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Abstract

Nonlinear dynamic physical systems exhibit a rich variety of behaviors. In many cases,
the system response is unstable, and the behavior may become unpredictable. Since
an unstable or unpredictable response is usually undesirable in engineering practice,
the stability characterization of a system's behavior becomes essential.

In this work, a numerical procedure to characterize the dynamic stability of con-
tinuous solid media, discretized using finite element methods, is proposed. The pro-
cedure is based on the calculation of the maximum Lyapunov characteristic exponent
(LCE), which provides information about the asymptotic stability of the system re-
sponse. The LCE is a measure of the average divergence or convergence of nearby
trajectories in the system phase space, and a positive LCE indicates that the sys-
tem asymptotic behavior is chaotic, or, in other words, asymptotically dynamically
unstable. In addition, a local temporal stability indicator is proposed to reveal the
presence of local dynamic instabilities in the response. Using the local stability indi-
cator, dynamic instabilities can be captured shortly after they occur in a numerical
calculation. The indicator can be obtained from the successive approximations of the
response LCE calculated at each discretized time step. Both procedures can also be
applied to fluid-structure interaction problems in which the analysis focuses on the
behavior of the structural part.

The response of illustrative structural systems and fluid flow-structure interac-
tion systems, in which the fluid is modeled using the Navier-Stokes equations, was
calculated. The systems considered present both stable and unstable behaviors, and
their LCEs and local stability indicators were computed using the proposed proce-
dures. The stability of the complex behaviors exhibited by the problems considered
was properly captured by both approaches, confirming the validity of the procedures
proposed in this work.

Thesis Supervisor: Klaus-Jiirgen Bathe
Title: Professor of Mechanical Engineeing
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Chapter 1

Introduction

The complexity and large variety of behaviors that nonlinear systems can exhibit

have fascinated researchers for centuries. For many systems, even weak nonlineari-

ties cannot be neglected since they significantly affect the long-term system response.

Furthermore, analytical solutions are usually difficult or impossible to obtain, and con-

sequently, techniques have been developed to approximate either the system response

in time or its asymptotic behavior (usually when weak nonlinearities are present).

Unfortunately, all these analytical techniques, although very useful, are only appli-

cable to a relatively small number of systems due to the intrinsic complexities of

them.

The availability of computers made possible the numerical calculation of the re-

sponse of systems that were impossible or extremely difficult to solve by other means,

and therefore it opened a broad spectrum of new possibilities. Furthermore, as the

speed and storage capacity of computers increases, the calculation of more complex

and larger systems becomes feasible. Numerical methods constitute nowadays an

essential tool in the analysis and understanding of the behavior of systems, with

applications in almost all areas of engineering and science.

Since the early inception of the analysis of mechanical systems, it was recognized

that nonlinear systems, as opposed to their linear counterparts, exhibit a large variety

of behaviors. It was then also acknowledged that the characterization of the system's

response stability, not only of equilibrium points but also of motions, was important.
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Thus, mathematical tools, such as perturbation methods, were developed to assess

the stability of system behaviors. When using perturbation methods the system re-

sponse is slightly perturbed and the evolution of the perturbations as a function of

time solved (or approximated). Generally, if the perturbations decay as a function

of time, the system dynamic behavior analyzed is stable, whereas if the perturbation

grows in time, the response is unstable. Due to the complexity of the calculations

involved, analytical techniques were limited to the study of relatively simple systems.

Therefore, for the stability characterization of system's responses, computers are in-

valuable tools for researchers and engineers in the study of large and complex systems.

The objective of this work is to use numerical methods to characterize the stability

of the dynamic response of continuous systems.

Let us begin with a brief description of what has been done in the area in the past.

By the end of the 19th century, mathematicians had noticed that certain dynamical

systems present irregular solutions. For those irregular solutions, small perturbations

in the initial conditions lead to large differences in the system response at a later time,

making prediction impossible. Nevertheless, it was believed and generally accepted

that using powerful enough computers any deterministic system (i.e. a system that

has no random inputs or parameters, and which is governed by a known equation of

motion) could eventually be solved and its response predicted.

In the second half of the 20th century, Lorenz was computing trajectories of a very

simple deterministic system he had developed with the aim of studying and predicting

the weather. To his surprise, he found that for certain values of the parameters of

his equations, irregular solutions exist [18]. The name chaotic behavior, to define the

response of such trajectories, was then employed to describe this type of motions.

A chaotic behavior is characterized by a non-periodic response and sensitivity to

initial conditions. Nearby trajectories in phase space (the space of displacements and

velocities in a classical mechanical system) diverge exponentially fast (on average)

from each other, and the response becomes unpredictable.

Since the work of Lorenz, many researchers have studied the chaotic behavior of

numerous low-order discrete equations of motion and maps. Furthermore, techniques
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were developed to characterize a chaotic response by assessing how fast nearby trajec-

tories in phase space diverge from each other. Such measures include the Lyapunov

characteristic exponents of a system response and the Kolmogorov entropy (which

can be calculated by knowing the Lyapunov characteristic exponents). Even though

the concept of Lyapunov characteristic exponent was developed in 1892 by A. M.

Lyapunov, the basis for its numerical calculation was only given in 1976 by Benettin

et al. [4] [3].

In engineering practice, turbulence, a chaotic behavior of fluids, was known since

long ago, and researchers have characterized and calculated it by means of statistical

variables. It was also recognized that the exact system behavior is unpredictable in

the presence of turbulence, since it is impossible to exactly trace the trajectory of

a particle, no matter how much we try to avoid errors in the calculation. Although

the dynamic behavior of a turbulent flow is unstable and unpredictable, its mixing

characteristics are usually desired in engineering systems, for example to dissipate

heat in a more efficient way.

However, the recognition that the response of solid mechanics problems as well as

electrical systems can become chaotic was more surprising and somewhat unexpected.

Especially surprising was the fact that nonlinear systems of equations with only a few

degrees of freedom, obtained from Newton laws of motion, could exhibit a chaotic

response. In contrast to fluid systems, in structural mechanics an unstable behavior

is usually not desirable and hence the chaotic behavior unacceptable. Thus, the

characterization of the dynamic stability of structural engineering systems becomes

important.

Chaotic responses have been observed in diverse dynamical continuous systems, in-

cluding buckled beams and arcs with periodic excitations, electro-mechanical systems,

systems subject to nonlinear boundary conditions such as contact, pipes conveying

fluid and fluid flow over plates, to mention just a few [24].

Previous works on the chaotic behavior of continuous systems include experimen-

tal investigations and the use of reduction methods, see for example [25] [27] [16] [6]

[32]. In the case of experimental investigations, the procedure employed consists of

12



recording some of the system variables as a function of time. Then, the time histories

are analyzed using Fourier and correlation analyses and finally numerical techniques

are applied (see for example [38]) to obtain an approximation of the response Lya-

punov characteristic exponent. This approach, although powerful, is not available for

every system since the costs of it might be unaffordable. In the case of reduction tech-

niques, it is assumed that the system response is accurately described by considering

the response of only a few system modes. The continuous equations that describe

the system behavior are then reduced to a system of a few coupled discrete nonlin-

ear equations, that can be analyzed using the available techniques for the analysis

of discrete systems of equations. However, the amount of modes needed to accu-

rately represent the system behavior is not always evident. Even worse, when strong

nonlinearities are present, the linearized modes are no longer accurate to describe

the system behavior, and nonlinear modes, which can be very difficult to obtain,

should be employed. Therefore, reduction methods also present intrinsic limitations.

A more general procedure to assess the local stability and calculate the Lyapunov

characteristic exponent of a continuous system response is therefore needed.

It is important to emphasize here the main differences between systems of equa-

tions obtained by discretizing a continuous system and discrete equations of motion.

The objective of this discussion is to explain why the numerical techniques developed

to calculate the LCE of discrete systems could not be employed in the calculation of

the LCE of continuous systems. The first difference is that when discretizing a con-

tinuous medium using finite element methods, a large number of discrete equations

is obtained. Another immediate difference is that the continuous problem boundary

conditions have to be satisfied at all times. However, the most important difference is

that distinct time scales are present in the continuum discretized equations. Usually

the time step chosen to discretize the equations (when using an unconditionally stable

time integration scheme) does not accurately capture the smaller time scales involved

in the equations. From the discussion of Chapter 5, it becomes clear that the algo-

rithm to calculate the LCE of discrete systems, describe in Chapter 2, is no longer

applicable in the calculation the LCE of continuous systems, and a new procedure
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needs to be developed.

In this work, a numerically efficient procedure to calculate the Lyapunov charac-

teristic exponent of structural and fluid-structure interaction continuous systems is

proposed. In the procedure presented here the continuous equations of motion are

first discretized using the finite element method, and then the Lyapunov characteristic

exponent of the system response is calculated, considering all the system discretized

modes. As far as we know, this is the first work in which the Lyapunov charac-

teristic exponent of continuous systems, discretized using finite element methods, is

calculated by perturbing all the discretized modes (or degrees of freedom).

In many situations, it is not important to know the exact value of the Lyapunov

characteristic exponent, which is a measure of the asymptotic divergence of trajecto-

ries in phase space, but rather to know whether the dynamic response of the system

is unstable at any time. In such situations, the characterization of the response local

stability becomes very important and desirable. A local stability indicator, which

can be obtained from successive approximations of the value of the Lyapunov char-

acteristic exponent, is proposed to assess the local stability of the system response

considered. These approximations are calculated at each time step in the LCE pro-

cedure proposed, and therefore the local stability indicator can be thought of as a

by-product of the Lyapunov characteristic exponent calculation.

The thesis is organized as follows. In Chapter 2 a brief review of the theory

of discrete nonlinear dynamic systems is given, which includes the definition of the

Lyapunov characteristic exponent and its numerical calculation. Chapter 3 is devoted

to the continuum governing equations of solid media and fluid flows that are used

in this work, as well as the conditions that must be satisfied at a fluid-structure

interface when solving fluid-structure interaction problems. Chapter 4 describes the

finite element discretization of those governing equations and the implementation

of the fluid-structure interaction procedure employed. In Chapter 5, a numerically

efficient algorithm to calculate the Lyapunov characteristic exponent of structural

problem and of fluid-flows with structural interactions and a local stability indicator

are proposed. Subsequently, in Chapter 6, numerical examples are presented and the

14
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Lyapunov characteristic exponents calculated using the proposed algorithm. Finally,

in Chapter 7 the conclusions of this work are given and future research in the analysis

and characterization of the dynamic behavior of continuous systems is suggested.

15



Chapter 2

Discrete dynamical systems

Nonlinear dynamic systems can exhibit a large variety of dynamic responses, some

of which are stable, and some unstable and unpredictable. Since instabilities in the

system response are usually undesirable, it is not only important to calculate the

response of the system but also to characterize its stability.

The objective of this work is to find numerical algorithms to characterize the

stability of the dynamic behavior of nonlinear equations of motion, and to obtain

information about the system response predictability.

In the following, a short introduction to some relevant aspects of nonlinear theory,

needed for the development of this work, is given. For a more detailed explanation

of the techniques available to study nonlinear systems and their responses, see for

instance [37] [28] [8] [1].

2.1 Nonlinear dynamic equations

Consider the following system of discrete nonlinear non-dimensional ordinary differ-

ential equations,

x = f(x) (2.1)

with initial conditions

16
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x(to) = xa (2.2)

where x C R" is the vector of state variables for the system, the dot indicates differ-

entiation with respect to time, f is assumed to be a smooth vector valued function of

x defined on some subset U C R" such that f : U * R", xa C U and to is the initial

time. The system defined by equations (2.1) is called autonomous since the function

f(x) does not depend explicitly on time.

When the function f is also a function of time, f = f(x, t), the system of equations

is called non-autonomous. However, a non-autonomous system can be converted into

an autonomous one. Assuming that x C R", by performing a change of variables of

the form xn+1 = t, equation (2.1) becomes,

x= f(x, xn+1 ) (2.3)

Jn+1

In this way, the time t is included as an additional state variable, and hence, all the

techniques employed in the analysis of autonomous systems are also applicable to the

non-autonomous ones.

The vector field f generates a flow #t : U -* R/, where #t _ #(x, t) is a smooth

function defined for all x c U, and t in some interval (a, b) E R. The flow #t satisfies,

d

Therefore, #t represents all possible solutions of equation (2.1) for all x c U.

In addition, #(xo, ) : (a, b) -+ R' defines a solution curve or trajectory of the

system of equations (2.1) with initial conditions (2.2) [8]. The solution is also denoted

by x,(t) for simplicity later in this work.

Let us define here, following [8], some sets defined in an Euclidean space (although

they can in general be defined in other spaces) that would be useful for the discussions

below. A set So is open if for each point x C So there is a real number E > 0 such

that if the distance between two points x and y is less than E, then y E S,. A

set Sc is closed, if it contains all its limit points (or "boundary" points). A closed

17



and bounded set is a compact set. A p-dimensional manifold M C R (p < n) of a

dynamical system is a set such that for each x belonging to the manifold there is a

neighborhood Sm of x for which there is a smooth invertible mapping #$: RP -4 Sm.

The solution of equations (2.1) and (2.2) is unique, at least locally, if the existence

and uniqueness theorem [8] is satisfied:

Theorem 1: Let U C Rn be an open subset of the real Euclidean space, let f be

a continuously differentiable (C) function in U and let xo E U; then, there is some

constant c > 0 and a unique solution #(xo, t) on some time interval (-c, c), which

satisfies equation (2.1) with initial conditions (2.2). o

Of course the theorem applies to all systems of equations that satisfy the theorem

conditions, and therefore unique solutions exist regardless of the dynamic stability of

the system (i.e. it is applicable to responses such as steady-state solutions, periodic

or quasi periodic solutions, chaotic behavior, etc.).

Theorem 1 is only local on time 1 since it can only guarantee the existence and

uniqueness of solutions in some finite time interval (-c, c). The theorem becomes

global, and thus solutions exist for all times, if x is defined on a compact manifold M

[8].

Theorem 2: Equation (2.1), with x E M, and f a continuously differentiable

(C') function, has solution curves defined for all t E R. o

Therefore, flows on spheres or tori, for example, are defined for all values of time,

since the trajectories cannot escape from the mentioned manifolds.

In this work only deterministic systems, that is to say systems that contain no

stochastic terms or inputs and whose equations of motions are known, will be con-

sidered. In addition, only systems that satisfy the conditions of Theorem 1 and

therefore have a unique solution, #(xo, t) = x,(t), called the reference solution, will

be discussed.

The space of state variables x C R' of the system defined by equation (2.1) is

'It is possible to find examples of equations defined in !R' for which solutions exist for all values

of t, but in general it is not possible to show the global existence in such cases without specifically

investigating the particular system.
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called the system phase space. Phase portraits, wich are plots of the trajectories in

the phase space, are often used to analyze the response of nonlinear systems. The

existence of unique solutions for the system of equations considered implies that

trajectories never intersect in phase space.

An invariant set S for a flow #t is a subset S C R' such that #(x, t) E S for all

t c R. In addition, a closed invariant set A C R' is called an attracting set if there

is some neighborhood A' of A such that #(x, t) E A' for all t > 0 and #(x, t) -+ A as

t -+ 00 for all x c A'. The subset of all points in which the system initial conditions

can lie so that the trajectories are attracted to the attracting set A is called the

domain of attraction or basin of attraction of A. Thus, all trajectories starting in the

domain of attraction of an attracting set are "captured" by the set. These concepts

will be used in relation with the stability of motions and the chaotic behavior of

systems. In this context, the attracting set of a chaotic system, observed numerically,

will be called a strange attractor, although in theory there is some distinction between

an attractor and an attracting set 2 (see [8] for a detailed discussion).

Given a nonlinear system of equations with specified initial conditions, our prob-

lem is to find the reference solution and to determine its stability.

2.2 Dynamic responses of nonlinear systems

The solution of nonlinear equations of the form (2.1) with initial conditions (2.2)

can present a rich variety of behaviors. Some of them are somewhat surprising and

can only occur for nonlinear systems. Some of the behaviors that were observed in

physical systems are mentioned below.

2.2.1 Steady-state behavior

A steady-state response can take place for both linear or nonlinear systems, and it

is obtained when x = 0 in equation (2.1). Thus, a steady-state response is obtained

when the system reaches a state that does not depend on time, and therefore x is

2 An attractor can be defined as an attracting set that contains a dense orbit.
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a constant vector, also known as a fixed or equilibrium point of equations (2.1). In

a dynamic solution, a (stable) steady-state response is obtained for large values of

time, for dissipative systems, or when the initial conditions coincide with the system

fixed point, for conservative systems.

2.2.2 Periodic solutions

Periodic solutions can be obtained for both linear and nonlinear systems. For con-

servative systems (which can be linear or nonlinear), the amplitude of oscillations

depends on the system initial conditions.

For nonlinear equations self-excited oscillations, also called limit cycles, can occur

[37]. A limit cycle is an isolated closed orbit in phase space, which can occur even

without imposing an external periodic forcing to the governing equations of motion.

In other words, a limit cycle is a periodic solution, and neighboring trajectories are

either attracted or repelled by the limit cycle (depending on the stability of it). In

addition, for initial conditions lying in the basin of attraction of a limit cycle, the

amplitude of the resulting self-excited oscillations does not depend on the system

initial conditions.

2.2.3 Chaotic behavior

Among the different behaviors that a nonlinear system can exhibit, the chaotic re-

sponse is one of the most intriguing ones. The most impressive characteristic is that

an non-periodic random-like response (the chaotic response) can be obtained from

a completely deterministic system, for which all the inputs are known. This is in

contrast with the usual meaning of random system, in which a random response is

observed because it is impossible to identify and control all the inputs to the system

in an experimental setup.

A chaotic response is characterized by its sensitivity to initial conditions that re-

sults in an unpredictable behavior. Nearby trajectories in phase space diverge from

each other exponentially fast. Therefore, two trajectories, which are initially infinites-
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imally close to each other, are separated after a relatively short time, associated with

the prediction time of the system.

However, even when a chaotic response is observed, in the long-term, the trajec-

tories occupy only a certain closed subset of the phase space, an attracting set called

the strange attractor. All trajectories that originate close enough to this subset, in

its domain of attraction, are attracted to it, in a similar way as trajectories that are

close to a limit cycle are attracted to it. It can happen, for example, that for cer-

tain initial conditions a nonlinear system is completely regular, and for instance the

trajectories approach a fixed point (steady-state) as time evolves; whereas for other

initial conditions the system behavior becomes chaotic. In addition, it is also possible

to have a system with different chaotic attractors. Therefore, we refer to a chaotic

response of a system and not a chaotic system.

2.3 Stability of motions: Lyapunov stability

The concept of stability in physics can be applied to both equilibrium positions and

motions. In the first case, we consider solutions of equation (2.1) such that x = 0, and

therefore f(x) = 0. The zeroes of f(x) are called the system equilibrium positions or

fixed points. If the equilibrium is perturbed and the system returns (after certain time)

to the same equilibrium position, the equilibrium is said to be asymptotically stable,

and stable (or neutrally stable) [8] if the perturbed trajectory remains sufficiently

close to the fixed point for all times.

In this work, we are concerned about the stability of motions. Therefore, we want

to investigate what happens when a system that is not in an equilibrium position is

perturbed. To characterize the stability of motions, the concept of Lyapunov stability

can be used [10].

Considering equations (2.1) and (2.2), we now assume that the reference solution,

Xr(t), which describes the system dynamic behavior, is slightly perturbed at time t,

that is to say,
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x(t) = x(t) + y(t) (2.5)

where x is now the perturbed vector of state variables and y is the perturbation

vector, which is such that ||yl| << ||xr||. The equation that describes the evolution

of the perturbation is given by

y = f(X, + y) - f(xr) (2.6)

The stability of the reference trajectory can now be established by looking at the

stability of the equilibrium point y = 0 of equation (2.6). Considering an initial

perturbation yo at time t*, the Lyapunov stability is defined as follows [10],

* The equilibrium is said to be stable if given two real numbers, E, 6, for each

E >0 there exists a 6 > 0 such that if ||yo| < 6 then ||y(t)|| < E for t > t.

" The equilibrium is said to be quasi-asymptotically stable if there exists a 6 > 0

such that if ||yoll < 6 then limto |ly(t)||= 0.

" The equilibrium is said to be asymptotically stable if it is both stable and quasi-

asymptotically stable.

" The equilibrium (y = 0), and therefore the motion considered, is unstable if it

is not stable.

These concepts apply to the stability of a motion, and therefore it is possible to

consider stable or unstable trajectories in phase space. For example, a trajectory

that ends in a fixed point (i.e. a steady state solution) or in a limit cycle is stable,

since trajectories that are initially close to each other converge to the fixed point or

limit cycle orbit. However, a chaotic trajectory is unstable since nearby trajectories

diverge from each other. A graphical representation of the different types of stability,

according to Lyapunov, is shown in Figure 2-1.

Note that in the definition of quasi-asymptotic stability, the system is not neces-

sarily stable at all times (it is only required for it to be stable for large times).
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b) Quasi-asymptotically stable

c) Asymptotically stable

Figure 2-1: Graphical representation of the different types of stability of a motion,

according to Lyapunov.
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2.4 Lyapunov characteristic exponents

The Lyapunov characteristic exponents are used to characterize a system dynamic

behavior, especially in the case in which a chaotic response is obtained. In this section,

the definition and properties of Lyapunov characteristic exponents are considered, and

the numerical calculation of the maximum Lyapunov characteristic exponent of order

one briefly discussed (for discrete systems of equations of the form of equation (2.1)).

2.4.1 Definition and properties of Lyapunov characteristic

exponents

Consider the case of a nonlinear system of equations of the form (2.1), for which the

function f generates a differentiable flow #t defined on a differentiable manifold, M.

We are interested in the asymptotic behavior (as t -+ oc) of the differential flow dt

[3].
This problem is related to the asymptotic behavior of infinitesimal perturbations

y(t) to a reference trajectory x,(t), solution of equations (2.1) and (2.2).

As discussed in Section 2.3, the equation that describes the evolution of pertur-

bations is given by

f(x, + y) - f(x,) (2.7)

The above equation can be linearized (since the perturbation considered is infinitesi-

mal), resulting in the following equation for the evolution of the perturbations,

) =_y (2.8)
X=X

where ( f/0 x is the Jacobian matrix of the vector function f(x). In what follows

it is assumed, for simplicity, that Cartesian coordinates are employed and therefore

matrices instead of tensors will be defined and used. Of course, the same concepts

are applicable when other coordinate systems are considered.
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A solution of equation (2.8) exists and is unique for every initial condition, y(t*) =

yo, if the Jacobian matrix of the function f(x) evaluated at x, satisfies the conditions

of Theorem 1 at any time 3. It can be shown that if f(x) is continuously differentiable

the conditions are satisfied. In such a case, the perturbation can be expressed by

(2.9)

where the matrix <b(t, t*) is the linearized flow matrix, a linear map of the tangent

space of the vector function f(x,) at time to, Eo, onto the vector space associated with

the tangent space of f(x,) at time t, Et. The following relations, for the mapping 4),

are satisfied,

<b (t2, to*) = <b (t2,i ti) <b (tiI t*)

<b(t, itn) = I

where t2 > ti > t*, and I is the identity matrix. Note that, since the matrix <b is

obtained from equation (2.8) and the Jacobian matrix changes as a function of time,

<b depends on the specific times considered and on the reference trajectory chosen.

Assume that

1
lim -ln ||4(t, t*) < oc (2.11)
t-+oo t

where the norm of the matrix <b is usually defined as ||<bJ = max[A( 4 T4b)] [30], and

A(A) represents the eigenvalues of the matrix A. Then, a one-dimensional Lyapunov

characteristic exponent of the response of the nonlinear system (2.1), with initial

conditions (2.2), is defined by

1 ||y(t) '|
X(YO, Xr) = lim sup - in (2.12)

t-+oo t ||yo||

where the supremum is taken since otherwise the function can be oscillatory and the

limit not defined.

From equation (2.12) the following properties can be derived,
3 Note here that to , the initial time for the perturbation, is not necessarily equal to to, the initial

time for the equations of motion.
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. Given a constant number c

X(C YO, Xr) X (YO, X,) (2.13)

Proof:

In|| cyll = In ||c|| + In lyl

and therefore property (2.13) follows from equation (2.12). o

" Given two perturbation vectors y1 and Y2,

X(Yio + Y20, X,) < max{ X(yio, x,), X(Y20, X,)} (2.14)

Proof:

Assume that ||Y1|| > ||Y2||, at least for large values of t, then we have,

In ||Y1 + Y2 1 In (1Yi 11 + ||Y2 ||)

" In [ 1y,1 (1 + flY211/fl1Yl ) I
" In ||y,1| + In (1 + ||Y2|| / 1|Y|)

Since Iy2 /| Y1|I < 1, it follows that limt in(1 + ||Y2|| / |Y1)|| = 0,

and property (2.14) follows from equation (2.12). o

Suppose that we have an n-dimensional unit sphere D in the tangent space of

f(x) at x,(t*), Eo (we can think of D as an n-dimensional unit sphere of perturbed

initial conditions). The image of D in the tangent space Et at x,(t) is given by the

the mapping <P(t, t*) and is in general an ellipsoid, see Figure 2-2. It is possible to

associate each ellipsoid semiaxis with a coefficient of expansion (also called a Lyapunov

characteristic number), Ai, in the direction of the image vector of the semiaxis in the

space E0 . Furthermore, we can associate each coefficient of expansion with a Lyapunov

characteristic exponent, and therefore we have at most n Lyapunov characteristic

exponents, where n is the dimension of the tangent space:

1
Xi = lim sup - lnA with i = 1, 2,. . . , n. (2.15)

t-OO t
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Xr

Figure 2-2: Graphical representation of the evolution of perturbations in all directions

in a two-dimensional phase space. The vectors ei and e2 change directions as the

value of t increases. However, we are concerned with the basis vectors associated

with t -± oc.

The coefficients of expansion Ai correspond to the eigenvalues of the matrix (4 T)

(since the eigenvalues of 4 might be imaginary numbers).

A basis ei, e 2 , . . . , e, in !R, such that ||ei|| = 1 with i = 1, 2, . .. , n, is called nor-

mal by Lyapunov if E' x(ei, x,) is a minimum for the basis, and therefore the basis

{ej} is formed by the eigenvectors of the matrix <bT <b(t, t*) as time goes to infinity,

or a set of independent basis vectors associated with repeated eigenvalues. Thus, if

Al represents the eigenvalue of the matrix <b Pb associated with the eigenvector ej,

1
X(ei, x,) = lim sup- ln(Ai) (2.16)

t-*oo t

and therefore,

X(e, x,) = lim sup - In det < (2.17
i=1 t-+Oo 2t

Then, xi = x(ej, Xr), are the characteristic exponents associated with the basis

vectors and they form the spectrum of Lyapunov characteristic exponents of first order

(or one-dimensional). Arranging them in descending order,

X1 X2 > -.- .> Xn (2.18)
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It can be shown that if the reference trajectory does not end in a fixed point, the

Lyapunov characteristic exponent of a vector tangent to the orbit of the flow is zero

[3] [11]. Therefore, except in the case of steady-state solutions, at least one of the

Lyapunov characteristic exponents of first order is zero.

When a normal basis is considered, property (2.14) becomes,

X(ei + e 2 +- .. . + en, Xr) = max{ X(ei, x,), X(e2, Xr),... , X(en, Xr)} (2.19)

since the vectors ei are orthogonal.

Expressing the perturbation y as a linear combination of the normal basis defined

above,

y = ciei + c2 e 2 + ... + cnen (2.20)

where c1, c2 , ... , cn are constants. Using properties (2.13) and (2.19) it follows that

X(YO, Xr) Xi (2.21)

except in the case in which yo has no components in the direction of the basis vec-

tor ei associated with x1 (in a numerical calculation, however, round-off errors will

always introduce a component in the mentioned direction). As a consequence, using

equation (2.12), the maximum Lyapunov characteristic exponent, which will be de-

noted simply as the Lyapunov characteristic exponent or LCE, is in general obtained

(it is always obtained in a numerical calculation). An alternative explanation is ob-

tained by considering equation (2.9). At each time step, y tends to grow more in

the direction of the eigenvector of <b that corresponds to the eigenvalue with largest

real part. As a consequence, after a sufficient amount of time the vector y would

be aligned with the direction associated with X1, so that X1 would be obtained from

the calculation. Therefore, the value of the LCE does not depend, in general, on the

initial perturbation vector selected, and thus X(yo, x,) = X(x,).

Since the LCE is a measure of the asymptotic divergence of nearby trajectories in

phase space, all trajectories that start in the basin of attraction of an attracting set
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will have the same LCE, and hence X(Xr) = Xi = X for all the trajectories considered

that end in the same attracting set.

Let us also briefly consider here, for completeness, the so called k-dimensional

Lyapunov characteristic exponents, although they are not used in this work.

Let gk c R' be a k-dimensional subspace generated by ei, e 2 , ... , e with k < n,

and Vk(t) the volume of the parallelotope determined by the vectors <b(t, t*) ei with

i 1, 2,. k. A k-dimensional Lyapunov characteristic exponent is defined by

X(k) (gk) = lim sup - In V(t) (2.22)
t-+oo t

Using the definition of the LCEs of first order,

X(k) (gk, X) - X(ei, xr) + X(e2, Xr) ... + X(ek, X,) (2.23)

Choosing arbitrary vectors that span a k-dimensional space (such as in a numerical

calculation), from properties (2.13) and (2.19) the largest values of the Lyapunov

characteristic exponents of first order will be obtained,

X(k)(gk , Xr) = Xi - X2 + ... - Xk (2.24)

Therefore from the knowledge of the Lyapunov exponents of k-th order we can

calculate the LCEs of first order. In fact, this property is used to calculate the

complete spectrum of Lyapunov characteristic exponents of first order, see for example

[3] [7].

A natural question that arises is whether the exact LCE exists, that is to say,

whether the following number exists,

X = lim n ) (2.25)
t-+oo t ||1yo||

This question was addressed by Oseledec in [30].

Assume that M is a smooth compact manifold on which the dynamical system of

equations (2.1) is defined. If the flow #t generated by the vector field f(x) is smooth,
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at least one normalized invariant measure or probabilistic measure yu exists for the

flow such that,

p(#(x, t)) p(X) (2.26)

p(M) 1

Then the Oseledec theorem [30] states:

Theorem 3: If a normalized measure pu(x) exists for the flow #t generated by the

vector field of equation (2.1), such that pu(M) = 1 the limit

1
lim - In||<b(t, t*)| (2.27)t-+oo t0

and therefore

1 /|y~t)|
lm In (O (2.28)

exists for almost all x with respect to p if

sup J In+| |<(t* + 0, t*) pt(dx) < +oo (2.29)
-dt<O<dt fm M

where ln+(a) = max{ln(a), 0}, with a E R. o

The Oseledec theorem is applicable to flows that are only almost everywhere

differentiable. The fact that the limit exists for almost all x with respect to yu refers

to the fact that there is a certain subset of the manifold M with measure zero, and

then there exists a measurable set Mi C M such that p(M1 ) = 1.

Furthermore, Benettin et al [3] showed that if the flow 4t is of class C' and defined

on a manifold N, not necessarily compact, which contains a compact differentiable

manifold M invariant under 4t (i.e. if x C M then d(x, t) E M for all t), then there

exists a measurable subset Mi C M with I(M1 ) = 1 such that for every x E M1

LCEs of any order exist.
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2.4.2 Numerical calculation of the maximum Lyapunov char-

acteristic exponent

Let us consider again the nonlinear autonomous equations (2.1), with initial condi-

tions (2.2), and the equations that describe the evolution of perturbations,

( x=x, I(2.30)

y(t*) = Yo

where the initial times to and t* need not be the same, and in fact t* is usually chosen

so that the system transient effects have decayed, since in this case the convergence

to the LCE value in a numerical calculation is faster.

The basis for the numerical calculation of LCEs has been described in references

[4] [3]. Both equations (2.1) and (2.30) have to be numerically integrated to calculate

the systems reference solution and evolution of perturbations from which successive

approximations to the trajectory LCE as a function of time are obtained. In the

calculation of the LCE it is assumed that the system reference trajectory is "correctly"

obtained, i.e. the system behavior is properly captured by the numerical discretization

of the equations. See a discussion about numerical errors in [3].

In what follows, the procedure employed to calculate the maximum LCE of dis-

crete dynamical systems is briefly described, following [3]. The procedure has been

mainly used with non-dimensional first-order ordinary differential equations in time,

consisting of only a few degrees of freedom.

Without loss of generality, we chose a random initial perturbation yo in equation

(2.30), such that yo 1, and a fixed time step At, so that t, = t* + nAt.

The time steps employed to numerically integrate the equations of motion (2.1)

and the equations for the evolution of perturbations (2.30) need not be the same.

However, it is convenient to use the same time step because the linearized matrices

needed to calculate the evolution of perturbations are usually also employed in the

solution of the equations of motion (when linearization is used in the solution proce-

dure). Then, the coefficient matrices obtained after discretizing the equations in time

are the same, and they need to be factorized only once and use in both the calculation
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of the perturbation evolution and the system response. It is then especially conve-

nient to use the same time step when large systems of equations, as those obtained

when using finite element methods, are solved.

The evolution of the perturbation vector at each time step, t, can be calculated

by discretizing equation (2.30) in time and solving for y(t).

After n time steps the perturbation vector is 4

yn = Y (tn) = 4 (tn , t* ) yo = 41>(t, i n_1) 4(t _1 in2 .. (i t* y (231)

The perturbation vector Yn may grow (exponentially fast) if the behavior of the

trajectory considered is chaotic. In such a case, an overflow of the computed vector

would soon occur in a numerical calculation. To avoid the overflow, the perturbation

vector is normalized at every time step (or after a certain number of time steps).

Considering the nth time step and yn_1, the normalized perturbation vector ob-

tained in the previous time step (i.e. | 1), then

y*n = D(tn, in-1) yn_1 (2.32)

and

dn = ||y*|| (2.33)

The obtained perturbation vector, y*, is then normalized to be used in the calcu-

lation of the next time step,

y = (2.34)
dn

From equation (2.31), it is evident that following this procedure for n time steps,

||yn|| = dn dn_ 1  - - - di (2.35)

4 Here the matrices <b(tn, tn_1) are approximated discretizing equation (2.30) in time at each time

step.
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and an approximation to the LCE can be calculated at each time step as follows,

k=1 Iniyn||= E in(d.) (2.36)
n n i=1

The value of the LCE is calculated as the limit,

x = lim kn (2.37)
n -+oo, Atw

In practice, a good approximation to the value of the LCE is obtained when it

is observed that kn reaches a constant value as n is increased. Convergence to this

constant value usually implies that a large number of time steps need to be calculated

and therefore the evaluation of the LCE of a trajectory can be a time consuming

calculation.

In summary, to calculate the maximum LCE of the trajectory of a nonlinear

system, we start with a unit but otherwise arbitrary perturbation vector yo, such

that ||yo|| = ||yOl = 1. Then, the following procedure is performed at each time step,

* Discretize the perturbation evolution equations in time and obtain y* from

equation (2.32).

* Calculate the norm of the calculated vector y*, d, = ||y , which gives the

growth/decay of the perturbation for the time step considered.

* Normalize the perturbation y* to avoid overflow of the computed perturbation

vector, equation (2.34).

* Calculate the approximation to the LCE, kn, from equation (2.36), and repeat

the procedure for the next time step.
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Chapter 3

Governing equations of continuous

media

The motion of continuous media is described by governing differential equations,

which are derived from the laws of physics and constitutive equations.

Usually, the equations of motion of a solid medium are written using the La-

grangian formulation, i.e. the equations describe the position of particles as a func-

tion of time (with respect to a fixed frame), and therefore, particles are followed in

their motion. In contrast, the fluid flow equations are usually written using the Eule-

rian formulation, i.e. the equations describe the fluid velocity and pressure at a fixed

spatial position. For fluid flow-structural interaction problems, a combination of both

formulations, an arbitrary Lagrangian-Eulerian formulation, is required to describe

the fluid flow because the fluid domain changes as a function of time due to structural

interactions.

In this chapter the Lagrangian, Eulerian and arbitrary Lagrangian-Eulerian for-

mulations of motion are briefly discussed. The governing equations of Newtonian fluid

flows and elastic isotropic solids are considered. In addition, the equilibrium and com-

patibility conditions that must be satisfied at the fluid flow-structural interface are

given.
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3.1 Kinematics of continuous media

Consider a body (or a part of it) that is moving through space. The space occupied

by the body at time t = 0 is called the reference configuration, and the space occupied

by the body at time t is called the spatial configuration (see figure 3-1).

At time t = 0 we can identify each particle of the body with a reference coordinate

x. At time t the particle will be at a different position z. In other words, z is the

position at time t of the particle that was at x at time t = 0.

There are different ways of describing the motion of the body (see, for example,

[22]). Three of them will be considered here,

" Lagrangian formulation

" Eulerian formulation

" Arbitrary Lagrangian-Eulerian (ALE) formulation

Equations of motion are generally written in terms of material or physical particles.

For example, when we say that a fluid is incompressible we mean that a particle

cannot change its density with time, but different particles can have different densities.

Newton's law of motion states that the rate of change of momentum of a body is equal

to the sum of the external forces applied to that body, i.e. the law applies over a

group of particles (that constitute the body) that are followed as a function of time.

In general, when solving a dynamic problem using finite element methods, any of

the above descriptions can be employed (see [2], [29]).

3.1.1 Lagrangian formulation

In the Lagrangian formulation, the body particles are identified in the reference con-

figuration, at time t = 0, and their movement followed as a function of time. The

variables used to describe the equations of motion are then x and t. This descrip-

tion is usually employed to describe the motion of solids, for which the reference

configuration is known.
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Mesh configuration

t

z

t=0 t

Reference configuration Spatial configuration

X

Figure 3-1: Reference, spatial and mesh configurations.

We are interested in deriving the Eulerian and ALE formulations from the La-

grangian formulation, for different equations of motion. In particular, the time deriva-

tives that appear in the equations of motion need to be transformed, see for example

[22].

3.1.2 Eulerian formulation

In the Eulerian formulation, the variables used in the description of the motion are z

and t. The movement is described at a fixed spatial position z. The position occupied

at t = 0 by the particle that is at z at time t is not important and usually not known.

This description is generally used to describe the motion of a fluid flow.

At time t the position of the particles can be expressed as a function of the particle

position in the reference configuration

z = ep(x, t) (3.1)

If equation (3.1) is known, then the velocity of a particle can be calculated by

taking the partial derivative of (3.1) with x held constant
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v ( ) (3.2)

likewise, the acceleration of the particle is

a = V (3.3)
Ot )

However, when employing the Eulerian formulation equation (3.1) is generally not

known. Physical quantities, f, are known as a function of a fixed spatial position z,

that is to say

f =- g (z, t) =- G ( o(x, t), t) (3.4)

The time derivative of a physical quantity f with x held constant, is called the

material time derivative, and is equal to the rate of change of f at the particle, i.e. as

seen by an observer moving with a material particle (with respect to a fixed reference

frame). The following notation is used from now on to refer to the material time

derivative

Df ((35)
Dt 8 at

This expression is important since the equations of motion in the Lagrangian

formulation are written using material derivatives, and therefore they have to be

properly considered when converting one formulation of motion to another. For the

Eulerian formulation we have,

Df Of +Of Oz Of
Dt Ot) + Oz = +vVf (3.6)

3.1.3 Arbitrary Lagrangian-Eulerian formulation

The ALE formulation is a combination of the Lagrangian and Eulerian formulations.

The movement of the body is described at an arbitrary position i that can change

as a function of time. In a finite element analysis, the position i is associated with

a mesh point, and the space occupied by the mesh at time t is called the mesh
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configuration (see figure 3-1). The ALE formulation is used to describe the flow of

a fluid whose domain is deforming as a function of time, as when considering fluid-

structure interaction or free surface problems.

In the ALE formulation, the values of a physical quantity f are known as a function

of the mesh positions, z.

. At time t each point i can be associated with a material particle x using the

mapping

i =- (x, t) (3.7)

And therefore, the physical quantity f can be expressed as

f =(, t) = O(0(x, t), t) (3.8)

The material derivative of i is then the relative velocity of the particle with respect

to the moving mesh referential (the field velocity as seen by an observer moving with

the mesh),

DiDz= v (3.9)
Dt

where '( is the mesh velocity.

Then, in the ALE formulation we have,

Df _ f _f 2 8fDt - +- - =--+(v-)Vf (3.10)Dt = at + 002 ( 0t ) 8 t

3.2 Conservation equations

Considerations in this work are restricted to isothermal processes of solids and almost

incompressible fluids, and therefore the energy conservation equation is not needed

in the description of motion.
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3.2.1 Mass conservation

The principle of mass conservation states that mass cannot be created or destroyed

within a (nonrelativistic) system. This means that the amount of mass enclosed in a

material volume (one that is fixed to the physical particles) will not change in time.

The simplest form of the mass conservation principle is then

Dm Dr
Dt - Dt p(x) dQ = 0 (3.11)Dt Dt Q

where Q is the body volume, m is the total mass enclosed in Q and p is the body

density. Equation (3.11) is the integral form of the mass conservation principle. The

differential equation of mass conservation can be derived from (3.11), and it can be

expressed in the Lagrangian formulation as

DP+ p V 0 (3.12)
Dt

where v is the body velocity (which is a function of x). From equation (3.10), the

ALE form of the mass conservation equation is

Dp p = -p*, + (v - - Vp (3.13)
Dt

where the superscript * indicates time derivative with respect to a fixed mesh point,

i.e. is the rate of change as seen by an observer that is moving with the mesh point;

and 9i is the velocity of the mesh referential. In the special case of no mesh movement,

we have 9t = 0, and equation (3.13) corresponds to the Eulerian formulation of

motion, similarly when r = v, the mesh is moving with the physical particles and

the Lagrangian formulation of motion is recovered.

3.2.2 Momentum conservation

Newton's law of motion can be expressed as

DP
= EFext (3.14)Dt
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where P is the momentum of the body, D% is the instantaneous rate of change of

momentum at time t, and E Fext is the sum of all external forces acting on the body

at time t.

The equation of conservation of momentum in integral form can be written as

D
D t It

p v dQ = Fest(t) (3.15)

The differential equations of motion derived from (3.15) in the Lagrangian formu-

lation are

Dv

Dt fext (3.16)

where fezt is a vector of external forces per unit of volume. In the ALE formulation

of motion we have,

Dv
P Dt = p [V* + (V - Vv] (3.17)

where v* is the rate of change of the fluid velocity as seen by an observer moving

with the mesh referential, and 9( is the mesh velocity.

3.3 Equations of motion

From the equation of momentum conservation (3.16) and the equation of mass con-

servation (3.12), the differential equations that describe the movement of continuous

media can be obtained.

3.3.1 Structural equations

In general, structural equations are written using the Lagrangian formulation of mo-

tion. The equations of motion are derived from the momentum equations using

appropriate constitutive relations.

Neglecting damping effects, the momentum equations for a structure in the La-

grangian formulation are
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Dv D 2 u

Dt Dt 2

where u is the structural displacement field, rs is the Cauchy stress tensor and fB is

the vector of body forces applied to the body.

The constitutive relations for a linear elastic isotropic material (in Cartesian co-

ordinates) are

sEu E
ri = v Ekk 6ij + E g Ei

' (1 + v) (1 - 2v) 1 + v,
(3.19)

with

1
E = (u i + u(,.)2

where p is the density of the structure, E is the elastic or Young's modulus, v is the

Poisson's ratio, and the r, and Ej are the (ij)th components of the Cauchy stress

tensor rs and the strain tensor e, respectively, and 6ij is the Kronecker delta.

The boundary conditions needed to solve equation (3.18) are

U = US in SIt (3.21)

(3.22)rS ns = ts in SJ

and the initial conditions are

u(to) = UO; fi(to) - no (3.23)

where Ss is the part of the structural boundary with imposed displacements us, SS

is the part of the boundary with imposed surface forces ts and ns is the unit outward

vector normal to the structural boundary.

Since the equations of motion of the solid medium are written in the Lagrangian

formulation, in which particles are followed in their movement, the mass conservation

principle is already satisfied by the momentum equations and there is no need to

impose it separately.

41

(3.20)



Equation (3.18) has to be satisfied for linear and nonlinear problems as well. It is

important to notice that even when the material is linear (i.e. the constitutive equa-

tions are of the form of equation (3.19)), the equations of motion may be nonlinear

if large displacements are present. The structural examples considered in Chapter 6

correspond to this situation.

In addition, nonlinearities in the equations may come from a nonlinear constitu-

tive equation. This last case is not explicitly considered in this thesis, although the

methods presented here are general and therefore applicable to this situation as well.

3.3.2 Fluid flow equations

The fluid flow equations of motion are derived from the momentum and mass con-

servation equations, (3.16) and (3.12), and appropriate constitutive laws. Since in a

fluid flow-structural interaction problem, in general, the fluid domain changes as a

function of time (due to the interaction with the structure), the equations of motion

of the fluid are expressed using the ALE formulation. In what follows, some relevant

fluid models are described.

Incompressible fluid flows

Using the ALE formulation, the Navier-Stokes equations for an incompressible fluid

are

pv* +p[(v--v) -V]v = V .- F +B(3.24)

V -v = 0 (3.25)

where rF is the fluid stress tensor and fB here represents the vector of fluid body

forces whereas p is the fluid density. Equation (3.24) is the momentum conservation

and equation (3.25) is the continuity equation.

The constitutive relations for a Newtonian fluid (in Cartesian coordinates) are
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r (-p) 6ij + 2peij (3.26)

with

1
e= (vi + vy,i) (3.27)

In these relations, p is the pressure, t is the dynamic viscosity coefficient, and eij is

the (i,j)th component of the velocity strain tensor.

The boundary conditions required to solve equations (3.24) and (3.25) can be

given as follows:

v = vs in SF (3.28)

7 F nF =tF inS (3.29)

and initial condition

v(to) = vo (3.30)

where SF is the part of the fluid boundary with imposed velocities v', S' is the part

of the boundary with imposed surface forces tF and nF is the unit outward vector

normal to the fluid boundary.

Almost incompressible flow

For an almost incompressible fluid, the density can be expressed as p = po + Ap, and

it is assumed that Ap/po << 1, such that p ~ po.

The bulk modulus of a fluid or solid, K, is defined as

'PO (3.31)

and therefore is a measure of the change of density due to a change of pressure at

constant temperature, T. From equation (3.31) it follows that
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1Dp _ 1 Op Dp 1 IDp (332)
p, Dt po Op ) Dt Dt

Using equation (3.32) it can be shown that the continuity equation for an almost

incompressible fluid in the ALE formulation becomes

[p* + (V - v) -Vp I+ V - 0 (3.33)
K

and the appropriate momentum equation to be considered is (3.24).

3.3.3 Fluid flow-structural interface conditions

We are interested in coupled systems in which fluid flows are interacting with struc-

tures. Hence, in addition to the fluid and structural equations, equilibrium and

compatibility conditions must be satisfied at the fluid-structure interface.

The equilibrium conditions at the interface can be expressed as

rF nF + S S = 0 (at interface) (3.34)

where nF and nS are unit normal surface vectors pointing outward of the fluid and

structural domains respectively. This condition ensures that forces are in equilibrium

at the fluid-structure interface.

The compatibility condition at the interface requires that

6i = u, (at interface) (3.35)

where fn' is the vector of displacements of the fluid (domain) at the interface and u,

is the vector of displacements of the structure at the interface.

This condition ensures that the material will not overlap and no gaps will be

formed at the interface.
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Chapter 4

Finite element formulation

In a finite element formulation, the weak (or variational) form of the continuum

governing equations of motion is considered, and the test functions correspond to the

finite element interpolations (Galerkin procedure).

In what follows, some spaces needed in the formulation of the finite element

method will be defined (see also [2], [9]).

Let us denote by Q a bounded domain in R' (with n = 2 or 3) and by S its

boundary.

L2(Q) represents the space of functions that are square integrable over Q,

L2(Q) {fq 2 d < +oo}

Similarly, L2 (Q) is the space of vector functions that are square integrable over Q,

L2 (Q) = {q: q dQ < +o}

The Sobolev space is defined for any non-negative integer value k as the space of

square integrable functions over Q, whose derivatives up to order k are also square

integrable over Q

H k(Q)=qcL2 (Q) : fquLt 2i(Q) V < <k

For vector valued functions, we have
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Hk(Q) = {v : vi E H(Q)

4.1 Structural equations

The weak form of the transient structural equations (in Cartesian coordinates) can

be stated as ([2]):

Given fB, find u E H'(Q) with u = uS in SU, such that

JuiiiTQ+ d T~Q juzf dQ jts dS (4.1)iii p 64j dQ + 12sig rs dS =
f

for all ii H 1(Q) with ii = 0 in Su. o

Where 9 is the body material volume, p is the structural density, u is the vector of

body displacements, nd is the vector of virtual displacements, K is the virtual strain

tensor, -S is the Cauchy stress tensor and fB is the vector of body forces; Sj is the

part of the structural boundary with prescribed tractions of components tf (which in

the case of a fluid-structure interaction problem includes the interface, where tractions

are exerted by the fluid onto the structure), and Su is the part of the boundary with

imposed displacements.

Finite element spaces for the structural equations of motion are defined as follows,

Vh {Uh E H 1(Q)} (4.2)

Vh -- h E H'(Q)} (4.3)

The finite element problem can be stated as:

Given fB, find uh E Vh(q) with uh - US in Su, such that

f-h p6h dQ + g (h)S dQ fh B fh S dS (44
f

for all njh E Vh(Q) with ijjh = 0 in Su. o

Equation (4.4) is the displacement based finite element formulation for structures.

46



In case nonlinearities are present in the system (either because the structural dis-

placements are large or a nonlinear constitutive equation is appropriate), the equa-

tions (4.4) are linearized before solving them (using the Newton-Raphson procedure).

The dynamic equations of motion of a (nonlinear) structure can be written as,

t+tW =t+At RS (4.5)

where t+AtW and t+AtR, represent the left and right hand sides of equation (4.4),

respectively.

A careful description of the problem formulation and linearization process used

when nonlinearities are present is given in [2], and will not be explicitly considered

in this work.

The linearized finite element equations from (4.4), neglecting damping effects, can

be written as

M, 5i + K, u = R,5 - F, (4.6)

where M, and K, are the mass and tangent stiffness matrices, u and ii are the vectors

of incremental displacements and accelerations, R, is the discretized load vector and

FU is obtained from the linearization process.

The finite element space Vh depends on the elements chosen to discretize the

volume Q. In a 2D space, we can choose, for example, quadrilateral bilinear or

parabolic elements. In this thesis, the displacement-based 9-node elements [2] are

used to calculate the structural response of the examples given in Chapter 6.

4.2 Fluid flow discretization

The variational formulation of an almost incompressible fluid modeled using the

Navier-Stokes equations and expressed in the ALE description of motion (in Cartesian

coordinates) can be stated as:

Given fB and v, find v E H 1(Z) with v = v, in SF and p E H1(#) such that
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J i P p[Vi +-vU (vj - i9)] dV± J ij TFj d 1 f77i fBd dV+ LSF vit dS (4.7)
f

fK[ +PiV- lVfP vi,j dfr (4.8)

for all V c H'(V) with V = 0 in SF and E H1 (V). o

In the above expression V and p are the virtual velocity and pressure, Z is the volume

of the fluid domain, p here is the fluid density, v and p are the fluid velocity and

pressure, 9( is the mesh velocity; -rF is the fluid stress tensor, s is the virtual rate

of strain tensor, K is the fluid bulk modulus, S is the part of the fluid boundary

with prescribed velocity vs, SF is the part of the fluid boundary with prescribed

tractions of components tf (note that if the fluid is interacting with a structure, then

the interface surface SI, where tractions are exerted by the solid medium over the

fluid, is included in SF).

If the fluid is incompressible, the bulk modulus is such that r, -± oc, and the term

containing K in equation (4.8) vanishes.

Equations (4.7) and (4.8) must be discretized in space in order to be solved nu-

merically. The following finite element spaces are introduced for the velocity and

pressure,

Vh - Vh c H'(Z)} (4.9)

Yh - c H1 (Z)} (4.10)

Qh - {h E H 1 (V)} (4.11)

Qh = {h E H'1)} (4.12)

Then, the finite element problem can be stated as:

Given fB and i, find vh E Vh(f) with vh - v' in SF, and ph E Qh(v) such that
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fv ip [((V * +d V] J d + i jFdV'R (4.13)

-h

p h)* + hVh - hdY + h vh dY= 0 (4.14)

with

RF _ fB (vhSf tf dS (4.15)

for all VhC Vh () with Vh 0 in SF and ph E Qh (f7)

In the finite element procedure, the space Vh depends on the elements chosen to

discretize the volume V. In a 2D space, we can choose, for example, quadrilateral

bilinear or parabolic elements. The pressure interpolation, however, cannot be chosen

arbitrarily (see for example [2], [9]), otherwise, the formulation may not be stable. In

order to avoid this problem, the inf-sup condition must be satisfied. In this thesis, 9/3

elements, which satisfy the inf-sup condition, are used to calculate the fluid response

of coupled systems. The 9/3 element is a quadrilateral 9 node element, in which the

velocities are interpolated at the nodes and the pressure is taken to be a linear function

inside the element (3 unknowns per element) and discontinuous across elements, see

Figure (4-1).

For a fluid flow problem, the solution obtained using the discretized equations

(4.13) and (4.14) is good for low Reynolds (Re) number flows corresponding to a

laminar solution. However, if the Re is increased beyond a certain critical value

that depends on the system considered, oscillations in the solution appear due to the

presence of the convective terms (v - ir) - Vv (here the Re number is based on the

relative velocity v, = v - fr). To avoid oscillations, upwinding is introduced into the

equations. Using upwinding, artificial diffusivity is introduced into the equations to

stabilize the convective term, ideally without degrading the accuracy of the solution

(see for example [5], [2], [13]). In this work, the following upwinding terms, proposed

by Hendriana and Bathe [14], are used
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Figure 4-1: 9/3 element.

ryf) |v - i 2 # " (4.16)

and

r= - - + a)23/2 (4.17)
9 Or a's

where f(") is the mth element surface (2D), y2 are the coordinates of the body in a

fixed Cartesian coordinate, and r, s are the isoparametric coordinates of the element

(see Figure 4-1).

Note that a convective term is also present in the continuity equation, however,

the term is divided by rK, which is usually a very large constant (~ 109 Pa for water,

for example), and therefore an upwinding term will not be necessary in the continuity

equations.

The dynamic equations of the fluid flow, including the upwinding term can be

represented as

t+AtW = t+AtWNS + t+tWp - t+AtRf (4.18)
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where t+AtWNS and t+AtWup represent the terms from the standard Galerkin proce-

dure and upwinding respectively, and t+AtR 1 is the known load vector obtained from

the boundary conditions.

Since equations (4.18) are nonlinear, an accurate solution is obtained by linearizing

the equations and iterating at each time step (Newton-Raphson procedure).

Using a Taylor series expansion of (4.18) in time

t+AtW tW + tW* At (4.19)

and equation (4.18) can be expressed as

tW* At ~ t+AtRf - tW (4.20)

The details of the linearization process for a viscous fluid flow modeled using the

ALE form of the Navier-Stokes equations, together with the final linearized matrices

obtained can be found in [35).
The resulting linearized finite element equations can be expressed in matrix form

as

MV 0 Mv K KvP K R5 F
P + p =-

0 MPP MP, K,, K,, K, 0 F,

(4.21)

where the individual matrices are obtained from the expressions of 'W* and tW*,;

v, p, 6, v, are the increments of velocity, pressure, mesh displacement and mesh

velocity with respect to the last iteration; Rf is the discretized load vector, and Fv,

FP contain terms from the linearization process. Because the mesh displacements

and velocities inside the fluid domain are arbitrary, an algorithm must be provided to

calculate them from the displacements and velocities of the fluid-structure interface

and any other moving boundary.
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4.3 Fluid flow-structural interaction problems

Consider a system composed of fluid and solid parts as shown in figure (4-2). We are

interested in solving for the response of such a system. The first step is to choose

an appropriate mathematical model to describe the behavior of the fluid and the

structure. The next step is to couple the fluid and structural equations to obtain the

response of the system.

In what follows, the coupling procedure employed to solve fluid-structure interac-

tion problems in this thesis is presented [36]. The fluid flow is assumed to be modeled

by the (almost) incompressible Navier-Stokes equations of motion (using the ALE

formulation).

In the analysis considered here, the same layers of elements (number and type)

are used along the interface in the discretization of the fluid and structural domains.

Hence, the force equilibrium conditions at the fluid flow-structural interface are di-

rectly satisfied through the element assemblage process. However, the compatibility

conditions at the fluid flow-structural interface must be enforced since the fluid flow

and structural variables are velocities and displacements, respectively.

It is convenient to solve for the problem natural variables, displacements for struc-

tures and velocities for fluids, even in a fluid-structure interaction problem where the

fluid is modeled using the Navier-Stokes equations. An advantage is that the same

algorithm can be employed for both transient and steady state analysis. Furthermore,

the functions describing the value of the natural variables in time are smoother than

their time derivatives, and therefore convergence of the solution is easier to obtain.

At the fluid flow-structural interface the particles that correspond to the fluid

and solid parts move together, i.e. they have the same displacements, velocities and

accelerations. Therefore, in the ALE formulation the nodes at the interface should

correspond to Lagrangian nodes. Assuming that no slip at the nodes of the fluid flow-

structural interface is allowed, the displacements can be solved for at the interface,

and these displacements can be used to calculate the velocities at the interface (and

hence the velocities of the fluid particles at the interface).
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Fluid-structure interface

Figure 4-2: General fluid-structure interaction problem.

Since mesh displacements and velocities are calculated at the fluid-structure in-

terface but can be arbitrarily specified otherwise, we can further assume that they are

a linear function of fluid-structure interface displacements (and of the displacements

of any other moving boundary or free surface),

6 = L(ul) (4.22)

v = E(v') (4.23)

where ft and i9 are the mesh displacements and velocities respectively, ul and vi are

the values of the displacements and velocities at the interface and L is a linear op-

erator. These interpolations, although not general, allow the solution of the example

problems to be presented in this work. In more general cases, it can be necessary to

allow the mesh nodes to slip along the interface in order to preserve mesh regular-

ity, and as a consequence, the above equations are no longer valid and an additional

equation governing the slip movement of the mesh at the interface must be provided.

In what follows, it is assumed that structural displacements coincide with nodal mesh

displacements at the interface.

The linearized finite element matrix equations for the fluid, without including
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pressure terms explicitly (they are assumed to be contained in the variable vector v)

and separating the degrees of freedom corresponding to the interface and "interior"

nodes are,

MI! MIF II I 4 L KI IF V I

MFI MFF F KFI + iQF LKFF V F

V ) I)(4.24)

kFt 0 fGF R F F f

where the superscripts I and F refer to interface and interior fluid nodes respectively,

Mv and K, are coefficient matrices of the linearized fluid equations; M4 and kv

are linearized coefficient matrices from the ALE terms, v is the vector of velocity

increments corresponding to the fluid flow, ft is the vector of mesh displacement

increments, Rf is the load vector corresponding to the fluid without including body

forces 1 and Ff comes from the constant terms of the linearization and contains also

fluid body forces effects.

In what follows, for simplicity of notation, the linear operator C is omitted (it is

assumed to be contained in the matrices n4 and kv).
The finite element matrix equations corresponding to the linearized behavior of a

general (nonlinear) structure are (neglecting damping effects),

MSS MsI 6s KSS KSI us Rs FS
U U + U 8 - (4.25)

MIS MI' iii K'S KII uI R1 F,

where the superscripts I and S refer to interface and interior structural nodes respec-

tively, Mu and Ku are the mass and stiffness matrices corresponding to the structure,

u is the vector of displacement increments, R, is the structure load vector without

including body forces 2 and F. is obtained from the linearization process and body

forces applied to the structure.

'Note that Rf is different from the Rf of equation (4.21), which includes body forces.
2Here R, is different from the one in equation (4.6), which contains body forces effects.
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Assuming that no slip of nodes is allowed at the fluid-structure interface, v = 6

and v' = G (continuity condition) 3 and R'+RI = 0 (compatibility condition).

Then, the linearized coupled fluid flow-structural equations can be expressed as

A + B + CU = G (4.26)

where

Mss Mus 0

A MIS M'+MI' MIF (4.27)

0 MFI MFF

\=~ v~ KF /0 0 0

B = 0 K"+10I K IF (4.28)
V V V

0 K FI+ 191F K FF

Kss K~s 0

C= KIs KII+K' 0 (4.29)
U ULV

0 k 0

RS - FS

G = -FI - F (4.30)
Rf - F

and

u u u UF (4.31)

here uF are the displacement increments of the interior fluid particles, which are not

calculated (see matrix C), but instead, the fluid velocity increments are calculated

(see matrix B).

Solving for displacements at the interface, the coupling between fluid and structure

becomes easy to perform.

3Note however that equation iV i is usually not satisfied, since different time integration

schemes are used for the fluid and structure.
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Consider first the steady state case,

us - i u - - (4.32)

and

nis = n'l = 0 (4.33)

Then, the steady state coupled fluid flow-structural equation (4.26) become,

Kss K, 0 us \ RS - Fs

KIS KIU+K KIF I = -Fi, - (4.34)

0 kF K FF V F R F - F F

where vF is the vector of internal fluid velocity increments.

To solve for the transient fully coupled fluid flow-structural interaction response,

time integration schemes need to be chosen. In this work, implicit time integration

is used, and hence the time discretization can be written as follows (using a linear

multistep method)

o Fluid (first order differential equation in time)

The time integration scheme has the form:

t+Atn = a t+Atv + f ( tvi .) (4.35)

where a is a constant that depends on the specific time integration scheme

employed and f is a linear function of the known velocities and accelerations at

times t, t - At, t - 2At, . With the equilibrium equations to be satisfied at

time t + At (for an implicit method), the linearized fluid flow equations can be

written as

Mv t+Aty + K t+Atv - t+At~ft (4.36)

Solving for t+Atv gives
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(ae M, + K') IA-v " Nf - M, f ('v,'v, ...t ) (4.37)

where t±At"f contains the load vector and the constant terms of the lineariza-

tion.

9 Structure (second order differential equation in time)

The time integration scheme has the form:

(4.38)

(4.39)

where 3 and -y are constants that depend on the actual integration time scheme

employed and g and h are linear functions of the known displacements, velocities

t±A = t+tAtu + gq (tU, *n,' , ... )

n+t, = 7 u + h (tu, In, itI , i ...)

and accelerations at time t, t - At, t - 2At,. Satisfying the equilibrium

equations at time t + At gives

MU t+Atu + KU t+Atu = tAtfNs

Solving for t+Ztu results in

(# Mu + Ku) Atu = t+Ats - MU g (tu, in, t6, ...) (4.41)

where t+ztR contains known terms.

* Fluid flow-structural interface

The time integration scheme has the form:

t+AtvI _ 7 t+Atu1 + h (It It I' ... ) (4.42)

Note that here the same scheme is used as for the time integration of the dis-

placements of the structure, see equation (4.39).
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Introducing equation (4.42) into equation (4.37) we obtain

7(oMI' + K")

'Y(aMel + K F)

aMIF + F _ If'A

cMF + K FF( F tF

where the load vector f contain the known terms of the linearization and time

integration. The contributions of the mesh movement to the fluid coefficient

matrix are not shown explicitly 4.

Note here that by using equations (4.35) and (4.42) for the interface degrees

of freedom, the compatibility condition i = V is not satisfied. This condition

can however be relaxed provided that i' v' and the obtained system of fluid-

structure equations results in an unconditionally stable scheme in time. This issue is

investigated in [36] [35].

The fluid flow and structural equations can now be coupled using equations (4.41)

and (4.43), and the linearized fully coupled incremental fluid flow-structural interac-

tion equation becomes

I ss

R1s

0

where from equation (4.41)

KSI
U

-KII 4
RFI

V

Rss
U

RIsU
U

0

RIF
V

RFF

= #MeS

= OMrs

= OMII'

us

UI

VF

As

fF
f

I (4.44)

(4.45)

+ KSS

+ K s

+ K'

and from equation (4.43)

4Alternatively, Lagrange multipliers could have been used to enforced the satisfaction of the

continuity condition at the fluid-structure interface, but in such a case the unknowns to solve for

increase.
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The variables corresponding to the fluid and interface were defined above; Nt corre-

sponds to the load vector of the internal structural degrees of freedom (including the

known terms).

Equation (4.44) contains the coupling procedure proposed in [36], for fluid flows

interacting with structures.

The solution of coupled problems can be obtained by employing one of two main

approaches,

e Simultaneous or direct solution: the equations are coupled and solved together;

* Partitioned or iterative solution: the system is divided into subsystems (cor-

responding to the fluid and structure domains), and each subsystem is solved

separately. "Boundary conditions" at the fluid-structure interface act as cou-

pling terms between the two subsystems.

The two main approaches that can be used to solve equation (4.44) are discussed

in [351 and references therein. In this work, we used a simultaneous (also refer to as

monolithic or direct) solution procedure with condensation of structural degrees of

freedom [36] to solve the problem of fluid flows interacting with structures presented.

This approach is more efficient than the partitioned procedure in cases in which

the coupling between fluid and structure is strong, resulting in a large deformation

of the structure, as will be the case in the examples analyzed in Chapter 6.

Note that by using the Navier-Stokes equations of motion to model the fluid flow, a

non-symmetric coefficient matrix results when the problem is discretized using finite

element methods. This significantly increases the amount of computations to be

performed at each time step as compared with the calculation of a system with the

same number of degrees of freedom but with a symmetric coefficient matrix. When the
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fluid and structural equations are coupled, the whole fluid-structure coefficient matrix

is non-symmetric, and has to be treated as such in the calculations, although the

structural portion of it is symmetric. By using condensation of the structural degrees

of freedom, in equation (4.44), advantage is taken of the symmetry of the structural

equations, and this results in a faster algorithm. In addition, by using condensation

of the structural degrees of freedom, the equations are not solved all together and

larger problems can be solved without being concerned about the computer capacity.

A more detailed description of the coupling and condensation procedures used in this

work can be found in [36) [35].
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Chapter 5

Lyapunov characteristic exponents

of continuous systems

Small motions of a solid (or fluid-structure interaction) problem about a certain state

can be analyzed using the linear undamped natural modes of the problem. In this

case, the system displacements can be written as

w(r, t) = Zap(t) Vp(r) (5.1)
p=1

where w(r, t) represents the displacement field of the solid medium, r is the position

vector of the solid particles, t the time, and V, are the linear undamped natural modes

of the system. Therefore, an infinite number of modes contribute to the response of

the system. Usually, however, only a few modes are excited, and it is reasonable to

approximate the response of the system by a finite series. In such a case, using the

orthogonality property of the natural modes VP, a structural continuous problem can

be reduced to a finite number of coupled 1 second order ordinary differential equations

in time, in which the unknowns are the amplitudes of oscillation of each mode ap(t).

The preceding procedure, called the modal decomposition technique, can be used

to assess the conditions under which one or more of the modal responses may become

1For a nonlinear problem in which nonlinearities are carried over through the decomposition, a

coupled system of equations is obtained. If nonlinearities are neglected, then the linearized system

is decomposed into a system of uncoupled equations.
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unstable. This is done by applying a perturbation to the modes and analyzing whether

those perturbations decay/grow in time. Such studies were carried out analytically

(taking only a few modes) for some structure and fluid-structure interaction problems,

see for example [6] [16] [31].

However, it is usually difficult to assess how many modes to include and the proce-

dure becomes more complex as more modes are included in the series representation

(5.1). Furthermore, the modal decomposition technique is not applicable in the case

in which strong nonlinearities have to be considered, since in such a case the linearized

modes of the system cannot accurately represent its dynamic behavior. Alternatively,

nonlinear modes could be used, but it is very difficult to obtain them.

In essence, the finite element discretization of a continuous medium is just a way

of cutting the infinite series (5.1) into a finite one, by projecting the natural modes

of the system into the finite element space in which it is discretized. Therefore, using

finite element methods, a perturbation can be applied to all of the (discretized) modes

at the same time, and the stability of their motion can thus be studied. Furthermore,

when the system contains strong nonlinearities, the finite element procedure can still

be employed. At each time step linearized modes can be obtained that describe small

motions of the body about the system current state. Those modes, however, change

as a function of time as the system moves, and this change is taken into account by

the finite element discretization.

The concept of Lyapunov exponents, described before for discrete systems, can

then be employed in the analysis of continuous systems. In fact, in this case, the

stability and divergence/convergence of trajectories can be thought of as the one

corresponding to the nonlinear modes representing the system response. The pertur-

bation of modes that are stable would decay in a relatively small number of time steps,

whereas the unstable modes would contribute to the growth of the LCE approxima-

tions, k,. Of course this calculation can be done, using a finite element discretization

(or other discretization) of the continuous equations of motion, without explicitly

finding the system modes.

Some assumptions need to be made in what follows for the development of the
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procedure to calculate the LCE of continuous systems.

It is assumed that the numerical discretization chosen in space and time accurately

captures the nature of the system dynamic behavior. For the time discretization, this

means that a stable time integration scheme has been chosen (usually and uncondi-

tional stable scheme is preferred). In other words, the system response will not grow

without bounds (because of the time integration scheme) if the mathematical model

of the system does not predict such grow. In addition, the time step chosen should

be small enough to capture the essence of the behavior. For the space discretiza-

tion, it is not only necessary to make sure that the number of elements employed in

the discretization is enough to accurately captured the body behavior, but also that

the appropriate elements are used. For example, in the two-dimensional analysis of

almost incompressible media in which a plane strain analysis is assumed, a mixed for-

mulation that satisfies the inf-sup condition must be used. For a detailed description

on how to choose appropriate discretizations in space and time for fluid flows and

structures see [2].

Another assumption is regarding the solution of the mathematical model of the

continuous systems employed. In Chapter 2 we define the Lyapunov characteristic

exponent of the response of a system defined in a differential manifold. Therefore, we

assumed that given an initial condition to the dynamic system of equations, a unique

reference solution exists. This assumption is also made for the dynamic solution of

continuous systems. For fluid flows modeled using the Navier-Stokes equations, exis-

tence and uniqueness theorems can be found in [17] [34] among others. For structural

equations, some theorems can be found in [12] and references therein.

Given this assumptions, from now on, when we refer to a stable or unstable

dynamic behavior, we refer to the stability of the motion (assuming that the finite

element discretization is "stable").

In Chapter 2, the approach presented by Benettin et al [4] [3], for calculating the

LCE of non-dimensional discrete systems of coupled first order differential equations

in time, was briefly described. This procedure is used as a basis to develop a numer-

ical technique to evaluate the LCE of solid and fluid-structure interaction continua
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discretized using finite element methods. The proposed method is discussed below.

Before discussing the implementation of the procedure, it is worth to mention here

that the approach proposed by Benettin is not directly applicable to finite element

discretized continuous media. The main reason is that different time scales are present

in the system of equations obtained by a finite element discretization and usually

the smallest scales, which correspond to high-frequency modes, are not accurately

captured by the time integration scheme employed.

5.1 Structural problems

Let us first consider the case of a structure/solid medium.

The displacements and velocities of the structural nodal degrees of freedom form

the finite element discretized phase space of the problem in consideration (assuming

that forcing terms and material properties are time independent, and therefore an

autonomous system is considered 2).

The finite element equations that represent the motion of the solid can be written

as,

tW =- Rs (5.2)

where tW is the vector of nodal point forces corresponding to the internal element

stresses and inertial forces and 'Rs is the vector of discretized loads applied to the

body at time t (see also Chapter 4).

If ii corresponds to perturbations in the displacements, the linearized equations

that describe the evolution of perturbations, neglecting dissipative terms, can be

written as

MU u + Ku(u) 6, = 0 (5.3)

with initial conditions,

2 1f forcing terms or material properties are a function of time then a change of variables can be

performed (as discussed in Chapter 2) and the time included in the system phase space.
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ii(t) = Go
0 (5.4)

fi(t) =do

where M, and K, are the same matrices as in equation (4.6) but it is emphasized

here that the tangent stiffness matrix K, changes as a function of time with the body

displacements u, since nonlinear equations of motion are considered.

An important difference with the discrete system, equation (2.1), is that for a

continuum model the perturbations must be compatible with the problem's boundary

conditions at all times. Thus, the boundary conditions for the perturbations are

specified as,

i=0 in S (55)

-ns =0 inSSf

where S' and S are the parts of the boundary with prescribed displacements and

tractions respectively, ns is a unit outward normal vector to the structural boundary,

and -~ = rs(u + i) - -rs(u) is equal to the difference between the stress tensor of

the perturbed problem, rs(u + ii), and the stress tensor of the reference problem,

rs (u). These boundary conditions are already included in equation (5.3), but it is

important that the initial perturbations of the system satisfy equations (5.5).

Equation (5.3) could be easily re-written in the form of equation (2.1) with

T = (5 U), where the superscript T indicates transpose. However, it is more conve-

nient (from a numerical point of view) to solve directly the second order differential

equations in time using, for instance, the Newmark method of time integration, see

[2]. Otherwise, the number of equations to solve increases from N to 2 N, where N

is the number of degrees of freedom for the problem considered, and this increase

is computationally very expensive for large systems of equations, which are usually

encountered in the finite element discretization of structures.

Note that the nonlinear equations of motion of the structure (5.2) must be solved

in order to obtain the stiffness matrix Ku(u) necessary to calculate the linearized

evolution of perturbations (the mass matrix Mu is independent of the state of the
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system). Furthermore, since the structural equations of motion are discretized in time,

the same time discretization can be used to calculate the evolution of perturbations,

although this is not necessary (for example, we could use At* =2 At, where At*

is the time step used for perturbations and At the time step used to discretize the

equations of motion). The advantage of using the same time step is that exactly

the same (left-hand) matrices are used in the calculation of the first iteration of the

nonlinear problem (when using for instance the Newton-Raphson scheme) and in the

calculation of the perturbation evolution at each time step. Then, the coefficient

matrix obtained after discretizing the equations in time has to be factorized only

once, and used for both the system response and perturbation calculation.

Recall from Chapter 2 that the one-dimensional LCE of a trajectory is defined as

x = lim In ) (5.6)t oo t d(t*)

where d(t) is defined as d(t) = ||y(t)||, the norm of the perturbation vector. In

addition, using a time discretization with time step At, such that t = t* + n At, and

assuming that d(t*) do = 1, the norm of the perturbation vector can be expressed

by d(tn) =d d_ -.- di. An approximation to the LCE, ka, can then be calculated

at each time step,

in
k= - In di (5.7)

tn i=i

such that the trajectory LCE can be calculated as

x = lim kn (5.8)

For a structural discretized problem, the relevant perturbed variables in phase

space are the system nodal point displacements and velocities, and therefore the

discretized phase space belongs to R2N (N is the number of degrees of freedom of the

system considered). However, displacements and velocities have different units, and a

non-dimensionalization must be performed before the calculation of the norm of the

perturbation vector. We use a characteristic length L, and a characteristic velocity
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V to nondimensionalize the perturbations 3,

2 2
d(t) = \ L2 + y2 (5.9)

L2 V 2

Let us assume, without loss of generality, that the initial perturbation (5.4) is such

that do = 1. Then, we can calculate the initial perturbed accelerations from equation

(5.3), discretize the equation in time, and calculate the perturbed displacements and

velocities, 6* and i, at time ti.

When the system behavior is chaotic, the norm of the perturbation (5.9) grows

as a function of time. Thus, if the perturbation vectors are not normalized after a

certain number of time steps, overflow might occur. If the normalization process is

carried out at each time step, then we have that the normalized perturbations at ti

are

6, 1 = ; d1 (5.10)

where

6 2 
2

L2 + 2(5.11)

An approximation of the LCE can be calculated as k = t-1 In di.

The same procedure is repeated for the successive time steps, ideally until a flat

value of k, as a function of time (ta) is obtained, that is to say, until the value of k,

remains constant as n is further increased. This constant value of k" should be the

system LCE.

However, when using the described procedure for the calculation of the structural

response LCE, the obtained values of k, grow as a function of time, to, even when a
3Note that it might seem that an energy norm would also solve the normalization problem

without the necessity of introducing a characteristic length and velocity. However, such norm is not

appropriate for the calculation of the LCE since conservative systems, characterized by a constant

energy, can become chaotic.

67



dynamically stable problem is considered. A more detailed analysis of the procedure

is presented below to establish why the values of k, grow.

A key point in the described procedure is the determination of the proper values

of the problem characteristic length and velocity, L and V, to use in equation (5.11),

or equation (5.9).

It seems natural to express the characteristic velocity in terms of some charac-

teristic frequency of the system, C, such that V = j L. In such a case, it is evident

from equation (5.9) that the characteristic length L plays only the role of a scaling

constant. However, the determination of the correct value of the frequency w is fun-

damental in the evaluation of the system LCE. Alternatively, we could use V = c,

the characteristic speed of propagation of waves in the solid medium (that is the

characteristic velocity resulting from nondimensionalizing the continuum equations

of motion). Since it is always possible to express V = c = CL, V = c can be

considered as a special case of V = WL.

To elucidate how to choose the correct value of C let us first consider a simple

problem: a single degree of freedom (linear) harmonic oscillator (which cannot become

chaotic or unstable),

-+ x 0 (5.12)

with initial conditions

x(to) 0 (5.13)

*(to) = ,20

where x represents the oscillator displacement and w its frequency of oscillation.

Solutions of equation (5.12) are of the form,

x = A sin( t + 6) (5.14)

where A and 0 are constants determined by initial conditions.

Similarly, the equation for the evolution of the perturbation, z, is
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+ w 2 z = 0 (5.15)

with initial conditions

0 0 (5.16)

And its solution is of the form,

z = sin(w t +) (5.17)

where A and 0 are constants.

Let us calculate the LCE of the response of the harmonic oscillator. The pertur-

bation vector is,

y =(5.18)

and therefore,

:2 ~2 A
d(t) = + 2 L - 1 (5.19)

assuming that d(t*) 1. Then the response LCE can be calculated as,

1

x = lim - In d(t) = 0 (5.20)

The obtained LCE is zero, which is the correct value of the LCE for this case (since

the harmonic oscillator describes a regular oscillatory behavior, in which trajectories

do not converge nor diverge from each other). Note that to calculate the norm of the

perturbation, the system frequency was used for the velocity nondimensionalization

(i.e. C = w) in equation (5.9).

If instead of using the correct frequency of oscillation of the system, W, another

frequency :j is used, the norm of the perturbation would be
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A ~ 2
d sin 2 (W t + ± + cos 2 (w t + 9) (5.21)

L w

Although in this case the norm d(t) has an oscillatory behavior in time the limit of

t - oc of 1/t ln d(t) is zero (except when w/w = 0 since then the limit does not

exist), which is the correct value of the LCE for this case.

Consider now the finite element discretized equations of a solid continuum medium.

At each time step, the linearized system of equations that describe the evolution of

perturbations (5.3) can be decoupled into N equations of the form of equation (5.15),

the linearized system normal modes. It becomes evident that if the characteristic

frequency C, used to non-dimensionalize the velocity components, is relatively small

(for instance we choose the first natural frequency of the system) then w/w >> 1 for

high-frequency modes and therefore the velocity contribution of the high-frequency

modes becomes the dominant component of the norm. Considering expression (5.21),

and the limiting value as time goes to infinity of the natural logarithm of the norm

over time, this is not really a problem (at least analytically in the case of a linear

system) since those contributions oscillate very fast and therefore in the calculation

of the LCE the limiting value of zero is once again obtained. However, for a general

nonlinear system it would be desirable to put a stronger weight on the modes that

determine the behavior of the system (which are usually the low-frequency modes).

When solving a continuous problem using finite element methods, time is dis-

cretized in such a way that usually only low frequencies are accurately represented by

the time step chosen (when using unconditionally stable time integration schemes).

Thus, high-frequency modes are not properly discretized in time. This characteristic

does not pose a difficulty for the computation of the system response, since usually

the contribution of high-frequency modes can be neglected. Unfortunately, it is deci-

sive in the perturbation norm calculation since the approximations to the LCE, ka,

are governed by the high frequency velocity terms.

Let us consider here the effect of the time discretization employed in the calculation

of the square of the norm of the perturbation, d2. As mentioned above, in a finite

element discretization the fast response associated with high-frequency modes is not
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in general captured by the time discretization. Consider then only one equation of

the form (5.15) for the perturbation, i.e. the contribution of one mode of the finite

element discretization of a linear system (which cannot be chaotic or unstable) to the

norm of the perturbation.

Furthermore, assume that the chosen characteristic frequency is w = 1, the char-

acteristic length is L = 1, and the time step employed is At = 0.3 ~ 2 (small enough

to capture an oscillation with frequency w = 1).

Now, consider the numerical calculation of three cases, shown in figure 5-1, with

different frequencies of oscillation w of the harmonic oscillator,

* W = 1, figure 5-1a shows that in this case d2 =1 is obtained for every time step,

which is the value of the norm expected for the linear problem considered.

* o = 100, figure 5-1b shows that the calculated value of d2 is oscillatory, but nev-

ertheless the amplitude of the oscillations remains constant as a function of time
ln(d) i eo(ueial)

(or time step) and therefore in the limit of t - oc, " is zero (numerically).

" w = 5000, in this case, shown in figure 5-1c the norm of the perturbation, as

calculated using equation (5.9) grows as a function of the time step. Eventually,

it is expected that the behavior would be as when w = 100 but this would only

occur after a huge amount of time steps. The observed behavior is due to the

time discretization considered, which cannot capture the fast oscillations of the

equation, and not the physics of the problem.

In the case of a finite element discretization, the cumulative effect of the high-

frequency modes makes the value of k, grow as a function of time, even when the

problem considered is stable, giving the wrong impression that the system response

is unstable.

In this work we found that a solution to this problem is to use the maximum fre-

quency of the discretized finite element model as the characteristic problem frequency,

such that ) = Wmax, and the contribution to the perturbation norm of each mode i

becomes,
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Figure 5-1: Numerical calculation of norm of the perturbation for the harmonic os-

cillator equation. The time step used in all three cases is At = 0.3. a) w = 1, b)

w = 100, c) w = 5000.
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(A) sin2i t + ±) +Wn cos 2 (W_ t + (5.22)
L Wmax

Then, the high-frequency modes do not have such an important role. However, the

contribution to the norm of perturbed velocity components of low-frequency modes

becomes negligible, since Wmax is usually a very large number. In fact, most of the ve-

locity terms become negligible. Furthermore, it is very difficult to exactly calculate the

maximum frequency of the finite element model, and therefore some approximation

to it must be used. A simpler solution would be to neglect the velocity contributions

in the calculation of the perturbation norm. Then, we assume that,

N ~

d (t) ~(5.23)

The natural question that then arises is: Would the true value of the LCE be

obtained when using equation (5.23) given that the LCE measures exponential diver-

gence of trajectories in the phase space (i.e. the space of discretized displacements

and velocities)? To answer this fundamental question let us first go back to the simple

case of the harmonic oscillator.

The norm of the perturbation vector of equation (5.15) resulting from applying

equation (5.23) is

d =sin(w, t+) > 0 (5.24)
L2 L

Of course in this case, it could be a problem to numerically calculate the LCE using

the given value of d when d = 0 since limd4 o ln(d) = -oc. This problem does not

occur when considering many equations of the form of the harmonic oscillator, since

it is almost impossible to have all the contributions equal to zero at the same time.

However, the maximum value of the norm d corresponds indeed to the true value of

the perturbation norm, i.e. d = A/L. In fact, the average value of the norm in time

is constant, and thus a zero LCE is obtained in the asymptotic limit.

Even when more degrees of freedom are considered, d presents oscillations but the

behavior of its local maximums contain information about the stability of the system.
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Thus, when calculating the LCE of a solid continuous system discretized using finite

element methods, the following equations should be used,

d(t) L (5.25)
L

1
X = lim sup - ln[d(t)] (5.26)

t-+oo t

Furthermore, in the case of a solid medium, displacements and velocities are not

independent, but related by a time derivative. Therefore, we expect that informa-

tion would not be lost by considering only displacements in the calculation of the

perturbation norm. Let us look to this problem in more detail.

Consider equation (5.3), and make the following change of variables,

v = U (5.27)

Then, expressing equation (5.3) as a system of first order differential equations in

time,

6i 0 I 6i
(5.28)

or simply

= A y (5.29)

where the perturbation y =T (ii ), and I is the identity matrix.

The solution of the equations that describe the evolution of perturbations (5.28)

can be assumed to be (at each time step) of the form,

y = eX t4  (5.30)

Replacing equation (5.30) into (5.29), the following eigenvalue problem is obtained,

AOe = AO (5.31)
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The dynamic stability of the problem can then be assessed by looking at the

evolution of the eigenvalues A as a function of time. Whenever the maximum real

part of A is less that zero, perturbations to the reference trajectory will decay with

time. In contrast, a positive value of the real part of A implies that perturbations

grow as a function of time. Then by considering successive time steps, the average

growth of perturbation can be computed.

In addition, the solution of the equations that describe the evolution of perturba-

tions (5.3) can be assumed to be (at each time step) of the form,

6 = ei W # (5.32)

and as a consequence the velocity terms are

5 = i - t#' (5.33)

Substituting equation (5.32) into (5.3), the following eigenvalue problem is ob-

tained,

w2 M,# - K,# (5.34)

Note that for the problems considered the matrix K,, can be indefinite.

It is evident that the two eigenvalue problems are equivalent (they describe exactly

the same equations, in a different form), and therefore comparing equations (5.30)

and (5.32) we have,

io=A (5.35)

and

-i A (5.36)

where A is the complex conjugate of A.

The growth or decay of perturbations will be captured considering only displace-

ments or by considering displacements and velocities in the eigenvalue problem. Since
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the velocities are related to the displacements by a time derivative, the growth of dis-

placements will be passed to the velocities (and vice-versa), and as a consequence

there is no real need to consider both variables to capture the nature of the system

dynamic behavior (i.e. whether the response is stable or unstable).

Of course, the conclusions reached for a structural problem are no longer true in

the case of a general system of first order ordinary differential equations, since the

variables are no longer related to each other by a time derivative.

In summary, to calculate the successive approximations of the LCE, k., for each

time step n, the following procedure is proposed:

" Given the (normalized) "initial" conditions fn and en at each time step, calcu-

late the accelerations dn that satisfy equation (5.3).

* Discretize equation (5.3) in time, and solve for fi* and n+ which are the

nodal point displacements and velocities, for the time tn+1 , obtained from the

linear equation (5.3).

" Obtain the norm of the perturbation as

dn+1 = n+1  (5.37)L

where L is a characteristic length of the problem.

" Normalize the perturbation,

6n1 1n + 1 U+1 (.8__ nn+1= l (5.38)

" Calculate kn+ and advance to the next time step,

1 n+1

kn+1 t E In di (5.39)
tn+1 i=1
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5.2 Fluid problems

The turbulent behavior of fluid flows is probably one of the better known examples

of chaotic behavior, and yet it is not completely understood. It is extremely difficult

to numerically calculate the behavior of turbulent fluid flows due to the small length

scales characteristic of the eddy formation and the statistical space-time patterns of

eddies [23]. In order to represent small length scales more and more elements have

to be added to the analysis, which makes the calculation time unaffordable for most

engineering problems. For this reason, different ways of approximately dealing with

turbulent flows have been proposed, such as the k - E model. Such methods were

designed to represent only the average behavior of the fluid flow and not to solve for

the details of eddy patterns.

Let us consider the case of an (almost) incompressible fluid flow in the Eulerian

formulation. The (complete) linearized equations for the perturbations are

Mvv 0] [ ] + =[ V :;; [ii 0 (5.40)
0 M,, P KPV K,, 0

where M and K are the mass and tangent coefficient matrices for the fluid flow and

iv and P are the vectors of velocity and pressure perturbations. For an incompressible

fluid, M,, = 0 and K, = 0.

When the fluid flow is modeled using the Eulerian formulation of motion, the fluid

velocities are calculated at certain fixed points in space and therefore instabilities in

space (such as turbulence) will affect the value of the calculated k, and LCE.

Equation (5.40) can be separated into two equations,

Mvvi v -+P 0 (5.41)
Mp j + K i ± K, D = 0

where the first equation corresponds to the perturbed momentum equations and the

second one to the continuity condition for the perturbation. It follows that pertur-

bations in velocity and pressure are not completely arbitrary but are constrained by

the continuity equation and boundary conditions of the perturbation. For example,
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considering specifically the case of an incompressible fluid flow, the velocity pertur-

bation must satisfy Kp, = 0 at all times. The boundary conditions, on the other

hand, prevent the pressure perturbation from growing arbitrarily.

The procedure to calculate the successive approximations to the LCE, k,, would

be analogous to the one described for the structural equations, taking yT = (i P),

and using an appropriate non-dimensionalization in the calculation of the norm of the

perturbation d = ||yl|. However, good approximations of the chaotic behavior would

have to be used in order to calculate the LCE (average methods would not be useful

when the interest lies in capturing the fluid chaotic behavior).

When the fluid flow is modeled using the ALE formulation of motion, i.e. when

the fluid domain changes as a function of time, the situation is more complex. Some

of the difficulties are mentioned below.

Since the fluid mesh is moving and the fluid flow velocities are calculated at the

mesh nodal points, the obtained velocities do not correspond to fixed points in space

nor can they be associated with specific fluid particles. A similar situation occurs

with the pressure degrees of freedom. The immediate consequence is that if the mesh

points are moving arbitrarily, spurious growth of the perturbations may be included

in kn.

Another difficulty is that in addition to perturbations in velocity and pressure,

perturbations in the displacement of certain moving boundaries (such as free surfaces

and fluid-structure interfaces) must be considered.

We have not investigated the calculation of the LCE of fluid flows further in this

work and concentrated on the calculation of the LCE for structures and fluid-structure

interaction systems in which the behavior of the structure is of primary interest (and

for which the Re number of the fluid flow is low). Usually, the turbulent behavior of a

fluid flow is not avoided in engineering applications and it is actually desired in many

situations. Then, although it is important to determine the system behavior (i.e.

whether it is turbulent or not) the details of the fluid flow (i.e. eddy patterns) that

would be required to calculate the system response LCE are usually not important.

In addition, it is still not clear whether the Navier-Stokes equations are mathe-
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matically self-consistent for the description of the high Reynolds turbulent behavior

of flows, for which the eddy scales to be analyzed are frequently too small to fit in a

continuous description of the medium [34].

5.3 Fluid-structure interaction problems

In fluid-structure interaction (FSI) problems, usually the details of the flow behavior

are not the focus of the analysis, but rather the structural behavior is of main impor-

tance. Therefore, it is not important whether the fluid is turbulent or not, but the

dynamic stability of the structure, resulting from the interaction with the fluid flow,

is essential to the analysis. In such cases, only the behavior of the structure needs to

be analyzed, and the evolution of structural perturbations followed.

For the structure, the fluid interaction is nothing else but a forcing term at the

FSI surface, which depends on the fluid pressure, velocity and displacement of the

fluid-structure interface,

tW =t Rs +' Rf(u', v, p) (5.42)

where tRS and tRI represent the forcing terms applied to the structural boundary

that is not in contact with the fluid and to the fluid-structure interface, respectively.

It is assumed here that tRs does not depend on the structural displacement u.

From equation (5.42), the equation for the evolution of structural perturbations

in the system can be obtained as follows

Muu+Ku(i)- s 6- LK - , j5=0 (5.43)
Bu, vp 19 O

Thus it is important to identify and take into account, at each time step, the

forces exerted from the fluid to the structure in the calculation of the evolution of the

perturbations.

Alternatively, the complete linearized equations for the fluid flow coupled with the

structure can be considered to evaluate the evolution of perturbations. However, since

the main interest lies in the analysis of the behavior of the structural/solid part of the
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problem, the evolution of the complete vector of perturbations might be calculated

but only the displacements of the structural degrees of freedom used in the calculation

of the norm of the perturbation vector, d, as described in the section corresponding

to the behavior of structures (using the proposed procedure). In this way, while only

the growth/decay of structural perturbations are considered and specifically followed,

the effects of these perturbations in both the structural and fluid domains are taken

into account. The difficulties associated with the arbitrary motion of the mesh are

then circumvented, since the structural equations are only affected by forces exerted

at the interface that are independent of the choice of mesh movement selected. This

approach was used in the calculations of the LCE of FSI systems presented in the

next Chapter.

5.4 Local stability

It is frequently important to know the local dynamic stability of the system, and the

moment at which the system dynamic behavior loses stability. This information is not

contained in the response LCE, which is a measure of the asymptotic divergence of

nearby trajectories in phase space. However, it is possible to use the value of ln(d) =

kn tn, to assess the local stability of the system response. Since d(t,) - dndn_1 -.. di

measures the divergence or convergence of trajectories in the phase space, and dn is

calculated at each time step, and instability can be captured by ln(d) shortly after it

occurs. Note however that the "instant" values of dn alone do not provide information

about the response local stability since the values of ln(d) present oscillations (see

the discussion above). The overall system stability behavior is nevertheless captured

by a progressive growth/decay of the maximum values of ln(d). Then, by looking at

the average slope of ln(d) as a function of time, the local stability of the response can

be obtained.

However, one must be careful when assessing the local stability using ln(d) since

at the beginning of the LCE calculations a grow/decay in the values of ln(d) might

only indicate a transient response in the perturbation evolution not related to the
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stability of the continuous problem in consideration.
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Chapter 6

Numerical examples

In this Chapter, the algorithm proposed in Chapter 5 to calculate the LCE of struc-

tural and fluid-structure interaction problems is numerically investigated. The algo-

rithm is first tested in a low dimensional order system and then examples of continuous

systems are considered.

6.1 Discrete nondimensional equation of motion:

the Duffing equation

Let us first consider the Duffing equation, a nonlinear non-dimensional single degree

of freedom equation with sinusoidal forcing, to gain insight into the kind of behavior

and problems that can be encountered when analyzing a nonlinear dynamic problem.

The equation has been analyzed in various publications, see for example [1] [26].

The Duffing equation is

2+ci -bx+ax 3 = g cos(Ct) (6.1)

with initial conditions,

x (to) = xo 62o) (6.2)
-~o = 0
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where a, b, c, g and W are the equation parameters. The equation can exhibit differ-

ent behaviors depending on the value of the parameters considered. Of course, the

algorithm employed in the calculation of the LCE must properly capture the different

types of behavior encountered (thus, if the system becomes chaotic the LCE should

be greater than zero, otherwise it should be less than or equal to zero). Usually,

a, b and c are chosen to be positive values, and therefore the Duffing equation is a

two-well potential problem with dissipation and

b 2  a 4V(x) = x2 + _x4 (6.3)
2 4

where V(x) is the potential function. A generic graphical representation of the po-

tential as a function of x is shown in Figure 6-1.

Consider first the case in which g = 0 (and a, b, and c are positive numbers). In

this case, the problem has three fixed points in phase space, corresponding to each

potential well, x* and x*, and the local maximum of the potential, x = 0. Depending

on the initial conditions, the system long-term response is a steady state in which the

value of x is either x* or x*. However, there are also values of the initial conditions for

which the system steady state response corresponds to x = 0, which is an unstable

equilibrium point. In practice, it is extremely difficult to obtain a response in which

the system steady state is x = 0: experimentally, small errors in the initial conditions

and random inputs will affect the system response; numerically, even if the initial

conditions are the exact ones, numerical errors will deviate the trajectories from the

theoretical one. For this reason, the trajectories that finish in an unstable fixed point

are usually called irregular 1. The presence of irregular trajectories gives rise, in

this case, to the concept of transient chaos. Infinitesimal differences in the initial

conditions, near the irregular trajectory, may correspond to a completely different

outcome of the system long-term response. That is to say, the asymptotic behavior

is a steady-state in which x is equal to either x* or x*, depending on infinitesimal

differences in the initial conditions. The irregular trajectory then separates the basin

Note that the trajectories that are called irregular here are not related to the irregular trajectories

mentioned in Chapter 1, which correspond to chaotic trajectories.
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V(x)

Figure 6-1: Sketch of the potential function of the Duffing equation without forcing

and when all the parameters are positive numbers.

of attraction of one of the well points from the basin of attraction corresponding to

the other. The representation of the system phase portrait is shown in Figure 6-2, in

which the irregular trajectory is shown as a dotted line. Note however, that the term

transient chaos refers only to the fact that the system long-term response cannot be

predicted, but it does not mean that the asymptotic system behavior is chaotic (in

fact in this case, the asymptotic behavior corresponds to a steady-state solution).

Now, consider the case in which g # 0. Energy is periodically supplied and

taken out from the system, and when the parameter g is small the system asymptotic

behavior corresponds to an oscillatory response. Oscillations about either x* or x* can

occur, and transient chaos is again a possibility. For certain choices of the values of g

and w, a chaotic behavior may also develop; the trajectories oscillate about one of the

potential wells for certain time and then go to the other, and so forth. However, the

exact moment in which the "jump" from one potential well to the other takes place

is unpredictable, and of course the number of oscillations about each of the potential

wells varies in an unpredictable manner. The chaotic behavior can be explained by

considering a small ball moving in the potential of Figure 6-1, while the potential

itself is oscillating (due to the forcing term). In this situation, it is easy to imagine

that for certain choices of the forcing term parameters the ball can reach the relative
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KY>

X,

Figure 6-2: Sketch of the phase portrait for the Duffing equation without forcing.

The black dots correspond to stable fixed points for the system, whereas the white

dot (at the plot origin) corresponds to the unstable fixed point.

maximum of the potential with a relative velocity close to zero, and an infinitesimal

perturbation may induce the ball to go to one of the potential wells or to the other,

making the system behavior unpredictable.

To calculate the system's response LCE, we need to derive the equations corre-

sponding to the evolution of perturbations. Since the system is non-autonomous, a

change of variables is first performed to transform the equations into autonomous

form (see Chapter 2). In addition, the equations will be expressed as a system of first

order differential equations in time (so that the procedure described in [3] for discrete

systems can be directly applied). The following change of variables is performed,

X1 =

X2 = (6.4)

X3 t

and equation (6.1) can be expressed as,
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x 2 - bx - ax- cx 2  gcos(x 3 ) (6.5)

i3 = 1

The linearized equations that describe the time evolution of perturbations are

1 - £2

£2 = (b - 3ax) zi - c z2 - gw sin( x 3 )2 3  (6.6)

£3 - 0

where zi, 22 and 23 are the perturbations to the system variables x 1, X2 and X3,

respectively. From equations (6.6), it follows that is = constant. In particular, we

can choose 23 = 0, which corresponds to the case in which the time is not perturbed,

the case to be taking into account from physical considerations. Thus, equations (6.6)

are reduced to

i2 (b - 3ax 2) - c (67)

and hence the behavior of infinitesimal perturbations to the system depend on the

specific trajectory analyzed.

Let us numerically analyze different behaviors of equation (6.1). In all the cases

considered below, the following parameter values are used: a = 0.53, b = 0.2, c = 0.04,

and W = 0.16, whereas the value of g is changed as indicated. The initial conditions

considered in all cases are £O = 1 and zo = 0.

* g = 0: For this particular choice of parameters, the asymptotic behavior of the

system corresponds to a steady state. Figure 6-3a shows a phase portrait of

the system response, and the LCE calculated for this system. Since the system

response is regular, the LCE obtained cannot be positive. The calculated LCE

value, which is negative in this case, can be seen in the Figure as the value for

which k, remains constant as a function of time.
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* g = 0.01: In this case, a small forcing term is considered, and the system behav-

ior is shown in Figure 6-3b. The behavior is regular, although oscillatory, and

the value of k, in the limit of time going to infinity is negative. Note however,

that this is not the maximum LCE of the system. Considering equations (6.6),

the maximum LCE is equal to zero, associated with the equation 53 = 0 (this

is consistent with the fact that at least one Lyapunov characteristic exponent

must be zero).

* g = 0.4: This case is shown in Figure 6-3c. The system behavior for this case

is chaotic, as can be seen from either the phase plot or the value of the LCE

obtained, which is positive and approximately equal to 0.035.

Note that in all the cases considered above, the convergence to the LCE value

(obtained when the number ka, from equation (2.36), remains constant as a function

of time) is very slow. However, the divergence (convergence) of trajectories in phase

space, characterized by growing (decreasing) values of lin(d) _ kt in are obtained after

only a few time step calculations, see Figure 6-4. Therefore, trends in the behavior

of the values of 1n(d) can be used to characterize the local stability of the system

behavior, although the exact value of the LCE is not calculated. As can be observed

from Figure 6-4, even for a chaotic behavior the perturbations grow and decrease as

a function of time, and only the average behavior becomes important.

One might expect that the values of the LCEs obtained for different time steps

would converge to the correct LCE as the time step is decreased. Since it can be

difficult to compare the system responses obtained with different time steps when

the behavior is chaotic (due to the exponential divergence of trajectories in phase

space) the values of the LCE (or in general trends in the behavior of ln(d)) can be

compared to guarantee that the chaotic behavior is properly captured (a behavior

might seem chaotic when the time step used to calculate the system response is not

small enough). Figure 6-5 shows the values of kn obtained as a function of time when

the response is calculated using different time steps. Note that even though a final

value of the LCE (constant kn) has not been obtained in the cases considered, all the
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Figure 6-3: Different behaviors exhibit by the Duffing equation and the values of the

LCEs associated with them. a) Steady-state response. b) Oscillatory behavior. c)

Chaotic response.
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a) Oscillatory behavior b) Chaotic behavior
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Figure 6-4: Values of ln(d) as a function of time for two responses of the Duffing

equation. a) Oscillatory behavior. b) Chaotic response.

curves captured the chaotic nature of the system, and the values of k, are closed to

each other during all the calculation.

One question remains to be analyzed: what happens, in this case, if instead of

calculating the LCE using the norm of the perturbations considering both z and z,
only the contribution due to z is employed, as proposed in this work for the LCE

calculation of structural systems discretized using finite element methods? From

theoretical considerations (see Chapter 5), we expect both approaches to be equivalent

for a discrete system of few degrees of freedom (it was already discussed that the

procedure proposed by Benettin et al [3] cannot be used in the case of discretized

continuous structural systems). The proposed procedure was then applied to the

case in which the response of the Duffing equation is chaotic. A comparison of the

two results for a small period of time, so that differences can be appreciated, is shown

in Figure 6-6. Note that, if the LCE, calculated using the values of k, described in

the proposed procedure, is evaluated as

X = lim sup k, (6.8)
n -- oo

both procedures give the same results (the trends in the behavior of both calculations

are the same). Indeed the same results were obtained, except that using the proposed

procedure, the values of kn present stronger oscillations, as expected.
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Figure 6-5: Values of k, obtained when the Duffing equation presents the chaotic

behavior considered above, and for different values of the time step used to discretize

the equations in time.
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Figure 6-6: Comparison of the values of k, obtained for the chaotic response of the

Duffing equation considered above, using the method proposed by Benettin et al. and

the proposed procedure.
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6.2 Structural systems

In this section the analysis of structural continuous systems, discretized using finite

element methods is considered. In all the cases, the successive approximations to the

LCE, kn, are calculated using the proposed procedure. In addition, a Fourier analysis

of a sample point of the response is performed for validation purposes.

The system response and LCE calculation was performed using a code developed

specifically for this work by the author. Validation of some code results with the finite

element software program ADINA was done, to ensure that the behavior captured is

the correct one.

6.2.1 Analysis of steady-state behavior

This example is included as a validation of the procedure proposed in this work for

the calculation of the Lyapunov characteristic exponent of the response of structural

continuous systems. The two-dimensional cantilever beam problem shown in Figure

6-7 is considered, assuming a plane stress analysis. The beam is discretized with a

mesh of 100 by 1, using 9-node displacement-based elements.

The beam is initially at rest. Since no loading or imposed displacement bound-

ary conditions (other than the zero displacement conditions at the clamped-end) are

applied to the body, the beam remains at rest. This situation is equivalent to a sta-

ble steady state behavior. Applying an arbitrary initial perturbation to the system,

the evolution of the perturbations can be computed and the results tested. For this

0.002 m

0.2 m

Figure 6-7: Cantilever beam used in the analysis of the perturbation evolution of a

steady-state behavior.
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case, we expect that perturbations would decay as a function of time if dissipation

is included in the model, or they would remain the same (no decay in the norm of

the perturbations) if no dissipation were included. Of course, many time integration

methods include some artificial dissipation in the system response. In this exam-

ple, however, the trapezoidal rule, which does not include dissipation in the system

response, is employed in the calculations [2].

The case in which no dissipation is included in the model, and a homogeneous per-

turbation in velocity is applied to the system is considered. That is to say, we impose

a constant velocity for all the degrees of freedom (both velocity directions), and thus

the perturbation satisfies the required boundary conditions. Using these initial per-

turbed velocities, perturbed displacements are calculated and non-dimensionalized.

The obtained displacements and velocities are then used as the perturbation initial

conditions (such that do = 1).

Figure 6-8 shows the calculated successive approximations of the value of the

response LCE, ka, when the time step employed is At = 0.002s. For this example,

a value of zero is expected for the response LCE, and a zero slope is expected in the

curve of In(d) - k,, t as a function of time. Looking at Figure 6-8 the correct value

seems to be obtained. However, using linear regression analysis to fit the curve of

ln(d) as a function of time, we find that the slope of the curve is equal to 0.0024s-.

Since this value is very small, we consider that this is due to the numerical error in

the calculations.

In the next case considered, dissipation was once more not included in the struc-

tural model. This time, a random initial perturbed velocity was assigned to each

degree of freedom, so that all the structural modes are perturbed, and the proposed

algorithm can be tested in a more general situation. The time step employed in the

calculations is At = 0.002s. The results obtained looked like those in Figure 6-8.

By performing a linear regression analysis of the curve in(d) as a function of time, a

slope equal to 0.0022s- is obtained, which can be attributed to numerical errors in

the calculation.

The same calculation was repeated for At = 0.001s, and this time the slope of
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Figure 6-8: LCE calculation of a steady-state solution of the cantilever beam. Oscil-

lation of the values of k, are typical when using the proposed procedure (since the

norm of the perturbation is calculated using only displacements).
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the curve of In(d) as a function of time was -0.00073s- 1 . Refining the time step

even more, with At = 5 - 10 5 s a slope equal to -0.0008s-1 is obtained, and with

At = 2.5 - 10- 5s the slope is 2 - 10- 5 s-1. These results confirm the hypothesis that

the small slope obtained is only due to numerical errors, and therefore it is related to

the sensitivity of the numerical algorithm.

6.2.2 Buckled beam analysis

The system shown in Figure 6-9 is considered. It consists of an initially buckled beam

under equilibrium, that for time t > 0 is excited with a sinusoidal pressure applied to

one of its sides. A two-dimensional plane stress analysis, in which large displacements

but small strains are considered, was used in the calculation of the system behavior.

The continuous body was discretized using displacement-based 9-node elements. The

system properties and forcing parameters used in the analysis are as follows,

" Young's modulus, E = 206.85 -109 Pa

" Poisson's ration, / = 0.3

" Density, p = 7805.86 kg/m 3

" Excitation amplitude, p 45 Pa

" Excitation frequency, w* 90 Hz

The two-dimensional analysis of the described buckled beam problem is a two-well

potential problem, where the potential wells correspond to the beam bending to the

right or left side. As in the case of the Duffing equation considered above, by choosing

the appropriate amplitude and frequency of the forcing term, a chaotic behavior can

be obtained. This type of problem is extensively analyzed experimentally in the

literature, see for example [15] and [16], and the Duffing equation is frequently used

as a simplified model to analyze the behavior of a buckled beam simply supported at

both ends. In the mentioned works, it is shown that indeed the system behavior can

become chaotic under certain values of the forcing amplitude and frequency.
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Figure 6-9: Buckled beam problem considered.

The system response and the calculated values of ka, which in the limit of t - oc

gives the response LCE, are shown in Figure 6-10. The beam mid-point displacement

seems rather stochastic, since there are no apparent patterns in its behavior and the

time for which the mid-point displacement changes from positive to negative seems

unpredictable. The chaotic nature of the system is confirmed by a positive value of

the LCE. Furthermore, a chaotic behavior is non-periodic and therefore characterized

by a response that contains a broad spectrum of frequencies (that is to say that

there are no dominant frequencies but rather all the frequencies, in a certain range,

are present in the behavior). The response frequency contents can be extracted by

performing a Fourier analysis, as shown in Figure 6-11. Note that the spectrum

presents a relatively small spike at 90Hz (the excitation frequency). Nevertheless a

continuous spectrum of frequencies (in which each frequency has approximately the

same importance) is otherwise obtained.

Note, from Figure 6-10, that in order to obtain a good approximation of the

beam response LCE, obtained when the value of k, remains constant as a function of
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Figure 6-10: Mid-point displacement of buckled beam problem and LCE calculation.
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time, the behavior of the perturbations over many time steps needs to be calculated.

However, the values of In(d), where d is the accumulated norm of the perturbations,

provide information about the local stability behavior (in time) of the system. The

values of in(d) as a function of time for the beam response considered are shown in

Figure 6-12, and it can be observed that the slope of the curve is positive, indicating

an unstable behavior (associated with growth of perturbations) for the period of time

considered.

Convergence of the system's response LCE is expected as the time step considered

is decreased and as the mesh used in the discretization is finer (i.e. more finite

elements are used). A convergence analysis for the system is shown in Figure 6-13. It

can be observed that for some values of the time step At, the final value of the LCE

was not yet obtained (since k, has not converged to a constant value). Nevertheless,

in all the cases a chaotic behavior, characterized by a positive value of the LCE, is

detected and the values of k, obtained are all relatively closed to each other.

6.2.3 Beam subjected to nonlinear boundary condition

The system depicted in Figure 6-14 was analyzed using a two-dimensional plane stress

analysis in which large displacements and small strains are assumed. From the Figure,

it can be seen that the beam free-end cannot displace arbitrarily, since a nonlinear

(cubic) spring is attached to it. This case is considered to simulate situations in which

nonlinear boundary conditions are present, an important factor that can contribute

to a chaotic system response in engineering systems. In this case, for instance, a

contact condition, in which stops are located near the free-end of the beam to restrict

its movement, can be idealized by a cubic spring attached to the beam free-end. Some

analysis on the behavior of beam systems subject to nonlinear boundary conditions

are considered in [25] and [27] and it was experimentally observed that the systems

may develop a chaotic behavior under certain conditions.

The beam properties are the same as for the buckled beam problem, and the

system parameters are,
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Figure 6-12: Plot of in(d) as a function of time for the buckled beam problem. Note

that the local stability of the system is captured by this graph, without explicitly

calculating the system LCE (which defines only the system long-term stability).
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Figure 6-13: Convergence analysis for the LCE value obtained in the case of the

buckled beam.
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Figure 6-14: Beam subject to nonlinear boundary conditions. Sketch of system con-

sidered.
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o Excitation amplitude, p = 6000 Pa

" Excitation frequency, w*= 90 Hz

" Cubic spring constant, k 5 - 1010 kg/s 2

The displacement of the beam end that has the spring attached to it, which is

referred to as the beam "free-end" (although this is not a precise description of it),

is shown in Figure 6-15 together with the calculated response LCE. It can be seen

that the beam "free-end" displacement seems to be non-periodic, a characteristic of a

chaotic behavior. This is confirmed by examining the power spectrum of the response

shown in Figure 6-16. A spike corresponding to a frequency of 90Hz, the excitation

frequency, is present but a continuous spectrum of frequencies of similar importance

is also present. Furthermore, from Figure 6-15, the value of the LCE is positive

confirming the unstable nature of the system long-term response.

Looking at the plot of the in(d) as a function of time, Figure 6-17, it can be seen

that the dynamic local stability behavior of the system is captured, since the average

slope of the curve is positive. It is clear from this example that for different parts

of the In(d) curve the average slope is different. Of course, at the beginning of the

calculation this may indicate that transient effects have not yet decayed (i.e. the

trajectory is not yet in the chaotic attractor). However, it is also possible that the

magnitude of the divergence of nearby trajectories in phase space changes from one

part of the attractor to the other. The value of the LCE will then be an average

measure of the divergence of nearby trajectories in phase space in different parts of

the attractor.

6.3 Fluid-structure interaction

In this section, the analysis of fluid flows interacting with solid media is considered.

In the two cases analyzed here, the system response was obtained employing a code

developed by the author, in which the coupling and condensation procedure described
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Figure 6-15: Displacement of the end of the beam with an attached cubic spring (the

"free-end") as a function of time; and the calculated values of ka, which give the

response LCE in the limit for time going to infinity.

in [36] [35] was implemented. In addition, the problems to be presented were calcu-

lated using the developed code and the program ADINA, and similar results were

obtained using both programs.

6.3.1 Collapsible channel

The first fluid-structure interaction problem considered is shown in Figure 6-18.

It consists of a two-dimensional channel initially filled with a viscous fluid with a

Poiseuille velocity profile. Part of the channel upper wall was replaced by a thin

structure that can displace in the vertical direction (the collapsible segment), and an-

other structure, which is stiffer, and that can only displace in the horizontal direction.

The fluid is modeled using the ALE form of the almost incompressible Navier-Stokes

equations; and the structure is modeled using a linear plane stress analysis (which

can be transformed into a plane strain analysis). This kind of model is used to quali-

tatively describe the flow of blood inside a blood vessel, to study certain phenomena

observed in this type of systems, see for example [33] [19] [20]. The fluid domain

was discretized using the mixed 9/3 element formulation, whereas the structure was
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discretized employing displacement-based 9-node elements [2].

The properties of the system considered are as follows,

* Fluid:

Viscosity, p = 0.002 kg/m s,

Density, p = 1000 kg/m 3,

Bulk modulus, K = 2.1- 10' Pa

Pressure difference, po - p = 3.255 Pa

" Collapsible segment:

E 2 . 105 Pa

v 0.2

p 1000 kg/m 3

" Segment that can displace only in the horizontal direction:

E 2 . 108 Pa

v - 0.3

p 1 kg/m 3

Figure 6-19 shows the obtained collapsible segment mid-point displacement as

a function of time as well as the calculated values of k,. The system presents an

instability for values of time about t = 10s after which a limit cycle behavior develops.

The instability, however, is only local and the long-term system behavior (a limit

cycle) corresponds to a stable response. The system stability is also reflected in the

calculated values of k,. When the system first develops the instability before the

limit cycle, the values of k, jump to positive values, indicating that the system is

unstable. However, as soon as the oscillations stop growing at a fast pace, the values

of k, start to decrease, indicating that the system is stabilizing. When the values

of In(d) are analyzed, as shown in Figure 6-20, it is observed that at approximately

t = 10s the slope of the In(d) curve is very steep, and then it changes to a curve

which still grows, but with a much smaller slope (the slope is about 0.31s-1 when

using At = 0.0025s and At = 0.005s). This suggests that the system is not yet
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Figure 6-18: Collapsible channel problem considered.

stable, and that the amplitude of the limit cycle is still growing. This is of course

a small effect, and that is why it cannot be appreciated by looking at Figure 6-20.

Nevertheless, a more detailed analysis would be needed in this case to determine the

errors of the calculation (to make sure that slope in in(d) is not due to numerical

errors), and to assess whether other physical phenomena could be contributing to the

growth of in(d).

A Fourier analysis of the response obtained after t = 20s is shown in Figure

6-21. It can be seen that in this case there are only two important peaks in the

response frequency spectrum, and then some smaller ones (that actually correspond

to super-harmonic frequencies). The fact that the system does not present a contin-

uous spectrum of frequencies (the "tail" of the plot is attributed to numerical errors,

and not real system frequencies) confirms the fact that the response is not chaotic,

although it is probably not yet completely stable.

6.3.2 Modified collapsible channel model

The collapsible channel problem considered in the last section was slightly modified,

as shown in Figure 6-22. A linear spring of constant k was included in the model

to avoid the complexity associated with contact conditions between the collapsible

segment and the downward channel wall. The spring, shown in the figure as a truss
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Figure 6-19: Mid-point displacement of the collapsible segment for the collapsible

channel problem depicted in figure 6-18, and the calculated LCE.

element, allows the fluid to flow through it without any restriction, and it starts to act

only when the lower point of the collapsible segment that is originally at 0.05m from

the channel entrance, has displaced 0.009m inside the channel (90% of the channel

height). The spring acts only if the point displacement is greater or equal than 0.009m

inside the channel. Thus, a nonlinear boundary condition is imposed at one point

of the collapsible segment. The system properties are the same as in the problem

considered in the previous section, except that in this case the pressure difference is

po - p = 15.942 Pa, and the spring constant is k = 1000 kg/s 2

Luo et al. [21] investigated numerically the problem of the collapsible channel

imposing a velocity profile at the channel entrance. Although in their work a chaotic

behavior was not explicitly found, it was argued that it is possible for the system to

develop a chaotic behavior.

The obtained system response is shown in Figure 6-23, together with the calculated

LCE. It is observed that the segment mid-point response is not periodic, as expected

in a chaotic behavior, and the obtained value of the LCE is positive. In addition, by

looking at the power spectrum of the response, Figure 6-24, it can be seen that many

frequencies are excited, confirming the chaotic nature of the behavior. Furthermore,

4
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Figure 6-20: Plot of the ln(d) as a function of time for the collapsible channel problem.
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Figure 6-22: Modified collapsible channel problem considered. A parabolic velocity

profile, constant in time, is imposed at the tube inlet. The linear truss of constant

k = L, acts over one point of the membrane when it reaches a vertical displacement

of 0.009m or more inside the channel, and it does not interfere with the fluid flow

inside the channel.

the plot of ln(d) as a function of time, Figure 6-25, shows a positive slope for all times

considered.

It can also be noticed that the value of the LCE obtained is much smaller than

in the cases of the chaotic behavior of the beams discussed above. This fact can be

justified by comparing the obtained displacements for the beams and the collapsible

segment of this example. In the case of the beams the behavior is highly non-periodic

and there is absolutely no pattern, indicating that the divergence of nearby trajecto-

ries in phase space is rather strong. However, in the case considered here, even though

the displacement is not periodic, it is more "regular" than in the beam case. This

behavior is a consequence of the fact that nearby trajectories in phase space diverge

from each other exponentially fast but at a much slower rate than in the case of the

beam problems. This is also consistent with the lower values of the LCE obtained

for this collapsible channel example as compared to the value obtained for the beam

problems considered before.
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depicted in Figure 6-22, together with the calculated values of k,.
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Chapter 7

Conclusions and future work

Finite element methods have been successfully used in the analysis of complex struc-

tural, fluid and fluid-structure interaction problems, which in many cases present

strong nonlinearities. The response of a nonlinear dynamic system of equations can

exhibit a large and rich variety of behaviors that might be stable or unstable. If

the system asymptotic behavior is unstable, then the response is chaotic and unpre-

dictable. It can also happen that the system dynamic behavior becomes unstable at

some point in time and then stabilizes, or vice-versa. Since an unstable behavior is

usually not desirable in engineering practice, it becomes important not only to cal-

culate the response of the system but also to characterize its dynamic stability. In

most cases, the stability characterization of the system response is not a simple task,

especially when the behavior of continuous systems is considered.

In this thesis, the calculation of the system Lyapunov characteristic exponent

(LCE), was investigated. The LCE is a measure of the asymptotic divergence of

nearly trajectories in phase space, thus the asymptotic dynamic stability of the sys-

tem response can be assessed by calculating its LCE. Previous works on the calcu-

lation of the LCE were mostly focused on the analysis of nondimensional discrete

systems that consist of a few first order ordinary differential equations in time, and

iterative maps. A relatively small number of works were published on the calculation

of the LCE of the response of continuous systems, and the mentioned publications

either included experimental investigations or reduced order models. Therefore, a
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more general method to calculate the LCE of continuous systems was needed. In this

work, a numerical procedure to calculate the LCE of structural and fluid-structure

interaction problems discretized using finite element methods is proposed. The pro-

posed procedure is based on the computation of the evolution of perturbations of all

the discretized finite element degrees of freedom. By calculating the LCE of complex

systems, it is no longer necessary to monitor the behavior of many system sample

points to detect an irregular or unstable behavior, since an instability on any part of

the system will be captured by the LCE.

Some example problems, in which continuous systems were discretized using fi-

nite element methods, were considered. For all the examples, approximations to the

LCE, kn, were calculated at each discretized time step using the proposed procedure.

Fourier analyses of sample points of the system responses were also performed to

confirm the types of behavior predicted by the LCE calculation in the simple cases

considered in this thesis.

The calculation of the LCE, as proposed in this work, requires typically between

20 to 25 % of extra computations at each time step for the example problems consid-

ered, and therefore the procedure is computationally inexpensive. Efficiency in the

calculations is achieved because the matrices used in the computation of the system

response can also be utilized in the calculation of the perturbation evolution, saving

an important amount of computations per time step. In addition, the second order

ordinary differential equations in time, which result from the linearized finite element

discretization of the structural continuous system, are integrated in time directly

(without converting them into first order differential equations, procedure that would

double the number of degrees of freedom to be solved at each time step).

The calculation of an accurate value of the response LCE may take a large number

of time steps, since the LCE is a measure of the asymptotic divergence of trajectories

in phase space. Computer speed then becomes a constraint in the LCE evaluation

procedure. Fortunately, it is not necessary to converge to the value of the LCE if

the interest of the analysis lies in the local stability of the response. In this work, it

is proposed to assess the local divergence/convergence of trajectories in phase space
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(which in turn will give the local instability/stability of the system) by looking at

the average slope of the plot of ln(d) = k, t, versus time. The advantage of using

ln(d) is that instabilities would be detected shortly after they occur in the system

response. However, since at the beginning of the LCE calculation a random initial

perturbation vector is selected, it would be necessary to wait until transient effects

in the perturbation calculation decay before using ln(d) to assert the local response

stability. Plots of the value of In(d) as a function of time, and a discussion of the

results, were presented for the example problems considered.

In the following, some suggested topics of research, that would complement and

enhance this work, are briefly discussed.

First of all, it would be neccessary to perform an error analysis of the LCE cal-

culations. The aim of the study is to assess the error bound of the calculation, to be

used especially in "limit cases" in which the theoretical value of the LCE is zero. As

shown in Chapter 6, for those "limit cases", the calculated value of the LCE is not

actually zero, but a positive or negative value, which is a function of the discretiza-

tion employed. It can then be important to characterize the error bound to determine

whether a system for which the calculated LCE is closed to zero is stable.

In the field of structural mechanics, it would also be useful to investigate algo-

rithms to predict the necessary changes to be implemented in the original system

such that an unstable response can be stopped or avoided. The changes might be

in the properties of the system (i.e. a change of material) or in the forcing terms

considered. This same ideas are of course applicable to fluid-structure interaction

problems, in which the focus of the analysis is on the structural part of the system

(as was considered in this work).

In the field of fluid mechanics, there is still a need to investigate algorithms to

calculate the system LCE. However, in order to calculate the correct value of the LCE,

the finite element formulation used should not include terms that incorporate artificial

viscosity in the model. Otherwise, the "true" fluid behavior would not be captured.

The procedures employed in the calculation of the system LCE for fluid-flow systems

can later be used, for example, to predict the onset of turbulence.
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In addition, the procedure proposed to characterize the stability of the dynamic

behavior of systems can also be extended to other continuous problems, in which for

example heat transfer or electro-magnetic effects are important.

In summary, the calculation of the response LCE of continuous systems opens a

broad and almost unexplored field in mechanics. This work represents only a first

step in the characterization of the dynamic behavior of continuous systems, since it

provides a procedure to calculate the LCE of structural continuous systems discretized

using finite element methods and to assess the local stability of the system response.

117



Appendix A

Exponential divergence of

trajectories in phase space

The Duffing equation, a nonlinear discrete non-dimensional equation of motion, was

considered as the first example in Chapter 6. The equation represents a two-well

potential problem with dissipation with a periodic forcing term, and can be written

as,

z±c±-bx+ax 3 = g cOs(_t) (A.1)

where a, b, c, g and Ci are the equation parameters, which are assumed to be positive

real numbers.

As discussed in Chapter 6, the divergence/convergence of trajectories of the sys-

tem response is obtained, from equation (6.7), by solving a linearized equation of

motion (that is by solving the equation that describes the evolution of infinitesimal

perturbations to the system response). In this way approximations to the response

LCE can be calculated at each time step. However, this procedure does not neces-

sarily coincide with the physical intuition that the Lyapunov characteristic exponent

measures the average exponential divergence of trajectories in phase space. In other

words, for a chaotic behavior the following approximation is usually assumed,
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||yll ~ ex(t-) yo (A2

where yo and y are the initial perturbation vector and the perturbation vector at

time t, respectively, and x is the response LCE.

It is possible to calculate the distance between originally nearby trajectories in

phase space by computing two different trajectories whose initial conditions are very

close to each other. The result of such a calculation, for the chaotic behavior of the

Duffing equation analyzed in Chapter 6, is shown in Figure A-1. Note that for small

times, the trajectories diverge from each other at a fast pace, but after some time

(approximately t = 200), the natural logarithm of the distance between trajectories

stops growing. This behavior occurs since the asymptotic trajectories (or the strange

attractor) only occupy a bounded region of the phase space (see Figure 6-3c), and

therefore after some time the distance between trajectories cannot grow any more.

Using linear regression analysis to compute the slope of the curve shown in Figure

A-1 for t < 200 (the time at which the distance between trajectories is growing) we

found that y a 0.42. In contrast, the approximate value of the LCE from Figure 6-3c

is x - 0.35.

Therefore, each of these two ways of approximating the value of the system re-

sponse LCE seems to give the same result and captures the correct nature of the

behavior. This is in general true for trajectories that remain inside the same strange

attractor for all times.

However, if a good approximation of the value of the LCE is sought, or if the use

of a fast algorithm is important, then the linearized equations of motion (6.7) should

be used.

The Lyapunov characteristic exponent is defined by computing the growth of an

initial perturbation by applying a mapping from the tangent space of f(x) at time t*

to the tangent space at time t to the initial perturbation (see Chapter 2). Thus, from

the definition of LCE, the linearized equations of motion (6.7) are the appropriate

equations to use in the calculation.

Furthermore, in the case of transient chaos, calculating the distance between two
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Figure A-1: Natural logarithm of the distance between two trajectories that were

originally very close to each other. The trajectories were calculated using the Duffing

equation and for the value of parameters analyzed in Chapter 6 that result in a chaotic

behavior.
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trajectories will not give the correct value of the response LCE. Consider for example

the case in which the forcing term in equation (A.1) is zero. The long term response of

the system is a steady state, in which the value of the variable x corresponds to one of

the equation potential wells, see Figure 6-1 and the discussion in Chapter 6. However,

there are some initial conditions such that the trajectory corresponds to a steady-state

solution associated with one of the potential wells, and by slightly perturbing those

initial conditions, a steady-state behavior associated with the other potential well is

obtained. Of course in this case we can calculate the response LCE which is zero

(since the steady state behavior is stable), using equation (6.7). However, if two

different trajectories are followed and their distance as a function of time calculated,

then the plot of the natural logarithm of the distance would look like Figure A-1,

although the asymptotic system response is not chaotic (i.e. the algorithm would

capture only the potential instability due to transient chaos and not the asymptotic

stability of the system).
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