (2) the endogenous peak of interest eluted in between the (06 and o09

peaks, we suspect that the endogenous peak corresponds to C18:3 o07. Because we did not have

a standard to confirm this assignment, this peak is referred to as C18:3 07* in the text.

For C20:3, two sets of standard concentrations were used in the co-injection experiments to

identify the 2"n isomer peak: (1) 500fmol C20:3 03 and C20:3 o)6 with 3.4pmol C20:3 (09 and

(2) 1pmol C20:3 03 and C20:3 0o6 with 3.4pmol C20:3 o9 (Supplementary Figure 2.2B). C20:3

03 and (o6 co-eluted with the first pick, while C20:3 (o9 co-eluted with the second peak. In the

absence of an 07 C20:3 standard, we concluded that the most significantly differential peak is

either 9, o7, or a combination of both isomers and refer to this peak as C20:3 0o9/0o7*.

76



For C22:3, 150fmol and 450fmol C22:3 co3 was run with endogenous lipid sample in two

separate runs (Supplementary Figure 2.2C). C22:3 03 co-eluted with the first (less significantly

PTPlb-dependent) of the two C22:3 isomer peaks. Given the similarity between the profiles of

C20:3 and C22:3 (two distinct isomer peaks) and that, in the reverse-phase chromatography

used, isomer separation decreases with increasing carbon chain length, we suspect that C22:3 o6

would co-elute with C22:3 (3, as is the case for C20:3 o3 and o6, and that the second peak,

similarly to the second peak of C20:3, corresponds to o7 and/or o9 species. Thus, we refer to

the PTPlb-dependent C22:3 peak as o7*/o9*.

For C24:6, co-injection runs with 50fmol and 300fmol C24:6 w3 were performed

(Supplementary Figure 2.2D). The single C24:6 peak co-eluted with a C24:6 03 standard,

confirming the identification of a C24:6 fatty acid structural isomer. Even though isomer

separation decreases with increasing carbon chain length, we can conclude that the isomer peak

is not o7/ o9 because double bonds on fatty acids must be separated by at least one unsaturated

carbon, and thus the only other feasible placement of the o bond would be at the o6 position.

Here, we denote the peak as C24:6 o3/ o6*.

Estimation of technical error. The technical error associated with the quantification of hepatic

lipids was estimated via analysis of technical replicates. Here, technical replicates are separate

samples from one mouse liver tissue that were processed, run, and quantified on different days.

There were five such technical replicates for fatty acid analysis. The percent error associated

with absolute fatty acid abundances was 17% +/- 15% (mean +/- standard deviation), while the

percent error associated with percent composition estimates was 19% +/- 15%. For the

triglyceride analysis, there were four such technical replicates, and the percent error associated

with absolute triglyceride structural isomer abundances was 15% +/- 10%, while the percent
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error associate with percent composition measurements was 22% +/- 10%. For both triglycerides

and fatty acids, percent relative standard deviation was constant with respect to lipid abundance.

Enzymatic assay of hepatic triglycerides. Triglycerides were quantified as described

(Delibegovic et al., 2009), using the Stanbio Triglyceride Liquicolor Test kit.

Serum triglyceride analysis. Serum triglyceride analysis was performed as described (Rhee et

al., 2011), with the following changes: Glyceryl triheptadecanoate (Sigma) standard was added

to the isopranol diluent, which, when mixed with serum (9:1, isopropanol:serum), yielded a final

concentration of .5 mg/dL standard. A Jupiter C4 column (4.6 x 150mm, 5pm particle size,

30nm pore size, Phenomenex) was used at a 700uL/min flow rate. Data were acquired on an

Agilent 6220 LC-ESI-TOF instrument.

Biochemical analysis

Markers of hepatic inflammation. Bio-Plex Pro Mouse Cytokine Sets were used for

quantification of hepatic IL-6, IL-lb, and MCP-1 content, using a Bio-Plex 200 System.

Stochastic multivariate regression analysis

Lipidomics phenotypes as functions of phosphotyrosine measurements. Individual models of

steatosis, o3/ (o6 PTPlb PUFA, and o7/ o9 PTP1b PUFA as functions of the phosphotyrosine

measurements were constructed using stochastic multivariate regression and treatment-dependent

random imputation, because these methods were determined to perform well in Chapter 3. The

models were limited to the HFD basal liver tissues. For each model, the phosphotyrosine

dataset, which corresponded to 228 phosphorylation sites across 13 samples, was modeled as the

independent variable matrix, X [N x M] (N = 13, M = 228), while the particular lipid phenotype

was modeled as a dependent variable matrix, Y [N x K], where k is the number of lipidomics
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measurements being modeled. (For steatosis, k = 1, while, for w3/ o6 PTP1b PUFA (C24:6,

C24:5, C24:4, C22:3, C20:3), k = 5, and, for o7/ o9 PTP1b PUFA (C20:3, C22:3, C20:2,

C18:3), k = 4.) The matrices X and Y correspond to measurement means, while Xstd and Ystd are

matrices of the same dimensions and contain measurement standard deviation. When no

technical replicate existed for a measurement, the standard deviation was estimated using the

average relative standard deviation of the given dataset.

The stochastic multivariate regression algorithm, adapted to deal with missing data points by

treatment-dependent random imputation, is as follows:

1. Gaussian samplingfor measurement noise. For each data point present in X, draw a random

sample, Xgaus(n,m) from a normal distribution with mean, X(n,m), and standard deviation,

Xstd(n,m), n = 1,2,...,N, m = 1,2, ...,M. Similarly, draw Ygaus(n,k), based on Y(n,k) and Ystd(n,k),

n = 1,2,...,N, k = 1,2,...,K.

2. Treatment-dependent random imputation for missing data points. For each measurement

(column) of Xgaus, estimate the missing data points for L-PTPlb-/- samples with a randomly

selected L-PTPlb-/- sample from those present. Similarly, estimate the missing data points for

control samples with a randomly selected observation from the controls. (No missing data points

existed for the dependent Y matrix.)

3. X and Y data normalization and averaging of Y matrix measurements. For each column of

Xgaus or Ygaus, mean-center the data and divide by the standard deviation to yield matrices Xzscore

and Yzscore. If P > 1, average Yzscore column-wise to yield Yzscore,v [N x 1]. (Averaging Y

simplifies subsequent model reduction steps.)

79



4. Draw a bootstrap sample. Randomly select paired rows of Xzscore and Yzscore,v without

replacement and build Xboot and Yboot matrices, dimensions [N x M] and [N x 1], respectively.

5. Build regression model. Use partial least squares regression (PLSR), with number of

principle components equal to one minus the rank of Xboot, to estimation the linear regression

coefficients B [M x 1], such that Yboot = XbootB + c, where c is the residual error.

6. Multiple imputation and Gaussian sampling. Repeat steps 1-5 to create distributions of

model coefficients, B. Here, the number of iterations, itters, was 5000. Store each vector of

coefficients B in the corresponding matrix Bmatrix [itters x M].

7. Estimate the signficance of each independent variable measurement to prediction. For each

measurement m in X, use the corresponding coefficient distribution contained in column m of

Bmatrix, to empirically test the null hypothesis that zero belongs to this distribution.

8. Model reduction. Rank the independent variables according to coefficient significance

determined in 7. Sequentially build and evaluate PLSR models, by varying (1) the number of

principle components, pcs, in the model and (2) by incorporating the top F ranked variables in

the model. For this analysis, pcs = {1,2,...,4}, and F = {1,2,...,20}.

Here, models were evaluated by estimating R2, goodness-of-fit, and Q2, goodness-of-prediction,

statistics:

2 = 1(ymeas,n-ypredn)2R 1 (ymeasn-ymean)2

Q N= 1 (ymeas,n-ypred,1oocv(n))2

N1 (ymeas,n-ymean,Loocv(n))2

80



where Ymeasn corresponds to the experimentally determined response measurement, n, ymean is

the average of the response measurements, yP'*d'n is the model prediction for response

measurement, n, ypredloocv(n) is the prediction for response n, from a leave-one-out-cross-

validation model, excluding measurements for sample n, and, similarly, ymeanj1ooev(n) is the mean

of the response measurements, leaving out measurement n. Importantly, estimation of any set of

model predictions for the response vector Y, using the relationship Y = XB, requires a complete

set of predictor variables X. Thus, to estimate R2 and Q2 , a complete matrix, Xc, was created

using column-wise treatment-dependent mean imputation. Specifically, for each measurement

(column) of Xc, the missing data points for L-PTPlb-/- (or control) samples were estimated as

the mean of those L-PTPlb-/- (or control) samples observed for that measurement. Final model

parameters, pcs and F, were determined based on optimization of Q2 values. Important to

determination of model quality was estimation of the error associated with the Q2 values, which

was accomplished by leave-two-out-cross-validation.

In addition, reduced models were built by a second method, based on the calculation of the

variable importance of projection (VIP) score, commonly used to rank variables for

incorporation into the reduced PLSR models (Huang et al., 2010; Kumar et al., 2007). The VIP

score for a given independent variable and PLSR model with pcs principle components is:

S =1 Varexp,y(pc)W(m,pc) 2

VIP(m,pcs) Varexpy(pc)
=1pc=1 pPS

where Varexp,y(pc) is the variance in Y explained by regression onto a particular principle

component, pc, and W(m,c) is the quantitative contribution that a particular measurement, m,

makes to the pcth PLSR principle component (Kumar et al., 2007). Because the PLSR principle
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component plane is optimized to contain linear combinations of independent variable

measurements that covary maximally with the dependent variable, this metric performs well in

model reduction.

The method detailed below is an adaption of the methods described in (Kumar et al., 2007). In

this variation of stochastic multivariate regression, at step 5, the Xboot loadings matrix Pboot [M x

pcs] was stored, Pboot such that Xboot = TbootPboot , Yboot = UbootCboot T, and covariance(Toot,Uoot)

is maximal, Pboot [N x pCs], Uboot [M x pCs], Cbot[l x pcs], pcs = min(4, rank(Xoot)), and ZT

denotes the transpose of Z (Huang et al., 2010). The loadings were stored in a 3D-matrix Pmatnx

[itters x M x pcs] (step 6), and then used to calculate VIP scores for each of the M independent

variable measurements (step 7). Specifically, the loadings matrices were averaged across the

iterations' dimension of Pmatrix to create Pave [M x pcs]. Thus, by averaging, variable

measurements that consistently contribute to the PLSR principle component plane will have

higher loading values and contribution to the model more than measurements that are randomly

imputed or associated with larger amounts of error. To make this loadings matrix consistent with

loadings matrix produced directly from PLSR algorithms, Pave was orthonormalized row-wise.

Next, the scores matrix, T [N x pcs], was estimated by the equation T = XcPave and the weights,

W, were estimated as Pave/(Pave Pave). The rows of T were orthogonalized, and, then the Y

loadings, YL [pcs x 1] were calculated from the relationship YL = (T T) TTY. Next, the

Varexp,y(pc), was calculated using the equation: Varexp,y(pc) = 1-(Y-T(pc)TYL(pc))T(Y-

T(pc)TYL(pc))/Vary, where T(pc) is the pcth column of T and YL(pc) is the pcth row of YL

transposed to a column vector. Thus, after a fair amount of linear algebra, the VIP score can be

calculated for each measurement and total number of pcs in the model. Step 8 is then performed

based on VIP-score model reduction.
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A more detailed description and discussion of these methods is described in Chapter 3.

Steatosis as functions of lipidomics measurements. Models of steatosis were also built as

functions of FA composition or triglyceride composition, using the methods described above.

The independent matrix, X, for the FA-composition-based steatosis model was [15 mice x 33 FA

profiles], while X was [14 mice x 26 triglyceride species] for the triglyceride-composition-base

model; corresponding dependent Y matrices were [15 x 1] and [14 x 1]. Final models were

selected as described above for phosphotyrosine-based models.

Phosphosite set enrichment analysis

Phosphosite set enrichment analysis was accomplished by adaption of Gene Set Enrichment

analysis (GSEA) as described (Subramanian et al., 2005) for set enrichment from quantitative,

post translation modification (PTM) datasets; this adaption of GSEA, termed, PTM Set

Enrichment Analysis (PSEA), and motivated by this study specifically, is described in Chapter 3.

Briefly, the goal of PSEA is to detect whether certain PTM site features (kinase motif, protein

cellular process) are significantly over-represented among PTM sites implicated in a

quantitatively defined relationship (sensitivity to a perturbation or importance to phenotype

prediction). PSEA inputs include (1) list of PTMs quantitatively ranked according to phenotype

or condition relevance and (2) at least one set, defined by a common feature (cellular

compartment, protein domain) specific to a subset of the PTMs measured.

For analysis here, PTM sets (59 in total) were hand-curated sets of phosphosites, composed of

protein pathway annotations from Kegg, gene ontologies, protein structural information (PFAM

and SwissPro), a curated list of PTPlb substrates (Ren et al., 2011), as well as a set of insulin-

sensitive phosphorylation sites from a previous study (Schmelzle et al., 2006). These sets were
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then used in five independent PSEA analyses to search for enrichment among (1) PTPlb-

dependent sites, (2) HFD-dependent sites, and sites predictive of (3) steatosis, (4) o3/ o6 PTPlb

PUFA, and (5) o7/ o9 PTPlb PUFA. The multivariate stochastic regression method described

above was used to generate ranked lists of sites for analyses (3)-(5); specifically, the ranking of

phosphosites was dependent on the significance of phosphosite regression coefficient, as

calculated above. Sites were ranked according to the sign of the regression coefficient multiplied

by the -logio-transformed p-value associated with the coefficient. This analysis was limited to

the HFD basal context only. Analyses (1) and (2) incorporated all phosphotyrosine datasets;

sites were ranked according to significance of correlation with genotype or diet. In particular,

the significance and direction of correlation of genotype with a phosphosite was calculated, if

possible, for the four relevant data subdivisions (HFD basal, HFD insulin, NC basal, and NC

insulin), then these p-values were combined using Fisher's method, accounting for the direction

of the correlation. (This method is slightly different than the supervised-clustering framework

described above, as it measures overall correlation only.) The same was done for diet, where the

four relevant data subdivisions were basal L-PTP1b-/-, insulin L-PTPlb-/-, basal control, and

insulin control. Phosphosites in analyses (1) and (2) were ranked according to the direction of

correlation coefficient multiplied by the associated -logio-transformed p-value. Thus, in all

analyses described here, the sign of the relationship was taken into account, indicating that our

method would detect set/pathway enrichments for groups of phosphosites that increased or

decreased phosphorylation according to a particular phenotype or treatment condition. As

phosphorylation has many functions, including protein inhibition or activation, a consideration of

unsigned analysis for this dataset can be found in Chapter 3.
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For each analysis, the lower limit on set size ensured membership of at least five phosphosites.

In addition, given missing data, it was not possible to rank phosphosites according to all

treatments and phenotypes. Thus, the genotype and diet analyses tested 59 and 45 sets, while 56

sets were tested for relevance to phenotype prediction. A complete list of PSEA sets tested and

results are available upon request. A subset of analysis results, those sets found to be

significantly enriched controlling for an FDR < .1 are found in Tables 2.2, 2.4, 2.7, 2.8, and 2.9.

Note: PSEA yielded numerous PTPlb-dependent sets but only a single, significantly diet-

dependent set. This is due to experimental design. Each MS 8-plex iTRAQ experiment was

optimized for comparison of L-PTPlb-/- mice to control rather than for comparison of HFD to

NC mice. As a result, whereas every MS experiment enabled genotype comparison, diet

comparison was accomplished by pooling the overlapping sites from multiple runs. Thus, fewer

samples were available for the diet comparison, and we lacked statistical power equivalent to the

genotype-dependent case. If additional MS experiments were run for diet comparison, additional

diet-dependent phosphotyrosine sets would likely be uncovered.

PTPlb-liver-specific-deletion mice were generated by crossing PTPlb-floxed (PTPIb-fl/fl) mice

with mice expressing Cre recombinase under the control of the albumin promoter (Alb-Cre),

resulting in Alb-Cre PTPlb-fl/fl mice that specifically lack hepatic PTPlb expression

(Delibegovic et al., 2009). Albe-Cre mice were used as controls. Genotyping for the PTPlb

floxed allele and the presence of Cre was performed by PCR. Hepatic PTPlb protein expression

was accessed at the end of the study, by quantitative immunoblotting (PTP lb antibody AF 13661,

R&D Systems). Mice were maintained on a 12-hour light/dark cycle in a temperature-controlled
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barrier facility with water and food freely accessible. All mice were maintained on a normal

chow (NC) diet (Prolab Isopro RMH 3000, 15% calories from fat) until twelve weeks of age, at

which point mice either continued on NC or were placed on high fat diet (Teklad TD.93075,

55% calories from fat). Mouse procedures were performed in accordance with the guidelines

and approval of the Institutional Animal Care and Use Committee at the University of

Massachusetts Medical School and the Ontario Cancer Institute.
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Figures

Figure 2.1 Study Design and Phosphotyrosine Analysis
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(A) Study design.
(B) Eight peptide samples, purified from individual livers, were chemically labeled individually
with a unique 8-plex iTRAQ isobaric mass tag. Labeled peptide samples were combined and
phosphotyrosine-containing peptides were enriched by phosphotyrosine peptide IP using pan-
specific phosphotyrosine antibodies. Phosphorylated peptides were further enriched by IMAC
prior to analysis by LC-MS/MS, resulting in hundreds of MS/MS phosphopeptide fragmentation
spectra. Each MS/MS spectrum yields (1) sequence information and (2) iTRAQ reporter peaks
whose intensities are proportional to the abundance of that particular phosphopeptide in the
corresponding samples. To enable phosphopeptide quantification across multiple 8-plex MS
experiments, each experiment was normalized to a control liver peptide sample, kept constant
across experiments.



Figure 2.2 Diet and Genotype Dependencies in the Phosphotyrosine Network
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(A) Insulin-stimulated and basal liver tissue samples are plotted in the principle component plane
as a function of their tyrosine phosphorylation profiles.
(B) Heatmaps of those phosphorylation sites most significantly correlated to genotype. For basal
or insulin datasets, the phosphorylation level of a phosphosite was normalized to the
corresponding phosphosite mean (basal or insulin) and then log2-transformed. Missing data
points are denoted by grey dots over white boxes. Red asterisks denote lipid metabolic proteins.
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Figure 2.3 Global Lipidomics Analysis for De Novo Discovery
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(A) Lipids are chloroform-extracted from individual liver tissue samples. For absolute
quantification, known amounts of 13C- or 2H-labeled standards are initially spiked into the
chloroform phase and endogenous lipids are quantified relative to standards. The lipid samples
are individually analyzed by LC-MS, creating a 3-dimensional lipidomics profile for each tissue
sample: m/z (chemical formula) by retention time (hydrophobicity) by ion intensity (lipid
abundance).
(B) The software program, XCMS (Smith et al., 2006), is used to identify differences in lipid
metabolic profiles across multiple analyses. As an example, we show a PTPlb-dependent lipid
corresponding to fatty acid structural isomers of C20:3, detected by XCMS.
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Figure 2.4 PTP1b-dependent Changes in FFA Metabolism
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(A) Volcano plot of % FA compositions on HFD: Each FA is plotted as a function of log2-
transformed, compositional fold-change (L-PTPlb-/- relative to control) and corresponding
statistical significance (-logio(P-value), control, n = 19, L-PTP1b-/-, n = 17). The dotted, red line
corresponds to P-value = .05.
(B) The clustered FA correlation matrix; the correlation coefficients between FAs were
calculated using % FA compositional measurements across NC and HFD mice.
(C) Mean +/- SEM C18 SCD indices (the ratio of C18:1 to C18:0).
P-values are estimated by 2-sided Student T tests; **, *, and A denote P < .01, .05, and .1.
(D) Western blot of hepatic pT172-AMPK, total AMPK, and p actin in HFD mice..
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Figure 2.5 PTP1b-dependent Changes in Triglyceride Metabolism
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(A) Mean +/- SEM liver triglycerides (*** denotes P < .005).
(B) Scatter plot of liver triglycerides vs. body weight.
(C) Scatter plot of serum triglycerides vs. liver triglycerides.
(D) Volcano plot of % triglyceride compositions on HFD: Each triglyceride is plotted as a
function of log2-transformed, compositional fold-change (L-PTPlb-/- relative to control) and
corresponding statistical significance, -logio(P-value), control, n = 10, L-PTPlb-/-, n = 6. The
dotted, red line corresponds to P-value = .05.
(E) Affinity propagation clustering of z-scored triglyceride composition profiles. Missing data
points are denoted by grey dots over white boxes.
P-values are estimated by 2-sided Student T tests.
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Figure 2.6 Multivariate Models of Lipidomics Phenotypes

A

PYK2
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(A) The phosphosite and metabolite predictors that were included in final multivariate regression
models are attached to phenotype nodes by colored edges: o7/w9 PTPlb PUFA (red), u3/o6
PTPlb PUFA (green), and steatosis models as a functions of phosphotyrosine sites (blue) and
triglyceride composition (purple). Models were built using two methods; solid and dashed lines
indicate that the predictor was selected by Method I (coefficient-significance) and Method 2
(VIP-score), respectively. Predictors selected by both methods are higher confidence. The width
of an edge is proportional to the importance of the phosphosite or metabolite to the model.
Light-green shading highlights phosphosites on REDOX proteins.
(B) Quantitative prediction (black) and fit (red) for o7/w9 PTP1b PUFA, steatosis and o3/o6
PTP1b PUFA models using Method 1. Errorbars denote experimental and model SEM; SEM for
model fit and prediction were estimated by leave-one-out and leave-two-out cross-validation,
respectively.
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Figure 2.7 Summary of Lipid Metabolic and Phosphosite Interactions
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Supplementary Figures

Supplementary Figure 2.1 Diet-dependent Phosphosites

Diet-dependent Phosphosites
Basal Insulin

- NC -- HFD -- NC- HFD
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*HSPE1 Y76 ;SHP-2 Y62U

Pvk2 Y572l

Log2(FC)
- >1

0

<-1

Heatmaps of those phosphorylation sites most significantly correlated to diet. For basal or insulin
datasets, the phosphorylation level of a phosphosite was normalized to the corresponding
phosphosite mean (basal or insulin) and then log2-transformed. Missing data points are denoted
by grey dots over white boxes. Negatively and positively correlated phosphosites are segregated.
Green astericks denote mitochondrial proteins.
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Supplementary Figure 2.2 Co-elution to Determine PUFA Species
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Blue and green curves correspond to ionchromatgrams from standards and liver lipid samples
analyzed in independent LC-MS experiments. Standards and lipid samples were co-injected (red
and purple curves) in two additional experiments to determine the PTP lb-dependent isomer peak
indicated by the green arrow. See Methods for detailed discuss of results.
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Supplementary Figure 2.3 Measurements of Hepatic Inflammation
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Bar graphs denote the mean and standard error associated with each of the measurements. Two-
tailed Student t test was used to calculate p-values.
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Supplementary Figure 2.4 Serum Triglyceride Compositions
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Volcano plot of percent serum triglyceride compositions on HFD: Each triglyceride is plotted as
a function of log2-transformed, compositional fold-change (L-PTPlb-/- relative to control) and
corresponding statistical significance, -logio(P-value), control, n = 10, L-PTPlb-/-, n = 6. The
dotted, red line corresponds to P-value =.05.
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Supplementary Figure 2.5 Multivariate Models of Steatosis
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Western blots and quantification for pS79 ACC and total ACC. Bars and error bars represent
mean and standard error, respectively. Two-tailed Student t test was used to calculate p-values.



Tables

Table 1: Animal Weights and Serum Measurements
NC HFD

Control L-PTP1b~ Control L-PTP1b~
Weight (g) 25.4 +/- 1 (n= 13) 24.7 +/- 1.1 (n = 8) 32.8 +/- 1.4 (n = 19)** 30.3 +/- 0.8 (n= 17)
Fed Glucose (mg/dL) 192.1 +/-6.1 (n = 13) 197.1 +/- 11.4 (n =8) 236.8 +-7.2 (n= 15)** 224+ 11 (n= 13)
Fed Insulin (ng/mL) 0.89 +/- 0.13 (n = 7) 0.73 +/- 0.22 (n = 5) 3.47 +/- 0.91 (n =7)** 2.92 +/- 0.94 (n = 5)
Fasted Glucose (mg/dL) 114 +/-7.3 (n = 12) 160.1 +/- 10.5 (n = 8)** 119.9 +-8.3 (n = 15) 162.4 /-15.7 (n= 13)*
Fasted Insulin (pM) 56.4 +/- 10.2 (n = 6) 26.5 +/- 3.4 (n = 5)* 63.3 +/- 13.1 (n = 8) 60.2 +/- 19.7 (n = 6)
Serum Triglycerides (mg/dL) 91.7 +/- 10.9 (n = 12) 78.4 +/-8.2 (n =8) 125.9 +/-15.9 (n = 15) 91.9 +-7 (n = 13)A

Serum Cholesterol (mg/dL) 98.8 +/- 6.6 (n = 6) 83.6 +/- 12.5 (n = 5) 144.6 +/- 16.2 (n = 8) 113.9 +/- 25 (n = 7)
Serum HDL (mg/dL) 81.7 +/-6.4 (n = 6) 69.4 +-11.5 (n = 5) 114.6 +/-12.1 (n = 8) 88.4 +-19.4 (n =7)
Serum LDL (mg/dL) 4.3 +/- 0.8 (n = 6) 3.6 +/- 1.4 (n 5) 10.6 +/- 1.9 (n 8) 14.9 +/- 4.3 (n = 7)
Adiponectin (pg/mL) 12.7 +/- 1.4 (n = 13) 11.5 +/- 1.1 (n= 8) 11.9 +/- 0.9 (n= 15) 15 +/- 1.5 (n = 11)^
Glucagon (pM) 25 +-7 (n = 7) 18.7 +-4.5 (n 5) 21.9 +-4.3 (n =8) 17.6 /-3.4 (n = 7)
Leptin (pM) 54.2 +/- 19.6 (n = 5) 47.1 +/- 27.1 (n = 3) 169 +/- 89.5 (n = 7)** 186.6 +/- 76.4 (n= 6)

Serum measurements and weight gain are written as mean +/- standard error for each of the diet and genotype conditions. Number of
mice analyzed per condition is denoted in parentheses. Statistical analysis was performed using two-tailed Student T-tests. L-PTPlb-
/- mice were compared to control on respective diets, and HFD control were compared to NC control. ** = P<.01, * = P < .05, ^ =
P<.1.

Table 2: Enrichment Analysis of Genotype-Dependent Phosphosites
Praw NES Category Label N Category Membership Source

HADHA Y724, CPS] Y140, ACAT] Y328, PCBD1 Y70, ARGJ Y218,
GAPDH Y328, GLUDJ YJ35, CPS] Y1450, GLUDJ Y512, PGAM2
Y92, ARGJ Y197, CTH Y59, CAR2 Y114, CPS1 Y590, IDH Y391,
GPX1 Y147, GAPDH Y316, PAH Y166*, ARG1 Y188, CPS1 Y162,
PGM1 Y353, CTH Yl 13, LDHA Y239, PRDX6 Y89, ARG1 Y265,

<2E-05** -3.47 Metabolic process 29 TGM2 Y369, CYP2E1 Y426, ENOl Y44, CYB5A Y11 GO
HADHA Y724, UGDH Y108, GAPDH Y328, GLUD] Y135, GLUD] GO,

<2E-05** -3.58 Oxidation reduction 29 Y512, UOX Y230, HGD Y40, ACOX Y629, ALDHJLJ Y848, VDAC1 SwissPro,
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Y195, IDHJ Y391, ACAD11 Y323, UOX Y288, GPX1 Y147*, Literature
GAPDH Y316, FASN Y1248, HPD Y232, PAH Y166, ALDH6A1
Y268, ALDHILl Y892, CAT Y231, CAT Y84, LDHA Y239,
PRDX6 Y89, CYP2El Y426, HPD Y221, SAHH Y193, ALDH1A7
Y484, CYB5A Y1 1
CAV1 Y]4 Y6, ALDOB Y204, HSPD1 Y243, PEBPJ Y181, ASS] Y29,
ASS] Y133, HPD Y232*, ASSI Y322, HSPD1 Y385, GLUL Y336,

Endoplasmic CAT Y231, CAT Y84, VCP Y173, ACSL5 Y69, CYP2E1 Y426,
<2E-05** -3.10 Reticulum 18 CALMI Y100, HPD Y221, CYB5A Y11, GO

Lyn Y1 73, Dok] Y450, BCAR] Y238, FBPJ Y216, Yes Y220, Fgr
Y197, RPL13A Y137, p38-alpha Y]82, Crk Y251, afadin Y1285,
PIK3R] Y197, Dok] Y408, BCARJ Y291, SHP-2 Y62, BCAR] Y556,
FAK Y577 T575, Dok] Y361, vinculin Y822, BCAR] Y271, SEC14L4
Y36, FBP] Y265, PLCG] Y771, CAVJ Y]4 Y6, eEF]A] Y177, IRS2
Y649, GRF-1 Y1087, STAT3 Y686, BCAR] Y414, DLG] Y783, Yes
Y192, FAK Y861, InsR Y]] 75 Y]] 79, BCAR] Y391, GOT] Y264,
vinculin Y692, UGDH Y108, CDK2 Y15, Ab Y393, GSK3B Y216
S219, afadin Y1230, CTNND1 Y904, talin 1 Y1116, BCAR1 Y253, Yes
Y424, CTNNB1 Y654, PGAM2 Y92, CrkL Y198, PGKJ Y196, ALDOB
Y204, LHPP Y159, SCAP2 Y260, FAK Y397, FAK Y576, WASP Y293,
talin ] Y26, CrkL Y1 32, p38-alpha Y182 T180, Hrs Y216, Lyn Y376,
OTC Y31 7, JAK2 Y570, CAR2 Y114, ERK2 Y185 T188/T]83, ERKI
Y205 T203/T208*, SEC14L4 Y36, GSK3B Y216, FBP1 Y245, InsR
Y1 179/Y1 175, plectin 1 Y288, IRS2 Y814, HSPD1 Y243, SHMT1
Y67, IDH Y391, CTNND1 Y96, TARS Y297, GRF-1 Y1105, IRSI
Y983, IRSI Y460, IRSI Y935, ERK2 Y185, PIK3R1 Y310, GPX1
Y147, GOTI Y71, HSP90A Y285, IRS2 Y671, SHMT1 Y28, FASN
Y1248, HPD Y232, Nckl Y105, ERK1 Y205, ACLY Y672, HSPD1
Y385, PGM1 Y353, GNMT Y22, CAT Y231, CAT Y84, LDHA
Y239, Shel Y313, VCP Y173, PRDX6 Y89, GNMT Y34, SHP-2
Y584, PITPNA Y141, GNMT Y221, TGM2 Y369, CALM 1 Y100,

<2E-05** -3.66 Cytosol 108 HPD Y221, SAHH Y193 GO
FBP1 Y216, Crk Y251, PIK3RJ Y197, FBPJ Y265, IRS2 Y649, InsR
Y1 75 Y1 179, GSK3B Y216 S219, CrkL Y198, CrkL Y132, ERK2

Insulin signaling Y185 T188/T183*, ERKI Y205 T203/T208, GSK3B Y216, FBP1
3.2E-05** -2.41 pathway 25 Y245, InsR Y1 179/Y1 175, IRS2 Y814, IRS1 Y983, IRS1 Y460, Kegg
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IRS1 Y935, ERK2 Y185, PIK3R1 Y310, IRS2 Y671, FASN Y1248,
ERKI Y205, Shel Y313, CALMI Y100

HADHA Y724, ACAT] Y328, ACAA2 Y]98, ACSM3 Y51, ACOX] Kegg,
Y629, vigilin Y437*, ACLY Y672, PRDX6 Y89, ACSL5 Y69, SwissPro,

3.2E-05** -2.40 Lipid metabolism 11 ACBP Y29, CYB5A Y1 1 Literature
PARD3 Y1076, CLDN2 Y194/Y195, CTNNA1 Y177, PARD3
Y1123, Yes Y220, F11R Y281, ZOl Y1145, CLDN3 Y197, afadin
Y1285*, CTNNA] Y619, MAGI] Y361, Yes Y]92, ZO] Y1360, CGN
Y229, afadin Y1230, Yes Y424, CTNNB] Y654, Z02 Y486, ZO]

1.4E-04** 2.45 Tight junction 20 Y1190, ZO] Y1066 Kegg
Fatty acid HADHA Y724, ACAT] Y328, ACAA2 Y198, ACOXJ Y629, ACLY Kegg,

2.3E-04* -2.30 metabolism 9 Y672*, PRDX6 Y89, ACSL5 Y69, ACBP Y29, CYB5A Y1 1 Literature
p38-alpha Y182, Crk Y251, PIK3Rl Y197, SHP-2 Y62, PLCG1 Y771,
IRS2 Y649, Ab Y393, GSK3B Y216 S219, CrkL Y198, CrkL Y132,
p38-alpha Y182 T180, ERK2 Y185 T188/T183, ERK] Y205
T203/T208, GSK3B Y216, IRS2 Y814, IRSI Y983*, IRS1 Y460, IRSI

Neurotrophin Y935, ERK2 Y185, PIK3R1 Y310, IRS2 Y671, ERKI Y205, Shcl
4.5E-04* -2.26 signaling patway 25 Y313, SHP-2 Y584, CALMI Y100 Kegg

CPS] Y]40, GOT] Y264, ARGJ Y218, GLUD] Y135, CPS] Y1450,
GLUDJ Y512, ARGJ Y197, OTC Y317, GOT2 Y96, CPSJ Y590, ASS]

Arginine and Y29, GOTI Y71*, ASSI Y133, ASSI Y322, GOT2 Y284, ARGI
4.5E-04* -2.27 proline metabolism 19 Y188, CPS1 Y162, GLUL Y336, ARGI Y265 Kegg

Lyn Y] 73, PC Y118, HADHA Y724, FH Y488, CPS] Y]40, HSPE]
Y76, SLC25A5 Y191, SLC25A5 Y81, ACAT] Y328, FH Y462, GLUD]
Y135, CPS] Y1450, GLUD] Y512, ACAA2 Y198, ACSM3 Y51, Lyn
Y376, OTC Y317, NIPSNAP] Y]48, GOT2 Y96, NIPSNAP] Y261,
CPS] Y590, VDAC1 Y195, HSPD] Y243, PEBP] Y181, ASS] Y29,
PHB Y249, ASS] Y133, ASSI Y322*, GOT2 Y284, CPS1 Y162,

5.2E-04* -2.25 Mitochondria 35 HSPD1 Y385, CAT Y231, CAT Y84, ACSL5 Y69, CYB5A Y11 GO
Phenylalanine GOT] Y264, GOT2 Y96, GOTI Y71*, HPD Y232, GOT2 Y284,

6.5E-04* -2.24 metabolism 8 PAH Y166, PRDX6 Y89, HPD Y221 Kegg
FBPJ Y216, FBP] Y265, GAPDH Y328, PGAM2 Y92, PGKJ Y]96,

Glycolysis / ALDOB Y204, FBP] Y245, GAPDH Y316, PGM1 Y353*, LDHA
7.1E-04* -2.22 Gluconeogenesis 12 Y239, ENOl Y44, ENOl Y25 Kegg

1.1E-03A -2.16 Golgi apparatus 17 Lyn Yl 73, ZO] Y1145, DYRK4 Y344, CAV] Y]4 Y6, ZO] Y1360, Lyn GO
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Y376, ZOJ Y1190, HSPD1 Y243, PEBP1 Y181, ZOJ Y1066, FASN
Y1248*, HPD Y232, HSPD1 Y385, GLUL Y336, CAT Y231, CAT
Y84, HPD Y221
PROSC Y69, Lyn yl 73, PARD3 Y1076, Doki Y450, CLDN2 Y194/YJ 95,
HADHA Y274, FBP1 Y216, FH Y488, TEC Y415, PARD3 Y1123, CPS]
Y140, EGFR Y1172, Yes Y220, RPL13A Y137, p38-alpha Y182, CLTC Y899,
Crk Y251, afadin Y1285, tensin 1 Y1558, PRP4 Y849, Shb Y432, Eeflal

Insulin-sensitive y141, DYRK4 Y344, PIK3R1 Y197, Dok] Y408, ATPlA1 Y260*, HBD Y42,
CARKD Y81, BCAR1 Y556, FAK Y577 T575, tensin 1 Y1480, PECAM-1 Schmelzle

1.1E-03A -2.16 pYs in adipocytes 33 Y702, TENCI Y705 et al.
Cysteine and
methionine GOT] Y264, BHMT Y289, CTH Y59, GOT2 Y96, GOTI Y71 *, GOT2

1.8E-03A -2.09 metabolism 9 Y284, CTH Y1 13, LDHA Y239, SAHH Y193 Kegg
NES stands for normalized enrichment scores as described in Methods. ** = FDR = .01, * = FDR = .05, A = FDR = .l. NES > 0
indicates that phosphorylation on sites in pathway significantly decrease with PTPIb deletion, while NES < 0 indicates that
phosphorylation on sites in the pathway are hyperphosphorylated upon PTPlb deletion. The phosphosites in each category
membership are ordered from most PTP lb-dependent decreased phosphorylation to most PTP1b-depedendent increased
phosphorylation. Those phosphosites that contributed most to the enrichment (compose the "leading edge") appear in regular font,
while the other sites in that category are italicized.

Table 3: Enrichment Analysis of Diet-Dependent Phosphosites
Praw NES Category Label N Category Membership Source

HSPE1 Y76, NIPSNAP1 Y261, SLC25A5 Y191, GOT2 Y96, GLUDI Y512,
CAT Y231*, GLUD] Y135, PHB Y249, ACA TI Y328, CAT Y84, PC Y118,
CPS1 Y162, Lyn Y1 73, A CAA2 Y198, HSPD1 Y243, A CSL5 Y69, CPS] Y1450,

2.2E-04** 2.28 Mitochondria 22 CYB5A YI1, ASS] Y322, HSPD1 Y385, Lyn Y376, SLC25A5 Y81 GO
NES stands for normalized enrichment scores. ** = FDR = .01, * = FDR = .05, ^ = FDR = .1. NES > 0 indicates that
phosphorylation on sites in pathway significantly increase upon HFD, while NES < 0 indicates that phosphorylation on sites in the
pathway have reduced phosphorylation under HFD. The phosphosites in each category membership are ordered from most positively
HFD-dependent to most negatively HFD-dependent phosphorylation. Those phosphosites that contributed most to the enrichment
(compose the "leading edge") appear in regular font, while the other sites in that category are italicized.
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Table 4: Quantification of Hepatic FFAs
Absolute quantification of hepatic free fatty acids (pmol FFA / mg liver tissue)

NC HFD
Control L-PTPlb~- Control L-PTP1b~

C16:3 0.054 +-0.0079 (n = 7) 0.063 +-0.017 (n =3) 0.052 +-0.0099 (n = 10) 0.044 +-0.013 (n =9)
C16:2 0.14/- 0.017 (n=7) 0.14+/- 0.026 (n 3) 0.45/- 0.056 (n= 11) 0.64+/- 0.22 (n= 10)
C16:1 3.4+- 0.35 (n= 9) 3.2+/- 0.43 (n= 7) 8.4+!- 1.3 (n= 19)* 8.4+!- 1.4 (n= 17)
C16:0 44+/- 2.9 (n= 9) 44+/- 2.1 (n=7) 77/- 16 (n= 19)* 60 +/-4.8 (n- 17)
C18:3 n-3 + n-6 1.1+/- 0.18 (n= 7) 1.2+/- 0.16 (n= 3) 0.45+/- 0.11 (n= 19)^ 0.47+/- 0.15 (n= 17)
C18:3 n-7* 0.12 /-0.014 (n= 19) 0.18 ±/-0.025 (n 17)
C18:2 14 /-2.1 (n= 9) 12+/- 2.3 (n= 7) 17/- 3.4 (n= 19) 15±!- 1.9 (n= 17)
C18:1 17 /-1.5 (n= 9) 18 +/-2.9 (n= 7) 65 +/- 13 (n= 19)** 58 +-6.9 (n= 17)

C18:0 24 +/- 2 (n= 9) 24+/- 1.9 (n=7) 37+- 5.7 (n= 19) 29 +/-2.1 (n= 17)
C20:5 2.1 +/-0.32 (n= 9) 3.2+- 1.5 (n= 7) 0.09 +/- 0.014 (n= 19)** 0.087+/- 0.015 (n= 17)
C20:4 3.3 +/-0.83 (n= 9) 2.4+/- 0.53 (n=7) 4.6+/- 1.2 (n= 19)^ 4.5 +/-0.68 (n= 17)
C20:3 n-3 + n-6 0.37 +/- 0.051 (n= 7) 0.55 +1- 0.13 (n= 3) 0.43 +1- 0.058 (n= 19) 0.5 +/- 0.049 (n= 17)
C20:3 n-9 + n-7* 0.076 +/- 0.0085 (n = 7) 0.09 +/- 0.013 (n = 3) 0.33 +/- 0.058 (n= 19)** 0.64 +/- 0.077 (n 17)**
C20:2 0.36+/- 0.04 (n = 7) 0.48 +/- 0.079 (n = 3) 0.7+/- 0.15 (n= 19)^ 1.1+/- 0.14 (n= 17)^
C20:1 1.1 +/-0.16 (n= 9) 1.1 +/-0.23 (n= 7) 3 +/- 0.64 (n= 19)** 2.9 +/-0.26 (n= 17)
C20:0 0.77+/- 0.087 (n = 7) 0.73 +/- 0.095 (n = 3) 1.2 +/- 0.33 (n = 19) 0.6+/- 0.085 (n= 17)
C22:6 7.3 +/- 1.3 (n= 9) 5.5 +/- 1.1 (n= 7) 1.4 +/-0.24 (n= 19)** 1.2 +/-0.14 (n= 17)
C22:5 0.91+/- 0.12 (n= 7) 1.3 +/- 0.27 (n= 3) 0.43 +/- 0.073 (n = 19)** 0.46+/- 0.032 (n= 17)
C22:4 0.23 +/- 0.024 (n= 7) 0.31 +/- 0.082 (n= 3) 0.28 +/- 0.043 (n= 19) 0.31+/- 0.03 (n= 17)
C22:3 n-3 + n-6* 0.011+/- 0.0048 (n = 6) 0.023 +/- 0.0058 (n = 3) 0.018 +/- 0.003 (n = 18) 0.026 +/- 0.0029 (n = 17)^
C22:3 n-9* + n-7* 0.049 +/- 0.0095 (n= 19)** 0.089+/- 0.01 (n= 17)**
C22:2 0.036+/- 0.0053 (n = 7) 0.044 +/- 0.0047 (n = 3) 0.059 +/- 0.021 (n 11) 0.065 +/- 0.0065 (n = 10)
C22:1 0.24+/- 0.034 (n = 7) 0.27+/- 0.02 (n = 3) 0.41+/- 0.12 (n = 19) 0.32+/- 0.035 (n = 17)
C22:0 0.45+/- 0.039 (n = 7) 0.41 +/- 0.025 (n = 3) 0.71+/- 0.26 (n = 19) 0.36 +/- 0.056 (n = 17)
C24:6 0.11 +1-0.015 (n=7) 0.15 +-0.034 (n= 3) 0.027+/- 0.0042 (n= 19)** 0.038 +/-0.0028 (n= 17)*
C24:5 0.083 +/- 0.013 (n 7) 0.12 +/- 0.041 (n = 3) 0.05 +/- 0.007 (n = 19)^ 0.076 +/- 0.0069 (n = 17)*
C24:4 0.015 +/- 0.0044 (n= 6) 0.026 +/- 0.011 (n = 3) 0.047 +/- 0.0076 (n = 11)* 0.074 +/- 0.011 (n = 10)*
C24:3 1 0.013 +/- 0.0072 (n= 3) 0.013 +/- 0.0045 (n= 4)
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C24:2 0.074+/- 0.0041 (n = 7) 0.077 +/- 0.01 (n= 3) 0.049+/- 0.012 (n 11)** 0.044+/- 0.0043 (n = 10)
C24:1 0.42+/- 0.044 (n = 7) 0.4 +/- 0.045 (n= 3) 0.34 +/- 0.099 (n= 11)** 0.23 +/- 0.025 (n = 10)
C24:0 0.47+/- 0.049 (n= 7) 0.48 +/- 0.064 (n= 3) 0.56 +/- 0.26 (n= 11) 0.51+/- 0.26 (n= 10)
Total 130 +/- 6 (n= 7) 137+/- 17 (n= 3) 218 +/- 40 (n= 19) 183 +/- 17 (n= 17)

% Composition of hepatic free fatty acids pool
NC HFD

Control L-PTP1b' Control L-PTP1b
C16:3 0.042+/- 0.0044 (n = 7) 0.046 +/- 0.009 (n = 3) 0.02 +/- 0.003 (n = 10)** 0.018 +/- 0.002 (n= 9)
C16:2 0.11 +/-0.0075 (n=7) 0.098+/- 0.0088 (n= 3) 0.19+/- 0.01 (n= 11)* 0.25+/- 0.04 (n= 10)
C16:1 2.9/- 0.19 (n=7) 3.1 +/-0.093 (n= 3) 3.9+/- 0.19 (n= 19)* 4+/- 0.2 (n 17)
C16:0 41 +/-4.1 (n= 7) 34 +/- 1.2 (n= 3) 37 +/- 1 (n= 19) 35± 1 (n= 17)
C18:3 n-3 + n-6 0.84 +/- 0.077 (n = 7) 0.82 +/- 0.058 (n = 3) 0.24 +/- 0.01 (n= 19)* 0.33 +/- 0.08 (n= 17)
C18:3 n-7* 0.055 +-0.004 (n 19)** 0.085 ±-0.005 (n 17)**

C18:2 12±/- 1.2 (n= 7) 13 +/-1.3 (n= 3) 7.3 +/-0.4 (n= 19)** 7+/- 0.3 (n 17)
C18:1 15 +/-0.86 (n= 7) 18 +/-0.66 (n= 3) 28 +/-2 (n= 19)** 29 +/- 1 (n 17)
C18:0 23 +/- 3 (n= 7) 19 +/-2.1 (n= 3) 21+/- 1 (n= 19) 19 +/- 0.9 (n 17)
C20:5 2 +/- 0.21 (n = 7) 1.9 +/- 0.22 (n = 3) 0.044 +/- 0.004 (n = 19)** 0.042 +/- 0.004 (n= 17)
C20:4 3 +/- 0.56 (n= 7) 2.6 +/-0.51 (n= 3) 2+/- 0.2 (n= 19) 2.3 +/- 0.3 (n= 17)
C20:3 n-3 + n-6 0.31 +/- 0.032 (n= 7) 0.4 +/- 0.077 (n= 3) 0.21 +/- 0.01 (n= 19)** 0.26 +/- 0.009 (n 17)**
C20:3 n-9 + n-7* 0.063 +/- 0.0041 (n = 7) 0.066 +/- 0.0027 (n = 3) 0.16 +/- 0.01 (n = 19)** 0.33 +/- 0.03 (n 17)**
C20:2 0.3 +/- 0.034 (n= 7) 0.35 +/- 0.021 (n= 3) 0.31+/- 0.03 (n= 19) 0.54+/- 0.06 (n= 17)**
C20:1 0.96+/- 0.13 (n= 7) 1.2+/- 0.078 (n= 3) 1.2+/- 0.1 (n= 19) 1.5 +/-0.1 (n 17)
C20:0 0.66 +/- 0.09 (n= 7) 0.55 +/- 0.087 (n= 3) 0.46 +/- 0.08 (n= 19)** 0.31+/- 0.03 (n= 17)
C22:6 6.6 +/- 0.75 (n = 7) 5.8 +/- 0.93 (n = 3) 0.65 +/- 0.06 (n = 19)** 0.65 +/- 0.08 (n = 17)
C22:5 0.77 +/- 0.1 (n= 7) 0.91+/- 0.18 (n= 3) 0.21+/- 0.02 (n= 19)** 0.25+/- 0.02 (n= 17)
C22:4 0.19 +/-0.023 (n= 7) 0.23 +/-0.054 (n 3) 0.14 +/-0.014 (n= 19)^ 0.16 +/-0.01 (n= 17)
C22:3 n-3 + n-6* 0.0 14+/- 0.0074 (n = 5) 0.0 17+/- 0.003 (n = 3) 0.0083 +/- 0.001 (n = 18) 0.014+/- 0.002 (n= 17)**
C22:3 n-9* + n-7* 0.025 +/- 0.003 (n = 19)** 0.052+/- 0.005 (n= 17)**
C22:2 0.032+/- 0.0066 (n = 7) 0.033 +/- 0.00092 (n = 3) 0.023+/- 0.006 (n = 11) 0.033 +/- 0.004 (n = 10)
C22:1 0.2+/- 0.034 (n= 7) 0.2+/- 0.027 (n= 3) 0.18 +/-0.04 (n= 19) 0.17+/- 0.01 (n= 17)
C22:0 0.38 +/-0.034 (n= 7) 0.31 +/-0.056 (n= 3) 0.31 +/-0.08 (n= 19)* 0.19 +/-0.02 (n= 17)
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C24:6 0.084+/- 0.0099 (n =7) 0.11+!- 0.021 (n= 3) 0.013+/- 0.002 (n = 19)** 0.021+/- 0.002 (n= 17)**

C24:5 0.069 +/- 0.012 (n= 7) 0.085 +/- 0.025 (n= 3) 0.025 +/- 0.003 (n = 19)** 0.042+/- 0.005 (n= 17)**
C24:4 0.013+/- 0.0046 (n= 6) 0.019 +/- 0.007 (n= 3) 0.02+/- 0.002 (n= 11)A 0.035+/- 0.004 (n= 10)**

C24:3 0.0035 +/- 0.002 (n = 3) 0.0079 +/- 0.003 (n = 4)

C24:2 0.063+/- 0.0054 (n= 7) 0.058 +/- 0.0061 (n= 3) 0.021+/- 0.004 (n= 11)** 0.022+/- 0.002 (n= 10)

C24:1 0.36+/- 0.048 (n= 7) 0.3 +/- 0.027 (n= 3) 0.14+/- 0.03 (n= 11)** 0.12+/- 0.014 (n= 10)
C24:0 0.4 ±/- 0.044 (n 7) 0.37 +/- 0.097 (n= 3) 0.23 +/- 0.09 (n = 1 1)^ 0.2+/- 0.05 (n = 10)
Quantification of liver free fatty acids are written as mean +/- standard error for each of the diet and genotype conditions. Number of
mice analyzed per condition is denoted in parentheses. Statistical analysis was performed using two-tailed Student T-tests. L-PTPlb-
/- were compared to control on respective diet, and HFD control were compared to NC control. ** Paw<.O1, * = Paw < .05, =
Paw<. 1. An asterick by fatty acid species indicates that the fatty acid measurement likely corresponds to that species, but its
identification was not rigorously confirmed.

Table 5: Quantification of Hepatic Triglycerides and Cholesterol
Absolute quantification of triglycerides and cholesterol (nmol lipid / mg liver tissue)

NC HFD
Control L-PTP1b' Control L-PTP1lb

Tg C48:3 0.13 +/- 0.044 (n= 7) 0.11 +/- 0.048 (n= 3) 0.085 +/- 0.024 (n= 10) 0.12+/- 0.022 (n 7)
Tg C48:2 0.31 +/-0.11 (n= 7) 0.25 +/-0.12 (n= 3) 0.17 +/- 0.048 (n= 10) 0.36+/- 0.077 (n= 7)*
Tg C48:1 0.095 +/- 0.024 (n = 6) 0.37 +-0.061 (n =5)**

Tg C50:4 0.38 +/- 0.12 (n= 7) 0.4 +/-0.19 (n= 3) 0.26+/- 0.076 (n= 10) 0.56 +/- 0.12 (n= 7)*
Tg C50:3 1.8 +/- 0.6 (n = 7) 2.2+/- 1.1 (n= 3) 1.2+/- 0.35 (n = 10) 3 +/- 0.65 (n= 7)*
Tg C50:2 3.2+/- 1.1 (n -7) 3.7+- 1.7 (n= 3) 2+/- 0.64 (n=10) 6 +-1.3 (n= 7)**
Tg C50:1 0.96 +/- 0.29 (n= 7) 1.1 +/- 0.44 (n= 3) 0.76 +/- 0.24 (n= 10) 2.3 +/- 0.48 (n= 7)**
Tg C52:5 1.7 +/-0.51 (n= 7) 0.95 +/-0.58 (n= 3) 0.68 +/-0.19 (n= 10) 1.3 +/- 0.24 (n=7)^
Tg C52:4 11+/- 3 (n= 7) 14 +-5.7 (n= 3) 4.8+/- 1.4 (n=10) 9.6+!- 1.8 (n= 7)*
Tg C52:3 17+/- 4.1 (n= 7) 25 +/-9.6 (n= 3) 14 +-4 (n= 10) 34+!- 7.3 (n= 6)*
Tg C52:2 5.5+!- 1.2 (n= 7) 9.5 +-3.3 (n= 3) 11 +/- 3.8 (n= 10)A 36 +/-8.6 (n= 6)**
Tg C54:7 1.3 +-0.35 (n= 7) 1.4 +-0.52 (n= 3) 0.12+/-0.043 (n=4)** 0.086+/- 0.016 (n= 6)
Tg C54:6 2.7+/- 0.72 (n= 7) 3 +/- 1.5 (n= 3) 0.63 +/- 0.16 (n= 10)* 0.67+/- 0.13 (n= 7)
Tg C54:5 3.9 +/- 1 (n = 7) 5 +/- 2.4 (n = 3) 2.6 +/- 0.59 (n = 10) 3.7 +/- 0.69 (n = 7)
Tg C54:4 3.6 +/- 0.9 (n= 7) 5.1 +/- 2.2 (n= 3) 5.8 +/- 1.4 (n= 10) 11 +/- 2.1 (n=-7)*
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Tg C54:3 1.7+/- 0.34 (n= 7) 2.4+/- 0.9 (n = 3) 5.8 ±/- 1.5 (n = 10)* 15 +/- 3.2 (n= 7)*
Tg C54:2 0.25 +/- 0.042 (n= 7) 0.31+/- 0.087 (n= 3) 0.77+/- 0.31 (n= 10)* 2.2+/- 0.54 (n= 7)*
Tg C56:10 0.04 +-0.011 (n = 7) 0.037 +-0.019 (n = 3)
Tg C56:9 0.44 +/- 0.12 (n= 7) 0.48 +/- 0.21 (n= 3) 0.018 +/- 0.0046 (n= 8)** 0.012+/- 0.002 (n= 6)
Tg C56:8 4.5 ±/- 1.1 (n = 7) 5.3 +/- 2.2 (n = 3) 0.12+/- 0.028 (n= 10)** 0.077+/- 0.015 (n = 7)
Tg C56:7 3.3 /-0.7 (n= 7) 4.5 +-1.9 (n= 3) 0.39 +/-0.11 (n= 10)** 0.33 +/-0.056 (n= 7)
Tg C56:6 0.63 +/- 0.14 (n= 7) 0.83 +/- 0.35 (n= 3) 0.41 +/- 0.13 (n= 10) 0.55 +/- 0.099 (n= 7)
Tg C56:5 0.27 +/-0.049 (n= 7) 0.37 +/-0.15 (n= 3) 0.38 +/-0.11 (n= 10) 0.81 +/-0.16 (n= 7)*
Tg C56:4 0.18 +/- 0.033 (n= 7) 0.24 +/- 0.096 (n = 3) 0.36 +/- 0.14 (n = 10)^ 1.1+/- 0.26 (n= 7)**
Tg C56:3 0.17 +/-0.04 (n= 6) 1.4 +/-0.38 (n= 5)**
Tg C56:2 0.031+/- 0.012 (n= 6) 0.095 +/- 0.032 (n= 5)*
Total Triglycerides 62+/- 16 (n = 7) 84 +/- 33 (n = 3) 58 +/- 7.5 (n = 19) 110 +/- 15 (n= 16)**
Total Cholesterol 3 +/- 0.19 (n= 7) 3 +/- 0.29 (n= 3) 5.6 +/- 0.16 (n= 10)** 5.5 +/- 0.2 (n= 7)

% Liver triglyceride composition
NC HFD

Control L-PTP1b~' Control L-PTP1b~
Tg C48:3 0.2+/- 0.017 (n= 7) 0.12+/- 0.025 (n= 3)* 0.17 +/- 0.019 (n= 10)* 0.11 +/- 0.017 (n= 6)
Tg C48:2 0.47+/- 0.042 (n = 7) 0.29 +/- 0.04 (n= 3)* 0.34 +/- 0.035 (n 10) 0.3 +/- 0.034 (n= 6)
Tg C48:1 0.34 +/- 0.11 (n 6) 0.23 +/- 0.023 (n= 4)
Tg C50:4 0.58 +/- 0.035 (n= 7) 0.45 +/- 0.057 (n= 3)* 0.48 +/- 0.037 (n= 10) 0.47+/- 0.05 (n= 6)
Tg C50:3 2.6 +/- 0.21 (n = 7) 2.5 +/- 0.27 (n = 3) 2.2+/- 0.2 (n = 10) 2.4+/- 0.16 (n = 6)
Tg C50:2 4.9 +/- 0.37 (n = 7) 4.3 +/- 0.32 (n = 3) 3.6 +/- 0.27 (n = 10)** 4.8 +/- 0.19 (n= 6)
Tg C50:1 1.6+/-0.14 (n= 7) 1.3 +/- 0.055 (n= 3) 1.6+/-0.2 (n= 10) 1.9 +/-0.15 (n= 6)
Tg C52:5 2.6 +/- 0.18 (n- 7) 1.5 +/- 0.73 (n= 3)* 1.4 +/- 0.063 (n= 10)* 1.1 +/- 0.093 (n= 6)
Tg C52:4 17+/-0.47 (n= 7) 17 +/- 0.23 (n= 3) 9.1+/-0.52 (n= 10)^ 7.6 +/- 0.46 (n 6)**
Tg C52:3 27+/-0.89 (n= 7) 30+/-0.31 (n= 3)^ 26+/- 1.5 (n= 10) 27+/- 0.71 (n 6)**
Tg C52:2 9.3 +/- 0.55 (n= 7) 12+/-0.84 (n= 3)* 21 +/- 1.2 (n= 10)** 28 +/- 1.1 (n= 6)**
Tg C54:7 1.9+/-0.13 (n= 7) 1.7+/- 0.23 (n= 3) 0.17+/-0.021 (n=4)** 0.077+- 0.016 (n 6)**
Tg C54:6 4.2+/- 0.15 (n= 7) 3.4 +/- 0.42 (n= 3)* 1.4 +/- 0.23 (n = 10)* 0.57+/- 0.057 (n 6)**
Tg C54:5 6.2+/- 0.22 (n= 7) 5.6 +/- 0.8 (n= 3) 5.5 +/- 0.65 (n = 10)** 3 +/- 0.2 (n= 6)**
Tg C54:4 5.9+/- 0.22 (n =7) 5.9 +/- 0.72 (n= 3) 13 +/- 1 (n = 10)* 8.7 +/- 0.22 (n =6)**

Tg C54:3 2.9 +/- 0.22 (n= 7) 2.9 +/- 0.31 (n= 3) 12 +/- 1.4 (n = 10) 12 +/- 0.55 (n= 6)**
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Tg C54:2 0.47+/- 0.078 (n= 7) 0.41 +/-0.087 (n= 3) 1.5 +-0.17 (n= 10) 1.9 +/-0.31 (n= 6)*

Tg C56:10 0.065 +/- 0.0071 (n = 7) 0.043 +/- 0.006 (n 3)

Tg C56:9 0.72 +/- 0.065 (n = 7) 0.56 +/- 0.052 (n= 3) 0.036 +/- 0.0031 (n = 8)** 0.011 +/- 0.0025 (n= 5)**

Tg C56:8 7.4 +-0.66 (n= 7) 6.6+/- 1.1 (n= 3) 0.25 +/-0.015 (n= 10)** 0.07 +/-0.012 (n 6)**

Tg C56:7 5.5 ±/- 0.32 (n = 7) 5.5 ±/- 0.52 (n= 3) 0.82+/- 0.065 (n = 10)** 0.3 +/- 0.057 (n 6)**

Tg C56:6 1.1 +/- 0.078 (n= 7) 0.98 +/- 0.031 (n = 3) 0.8 +/- 0.034 (n = 10)** 0.49 +/- 0.075 (n 6)**

Tg C56:5 0.48 +/- 0.055 (n= 7) 0.44 +/- 0.045 (n = 3) 0.76 +/- 0.052 (n= 10) 0.69 +/- 0.069 (n 6)*

Tg C56:4 0.34 +/- 0.045 (n= 7) 0.28 +/- 0.059 (n = 3) 0.66 +/- 0.047 (n 10)* 0.95 +/- 0.13 (n= 6)**

Tg C56:3 0.49 +/-0.056 (n= 6)* 0.88 +/-0.16 (n= 4)

Tg C56:2 0.09+/- 0.023 (n= 6) 0.061+/- 0.015 (n = 4)

Quantification of liver triglycerides and cholesterol is written as mean +/- standard error for each of the diet and genotype conditions.
Number of mice analyzed per condition is denoted in parentheses. Statistical analysis was performed using two-tailed Student's T-
tests. L-PTPlb-/- mice were compared to control on respective diet, and HFD control were compared to NC control. ** = Pw<.Ol, *
= Paw < .05, A= Paw<.1.

Table 6: Percent Compositions of Serum Triglycerides
HFD Serum Triglyceride Compositions

Absolute Quantification (mg/dL) Percent Composition
Control L-PTP1b~~ Control L-PTP1b'

Tg C48:3 0.19 +/-0.09 (n = 7) 0.18 /-0.17 (n =6) 0.39 /-0.13 (n = 7) 0.32 +/-0.18 (n = 6)
Tg C48:2 0.26 +/- 0.14 (n = 7) 0.3 +/- 0.25 (n = 6) 0.53 +/- 0.19 (n = 7) 0.56 +/- 0.24 (n = 6)
Tg C50:3 0.71 +/- 0.32 (n = 7) 0.75 ±/- 0.61 (n = 6) 1.47 +/- 0.46 (n = 7) 1.44 +/- 0.54 (n = 6)
Tg C50:2 1.89 /-1.04 (n = 7) 2.45 +/-1.81 (n =6) 3.89 +/-1.54 (n = 7) 4.8 +/-1.43 (n = 6)
Tg C50:1 1.81 +/-0.91 (n = 7) 2.31 +/-1.29 (n =6) 3.68 +/-1.14 (n = 7) 5.01 +/0.27 (n = 6)*
Tg C50:0 0.27 +/- 0.14 (n = 7) 0.33 +/- 0.12 (n = 6) 0.54 +/- 0.15 (n = 7) 0.83 +/- 0.28 (n = 6)*
Tg C52:7 0.09 +/- 0.03 (n = 7) 0.06 +/- 0.03 (n = 6) 0.19 +/- 0.07 (n = 7) 0.13 +/- 0.02 (n = 6)A

Tg C52:6 0.4 +/- 0.08 (n = 7) 0.31 +/- 0.18 (n = 6) 0.87 +/- 0.17 (n = 7) 0.65 ±/- 0.07 (n = 6)*
Tg C52:5 2.16 +/- 0.57 (n = 7) 1.79 +/- 1.25 (n = 6) 4.55 ±/- 0.53 (n = 7) 3.56 +/- 0.92 (n = 6)*
Tg C52:4 8.4 +/- 2.42 (n = 7) 7.42 +/- 4.66 (n = 6) 17.67 +/- 2.36 (n = 7) 15.23 +/- 2.72 (n = 6)
Tg C52:3 8.26 +/-2.38 (n =7) 7.54 /-3.87 (n =6) 17.3±!- 1.55 (n =7) 16.72 +/-1.17 (n = 6)
Tg C52:2 6.92 +/- 2.62 (n = 7) 8.06 +/- 3.45 (n = 6) 14.2 +/- 1.94 (n = 7) 18.73 +/- 2.79 (n = 6)**
Tg C54:7 0.42 +/- 0.13 (n = 7) 0.29 +/- 0.16 (n = 6) 0.91 +/- 0.31 (n = 7) 0.64 +/- 0.08 (n = 6)A
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Tg C54:6 1.6 +/- 0.48 (n = 7) 1.12 +/- 0.62 (n = 6) 3.46 +/- 0.98 (n = 7) 2.47 +/- 0.28 (n = 6)*
Tg C54:5 3.3 +/-0.7 (n =7) 2.6+!- 1.44 (n =6) 7.08 +/- 1.3 (n 7) 5.64 +/0.44 (n = 6)*
Tg C54:4 2.5 +/-0.65 (n =7) 2.16 +/-1.17 (n =6) 5.34+/- 1.1 (n =7) 4.81 +/-0.59 (n =6)
Tg C54:3 4.29 +/-1.06 (n =7) 4.73 /-2.15 (n =6) 9.05 +/-1.17 (n =7) 10.86 +/1.2 (n =6)*
Tg C54:2 0.9 +/- 0.47 (n = 7) 0.94 +/- 0.44 (n= 6) 1.8 +/- 0.48 (n= 7) 2.15 +/- 0.32 (n 6)
Tg C56:9 0.14 +/- 0.07 (n = 7) 0.07 +/- 0.04 (n =6)* 0.32 +/- 0.17 (n 7) 0.16 +/- 0.03 (n 6)*
Tg C56:8 0.64±!- 0.31 (n =7) 0.32+/- 0.17 (n =6)^ 1.4+!- 0.7 (n = 7) 0.74+/- 0.16 (n 6)*
Tg C56:7 1.12 +/- 0.55 (n = 7) 0.7 +/- 0.3 (n = 6) 2.43 +/- 1.17 (n = 7) 1.68 +/- 0.39 (n = 6)
Tg C56:4 0.38 +/-0.11 (n =7) 0.42 +/-0.14 (n = 6) 0.8 /-0.09 (n =7) 1.06 +/-0.33 (n =6)^
Tg C56:3 0.37 +/- 0.17 (n= 7) 0.42 +/- 0.16 (n = 6) 0.75 +/- 0.18 (n= 7) 1.02 +/- 0.26 (n = 6)^
Tg C58:10 0.16 +/- 0.13 (n = 7) 0.06 +/- 0.02 (n = 6)^ 0.36 +/- 0.27 (n = 7) 0.16 +/- 0.05 (n = 6)
Tg C58:9 0.25 +/- 0.17 (n = 7) 0.12 +/- 0.04 (n = 6)^ 0.56 +/- 0.38 (n = 7) 0.32 +/- 0.13 (n = 6)
Tg C58:8 0.21 +/- 0.14 (n = 7) 0.12 +/- 0.03 (n = 6) 0.47 +/- 0.28 (n = 7) 0.32 +/- 0.12 (n = 6)
Total 47.64 +/- 12.19 (n = 7) 45.55 +/- 24.01 (n = 6)
Quantification of liver triglycerides and cholesterol is written as mean +/- standard error for each of the diet and genotype conditions.
Number of mice analyzed per condition is denoted in parentheses. Statistical analysis was performed using two-tailed Student's T-
tests. L-PTPlb-/- mice were compared to control on respective diet, and HFD control were compared to NC control. ** = Paw<.01, *
= Praw < .05, A = Praw<.1.

Table 7: Phosphosites Sets Predictive of 3 / o6 PTP1b PUFA
Set enric'hments for hosnhosites nredit~ 3fb T~.gpgniutalIrdPT~A(~. ~. 1. Cf23
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Praw NES Category Label N Category Membership Source
CYP2El Y426, CYB5A Y1 1, CAR2 Y1 14, LDHA Y239, PGM1
Y353, GAPDH Y316, PRDX6 Y89, CTH Yl 13, CPS1 Y162,
TGM2 Y369*, ARGJ Y188, GPX Y147, ARGJ Y197, PCBDJ Y70,
ENO] Y44, GAPDH Y328, A CATi Y328, HADHA Y724, PGAM2
Y92, CPS] Y140, GLUD] Y135, CPSJ Y590, GLUD] Y512, ARGJ

1.1E-04** 2.44 Metabolic process 25 Y265, CPS1 Y1450 GO
CYP2E1 Y426, CYB5A Y1 1, SAHH Y193, HPD Y232, LDHA
Y239, HPD Y221, HGD Y40, GAPDH Y316, PRDX6 Y89, FASN
Y1248, ALDH1A7 Y484*, UOX Y288, GPX Y147, ALDHGL1
Y848, CAT Y231, ALDH6AJ Y268, UGDH Y108, GAPDH Y328, GO,
CAT Y84, UOX Y230, HADHA Y724, GLUD] Y135, GLUDJ Y512, SwissPro,

1.1E-04** 2.43 Oxidation reduction 24 ACAD11 Y323 Literature



CYP2El Y426, CALMI Y100, GLUL Y336, CYB5A Yl 1, PEBP1
Y181, HPD Y232*, HPD Y221, VCP Y1 73, ASS] Y133, CAV Y14

Endoplasimic Y6, CAT Y231, ALDOB Y204, ACSL5 Y69, CAT Y84, HSPD] Y385,
1.4E-03A 2.13 Reticulum 16 ASS] Y322, GO

NES stands for normalized enrichment scores. ** = FDR = .01, * = FDR = .05, ^= FDR = .1. NES > 0 indicates that increased

phosphorylation on sites in the pathway are positively predictive of proportion of 03 / o6 PUFA, while NES < 0 indicates that

increased phosphorylation on sites in the pathway are negatively predictive. The phosphosites in each category membership are
ordered from most positively to most negatively predictive. Those phosphosites that contributed most to the enrichment (compose the

"leading edge") appear in regular font, while the other sites in that category are italicized.

Table 8: Phosphosite Sets Predictive of c97 / o9 PTP1b PUFA
Set enrichments for hosphosites predictive of PTP1b-dependent 0)7 / c9 PUFA (C20:3, C22:3, C20:2, C18:3)

Praw NES Category Label N Category Membership Source
CYB5A Yl 1, ALDH1A7 Y484, CYP2E1 Y426, GAPDH Y316,
SAHH Y193, FASN Y1248, HPD Y221, LDHA Y239, HPD Y232,
PRDX6 Y89, CAT Y231*, GPX1 Y147, HGD Y40, UOX Y288,
ALDH]LJ Y848, ALDH6A1 Y268, GLUD] Y135, CAT Y84, GAPDH GO,
Y328, A CAD]] Y323, UGDH Y108, UOX Y230, HADHA Y724, SwissPro,

<2E-05** 2.53 Oxidation reduction 24 GL UD1 Y512 Literature
CYB5A Y1 1, CYP2El Y426, GAPDH Y316, TGM2 Y369, CAR2
Y1 14, LDHA Y239, PGM1 Y353, PRDX6 Y89, CPS1 Y162, ARGI
Y188, GPX1 Y147, ENO1 Y44*, GLUD] Y135, CTH Y113, PCBD1
Y70, GAPDH Y328, PGAM2 Y92, CPS] Y590, HADHA Y724, ARGJ
Y197, ACATi Y328, ARGJ Y265, GLUD] Y512, CPS] Y140, CPS]

7.4E-04* 2.31 Metabolic process 25 Y1450 GO
ACLY Y672, SAHH Y193, SHP-2 Y584, FASN Y1248, HPD
Y221, TGM2 Y369, TARS Y297, CALMI Yl00, CAR2 Y114,
LDHA Y239, PGM1 Y353, HPD Y232, PRDX6 Y89, VCP Y173,
CAT Y231, BCAR1 Y271, PITPNA Y141, GRF-1 Yl 105*, OTC
Y317, GNMT Y221, CrkL Y198, GPX1 Y147, Hrs Y216, PLCGJ
Y771, LHPP Y159, GSK3B Y216 S219, ALDOB Y204, p38-alpha
Y182 T180, ERK2 Y185 T188/T183, ERK] Y205, vinculin Y822,
PGKJ Y196, ERK2 Y185, IRS2 Y671, BCAR1 Y391, CAVJ Y14 Y6,
CAT Y84, GSK3B Y216, CTNND1 Y904, vinculin Y692, Shc Y313,

1.1 E-03A 2.25 Cytosol 88 Abi Y393, SHMTJ Y28, BCAR] Y238, JAK2 Y570, CTNND1 Y96, GO
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BCARJ Y414, FAK Y576, Yes Y220, GNMT Y34, SHMTJ Y67, IRS2
Y649, GRF-1 Y1087, BCARJ Y556, Lyn Y173, SEC14L4 Y36,
BCARJ Y253, BCARJ Y291, PGAM2 Y92, IRS2 Y814, UGDH Y108,
Lyn Y376, FBPJ Y245, Yes Y424, Doki Y408, SHP-2 Y62, FAK
Y397, CTNNB1 Y654, p38-alpha Y182, FAK Y861, GOT] Y264,
Nckl Y105, RPL13A Y137, DLG1 Y783, eEFJA] Y177, talin 1
Y1116, Fgr Y197, FAK Y577 T575, SCAP2 Y260, HSPDJ Y385,
FBPJ Y216, SECJ4L4 Y36, STAT3 Y686, CrkL Y132, Doki Y361,
PIK3RJ Y197, Doki Y450, FBPJ Y265

CYB5A Y1 1, CYP2E1 Y426, GLUL Y336, HPD Y221, CALM1
Y100, PEBP1 Y181, HPD Y232, VCP Y173, CAT Y231, ASS1

Endoplasimic Y1 33*, ALDOB Y204, CA Vi Y14 Y6, CAT Y84, ACSL5 Y69, HSPDJ
1.3E-03^ 2.23 Reticulum 16 Y385, ASS] Y322 GO
NES stands for normalized enrichment scores. ** = FDR = .01, * = FDR = .05, A = FDR .1. NES > 0 indicates that increased

phosphorylation on sites in pathway are positively predictive of proportion of o7 / o9 PUFA, while NES < 0 indicates that increased
phosphorylation on sites in the pathway are negatively predictive. The phosphosites in each category membership are ordered from

most positively to most negatively predictive of phenotype. Those phosphosites that contributed most to the enrichment (compose the

"leading edge") appear in regular font, while the other sites in that category are italicized.

Table 9: Phosphosite Sets Predictive of Steatosis
Praw NES Category Label N Category Membership Source

CYB5A Y 11, ALDH1A7 Y484, CYP2El Y426, GAPDH Y316,
SAHH Y193, FASN Y1248, HPD Y221, LDHA Y239, HPD Y232,
PRDX6 Y89, CAT Y231*, GPX1 Y147, HGD Y40, UOX Y288,
ALDHJLJ Y848, ALDH6A] Y268, GLUD] Y135, CAT Y84, GAPDH GO,
Y328, A CAD]] Y323, UGDH Y108, UOX Y230, HADHA Y724, SwissPro,

<2E-05** 2.53 Oxidation reduction 24 GL UD] Y512 Literature
CYB5A Yl 1, CYP2E1 Y426, GAPDH Y316, TGM2 Y369, CAR2
Y1 14, LDHA Y239, PGM1 Y353, PRDX6 Y89, CPS1 Y162, ARG1
Y188, GPX1 Y147, ENOl Y44*, GLUD] Y135, CTHY113, PCBD]
Y70, GAPDH Y328, PGAM2 Y92, CPS] Y590, HADHA Y724, ARGI
Y197, ACAT] Y328, ARGI Y265, GLUD] Y512, CPS] Y]40, CPS]

7.4E-04* 2.31 Metabolic process 25 Y1450 GO
ACLY Y672, SAHH Yl93, SHP-2 Y584, FASN Y1248, HPD

1.1E-03A 2.25 Cytosol 88 Y221, TGM2 Y369, TARS Y297, CALM1 Yl00, CAR2 Yl14, GO
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LDHA Y239, PGM1 Y353, HPD Y232, PRDX6 Y89, VCP Y173,
CAT Y231, BCAR1 Y271, PITPNA Y141, GRF-1 Y 1105 *, OTC
Y317, GNMT Y221, CrkL Y198, GPXJ Y147, Hrs Y216, PLCG1
Y771, LHPP Y159, GSK3B Y216 S219, ALDOB Y204, p38-alpha
Y182 T180, ERK2 Y185 T188/Ti83, ERK] Y205, vinculin Y822,
PGKJ Y196, ERK2 Y185, IRS2 Y671, BCARJ Y391, CAVJ Y14 Y6,
CAT Y84, GSK3B Y216, CTNNDJ Y904, vinculin Y692, Shc] Y313,
Ab Y393, SHMT1 Y28, BCARJ Y238, JAK2 Y570, CTNNDJ Y96,
BCARJ Y414, FAK Y576, Yes Y220, GNMT Y34, SHMTJ Y67, IRS2
Y649, GRF-1 Y1087, BCAR1 Y556, Lyn YJ 73, SEC14L4 Y36,
BCARJ Y253, BCAR1 Y291, PGAM2 Y92, IRS2 Y814, UGDH Y108,
Lyn Y376, FBPJ Y245, Yes Y424, Dokl Y408, SHP-2 Y62, FAK
Y397, CTNNBJ Y654, p38-alpha Y182, FAK Y861, GOT] Y264,
Nckl Y105, RPL13A Y137, DLGJ Y783, eEFJAJ Y177, talin 1
Y1116, Fgr Y197, FAK Y577 T575, SCAP2 Y260, HSPD1 Y385,
FBPJ Y216, SEC14L4 Y36, STAT3 Y686, CrkL Y132, Dokl Y361,
PIK3R] Y197, Dokl Y450, FBPJ Y265
CYB5A Yl 1, CYP2E1 Y426, GLUL Y336, HPD Y221, CALMI
Y100, PEBP1 Y181, HPD Y232, VCP Y173, CAT Y231, ASSi

Endoplasimic Y133*, ALDOB Y204, CAVJ Y14 Y6, CAT Y84, ACSL5 Y69, HSPD1
1.3E-03^ 2.23 Reticulum 16 Y385, ASS] Y322 GO
NES stands for normalized enrichment scores. ** = FDR = .01, * = FDR = .05, A = FDR = .1. NES > 0 indicates that
phosphorylation on sites in pathway most significantly increase with steatosis, while NES < 0 indicates that phosphorylation on sites
in the pathway decrease with steatosis. The phosphosites in each category membership are ordered from most positively-predictive of
steatosis to most negatively-predictive of steatosis. Those phosphosites that contributed most to the enrichment (compose the "leading
edge") appear in regular font, while the other sites in that category are italicized.
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3. Leveraging MS-based PTM datasets: strategies for multivariate
modeling and pathway inference in the context of noise and
missing data

Introduction

As described in Chapter 1, breakthroughs in mass-spectrometry- (MS) based bioanalytical

methods have had a tremendous impact on the study of cellular signaling. MS-based studies

have identified thousands of post-translation modifications (PTMs) on proteins, demonstrating

that this mode of signal transduction occurs on a scale previously not conceived. Although

identification of a single PTM sometimes motivates its characterization via molecular and

biochemical studies, quantitative MS-based experiments, capable of measuring hundreds of PTM

responses to diverse cues, provide unique opportunities for computational modeling and machine

learning techniques to infer biological insight from these measurements on a broader scale.

One of the most exciting challenges for analysis of these datasets is the design of computational

techniques to address particular biological questions. In recent years, numerous computational

methods have been developed specifically for analysis of these unique datasets. Promising

examples include: (1) adaptation of the Steiner-prize-collecting-tree algorithm to infer protein

network connectivity from parallel measurements of phosphosite and gene transcription using

the protein interactome (Huang and Fraenkel, 2009), (2) partial least-squares regression (PLSR)

to model cancer cell phenotypes as functions of underlying phosphorylation site measurements

(yielding both quantitatively predictive models of important phenotypes and new evidence for

the involvement of particular phosphosites in response mediation) (Huang et al., 2010; Kumar et

al., 2007), and (3) enrichment analysis to infer shared modes of regulation (e.g., kinase

regulation, cellular location) for phosphosites with similar responses to cues or perturbations
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(Joughin et al., 2009; Naegle et al., 2011). These analysis frameworks leverage the multivariate

nature of and quantitative information from these datasets. They provide interpretable biological

predictions, and, as a result, are essential to ensuring that biological insight scales with MS-based

PTM datasets.

Gene Set Enrichment Analysis as described in (Subramanian et al., 2005) (GSEA) enables

detection of gene sets relevant to particular phenotypes, based on quantitative transcriptional

datasets, and adaptation of the GSEA framework for the analysis of quantitative, MS-based PTM

datasets would offer important advantages. Briefly, the GSEA method requires two inputs: (1) a

gene set, defined based on prior biological knowledge (e.g., biological function or chromosomal

location) and (2) a list of genes that are ranked according to correlation with a phenotypic or

class distinction (e.g., cellular proliferation or tissue type). The method, based on the

Kolmogorov-Smirnov statistic, tests whether members of the gene set are significantly enriched

at the top or bottom of the list, which, in turn provides evidence for positive or negative

regulation of that gene set in the phenotype. This method was first described in a transcriptional

analysis of muscle biopsies, comparing diabetics to healthy controls, and GSEA was sensitive

enough to detect reduced expression of oxidative phosphorylation genes in diabetics, even

though the average decrease in gene expression was only -20% (Mootha et al., 2003). Thus,

GSEA, through incorporation of quantitative information from all genes in the study (the whole

list), is capable of detecting even subtle differences in gene pathways.

As an alternative to GSEA, discrete overlap statistics, such as the cumulative hypergeometric

distribution, are commonly used. However, these methods lack the ability to detect subtle

differences in gene set expression, because they rely on an arbitrary cutoff to segregate genes

into separate sets. For example, to use an overlap statistic, gene measurements might be divided
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into the follow two sets: (1) genes that positively correlate to the phenotype with a raw p-value

less than some cutoff, a, and (2) the other genes. No matter how a is selected, division of the

gene measurements into two discrete sets results in a loss of quantitative information, and only

those gene sets with enough genes at an a-level of significance will be detected. Equally

problematic, however, is that p-values calculated using the hypergeometric distribution assume

gene independence, leading to an overestimation of the enrichment significance. As an example,

many genes share transcription factors and are therefore not independent. Similarly, this would

present a problem for enrichment analysis of PTMs, as a single kinase, for example, might

regulate the phosphorylation of several proteins under certain conditions. In contrast, GSEA

accounts for the possibility of gene dependence, as significance is assessed by permutation of

phenotype labels. This method preserves the gene correlation structure and thereby factors

dependence relationships into the null model. Thus, relative to commonly used overlap statistics,

GSEA offers improvement in both sensitivity and estimation of significance.

Incorporation of GSEA principles could strengthen several computational techniques that have

already been applied to PTM datasets. Most obviously, clustering-based enrichment analysis

methods could be improved by adoption of GSEA-style analysis. A previous study reveals the

power of enrichment analysis for deriving biological insight from unsupervised clustering of

phosphotyrosine datasets (Naegle et al., 2011). However, this analysis relies on overlap-

statistics, and therefore could improve with the use of the weighted enrichment score, the statistic

used for GSEA analysis, which, as described above, would boost sensitivity and decrease p-value

inflation. Thus, application of GSEA would enhance current clustering-based enrichment-

analysis strategies.
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Another important application is multivariate regression modeling of phenotypes as functions of

PTM measurements. In two previous studies relating phosphotyrosine measurements to cellular

phenotypes, models were initially constructed using all phosphosite measurements (-100)

(Huang et al., 2010; Kumar et al., 2007). Model reduction techniques were then used to rank

phosphosites according to importance for model prediction and build a new model on a reduced

set of phosphosite determinants (-10). This procedure has several benefits. First, reducing the

number of nonessential model variables can reduce over-fitting and improve model predictive

performance. Second, from hundreds of phosphotyrosine measurements, the experimenter can

focus on a select core of phosphosites that are most predictive of phenotype. Despite these

benefits, the model reduction process may suffer from problems paralleled in early gene

expression analyses.

One of the first analysis methods for gene expression data involved ranking genes according to a

phenotype or treatment condition and then selecting the most highly ranked genes for further

investigation. If significance was calculated and multiple-hypothesis-testing (MHT) procedures

applied to gene expression comparisons, often very few or none of the comparisons were

significant, providing researchers with limited insight. Often the most highly ranked genes were

related in no obvious way. In the PLSR modeling framework described above, phosphosites

were simply ranked according to a predictive metric. Similar to gene expression analysis, were

significance for these sites calculated, and, additionally, were MHT taken into account, it is

likely that few or none of the phosphosites would be significantly predictive. Although it is

possible that the most highly ranked phosphosites, incorporated into the reduced model, may

genuinely be the most important drivers of the phenotype, consideration of GSEA principles and

incorporation of pathway-level information may significantly enhance the analysis. For
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example, cumulative but subtle phosphorylation changes across many proteins in a given

pathway (or pathways) might multivariately contribute to a response. However, pathway-level

detection methods, such as GSEA, have not been incorporated into PLSR analyses.

In addition to consideration of pathway-level regulation with a GSEA-style framework,

multivariate modeling of MS-based PTM data could be improved by addressing a challenge that

is inherent to MS-based technology. MS datasets, amassed by combination of multiple individual

MS experiments, suffer from significant amounts of systematically missing data. Current

quantitative MS methods enable simultaneous comparison of eight samples or fewer, the

maximum being achieved by 8-plex iTRAQ (AB Sciex), an isobaric mass-tag reagent. Although

methods exist for quantification of a pre-existing list of peptides (Wolf-Yadlin et al., 2007), in

practice, most experiments are run using data-dependent acquisition, a discovery mode in which

the mass-spectrometer selects peptides for detection and quantification based on relative peptide

abundance at discrete times during sample acquisition. In other words, with data-dependent

acquisition, phosphosites detected and quantified in one experiment often are not detected and

quantified in a subsequent experiment. This becomes problematic for experimental designs

including more than eight conditions. In that case, multiple experiments must be merged, each

with quantitative data for a set of incompletely overlapping phosphosites, leading to final

datasets with systematically missing data points. The most common approach is to remove

incomplete data and limit computational analysis to the complete data subset, which can result in

>50% reduction in the number of PTM dataset measurements. As experimental designs become

more ambitious, it becomes increasing important to evaluate additional missing data techniques

so that multivariate modeling maximally leverages the PTM measurements.
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Finally, most computational analyses of PTM datasets do not leverage associated measurement

error. In the context of other biological datasets, incorporation of measurement error into

relational Markov and Bayesian models has improved quality of prediction (Akavia et al., 2010;

Jaimovich et al., 2005). In these models, data is weighted according to quality, and the benefits

are two-fold. Higher confidence trends are not diluted in low-confidence trends, but low-

confidence trends can still contribute additively. Thus, via incorporation of measurement error

into the modeling framework, data is utilized maximally. For many PTM datasets, technical

and/or biological replicates are acquired, and the relative error associated with a particular PTM

measurement can vary greatly (-1-100%), even for PTM raw data that has been manually

inspected for quality. For datasets where the quality of PTM measurements is variable, the

computational analysis can only benefit from incorporation of this additional information.

Here, we describe a suite of computational methods that have been developed specifically to

address each of these important issues in the modeling of PTM datasets. Motivated by the

phosphotyrosine dataset described in Chapter 2, we developed and tested (1) GSEA-style

analysis to detect phosphosite set enrichments in the context of supervised clustering and

multivariate regression modeling, (2) a method for incorporation of measurement noise, based on

Gaussian sampling, to both analysis methods, and (3) a general framework for evaluating

missing data methods in the context of multivariate regression modeling. All three of these

methods would advance state-of-the-art analysis for MS-based PTM datasets, and are likely to

offer advantages in other contexts as well.
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Results

Study design

Chapter 2 describes the design of a MS-based phosphoproteomic analysis, whose goal was to

determine how deletion of hepatic protein-tyrosine phosphatase lb (PTPlb) rendered mice

resistant to many of the negative consequences of high-fat diet (HFD) stress. PTPlb modulates

site-specific protein tyrosine phosphorylation, and network-level alterations in protein tyrosine

phosphorylation upon PTPlb deletion were likely drivers of the improved phenotypes in liver-

specific PTPlb deletion mice (L-PTPlb -/-) (Delibegovic et al., 2009). Global, MS-based

analysis of protein phosphotyrosine in L-PTPlb-/- and control liver tissues under both normal

and HFD conditions lead to the identification and quantification of 301 phosphosites, across 48

samples. In addition to genotype and diet treatments, liver tissues were harvested under insulin-

stimulation (insulin) or basal conditions, leading to a total of eight treatment combinations, with

3-8 mice per condition. In order to maximize the number of samples quantified per experiment,

an 8-plex iTRAQ strategy was used for relative quantification of eight samples in each

experiment. Generation of the final dataset (48 samples) was accomplished in ten independent

MS experiments, which were combined by normalizing each to a control sample, kept constant

across experiments. Because it was unknown a priori which phosphosites would be responsive

to the various perturbations, MS experiments were run in data-dependent acquisition (discovery)

mode.

This experimental design enabled the discovery of numerous PTPlb-dependent phosphosites,

many of which had uncharacterized biological function. The central computational goal for this

dataset was to understand how these phosphosites might mediate the therapeutically attractive

phenotypes of L-PTPlb-/- mice. Two complementary approaches are herein described. First,
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enrichment analysis of PTP lb-dependent sites was used to determine whether individual PTP Ib-

dependent phosphosites might interact as a part of a larger pathway or set. Second, quantitative

measurements of metabolic phenotypes were made, presenting an opportunity for multivariate

modeling to elucidate phenotype-phosphosites relationships in vivo.

However, the dataset also presented two unique technical challenges. Foremost, combination of

multiple, data-dependently-acquired experiments lead to a sparse dataset with systematically

missing data (Figure 3.1A). Secondly, while measurement error, estimated from technical

replicates, was relatively small (Trei = 10% ± 10%), fold-changes were small as well (generally <

2-fold), and some of the data points were associated with large measurement error (30-70%)

(Figure 3.1B). Thus, additional goals for this study were to maximally utilize all data available

and to improve computational prediction through the incorporation of measurement error.

Stochastic correlation reflects measurement error

As described above, GSEA analysis was developed to detect set enrichments among lists of

genes, ranked according to correlation with phenotype or treatment condition. The simplest way

to detect pathway and set enrichments among PTP 1b-dependent phosphosites would also involve

correlation. However, noisy data begets spurious correlation, especially for phosphosites with

fold-changes smaller than measurement error. Although it would be possible to remove these

phosphosites using analysis of variance (ANOVA), the sensitivity of GSEA is dependent on

incorporation of the full dataset. In addition, the selection of a cutoff for data inclusion is often

difficult to justify.

A method, termed "stochastic correlation", was devised to incorporate measurement error into

the correlation coefficient calculation, so that the magnitude and significance of the correlation
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reflect measurement certainty. The basic concept is illustrated in Figure 3.2A, which shows two

identical trends but with varying levels of measurement error. Clearly, the higher confidence

trend would also lead to a higher confidence correlation, but too often measurement error is

ignored in the correlation coefficient calculation. Given a mean and estimate of error from

replicate experiments, it is possible to simulate measurements. Here, we propose a method that

combines Gaussian sampling with bootstrapping to model measurement noise and limited

sample size, respectively, resulting in a distribution of correlation coefficients for pairs of

measurements. The significance of the correlation can be readily estimated from resulting

coefficient distributions (Figure 3.2B).

Empirically, this method works as expected. For example, to generate Figure 3.2C, 76

phosphosites from the HFD basal (HFDb) data subset (measured across 13 samples) were

correlated with genotype condition (L-PTPlb-/- or control) using both stochastic and

deterministic correlation (deterministic correlation is based on bootstrapping only). The

stochastic and deterministic sets of significantly correlating phosphosites are displayed in Venn

diagrams. As a point of comparison, ANOVA was used to test the null hypothesis for each

phosphosite (i.e., phosphorylation levels were identical across all samples), and sets of

phosphosites that passed the ANOVA filter also appear in the Venn diagrams. At various levels

of significance, we see that deterministic correlation results in detection of spurious correlations

(blue set, Figure 3.2C), which would have been avoided using ANOVA filtering at the same

significance level. Importantly, correlations significant by stochastic correlation are a subset of

ANOVA-filtered phosphosites only (purple set, Figure 3.2C), suggesting that this method

inherently filters out trends dominated by noise.
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We verified that the significance associated with pairwise correlations in the regime of interest (n

~ 8-15 observations) were consistent between bootstrapping and analytical methods, where the

latter was based on correlation transformation and Student's t distribution. In Figure 3.3A, we

compare p-values from bootstrapping alone ("Deterministic Bootstrap", no Gaussian sampling

2step) to analytical p-values and found good agreement (R = .82), despite relatively small sample

sizes. These correlation coefficients were calculated between 76 phosphosites and seven

responses ("Genotype", "PTPlb", "o7/ o9 PUFA", etc.) for a total of 380 correlations. As

highlighted in the legend of Figure 3.3, each of the responses was associated with a particular

level of measurement error (0% - 32%). Figure 3.3B verifies that stochastic correlation

("Stochastic Bootstrap") truly weights statistical significance according to the associated

measurement error in comparison to bootstrapping alone ("Bootstrap Deterministic"), as all p-

values lie above the diagonal in Figure 3.3B. Importantly, the significance associated with

phosphosite correlations to the noisiest response variable ("C18 SCD Index") are penalized most

(i.e., are located far from the diagonal, indicated by arrows in Figure 3.3B).

Because random permutation is more commonly used to gauge correlation significance than

bootstrapping, we also considered permutation techniques. As with bootstrapping, we first

verified agreement between random permutation ("Deterministic Permutation") and analytical

estimations of correlation significances in our measurement regime (Figure 3.3C). To

incorporate measurement noise into the random permutation framework, we included a Gaussian

sampling step to model measurement error followed by random permutation of the response

variable. The procedure was repeated to generate a distribution of random correlation

coefficients corresponding to the null model, and p-values were estimated. We expected that

higher levels of measurement noise would increase the variance of the null distribution, resulting
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in lower p-values of correlation. However, this procedure failed to weight correlation

significance according to measurement error (Figure 3.3D). Whereas, in the bootstrapping-based

formulation, incorporation of measurement error significantly increased the spread of the

"actual" correlation coefficient distributions involving noisy measurements, incorporation of

measurement error minimally affected the spread of random correlation coefficients for the null

model. Thus, using bootstrapping-based stochastic correlation, we tested the effects of

measurement error in GSEA-style analysis.

PTM Set Enrichment Analysis extends GSEA for PTM datasets

PTM Set Enrichment Analysis (PSEA) is a direct application of GSEA (Subramanian et al.,

2005) to quantitative protein PTM datasets. Similarly to GSEA, analysis begins with a ranked

list, L, of PTMs (e.g., according to dependence on treatment condition, correlation to phenotype)

and a pre-defined set, S, of PTMs (e.g., based on motif similarity, protein pathway). The goal of

PSEA is to determine whether members of S are randomly distributed throughout L or

overrepresented mainly at the top or bottom. Conceptually, sets showing enrichment at the top

or the bottom of the list may represent pathways or modes by which PTMs are regulated by or

contribute to a phenotype or treatment condition. Application of PSEA to the L-PTPlb-/-

phosphotyrosine dataset for the detection of enriched, PTPlb-dependent PTM sets highlights

several unique PTM-specific considerations.

While an increase or decrease in gene abundance is generally interpretable in terms of positive or

negative regulation, the regulation of proteins by PTMs is more nuanced. For example, PTMs

can activate, inhibit, or play some other role in modulating protein behavior. To incorporate this

concept into PSEA, both signed and unsigned ranked lists of PTPlb-dependent sites were

considered. Signed rankings are based on correlation, while unsigned rankings are based on the
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absolute value of correlation. Signed PSEA would detect sets of PTMs that are uniformly

increased or decreased in response to some perturbation. This style of analysis might work well

to detect a set of phosphosites regulated by a treatment-sensitive kinase, in which

phosphorylation of downstream substrates would correlate with kinase activity, or to detect

particular acetylation pathways, some of which have been shown to uniformly increase or

decrease acetylation upon nutrient cues (Zhao et al., 2010). Unsigned analysis, on the other

hand, would detect condition-dependent activation of protein pathways that simultaneously

require increased PTM on some sites but decreased PTM on other sites. For example, the

individual protein Src contains both inhibitory and activating phosphorylation sites, which must

be unphosphorylated and phosphorylated, respectively, for maximal activation (Thomas and

Brugge, 1997). In the context of phosphorylation, unsigned analysis would be appropriate for

detection of a PTM response regulated by both kinases and phosphatases.

In addition, there are some technical considerations for MS-based PTM datasets. In GSEA,

correlation is often used for ranking genes. In contrast to gene expression datasets, MS-based

PTM datasets often have missing data points, and, in that case, correlation itself is not an ideal

metric for ranking the PTM sites. For example, two PTM sites, A and B, might correlate

similarly with a phenotype (i.e., have similar correlation coefficients). If A has more

observations than B, the correlation between the phenotype and A is more significant, and A

should be ranked more extremely in the list than B. Thus, in the context of missing data, PSEA

rankings should incorporate significance into variable ranking.

PSEA of PTPlb-dependent phosphosites was used to compare signed and unsigned analyses as

well as the effects of incorporating measurement error using stochastic correlation (Figure 3.4A).

The L-PTPlb-/- dataset was divided into four independent data subsets for the analysis (normal
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chow (NC) basal (NCb), HFDb, NC insulin (NCi), and HFD insulin (HFDi)). Correlations and

associated significances were calculated independently for each data subset, so that factors, such

as diet or insulin-stimulation would not mask genotype dependence. The four data subset

correlations were then combined using Fisher's method, which resulted in a combined p-value

and overall direction of correlation. For signed analysis, phosphosites were sorted according to

significance (-logio(Pcombined)) multiplied by the direction of correlation. For unsigned analysis,

phosphosites were ranked according to significance only. As can be seen in Figure 3.4A, the

signed list contains many more negatively correlated (increase phosphorylation upon PTPlb

deletion) phosphosites than positively correlated. The construction of the null model takes this

into account. Specifically, to generate the null model, PSEA was performed on the same datasets

but ordered in ranked lists according to correlation with randomly permuted genotype labels.

The corresponding null model histograms of positive and negative normalized enrichment scores

(NES), the PSEA statistics, are shown in Figure 3.4B and C. Figure 3.4D and E show examples

of significant and insignificant PSEA set enrichments. On the left-hand side of each figure is the

signed ranked list of PTP lb-dependent phosphosites, in the middle panel are the locations of the

phosphosites in the phosphosite sets. The calculation of the NES is detailed in Methods, but,

briefly, the NES is derived from a running sum statistic, which is depicted in the right-hand side

panels of Figure 3.4D and E. The running sum begins at the most positively correlated end of

the list (+p) and moves, in the direction of the arrow, to the most negatively correlated end of the

list (-p). For each step through the list taken, the running sum is incremented when a

phosphosite set member is encountered and decremented when one is not. The NES is the

running sum's largest deviation from zero, and the significance of this score is obtained through
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comparison to the null model distribution of NESs, and, when more than one set is tested,

correction for multiple-hypothesis testing.

The results of PSEA are sensitive to both signed versus unsigned analysis as well as

deterministic versus stochastic implementations (Figure 3.5). The table is color-coded according

to significance of enrichment, and yellow, pink, and cyan correspond to sets significant

controlling for an FDR of .01, .05, and .1, respectively. Most obviously, stochastic PSEA

consistently resulted in detection of fewer significant enrichments. This would be consistent

with the stochastic correlation results and suggests that some of the deterministic PSEA

enrichments resulted from spurious correlation with phosphosites whose trends were

indistinguishable from measurement error. Other sets, such as "lipid metabolism" and "arginine

and proline metabolism" remain significant but to a lesser extent upon incorporation of

measurement error. Several of the most significantly PTPlb-dependent sets ("endoplasmic

reticulum", "cytosol", "metabolic process" and "oxidation reduction") are robust to incorporation

of measurement error. Thus, incorporation of measurement error lends additional confidence to

some predictions and casts doubt on others.

Comparison of deterministic signed versus unsigned enrichment show that the "Insulin signaling

pathway" is only significant under signed analysis whereas "Insulin-sensitive pYs in adipocytes"

share the same level of significance under both analyses. The "Insulin signaling pathway" set

contains phosphosites on canonical insulin-signaling proteins, most of which increase

phosphorylation upon insulin stimulation. Given that half of the L-PTPlb-/- dataset contains

insulin-stimulated liver samples and L-PTPlb-/- are insulin hyper-sensitive, detection of a

concordant phosphorylation change in this pathway makes sense. Interestingly, the "Insulin-

sensitive pYs in adipocytes" contains a set of phosphosites that were found to be either positively
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or negatively insulin-responsive in an MS-analysis of insulin-stimulated adipocytes (Schmelzle

et al., 2006), and, thus, these sites would be more likely to be detected under both conditions.

Modeling of measurement error using stochastic multivariate regression

As described above, one of the computational goals for the L-PTPlb-/- was construction of

multivariate models of PTPlb-dependent phenotypes as functions of the measured

phosphotyrosine network changes. In contrast to a univariate metric like correlation,

multivariate regression is capable of predictively modeling phenotypes as the result of multiple

underlying factors, and, in this way, comes closer to capturing the complex, multifactorial nature

of biological systems. Given the statistical power of the dataset, only multivariate linear

relationships were considered. In addition, the analysis was limited to a particular data subset

(HFDb), based on the assumption that the molecular networks of L-PTPlb-/- and control mice

under a single diet and stimulation condition would be in a regime where phenotypes of both

mouse genotypes could be approximated by a single multivariate linear model, as in a Taylor

series expansion. In the context of the L-PTPlb-/- dataset, strategies for tackling two technical

challenges, measurement noise and missing data, are described here and in the subsequent

section.

Stochastic multivariate regression (SMR) is the multivariate cousin of stochastic correlation,

similarly motivated by the need to mitigate detection of spurious relationships from measurement

noise. Similarly, Gaussian sampling and bootstrapping are used to develop a distribution of

regression coefficients that incorporates measurement error and controls for limited sample size

(Figure 3.6A). The coefficient distribution can then be used to evaluate the significance of

predictor variables to the model.
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This method is likely to be crucial for analysis of the L-PTPlb-/- dataset. As shown in the

Figure 3.1B, the relative phosphorylation fold-changes are small for the technical replicate

samples plotted; most range between 2-fold, while relative error is 10%. Thus, for this dataset in

particular, it is important to distinguish experimental from biological variation. Z-scoring is a

common scaling method for multivariate regression modeling of MS-based phosphorylation

datasets; this method entails mean-centering and normalization of variance for each set of

phosphosite measurements. This scaling essentially weights all measurements equally, and, in

the context of the L-PTPlb-/- dataset, this would have negative consequences if measurement

error were not controlled in some way. As discussed above, ANOVA filtering of data is a

strategy to limit the influence of spurious trends by removing them from the dataset prior to

model-building. However, it requires selection of an arbitrary filtering cutoff, and, in the context

of multivariate regression, the cutoff should ideally reflect the synergy between error in both

response and predictor measurements.

The ability of SMR to filter measurement error is highlighted in a comparison to deterministic

multivariate regression (DMR) and ANOVA filtering (Figure 3.6B). Phosphosites selected for

three models ("Genotype", "Steatosis", and "C18 SCD Index") by SMR and DMR are shown

with ANOVA-filtered phosphosites in Venn diagrams. As in stochastic correlation, SMR-

selected variables are a subset of the ANOVA-filtered phosphosites, whereas DMR selected-

variables are not. The three model response variables "Genotype", "Steatosis", and "C18 SCD

Index" have associated relative standard errors of 0, 16% and 32%. Importantly, none of the

phosphosites are significantly associated with the noisiest response variable, "C18 SCD Index",

because the error in the response measurements, modeled in SMR, is too great. In this last case,

ANOVA-filtering of the phosphosites would not have substituted for SMR, as the dominant
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measurement error was in the response. Thus, SMR holds promise, as the method integrates

measurement error from both predictor and response variables, which, in turn, is reflected in the

significance of resultant regression coefficients.

It is important to compare SMR model reduction to established methods. Significance thresh-

holding was previously used for multivariate regression model reduction; this method was based

on simulation of the null distribution via random permutation of the response variable (Janes et

al., 2004). Previous multivariate regression modeling of MS-based phosphotyrosine datasets

involved ranking independent variables according to a variable importance of projection (VIP)

score for model reduction (Huang et al., 2010; Kumar et al., 2007). In this study, ranking of

variables is naturally accomplished by using the coefficient distributions themselves to test

significance, and, here, this ranking was used to build reduced models. Because, to our

knowledge, this method has not been previously reported, we compared SMR coefficient-

significance-thresholding to VIP-score-based model reduction for our dataset and compared

results. In terms of variable selection, there is good correspondence between (1) typical SMR

and a stochastic implementation of VIP-score model reduction (Figure 3.6C). Interestingly, the

model coefficient curves separate on the basis of response measurement error along the ordinate

axis (according to coefficient signicance), but not horizontally (according to VIP score) (Figure

3.6C). Thus, coefficient significance might be useful for global comparison of predictive

importance across models, whereas VIP scores can take high values even in the context of noisy

measurements and thus should only be compared within a model. In terms of model

performance, the two model reduction methods behave similarly (Figure 3.6D).
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Optimization of missing data methods for multivariate regression

The second consideration for multivariate regression modeling with the L-PTP lb-/- dataset was

missing data points. In contrast to univariate methods, multivariate regression requires that a

dataset be complete. The phosphotyrosine dataset posed a challenge, due to the number of

systematically missing data points that resulted from merging multiple data-dependently

acquired MS experiments. The HFDb data matrix is displayed in Figure 3.7A. Because the data

points are systematically missing, as opposed to randomly, data methods based on matrix

decomposition, which work well in the context of multivariate regression by partial least squares,

were not feasible (Nelson et al., 1996). For this reason, alternative methods were tested. The

simplest of which was "list-wise deletion" of all measurements for which sample coverage was

incomplete. This method requires no assumptions or ad hoc rules but seems wasteful. In the

case of the HFDb dataset, analysis would be limited from 228 phosphosites to merely 76 (Figure

3.7A). Another approach would be to consider multiple complete data subsets independently (as

described in Supplementary Figure 3.1 and Methods) and then integrate results across the

complete data subset models using a decision rule. In this way, data imputation would be

avoided, but, as is the case here, decision rules may be heuristic rather than optimal. Finally,

imputation methods were considered. The goal of an imputation method is to facilitate analysis

while minimizing bias, and, multiple random imputation methods fulfill this criteria(Rubin,

1996).

Several multiple random imputation (MRI) methods were considered. These methods were

based on either Gaussian or random imputation. In Gaussian imputation, the missing samples for

a measurement are imputed from those available by drawing a Gaussian sample whose mean and

standard deviation corresponded to the available sample measurements. Similarly, random
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imputation replaces missing values with a randomly selected sample from those available for that

measurement. The potential bias from imputation is minimized by repeating these single

imputation steps multiple times. Conveniently, such an imputation step seamlessly integrates

into the SMR algorithm, as the imputation step can immediately follow the Gaussian sampling

step (Figure 3.7B, Methods).

In addition, two variations on the MRI methods were considered, so that additional information

about the missing samples could be incorporated into the process. The first method is treatment-

dependent MRI, which leverages treatment information. Specifically, L-PTPlb-/- missing data

samples are randomly imputed from the L-PTP 1 b-/- samples present; likewise, control samples

missing are imputed from the control samples present. The second method, termed "treatment-

pval" is a mixture of general and treatment MRIs and involves a two-sided Student t test

comparison of L-PTPlb-/- and control phosphorylation levels for samples present. If the null

hypothesis is rejected (treatment effect detected), the missing measurement values are imputed

using treatment MRI; otherwise, general MRI is used.

Each of these methods has potential advantages and drawbacks, and so a comprehensive strategy

for testing each was developed (Figure 3.7A). The complete data subset (13 samples by 76

phosphosites) provided a "true" or reference dataset for SMR modeling, and then ten simulated

datasets were constructed from the complete HFDB data for testing of the missing data methods.

The simulated datasets were generated by randomly removing measurements in a pattern that

structurally corresponded to the original HFDb data matrix (Figure 3.7A). Five different

phenotypic responses were modeled in five independent multivariate regression models as

functions of phosphotyrosine measurements, leading to five "true" models based on SMR of the

complete data subset and 50 models (5 models X 10 simulated datasets) for each of the missing
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data methods tested. A receiver-operator characteristic (ROC) curve was used to compare the

performance of the various missing data methods (Figure 3.7A and Figure 3.8, see Methods).

Models were evaluated based on their abilities to (1) select phosphosites that would have been

incorporated into "true" models (based on the complete data) and (2) avoid selection of

phosphosites that were not included in the "true" models. Using this variable-selection-based

evaluation method, it was also possible to compare univariate correlation.

Interestingly, for this particular dataset, there was significant disparity in the performance of the

missing data methods (Figure 3.8). As might be expected, list-wise deletion performs poorly

relative to the "true" (complete) models. Because more than two-thirds of the dataset is excluded

from the analysis, list-wise deletion can maximally recover only ~30% of the "true" (complete

model) positives. Surprisingly, this lack of detection offers no apparent benefit, as other

methods out-perform list-wise deletion even in the low-FDR regime. The methods that

integrated results from individual models built on complete data subsets ("All Subsets Agree"

and "Complete Subset Rules", see Methods) at least provided the opportunity to detect most of

the true positives, but at high false-positive rates. Surprisingly, the methods that performed best

were those based on treatment-dependent MRI, suggesting that, for this particular dataset, the

treatment-dependent assumption was good. In addition, correlation performed nearly as well.

Correlation has several advantages in variable selection, as it utilizes all data and makes no

imputation assumptions. However, although correlation performs competitively in variable

selection in this particular context, some missing data strategy would be required for subsequent

construction of a quantitatively predictive multivariate model. Importantly, the performance of

missing data methods was specific to the response modeled (Figure 3.8, lower panels),

136



suggesting that the application of missing data methods should be evaluated on a case-by-case

basis.

Integrated SMR-PSEA analysis yields predictive models and pathway-level insight from

incomplete data

The PSEA of PTPlb-dependent phosphorylation sites detected a set of lipid metabolic proteins,

and lipid profiling of the liver samples revealed novel PTPlb-dependent alterations in lipid

metabolism (Chapter 2). The techniques developed, PSEA, SMR, and "missing-data method

selection", were used to develop multivariate regression models of three PTPlb-dependent

lipidomics phenotypes using the full HFDb phosphotyrosine dataset.

Before describing the performance of these models, it is important to consider the performance

metrics developed for this study. Common performance metrics, R2 goodness-of-fit and Q2

goodness-of-prediction, require a complete data matrix for calculation, and so these were

estimated from the incomplete data matrix using an assumption consistent with the selected

missing-data method (Methods). In addition, as detailed in methods, Q2 values in this analysis

estimate predictive performance by considering both model selection and fit and are referred to

as Q22,f (variable selection and fitting). In contrast, typical Q2 value calculations consider model

fit only (Huang et al., 2010; Janes et al., 2004; Kumar et al., 2007) , leading to inflation of Q2

values; these are referred to as Q2f . In Figure 3.9A, Q2 ,f and Q2f are compared for five SMR

models built by varying the number of model independent variables and model principle

components (see Methods). Most of these points fall below the line Q2vf = Q2f , suggesting that

Q2V,f is a more conservative estimate of predictive performance, because it uniquely accounts for

over-fitting due to variable selection as well as the model fit itself. Importantly, red dots (Figure

3.9) denote Q2 values for final models, and we can see that the Q2 values reported here are more
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conservative than those presented in other studies.The quantitative performance of the five

models is summarized in Figure 3.9B. R2 values range from .82 to .84, while Q2 values range

from .52 to .66. As described above, the Q2 values reflect model prediction for independent

samples. It is also important to consider that the phosphotyrosine and lipidomics measurements

are tissue-level and therefore more variable than measurements from uniform cell lines, the

experimental system used previously for multivariate regression modeling of (cellular)

phenotypes as functions of underlying MS-based phosphotyrosine measurements (Huang et al.,

2010; Kumar et al., 2007). Thus, taking all of this into account, these models perform

surprisingly well. Figure 3.9B also highlights the spread in experimental error among the

phenotype measurements. For steatosis in particular, there is one measurement (indicated with a

blue star) whose measurement error is much larger than the other measurements. Luckily, using

SMR, this measurement is weighted according to error in the model selection process.

The phosphosites retained in final models are displayed in Figure 3.1 GA. Although many of the

phosphotyrosine and lipidomics measurements in the models have unknown functional

significance, consideration of underlying phenotype predictors, in the context of phosphosite

protein function and other information from the literature, suggests biological mechanisms

connecting some of these phosphosites to the phenotypes (Chapter 2 Results and Discussion).

However, the biological implications of other phosphosites were challenging to interpret.

To gain additional insight, we integrated PSEA into the multivariate modeling framework.

Variable reduction methods, regardless of the specific multivariate regression technique used,

generally rank underlying variables (e.g., phosphosites) according to predictive potential. These

ranked lists can be used to determine whether phosphorylation patterns on particular sets or

protein pathways are multivariately predictive and might underlie a response phenotype. Null

138



models, constructed using random permutation of the response variable, enable estimation of

significance. Here, PSEA of the three phosphosites-dependent phenotypic models highlighted

the phosphorylation of "oxidation reduction" (REDOX) proteins in all three of the PTP1b-

dependent lipidomics phenotypes (Figure 3.10B). The PSEA analysis of PTPlb-dependent

phosphosites yielded several set enrichments, but "oxidation reduction" was consistently most

significant across all analyses, potentially indicating a unifying role for REDOX in mediating all

three of these phenotypes (Figure 3.10A and B). As discussed in Chapter 2, these results make

sense biologically, as the modeled lipidomics phenotypes are each highly dependent on the

oxidative state of the cell.

Discussion

We have demonstrated the utility of several computational approaches developed specifically for

analysis of the L-PTPlb-/- study. Our results suggest that these methods would be generally

applicable to other analyses, especially those focusing on MS-based PTM datasets, where

measurement noise, missing data, and the novelty of measurements require new and sensitive

approaches. Foremost is the adaptation of the exceptionally sensitive method, GSEA, for the

discovery of PTM-dependent phosphosite sets and pathways (PSEA). As discussed in Chapter 2,

PSEA recovered known PTPlb-dependent pathways (insulin signaling) and discovered novel

PTPlb-dependent pathways: redox homeostasis, amino acid metabolism, and lipid metabolism

(particular fatty acid metabolism). Using global, LC-MS-based lipidomics, we discovered co-

occurring lipid-metabolic changes, and fatty acid changes were the most significant. These

results lend biological credibility to this approach. They also suggest that the ranking of the

PTPlb-dependent phosphosites, through incorporation of significance to account for grossly

incomplete data (Figure 3.1 A), was successful. Importantly, the PSEA framework described here
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involves consideration of the diversity in PTM function (e.g., activating, localization) through

signed and unsigned analysis, and we demonstrate differential sensitivity to both analysis modes.

Similar to GSEA, the predictions of PSEA are robust due to implicit modeling of the dependence

structure in the null model. In addition, we have demonstrated that additional robustness in

model prediction can be gained through the modeling of measurement error, even in the context

of GSEA-style analysis, which is well known for its robustness to noise.

Equally important, we propose a general framework for the construction of multivariate

regression models in a regime that has not been well explored: large amounts of systematically

missing data, where the number of measurements greatly exceeds the number of observations.

We evaluated diverse missing data methods using simulation and ROC performance. We found

that, list-wise deletion, the most common solution chosen by MS-based PTM dataset generators

and analysts alike, merits quantitative comparison with other methods, as, in the context of this

dataset, list-wise deletion was exceptionally suboptimal. In addition, we proposed and tested

variations on traditional multiple random imputation (MRI) methods, namely, the incorporation

of additional information (treatment condition). Although historically MRI developed to enable

data analysis with minimal data assumptions(Rubin, 1996), inclusion of an additional assumption

(treatment dependence) yielded better results. Additional assumptions merit rigorous testing

prior to adoption, as, prior to performance assessment by ROC analysis, it was unclear whether

the treatment assumption would decrease false positive rate.

Given the vast amounts of missing data in the HFDb dataset (Figure 3.7A), the construction of

predictive multivariate regression models was an unexpected result. Through conception of a

stricter Q2 value for prediction, Q2vf , which tests both variable selection and fitting, we more

rigorously demonstrate the predictive power of these models. In addition, because measurement
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error was incorporated into the model building process, we have greater confidence that the

selection of predictor variables, on which the final models were constructed, is not an artifact of

measurement error. Importantly, we gained additional utility out of the SMR models built on

phosphotyrosine measurements, as the ranked lists of predictive phosphosites were used for

PSEA. Interestingly, this PSEA is based on multivariate rather than univariate dependence, and

it remains to be tested whether multivariate ranking offers benefits over univariate rankings.

Future directions include optimization of measurement error models. Here, error from technical

replicates was not available for all sites (missing for - 85%), and models were required to

estimate error. For simplicity, the missing error estimates were set to either average relative

standard deviation (10%) or average absolute standard deviation (0.1), yielding similar results for

both stochastic correlation and multivariate regression. However, as error itself is randomly

distributed, this method may unfairly increase the weight or importance of sites with (randomly)

extremely small standard deviations and, similarly but less worrisome, limit the influence of sites

with extremely large standard deviations. Bayesian modeling of measurement error would

temper these effects. In a Bayesian framework, measurement error would be weighted by a prior

belief that error is randomly distributed, and the prior would mitigate effects from extreme error

observations.

Another important future direction would be to weight the final fit of the SMR model.

Measurement error is currently incorporated into the model selection of the procedure, as it

influences the significance ranking of coefficients, and, in this way, it indirectly biases model fit

toward higher confidence predictor as well as response measurements. The model fit in the SRM

procedure, however, is simply unweighted, linear least squares, which does not directly

incorporate measurement error. As highlighted in Figure 3.9B, individual response
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measurements have a spread of associated measurement error, and model predictive performance

might benefit from a weighted-fit approach (e.g., inverse error). In sum, this chapter provides

important methodology and validation of the computational technique that spurred experimental

investigations in Chapter 2. In a broader context, this chapter provides insight into several

computational problems: (1) incorporation of measurement error in correlation and multivariate

regression, (2) strategies for testing missing data methods and results for multivariate regression

in the less well-studied contexts of systematically missing data and a regime where there are

many more measurements than observations (M>N regime), (3) adaptation and proof of concept

for GSEA in PTM-set enrichment, and (4) re-evaluation of the predictive Q2 metric in

multivariate model reduction. In addition, the results from methods highlight the value of

technical and biological replicates in experimental design. Together, these methods represent

progress toward maximal leverage of MS-based PTM datasets.

Methods

PTM Set Enrichment Analysis

The protocol for PSEA directly follows the GSEA protocol described in (Subramanian et al.,

2005); deviations from the original method, which result from unique consideration of MS-based

PTM datasets, are highlighted in Results. This framework assumes that more than one set will

be tested, details for estimation of single set enrichment are found in (Subramanian et al., 2005).

0. Required inputs. Analysis requires (1) a dataset X [M x N], with M PTM site measurements

across N samples, (2) some ranking procedure, correlation or some other metric, to rank the PTM

sites into list L according to the phenotype or treatment class profile C [1 x N], (3) a pre-defined

set S of Ns PTM sites, and (4) a weighting parameter, p (described below).
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1. Calculation of enrichment score. The enrichment score (ES) measures the degree to which

the set S is concentrated at the extremes (top or bottom) of the list L. The ES is calculated from

a running-sum statistic. Starting at zero and moving down the list, statistic is incremented when

a member of S is encountered and decreased otherwise. The ES is the maximum deviation from

zero encountered on this walk through the list, and it corresponds to a weighted Kolmogorov-

Smirnov-like statistic (Figure 3.5D and E). To calculate an ES:

a. Rank order the N PTM sites in dataset, X, to form L = {xi,x 2 ,.. .,xN} according to some

dependence measure m(xj) = mj with profile C (phenotype / treatment condition).

b. Calculate the fraction of PTM sites in S ("hits") weighted by the dependence measure mj and

the fraction of PTM sites not in S ("misses") present up to a given position i in L.

Phit (S,j) = wxES NM , where NM -- ES IMj|,j {1,2,...,M}.

Pmiss(S,]) = Exi1
i (N-NM)

ES(S) = ES(Sj*) such that IPhit(S,*) - Pmiss(Sj*)| is maximal.

The ES is the maximum deviation from zero of Phit - Pmiss. A randomly distributed S results in a

relatively small ES(S). If p = 0, ES(S) corresponds to the standard Kolmogorov-Smirnov

statistic, and ES(S) will be relatively large whenever S is non-randomly concentrated somewhere

in the list L. However, in terms of gene expression or PTM site trends, a set concentrated in the

middle of the list L would be neither negatively or positively dependent on C. To limit detection

to sets concentrated at the extremes of L, p can be set so that step sizes, and thus deviations from

zero, are weighted by the magnitude of the dependence measure mj. p = 1 sets the step size
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linearly proportional to mj and is the commonly used default for GSEA as well as the analyses

described here.

2. Estimation of significance with MHT. When multiple sets are tested, the estimated

significance must account for MHT. Random permutation of C is used to generate null

distributions of positive and negative normalized enrichment scores (NES); the normalization is

required to control for differences in set size.

a. Calculate ES(S) for each set of interest.

b. Generate P random permutations, a, of C. For each S and a, reorder the PTM sites in L and

calculate ES(S,a).

c. To control for differences in set size, for each S, separate the positive from the negative

ES(S,) and normalize the positive ES(S,n) by the absolute value of the mean of ES(S,n), |p+| to

yield positive NES(S, a), and analogously calculate the negative normalization factor |p.| from

the negative ES(S,n) to yield negative NES(S,n). Depending on the sign of ES(S), normalize by

the corresponding |j+| or |p.j to yield NES(S).

d. Create separate negative and positive histograms, incorporating NES(S, a) for all S and a.

Estimate raw p-values for each ES(S) using the appropriately signed histogram. Use Benjamini-

Hochberg correction to control for false discovery rate (FDR).

For analyses here, P = 500 permutations and the weighting parameter p = 1 were used. PTM sets

(59 in total) were hand-curated sets of phosphosites, composed of protein pathway annotations

from Kegg, gene ontologies, protein structural information (PFAM and SwissPro), a curated list

of PTPlb substrates (Ren et al., 2011), as well as a set of insulin-sensitive phosphorylation sites
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from a previous study (Schmelzle et al., 2006). For each analysis, the lower limit on set size

required membership of at least five phosphosites for set testing. Given missing data, it was not

possible to rank phosphosites according to all treatments and phenotypes. Thus, the genotype

and diet analyses tested 59 and 45 sets, respectively, while 56 sets were tested for relevance to

phenotype prediction. A complete list of PSEA sets tested and results are available upon request.

For genotype and diet analyses, both signed and unsigned PSEA were performed. These

analyses incorporated all phosphotyrosine datasets, and sites were ranked according to

significance of correlation with genotype or diet. In particular, the significance and direction of

correlation of genotype with a phosphosite was calculated, if possible, for the four relevant,

independent data subdivisions (HFD basal, HFD insulin, NC basal, and NC insulin), then the

independent p-values were combined using Fisher's method and accounting for the direction of

the correlation. The same was done for diet, where the four relevant data subdivisions were

basal L-PTPlb-/-, insulin L-PTP1b-/-, basal control, and insulin control. For signed analyses,

phosphosites were ranked according to the overall direction of correlation coefficient multiplied

by the-logio-transformed p-value. For unsigned analyses, phosphosites were ranked by the

logio-transformed p-value of correlation. In addition, both deterministic and stochastic

correlation were considered. Stochastic correlation was calculated as described below, while

deterministic correlation was calculated analytically.

For PSEA of sites predictive in models of steatosis, o3/ o6 PTPlb PUFA, and o7/ o9 PTPlb

PUFA, signed analysis was used. The multivariate stochastic regression method described below

was used to generate ranked lists of sites for analyses. Sites were ranked according the sign of

the regression coefficient multiplied by the -logio-transformed p-value associated with the

coefficient. This analysis was limited to the HFD basal data subset only.
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Stochastic correlation

Stochastic correlation uses Gaussian sampling and bootstrapping techniques to estimate a

distribution of correlation coefficients. Bootstrapping strapping mitigates effects of small sample

size, while Gaussian sampling accounts for measurement error based on measurement means and

standard deviations. The measurement standard deviations were estimated from technical

replicates. When no technical replicate existed for a particular measurement, the standard

deviation was estimated using the average relative standard deviation of the given dataset. Thus,

required inputs for calculation of a pairwise correlation are vectors of mean measurement values,

x and y, and corresponding vectors of standard deviations, Xstd and Ystd.

Let the dimensions of these vectors be [Nx 1]. The significance of a correlation was determined

in the following way:

1. Gaussian samplingfor measurement noise. For each data point present in x, draw a random

sample, xgaus(n) from a Gaussian distribution with mean, x(n), and standard deviation, xstd(n), {n

= 1,2,... ,N}. Similarly, draw ygaus(n), based on y(n) and ystd(n).

2. Draw a bootstrap sample. Randomly select paired entries of Xgaus and ygaus without

replacement and build xoot and yboot vectors, dimensions [Nx 1].

3. Calculate and record the correlation between xboot and yboot.

4. Repeat 1-3 for desired number of iterations.

5. Estimate significance of the p-value from the histogram of simulated correlation coefficients.

For analyses here, the maximum number of iterations was 10,000.
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Stochastic multivariate regression

Similarly to stochastic correlation, stochastic multivariate regression (SMR) involves both

bootstrapping and Gaussian sampling steps to construct distributions of regression coefficients.

Required algorithm inputs include independent variable matrices, X [NxM] and Xstd [NxM],

with N samples and M variables measured, and a dependent variable matrices, Y [N x V] and

Ystd [N x V], where V is the number of dependent variables measured. The matrices X and Y

correspond to measurement means, while Xstd and Ystd contain measurement standard deviation.

In the absence of a technical replicate for a given measurement, the standard deviation was

estimated using the average relative standard deviation of the corresponding dataset.

If X corresponds to an MS-based PTM dataset, then X is likely to have dimensions such that M >

N. While there are several multivariate regression algorithms that work in this regime and SMR

could be implemented using any of them, partial least squares regression (PLSR) was selected

here, mainly because its execution is fast, especially using Matlab software. Building of a PLSR

model involves the simultaneous decomposition of both X and Y matrices into X and Y scores

and loading matrices. Assuming X and Y are mean-centered, the key PLSR matrix relationships

are described by the following equations:

X = TPT, T = X p/(pTp) = XWT,

Y = UC~ zTCT= XWTCT = XB,

where the X and Y scores matrices, T [N x pcs] and U [N x pcs], are optimized to covary

maximally; pcs is the number of model principle components, and P [M x pcs], C [P x pcs], W

[M x pcs], and B [M x P] are the X loadings, Y loadings, X weights, and regression coefficient

matrices, respectively. The decomposition into X and Y determines the location of a PLSR
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principle component plane. This plane is optimized to contain linear combinations of

independent variables that covary maximally with the dependent variable(s), and, for this reason,

this algorithm tends to perforn well in a variety of contexts.

The basic stochastic multivariate regression algorithm is as follows:

1. Gaussian samplingfor measurement noise. For each data point present in X, draw a random

sample, Xgaus(n,m) from a Gaussian distribution with mean, X(n,m), and standard deviation,

Xst(n,m), n = 1,2,...,N, m = 1,2,...,M. Similarly, draw Ygaus(n,v), based on Y(n,v) and Ystd(n,v),

n = {1,2,...,N}, y = {1,2,...,V}.

2. X and Y Data normalization and averaging of Y matrix measurements. For each column of

Xgaus or Ygaus, mean-center the data and divide by the standard deviation to yield matrices Xzscore

and Yzscore. If V > 1, average Yzscore column-wise to yield Yzscore,v [N x 1]. (Averaging Y

simplifies subsequent model reduction steps.)

3. Draw a bootstrap sample. Randomly select paired rows of Xzscore and Yzscore,v without

replacement and build Xboot and Yboot matrices, dimensions [N x M] and [N x 1], respectively.

4. Build the regression model. Use partial least squares regression (PLSR), with number of

principle components equal to one minus the rank of Xboot, to estimation the linear regression

coefficients Bboot [M x 1

5. Multiple imputation and Gaussian sampling. Repeat steps 1-4 for J iterations to create a

distribution of the model coefficients. Store each vector of coefficients Bboot in the matrix Bmatrix

[J x M].
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6. Estimate the significance of each independent variable measurement to prediction. For each

measurement m in X, use the corresponding coefficient distribution contained in column m of

Bmatrix, to empirically test the null hypothesis that zero belongs to this distribution.

7. Model reduction. Rank the independent variables according to coefficient significance

determined in 6. Sequentially build and evaluate PLSR models, by varying (1) the number of

principle components, pcs, in the model and (2) by incorporating the top F ranked variables in

the model. For this analysis, pcs = {1,...,4}, and F = {1,2,...,20}.

R2 and Q2 statistics (Q2f and Qivf calculations). Models were evaluated by estimating R2

goodness-of-fit, and Q2, goodness-of-prediction, statistics:

2 N _ =1(ymeas,n_ypred,n)2
N (ymeas,n_ymean)2

S=(ymeas,n_ypred,oocv(n))2
N (ymeas,n_ymeanIoocv(n))2

where ymeasn corresponds to the experimentally determined response measurement n, ymea" is the

average of the response measurements, YPredn is the model prediction for response measurement

n, yprealooev(n> is the model prediction for response n, from a leave-one-out-cross-validation

(LOOCV) model, which excludes measurements for sample n, and, similarly, ymeanIoocv(n) is the

mean of the response measurements, excluding measurement n. A Q2 value should estimate the

variance explained by a model for an independent sample. Typical Q2 calculations for PLSR

involve (1) determination of a reduced set of independent variables for model reduction using the

full dataset and (2) fitting LOOCV models using that pre-determined, reduced set of variables

with LOOCV data subsets (Huang et al., 2010; Janes et al., 2004; Kumar et al., 2007). Such a

protocol inflates the Q2 value, because the left-out sample is not entirely independent of the
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LOOCV model construction. Although the sample left out is not involved in model fitting, it

was used for the model reduction/variable selection step. In consideration of this, for the

calculation of Q2 values in this analysis, the model reduction procedure was included in the

LOOCV modeling building. Thus, both model reduction and model fit were determined based

on the LOOCV data only. In the text, these methods are referred to as Q2f (LOOCV fitting) and

Q2v,f (LOOCV variable selection and fitting).

Variation: Model reduction based on VIP-score. In addition, reduced models were built by a

second method, in which independent variables were ranked according to variable importance of

projection (VIP) score. The VIP score for a given independent variable and PLSR model with

pcs principle components is:

VI=1ps Varexp,y(pc)W(m, pc) 2
VIP P(m, PCs) =pcs

pc= Varexp,y(pc)

where Varexp,y(pc) is the variance in Y explained by regression onto a particular principle

component, pc, and W(m,pc) is the quantitative contribution that a particular measurement, m,

makes to the pc PLSR principle component. Because the PLSR principle component plane is

optimized to contain linear combinations of independent variable measurements that covary

maximally with the dependent variable, this metric performs well in model reduction.

To implement SMR with this method, at step 4, the X loadings matrix Pboot [M x pcs] were

stored in a 3D-matrix Pmatix [J x M x pcs] (step 5), and then used to calculate variable

importance of projection metrics for each of the M independent variable measurements (step 7).

Specifically, the loadings matrices were averaged across the iterations' dimension of Pmatnx to

create Pave [M x pcs]. Thus, by averaging, variable measurements that consistently contribute to
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the PLSR principle component plane will have higher loading values and contribution to the

model more than measurements that are randomly imputed or associated with larger amounts of

error. To make this loadings matrix consistent with loadings matrix produced directly from

PLSR algorithms, Pave was orthonormalized row-wise. Next, the scores matrix, T [N x pcs], was

estimated by the equation T = XcPaveT and the weights, W, were estimated as Pave/(Pave TPave).

The rows of T were orthogonalized, and, then the Y loadings, C [pcs x 1] were calculated from C

= (TTT)TTY*, where Y* is a vector average of the z-scored Y matrix (similar to Yzscore,v in step

2). Next, the Varexp,y(pc), could be calculated using the equation: Varexp,y(pc) = 1-(Y*-

T(pc) TC(pc))T(Y-T(pc)TC(pc))/Vary, where T(pc) is the pCth column of T, C(pc) is the pcth row

of C transposed to a column vector, and Vary is the variance of Y*. Thus, after a fair amount of

linear algebra, the VIP score can be calculated for each measurement and total number of pcs in

the model. Step 7 is then performed based on VIP-score model reduction.

Missing data techniques for stochastic multivariate regression

Missing data methods and their implementation are described here. The data matrices refer to

matrices described in the SMR section.

1. List-wise deletion. Delete each column of X and Xstd, corresponding to measurements for

variable m, that contains one or more missing sample observation. Proceed with SMR.

2. Merge complete subset models. This method was specific to the HFD basal data subset of

phosphotyrosine measurements, XHFDb, and XHFDb was divided into three distinct blocks of

complete data subsets, as shown in Supplementary Figure 3.1.

SMR was used to build individual models for each of the subsections, referred to as the

"Complete" (data for all sample conditions), "Run 1", and "Run 2" subset models. ("Run 1" and

151



"Run 2" models each had data for 8 out of 13 conditions.) The results from the three models

were combined using two sets of rules. The first rule is referred to as "All subsets agree", as a

variable was incorporated into a final model only if it was significant to sub-models from all data

subsets containing that measurement. Specifically, select a variable for the final model only if

the significance of its regression coefficient, pm, is less than a pre-determined significance cut-

off, pcutoff E [0,1], for all models incorporating that measurement. The second rule is referred to

as "Complete subset rules", as the "Complete" subset model takes priority in determining

variable significance and final model inclusion. If the variable is in the complete subset, select it

for the final model if pm < pcutoff. Otherwise, if the variable is in "Run 1" or "Run 2" subset only,

retain this variable in the model with the same criteria: if pm < pcutoff.

3. Multiple Gaussian imputation. This method involves replacing missing data points so that the

data matrix can be used for SMR directly; it was implemented in three ways. The first is termed

"general" Gaussian imputation. For this method, the missing data points for a specific

measurement (column of X) are estimated by a single random Gaussian sample, whose mean and

standard deviation are estimated from the samples present in the measurement column. The

second is termed "treatment" Gaussian imputation, as this method incorporates information

about the sample treatment condition associated with a missing data point. First, missing data

points for a measurement (column of X) are separated according to treatment condition (i.e. L-

PTPlb-/- or control), and their values are imputed by drawing a Gaussian sample, whose mean

and standard deviation correspond to observed data points of the corresponding treatment

condition. The third method is termed "pval-treatment" Gaussian imputation. It is a mix of

general and treatment Gaussian imputation, in which the treatment-dependent method is selected

for a particular measurement if the null hypothesis of a two-sided T Test (comparing control to
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L-PTPlb-/- phosphorylation levels) is rejected at an a-level of significance. Otherwise, general

Gaussian imputation is used. Both implementations can be inserted between steps 1 and 2 of the

SMR protocol, using Xgaus as X (Figure 3.7B).

4. Multiple random imputation. This method is the random analog of multiple Gaussian

imputation, and was also implemented in "general", "treatment-specific", and "pval-treatment"

ways. For "general" random imputation, missing data points for a measurement are randomly

replaced with the value of a randomly selected available data point for that measurement. For

"treatment" random imputation, missing data measurements are separated according to treatment

condition, and their missing values are replaced with a randomly selected observed data point

from the matching treatment condition. The "pval-treatment" method selects "general" or

"treatment-specific" imputation based on a T test comparison of L-PTPlb-/- and control

phosphorylation levels, as described above. These procedures can also be inserted between steps

1 and 2 of the SMR protocol.

Evaluation of missing data techniques

Simulation of missing data. To evaluate missing data techniques specifically for SMR with the

HFD basal phosphotyrosine dataset as the independent variable matrix, X, we utilized the

complete data subset of X. The full dataset (Figure 3.7A) contained 228 phosphosite

measurements across 13 samples, while the complete subset of the dataset contained 76

phosphosite measurements across the same number of samples. We simulated 10 incomplete

datasets from the complete data subset, by randomly removing sections of phosphosite data so

that, structurally, the simulated incomplete datasets corresponded to the original dataset. In

particular, for randomly selected measurement columns in X, we ensured that 33% had complete
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data, 45% had data missing for 5 samples, 17% had data missing for 5 other samples, and 5% of

the columns had data missing for 7 of the 13 samples.

Construction of ROC curves. The complete data subset was used as the gold standard, and five

"gold standard" models were built using SMR for PTP1b expression, steatosis, "SCD PUFA",

stress, and "Tg PUFA" phenotypes. As described in the SMR protocol, final models were

selected by (1) ranking all the phosphosite measurements according to regression coefficient

significance and (2) selecting the optimal number of measurements as judged by predictive Q2

value. Those measurements selected for a final model were true positives, and those

measurements excluded from a model represented true negatives.

The seven missing data methods (described above) were used to build the five phenotype models

from each of the 10 simulated datasets, resulting in a total of 50 models per technique. The ROC

curve, true positive rate (TPR) as a function of false positive rate (FPR), is a parametric function

of a decision rule. We applied the following decision rule here: include a measurement in the

final model if the significance of the associated regression coefficient is less than pcutoff. By

varying pcutoff from 0 to 1, we were able to count true positives and false positives relative to the

complete data (gold standard) models. Using this framework, we also tested the performance of

stochastic correlation (by using the correlation-coefficient significance in lieu of regression

coefficient).

Final models

Individual models of steatosis, o3/ o6 PTPlb PUFA, and o7/ o9 PTPlb PUFA as functions of

the complete HFD basal phosphotyrosine dataset [228 phosphosites X 13 samples] were
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constructed using SMR and treatment-dependent random imputation; these models were built

using 1, 2, and 1 principle component(s), respectively.

Calculation of R2 and Q2. Estimation of any set of model predictions for the response vector Y,

using the relationship Y = XB, requires a complete set of predictor variables X. Thus, to

estimate R2 and Q2, a complete matrix, Xc was created using column-wise treatment-dependent

mean imputation. Specifically, for each measurement (column) of Xc, the missing data points for

L-PTPlb-/- (or control) samples were estimated as the mean of those L-PTPlb-/- (or control)

samples observed for that measurement. Final model parameters, pcs and F, were determined

based on optimization of Q2 values. Estimation of the error associated with the Q2 values was

accomplished by leave-two-out cross-validation.

Software

All computational analyses were performed in Matlab Student Version 7.10.0.499 (R201 Oa).
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Figures

Figure 3.1 Noise and Missing Data in L-PTP1b-/- Phosphotyrosine Data

A L-PTPlb4- Study Phosphotyrosine Data
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(A) The phosphotyrosine measurements from the L-PTP lb-I- are represented in a data matrix
[298 phosphopeptides by 48 liver tissue samples], where individual data points are colored in
black, if present, or white, if missing. The percentage of data present for each liver and
phosphosite are denoted by the bar graphs on either side.
(B) A scatter plot of relative standard deviation, arel, versus relative quantification, expressed as
fold-change. The red line indicates mean arel which is 10%.

157



Figure 3.2 Stochastic Correlation
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(A) Example of simulating measurements from high and low confidence measurements.
(B) Stochastic correlation procedure.
(C) Sets of phosphosite-genotype correlations that were significant at the pcutoff level for
stochastic (Pstoch < pcutoff) and deterministic (Pdet < pcutoff) correlation calculations. In
addition, phosphosites whose variation was distinguished from measurement error using
ANOVA filtering are included in Venn diagrams (PANOVA < pcutoff).
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Figure 3.3 Comparison of Correlation P-values
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Figure 3.4 Schematic of PSEA for Genotype-dependent Phosphosites
PTPlb-dependent Phosphosites
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(A) Supervised clustering of the L-PTPlb-/- dataset according to genotype is displayed in a
heatmap to show the four PTPlb-dependent subdatasets (NCb, HFDb, NCi, and HFDi). For
PSEA of PTPlb-dependent sites, all phosphosites in each independent subdataset were ranked
using eight deterministic or stochastic correlation. P-values from each subdataset were
combined using Fisher's Method to generate a combined signed and unsigned ranked lists of
PTP lb-dependent phosphosites.
(B) and (C) The positive and negative NES distributions for the random model.
(D) and (E) Examples of significantly and insignificantly PTP lb-dependent sets, respectively.

160

B

C



Figure 3.5 Results of PSEA for Genotype-dependent Phosphosites
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Results from PSEA analysis of PTPlb-/- dependent sites for signed or unsigned and stochastic or
deterministic correlation rankings. Sets are color-coded according to significance: yellow, pink,
and cyan correspond to FDR of .01, .05, and .1, respectively.
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Figure 3.6 Stochastic Multivariate Regression
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(A) Stochastic multivariate regression (SMR) procedure.
(B) Sets of phosphosites significant to three models based on the significance of their associated
multivariate regression coefficients, as determined by stochastic (Pstoh < .05) and deterministic
(Pdet < .05) multivariate regression methods. In addition, phosphosites whose variation was
distinguished from measurement error using ANOVA filtering are included in Venn diagrams
(PANOVA < .05).
(C) Phosphosites are plotted according to predictive power, according to (VIP Score) and -
logio( ,-value) associated with the regression coefficient.
(D) Q values are compared for models built on the top 1-20 variables, as ranked by the indicated
model reduction method.
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Figure 3.7 Schematic for Testing Missing Data Methods
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(A) Schematic for testing missing data methods in the context of multivariate regression.
(B) Adaptation of the SMR protocol for imputation of missing data.
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Figure 3.8 ROC Performance of Missing Data Methods
All Models: Missing Data Methods
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Figure 3.9 SMR Model Prediction
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(A) A comparison of Q2v,f versus Qf as functions of SMR models with variable number of
independent variables and 1-3 principle components (PCs) in the model. (See Results and
Methods for detailed explanations.)
(B) Model fit and prediction for each of the three final SMR models. Horizontal error bars
represent standard error for measurements, while standard error for model fit and prediction were
estimated using leave-one-out or leave-two-out cross-validation, respectively.
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Supplementary Figure

Supplementary Figure 3.1 Complete Data Subsets

Complete, independent data subsets in the HFDb dataset.

167

U)
0

(I) I
0.

1

1

1

1

I - I I
55 60 84 85 8688 89 87 64 61 56 83 63

Liver Tissues



4. Conclusions

Contributions

Protein-tyrosine phosphatase lb (PTPlb) is a key modulator of metabolism. Its expression is

modulated by nutrient cues, and its activity is differentially regulated by phosphorylation upon

insulin or epidermal growth factor (EGF) stimulation (Lessard et al., 2010). Mouse models of

PTPlb inhibition (whole-body knock outs, tissue-specific deletion, oligonucleotide treated) in a

variety of backgrounds demonstrate the physiological scale of metabolic alterations due to this

perturbation (Banno et al., 2010; Bence et al., 2006; Delibegovic et al., 2007; Delibegovic et al.,

2009; Elchebly et al., 1999; Zinker et al., 2002). Even in the isolated context of tissue-specific

deletion, these studies suggest therapeutic advantage in PTPlb inhibition for the treatment of

metabolic syndrome, T2DM, and other obesity-related diseases. In these studies, antibody-based

measurements have characterized phosphotyrosine changes in select canonical insulin and/or

leptin signaling nodes. These measurements suggest that alterations in the phosphotyrosine

network are not resolved during the course of chronic PTPlb inhibition and potentiate PTPlb-

dependent phenotypes. However, insulin and very conceivably leptin signaling involve

phosphotyrosine modification of many more proteins than could be measured by available

antibodies (Schmelzle et al., 2006). Furthermore, some PTPlb-dependent phenotypes, such as

alterations in lipid metabolism and ER stress in the liver-specific PTPlb deletion (L-PTPlb-/-)

mice, are not associated with canonical leptin or insulin signaling, and the phosphotyrosine-

modulated pathways underlying these phenotypes are unknown. The current therapeutic interest

in PTP lb inhibition underscores the need for comprehensive characterization of chronic, PTP Ib-
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dependent phosphotyrosine alterations in vivo. This information will be critical to assessing the

physiological consequences of inhibiting this pleiotropic phosphatase.

To globally detect, explore, and quantify phoshotyrosine network changes upon PTPlb

inhibition, we leveraged MS-based techniques (Zhang et al., 2005) to site-specifically

characterize the phosphotyrosine networks in L-PTPlb-/- mice and control under high fat diet

(HFD) or normal chow (NC) conditions and insulin-stimulated (insulin) or basal conditions.

Given the discovery-based nature of this analysis, fifty mice were included in the study, roughly

three to eight mice per treatment condition, to enable statistical and computational analyses for

the detection of phosphotyrosine-regulated, PTPlb-dependent pathways and phosphosite drivers

of PTP lb phenotypes.

To our surprise, principle component analysis (PCA) of the resulting basal and insulin

phosphotyrosine datasets revealed that PTPlb deletion and diet were the most important sources

of variance in the phosphotyrosine network on a global scale in vivo. This result emphasizes the

severity of both perturbations to phosphotyrosine regulation, the consequences of which merit

evaluation in diverse contexts. Foremost, many cancers exhibit dysregulation of

phosphotyrosine networks, often leading to a general increase in cellular phosphotyrosine levels

(Blume-Jensen and Hunter, 2001). PTPlb has been shown to play both oncogenic and tumor

suppressor roles, depending on context (Lessard et al., 2010). In liver, PTPlb deletion mainly

increases phosphotyrosine levels, but some sites show decreased phosphorylation, suggesting

network compensation for PTPlb deletion. Obesity increases cancer risk (Biddinger and Kahn,

2006), and, here, similar to many cancers, there is a general increase in phosphotyrosine levels.

These diet-dependent phosphotyrosine network changes were not the focus of the present work,

but they warrant further study.
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Although the phosphotyrosine dataset reflected both diet and genotype perturbations, in general,

these trends were driven by fold-changes of less than two, which are modest in comparison to the

fold-changes observed in growth-hormone stimulation or overexpression of oncogenic tyrosine

kinases in cell lines (Huang et al., 2007; Zhang et al., 2005). In order to sensitively detect the

protein pathways exhibiting altered phosphotyrosine regulation under genotype and diet

conditions, a gene set enrichment analysis (GSEA) framework (Subramanian et al., 2005) was

adapted for phosphosite set enrichment analysis (PSEA). Through quantitative incorporation of

the full dataset, this framework provides sensitive detection (e.g., of pathways whose net fold-

change is -20%) (Mootha et al., 2003), and, by implicitly controlling for measurement

dependence in the null model, this method more accurately estimates significance, in comparison

to methods involving overlap statistics (Subramanian et al., 2005). By considering the diverse

functions of protein phosphotyrosine modification, we developed (1) signed PSEA to detect

pathways controlled by relatively uniform change in phosphotyrosine and (2) unsigned PSEA to

detect pathways controlled by simultaneous decrease and increase of select phoshosites. In

addition, given the availability of experimental technical replicates, we assessed the robustness

of these techniques to noise. PSEA results were sensitive to analysis sign as well as

incorporation of measurement noise.

Development of PSEA was especially important in the context of this study, because the

majority of the phosphotyrosine sites responsive to diet or genotype were functionally

uncharacterized. Thus, incorporation of phosphosite and protein annotations by this framework

enhanced hypothesis generation by (1) revealing unknown relationships between sets of

phosphosites and (2) associating significance with hypotheses tested. PSEA uncovered

phosphotyrosine regulation of pathways known to be PTPlb-dependent (insulin signaling) and
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novel PTPlb-dependent phosphotyrosine regulation of proteins involved in oxidation and

reduction (REDOX), lipid metabolism, amino acid metabolism and other pathways.

Because previous studies in L-PTPlb-/- mice demonstrated altered lipid metabolic changes

consistent with improved liver and cardiovascular health (Delibegovic et al., 2009), the

enrichment for PTPlb-dependent phosphotyrosine alterations in lipid metabolic proteins

motivated further study. The functions of these phosphosites were uncharacterized and spanned

a diverse set of lipid metabolic proteins. In order to systematically infer regulatory function for

these sites, the lipids from the liver tissue samples were profiled at molecular-level resolution

using global MS-based techniques (Homan et al., 2011). These experiments reveal PTPlb-

dependent lipid alterations in fatty acid and triglyceride metabolism. Although total fatty acids

between L-PTPlb-/- and control mice are unaltered, L-PTP lb-/- mice on HFD have dramatically

elevated levels of select o7/o9 PUFA and select o3/(o6 PUFA. The physiological effect of the

PTPlb-dependent o3/o6 PUFA are less well characterized than their 3/(o6 PUFA products,

arachidonic acid (AA), DHA and EPA, which are potent inhibitors of insulin-mediated

lipogenesis in the liver (Sampath and Ntambi, 2005). However, if the PTPlb-dependent o3/o6

PUFA share the properties or enhance the production of these downstream PUFA products,

altered PUFA metabolism might explain how L-PTP lb-/- mice exhibit reduced lipogenesis in the

context of enhanced insulin sensitivity. In addition, the elevation of o7/o9 PUFA, downstream

products of the A9-desaturase, SCD, may reflect increased SCD activity. Interestingly, the C 18

SCD Index, often used as a surrogate for SCD activity, is elevated in basal L-PTPlb-/- under

both HFD and NC conditions. SCD activity may play a protective role in liver under HFD

conditions, by neutralizing the cytoxicity of saturated fatty acids via their conversion to
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monounsaturated fatty acids (MUFA) and subsequent incorporation into triglycerides. This

suggests a molecular mechanism by which HFD-induced stress is reduced in L-PTP lb-/- mice.

Triglyceride levels are also elevated in L-PTPIb-/- livers on HFD. This result was in contrast to

previous results at earlier and similar time points, in which the opposite or no trend was found,

respectively (Delibegovic et al., 2009). However, given the large number of samples and

orthogonal techniques used for this measurement in our study, the triglyceride data is difficult to

discount. Consideration of parallel serum triglyceride measurements in both this and the

previous study suggest a hepatic triglyceride secretion defect. In both studies, the ratio of serum

triglycerides to hepatic triglyceride content is reduced in L-PTPlb-/- mice relative to control. In

addition, the compositions of hepatic triglycerides are altered in L-PTPlb-/- mice, which have a

lower percentage of PUFA-rich triglycerides. As discussed in Chapter 2, through an oxidative

mechanism, elevated PUFA may contribute to the triglyceride secretion deficiency and also

explain the altered triglyceride compositions.

To understand how altered phosphotyrosine regulation might drive these lipid metabolic

changes, multivariate regression models of these lipid phenotypes as functions of underlying

phosphosites were constructed. Multivariate regression models phenotypes as functions of

multiple contributing predictors and, in this way, mirrors the multivariate nature of true

biological response mediation. Multivariate modeling was limited to regression, given the

statistical properties of the dataset (M > N, or many more variables than observations). These

analyses focused on the HFD basal dataset, where it was conceivable that both L-PTPlb-/- and

control phenotypes might be captured by a single linear model, as in a Taylor series expansion.

However, as described in Chapter 3, this modeling endeavor presented several technical

challenges. Foremost were significant amounts of systematically missing data points, due to
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technical aspects of the phosphotyrosine experiments. To address this issue, diverse missing

data methods were systematically compared using simulation and receiver-operator characteristic

(ROC) performance criteria. This analysis highlighted the diversity in performance among

missing data methods and enabled optimal selection of a missing data method for application to

this study. To enhance the robustness of the models to measurement noise, a stochastic

multivariate regression (SMR) modeling technique was developed. The pairing of missing data

techniques with SMR enabled model construction that maximally leveraged the data, because

both noisy and missing data points were evaluated using these methods, as opposed to being

removed a priori. In addition, a modification to the calculation of the Q2 goodness-of-prediction

statistic was adopted. The modified Q -value more rigorously reflects model prediction through

the consideration of variable selection in addition to model fit. Using these methods and the Q2

metric, three quantitatively predictive models of (1) PTP lb-dependent o7/o9 PUFA, (2) PTP 1 b-

dependent o3/o6 PUFA, and (3) steatosis were built as functions of underlying phosphotyrosine

network changes.

The reduced sets of model phosphosite predictors highlight several interesting phosphotyrosine-

phenotype relationships. In particular, the phosphosite Y 11 on cytochrome b5 (CYB5) is an

important predictor of PTPlb-dependent o7/o9 PUFA. As discussed above, the o7/o9 PUFA

are SCD products subsequently elongated by elongases and desaturated by A5 and A6

desaturases (Guillou et al., 2010). Interestingly, CYB5 is required for SCD activity, and CYB5

contributes to A6 desaturase activity (Guillou et al., 2004). CYB5 Y1 1 phosphorylation is

elevated in L-PTPlb-/- mice, and, because CYB5 is localized in the ER and Y1 1 is a tandem

tyrosine residue, CYB5 Yl 1 may be a PTP1b substrate. However, many other uncharacterized

phosphotyrosine sites were important to prediction in these models, and a detailed discussion of
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their roles is contained in Chapter 2. In addition, PSEA was applied to lists of phosphosites

ranked by predictive importance to the SMR models. For all three lipidomics phenotypes,

phosphotyrosine regulation of REDOX pathways was significantly predictive. The balance of

oxidation and reduction is a pivotal driver of metabolic states. For example, fatty acid

desaturation requires conversion of NADH to NAD+ (Guillou et al., 2010), and lipid oxidation

modulates liver triglyceride secretion and hepatic steatosis (Pan et al., 2004). Net changes in

oxidation and reduction mediated by tyrosine phosphorylation of REDOX enzymes could

underlie and contribute to all three PTPIb-depedendent lipid metabolic phenotypes.

In summary, this research used global quantitative MS analysis to gain site-specific and

molecular-level resolution into phosphotyrosine regulation and lipid metabolism in L-PTPlb-/-

and control mice under both HFD and NC conditions. Critical to the progress of this research

were the design and development of computational methods for this dataset; these should

facilitate future analysis of MS-based post-translational modification (PTM) datasets and other

datasets as well. In this study, these techniques specifically enabled elucidation of those

phosphosites and pathways likely to contribute to L-PTPlb-/- phenotypes. The combination of

systematic phosphotyrosine measurements with sensitive PSEA enabled the identification of

multiple pathways with PTPlb-dependent phosphotyrosine regulation. Complementary global

lipidomics profiling demonstrated that the products of two of these pathways, lipid and fatty acid

metabolism, were altered as well. To connect phosphotyrosine measurements with the

lipidomics measurements, multivariate regression analysis resulted in quantitatively predictive

models that highlight roles for sets of phosphosites in several lipid metabolic phenotypes. The

molecular mechanisms of PTPlb-dependent lipid metabolism merit further study, as do the other
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PTP1b- and diet-dependently tyrosine phosphorylated pathways. It is my hope that this study

motivates further research in these areas.

Limitations and Future Directions

The discovery aspect of this work represents both a strength and a challenge. Few phospho-

specific antibodies exist for the hundreds of phosphotyrosine sites detected, and this in itself

highlights the novelty of the measurements in this study. In the absence of detailed biological

information, quantitative information provides an opportunity for computational and machine

learning techniques to infer biological relationships for these sites. Although the present study

included nearly fifty liver tissues, the resulting final dataset was sparse, and this posed significant

challenges to computational inference, despite the large sample size. Although it was possible to

work around these limitations with PSEA and with missing data techniques for a data subset

using SMR, there is no substitute for complete data. As described in Chapter 3, the sparsity of

the datasets are due to the combination of multiple 8-plex MS experiments, each obtained using a

data-dependent acquisition mode and providing quantification of phosphosites, whose number

and identities were variable from experiment to experiment. The original experimental design

was to perform preliminary MS experiments in data-dependent acquisition mode to discover

which phosphotyrosine sites were detectable in the L-PTPlb-/- samples. These preliminary

analyses were to be used to generate a list of phosphosites for targeted MS experiments using

multiple-reaction-monitoring (MRM) techniques (Wolf-Yadlin et al., 2007). However, even

after enrichment procedures, the iTRAQ-labeled phosphotyrosine peptide samples for the liver

tissues from this study were too complex to be reliably analyzed by MRM technology available

in the lab. Many mixed spectra were discovered upon manual validation of the initial data-

dependently acquired experiments. These mixed spectra result from the co-elution of two

175



peptides with similar m/z ratios, and, in this case, the iTRAQ quantification is not specific to one

peptide but a combination of peptides, whose individual contributions cannot be resolved. A

high-resolution, full MS 1 and/or full MS2 spectrum can be used to determine whether co-elution

occurred, as evidence (contaminating, unexplained ion peaks) can appear in either. Whereas this

information is available for data-dependent acquisition in our lab, MRM measures only selected

ion transitions, corresponding to pre-selected ion fragments of precursor peptides. Thus, peaks

from contaminating, co-eluting peptides would not be detected. For analysis of individually

eluting phosphopeptides, MRM provides sufficient information for peptide quantification. Given

the complexity of the samples in this study, all phosphotyrosine measurements were acquired

using data-dependent acquisition, and incomplete data resulted. With much anticipation,

methods for next-generation targeted MS/MS method have been developed by Joshua Coon's lab

at the University of Wisconsin (unpublished), and these will enable high resolution, full-scan

MS2 spectra of targeted precursors. In addition to enabling analysis of more complex samples,

these methods also promise to target larger lists of peptides (>100). This technology will greatly

enhance opportunities for computational inference of biological relationships from quantitative

MS datasets.

To develop a functional role for the phosphosites on lipid metabolic proteins, global lipidomics

profiling of hepatic lipid content was coupled with computational modeling techniques to

determine the phoshosites most relevant to the metabolic alterations discovered. However, many

of the metabolic alterations were themselves uncharacterized, providing an additional challenge

for relating measurements to interpretable physiological outcomes. The PTPlb-dependent

elevation in o7/o9 PUFA was the most notable example. The most PTPlb-dependent o7/o9

PUFA, mead acid (C20:3 o9), is associated with essential fatty acid deficiency (EFAD) (Le et
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al., 2009), and the other PTPlb-dependent o7/o9 PUFA appear to be precursors and/or

derivatives of mead acid. Whether these o7/o9 PUFA share the properties of essential fatty acid

derivatives (EPA, DHA, and arachidonic acid (AA)) in the regulation of lipid metabolism or

inflammation is unclear. Interestingly, comparison of absolute amounts of fatty acids between

NC and HFD mice reveals that EPA and DHA are 5-fold and 3-fold depleted under HFD

conditions, while the EFAD-associated and PTPlb-dependent PUFA C20:3 o9/o7*, C22:3

o9*/o7*, and C18:3 o7* are each more than 5-fold elevated in HFD (P < .01, each comparison).

Does HFD relate to essential fatty acid deficiency, and why do L-PTPlb-/- have elevated EFAD-

associated PUFA? EPA- and DHA-derived eicosanoids promote inflammation resolution.

Perhaps EPA and DHA are depleted under HFD because they are used in the resolution of diet-

induced inflammation. If HFD does resemble EFAD, then A5 and A6 desaturase activity would

be elevated. If, additionally, SCD activity was increased in L-PTPlb-/- mice, then, on HFD,

there would be more available o7/o9 MUFAs for metabolism into 7/o9 PUFAs. Pleiotropic,

unknown functions may exist for PTPlb-dependent o7/o9 PUFA and eicosanoid derivatives.

As discussed in the introduction, an eicosanoid role for a derivative of C20:3 o9 was recently

discovered (Patel et al., 2008). The concentrations of C20:3 o9 may be high enough to have

physiological consequences under HFD, as its concentration is intermediate between AA and

EPA. Complementary measurements of eicosanoids in these samples might provide insight.

However, similarly to the phosphotyrosine modification of metabolic enzymes, it is difficult to

interpret the directionality from static metabolic measurements alone. Given more resources,

metabolic flux experiments might come closer to explaining the metabolic changes in L-PTP1b-

/- on HFD. Treating mice with C13- acetate (for tracing of de novo lipogenesis products) or C"-

saturated fatty acids (for tracing diet-derived fatty acids) could illuminate how the PTPlb-
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dependent o7/Wo9 PUFA arise and where they go. These measurements would also test whether

the C18 SCD Index actually reflects increased SCD activity, a hypothesis that was difficult to

test in vitro.

Additionally, it is still not clear whether a well-studied lipid metabolic phenotype, like hepatic

steatosis, would be detrimental to liver function in the context of therapeutic PTPlb inhibition.

Although hepatic steatosis is a hallmark of NAFLD and often associated with compromised liver

function and inflammation, some experiments suggest that the esterification of fatty acids may

protect against cytoxicity and associated ER stress and inflammation responses (Coleman and

Lee, 2004; Fabbrini et al., 2009). Intriguingly, the L-PTPlb-/- mice on HFD in our study have

elevated steatosis but similar levels of select markers of inflammation. In the previous study

(Delibegovic et al., 2009) and at a similar time point, the L-PTPlb-/- mice have the same levels

of hepatic steatosis and reduced markers of inflammation relative to controls on HFD. Together,

these results may indicate that the anti-inflammatory effects of L-PTPlb-/- were offset by

elevated steatosis in our study. Additional temporal resolution would help determine whether

steatosis eventually leads to compromised liver function, an issue of paramount importance in

the context of therapies targeting hepatic PTPlb. In addition to temporal resolution, it would be

informative to explore other obesity-inducing diets, such as the high carbohydrate or high-

sucrose, very low-fat diet. As illustrated by liver-specific SCD deletion mouse models, the

source of obesity can profoundly impact the benefits of protein inhibition (Miyazaki et al., 2007).

If SCD activity is increased in L-PTPlb-/- mice, they may be less resistant to the negative

consequence of high-carbohydrate-induced obesity.

Activity-based protein profiling (ABPP) experiments would contribute to elucidation of enzyme

regulation by phosphotyrosine in this study. ABPP uses active-site-directed chemical probes to
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broadly measure the activities of enzyme classes (Nomura et al., 2010). These probes consist of

a reactive group to interact with active enzymes and a handle that can be used to enrich for these

enzymes. Enriched enzymes can be visualized in a gel and identified by MS. ABPP probes have

been developed for diverse and broad classes of poorly characterized enzymes, such as serine

hydrolases, histone deacetylases, and enzymes with reactive cysteines (Bachovchin et al., 2011;

Salisbury and Cravatt, 2008; Weerapana et al., 2010). These methods are commonly used in

tandem with metabolomics profiling (Nomura et al., 2010). In the future, combination of ABPP

with MS-based PTM datasets would yield important connections between protein activity and

PTM state. Integration of these two datasets could also reveal network-level regulatory

mechanisms controlling enzymatic activity.

The field of metabolism has been revitalized in the last decade. Many experimental methods

have been central to this progress. This study highlights the importance of tissue-specific mouse

models to understanding the interplay between specific perturbation of PTM networks and

physiological responses. This study also highlights the power of mass spectrometry to expand

our knowledge of metabolic control. Here we combine MS-based analysis of PTMs with

metabolomics. Additional analysis involving ABPP and metabolic flux would provide crucial

directionality to these measurements. The role of computation for integration of these

complementary measurements, especially the sparse PTM datasets, will be greatly enhanced by

further advances in mass-spectrometry, such as the next-generation MRM method, to provide

complete datasets. The design of studies integrating these technologies will provide a powerful

opportunity for computational analysis to discover connections among PTM regulation of

pathways, specific enzymatic activities, metabolite abundances, and physiological outcomes.
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