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Summary

Because of the prevalent tendency among Amer-

ican hydraulic engineers to adhere entirely to

empirical methods in the design of weirs and spill-

ways, the author makes an effort in this thesis

to clarify the actual physical circumstances ac-

companying flow over various spill sections.

Proceeding first of all from the purely the-

oretical standpoint, the basic equations of hydro-

mechanics as applied to two-dimensional curving

flow are developed, and the forces causing conver-

sion of potential and pressure energy into kinetic

energy are portrayed. Both the means of applica-

tion of the theory of potential flow and the ao-

companying difficulties and limitations are briefly

shown.

After a general, non-mathematical discussion

of the conditions of pressure and velocity distri-

bution occasioned by vertical curvature, the theorem

of Bernoulli and the law of impulse and momentum

are applied to this general case of two-dimensional

water motion. These general principles are then



adapted to basic examples of weir discharge, and

in the following section these applications are

illustrated by the description of experimental

investigations conducted by the author on five

different forms of weir profile.

Finally, practical spill sections are dis-

cussed, with regard to the design of the profile

and to the variation of the discharge coefficient

with both head on crest and shape and dimensions

of spillway profile. Model experiments made in

France and at M.I.T. are described to substantiate

the discussion.
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The Distribution of Hydraulic Energy in Weir Flow

with Relation to Spillway Design

I Introduction

1. Discussion of past practice

Although recent developments in aviation have shown

so clearly the practical value of studying fluid motion on

a purely physical basis, hydraulio engineers are still prone

to treat the flow of water from a more or less empirical

standpoint. In the field of turbine design the theory of

hydromechanics is gradually becoming a usable tool, in par-

ticular as it is being found that the departure of water

from the ideal case of a perfect fluid may be compensated

by certain approximations made in applying the theoretical

laws of ideal behavior. Hence those practicing in the latter

field have become rather familiar with the action of water

under the conditions of curving flow and realize the exis-

tence and importance of the accelerative forces essential

to the motion of water particles in curved paths.

The majority of hydraulic engineers, however, continue

to show great hesitancy to venture into the complexities of

this type of water motion, with the result that their nearest

approach to the study of curving flow is the treatment of

discharge from an orifice or sharp-crested weir in the light

of a body falling freely through space. That many of the

major hydraulio problems involve an acceleration of the
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water particles with an accompanying departure from static

pressure distribution (i.e. every case in which a change

of channel cross-section occurs) is ignored; instead of

seeking to comprehend the conditions at the actual transition

sections, these localities are avoided by taking measurements

up- and downstream where static conditions are still in effect.

It is true that this procedure permits ready computation of

the discharge coefficient in the case of flow at orifices,

gates, and weirs, but the graphs of the coefficients over

a range of heads often show variations that are difficult

to explain, much less prophesy, by such methods.

Hortoni (see Bibliography), for instance, has compiled

a very extensive report on experiments with weirs of various

shapes and sizes, in which he has measured only discharge

and stream profile, without attempting to show why the shape

of the weir may alter the conditions. Woodburn2 , after in-

vestigating at length the problem of the broad-orested weir,

came no nearer to the actual comprehension of flow at a

change of section. How much more these men could have under-

stood had they been as deeply engrossed in the curves of

internal pressure as in the curves of the water surface?

In the case of discharge over spillways, past experience

has been practically the only guide; assumptions are made to

enable an approximate determination of the pressure exerted

upon the upstream surface and the most favorable form of

the discharge face, and time has proven that the assumptions



are safe (see Creager5). But they accomplish little in im-

proving our knowledge of the actual conditions and thus

allowing a minimum of assumption in design.

It is not the writer's purpose at this time to present

better methods of design or to show to any great extent

where past methods are in error; instead an effort will be

made to discuss the behavior of water under conditions of

partial (in general, less than gravitational) acceleration

due to vertical curvature of the stream lines, based upon

both theoretical and experimental investigation of flow over

various types of weirs, with a view toward making this sort

of flow more comprehendible. The writer believes most sin-

cerely that the study of curving flow is indispensable to

further progress in applied hydraulics.

2. Recent developments in the field of curving flow

Professor Koch4 of the Technische Hochschule at Darm-

stadt, Germany, was probably the first to attempt a compre-

hensive study of the flow of water in a way which would

bring the complexities of the subject within the grasp of

the practising engineer. "We need, in place of mathematical

hydrodynamics and empirical hydraulics, simple, intuitive,

and practical hydrodynamics," he wrote more than a decade

ago, for "knowledge of the forces exercised by flowing water

is directly essential, and this knowledge is not provided
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by hydraulics." Hence Koch devoted his attention in particu-

lar to such cases of water motion in which "secondary forces"

arose because of the curvature of the stream paths. Besides

developing in a practical way theories covering a wide range

of conditions, he also tested his theories in a model labora-

tory at the university, with excellent results. But his ex-

periments were confined to general oases, paving the way for

other experimenters to follow in special fields.

Comparatively few have as yet followed Koch's example.

Not until 1929 did BOss5 of Karlsruhe, Germany, publish a

paper on the computation of pressure reduction in flow over

a broad-crested weir, in which he developed a method for

approximating the pressures over a flat or curving face on

the broad assumption of linear pressure distribution over

the vertical section; he further showed that the introduction

of low sills at the end of broad-crested weirs in no way

influenced the discharge. Yet immediately thereafter Ehren-

berger 6, of Vienna, showed incomplete knowledge of flow con-

ditions by making false assumptions on the basis of similar

experiments.

Spurred on by these investigations, the writer conducted

extensive experiments for the case of ventilated discharge

over a very broad weir with horizontal floor, measuring the

energy distribution at numerous points in the region of

transition to verify certain theoretical studies made pre-

viously . In addition to this series of experiments, the
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writer also investigated three other cases involving differ-

ent downstream faces of the same weir, all of these inves-

tigations being conducted in the hydraulic laboratory of the

Technisohe Hoohschule at Karlsruhe, Germany. At present

the writer is engaged in similar experiments with the sharp-

crested weir in the M.I.T. River Hydraulic Laboratory. Each

of these investigations will be discussed later in this

thesis.

3. Methods of attack

Through assuming that water is an ideal fluid (friction-

less, incompressible, and cohesionless) the hydromechanical

theory of potential flow offers the only means of completely

solving a problem of flow through a varying section. Need-

less to say, the neglect of the variation in energy distri-

bution due to frictional losses involves some amount of error

in the results; yet the error is surprisingly small in cases

of smooth, rapid transition. The greatest drawback to this

physically correct method is its extreme tediousness, for

the graphical solution depends upon trial and error and re-

peated correction for its accuracy, which makes it of little

direct use to the practical engineer.

The real value of this theory lies in the clear picture

it gives of the physical action that occurs when water de-

parts from a lineal course, an understanding that is essential
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to a working knowledge of hydraulics. Once this principle

of acceleration and the accompanying change in pressure

is understood, more practicable hydraulio principles may

be combined intelligently with experience to produce effi-

cient and comprehensive results.

The latter principles are based largely upon Bernoulli's

equation and the law of impulse and momentum with certain

modifications. Contrary to the theory of potential flow,

these deal with conditions over sections of the entire

stream, rather than with the individual particles of water,

and hence do not show as clearly the underlying oharacter-

istios of this type of fluid motion.
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II Fundamental principles and their application
to basic weir sections

1. General hydrodynamics of curving flow

Hydromechanics treats fluid motion from a purely physi-

cal point of view, by means of the mathematical theory of

potential flow8 . Through the assumption of an ideal fluid -

that is, one which is frictionless, cohesionless, and in-

compressible - the motion in space of any particle may be

expressed by the three equations of Euler. The solution

of these equations, together with the equation of contin-

uity, becomes possible once the loundary conditions are es-

tablished; these boundary conditions are simply the pro-

files of the confining surfaces, or in case the water is

exposed to the atmosphere at some point, the fact that the

pressure there is atmospheric. The derivation of these

equations follows.

Let us consider a small volume of fluid ds in length

and dA in cross-sectional area (see Figure 1). The only

forces acting upon this volume are gravity and the pressure

of the surrounding water. That component of the total

force f acting in any direction a, since the rate of

pressure change in this direction is designated by

may be expressed as follows:

From the geometry of the figure,

J d -dS~ 9+ -CO 5c
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Hence d. dSad 0

and 0: (k)

On the basis of this general equation we may now state:

The force producing acceleration upon a unit volume of fluid

in any direction is equal to the rate of decrease in the

sum (p} wh) in that direction.

Since f a m.a and m w . equation 1 becomes
g

Thus what is probably the most important principle of

hydromechanics becomes apparent: The acceleration of a

fluid particle in any direction is equal to the product

of gravitational acceleration and the rate of decrease in

the sum (P+ h) in that direction.
W

In general, the velocity of any particle is a function

of space and time; written in terms of the Cartesian co-

ordinate system,

v. a fl(x,y,z,T)

vy = f2 (x,yz,T)

Vz* f3 (xy,z,T)

If, instead of the Cartesian, we use the natural co-

ordinate system, placed so that the particle in question

lies at the center of coordinates, the general expressions

for space and time acceleration become greatly simplified.

In Figure 2 is shown a fluid particle traveling in a curved

path. At any point o in this three-dimensional path
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(the position of the particle at the given instant) natural

coordinate axes may be constructed, with o as the center

of coordinates. Since the velocity vector 7 of the par-

tiole is tangent to the ourve at o and lies along the

s-axis, and the radius of curvature ( is measured along

the n-axis, the plane (s,n) is the plane of curvature

at that point; the m-axis is normal to this plane.

The acceleration of a particle moving through space

may be expressed d V

dT
The component of this acceleration in the direction a

then becomes

UY -V- -CT -N_C dT Z a BT aT @5 aT + DT

in which represents the acceleration in the a di-

reotion due to a differential movement along the curved

path, and 1v denotes the acceleration in the a direction
c T

at point o due to a differential change in time.

Similarly the acceleration normal to this direction

along the n-axis (centripetal acceleration) will be

-n V^' - I + V
dT DT V

Since the curvature of the path at point o is en-

tirely in the plane (s,n) over an infinitesimal distance,

the only acceleration in the m. direction is that with

time: 0 _v__

3T
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These values may now be equated in turn to the expres-

sion already developed for acceleration in any direction,

resulting in Euler's equations expressed in terms of natural

coordinates:

Z Wt 30 C)

-~ - (b)
6T n s w

If we are dealing with only a two-dimensional case,

equation 3o may be dropped. Furthermore, if the flow is

a steady one (not varying with time), equations 3a and 3b

may be greatly simplified. Equation 3a becomes

Since this differential expression is equal to zero,

V c 1nz: .~ (4')

Hence the total energy is seen to be constant along a given

path or stream filament. The theory of potential flow

further assumes constant energy at all points in the moving

fluid (i.e. no frictional losses and no turbulence of any

kind). This constant term H denotes the energy per unit

weight of fluid, and hence is a linear value, commonly

called total head. Equation 4 is Bernoulli's equation in

its basic form; it is interesting to note that Bernoulli
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published this expression about 1738, some time before

Euler's equations were made known in 1755.

By subtracting the term from both sides of equation

3b, the right side will be seen to contain the differential

of H and hence is also equal to zero:

The expression then resolves to

o~)n_ ;(Z a nd()
(0 Z 

_ a

or 9o V = l + C whence V C-e )

Euler's equations are customarily written in their

most general and least useful form - in Cartesian coordinates

which is added here for the sake of completeness:

x1 D Xf '3 9 w
± T

x -Y + V X~4l

In addition to these equations must be considered that

resulting from the law of continuity, which states that,

since the fluid is assumed incompressible, the quantity of

water entering the confines of a given space element must

equal the quantity leaving those confines at the same time.
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Considering now the two-dimensional case, in which the

thickness or z dimension is unity, we see from Figure

3 that the quantity of fluid entering the element di-dy

through the face dx is vydx and that leaving through

the opposite face is (Vi - d ; similar relations

are found for the other two faces. The difference between

the fluid leaving and the fluid entering this element will

be (+ ) dX

which must equal zero. Hence we have the equation of con-

tinuity: rbV -)
+ M 0 T

We have already seen that the velocity component in any

direction, for steady flow, may be expressed as a function

of the coordinates. This function is called the 4-function,

and is such that:

_-Aj

is commonly known as the velocity potential, and is a

constant along a trajectory cutting all stream filaments

at right angles.

Similarly the stream function is such that its

value is constant along any stream filament, and may be

expressed by the following relations:

v - V = (9)
x o t a d

By combining the equations 7 and 8 the familiar equa-



t ion of Laplace results:

7 0 (10)

Potential flow may now be seen to have the following

general characteristics for the case of a two-dimensional,

non-rotational, steady motion: The velocity of any particle

may be expressed as a potential, or a mathematical function

of its coordinates; this known as the velocity potential 4),
and has a constant value over a curve that is normal to

the velocity vector or direction of motion at every point.

A second function f, called the stream function, by means

of which the velocity may also be expressed, has a constant

value along the path a particle travels. Although the

stream function iJ is constant along a single stream fila-

ment, its value is different for every other filament;

similarly, the velocity potential 4 , a constant over a

single trajectory normal to all stream filaments, will vary

from point to point along any single stream filament.

The significance of the and functions becomes

more apparent if equations 8 and 9 are rewritten in natural

coordinates, so that the x-axis lies along s and the

y-axis along n (see Figure 4). The equations then become:

vs = = 2 - va = '= = 0 (00)

This we see to be true, since the velocity vector lies along

the s-axis at any point, so that the velocity in the n
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direction must be zero in each case or equal to the deriva-

tive of the corresponding constant.

With these relationships we now have sufficient equa-

tions for the solution of problems, once the expressions are

put in the proper form for the boundary conditions in ques-

tion. The solution is often effected by the "method of

conformal transformation", through use of complex relations

involving the imaginary quantity ; in this way any number

of solutions to equation 10 may be found, from which that

sought may readily be selected. This method is of great

value in determining theoretically the discharge coefficients

of weirs and orifices, the best shapes of airplane sections,

turbine blades, projectiles, and so forth.

However, inasmuch as these solutions involve consider-

able mathematical knowledge, they are of little interest to

the practical hydraulician. The chief value to him of the

theory of potential flow lies in the comprehensive picture

it gives of the physical occurrences accompanying curvature

of the stream filaments, by means of the flow net. This

consists of a system of any desired number of I and I

lines drawn on the profile of a given flow, in such a way

that between every pair of 1 lines or stream filaments

an equal quantity of water will flow per unit of time.

The velocity potential lines are so drawn that the small

enclosed areas on the profile will become perfect squares

as they approach the infinitesimal.
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A fairly accurate net may be drawn by eye over a profile

of any discharge simply by adjusting the stream and velocity

potential lines so that they will divide the profile into

approximate squares. This is further facilitated if the

pressure distribution along the boundaries of the profile

is known through measurement: from Bernoulli's theorem

the velocities may be found at various points along the

boundaries; then, since the velocity is inversely propor-

tional to the side of each square (see equation 11), the

accuracy of the construction may be checked.

In Figure 5 is shown such a flow net constructed for

8
a profile of a model siphon8. Coloring matter introduced

into the water showed the actual stream filaments, corres-

ponding almost exactly with the theoretical lines of con-

stant .

This graphical method a y also be used, independent of

all measurements, to solve a discharge problem completely,

provided the flow approximates that of an ideal fluid -

that is, provided there is no excessive turbulence, and

no three-dimensional motion 9 If the water surface is ex-

posed to the atmosphere, its probable curve must be assumed;

if it flows between fixed surfaces, the boundaries are of

course already determined. The profile is now divided into

strips of approximately equal discharge through drawing by

eye, as has already been explained, assumed stream lines;

where the flow is linear, these stream lines will divide



Figure 5. Comparison between theoretical and
actual stream lines, from an experiment with
a model of a siphon made at Hannover, Germany
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the profile into equal sections (see Figure 6). The approx-

imate accuracy of the construction may be tested by sketch-

ing in a number of velocity potential lines, to form a net-

work of squares. It must be noted that the accuracy, as well

as the quantity of work, increases with the number of stream

lines that is used.

Selecting now any 4 trajectory, the radius of curva-

ture ( of the stream lines is measured at each intersec-

tion with the chosen 4 line. These values are plotted

against those of n, measured along the line from

outer to inner border of the profile (see Figure 6). Since

the velocity is inversely proportional to the distance be-

tween each pair of 4 lines, the curve of v against n

may also be plotted; this will of course be the curve V = *

(equation 6).

The slope of the tangent of the latter curve will equal

at every point the value , from which, together with

the plotted values of v and , the corresponding ratio

. is checked (equation 5). If this is found to be in error,

the lines must be changed until the relation is satisfied.

Then it is an easy matter to find the curve of pressure

distribution from Bernoulli's equation. This process is

repeated for various trajectories. In the case of a

free surface, the surface pressures must be found to be

zero - otherwise the assumed surface curve is in error,

and must be revised.
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The foregoing pages have given briefly the general

methods by which certain hydraulic problems may be solved

through use of Euler's equations and the theory of poten-

tial flow; obviously such a solution would be impossible

with only the usual equations of hydraulics. Needless to

say, this method is tedious and dependent upon the limits

of graphical accuracy; furthermore, it ignores whatever

losses may occur through friction. However, the assumption

of constant energy at every point in reality causes no great

error in the final results for the majority of cases of smooth

transition, so that the ideal conditions represented by the

theory of potential flow may usually be taken as basically

indicative of actual occurrences.

For cases of ideal, straight-line flow, the pressure

is a direct function of the depth, so that the pressure

head at any point is equal to the vertical distance of that

point below the free water surface, and the velocity is

then the same at any point over the vertical section.

Actually the velocity distribution is influenced by floor

friction; however, the pressure will retain its static dis-

tribution so long as the flow is linear, and the total head

of every filament must then change according to the varia-

tion in velocity head of that filament.

Thus in open channels the total energy will vary from

surface to bottom directly with the variation in velocity

head, so that the value Hm for an entire vertical section
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must necessarily be an average. But since we shall treat

in this thesis comparatively short distances without ex-

cessive turbulence, the los of energy from section to

section of a given stream filament will often be so small

that it may be neglected. Hence we may for our purposes

assume that the total energy in each filament remains nearly

constant, but that it may vary from filament to filament.

While Bernoulli's equation, with correction for energy

loss, is commonly applied to pipe flow and lineal flow in

open channels, we have seen that it is equally valid in

oases of departure from conditions of statio pressure dis-

tribution. Correct as this may be, however, it is of little

assistance in determining pressure and velocity at any point,

when both are unknown. For this we must depend upon equa-

tion 5.

The development of equations 1 and 2 is of primary

importance in that it shows clearly the mechanics of curving

flow. Water cannot follow a curved course unless forces

exist tending to make the particles deviate from linear

paths. Curvature upwards requires in general an external

force such as that provided by a change in floor level or

by a sill or weir; this external force is transmitted to

the particles within the stream by an increase above the

normal static pressure. Curvature downwards requires a re-

duction in the floor reaction to the weight of the water -

that is, the weight of the water no longer produces normal
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static pressure over a vertical section, but instead a re-

duced pressure; the portion of the weight not supported

by the floor causes the downward acceleration.

From equations 1 and 2 it will be seen that the velocity,

and hence the pressure, is a complex function of the radius

of curvature . Since this function is dependent upon a

number of factors, the resulting pressure distribution is

in general non-linear, so that only in case of moderate

curvature may the distribution curve be approximated by a

straight line; this approximation does not, however, cor-

respond to static conditions, for the pressure head varies

directly with, but is no longer equal to, the depth below

the surface.

From the foregoing discussion it is not difficult to

visualize the part gravity plays in the vertical accelera-

tion of water. So long as there is a force great enough

to resist the gravitational effect upon the water particles -

the resistance of the channel bed, for instance - there will

be no vertical acceleration; hence the particles continue

to move in a straight line. Should this resistance decrease

or increase, the particles will begin to undergo a vertical

acceleration. What is difficult to visualize is the fact

that acceleration in any direction is the result of not

only one but two forces - gravity and pressure drop. We

have already seen that the force tending to accelerate a

unit volume of water in a given direction is equal to the
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drop per unit of distance in the expression (p t wh) in

that direction. As h decreases downwards, let us con-

sider D (depth below the free surface) as increasing

in that direction, so that we may write for the vertical

force acting downwards upon a unit volume

Hence the downward force upon a unit volume is its weight

minus the rate of increase of pressure intensity in that

direction. Under static conditions the rate of increase

of pressure exactly counterbalances the weight, so that

there is no acceleration in the vertical. But in the case

of ourving flow, the pressure distribution is often such that

the particles in certain regions of the flow are being

accelerated by forces much greater than gravity alone; in

a contracting jet just emerging from a sharp-crested ori-

fice, for instance, particles below the centerline of the

orifice are being driven downwards not only by gravity, but

also by a pressure drop; the same is true for any weir dis-

charging into the atmosphere.

Since gravity has only a vertical component, it can

cause no acceleration horizontally. Yet if equation 12

is rewritten for the horizontal direction x ,

c(jX
it will be seen that a horizontal acceleration may still

result because of pressure drop in the horizontal direction.
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This horizontal acceleration results in an increase in vel-

ocity to equal the decrease in pressure intensity, for the

potential head does not change and the total energy must

remain constant. Similarly a vertical acceleration requires

an increase in vertical velocity and a decrease in pressure

and potential heads, the total head still remaining unchanged.

With these considerations in mind, we may now proceed

to discuss several hydraulio principles which will be of

assistance in computations of the simpler cases of curving

flow.

2. The use of Bernoulli's equation

A graphical representation of Bernoulli's equation is

commonly used in oases of pipe and open channel flow. For

pipe lines the total head is given on a longitudinal plot

of the system by a line lying the distance H above the

assumed geodetic base; hence this energy line is indepen-

dent of the distance of the pipe below it. Below the

energy line a distance equal to the velocity head is plotted

the pressure gradient, so that the vertical distance between

the pressure gradient and the pipe axis always equals the

average pressure head at the section in question. The el-

evation of the pipe axis above the base is of course the

average potential head.

This representation for open channel flow is much
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simpler, since the pressure gradient lies at the water sur-

face in all oases of static pressure distribution - i.e.

when the flow is linear. Hence the energy line lies .above

the water surface an amount equal to the velocity head.

Since the velocity is seldom constant over a vertical seo-
10

tion, a factor CXu must, strictly speaking, be used to
2

correct the value Vm , so that the true average velocity
I

head km becomes

V d v dD (04

The factor 0( may vary from 1.0 in the ideal case of

equal distribution to perhaps 1.51 for abnormal parabolic

distribution in which the surface velocity is some five

times the bed velocity. Under normal conditions of fairly

uniform channel lining, it should not exceed 1.1, and is

often so small as to be negligible.

In the ideal case the energy gradient is horizontal.

Actually, however, frictional losses cause the energy line

to drop at a corresponding rate. Excessive turbulence re-

sults in a pronounced decrease in the value H, but for

our problems of smooth transition over a short distance,

the slope is always very slight and may often be neglected

entirely. It must also be realized that the energy line

generally represents an average value for the entire vertical

section, for were a line to be plotted for every stream

filament in the section, the individual values of H would
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vary through a considerable range. Hence only for ideal

conditions will H. give the correct total head for more

than one or two points in the vertical section.

So long as the pressure distribution remains static,

the above conditions hold true. But once the stream fila-

ments commence to curve, the pressure gradient may no longer

be plotted as a single line. To take an average value, as

is done for the velocity head , is still advantageous for

pipe flow, but has no purpose whatsoever where the upper

water surface is exposed to the atmosphere. For purposes

of computation, however, pressure, velocity, and potential

(now designated by z ) heads may be written as average

values as follows:

W zD
These values are shown graphically in Figure 7. Since

the velocity with which the velocity head is computed is the

actual velocity at every point (that is, a vector quantity

whose direction varies over the section) and the depth is

measured most easily in the vertical, in order to express

the velocity in terms of depth and discharge, the cosine

of the average angle of inclination of the stream lines

with the horizontal must be introduced:

vr = Q =: a
n T Cos 0(

Hence the pressure "area" P at any vertical section may
w
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be expressed: D H - D I - Q15)

In regions where the curVature is not extreme, the

pressure area is still approximately a triangle, so that

the pressure intensity at the bottom of the stream (the

pressure exerted on the floor) may be computed from the

relation

The term "critical depth" is one often used in linear

flow to designate that depth at which, for a given value of

H , the maximum discharge will occur - or, conversely,

that depth at which, for a given discharge, the total energy

will be a minimum. This may be derived mathematically as

follows: The expression

Q = V =D T(H-D) (ii)

is differentiated with respect to D and the result placed

equal to zero,, H being treated as the constant term.

This gives the relation

for the maximum Q at that value of H . As the velocity

head is H - D, the critical velocity is found to be

In turn, the discharge at critical depth becomes:

and

M~ D (9
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If we designate as "streaming flow" that at which the

average velocity is lower than wave velocity (v, = g ),

and that at which the velocity is greater as "shooting

flow", then we may say that the critical velocity is that

which borders on both shooting and streaming flow. Hence

the critical depth is that at which the critical velocity

occurs.

However, this value is a mean of the velocities over

the entire section; when the velocity is unevenly distrib-

uted, both streaming and shooting flow may occur at dif-

ferent points over a single section. Hence the familiar

test for determining the type of flow by means of making

surface waves and noticing whether they travel up- or

downstream is often subject to error.

In certain cases, which will be discussed later in this

thesis, the critical depth is also the border depth between

linear and curved flow. Yet this is not true for sudden

transitions, such as the sharp-crested weir, for here the

surface begins to show ourvature long before either the

crest or a depth approaching the critical has been reached.

Often the error is made of computing the critical depth for

a given discharge, and locating this depth on the profile

of such a transition at a point where the stream lines are

already curving. But curvature denotes non-static pressure

distribution, which entails an increase above normal velocity

for that depth. Hence, though the velocity may apparently
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still be at the border between streaming and shooting flow,

this will be seen to be completely erroneous when one re-

calls that this critical depth denotes maximum discharge

only in case of static pressure distribution.

It will be remembered that equation 19 was derived on

the basis that the sum (P z) remained a constant - i.e.
-w

that the pressure head equaled the depth below the water

surface - from which the critical velocity was found to

equal wave velocity. Yet one must not forget that the

velocity of waves is a function of pressure head, since in

a body of water in which the pressure is reduced to zero

by any cause (water freely falling through space, for in-

stance) wave motion will cease. Hence, under conditions of

curving flow it is very inadvisable to compare the terms

"critical velocity" and "wave velocity" as derived for

linear flow, or even to consider either value in such cases

until our knowledge of water movement in non-linear paths

is more complete.

Professor Bass, in the paper already mentioned5, has

given an approximate method for expressing discharge in

terms of water depth and an "underpressure" factor, prov-

ing conclusively that, for a given depth, the discharge

will increase above that computed by equation 19 as the

pressure decreases below static conditions. This becomes

obvious after considering Bernoulli's equation, for a

drop in pressure demands an increase in velocity, thus
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resulting in greater discharge past a section of a given

depth. The theoretical limit of this variation is that at

which the pressure is reduced to the vapor pressure of

water, beyond which no increase in velocity may result;

this is, of course, an imaginary condition to illustrate

the case in question, for a stream with the upper surface

exposed to the atmosphere would disrupt before such a low

pressure could be reached. The application of these

points will be shown in a later section, in connection with

discharge over spill sections.

3. Law of impulse and momentum

In frequent use at the present time is a principle of

mechanics which enables the computation of the theoretical

height of water attained in the hydraulic jump. It must

be noted that, despite the common assumptions involving

"alternate stages" as given indirectly by Bernoulli's the-

orem through equation 17, transitions may, in general, be

solved satisfactorily only by use of the law of impUlse

and momentum. That this principle is applicable to curving flow

as well as linear may be seen from the following derivation

of the general equations.

Upon an isolated portion of a stream bounded by the

channel walls and floor and two vertical sedtions at right-

angles to the walls (only the two-dimensional case will be
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considered) as shown in Figure 8a, the force causing ac-

celeration is the vector sum of the floor pressure, the

pressures exerted upon the limiting vertical sections, and

the weight of the water. This results in a change of momen-

tum between the two sections according to the relation

f = m-a. Resolving force and momentum into horizontal and

vertical components, the following equations are obtained:

Horizontal

COS b D

~P d - Pv + P co3 w Q2 \A/ (20)a b

Vertical

W-/ sinddx mv b cos dD m 6a cosoCc

S-i% = ZSW '1 b C O<D - 2w0 D( a C0ODa

-= w Qtooo - wQ±ton a (21)

Two approximations have been made in this derivation:

first, the transition is assumed smooth and rapid, os that

the effect of floor friction in retarding the acceleration

may be neglected; second, the term OXu already mentioned,

to correct the error involved by using the square of the

average velocity, has been omitted, since it is a trouble-

some factor and yet will not cause more error than the
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graphical approximation of the average angle 0(.

When the flow is linear and horizontal at each of the

two sections and taking place on a level floor, the first

equation may be rewritten:

tP' + oa b Y b- A b
2 Z zg?2

since the floor no longer affects the acceleration; simi-

larly the second equation here becomes zero. In this form

the relation is used for the case of the hydraulic Jump 1.

(See Figure 8b). That this differs from the Bernoulli

equation for constant energy 2

Ra t Va = + b V
29 2g

and hence depends upon energy loss to preserve equilibrium

may be seen by changing equation 22 into the following form:

7a + a b 4 Yb
4 Zg 4 g

Should the transition be such that the flow actually

passes through the true critical depth, for purposes of

computation the first vertical section ;nay be taken at this

point. Since

equation 20 then becomes for any other section downstream:

Y = 7 N Q and z (z5)
W wD

in which H. is the height of the energy line above the

floor at the critical section. This equation will give

results practically equal to those given by equation 15.
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Equation 21 is often of use in the computation of the

floor pressure over an irregular section, since the dif-

ference between the weight of the water and the vertical

component of floor pressure is equal to the vertical com-

ponent of the change in momentum. By proceeding in short

horizontal intervals, the curve of floor pressure may thus

be closely approximated.

4. Application of above considerations

to elementary spill sections

a. The sharp-crested weir

The discharge equation for the suppressed, sharp-

crested weir is obtained by treating it as a rectangular

orifice of infinite width operating under a head such that

the water surface is at the same level as the upper edge

of the orifice. If the water is considered to approach the

weir with a certain velocity, the expression for the dis-

charge per unit of channel width will then be:

Q C - } (2)

where H is the height of the energy line above the weir

crest and k the velocity head of the approaching water.

Designating the head on the weir crest by h, which is

equal to H - k, the above expression may be rewritten
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in the formQ
Q~CK Vh (Z 0)

wherein 3I/

The coefficient C denotes the contraction of the

jet, depending not upon the velocity of approach but upon

the direction of approach. For a weir of infinite height,

the water will approach radially until near the vicinity

of the crest (see Figure 9), where each stream filament will

ourve by an amount depending upon the interaction of all

filaments upon one-another. This coefficient may be shown
12 7I

theoretically to equal the value or 0.6110.

For a weir of finite height (Figure 10) the water will not

approach radially, but in an average direction tending more

and more toward the horizontal as the weir becomes lower;

hence the contracting effect becomes less, so that the

value C will increase as the ratio varies from 0
D

to 1. The coefficient K for the weir of great height

approaches unity, also increasing as the weir becomes. lower.

Hence, since the coefficients C and K are dependent

upon the physical proportions of water depth awd weir height,

the principle of geometrical similitude shows that for a

given ratio of A the two coefficients will always be the
D

same, regardless-of the discharge. In reality, however,

the effect of viscosity causes a departure varying inversely
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with h , so that under very low heads the actual discharge

coefficient / is greater than 0 K for the value of

in question.

Because of the difficulty of expressing the variation

of these coefficients theoretically, the best weir formulae

at present are empirical, based upon the results of in-

numerable experiments. That of Rehbock (1929)1, in metric

units, is typical of these:

in which he = ho t 0.0011 m, p is the weir height, and Q

the discharge in cubic meters per second. For the develop-

ment of these formulae, a plot of h against Q does not

show to good advantage either the systematic variation of

or the errors it may cause in the computed discharge. These

difficulties may be over_come by graphing finite values of

h as ordinates against the absoissaa. For a single

height of weir this will of course give a single curve,

which may be drawn to a large scale because of the small

variation in . On this plot, however, only a small range

of the value may be shown; furthermore, the empirical
D

formula applies accurately only to values of this ratio

not greater than about 0.6

If, on the other hand, as ordinate is plotted against

h between the limits 0.0 and 1.0, it will be seen that
D
will ascend to infinity before the limit = 1.0 is reached.



In Figure 12 such a graph is shown; it is interesting to
12

note that the theoretical curve of von Mises and the

13
empirical curve of Rehbook give practically the same

results over a large range, yet both reaching infinity

at the limiting value = 1.0. That this is erroneous

will be shown in the following section.

We have just seen that both C and K will increase

with decreasing height of weir, hence tending to increase

the discharge for a given head - yet it must be realized

that the two coefficients represent entirely different oo-

ourrences. An increase in K denotes greater velocity

and hence greater discharge past a section of given depth,

but this term has nothing whatsoever to do directly with the

shape of the profile at the crest; on the other hand, C

denotes a change in shape of the nappe, but does not depend

upon the magnitude of the velocity (except of course when the

distribution is exaggerated). This holds true despite the

fact that both coefficients are functions of .
D

Let us now consider the action which causes contrac-

tion of the nappe. If the weir is very high, all particles

will approach radially, so that no two stream filaments

will have the same direction. In the vicinity of the crest

the action is two-fold: first, gravitation causes a downward

acceleration, resulting in a downward curve in the upper

surface of the water; second, the stream filaments, having

opposing components of momentum, so interact that the direc-
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tion of each is changed to conform more nearly to the av-

erage direction of all filaments. According to the theorem

of Bernoulli, the loss in potential head due to gravitational

action requires an equal increase in velocity head. Just

past the crest no external forces other than gravity act

upon the particles - hence the vertical acceleration of the

nappe as a whole is that of gravity.

Furthermore, the fact that each filament is curved by

the interaction of all filaments in the crest vicinity shows

that some internal force must exist causing this curvature.

That this internal force must be due in part to a drop of

pressure normal to each filament in the direction of curva-

ture will be seen from equation 3b. If we consider a vet-

tical section at the crest, we will see that the pressure is

atmospheric at both upper and lower limits of the section;

yet here the curvature is at its maximum value, so that

there must exist considerable pressure within the stream -

that is, independent of gravity, there is a drop in pressure

causing acceleration upwards in the upper portion of the

nappe and downwards in the lower portion. But as gravity is

the sole outer force acting upon the section, it must be

concluded that the total acceleration of the whole section

is that of a freely falling body, although the upper particles

accelerate more slowly and the lower ones more rapidly than

this average value.

As this interaction of the stream filaments continues,



the filaments become more nearly parallel and the pressure

accordingly decreases as the section moves farther from the

crest. As this action occurs over a comparatively short

distance, not far from the crest the internal pressure

will approach the atmospheric. It has been shown that grav-

itation will produce only vertical acceleration in the nappe,

yet equation 13 also shows that a reduction in pressure may

cause an increase in the horizontal velocity component.

Hence the horizontal component will increase until the in-

ternal pressure within the falling sheet is reduced prao-

tically to zero; from that point on, the vertical thickness

of the nappe will remain constant (see Figure 9), denoting

a constant horizontal component of velocity. Only after

this point has been reached may the profile of the nappe

be calculated correctly by the customary equations for

freely falling bodies.

This entire discussion applies fully as well to weirs

of small height, except that the contraction coefficient

increases (i.e. the contraction decreases) as the weir be-

comes lower. As will be shown in the following section,

for the case of maximum contraction coefficient - a weir

of zero height - pressure still occurs within the nappe

at the crest, and the conditions of acceleration are similar

to those of the foregoing case. Although contraction still

exists as the weir becomes lower, the rise of the lower

surface becomes less; for the limiting case, the lower sur-
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face curve is tangent to the horizontal at the orest.

Professor Koch was probably the first to investigate

through the use of piezometers the pressure distribution

over the upstream face of the weir in a thorough manner.

He found , in the case of a high weir, that the pressure

head at the floor was equal to the total depth of water in

the channel - that is, the depth beyond the limit of the

drop-down curve. In the vicinity of the floor the pressure

retained this static distribution, -but departed from the

static triangle as it approached the crest, at which point

it reached zero. Similar conclusions were reached by Profes-

sor Harris14 of the University of Washington, who attempted

to express the coefficient of contraction as a function of

this pressure reduction.

Since the theoretical derivation of the contraction

coeffieient is based upon the fact that the weir face is

normal to the approach channel both vertically and hori-

zontally, it is to be expected that any departure from this

condition will affect the discharge. For instance, if the

weir is tilted downstream, somewhat the same result will be

obtained as in the case of a very shallow weir; that is,

the average direction of approach will become more nearly

horizontal, thus causing less contraction of the jet and con-

sequently greater discharge. The opposite is true if the

weir is inclined upstream. It must be noted that this

variation in discharge is due directly to only the contrac-
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with the change in discharge is a secondary matter, which

is in full accord with out earlier statement that the velo-

city coefficient is a function of velocity of approach and

the contraction coefficient a function of direction of

approach.

b. Horizontal floor with abrupt, ventilated fall

A weir may be considered as variable in height between

the limits of infinity and zero. While the infinite height

is never attained in nature, the dimensions of a weir of

finite height are often so great in comparison to the head

on the crest that it may be considered in this category;

the infinitesimally low weir is of course the same as a

abrupt, vertical drop in the channel floor, it being assumed

in all cases that the tailwater is sufficiently far below

the crest that it does not influence the discharge.

Let us assume for the moment a horizontal, rectangular

channel of great length, leading from a reservoir of congtant

water level and ending in such an abrupt drop, and consider

first the ideal frictionless case. Once the gate at the

channel entrance is removed, water will begin to flow into

the channel, because of the drop in pressure in that direo-

tion; this flow will increase until it reaches its maximum

value for the difference in level between reservoir surface
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the discharge will equal, per foot of width,

according to equation 19. In the vicinity of the crest,

however, a distinct drop in the surface will occur, similar

to that at the sharp-created weir. Theoretically this

curve will extend infinitely far upstream, but this depar-

ture from the horizontal is in reality noticeable over

only a short distance. Hence the water will flow at approx-

imately the critical depth until comparatively near the

crest. Since the surface near the crest shows a noticeable

downward curve, the pressure within the stream must decrease

with the increasing velocity, in accordance with our pre-

vious discussion of the principles of curving flow. Yet

due to the length of the channel, the surface curve is

practically horizontal some distance downstream from the

reservoir, so that the actual critical depth is reached

before the surface begins to drop; thus the discharge is a

function of an actual critical depth occurring in straight-

line flow.

Let us now consider the case involving friction.

Since the energy line must slope downward by an amount

equal to the rate of energy loss, and since the floor is

horizontal, the maximum discharge for a section some dis-

tance downstream could not be computed from the difference
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between reservoir and channel-floor levels, for this no

longer represents the total head at that section. Hence

the discharge will decrease by an amount depending upon the

lost head between reservoir and crest, because the section

of least energy determines the maximum discharge for the entire

channel.

Since the critical section has moved nearer the crest,

because of frictional loss the water surface has now a grad-

ual slope between the channel entrance and the critical seo-

tion, and the drop in surface level due to curvature of flow

may be considered to begin at the latter section. Hence

the discharge will depend in all actual cases upon the length

of channel and the frictional factor, but the critical depth

will always be reached at some point before the crest. It

is obvious that the critical section for a given channel

is by no means fixed in position, moving farther from the

orest with increasing elevation of the reservoir surface.

Two transition sections occur in the case just dis-

oussed: that at entrance, when the surface drops because

of partial transformation of potential and pressure heads

into velocity head; and that at the abrupt fall. Both

transitions involve curvature of the stream filaments,

but the practical range of influence is egnparatively small.

However, should these two sections lie very near to-

gether (as in the case of a small broad-orested weir), the

two surface curves will run together, so that at no point
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between the transition sections may straight-line flow be

considered to exist; hence it would be futile to attempt

to locate the critical section. That this mistake is often

made is shown by the numerous descriptions of efforts to

develop a short, submerged weir for which the"critical depth"

will always occur at a fixed section; (see Woodburn and

accompanying discussion 2

Our previous discussion of contraction at a weir crest

does not apply to the abrupt fall, because the water is no

longer deflected upWards by any obstruction in its path.

Yet a certain contraction still occurs at the crest because

of the downward curvature of the stream filaments. This

contraction coefficient may be computed by changing equation

25 into the typical weir formula as follows:

in which /1 Z = 4.06 and JK (I+ [01 (.4j5

hence C -. 1

The coefficient C has been found by the writer to equal

the ratio between the depth at the crest and the critical

depth (the corresponding relationship for other weirs will

be mentioned later); unfortunately, however, the physical

explanation and significance of the fact are not yet clear,

and the matter is the basis of present experimental and the-

oretical research which the writer is now conducting. Al-

though the coefficient may be computed theoretically through
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a wide range of weir heights, this method is based upon

conditions totally different from those actually existing -

12
i.e. the force of gravity is neglected. Hence the actual

limiting value for of 1.06 (see curve of/i: in

Figure 12) must really represent the final point on the

curve of the coefficient.

In general, the abrupt fall or weir of zero height

compares very closely with those in our foregoing discus-

sion. Although the sheet is fully ventil&ted so that after

the crest is passed the pressure is atmospheric both above

and below, there still exists appreciable pressure within

the nappe until the filaments approach parallelism. Until

that point the fall curve may not be treated as following

the trajectory of a free body; any vertical section com-

pletely through the nappe is freely accelerated downward,

but its horizontal component of velocity increases as the

pressure within the nappe approaches the atmospheric.

A drop of pressure on the floor similar to that ott

the face of a sharp-crested weir also occurs, varying from

the static head at the critical section to zero at the crest.

Once the discharge and stream profile are known, this varia-

tion in floor pressure, as well as the pressure "areas"

through the entire transition, may be computed by either

equation 15 or 23. In the German dissertation already men-

tioned7 , the writer developed the following formula, on the

basis of equal velocity distribution at the critical section,
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to determine the pressure distribution at any section in

the entire profile:

Here y represents the elevation of a point above the floor

or lower border of the falling sheet, D the thickness of

the sheet, and H the height of the energy line above this

lower border; v1 , 2, and vm are the lower, upper, and

mean velocities respectively, as computed from the height

of the energy line, depth, discharge, and floor pressure.

That this formula is somewhat tedious to apply is

quite apparent. Its real value, however, lies in the fact

that it shows that the pressure is only slightly influenced

by unequal velocity distribution due to floor friction, for

computed results check very closely with measured values

for a case involving considerable frictional loss.

A noteworthy comparison may easily be made of the

variation of discharge with constant total head over a

crest of constant elevation, for weir heights of infinity

and zero, and an intermediate stage at which the head on

the crest equals the height of the weir crest above the

channel floor (see Figures 9, 10, 11). Let us take as

tangible values a height of energy gradient above the crest

of 3 feet and a unit width of weir crest of 1 foot. As-

suming that viscosity has no appreciable influence at this

deptr, the coefficient for a weir of infinite height will



be 0.611 (see page 31). Substituting the proper values

in equation 25, we find the following discharge:

i-. th t  = . H x .x =76.93 es.
'8 02,- / ) 3 .C

Similarly a weir of zero height at the end of a long,

horizontal floor will discharge under critical conditions

for linear flow; since the depth is two-thirds and the

velocity head one-third of 3 feet, the corresponding dis-

charge will be:

Q 2 ( .z 6.0 .

Both Rehbook and von Mises give approximately equal

coefficients for a weir of height equal to the head, or

about 0.687 (Figure 12). Hence the discharge for a head

of 2.85 feet and a weir height of 2.85 feet will satisfy

the requirements:

Q 0.o 8 .C i x .8/ 17.65 c.

It is quite apparent that the maximum discharge for a

given total energy will not be the maximum discharge for

linear flow - nor will it be that at which the head on the

weir is greatest; instead it occurs at some point between

the two limits. However, the variation of about 10% between

the extreme discharges is relatively small. Significant

is the fact that while the acting head on the crest may vary

according to the height of weir, a very low weir causes a
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a comparatively large velocity head to exist; hence, for

equal heads on weirs of greatly different heights, the

lower weir will require a much higher reservoir level (at

the elevation of the energy gradient) than that with a

deeper channel of approach. This point must not be ignored

in weir and spillway design.

c. Effect of non-ventilation on weir discharge

Both cases just discussed involve complete ventilation

of the nappe, so that atmospheric pressure will exist at the

upper and lower surfaces of the falling sheet. Let us now

assume that the ventilation is not complete, and the space

underneath the nappe is at a pressure below atmospheric.

This portion of the flow is now under the influence of another

external force - air pressure from above - so that both grav-

ity and this outer pressure produce downward acceleration.

The air pressure, furthermore, acts normal to the upper sur-

face, so that it retards acceleration in the horizontal di-

rection as well.

Two results are at once obvious: the nappe is forced

in the direction of the weir face, and the reduction of

pressure below the nappe requires an increase in velocity

in the lower portion of the stream. In this way the entire

profile is affected: if the supply does not vary, this means

that the head on the weir must decrease; if on the other
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increase. That the discharge over an unventilated, broad-

crested weir will not change, is obvious from the fact that

non-ventilation may affect the position of the critical

section, but the critical depth will still have the same

magnitude.

Were it possible to evacuate the air entirely from

under the nappe, the sheet would cling to the downstream

face of the weir as long as the pressure did not approach the

vapor pressure of water. Except for very low heads at an

abrupt fall, or under higher heads for sharp-crested weirs,

this is a very difficult condition to attain in nature, be-

cause small irregularities in flow at any point will allow

air to enter the sheet so that it tears itself away from the

weir face. This difficulty is further increased by the

fact that the sheet carries air with it as it plunges into

the tail water, thus constantly replenishing the supply under

the nappe; however, this is never sufficient to ventilate

the nappe completely, as air is also removed in the same

way.

Such reduction of pressure below the falling sheet will

obviously change not only the stream profile but also the

pressure distribution at every point at which the stream

filaments change in direction, degree of curvature, and po-

sition. Since it is impossible to maintain a constant mag-

nitude of underpressure below a nappe plunging into the open
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tailwater, it is equally impossible to foretell the exact

conditions of a partially ventilated discharge. For this

reason all measuring weirs must be completely ventilated

before measurements may be depended upon.

A more definite type of non-ventilated weir is one in

which the falling sheet is guided by a straight or curved

downstream face. If, for a given discharge and height of

weir, this downstream face is so constructed that it fits

exactly the curve of the lower surface of the nappe when

the weir is discharging at that head, the stream profile

will not be changed; that is, the falling sheet will be-

have as though it were fully ventilated, and the pressure

at all points of contact with this curved face will be at-

mospheric. For any other discharge these conditions will

not hold; similarly, any other form of curved face for the

original discharge will also cause a change in conditions.

Let us suppose, for instance, that there is a greater

head on the weir than that for which the curved face was

designed. Were the particles to follow their normal trajec-

tories, unless air were supplied under the nappe, a pressure

equal to that of the vapor pressure of water would exist

at the spill face; this is obviously impossible. Hence

the greater pressure exerted by the atmosphere upon the outer

surface of the sheet forces it back against the spill face,

at which surface negative pressure exists, depending in mag-

nitude upon the amount the stream filaments are deviated
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from their normal trajectories. Similarly, the pressure will

be raised above the atmospheric if the curved spill face is

designed for a greater discharge than that occurring.

Should the spill face be straight - that is, making

an abrupt angle with the original weir crest - different conditions

would prevail. It will be seen from equations 5 and 6 that

an infinitely small radius of curvature - i.e. such an abrupt

angle - demands an infinitely great velocity. From Ber-

noulli's theorem we see at once that this is a physical im-

possibility, inasmuch as the limit of pressure reduction

is the vapor pressure of water. Hence the stream filaments

will not curve abruptly, but will take such a form as is

consistent with the possible reduction of pressure, and the

space between-the lowermost filament and the spill face will

be filled with a ground-roller acting as a permanent cushion

for the sheet above. At all vertical sections passing through

such a roller it is exceedingly difficult to compute either

pressure or velocity distribution, for without careful re-

vision the equations already developed will not apply.

From this discussion it will be seen why all transition

sections should be made gradual, with well rounded corners,

except at points of discharge into free air. In many cases

rounding the corners will prevent the formation of a ground

roller, even though it causes considerable negative pressure

in the vicinity of the curvature; this is due to the distri-

bution of the curvature over a finite distance, rather than
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expecting it to occur at a single point. Similarly, it

will be found that an easy curve at the top of a steep

spill face will practically insure a clinging sheet; since

the curvature is gradual rather than abrupt, and takes

place over a finite distance, it is often impossible to

ventilate such a sheet even by forcing air under the water

at the spill face, for unless a roller tends to form, there

will be no fixed space into which air can force its way

and cause the sheet to jump free.
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III Experimentation

1. Description of three series

In order to illustrate in a definite way the princi-

ples discussed in the prededing pages, the author wishes

to describe three series of experiments which he has con-

ducted with basic weir forms. Of these investigations, that

involving the ventilated, sharp-crested weir of variable

height is a portion of the research in which the author is

now engaged at the M.I.T. River Hydraulic Laboratory; that

involving the simple, ventilated fall formed the basis of a

Doctor's dissertation which he presented at the Technisohe

Hoohschule of Karlsruhe in Baden, Germany; following the

completion of the latter investigation, the writer conducted

similar studies of the same model, introducing straight,

downstream faces of two different slopes and one circular

crest. In the last section of this thesis experiments by

other investigators of models of actual spillways will also

be described.

2. Laboratory apparatus and procedure

The author's research in the Karlsruhe River Hydraulic

Laboratory was conducted in a glass-walled experimental flume

50 cm wide, 70 cm deep, and 5 meters long (Photo 1). In an

additional section at the upstream end of the flume was lo-
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cated a sharp-crested measuring weir equipped with a piezo-

meter well and vernier hook gage reading to 0.01 cm. The

flume was provided with horizontal steel rails on which

rode a gage carriage, so that the gage was adjustable in all

three directions (Photo 2).

To provide sufficient depth of water on the model crest

and still not cause undue turbulence at the measuring weir,

and also to enable the introduction of piezometer inlets in

one wall of the channel, a concrete wall was built into the

glass flume, thus reducing the channel width to 25 cm. The

channel floor was also built of smooth ooncrete some 35 cm

above the floor of the experimental canal, terminating in

a section of brass angle carefully set into the concrete

and finished flush with both floor and vertical downstream

face. The latter face was ventilated by means of a li-inch

pipe leading into the atmosphere below the flume. The tem-

porary channel wall in the vicinity of the crest was formed

by an iron plate 70 cm x 140 em in size, set flush with the

concrete wall and enameled; this plate contained the piezo-

meter borings.

The profile of the flowing water was measured with point

and hook gages mounted on the movable gage carriage above

the flume. Longitudinal distances from the crest were read

from a millimeter scale fastened to one of the rails, and a

vernier scale permitted vertical readings to 0.01 cm. This

gage carriage was also used to support several Pitotubes
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used during the experiments.

Pressure readings on the channel floor and downstream

face of the weir were accomplished by means of 22 piezome-

ters, consisting of 2-mm brass tubing soldered in holes

drilled at intervals in strips of finished brass, the strips

then being set into the concrete floor flush with the sur-

face. Similar tubes, of copper, were inserted in holes

drilled in numerous vertical rows in the iron wall near the

crest, a total of 75 of these wall inlets being provided.

A special apparatus allowing the simultaneous observa-

tion of ten piezometer standpipes was utilized for the actual

reading of pressure head (Photo 4). This consisted of ten

t-inoh glass tubes mounted in front of a mirror, the tubes

connecting with the inlets-by means of rubber tubing.

Moving vertically on gears at either side of the apparatus

was a rigid carriage with a horizontal wire to be adjusted

to the meniscus of each water column; at the side of the

carriage was secured a millimeter scale with vernier, read-

ing to 0.01 cm. The entire apparatus could be adjusted

according to a spirit level on the carriage, by means of a

thumbscrew at the lower corner of the mirror frame.

The maximum possible discharge consistent with smooth

flow - 125 liters per second per meter of crest - was seleo-

ted, and the elevation of the upper surface of the water

was measured carefully at intervals extending to a point

over lj meters upstream from the crest; below the crest
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both upper and lower surfaces were measured over a distance

of 25 centimeters downstream. Following the determination

of the profile, both floor and wall piezometer readings

were made. Then by means of three different Pitotubes the

velocity distribution was found at pertinent cross-sections,

and the pressure inlet of the tube further used to check

the wall measurements.

Much the same procedure was folllowed with three smaller

discharge quantities - 81.19, 44.19, and 8.74 liters per

second per meter - the first two being chosen to give res-

pectively three-quarters and one-half as great linear di-

mensions as the original discharge; these quantities were

computed from the geometrical relation

Qa La(ia

010 Lb)
in which Q represents discharge per unit length of crest,

and L represents any linear measurement.

On the completion of these experiments, the downstream

end of the dam was given a straight slppe of 1 horizontal

to 2 vertical (Photo 7), and similar runs were made with

identical discharge quantities. The slope was then changed

to it horizontal to 1 vertical (Photo 6), and the measure-

ments repeated, and finally a fourth group of runs was

conducted with a downstream face in the form of a quarter

circle with a radius of 20 centimeters (Photo 5). Inlets

for wall piezometers had previously been arranged so as to



provide measurements in seven different vertical sections

for each model form and discharge. Two more sections of

piezometers just above and below the crest would have been

very desirable, but it was thought unwise to risk interfer-

ence with the flow caused by too many openings in the wall

at this strategic point.

Studies of the energy distribution in the case of the

sharp-crested weir now being conducted by the writer in the

M.I.T. River Hydraulic Laboratory follow much the same pro-

cedure; except for a few minor differences in arrangement and

method, both the apparatus and the routine are fundamentally

identical. To date nine different heads have been measured

for both elevation and pressure distribution, with the weir

crest 40 cm above the channel floor. It is planned to in-

vestigate the same discharges for crest heights of 20, 10,

5, 2t, and 0 cm. Piezometer inlets corresponding to those

in the floor of the former oases have been provided in the

upstream face of the weir, and the wall measurements have

been replaced by those made with a small flat plate moved

parallel to the plane of flow, in whose center is a small

opening connecting to a glass standpipe and hook-gage;

the general arrangement of this apparatus will be seen from

Photo 3.
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3. Results of the experiments

Figures 14 - 17 show in comprehensive form the prinoi-

ple measurements made on each of the four model set-ups in

the Karlsruhe laboratory, .l under a discharge of 125 liters

per second per meter of crest; in addition in Figure 13 is

plotted a discharge profile for a 40-centimeter sharp-crested

weir (developed by means of geometrical similitude from a

profile measured at M.I.T. for a slightly smaller rate of

flow) for the same discharge quantity as that of the other

models. On these plots are shown the following: the profile

of each weir in the vicinity of the crest; the profile of

the water surfaces; the distribution of pressure head on the

wetted portions of the weirs; the distribution of pressure

head over various vertical sections throughout the transition

regions; the position of the critical section (for all except

the sharp-orested weir) as computed from the assumption of

uniform velocity distribution according to equation 19;

the elevation of the energy gradient; and in the case of the

two straight slopes, the approximate magnitude of the ground-

rollers.

Let us first consider the sharp-crested weir. It was

found that the curve of the upper surface extends upstream

practically 90 cm or about lj times the total depth of water

in the flume. The gradual drop as the crest is approached

indicates a gradual conversion of pressure head into velocity
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head, since this downward ourvature represents reduct ion

below the static head. This reduction is best seen from the

distribution curves at the crest section; here there is at-

mospherio pressure at both upper and lower limits of the

section, where both curves must reach zero. The curve of

pressure head on the weir face appears to be tangent to a

line intersecting the vertical axis at the same level as

the horizontal surface of the approaching water - in reality

it is somewhat above this, by an amount approaching the

velocity head. This is explained by the fact that there

is a stagnation point at the corner between weir and floor,

so that the total head K occurs here as pressure head;

since the floor friction somewhat reduces the velocity in

the lowest regions, this would also reduce the pressure head

at the point of stagnation.

Obviously there is considerable pressure within the

stream just over the crest caused by the interaction of the

curving stream filaments; the reduction of this pressure,

with the accompanying approach of the filaments to parallelism,

causes an increase in the horizontal component of velocity

until the internal pressure is practically zero. Experiments

show that this section of zero pressure occurs approximately

at that point where the mid-point of the section is at the

level of the crest; here the pressure readings were almost

exactly zero, and furthermore the sheet shows a constant

vertical dimension from this section on, showing that the



horizontal component of velocity no longer increases.

It is noteworthy that the vertical thickness of the

of the stream at the section where the lower surface has

reached its maximum elevation, when divided by the head

h, gives approximately the coefficient of contfracti6n C.

This also applies to a weir of zero height (i.e. the simple

fall herein discussed).

According to the theory of potential flow, the stream

filaments (or * lines) fill every part of the channel pro-

file, and there will be no turbulence. Actually, however,

for weirs of finite height there is an unsettled region near

the foot of the upstream weir face, where eddies and whirls

are constantly forming. This not only causes intermittent

"furrowing" of the lower nappe surface, but undoubtedly

influences somewhat the general form of the nappe by de-

creasing the average convergence angle of the stream filaments.

It is, of course, impossible to determine the magnitude of

this change, as it is very likely small. It has often been

suggested that his turbulent section might be obviated by

inclining the upstream face of the weir; obviously this

would result in a greatly changed nappe.

Let us now turn to the weir of zero height, or the

simple fall at the end of a long, horizontal floor (see

Figure 14). It will be seen that the energy gradient has

a slight slope due to frictional loss, so that the critical

section occurs in the vicinity of the crest; the curve of
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floor pressures proves, however, that the reduction of pres-

sure below the static due to curvature of the filaments

does not occur until the critical section has been passed.

So long as this curvature is slight, the reduction in floor

pressure is gradual, and the pressure distribution in the

vertical is approximately linear. Just before the crest

the floor pressure begins to decrease more rapidly as the

curvature becomes greater, and the pressure distribution in

the vertical becomes a pronounced curve. The bending of the

filaments reaches its maximum at the crest, 1.ere the floor

pressure is reduced to zero (atmospheric). The free sheet

finally approaches a normal fall trajectory as the internal

pressure decreases to zero some distance from the crest.

It has already been mentioned that the depth at the

crest divided by the critical depth equals the coefficient

of contraction C * Furthermore, the pressure "area" at

any section, as well as the vertical thickness of the sheet

at the section of zero pressure, may be computed very closely

by the law of impulse and momentum as expressed in equations

20 and 21, for weirs of any height.

Turnigg our attention to the three non-ventilated cases

in which thewater is guided by a downstream face, we at once

note one feature in ocmmon with that of the simple, ventilated

fall: the discharge is governed by the conditions of maxi-

mum straight-line flow, and not by the shape of the downstream

face, for the computed critical depth will be found in each
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It will be seen, however, that the crest depth is different

in all four cases, showing that the depth is a function of

the pressure reduct ion caused by the rate of curvature of

the stream filaments.

It is to be understood that these conditions are true

only if the water approaches over a comparatively long hori-

zontal floor, for were the same downstream faces to be added

to a plate weit of finite height, the conditions of maximum

discharge for linear flow would not apply; hence a reduction

of pressure at the crest sedtion for such a weir would re-

sult in either increased discharge or decreased head, depend-

ing on whether the head on the crest or the discharge, res-

pectively, were to remain constant. This point is of great

importance.

From the photographs of the two sloping faces (see Photos

6 and 7) it will be seen that a ground roller is developed

in each model just below the crest, because the filaments

cannot make an abrupt angle without excessive pressure re-

duction. It is the formation of such a roller, together

with considerable negative pressure, which permits the en-

trance of air, for unless such a roller can form at some

point, there will be no place at which the sheet will tend

to detach itself from the face. Photo 8 shows the discharge

down the steeper slope just in the process of aeration; a

comparison of Photos 7 and 8 will show that the aerated
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matter in the roller. The effect of easy curvature is shairn

by the face rounded on the fairly large radius of 20 cm.

Here the curvature of the face finally causes a negative

pressure head greater than the depth of water above at

that point; yet because of the steady curving of the face

there is no tendency for the sheet to spring loose. This

tendency was very great in the case of the steeper slope

with the sudden angle at the crest.

However, it must be noted that the terms "abrupt" and

"gradual" are relative to velocity and head. Obviously a

curve of small radius will have much the same effect as a

sharp angle, and even a smooth, easy curve could not lead

water around a complete vertical circle - it would tear it-

self loose when the negative pressure reached an exaggerated

magnitude. Such extreme cases are not considered in this

discussion. Hence we may safely say that a clinging sheet

may be obtained by the avoidance of abrupt change in weir

profile, even though the steady curve of the face causes

gradual development of considerable negative pressure.

In the light of equations 2 and 5, close study of the

pressure distribution curves in all five cases will prove

highly enlightening. Since the aim of this thesis, however,

is to show the relation of external influences upon the

sheet as arwhole,. the internal pressures will not be

discussed further.
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IV Application to practical spill sections

In spillway design there are three general factors which

govern the shape of the profile: stability, discharge, and

economy. The stability of a structure depends upon its re-

sistance to sliding and to the overturning moment caused by

the pressure of the water upon all wetted portions of the

section; hence an accurate knowledge of the total pressure

is essential. Under discharge come several secondary factors:

the ability of the spillway to discharge the greatest pos-

bible quantity of water per second under a given head; the

opportunity to estimate this discharge within reasonable

limits of accuracy; and the certainty of even flow of water

to eliminate both an overturning force due to negative pres-

sure and the possibility of vibration caused by intermittent

partial ventilation of the nappe. Economy depends not only

apon a minimum of aterials, but also upon a minimum of

labor in tilding forms and placing the concrete or masonry.

Under our discussion of weirs, we have noted the fact

that the pressure head upon the upstream face has as a maxi-

mum value the total head of the flow, or the sum of pressure

and velocity head. While we are not dealing with uplift

in this thesis, it is only logical to assume that such up-

lift is then a function of the total head rather than just

the depth of water behind the weir. From the curves of

measured pressures on models, the curve of pressure reduction
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from bed to crest may be approximated. One must remember,

however, that the curve will not reach zero at the crest

of the spillway, but at that point which represents the crest

of the sharp-orested weir, if the spillway profile is pat-

terned after the ventilated nappe: furthermore, this will

be true only if the profile has been designed properly for

the existing discharge. At any rate, a short distance below

the crest the upstream pressure will be practically equal

to the distance below the energy gradient, because the rapid

reduction in pressure occurs just before the crest is reached.

It has long been the custom (see Creager , Hanna and

15
Kennedy to design the lower spill face according to the

trajectory of free fall based upon the assumed velocity at

the crest section. While it has already been pointed out

that this is not a trajectory of free fall (since the hori-

zontal component of velocity is not constant), the error

involved in this method will not be serious under normal

circumstances. However, once this curve has been ascertained,

one is no longer at liberty to modify the shape of the upper

crest, for only so long as the total curve follows the

lower surface of the ventilated sheet of a sharp-crested

weir will conditions be similar. The crest may not be

widened, nor may a rounded sill be added at the upstream

face, without changing the flow decidedly.

An upstream projection of small radius or the failure

to round the upstream edge of the normal crest will cause
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a roller to form as cushion between the sheet and the top

of the spillway. This not only results in underpressure,

but also in reduction of the discharge section; if the

roller is of some magnitude, it may cause a pronounced

break in the coefficient curve at a certain point in the

range of head variation.

If the crest is flat for a short distance, constant

(atmospheric) pressure will no longer exist at the spill

face. Furthermore, a sudden change from this flat portion

to a downward slope will produce another cushioning roller,

this time in a more serious position. The existence of a

roller here indicates pressure below the atmospheric, and

where both negative pressure and a roller occur simultaneous-

ly, the danger of air entering the sheet is very grave.

It is seldom that such a case will ventilate to any con-

siderable extent if the sheet touches the face again at a

point lower down, for the air is partially swept away again

by the rush of the water; but this process will recur con-

stantly, due to minor disturbances in the flow, and if of

sufficient magnitude may cause periodic vibration of the

entire structure.

Hence we see that any departure from the profile of a

ventilated weir sheet will at once alter conditions of dis-

charge. Obviously this profile must be that of the highest

expected discharge, and furthermore must be for a weir of

equivalent height above the channel floor. It is well to
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by tangents and circular curves may cause some error, the

principal thing to be avoided is an abrupt change of

slope; despite the occurrence of some amount of negative

pressure, the sheet is not likely to ventilate itself

unless a roller is allowed to form between the sheet

and the spill face.

In Figures 18 and 19 are shown two spill profiles

investigated in the hydraulic laboratory of Professor

16
Camichel, at Toulouse, France . In the first case only

a slight roller exists at the flat portion of the crest;

at the next curve the transition is fairly steady, and

once again only a small roller results - since the sheet

returns almost immediately to the straight face, there is

very little tendency to ventilate. In the second case,

however, both changes of slope are so abrupt and unfavorable

as to cause the formation of large rollers, the second of

which occurs at a point of abnormal negative pressure

(see Photograph of stream filaments in Figure 20); this

is a very dangerous condition.

This possibility of vibration due to intermittent par-

tial ventilation is especially serious for oases of flow

over metal gates sometimes used to provide additional head

above the crest leyel of the spillway; should these be

permanent fixtures, severe oscillation may result in con-

siderable damage to the structure. Similar conditions exist



Figure 20. Study of stream filaments on -a model of the
Puehabon spillway at the Toulouse laboratory, France,
under the direction of Professor Camichel. The model is
constructed of brass at very small scale, and the stream
paths photographed by means of a suspension of aluminum
particles in the flowing water under strong overhead i-
lumination. The photograph shows not only the converging
filaments at the crest section, but also the turbulent
region just above the spillway, and the great possibility
for the sheet to spring loose at the point of formation
of the ground roller at the beginning of the abrupt slope.
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in the case of thin reinforced concrete weirs and spill-

ways, whose nature precludes the possibility of designing

to the natural curve of the free nappe; as these must

usually discharge into the tailwater at reduced pressure,

the unventilated sheet may easily set the whole structure

in vibration; if the periods of oscillation of the water

and the structure bear the proper harmonic relationship

to each other, the magnitude of the vibration may be

sufficient to loosen the entire section.

Unless the spillway profile follows absolutely the

profile of a ventilated nappe for the same discharge and

depth of approach, the discharge coefficient cannot be

predetermined with any degree of accuracy; even in the

latter case it may be foretold for only that one predeter-

mined discharge, and for other discharges will vary accord-

ing to the dimensions.of the section in a way that cannot

be prophesied except through experience with equivalent

structures.

Should rollers form above the crest at a certain ri-

tical head, the curve of the coefficient will not show a

steady transition; instead the curve will appear to follow

different paths above and below this point; this is es-

pecially true of low weirs operating under a tide range

of head. Hence a greater number of actual measurements

on the structure during discharge will be necessary to deter-

mine the proper flow curve; obviously the avoidance of such
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secondary variation through careful design of the profile

is to be preferred.

Under our discussiOn of weir discharge, we saw that

from a constant-level reservoir approximately equal quanti-

ties would discharge over a crest of fixed elevation, re-

gardless of the depth of water behind the crest - that is,

regardless of weir height. For each weir height the cor-

responding depth of water would vary, due to the velocity

of approach, but the accompanying change in coefficients

would be sufficient to hold the discharge to a variation

of only about 10%. However, the crest of a spillway patterned

after the weir nappe has its maximum elevation some distance

above the weir crest, or at the maximum elevation of the low-

er surface of the ventilated sheet (about h/10 above the

crest for a weir of great height). Hence a horizontal floor

would conform to this higher level rather than to that

of the imaginary sharp crest of the weir as before. This

will further reduce the discharge over a horizontal floor,

assuming the energy gradient to lie at the same elevation

as for the spillway of finite height. Thus we see that

flattening the crest of the spillway will tend to decrease

the discharge by an amount increasing with the width of

the horizontal section. This has as its maximum value a

decrease in discharge of about 27% when the critical section

actually occurs on the crest.

On the other hand, giving the crest a sharper curvature
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than that of the free sheet will increase the discharge

for a given head by reducing the internal pressure at

the crest section. Needless to say, this is of dubious value

beyond a certain limit, for it increases the chance of

formation of a roller at the point of too abrupt transi-

tion, with the consequent danger of vibration.

A portion of the experimental results obtained by

Lord and Fearnside in their investigation of model

spillway discharge in the M.I.T. River Hydraulic Labora-

tory pertains to our discussion. The floor of their

approach channel was movable, so that the pressure distri-

bution and surface profile could be studied at different

discharges and different depths of approach, with the final

level of the floor at the crest elevation. In the final

curves of the discharge coefficient, the effect of depth

of approach was readily apparent, for the curves showed

consistent progression from one floor level to the next,

varying in value from 2.80 for the smallest value of h/D

up to 5.67 for all heads (critical discharge) on the

horizontal floor.

Piezometers in the approach floor and spill face gave

very satisfactory curves of pressure distribution, showing

the departure of the profile of the spillway from the

ideal curve of zero pressure distribution. For a given

head the negative pressure on the spillway face increased

with decreasing depth of approach, due to the increasing
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momentum of the water particles as h/D approached unity.

As far as the matter of economy of design is concerned,

the author will make no attempt to settle so complex a

problem abstractly, depending as it does not only upon

general discharge and stability factors, but also upon

the actual conditions at the site in question. It is his

earnest conviction, however, that a clear picture of the

physical characteristics of curving flow will enable the

engineer to adapt his design of the spillway profile to

suit both the demands of the flowing water and the require-

ments of structural stability, and thus attain economy in

the broadest sense of the word. To this end the author

has discussed the hydromechanics and hydraulics of spill

sections to the best of his present knowledge and ability.
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Photo 1. Side view of glass-walled experimental flume
in Karlsruhe laboratory looking downstream from meas-
aring weir. At extreme left is gage well for weir,
and at lower end of flume may be seen the stream
profile at a discharge of 125 1/s/a over circular orest;
standpipe apparatus for piezometer readings is stand-
ing next to model.

I
les



Photo 2. View of experimental flume from above, look-
ing over spill crest upstream toward measuring weir.
Brass strips holding floor piezometers, plate-iron wall
with wall piezometers, gage carriage with Pitotube,
and general layout are clearly visible.



Photo 3. Sharp-orested weir (M.I.T. laboratory) discharging
125 1/s/m, Movable plate piezometer and standpipe with hook
gage for pressure readings may be readily seen.

Photo 4. Ventilated fall of 125 1/s/m. Standpipes show all
measured floor pressures. Wall inlets visible through nappe.



Photo 5. Discharge of 125 1/s/m, radias of curvature of down-
stream face 20 am. Standpipes show pressures on weir face
through entire transition.

Photo 6. Discharge of 125 1/s/m, slope of weir faos 1:1*;
standpipes show pressures on weir floor and slope through
entire transition; color shows limits of roller.



Photos 7 and 8. Discharge of 125 1/s/a, slope of weir face
2:1. Standpipes shDw pressures over floor and downstream
face. Roller in above photo is colored with dye; in lower
picture air has entered, displacing water in roller.
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