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ABSTRACT

Two impedances are said to be compatible if one of them can
be realized as the input impedance to a two terminal-pair
lossless network terminated in the other impedance. A
concise set of necessary and sufficient conditions under
which two impedances can be compatible is found. Sometimes
it is necessary to augment one of the two impedances by
inserting a common factor into both its numerator and de-
nominator in order to make it compatible with the second
impedance. The conditions under which such a factor exists
and methods for finding it are determined.

The conditions derived for positive-real impedances are ex-
tended to include stable, active impedances also. A
straightforward technique for determining a reactance
function from its power series expansion about zero or in-
finity is found. A technique for the determination of a
reactance function from its value specified at a number of
complex frequencies is also investigated. The application
of these results to the broadbanding problem and cascade
synthesis is discussed.
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Chapter One

Introduction

A study of the conditions under which one impedance can be

transformed into another impedance by a lossless network is

worthwhile because of the many applications. For example, it

has long been known that maximum power transfer requires a

matching of load and generator impedance. Reflectionless

transmission on a transmission line requires the load to be

matched to the characteristic impedance of the line. Further,

a lossless coupling network is usually desirable in both of

these cases in order to insure that the signal power is

transmitted to the load rather than dissipated in the coupling

network.

In problems such as these, the generator impedance or the

line's characteristic impedance is usually a resistance and

the problem reduces to the transformation of an arbitrary

impedance to a resistance. Although this is not always

possible when the coupling network is restricted to be loss-

less, the matching can be approximated closely over a finite

bandwidth. This process is called broadbanding and has been

studied in detail by Fano , Carlin, and LaRosa.2 Essentially,

1. Fano, R.M., "Theoretical Limitations on the Broadband
Matching of Arbitrary Impedances," Jour. Franklin Inst.,
249, Jan. 1950, pp. 57-83, Feb. 1950, pp. 139-154.

2. Carlin, H.J. and LaRosa, R., "Broadband Reflectionless
Matching with Minimum Insertion Loss," Proc. Symp. on
Modern Network Synthesis, NYC, 1952, pp. 161-178.
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the broadbanding process requires that an impedance be chosen

which not only approximates a resistance over some frequency

range but also is realizable as a two terminal-pair lossless

network terminated in the given load impedance. This prob-

lem is illustrated in Fig. 1.1 where Z0 (s) is the arbitrary

load or terminating impedance and Z1 (s) is the input impedance

to the coupling network when it is terminated in Z0 (B).

Many other problems are also of this general form although

very different from the broadbanding problem. For example,

a filter network which must terminate in some impedance other

than a simple resistance (a parallel RC circuit is a common

example) has definite restrictions placed on the allowed

transfer impedance by the load. From Darlington theory, it

is known that the input impedance of such a network is re-

lated to this transfer impedance and hence the problem reduces

to one of specifying an input impedance which must be real-

ized as a lossless network terminated in a given load imped-

ance.3 Again Fig. 1.1 is relevant.

Another important problem which fits this form is that of

cascade synthesis. In this problem, the impedance Z 1 (s) is

specified and a lossless two-terminal-pair network must be

found which when terminated in another realizable impedance

3. Guillemin, E.A., "Synthesis of Passive Networks," Wiley,
NYC, 1957, p. 446.

4. Ibid, p. 374.
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ZO(s) realizes Z 1 (s), the purpose being to ultimately real-

ize Z 1 (s) as a lossless network terminated in a resistance.

In all of these problems, one impedance must be transformed

into another by means of a lossless network. Two impedances

which have the property that one of them can be transformed

into the other by means of a realizable lossless network

will be said to be compatible. The purpose of this thesis

is to find a set of necessary and sufficient conditions

under which two arbitrary impedances can be compatible. That

is, given the two impedances Z 1 (s) and Z0 (s), a test is de-

sired which not only determines whether or not the impedances

are compatible, but also gives the characteristics of the

lossless coupling network--open circuit impedance parameters,

for example--so that synthesis can proceed.

The major work in this area has been that of Fano who studied

the broadbanding problem. He derived restrictions on the

impedance Z 1 (s) imposed by the specified load Z0 (s) in the

form of integral relations involving the input reflection

factor. This work was extended to the case of lossy coupling

networks with minimum insertion loss by Carlin and LaRosa.

Their results are very useful in the broadbanding problem

but become computationally difficult when the coupling net-

work is at all complex. Moreover, the restrictions derived

by Fano are not complete in one sense. Since in the broad-

7
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banding problem the input impedance is chosen, the problem of

multiplicative factors common to both numerator and denom-

inator need never arise. But if the input impedance is pre-

scribed, the given impedances may not be compatible as given

but can be made compatible if the proper common factors are

inserted into the impedance Z 1 (s). The determination of the

conditions under which this can happen and the choice of the

common factor when it exists is an important part of the prob-

lem which has never been investigated.

The more general problem of transforming one impedance into

another has been neglected in the literature except for the

work of Ligomenides.5 He assumes a coupling network of two

or three elements and chooses these elements in order to

minimize the mean-square error between the desired and actual

input impedance at certain prescribed real frequencies. The

work does not investigate the conditions under which an

exact match is possible and further becomes very difficult

to carry through for a coupling network of more than three

elements.

Because of the many applications, a concise set of necessary

and sufficient conditions under which two impedances can be

compatible would be very helpful.

5. Ligomenides, P.A., "A New Design Method for Coupling Net-
works, With Applications to Broadband Transistor Amplifiers
and Antenna Matching," IRE Wescon Conv., 1958, Part 2.
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The realization of Z1 (s) shown in Fig. 1.1 may introduce

factors into both the numerator and denominator of Z1 (s).

That is, if Z1 (s) is specified as the ratio of the polynom-

ials Pi(s) and Q 1 (s), the realization may augment each of

these polynomials with a factor. Such a factor is here-

after referred to as a common factor. Before treating the

general case, the special case of no common factors iS first

investigated. This restriction implies that the set of open

circuit impedance parameters of the lossless coupling net-

work are unique and therefore the characteristics of the

network easily studied using conventional techniques such

as Darlington theory and cascade-synthesis theory. Although

this set will not be unique when common factors are allowed

in the impedance Z 1 (s), it is unique once a given common

factor is inserted provided that no additional common factors

are inserted. This permits the results of the special case

to be extended to give the conditions under which there

exists a common factor which will make the two impedances

compatible. The method developed also gives the common factor

when it exists.

Once a simple set of necessary and sufficient conditions have

been derived, the restriction that the two impedances be RLC

realizable can be dropped, so that stable but active impedances

can be considered.

9
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Figure 1.1

The Impedance Transformation Problem

Lossless
Z Network

ZO(S)
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Chapter Two

The Special Case of No Common Factors

Consider the problem of determining the necessary and suffic-

ient conditions under which two physically-realizable imped-

ances, Z0 (s) and Z 1 (s), are compatible without any common

factors inserted into the numerator and denominator of Z1 (s).

That is, under what conditions does there exist a physically-

realizable, lossless, two-terminal-pair network which, when

terminated in ZO(s), not only has Zl(s) as its input imped-

ance, but also realizes the correct numerator and denominator

polynomials of Z 1 (s) without additional factors common to

both. For simplicity, let the impedances have no jw-axis

poles, including the origin and infinity. This restriction

will be removed later.

There are two approaches to the solution of this problem.

The first method is based on the uniqueness property of the

Darlington realization procedure (when no common factors are

present) and the second on the method of cascade synthesis.

Since each method contributes much insight into the problem,

a parallel development is worthwhile.

Consider first the Darlington approach.1 Darlington proved

that any physically-realizable driving-point impedance can be

1. Guillemin, opa cit., p. 358.

11



-9 - - -

realized as a lossless two-terminal-pair network terminated

in a one-ohm resistor. If no common factors are inserted

into the impedance, the open-circuit impedance parameters of

the lossless coupling network are unique. This result is

used in the following manner. Z 1 (s) and Z0 (s) each have a

Darlington realization as shown in Fig. 2.1. Here, the z

and z 0 are the open-circuit impedances of the Darlington

lossless network. Moreover, if the impedances Z 1 (s) and

Z0 (s) are compatible, there must exist a lossless coupling

network, N, which when terminated in Z0 (s) yields Z 1 (s) as

its input impedance (Fig. 2.2). If Z0 (s) is replaced by its

Darlington realization as shown in Fig. 2.2, there results

two lossless networks, Ni and the cascade connection of N

and No, terminated in one-ohm resistances each of which has

an input impedance equal to Z 1 (s). Moreover, by hypothesis,

there are no common factors introduced by these realization

methods. Hence the two lossless coupling networks must have

the same open-circuit impedance parameters since these are

unique.

This reasoning permits the open-circuit impedance parameters

of the two lossless coupling networks to be written in terms

of the known and unknown impedance parameters of the individ-

ual networks. If corresponding impedance parameters are

then equated, a set of equations results which can be solved

for the open-circuit impedance parameters of the unknown loss-

12



less coupling network, N. This reduces the problem to one

of studying the realizability of this derived network. The

derivation of the open-circuit impedance parameters of this

network is most easily carried out by using the ABCD or

chain matrices of the various networks.

The chain matrix of a network is merely the matrix relating

the input and output quantities. If E and I are the input

voltage and current and E2 and I2 the output voltage and

current (defined in Fig. 2.3), then these variables are

related by the chain matrix:

E [A B E2

The usefulness of this system of equations lies in the fact

that two networks connected in cascade have an overall

chain matrix equal to the product in the same order of

the chain matrices of the individual networks. Clearly this

will be useful in the present problem.

Let M1 , M0, Mn, and Mno be the chain matrices of the networks

N1 , No, N, and N respectively, where N is the cascade-

connection of the networks N and N0 and the other networks are

defined in Figs. 2.1 and 2.2. The matrix Mno can be written

in terms of the matrices Mn and MO:

13



Mno = MnMO 2.1

Since the two lossless networks N and Nno must have the same

open-circuit impedance parameters, they must also have the

same chain matrix. Thus it follows that

M, = Mno nMO 2.2

If this matrix equation is solved for the chain matrix of

the unknown lossless coupling network N there results

Mn = M lMO~1 2.3

where MO~ 1 denotes the inverse of the matrix MO if it exists.

A physical interpretation can be attached to this inverse

matrix. Since the product of MO and M0 ~1 must yield the unit

matrix, and since the unit matrix represents the set of

equations

E = E2
Il = I2 2.4

which are merely the equations governing two wires as shown

in Fig. 2.3, it follows that the network No, when cascaded

with the network realization of the inverse matrix M0, yields

14



just these two wires. If the network NO is replaced by its

"tee" equivalent for visualization purposes, it is clear

that a suitable "tee" equivalent of the inverse network is

merely the same network turned end for end with each imped-

ance replaced by its negative. The cascade connection of

the networks and the reduction to two wires is shown in

Fig. 2.4.

With this realization of the inverse chain matrix, the un-

known coupling network N can be replaced by the cascade-

connection of the "tee" equivalent circuits of the two net-

works represented by the chain matrices M1 and MO~ .- . This

form is shown in Fig. 2.5. The use of the "tee" equivalents

is emphasized only because a useful physical picture results.

No restrictions on the generality of the solution are im-

plied. It is shown in Fig. 2.6 that this lossless coupling

network yields Z 1 (s) when terminated in ZO(s) and therefore

is indeed the correct solution.

The above reasoning has shown that if Z1 (s) and Z0 (s) are

compatible, the network N derived in the above manner is

necessarily realizable. On the other hand, if the network N

is realizable, Z 1 (s) and ZO(s) are compatible by definition

(a physically-realizable network does exist). Hence the

condition that N be realizable in order that Z0 ( s) and Z (s)

15



be compatible is both necessary and sufficient. It should

be pointed out that the realizability of this network is

not a trivial matter.

Before investigating the realizability of the network N in

detail, it is well to digress and rederive the above results

from the cascade-synthesis viewpoint. The two techniques

together yield the realizability conditions on the network

N more easily than either one separately.

16



Figure 2.1

Darlington Realization of Z0 (s) and Z 1 (s)
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The Two Equivalent Realizations of Z 1 (s)
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Figure 2.3

Realization of the Unit Chain Matrix

4- 12

Lii I
E = E2

I = 12

Figure 2.4

The Cascade Connection of M and M~O1 and Their
0 0

Reduction to the Unit Chain Matrix Network

o 0
z1-zl2

o 0
22-z12

0 0
zl2-z22

0 0
z2-z1

z z2 z 2z

0 0
1 -l12

0 0
Z2 11

18



Figure 2.5

Realization of the Network N as the Cascade

Connection of

1 1 2
z22-zl2

Two Equivalent-Tee Networks

0 0
2-z22

0 0
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Figure 2.6

Reduction of the Realization of Z 1 (s) to its

Darlington Form
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Chapter Three

The Cascade Synthesis Approach

In the realization of a driving-point impedance as a loss-

less two-terminal-pair network terminated in a resistance,

it is well known that the zeros of transmission of the loss-

less network are the zeros of the even part of the impedance

and hence the zeros of the transfer impedance.1'2  It is

desirable to realize this lossless network as the cascade

connection of a number of two-terminal-pair networks each

of which places in evidence one or more of these transmission

zeros. The technique for doing this is called cascade

synthesis.3

The problem is illustrated in Fig. 3.1. Given an impedance

gy(s) and one or more zeros of its even part, a lossless two

terminal-pair network, N, which possesses these transmission

zeros, must be extracted from Z 1 (s) in such a way as to

leave a physically realizable remainder impedance Z0 (s) which

does not possess these zeros in its even part and hence is

simpler. In other words, a network N must be removed from

Z 1 (s) so as to leave a remainder impedance Z0 (s) compatible

1. Guillemin, op. cit., p. 372.

2. The even part of Z(s) is: Ev Z(s) = [Z(s) + Z(-s)]/2.
At any frequency at which the Ev Z(s) = 0, Z(s) is an
odd function for Z(-s ) = -Z(+s ) if Ev Z(s ) = 0.

3. Hurst, S.R., "New Methods of Transformerless Driving
Point Impedance Synthesis," Sc.D. Thesis, MIT, 1955.
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with Z 1 (s).

The driving-point impedance synthesis problem always has a

solution because the remainder impedance is not specified,

but is determined by the assumed form of the network N. The

problem under consideration is very similiar in that there is

an impedance Z 1 (s) from which a lossless two-terminal-pair

network must be extracted to leave a remainder impedance

Z0 (s). The essential difference is that Z0 (s) is completely

specified. This causes the problem to be overspecified and

leads sometimes to no solution.

Before setting up the problem in the cascade-synthesis

scheme, the problem of even-part zeros of Z 1 (s) and Z (s)

must be investigated. To this end, assume Z 1 (s) is real-

izable as a lossless two-terminal-pair network, N, termin-

ated in Zo(s) as shown in Fig. 3.2. Let z i, z1 2 , and z22
be the open-circuit impedance parameters of the lossless

coupling network as before. The familiar relation between

Z1 (s) and Z0 (s) in terms of these impedances is

z z 2z2 + z Z(s)
Z (s) = 1 2 12 + Z 0 31 2+ Z 0(8)-3.

Since N is a lossless network, each of the z-parameters is

an odd function of frequency, s. Multiplying Eq. 3.1 by

21



z2 2 (-s) + Z0 (-s)

z22 (-s) + ZO

yields (after simplification):

Z1 (s) = z11(s) -
Z22()[Z22(-s) + Z0(-s)

[Z22(s) + Z (s)][z 2 2 (.-s) + ZO(-s)I

Since the even-parts of z 11 (s) and z22 (s) are zero and since

2 is an even function of frequency, the even-part of Eq.

3.3 reduces to

Ev Z 1 (s) = [Ev Z O(s)]
z (s)12 ( Z

z22 (s) + ZO(s)

z 12 (-s)

Z22 (-s) + Z0 (~s)

3.4

It is now possible to state and prove a fundamental re-

striction on the impedance Z (s): All zeros of the even-part

2f _(s) including those at infinity are also zeros of the

even-part of Z,(s) with at least the same multiplicity.

The proof of this statement follows from an examination of the

relation between the even parts of Z 1 (s) and Z0 (s)--Eq. 3.4.

Ev ZO(s) has, in general, three types of zeros: complex

zeros which appear with quadrantal symmetry (four quadrant

symmetry), even-order zeros on the finite jo axis, and zeros

22
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at infinity. Consider each type separately.

First suppose the even part of Z0 (s) is zero at a complex

frequency 8 = so in the right half s-plane (that is, the

real part of so is positive). In order for Ev Z 1 (s) to

be nonzero at s = so, this zero must be cancelled by one of

the terms on the right hand side of Eq. 3.4. This zero can-

not be cancelled by a pole of z12 (s) or z12 (-s) since all of

these poles must lie on the jo axis. Neither can it be

cancelled by the term z22 (s) + Z0 (s) for this quantity can-

not be zero at s = s0 since it is a p.r. impedance and hence

can have no right half-plane zeros. The impedance z22 (-s) +

Z0 (-s) has all of its zeros in the right-half plane and might

at first glance appear capable of cancelling the zero of the

even-part of Z0 (s). That this cannot be true is seen by

writing

ZO(-S ) = Ev Z0 (-S) + Odd Z0 (-s0 )

= Ev Z0 (+s ) - Odd ZO(+S0).

But the even part of Z0 (s0 ) is zero at s = s0 by hypothesis.

Hence

Z0 (-s0 ) = - (+S ).

This means that

23



z22 (-s0 ) + Z0 (-s 0) = - [z22 (s0 ) + ZO(S0 )] 3-5

Since z2 2 (s) + Z0 (s) is a p.r. impedance and hence cannot

be zero in the right half plane, it follows that z2 2 (-.s) +

Z0 (-s) cannot be zero at s = s0 and the zero of the even

part of Z0 (s) at this frequency cannot be cancelled. Be-

cause zeros of the even parts of impedances occur with quad-

rantal symmetry, it follows that no complex zeros of the even

part of Z0 (s) can be cancelled, but must also be zeros of the

even part of Zi(s). Moreover, if such an even-part zero is

not also an even-part zero of Z1 (s), it cannot be added by

merely augmenting numerator and denominator of Z1 (s) with a

common factor, for the above proof shows that the even part of

Z 1 (s) must actually be zero at these frequencies. If any of

the complex zeros of the even part of Z0 (s) are not present

in the even part of Z 1 (s), the two impedances cannot be com-

patible.

Next consider a zero of the even part of ZO(s) on the finite

jw axis. Let s = jo be such a zero. Since Z 1 (s) is p.r.,

this zero must be of even order. Poles of z1 2 (s) or z1 2 (-s)

cannot cancel this zero of the even part of ZO(s) because the

denominator of Eq. 3.4 also has poles at all poles of z1 2 (s)

or z12 (-s). If the denominator z22 + Z is zero at s = jw o,

then z1 2(jW 0 ) must also be zero or else Z 1 (s) would have a

24



pole at s = jo0 (Eq. 3.1). Since Z 1 (s) has no jw axis poles

by assumption, it follows that the last two terms of Eq. 3.4

must be finite or zero at this frequency and hence cannot

cancel the even-part zeros of Z0 (s). This is a reasonable

result, for since the even part equals the real part on the

jw axis, it is clear that Z0 (s) reduces to a reactance

function at s = jo . The coupling network is composed

entirely of reactances, and therefore Z 1(jo0 ) must be a reac-

tance, that is, have zero real part.

There remains the possibility of zeros at infinity. From Eq.

3.4 it is clear that a zero of the even part of Z0 (s) at in-

finity can be cancelled only by poles of the last two terms

in this equation. If z1 2 has a pole at infinity, so must

z22 and therefore the quantity z 1 2/z22 + ZO is finite. If

z12 is zero at infinity, z2 2 + ZO can have, at most, a

simple zero at infinity and again the quantity z12/z22 + ZO

is finite or zero. The impedance z12 is a reactance function

and must be either zero or infinite at infinity. Hence the

above reasoning includes all possible cases. Since the

last two terms in Eq. 3.4 cannot be infinite at infinity,

zeros of the even part of Z0 (s) cannot cancel and must be

zeros of the even part of Z 1 (s) also.

This is an important restriction if the impedance Z 1 (s) is

to be compatible with the impedance Z0 (s). Although nece-

sary, it is not sufficient.

25
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The remaining zeros of the even part of Z (s) must be con-

tributed by the lossless coupling network. To investigate

this, define5

m + n P (s)
Z (s) = = )

m2 1 + n2 1  Q1 (s)

Z(s) =m 1 0 + n1 0  P(s)

m 2 0 + n20  %0(s)

m 1 m2 1 -n 11n2 1 A 1 (s)
-Ev Z (s) = lSQ1(-)(S

Q1 (s)Q1 (-s) Q()Q-)

SZO(S) =m10m20-n10n20 A0 (S) 3.6
EvS)o(s ZO()s) =S3.

QO OQ 0 (s)Q0-s

By inspection of the relation between even-parts, Eq. 3.4,

it is clear that any zero of the even part of Z 1 (s) which

is not also an even-part zero of Z0 (s) must be contained in

z1 2 (s). The polynomial A 1 (s) must contain A0 (s) as a factor

and in addition contain the remaining (finite) even-part

zeros of Z 1 (s). These remaining zeros are realized by a

lossless coupling network and therefore must be of even

order. If not, Zl(s) can be augmented as in the Darlington

procedure to make them even. Thus the ratio of A1 to A0

must be a perfect square (except perhaps for sign). If

A,/AO is a perfect square, then the numerator of z1 2 is an

even polynomial, say m1 2 , defined by

26



-1

m 2=A 1/ A 3.7

If the ratio AY/AO is the negative of a perfect square, then

the numerator of z1 2 is an odd polynomial, say n12, defined

by

n1 2 = -A1 /AO . 3.8

These two possibilities lead to two separate cases just as

in the Darlington procedure. That is, the open-circuit

impedancr parameters of the lossless coupling network are

the ratios of even to odd polynomials in Case I and the

ratio of odd to even polynomials in Case II. In the Darling-

ton realization procedure, Case A corresponds to a poly-

nomial A which is a perfect square and Case B to a poly-

nomial A which is the negative of a perfect square. In

the present problem, Case I corresponds to Z1 (s) and Z0 (s)

being the same Darlington case (either both case A or both

case B) and case II to the two impedances being opposite

Darlington cases (one case A and one case B).

Since the two possibilities are very similiar, the deri-

vation will be carried out in detail only for case I. Case

II will be considered later.

5. The even parts of the polynomials are denoted by the
symbol m and the odd parts by the symbol n.

27



The problem can now be set up within the framework of the

cascade-synthesis technique. Define the open-circuit imped-

ance parameters of the lossless coupling network (as before)

by

z1 (s) = ml/n

Z12 (s) = 12/n

z22(s) = m2 /n.

The relation between Zi(S) and Z O(s) can be written in terms

of these impedances:

2

Z (S) z12
1 1 z2 2 + ZO(s)

3.10

This can be rearranged to read

[z - Z1][z 22 + ZO] = Z2 = [m1/n]2 3.11

Factor this equation in the usual manner into two equations:

M2

zli - Zi= m 12 0

nQ1

z22 + Z= nQ
22 0 n(40

3.12

The placement of the various factors comes about from the

28
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following reasoning. Each equation must have the polynomial

n in the denominator since the left hand side of each equa-

tion has poles at the zeros of this polynomial. Due to Z

and Z0 having poles at the zeros of Q and QO respectively,

these polynomials must appear in the denominators of the

corresponding equations. But since they do not appear on

the right hand side of Eq. 3.11, they must also appear in

the numerators of the opposite equations so that the product

of the two equations does not contain these polynomials on

the right hand side. No extra common factors are permitted.

Therefore the only other term to be taken care of is m 2.

Since z22 + Z0 is a p.r. function, none of the right half
2

plane zeros of mn1 2 can appear in the numerator of the second

equation. Thus they must be placed in the numerator of the

first equation. At these right half plane zeros, each side

of the first equation is zero. But note that the even part

of z11 is identically zero and the even part of Z 1 (s) is zero

at these frequencies by hypothesis. Hence the even part of

each side of the first equation is zero as well as each side

itself being zero. This requires that the odd part be zero

also at these frequencies. Since even and odd parts of

impedances have zeros with quadrantal symmetry, the first

equation must have each side zero at the images of these right

half-plane zeros. In other words, the first equation must

have zeros at all of the zeros of m 1 2 (not only the right

half-plane ones), and therefore the entire polynomial mn12
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must be placed in the numerator of the first equation. The

placement of the left half-plane zeros of m12 is not ar-

bitrary as has sometimes been thought.6

If now each impedance is replaced by its definition in terms

of even and odd polynomials (Eqs. 3.6 and 3.9), and the

equations separated into even and odd parts, there results,

2
m1 21-n 1 n = n20m 12

m n21m n = n 2 l

m2m20 +n10n =m 21

m2n20 +m10n = n21

A1 /AO = m2 3.13
i1 2

If these equations are solved for the open-circuit impedance

parameters of the lossless coupling network, N, there results:

z = m 11m20 - n 11n20
m2 0 n2 1 -m 2 1 n2 0

m12
m 20n21 -m 21n20

m m11i 21 -n 1n21 
3.14

m 20n21 - m2 1n20
z -1z22

6. Hurst, op. ci., p.18.
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Direct calculation shows that the network shown in Fig. 3.2

realizes these impedances. Comparison of this network with

the network derived from Darlington theory (Fig. 2.5) shows

that the same network has resulted. Thus the two techniques

agree exactly.

Calculations assuming Case II give similiar results with

different definitions for the zij shown in Figure 3.2. In

any case, the network is correct if the z are interpreted

as the z determined in the Darlington realization tech-

nique.

The solution of Eqs. 3.13 can be written more conveniently

as:

n = Odd (S)QO(-s)/AO

1 = Even Q,(s)PO(-s)/A0

m2 = Even Pl(sqO(-s)/AO

ml 2 = A/AO 3.15

These results plus the definitions (Eqs. 3.9) lead to the

expressions for the overall open-circuit impedance param-

eters of the network N as shown in Fig. 3.2. Results for

Case II are also given there. Although there are four

combinations of Darlington cases for Z 1 (s) and Z (s)--two

combinations for each impedance--and therefore four different
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networks N (as defined by the Darlington z ' s), only two

possible sets of overall impedance parameters result, as

previously seen.

Again, as in Chapter Two, it is clear that a necessary and

sufficient condition that Z0 (s) and Z 1 (s) be compatible is

that the network N be physically realizable.
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Figure 3.1

Illustrating the Cascade-Synthesis Problem

Z (s)

Figure 3.2

Realization of

.1 1 1
1 -Z1 2 Z2 2 12

the Lossless Network N

0 0
z2~ 22

0 0
z2~ 11

z = Darlington impedances of Zii
zi j

Case

= Darlington impedances of ZO

I Case II

Ev Q (s)P0 (-s)/AO

Od Q (s)QO(-s)/A 
0

A ,/AO

Od Q 1 (s)Q0(-s)/AO

Ev P (s)Q0(-S)/AO

Od Q 1(s)QO(-S)/AO

z 11

z1 2

z22

Od Q 1 (s)P0 (-s)/A0

Ev Q (s)QO(-s)/AO

-A,/AO

Ev Q (s)QO(-s)/AO

Od P (s)QO(-s)/AO

Ev Q (S)Q0(-S)/AO
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Chapter Four

Solution of the Special Case

Both approaches to the problem have resulted in the same

necessary and sufficient condition for the compatibility of

the two impedances, namely that the network N defined in

Fig. 2.5 or 3.2 be physically realizable.

The realizability conditions for reactive networks such

as this are well known but will be summarized. Let z11,

zl2, and z2 2 be the open-circuit impedance parameters 
of a

lossless network. The network is realizable if and only if

1. z11 and z22 are each physically realizable

reactance functions.

2. z12 has only simple poles, each of which is

a pole of both z and z22 '
3. at each pole of z12, the residue must be

real and satisfy the residue condition

k22-k 2 positive or zero (kij is the

residue of z j).

The realizability conditions can be greatly simplified for

the network under consideration. Inspection of Eqs. 3.14

shows that the three open-circuit impedance parameters have

the same finite poles. Since none of these poles are poles

of Z 1 (s)--for Z 1 (s) is assumed to have no jw axis poles--the

residue condition must be satisfied with the equal sign.

1. Guillemin, op. cit., p. 218.
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I

z22 ZO nQ
3.12

35

That is, at each pole, kk -k 2 = 0. Poles whose residues11l 22- 12

satisfy this condition are said to be compact. Inspection

of Eq. 3.4, the relation between the even parts of Z (s)

and Z0 (s), shows that z12 (s) can not have a higher order

pole at infinity than does z22 (s) because this would cause

the even part of Z 1 (s) to have a lower order zero at in-

finity than does the even part of Z0 (s). Again since by

assumption Z1 (s) has no pole at infinity, any pole of the

z j at infinity must also be compact.

Because of these things, the realizability conditions on

the network N reduce to: The network N is physically real-

izable if and only if the impedance z22-(s) is a physically

realizable reactance function. This follows from the

following reasoning. If z22 (s) is p.r., at each pole the

residue k is real and positive. Since k k22 -kl2 = 0,

kil must also be positive and real. This is also true

for any pole at infinity. Hence if z22 (s) is p.r., then so

is z11 and since the residue condition is satisfied at all

poles, so is the network defined by the set z 11, z1 2, z2 2 '

The realizability conditions on z22 (s) can most easily be

derived by considering the cascade-synthesis development of

Chapter Three. Consider Eq. 3.12 (again, Case I is assumed):
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A
0

Ev ZO =
QO(s)QO(-s)

Odd Q (s)QO

nQ O(s)Q0 (-s)

or Odd Q (s)Q0 (-s) = nAO.

4.1

4.2

This is a major restriction on the permissible locations

of the poles of the two impedances Z 1 (s) and Z0 (s). This

is not a trivial requirement, nor is it automatically ful-

filled. It is a very stringent and special requirement,

and places many limitations on the types of impedances

which can be compatible with a given impedance.

This requirement, Eq. 4.2, can also be seen from the equiv-

alent network (Fig. 2.5) very easily. Consider the imped-

ance z22 as defined by this network. At a right half-plane

or jw-axis zero, s0, of the even part of Z0 (s), the impedance

z 2 0. Hence if z1  - z0  is non-zero at s = so, z22 be-Z12 22 22 0 2

haves like -z 0  in the vicinity of this frequency. But z
11 11

is a p.r. function, meaning that in the vicinity of this
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6

The impedance z22 (s) is a reactance function and thus has

zero even part. Hence, the even part of Z0 (s) must equal

the even part of Ql/nO. Using the same notation as in

Eqs. 3.6, there results



[z 2 12[12]
1 0 ~
z22 -z 22

n21AO0

n 20 [M20 n21-m 21 n20

n 21
-2[0

n20

AO

Odd Q~k

If this quantity is to be non-zero when A0 = 0, it is clear

that the quantity Odd Q(s)QO(-s) must contain A0 as a

factor. This is the same requirement as in Eq. 4.2. Phys-

ically, this requires that z2 = zO at any zero of the even22 22

part of Z0 (s), a very special condition.
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4.3

4.4

frequency, z22 is behaving like a negative-real function,

that is, z2 2 has a negative real-part in the vicinity of

s = S 0. Therefore there are points in the right half-plane

for which z22 (s) has a negative real-part. It would then

be impossible for z22 to be p.r. or the network N physically

realizable. If N is to be physically realizable, it is

necessary for z22 - z 2 to be zero at the frequency s = s

in such a way that

1002
zu I #. 0.
22 22

If this quantity is written in terms of polynomials, there

results



The above condition, together with the requirement that

the even part of Z 1(s) contain all of the zeros of the even

part of ZO(s), constitute the major restrictions on compat-

ible impedances.

But these conditions, although necessary in order that z22(s)

be p.r., are not sufficient. The p.r. character of z22 can

be investigated by considering the impedance Q 1 (s)/nQO(s),

which is related to z2 2 by Eq. 3.12:

z22 0  4.5

A necessary and sufficient condition that z22 be p.r. is that

the impedance Ql/nQO be p.r. The necessity is easy to show.

If z22 is p.r., Ql/nQO is p.r. since the sum of p.r. functions

is p.r. The sufficiency is also straightforward. Consider

z22 as defined in Eq. 4.5. Since Q%/nQ0 and Z are both p.r.,

z22 has no right half-plane poles. On the jw axis, the real

part of z22 is identically zero (since the odd part of Q1 (s)

times Q0 (-s) is equal to nA0 by the previous restriction,

the real part of Qi/nQo = Re ZO). The remaining condition of

the p.r. test is that j-axis poles of z22 be simple with

real, positive residues. But Z has no jo-axis poles by

hypothesis. Hence any jo-axis poles of z22 are contributed

by Ql/nQO alone, and these assuredly have real, positive
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RenQ0
Re-- =

n Odd QO(s)Q (-s)

Q, (8)Q 1 (- s)
, s = jCo.

Making the substitution Odd Ql(s)Q(-s) = nAo gives

Re nQ -n 2AO =
Re -- Qa = j .

Eq. 4.7 is always positive since A0 , -n2 (j), and Q(jw)q(-jo)

are always positive. Hence, the only thing left to test

to determine whether or not nQ / 1 is positive-real or not

is whether any jo-axis poles are simple with real, positive
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4.6

4.7

residues since Q1/nQ is assumed p.r. Thus the sufficiency

is shown.

The coupling network, N, will be physically realizable if

and only if Ql/nQO is p.r. and the two restrictions pre-

viously derived are satisfied. But the pr character of

Qi/nQ0 is easy to determine. It is not necessary to test

Q1/nQ0 (which has j-axis poles and is therefore difficult

to handle) but is sufficient to test the simpler function,

nQ0. l

The impedance nQ/Q has no right half-plane poles (the

zeros of the polynomial Ql(s) are the poles of Z 1 (s) which

is p.r.). The real part along the jo axis is



residues. But Q1 (s) has no j-axis zeros by assumption.

The only possible j-axis poles of n%/Q 1 must therefore

lie at infinity. Therefore the only way nQ/Q 1 can fail

being p.r. is that it have either a multiple order pole

at infinity or else a simple pole at infinity with a

negative residue. Thus the remaining necessary condition

on Zi(s) and Z0 (s) in order that they be compatible is that

nQ 0/1 be realizable at infinity, that is, have at most a

simple pole with a real, positive residue.

The three conditions can be simply stated:

1. The even part of Z (s) must contain all of
the zeros of the eben part of Z0 (s), in-
cluding those at infinity, with at least
the same multiplicity. The remaining zeros
must be of even order (Z can be augmented if
this later condition is iot satisfied, but
not if the former condition is not satisfied).

2. The odd part of Q (s)Q (-s) must contain AO
as a factor (A c~ntais all of the finite
zeros of the een part of Z0 (s))

3. The quantity nQ /Q must have, at most, a
simple pole at infinity with a positive
residue. The quantity n is defined by

n = Odd Q (s)Q0(-s)/AO'

These conditions were derived assuming Case I. The results

for Case II are similiar. They are:

1. The even part of Z (s) must contain all of
the even-part zero; of Z (s), including those
at infinity, with at least the same multiplicity.
The remaining zeros must be of even order
(Z can be augmented if this later condition
is not satisfied, but not if the former con-
dition is not fulfilled).
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2. The even part of Q (s)Q0 (-s) must contain
A0 as a factor.

3. The quantity mQ /Q. must have, at most, a
simple pole at InfInity with a positive
residue. The polynomial m is defined by

m = Ev q (s)QO(-s)/AO'

It has been shown that the conditions listed above are both

necessary and sufficient for the impedance z 22(s) to be

positive-real and hence physically realizable. It has also

been shown that the realizability of z22 (s) guarantees the

realizability of the network, N, shown in Fig. 3.2. In

turn, the network N has the property that when it is term-

inated in Z0 (s), its input impedance is Z 1 (s). Hence it

follows that the three derived conditions are both necessary

and sufficient conditions that Z 1 (s) and Z0 (s) be compat-

ible without any extra common factors augmenting Z1 (s).

Given two impedances, it is a simple matter to test them to

determine whether or not they are compatible without common

factors. The tests do not involve laborious work, equation

solving, etc., but merely require one polynomial to be

divided by another to determine whether or not the latter

is a factor of the former. The third condition (nQO/Ql

realizable at infinity) merely requires that the order of

the pole at infinity be calculated and the sign of its res-

idue observed. This can be done by inspection. The tests

have the added advantage that, if the two impedances are
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compatible, the polynomials necessary for the calculation

of the open-circuit impedance parameters of the coupling

network are available at the end of the test. Hence

synthesis can proceed without a great deal of additional

calculation. These results are summarized in Table 4.1.

It is worthwhile to consider several examples.

Example 1

P 6s2 + 5s + s

0 s + 3s + 2

Z_ _ 6s4 + 6s3 + 12s2 + 7s + 3
1~ Q ~ 6s5 + 6s4 + 18s3 + 13s2 + 9s + 2

First, the even-parts are computed:

A0 = Ev PO(s)%O(-s) = 6s4 + 6

A1 = Ev P (s)Q (-s) = 6s + 6

Since A0 = A1 , the first condition is satisfied. This is a

Case I problem (A1/AO is a perfect square). Next the second

condition is examined:

Odd Ql(s)Q(-s) =3
A =s +2=n
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The third condition is that nQ O/l must be realizable at in-

finity. As s approaches infinity, nQ /Q approaches s3(s2)/6s5

which is 1/6. This is realizable and therefore the third

condition is also satisfied and the two impedances are com-

patible. If the coupling network is desired, it may be

computed from table 4.1.

m2 = Ev Q1 (s)P0 (-s)/AO =2 + 1

Ml2 = 1 /AQO 1

m = Ev P 1 (s)QO(-s) =2 + 1.

Hence
m S2 +1

s +12"11 n 3 +2s

m1 2  1

l2 n s3 + 2s

M s 2 + 1
22 7 =3 + 2s

Since Z1 (s) has no jo-axis poles, these impedances form a

compact set. In addition, all of the zeros of z12 lie at

Condition II is satisfied since the remainder is a poly-

nomial. Moreover, this polynomial is n, the denominator of

the open-circuit impedance functions of the lossless coupling

network.



Calculation of the even-parts yields,

A0 = 6s4 + 6

A1 = -s6(6s4 + 6).

Clearly A0 is contained as a factor in A1 . Moreover, since

Ai/AO = -s6 this is a Case II situation.

Condition two yields:

Ev q (s)Q0(-s) 2
M = A = 2s + 1.

Condition three yields: As s approaches infinity

m0Q00 1 approaches 2/s.
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infinity. Hence the network is realized merely by expanding

z22 into a Cauer form about infinity. The network is shown

in Fig. 4.1.

Example 2

6s2 + 5s + 3
Z0  32 + 3s + 2

6B5 + 6s + 12s3 + 7 2 + 3s
Zi = 35 + 15S + 13s3 + 15s2 + 7s + 3



panding z2 2 into a Cauer form about the origin.

is shown in Fig. 4.2.

Example 3

102s2 + 170s + 119
ZO 14S2 + 17s + 12

3 2 + 2s + 1
Z = 3 + s2 + 2s + 1

Calculation of the even-parts yields

A = 1428(s4 + 1)

A = s4 + 1.

The circuit

Condition I is satisfied and the impedances are Case I types.
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This is realizable and hence all three conditions are satis-

fied and the two impedances are compatible. Using the Case

II formulae for the open-circuit impedances yields

S3 + s

S1 z 22 = 2s 2 + 1

83
z12 2s2 + 1

Again the set is compact. All of the transmission zeros

are at the origin. Hence the network is realized by ex-



Odd Qi(s)Q0(-s)

A 0
= not a polynomial.

The two impedances are not compatible because condition two

is not satisfied. But suppose ZI(s) is augmented with the

polynomial (s + 1) 2, that is, both the numerator and de-

nominator of Z 1 (s) are multiplied by this polynomial. This

doesn't change Zi(s) but does affect the compatibility.

After augmentation, there results

3s + 8s + 8s2 + 4s + 1
1 =5 + 384 + 5s3 + 6s2 + 4s + 1

The even parts are now:

AO = 1428(s4 + 1)

A 1= (S + 1)(l - S2)2

AO is contained in A and A1 /AO is a perfect square. Con-

dition I is still satisfied and the impedances belong to

Case I. Condition II now becomes:

Odd Q1 (s)Q0(-s)

A 0
14s 3 + 31s =

1428 -n.
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Condition II is now satisfied. Condition III becomes:

nQo/Q1 approaches a constant.

Hence Condition III is satisfied and the two impedances

are therefore compatible. Calculation of the open-circuit

impedance parameters of the coupling network yields:

42s2 + 12
z11 =14s3 + 31s

1428
12 ~ 14s + 31s

136s2 + 119
z22 = 14s3 + 31s

This last example is interesting in that two apparently

noncompatible impedances were converted to compatible ones

merely by augmenting Z 1 (s) by the proper common factor (a

perfect square). The price for this is an increase in com-

plexity, for the numerator and denominator of Z (s) are in-

creased by four in order. However this is more than compen-

sated for because now a solution exists whereas before none

existed.

Thus, it is necessary to investigate this possibility and

also to remove the restriction of no jw-axis poles in the

impedances.
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Table 4.1

Summary of Testing Procedure

Z = 0 Ev Z - 0
O 4 QO Q'0()QO(-s)

P 1 ZA=
Zi Ev Z =

Case I Case II

1. A must contain A0 as

a factor.

2. A /AO must be a perfect

square (if not, augment Z1)

3. n = Odd Q (s)QO(-s)/AO
must be a polynomial.

4. nQO 1 must be realizable

at infinity.

1. A1 must contain A as

a factor.

2. -A1/AO must be a perfect

square (if not, augment Z1 )

3. m = Ev Q (s)QO(-s)/AO
must be a polynomial.

4. mQO/1 must be realizable

at infinity.

The Network N

Ev Q (s)PO(-s)/AO

Od Q (s)Q%(-s)/AO

Ev P (S)QO(-s)/AO

Od Q (S)QO(-S)/AO

z1 2

z22

z 1

z12

z2 2

Od Q (s)PO0(-s)/AO

Ev Q (s)Q (-s)/AO

11 0
Ev Q (s)QO(-s)/AO

Od P 1(s)QO(-s)/AO

Ev Q4 (S)QO (-s)/A 0
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Figure 4.1

Realization for Example 1

1

Z1 (s

Z ()

Figure 4.2

Realization for Example 2

Z0 ((S)
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The set of conditions under which two impedances can be

compatible which has been derived is a sufficient but not

necessary set. This is due to the restriction that the two

impedances be compatible without factors common to both

numerator and denominator of Z 1(s). That augmenting with

common factors can help was seen in an example at the end

of the last chapter. If such augmentation is allowed in

the realization--and this doesn't affect the impedances--

the compatibility conditions can be greatly relaxed.

The effect of augmenting factors is easily seen. Consider

first the Darlington realization technique. To be specific,

consider the impedance

s + 1
Z(s) = 2 +s+ 1

This impedance has

and therefore is a

ance parameters of

an even part whose numerator is unity,

Case A impedance. The open-circuit imped-

the lossless coupling network are given by

zli= 1/8
z 1 2 =1/8

zl2
22 = [B2 + 1]/s
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Chapter Five

The Common Factor Problem

*
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The network realization involves only two elements and is

shown in Fig. 5.1. Now consider the same impedance with

both numerator and denominator multiplied by a common fac-

tor. This factor must be a perfect square so that the num-

erator of the even part remains a perfect square. Let the

common factor be (s + 1) . The impedance is then given by

(s + 1)3
Z(s) =s4 + 3s3 + 4s2 + 3B + 1

The open-circuit impedance parameters of the lossless coupling

network are given by

3s2 + 1
z11 =3B3 + 3s

S + 4s2 + 1

22 383 + 3s

1 - s2
z12 3s3 + 38

The realization of this network is shown in Fig. 5.2.

Notice that completely different impedance parameters and

networks result. In fact, the second lossless network has

a transmission zero at a positive-real frequency and hence

does not exist as an unbalanced network without mutual coupling

whereas the first network which does not have this trans-

mission zero does exist in this form. Yet both of these

networks when terminated in a one-ohm resistor realize the



Z(s) = m1 +n112 2
5.1
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the same impedance Z(s). The effect of the common factor is

not trivial. It changes the lossless coupling network

appreciably.

Now consider the case of compatible impedances. It has been

shown that the coupling network, N, can be represented by

the cascade connection of the Darlington lossless network

associated with Z 1(s) and the negative of the transposed

Darlington network associated with ZO(s) as far as its term-

inal behaviour is concerned (see Fig. 2.5). If this net-

work is not realizable, the two impedances are not compat-

ible without common factors being added. With the previous

example in mind, the possibility suggests itself that one

or both of these lossless networks might be modified by

introducing common factors into the impedances Z 1 (s) and/or

ZO(s) in such a way as to make the network N physically

realizable. The problem is to determine when this is

possible, and how to carry out the mechanics of finding

suitable common factors.

To this end, consider a physical interpretation of the

common factor in the Darlington synthesis. If the imped-

ance (before augmenting) is given by



n1  m1

Z(s) = n2  n2

n2 R
n2

5.3

where R is the one-ohm terminating resistance. If the

one-ohm resistance is replaced by a constant resistance

lattice whose input impedance is one ohm (Fig. 5.3), R is

replaced by

5.4(m + n )2R = (a a 2
(M a + n a)

where the impedances of the lattice arms is given by

za = ma/na

zb = na/ma 5.5

or vice versa.
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the Darlington impedances are given by (assuming Case A)

z =m /2

z22 = m2/n 2

12 m m2-n n2 /n2

z = n 1 /n2 - 5.2

The impedance Z(s) can be written in terms of these as



(m + n 1 )(ma + nag 2

Z(s) = 2
(mn2 + n2)(ma + na)2

5.6

Hence, the common factor in the impedance Z(s) may be inter-

preted as the replacement of the one-ohm terminating resis-

tance by a one-ohm constant resistance lattice.1

With this in mind, consider the effect of common factors in

the impedances ZO(s) and Z1 (s) which are to be compatible.

If a common factor is introduced into ZO(s) but not Z (s),

the even part of ZO(s) will have that factor in its numerator.

Hence by Condition I of table 4.1 this factor must also be

multiplied into Z1 (s) if the impedances are to be compatible.

The effect of augmentation of both ZO(s) and Z1 (s) with

common factors is best illustrated by treating the factor as

resulting from a constant resistance lattice termination.

Introduction of the common factor into the numerator and de-

nominator of both ZO(s) and Z (s) modifies the lossless net-

works by the connection of the lattice network at the output

terminals as shown in Fig. 5.4. If now these lossless net-

works are connected so as to yield the coupling network N

(N1 connected in cascade with the transposed network No with

all impedances replaced by their negatives in N0 ) the network
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Replacing R in Eq. 5.3 by its definition in Eq. 5.4 gives

after clearing fractions



R10 _n 1 0

z 22(s) = 20 20

n20+

5.7

where z = m 2 1/n21 when no common factors have been in-

1. This was pointed out by Fano, op. cit.
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of Fig. 5.5 results. The two lattice networks now reduce

to the trivial network shown in Fig. 5.6 and thus the net-

work N degenerates to the same network it was before the

common factors were introduced. Hence if N was not phys-

ically realizable without common factors, it is still not

physically realizable after common factors are added to

both impedances.

Next consider the remaining alternative, the augmentation

of Z 1 (s) but not Z0 (s). Again realizing this common factor

by means of a lattice, the Darlington network of Z 1 (s) is

modified by the addition of the lattice but the Darlington

network of Z0 (s) is not changed. Connecting these networks

so as to realize the coupling network N gives the result

shown in Fig. 5.7. This single lattice does not disappear

in this case and can affect the realizability of N as the

following reasoning shows. The network N is realizable

if and only if the impedance z2 2 (s) is physically realiz-

able. This impedance is given by



serted and is

inm m2 + na a

n21 2man a5
x 2 5.8

21 m + na
n-+ 2m n21 a a

when the common factor (ma + na 2 has been inserted into

the numerator and denominator of Z1 (s). This expression

for z is recognized as merely a linear fractional transfor-

mation of the impedance m21/n21. Note that the only part of

the network N which affects the realizability of N is the

output impedance and this changes radically with the insertion

of common factors into Z1 (s). Hence if Z and Z are not

compatible as they stand, perhaps a Hurwitz polynomial can

be found which will transform m21 /n 21 into an impedance which

will make z22 (s) a p.r. impedance.

In order to arrive at a set of necessary and sufficient

conditions on the impedances Z0 (s) and Z1 (s) in order for

them to be compatible, this common factor problem must be re-

solved. The problem is best approached by noting that after

the common factor, P (s) has been found and inserted into the

impedance Z (s), this modified impedance together with ZO(S)

must satisfy the conditions for compatibility without addi-

tional common factors. Consider Case I impedances. Of the

three necessary and sufficient conditions, Condition I cannot



This problem appears related to the real-part sufficiency

problem. However attempts to solve it in this manner prove

fruitless because both sides of Eq. 5.9 have unknown poly-

nomials in contrast with the usual situation where only one

side has an unknown polynomial. Also the unknown polynomial

must be a perfect square.

For these reasons, another approach appears necessary. In

order to control the Hurwitz character of the polynomial

Pa = ma + na, it is desirable to reduce Conditions II and III
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be affected by the addition of common factors. That is, if

the even part of Z 1 (s) does not contain all of the zeros of

the even part of Z0 (s) with at least the same multiplicity,

the impedances are not compatible and cannot be made compat-

ible. But Conditions II and III can be modified by the

addition of common factors. When these factors have been

added to the polynomials P 1 (s) and Q(s), the compatibility

conditions become:

Condition II: Odd P (s)Q (s)Q(-s) = nAa s) 1(s%-s 0

Condition III: nQ /P2Q realizable at infinity.0 al

5.9

The problem now is to reduce these conditions on the poly-

nomials Q 1 (s) and Q0 (s) to conditions on the polynomial Pa*



to conditions on the impedance za = ma/na which is easily

tested for p.r. character. Then the polynomial P a(s) is

found by adding together the numerator and denominator of

z (s). Since this polynomial is multiplied into both thea

numerator and denominator of the impedance Z (s), the con-

stant multiplier of P a(s) is arbitrary.

Consider first Condition III (Eq. 5.9) which reads

nQO (s)

S(s)Q 1 (s)

must be realizable at infinity. This admittance Y can be

manipulated into a more interesting form by replacing n by

its definition (Eq. 5.9):

22Odd P a(s)Q1 ( s)QO(~s) 10 (s
2 =5.10

AO P (s)Q (s)A0  a ) 1(s

Multiply numerator and denominator of this expression by

QO(-s) and write it as

Od2Odd P a(s)Q (s)Q0(-s) QO s)O(-s)
Y a 5.11

PS s)Q(s)Q0(-s) A0

2
Now P a(s)Q1(s)QO(-s) can be written as the sum of its even

and odd parts. Hence Y can be written
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QO(s)QO (-s)/AO
1 + W(s) 51

Ev P 2(s) Qi(s)QO0(s
W~lsW _a

2
hereW(s) (-s)5.1

Odd P (s)Q( s)Q

Note that the function in the numerator of Y is the re-

ciprocal of the even part of ZO(s) and is completely known.

The quantity W(s) is an odd function of frequency. Condi-

tion III requires that this admittance Y(s) be realizable

at infinity, that is, have at most a simple pole with a

positive residue.

If the even part of ZO(s) has a tth order zero at infinity,

then as s approaches infinity, the even part of ZO(s)

approaches Kst where K is a constant. Since for s = jo

the even-part equals the real -part, this function must

be positive for s jw. If t/2 is an even number, (ico)t

=t and K must be positive. If t/2 is odd, (ico) = -o

and K must be a negative number. Hence the reciprocal of

the even part of Z0 (s) has a tth order pole at infinity with

a positive coefficient if t/2 is even and a negative coeffic-

ient if t/2 is odd.

If t = 0 so that the real part of Z0 (s) has a non-zero value

at infinity, Condition III is automatically satisfied

since Y(s) can not have a pole at infinity. Hence for t = 0,
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there are no restrictions on the quantity W(s) and therefore

there are also no restrictions on the common factor P (s)

due to Condition III.

If t = 2, 4, 6, ... , then W(s) must have a pole of order

t + 1 at infinity so that Y(s) will have only a simple pole

at infinity [since W(s) is an odd function of frequency, it

cannot have an even order pole at infinityj. In addition,

if W(s) has a pole of order t - 1 at infinity, its coef-

ficient must be the same sign as that of the even part of

Z0 (s) so that Y(s) will have a positive residue in its

simple pole.

Thus Condition III has reduced to a condition on the quantity

W(s) which involves the common factor P 2 (s). This cana

further be reduced by expanding W(s):

Ev P2Q (s)QO(-s)
W(s) =

Odd FP2Q (s)Q (-S)ad Pa1 0

[Ev Pa ][Ev Q (s)QO(-s)j + [Odd P J[Odd Q (s)Q0

[Ev P2 ][Odd Q (s)Q0 (-s)] + [Odd P ] [Ev Q (s)QO(-s)

5.14

Next define
z EvQ()Q

z eo(s) Q1 Q-S 5.15
eo Odd Q 1(s)Q0(s
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The polynomial P a(s) can be written as the sum of its even

and odd parts as Pa = ma + na. Hence

Ev P2( m2 + n2 m n
a a a _a + -a] 5.16

Odd P (s) 2man 2 na ma
a a

Let za(s) be defined as either ma/na or na/ia, whichever

has a pole at infinity. With these definitions, W(s) be-

comes

zz + zo + 2za
W() a o eo a5.17W(s) = 2 51

za + 2zazeO + 1

Notice that zeo(s) is completely known and that W(s) in-

volves only this known impedance and the arbitrary imped-

ance za(s). The requirements on za(s) in order that W(s)

have a t + 1 order pole at infinity can now be found.

Since zeo(s) is not a p.r. function, it can have any order

pole at infinity. Consider the three possibilities.

1. Suppose zeo(s) is zero at infinity. Then since za(s)

has a simple pole at infinity, the numerator of Eq. 5.17

has at most a simple pole at infinity. The denominator has

a second order pole at infinity. Hence W(s) is zero at in-

finity and Y(s) cannot be realizable.
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3. The only remaining possibility is that z o(s) have a

simple pole with a negative residue at infinity. In thiscase,

the numerator of W(s) has a third order pole at infinity

with a negative residue. The denominator can have either a

second order pole at infinity or else any order zero since

za(s) can be chosen so that za + 2za zeo + 1 has a multiple

order zero at infinity.

thClearly, if the even part of Z0 (s) has a t order zero at

infinity, the quantity z + 2z z + 1 must have a t - 2a a eo
or t - 4 order zero at infinity. If this quantity is ex-

panded into a power series about infinity, the result must

be of the form
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2. Suppose z ,(s) has a multiple order pole at infinity

or else a simple pole with a positive residue. If the order

of this pole is n, then the numerator of W(s) has an (n + 2)

order pole at infinity and the denominator an n + 1 order

pole at infinity. Hence W(s) has a simple pole at infinity.

Moreover the residue of this pole is positive. A first

order pole of W(s) means that the even part of Z0 (s) must

have a second order zero at infinity so that Y(s) can have

only a simple pole. However, for t = 2, t/2 is odd and the

coefficients of the pole of the reciprocal of Ev Z0 (s) and

the pole of W(s) are opposite in sign. Hence, Y(s) cannot

be realizable.



pop-

+ p 4-(t-4) + - (t-2) + *....... 5.18

and the Pk must all be zero for k = -2, 0, 2, ..., t-6.

Hence Eq. 5.18 becomes

+ 2z z -(t-4) -(t-2)a a eo + 1 =t-4 + Pt-2S + 5.19

If t/2 is even, the coefficient pt-4 must be negative or

zero. If t/2 is odd, Pt4 must be positive or zero [when

p- is not zero, Y(s) has a simple pole at infinity and the

sign of pt-4 must be such that the residue of the pole of

Y(s) is positive].

Thus the condition that Y(s) be realizable at infinity has

reduced to the requirement that the first few terms of the

power series expansion about infinity of z + 2 zazeo + 1

must be zero. This requirement can finally be reduced to

conditions on the impedance z a(s) in the following manner.

Let z a(s) and z e(s) have power series expansions about in-

finity of the form

za(s) = S0s + 0 S + ~3 + .0000

Zeo (s) = a0 s + a 1 s 1 + a 3s + - .. 5.20
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If these definitions are placed into Eq. 5.19, the following

equations result:

P-2 = P0 0 + 2a01

po = 01[20 + 2a0] + 200a + 1

p2 = 03 20 + 2a0 J + 2 + 2[a 3 0 + a ]

P4 = 0 5 [20 0 + 2a01 + 2[1010 3 + 0 0a5 + 0 1a3 + 03a J

..... .... ..... .... *O *5.21

Note that in these equations, the p's are zero and all of

the ak are known. The first equation involves 0 0 alone, the

second 0 0 and Pl, the third Po' P1, and 03, etc. The nth

equation involves the first n of the k. Hence this is not

a simultaneous set of equations but the set can be solved one

at a time for each of the 3k. Setting p-2 ' 0''''''' t-6

equal to zero gives values for P0' O1' 03' **** ' t-5'

The value of pt-4 is arbitrary except that it must be pos-

itive if t/2 is odd and negative if t/2 is even. The value

of 0 t-3 can be determined in terms of Pt-4

Hence Condition III reduces to the requirement that the

first t/2 terms of the power series expansion about infinity

of z a(s) assume certain specific values.

In Appendix I it is shown that a physically realizable

reactance function is uniquely determined by its power series
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expansion about infinity. To be more explicit, Appendix I

shows that the first n elements of the Cauer network having

series inductances and shunt capacitances are uniquely re-

lated to the first n terms of the power series expansion

of the reactance about infinity. Moreover, these relations

are not simultaneous equations, but may be solved one at a

time for the elements of the Cauer network. If only n

terms of the power series expansion are specified, only the

first n elements of the Cauer network are specified. Any

arbitrary value may be assumed for the remaining elements

in the network without changing the first n terms of the

power series expansion about infinity.

Using these results, the procedure for calculating the

impedance z (s) is very straightforward. The first t/2a

terms of the power series expansion of z a(s) about infinity

are calculated from Eqs. 5.21. Using the method of Appendix

I, the first t/2 elements of the Cauer network for z (s) area

calculated. The remaining elements of the network are arb-

itrary and thus can be selected so that Condition II is also

satisfied.

Thus, to summarize, the requirement that nQ/ aQ1 be real-

izable at infinity reduces to a realizability condition on

the impedance z (s) computed by the above scheme. If anda

only if z a(s) is p.r. can this condition be fulfilled. The
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QO(S) = 3 + s2 + 2s + 1

Ql(s) = S5 + 6s4 + 13s3 + 142 + 9s + 2
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scheme is computationally simple, as an example will show,

and leads to an element by element determination of za (s).

If any element comes out negative, the test stops and the

impedances Z0 (s) and Z1 (s) cannot be compatible. If all

elements come out positive, Condition III is fulfilled.

The remaining Condition II, that the odd part of P2Q (s)Q (-S)

contain A0 as a factor, has not yet been considered. If

A0 = 1 so that the even part of Z (s) has all of its zeros

at infinity, then this second condition is automatically

satisfied and the satisfaction of Condition III as above is

both necessary and sufficient. When A0 is not a constant,

the arbitrary elements in the network realization of z a(s)

must be chosen so as to satisfy Condition II. Before pro-

ceeding further, an example will be given in order to show

the simplicity of the procedure derived.

Example 1

1
Ev Z0 (s) QO (s)QO(-s)

Ev Z 1 (s)

where



First compute the polynomial Q (s)Q0(-s):

Q1 (s)Qo(-) = [-8 _986 - 158 -232 + 2] + [-5 - 12s 5

-8s3 + 5B].

These are Case I impedances. Condition I is satisfied by

inspection. The impedances are not compatible without

common factors because as s approaches infinity, nQ/%

approaches -5s5 which is not realizable [note that Condition

II is automatically satisfied since A0 = 1].

To determine whether or not they are compatible with a

common factor inserted into Z 1 (s), the impedance z ,(s) is

formed from the polynomial Q (s)Q0(-s) calculated above:

8 6 4 2-s _9s -15s -2s + 2
zeo = -5s -12s5 -8S3 + 5s

The even part of Z0 (s) has a sixth order zero at infinity.

Hence W(s) must have either a fifth or seventh order pole at

infinity. But zeo (s) has a simple pole at infinity with a

positive residue and therefore there exists no common factor

P (s) which can produce a multiple order pole in W(s).a

Hence the impedances are not compatible at all. That is,

there exists no lossless, realizable coupling network which

will transform Z0 (s) into Z 1 (s).
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Example 2

Define the even-parts of the two impedances as in Example 1

except that the polynomials Q(s) and Q1 (s) are given by

Q0 (s) = 83s + 664s2 + 2053s + 2646

Q (s) = S5 + 6s4 + 13s 3 + 14s2 + 9s + 2.

First calculate Q1(s)Qo(-s) and form zeo(s), the ratio of

the even and odd parts of this polynomial:

-83s8 + 85286 -2264s4  + 56849s2 + 5292
zeo(s) = 166s7 -2202s5 + 68950s3 + 24708s

By inspection, n4/Q 1 is not realizable at infinity. Thus

the impedances are not compatible without common factors.

To determine whether or not a common factor exists, consider

z e(s). This has the required simple pole at infinity with

a negative residue. Proceed by expanding z o(s) about in-

finity:

Ze () s 3 14454+
Z o(s 83S 3

Since t = 6 [the even part of Z0 (s) has a sixth order zero

at infinity], it is necessary to set p-2 and p0 equal to zero.

Since t/2 is odd, p2 must be chosen positive or zero. Eqs.

5.21 become:
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0 -1/2; a1 = -3/2; a3 = 14454/83.

O = 0 0 - 1; 00 1
- 200al - 1 2

1 200 + 2a0

The third equation becomes

p2 = 03 + 28659/83

or 03 = P2 - 28659/83.

Since p2 must be positive or zero, 03 can be chosen between

the limits of -28659/83 and infinity.

Next determine the elements of the impedance za(s). From the

relations given in Appendix I, the first three elements are

Li = 1

C2 = 1/2

L3 /3'

In order for L to be positive or zero, 03 must be chosen

between zero and -28659/83. Clearly it is most advantageous

to choose it equal to zero so that L3 is infinite. If this

is done, the impedance z a(s) reduces to two elements and is

given by

za () = [2 + 2]/s
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Hence the polynomial P a(s) is given by

P a(s) = s2 + 0 + 2,

and the augmenting polynomial P (s) is given bya

P (s) = s4 + 2s3 + 58 + 4s + 4.a

Since z a(s) is realizable, it follows that if Z1 (s) is

augmented by multiplying both numerator and denominator by

the polynomial P 2(s), then Z (a) and ZO(s) are compatiblea10

with no further common factors inserted in Z1 (s). That is,

Z0 (s) and the augmented Z1 (s) satisfy the conditions of

Table 4.1. Hence the equations of Table 4.1 may be used to

calculate the open-circuit impedance parameters of the loss-

less coupling network. It is unnecessary to test these

impedances for realizability, for the p.r. character of the

impedance z a(s) guarantees that these are realizable and there-

fore that the network N is realizable. Notice that Con-

dition II of Eq. 5.9 is automatically satisfied in this

example since A 0 = 1. Thus for this special case, the com-

patibility tests become very simple.

Additional polynomials P 2(s) can be found by merely addinga

additional elements onto the given impedance since these

additional terms in the Cauer form do not affect the first
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two terms of the series expansion about infinity. Any

value for the element L can be assumed within the legi-3
timate range. Notice in this procedure that it is never

necessary to choose more than one parameter (3 in the

present example), and this parameter is always simply

chosen by forcing the last element of the network to be zero

or infinite.

Notice also that it is not necessary to calculate all of the

before solving for the network elements. As each # is

determined, the corresponding element can be determined.

For example, first calculate and determine LS. Next cal-

culate pl and C2, etc. If at any step an element comes out

negative, the process stops. No solution exists. If the

process proceeds to a satisfactory conclusion, the work has

not been wasted for it is necessary to perform this work to

calculate the polynomial P (s) which is needed in order toa

proceed with the synthesis. Hence the technique has the

important advantage that all of the work done in testing the

impedances for compatibility is useful in the synthesis of

the lossless coupling network.

All of this work assumed that Z0 (s) and Z (s) were Case I

impedances. If instead they are Case II impedances, the only

change in the procedure is that instead of working with z o(s),

the above procedure uses z o(s), that is, the ratio of the
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odd part to the even part of Q1 (s)Q0(-s). Hence if t is

greater than zero, z o(s) must have a simple pole at in-

finity with a negative residue etc. The ak are found by

expanding zoe(s) about infinity rather than zeo (s) as for

Case I impedances. The difference is thus very small.

Notice, however, that the same polynomials cannot be used

with both Case I and Case II impedances since if z e(s)

has a pole at infinity, z o(s) must have a zero at infinity

and vice versa.

An additional nicety of these results is that Conditions II

and III separate, that is, may be applied one at a time.

This simplifies calculation of the common factor Pa (s).
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Figure 5.1

Realization of Z(s) =
s + 1

s2 + S +1

2.

1

Figure 5.2

Alternate Realization of Z(s)

3/4

s + 1

= 2 + +1

Figure 5.3

The Constant Resistance Lattice

1 ohm

za
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Figure 5.4

Effect of Common Factors on Darlington Realizations

P2Q
a 0 NO0 N a 1 ohm

[ma + na 2

P2P

2= 1 ohm

ma + n

a + na 2 = 1 ohm
[m a + nai

Figure 5.5

The Lossless Coupling Network N
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Figure 5.6

Reduction of the Cascaded Lattices

z 1 -z1 2  Z2 2 -z 1 2  22+Z 12 ~ 11 +12

zl12 -zl2

p

Figure 5.7

The Lossless Coupling Network N when Z 1 (s) Has A

Common Factor But Z0 (s) Does Not
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Chapter Six

Completion of the Common Factor Problem

Of the three necessary and sufficient conditions on two

compatible impedances, the first condition which restricts

the even-part zeros of Z (s) cannot be fulfilled by aug-

menting with common factors if it is not fulfilled by the

original impedances. The third condition--that the ad-

mittance nQO/1 be realizable at infinity--determines the

first t/2 elements of the Cauer network realization of the

impedance z a(s) where t is the order of the zero of the

even part of Z0 (s) at infinity. The remaining elements of

z (s) must be chosen to fulfill Condition II: the odd parta

of the polynomial PQ (s)QO(-s) contains A0 as a factor

[Case I impedances are still being considered]. In order

to reduce this condition to restrictions on the impedance

za (s), Condition II is manipulated as follows.

nAO =Odd P (s)Q (s)QO(-s) 6.1

nA0 = [Ev P2 ][Odd q (s)Q0(-s)J +

[Odd P ][Ev q (s)Q(-s)] 6.2

Making use of the definitions for z a(s) and z e(s)--Eqs.

5.15 and 5.16--this condition reduces to

76



z + 2z z + 1 = 2nA0 za 6.3a eo [Odd Q (s)Q0(-s)][Odd P2 (s)]

Consider first zeros of AO which lie at the origin. Since

z e(s) is formed by taking the ratio of the even to odd

parts of the product Q (s)Q0 (-s), it is clear that the even

part of q1(s)Q0(-s) is not zero for s = 0 and therefore that

z o(s) has a pole at the origin with the same order as the

zero of the polynomial Odd q (B)Q0(-s). Examination of Eq.

6.3 shows that the only way it can be satisfied when A0

has zeros at s = 0 is if z a(s) has a pole at s = 0 and

z o(s) has a simple pole with a negative residue at s = 0.

In this case, the left-hand side of the equation can have

a multiple order zero at s = 0. In general, if A0 has a kth

order zero at the origin, z + 2 za zeo + 1 must have a k - 2

order zero at s = 0.

Define the power series expansions about the origin for za'

zo, and z + 2 za zeo + 1 by

za(s) = 00s + s 33 +3 + 055 + ....

zeo (s) = a0s + a 1 s + a3s3 + a5s5 + .....

z2 + 2zz + p s-2+ 2 + 4 + ***o 6.a a eo -21 =+P 2s+26.4

The following equations result from these definitions and the

requirement that Eq. 6.3 have a k-2 order zero at the origin:
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p-2 = 00 0 + 2a0]

90= [ 20 0 + 2aO] + 2 0 a1 + 1

p2  = 03[20 + 2aO] + + 2[0 a + 0 a 1]

.. . .. .O.*O*.OOO*** O 6.5

Note that these equations are exactly the same as the set

5.21 derived for coefficients of the power series of za (s)

about infinity. Their solution is just as simple. If A0

has a kth order zero at the origin, p-2' P00 '''' 9k- 4 must

all be zero. This gives k/2 equations which can be solved

one at a time for O O l' '''''' Ok-3, the first k/2 terms

in the power series expansion about the origin of z a(s).

Part of the network z a(s) has already been specified by

Condition III (assuming that the even part of Z has some

even-part zeros at infinity). Let the open-circuit impedance

parameters of this part of the network be z 11, z1 2 , and z22 '

Let the remainder impedance be z (s) as shown in Fig. 6.1.

The relation between za' x, z11 , z1 2, and z22 is given by

11z -[z 22 + z,] = z22
[z Z 1 z + 2 6.6

Since the open-circuit impedance parameters z1 1 , z1 2 , and

z22 are known, the first k/2 terms in the power series ex-

pansion of z (s) about the origin can easily be found.
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Appendix II shows that by a simple frequency transformation,

the problem of determining an impedance from its power series

expansion about the origin is easily reduced to the deter-

mination of a reactance from its power series expansion

about infinity. Hence, knowing the first k/2 terms in the

power series expansion about the origin of z (s) means that

the first k/2 elements of the Cauer network for z (s) may

easily be found. No simultaneous equations need be solved.

The elements are calculated one at a time, as before. Again

these elements must be positive if the impedances are to be

compatible because the Cauer network is cannonic and if z (s)

exists at all, it must exist in this form.

In the satisfaction of Condition III, the last element deter-

mined may be arbitrary, that is, may be chosen within some

prescribed limits. In this case, this element is neglected

while calculating the impedance z (s) but after this imped-

ance is determined, the arbitrary elements which can be added

to z (s) are selected so as to make the last term of the

power series expansion about infinity of z a(s) correct.

For example, if the last element determined by Condition III

is an inductor which must be within certain limits, the re-

quirement is that z (s) have a pole at infinity with residue

within these limits. This is accomplished by choosing the

arbitrary elements at the output of z (s) properly. If no

permissible choice of this remainder will give the proper
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size pole of z, (s) at infinity, then again no solution

exists and the original impedances cannot be compatible.

Thus, to summarize, if the even part of Z0 (s) has a tth

order zero at infinity and a k th order zero at the origin,

the first (k + t)/2 elements of the network realization of

za (s) are determined. The form of the resulting network is

shown in Fig. 6.2. Here again, any arbitrary reactance

which does not change the power series expansion of z a(s)

about either zero or infinity may be added to the output of

this network, leaving part of z a(s) arbitrary so that the re-

mainder of Condition II may be satisfied. An example is in

order here.

Example 1

s4
Ev ZO QO(s)>0(-s)

S4
Ev Z= Q(s)Q (-s)

Q (S) = S4 + 2s3 + 3s2 + 2s + 1

QO(S) = s4 + 4.OOs3 + 7.88s2 + 5.49s + 1.83

First the impedances are checked to determine whether or not

they are compatible without common factors. Condition I is

seen by inspection to be satisfied since each impedance has
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a fourth order zero at zero and infinity. Next the product

Q1 (s)Q0 (-s) is formed and written as z eo(s):

88 + 2.88s6 + 7.51s 4+ 2.39s 2 + 1.83
z o(s) -2s + 0.285 -1.023 -1.82s

By inspection of the denominator of ze(s), s = AO is not

contained as a factor and therefore the impedances are not

compatible without common factors. Since the even part of

ZO(s) has zeros at both the origin and infinity, zeo(s)

must have simple poles at zero and infinity with negative

residues. This condition is fulfilled and therefore a common

factor may exist.

First Condition III is fulfilled by selecting the first t/2

elements of the Cauer network for z a(s). In this case, t =

4, so the first two elements will be determined. Expanding

zeo(s) about infinity gives:

zeo(s) = - j - 1.51 S1 + ........

Using Eqs. 5.21, these equations result:

P =-2 = 0 - 1

po 01 + 2[-1.51] + 1

Hence
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00=

O = po + 2.02

Since t/2 = 2 is even, po must be negative or zero. Using

the formulae of Appendix I, the first two elements of the

network realization of z a(s) are found to be

L = 1 henry

1/ 2 = 2.02 + po.

Since po must be negative or zero, C2 must be chosen between

the limits of 1/2.02 and infinity. The choice for C2 is de-

layed until the remainder of the network is determined so

that it may be chosen to minimize the number of elements and

hence minimize the size of P (s). The portion of za (s) so

determined is shown in Fig. 6.3.

Next Condition II must be satisfied. Since all of the zeros

of A0 lie at the origin, the method described above will give

the complete solution for the impedance z a(s) and hence the

entire polynomial Pa (s). The polynomial A0 has a fourth

order zero at s = 0, requiring that p-2 and p0 be set equal

to zero in Eq. 6.5. The power series expansion about the

origin of z e(s) has only a first order pole at required and

is given by
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z o(s) = -s~ - 0.750s + .....

Therefore Eqs. 6.5 become:

0 = 0 + 2a0 0 - 2

00= 2

0 = 01[20 0 + 2a0 ] + 200a + 1

0 = 201 - 2.000

0= 1.000

Thus the power series expansion of z a(s) about the origin is

given by

za(s) = 2s~A + 1.000s +

Only the first element of za has been specified, the series

one-henry inductance. Ignore the capacitance C2 which is

specified with certain limits, calculate the elements which

determine the behaviour of za(s) at the origin and then

choose arbitrary elements to satisfy the range of C2 re-

quired. From Fig. 6.3, the impedance z (s) is given by (in

series form):

z (s) = za (s) - s = 2sl + 0
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The network realization of z (s) is obviously a 1/2 farad

capacitor. Hence z a(s) becomes the series connection of a

one-henry inductance and a one-half farad capacitor. Next

z, (s) is checked so that the input capacity lies within the

limits required by Condition III. Since it does, the problem

is complete. The result is

z a(s) = s + 2/s

P a(s) = s2 + e + 2

P2 (s) 4 + 2s3 + 5s 2 + 4s + 4

If Z 1 (s) is augmented by multiplying numerator and denominator

by P (s), the impedances must be compatible without further

common factors. To check this, the following calculations are

performed:

P (s)Q 1 (s) = s + 4s + 12s6 + 22s5 + 32s4 +

32s3 + 25s + 12s + 4.

Odd P (s)Q (s)QO(-s) = [18.8s3 + 28.76s][s ].

By inspection, this odd part contains A0 as a factor. More-

over, the quantity n is given by

n = 18.8s3 + 28.76s
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Condition III becomes (as s approaches infinity):

nQ O/ aQ1approaches 18.8s7/s .

Since this is zero, Condition III is also satisfied and

thus the impedances are proved compatible. Note that it

was not necessary to make these checks since the realiza-

bility of z a(s) is both necessary and sufficient for com-

patibility.

When the first (t + k)/2 elements of the network realization

of z (s) have been found from Conditions II and III, there

still remains the problem of satisfying Condition II when

A0 has zeros not at the origin. The meaning of this con-

dition is best seen from Eq. 6.3. At each zero of A0, the

quantity z 2+ 2 za zeo + 1 must be zero. If the zero is of

the second order, the derivative of this function must also

be zero etc. Hence Condition II can be written

z + 2z z + 1=0 for each zero ofAO(s) 6.7za a eo 0

Because A0 is an even function of s, all of its zeros must

appear with quadrantal symmetry. Denote by sk the kth

complex zero of A0 which appears in the first quadrant of

the s-plane. Then A has zeros at s = + sk and s =+

where "k is the conjugate of sk* The requirement that
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z + 2za eo + 1 be zero at s = sk is sufficient to insure

that it is also zero at s = -sk and s = + sk since it is an

even function of frequency. Thus only 1/4 of the zeros of

A0 need be considered. Similiarly, if A has zeros on the

jw axis, they must be of even order and therefore it is

necessary to make z + 2 za zeo + 1 and its derivative equal

to zero only at one of these zeros, for the complex con-

jugate zero is taken care of automatically.

To reduce Condition II to conditions on z a(s), merely solve

Eq. 6.7 for the value of z a(s) at each of the zerosof A0

which lie in the first quadrant. In the case of multiple

order zeros, the value of the derivative of z a(s) must also

be found. In either case, Condition II reduces to the re-

quirement that z a(s) be a physically realizable reactance

function which assumes certain complex values at certain

complex frequencies.

These values of z a(s) are given by

za(sk) = - Zeo + z -1 6.8

The proper sign is chosen so that za (S k) will have a pos-

itive real part because za (s) must be p.r.

Knowing the value of z a(s) at these complex frequencies
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allows the value of the remainder impedance z (s) to be

found. Again let z U, z12, and z22 be the open-circuit

impedance parameters of the lossless network determining

z a(s) which has already been found. Let z (s) again be the

arbitrary remainder reactance. Then these are related by

[z - Za][Z 22 + zx] = Zl2 6.9

This equation is easily solved for the values of z (s) at

each sk* Hence Condition II reduces to the requirement that

z (s) assume certain specified complex values at certain

specified complex frequencies.

The determination of a reactance function from its value

specified at a finite number of discrete frequencies (com-

plex) has been studied and the results given in Appendix III.

There it is shown how a simple reactance may be found when

it exists. This technique proceeds as follows. First a

set of linear simultaneous algebraic equations are solved

for the reactance function of smallest size which satisfies

the given conditions. This reactance is tested for p.r.

character. If it is p.r., the problem is solved. This

reactance is attached to the output terminals of the network

realization of z a(s), za (s) calculated, P a(s) calculated, and

finally the desired augmenting polynomial P (s) calculated.
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If this reactance, z (s), is not p.r., there is a possibility

that a more complex function can be found which not only

will satisfy the restrictions but also be p.r. A simple

test is described in Appendix III which tells whether or not

such a reactance exists and also gives some indication of

how complex it must be. If it exists, a trial and error

method for finding it is described. Once it has been found,

assuming it exists, the problem is completed for the poly-

nomial P (s) is easily found. Again a simple example is ina

order.

Example 2

102s2 + 170s + 119
Z0 (s) = 142 + 17s + 12

382 + 2s + 1
Z (s) = S3 + s2 + 2s + 1

Calculating the even parts of these impedances yields the

numerators

A0 = 1428(s4 + 1)

A1 = 8 + 1.

Condition I is satisfied since Z0 (s) has no even-part zeros

at zero or infinity and the polynomial A0 is a factor of A,.

These are Case I impedances.
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The polynomial Q (s)QO(-.s) = [1458 5 + 23s3 + 78] + [-38

-.82 + 12]. The odd part of this polynomial does not con-

tain (s, + 1) as a factor and therefore the two impedances

are not compatible without common factors being added.

Since the even part of Z0 (s) has no zeros at infinity, Con-

dition III is automatically satisfied. Because A0 has no

zeros at the origin, only the zero in the first quadrant

must be considered. The requirement on z a(s) in order that

Condition II be satisfied is:

za = z0 z 1 at s = [1 + j]/I .

Calculation of z e(s) at this frequency from the polynomial

Q1 (s)QO(s) already determined gives

z eo = -l/f2' at s =[1 + j]/1 .

In this case, zeo happens to be pure real. Next za is

determined at this frequency to be

z a = [1 + j]/40" at s = [1 + j]/f2~

Choose the plus sign for convenience. For this simple result,

the methods of Appendix III are not necessary. Clearly a

suitable z a(s) is given by
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za(s) = s

From the impedance z a(s), the polynomial Pa(s) is found by

adding together the numerator and denominator. The result is

Pa(s) = s + 1.

The augmenting polynomial is the square of this polynomial.

Augmenting Z 1 (s) yields the impedance discussed in example 3

of Chapter 4. There it is shown to be compatible with the

given ZO(s).

Since from the network realization of za(s) a common factor

aaP (s) is to be calculated, the simplest network is desired

for za(s) because this will lead to the smallest order common

factor in Z 1 (s) and therefore the simplest coupling network.

A problem of economy may arise in this procedure if Condition

II is not satisfied by the simplest reactance network. That

is, as shown in Appendix III, a reactance function which

assumes certain specified values at certain specified complex

frequencies is not guaranteed to be simple. If this impedance

turns out to be very complex, the order of the common factor

is very high. This is important because each additional

element in za (s) increases the order of the common factor by

two. In any practical problem, there will be a limit on

the allowed size of the coupling network, necessitating the
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introduction of a fourth compatibility condition that the

common factor not exceed a certain size.

2
The size of the polynomial P a(s) is therefore of interest.

It has been shown that if the even part of Z0 (s) has a tth

order zero at infinity and a kth order zero at the origin,

the network z a(s) will have (k + t)/2 elements. If the

even part has n zeros not at zero or infinity, then, since

only n/4 zeros need be considered and since for each zero

two quantities are specified, n/2 elements are necessary.

The form of this network realization is shown in Fig. 6.4.

It is clear that one element in z a(s) is necessary for each

pair of zeros of the even part.Hence the order of the poly-

nomial P a(s) is the same as the order of the denominator

polynomial Q%(s) and the order of the augmenting factor Pa

is twice this size. Of course it may be larger or smaller

in any particular instance, but in general it will be this

size.

Again it must be noted that this procedure was derived

assuming Case I impedances. If instead the impedances be-

long to Case II, the whole procedure must be carried out

using z- (s), that is, the reciprocal of zo (s) which is

denoted z o(s). Except for this change, all results are the

same for the two cases.

The whole procedure for testing two impedances for compati-
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If the impedances are not compatible without common factors,

determine the first t/2 terms in the series expansion about

infinity of z ,(s) where t is the order of the zero of the

even part of Z0 (s) at infinity. From these terms, deter-

mine the first t/2 terms in the power series expansion

about infinity of z a(s) and solve for the first t/2 elements

of the network realization for z a(s). These elements must

be positive.

Solve for the first k/2 terms in the power series expansion

about the origin of z e(s) where k is the order of the zero

of the even part of Z0 (s) at the origin. From these terms,

determine the first k/2 terms in the power series expansion

about the origin of z a(s). Using these terms and the part

of z a(s) already found, determine the first k/2 elements in

the remainder network, z (s). These elements must be positive.
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bility is summarized below.

Summary

Using Table 4.1, test the given impedances to determine

whether or not they are compatible without common factors

being added to Z 1 (s). If so, the test is complete and the

open-circuit impedance parameters of the coupling network

may be calculated from the equations of Table 4.1.



Solve for the required value of z a(s) at each of the first

quadrant zeros of the even part of Z0 (and the appropriate

number of derivatives if these zeros are multiple order

zeros). Using these values and the part of the network al-

ready determined, solve for the required value of the re-

mainder impedance (and its derivatives if necessary) at

these frequencies and determine a p.r. reactance function

which assumes these complex values at these frequencies.

Calculate the impedance z a(s) as a ratio of polynomials, add

together its numerator and denominator and square this re-

sulting polynomial to form the required common factor P2 (s).

Multiply both the numerator and denominator of.Z1 (s) by

this polynomial. The resulting Z1 (s) is now compatible with

the original Z0 (s) and the equations given in Table 4.1

can be used to calculate the open-circuit impedance param-

eters of the lossless coupling network.
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Figure 6.1

The Portion of the Network Realization of

z a(s) Determined by Condition III

T T T TT
t/2 elements z (s)

za

z (s)

Figure 6.2

The Part of the Network Realization for z a(s) Determined

By the Zeros of the Even Part at Zero and Infinity

t/2 elements k/2 elements
I I

arbitrary
remainder
reactance
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Figure 6.3

Realization for za (s) in Example One

2

'1z (s)

Figure 6.4

General Form of Network Realization of z a(s)

T T

t/2 elements de-
termined by zeros o
Ev Z at infinity

k/2 elements
termined by zeros eactance
of Ev Z at zero determined

by finite,
non-zero
zeros of Ev Z0



Chapter Seven

Extension of the Solution

A Uniqueness Theorem: The open-circuit impedance parameters

of the lossless coupling network are not unique in general

because the polynomial P (s) is not unique. It is impor-

tant to understand the limitations on the use of common fac-

tors.

Limitations on the use of common factors can be stated in

the form of a "quasi" uniqueness theorem. This theorem

states that if Z1 (s) and Z (s) are compatible as they stand--

that is, without augmenting Z1 (s) with common factors--the

open-circuit impedance parameters of the lossless coupling

network are unique. This is equivalent to saying that there

exists no Hurwitz polynomial which can be used to augment

Z 1 (s) and leave the resulting impedances compatible.

The proof of this theorem is very simple. First suppose that

the even part of Z0 (s) has at least a second order zero at

infinity. In order to satisfy Condition III, W(s) must

have a multiple order pole at infinity (see Eqs. 5.15 and

5.19). Since Z1 (s) and Z0 (s) are compatible without common

factors, z o(s) must have a multiple order pole at infinity

[W(s) reduces to z o(s) when no common factor is used]. But

from the discussion in Chapter Five it is clear that with a
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common factor added to numerator and denominator of Z (s)

the quantity W(s) cannot have a multiple order pole at in-

finity unless z o(s) has a simple pole at infinity with a

negative residue. Hence the theorem is true when the even

part of Z0 (s) has at least a second order zero at infinity.

If the even part of Z0 (s) has no zeros at infinity, it

follows that all of the zeros must be finite. Consider

Condition II which is expanded in Eq. 6.2. Since the imped-

ances are compatible without common factors, the odd part of

Q (s)QO(-s) is zero at each zero of AO. From Eq. 6.2 it

follows that at each such zero,

[Odd P J[Ev Q (s)Q%(-s)] = 0.

Since Odd P (s) must have only simple zeros located on the

jw axis, the even part of Q (s)Q0 (-s) and therefore Q 1 (s)Q(-s)

itself must be zero at each zero of A0 . At any right half-

plane zero of A0, Q0 (-s) must be zero for Q (s) is a Hurwitz

polynomial. But this means that the even part of Z0 (s) is

not zero here for both numerator and denominator are zero.

Hence if the even part of Z has any right half-plane zeros,

the theorem is proved.

If all of the zeros of the even part lie on the jw axis,

Q (s) must have all these zeros since such zeros must be of
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even order and Odd P (s) can have only simple zeros. This

means, in turn, that Z1 (s) has jw-axis poles at each zero

of the even part of ZO. Even if Z is allowed to have jw-

axis poles, this is a trivial case. If Z 1 (s) cannot have jo-

axis poles, it follows that the theorem is proved.

The significance of this result is twofold. If the two

impedances are compatible without common factors, they can-

not be compatible if common factors are added. Thus it is

impossible to introduce common factors in order to get a

more desirable set of open-circuit impedance parameters for

the coupling network. If the impedances are compatible with

common factors, then after the common factor has been in-

serted into Z 1 (s), no further common factors may be inserted.

However, in general there are an infinite number of different

augmenting factors which will make the impedances compatible

if there is one such factor.

The Problem of Poles on the Real Frequency Axis: The re-

striction assumed throughout this work, that there are no

jw-axis poles in the two impedances, can be removed by

slightly complicating the necessary and sufficient conditions

derived previously.

Consider first Condition I, that the impedance Z 1 (s) have all

of the even-part zeros of the impedance Z0 (s) with at least
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the same multiplicity. Examination of Eq. 3.4 shows that

this restriction must still hold when the two impedances

have jo-axis poles except in the special case where Ev ZO

is zero on the jw axis and Z1 (s) has a pole at the same fre-

quency. This exception occurs because the impedance z22 (s)

+ Z0 (s) can have a jw-axis zero which then cancels the even-

part zero and also produces a pole of Z 1 (s) [see Eq. 3.11.

Despite this exception, the numerator of the even part of

Z1 (s), A1 , must still contain this zero so that A1 still

contains A as a factor.

For the above reason, the problem may be set up within the

framework of the cascade-synthesis method just as before.

However, Conditions II and III are no longer sufficient

although they are still necessary.

That they are not sufficient follows from examination of

Eqs. 3.12. For example, if Z 1 (s) has a jco-axis pole, n%/Q 1

may have a jw-axis pole and its residue must be tested in

addition to the other p.r. tests. Also, if Z0 (s) has a

jw-axis pole, the residue of Q 1/nQ0 may be smaller than

the residue of Z0 at this pole, meaning that z22 (s) must

have this pole with a negative residue. Thus if Z0(S)

has a jw-axis pole, this pole may appear in z22 (s) and its

residue must be tested. Similiarly, if Z 1 (s) has a jw-

axis pole, m 2 Q/nQl may have that pole with a large nega-
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tive residue. Then examination of Eq. 3.12: shows that z

will have this pole with a negative residue. In other

words, the presence of jw-axis poles in one or both imped-

ances creates degenerate situations which must be handled

separately.

For any combination of jw-axis poles in the two impedances

Z0 (s) and Z 1 (s), a necessary and sufficient set of conditions

can be written as:

1. Conditions I, II, and III must hold as be-
fore with the exception of the possible
special case under Condition I described above.

2. At any jw-axis poles of Z (s) which are also
poles of nQ /Q 1, the resi ue must be tested
to insure tat it is positive real.

3. The open-circuit impedance parameters must be
found from Eqs. 3.12 rather than the formulae
derived in Table 4.1. That is,

2Q0
z m 12QO+ Z

nQ1

z 22 z0

This is to insure that jo-axis poles of Z
and Z which may be poles of z and z22 1
but nst z1 2 are included.

4. Poles of z 1 , z ,2 and z which are also
poles of Z must be testd so that all res-
idue conditions are satisfied.
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Thus the conditions are essentially the same as when no

jw-axis poles are present, except that after the open-

circuit impedance parameters of the lossless coupling net-

work have been found, some residues must be tested.

In the most common case, these extra tests can be obviated.

If Z 1 (s) has a jw-axis pole at a frequency at which the real

part of Z0 (s) is not zero and Z does not have a pole at

this frequency also, this pole may be removed from Z1 (s)

and the remainder tested with Z0 (s) for compatibility.

This follows because not only does Q (s) have this zero, but

also n(s). Hence z22 and z12 do not have this pole but z 1

does have the pole and its residue must be the same as that

of Z 1 (s) which is necessarily positive. Hence it may be re-

moved without affecting the realizability of the remainder

of the lossless coupling network.

The Case of Active Impedances: Another restriction which

may be removed from this problem is that the impedances ZO(S)

and Z 1 (s) be positive-real, that is, RLC realizable. To

remove this restriction, consider two impedances which have

no right half-plane or jw-axis poles. These impedances may

have a negative real-part on the jw axis but will not be

permitted to have any pole at infinity. In addition, if the

impedances have a simple zero at infinity, they will be

assumed to vanish like a positive capacitance.
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With these restrictions in mind, each of the steps previously

taken can be repeated to determine any additional conditions

on the impedances. First is the derivation of Condition I

regarding the zeros of the even parts of the impedances.

Examination of Eq. 3.4, the relation between even parts,

shows that, just as before, zeros of the even part of Z0 (s)

cannot be cancelled by the other terms of the equation [when

the even part of Z is zero, z22 + Z is an odd function of

frequency, meaning that if it is zero in the left half-plane,

it is also zero in the right half-plane and therefore a

right half-plane pole of Z 1 (s)J. A possible exception

occurs if z12 has a simple zero at some frequency and z22 +

Z has a second order zero at the same real frequency. In

this case, z 2/z22 +Z has a simple pole whereas z 2 +
12 z22 + 0z 1 2/z22 +Z

has no pole. Thus Condition I no longer necessarily holds

in the case of active impedances as it did in the case of

passive impedances. Clearly the same exception can occur at

a frequency not on the jo axis since the impedance z22 + ZO

needn't be p.r. and therefore can have right half-plane zeros.

Thus if the even part of Z does not contain the zeros of

the even part of ZO, the impedances may still be compatible.

In this case, it is necessary to augment Z 1 (s) with common

factors so that again the numerator of the even part of Z (s)

contains A0 as a factor with the remainder either a perfect

square or the negative of a perfect square.
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After this is done, the problem may be set up in terms of

the cascade-synthesis method. Assuming no jw-axis poles

in either impedance, the set z 11, z1 2 , and z22 defined by

Eq. 3.12 are realizable if and only if the impedance z22 (s)

is p.r.

Since z22 (s) is to be a p.r. reactance function, it must be

an odd function of frequency. Taking the even parts of

both sides of Eq. 3.12 produces the same result as Condition

II, namely

Odd Q (s)QO(-s) = nA0

Z0 (s) fails being p.r. only because its real part goes

negative on the jw axis. Hence there exists a finite

positive constant, R, such that R + Z is a p.r. impedance.

If R is added to both sides of Eq. 3.12, it is clear that

z22 is p.r. if and only if the impedance

R + -Q

is p.r.

It is possible to show that Ql/nQO + R2 is p.r. if nQO /l +

R is p.r. To this end, consider
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Y=
+ R

7.1nQO

Q,1 + nQ 0 R2

To test this for p.r. character, first test for right half-

plane poles. The denominator is Q + nQ0R2 and can be written

R2[nQ + p4-].
2

Since nQO/Q1 + R is p.r. by hypothesis, it follows that the

denominator of Eq. 7.1 can have no right half-plane zeros if

1/R2 is greater than or equal to Ri.

To test the real part on the jco axis, form the even part of

Y(s) and use the condition Odd Q 1 (s)QO(-s) = nA0 to get

Ev Y(s) =
-n2 [A0 + R2Q0(s)Q0(-s)]

Q(s) + n(s)Q0(s)R2] l(-s)+n(-s)Q(-s)R2

7.2

This will be positive on the jo axis if and only if

A0 + R2 2 > 0 for all w. 7.3

This inequality is fulfilled automatically whenever A0 is

positive. Let the most negative value of AO 0/2 be -R3

where R3 is a positive number and let this occur at fre-
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quency co = a0. Then the inequality holds for all o provided

that R2 is greater than or equal to R :

R 2 > R 7.4

The last test for p.r. character involves jw-axis poles.

Since Q has no jco-axis zeros by assumption, the only poss-

ible jw-axis pole occurs at infinity. Hence Condition III

becomes Q/nQO have at most a simple pole at infinity with

a positive residue. This is exactly the same condition as

for p.r. impedances.

It is necessary to show that the two inequalities -R 2

and R2  R3--can be simultaneously fulfilled, that is, that

a value for R2 does indeed exist. Thus it is necessary to

show that R3 is less than or equal to l/R1 . This can be

done in the following manner.

By hypothesis, nQo/Q1 + R is p.r. Hence its real part

must be positive on the jw axis. This real part can be

written with the aid of Condition II (s = Jw):

nQO+ -[Odd Q1 (s)QO(-s)]2

Re [R + -- ] = R + 7.a
1 Q1 1 A041(s)ql1(-s)

Multiplying numerator and denominator by QO0(s)QO(-s) and
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replacing Q 1(jo) by R + jX gives

X2 112
A 2 Q0 + R , 0 for all o. 7.6

AO[R 2 + X23 1

At o = o0, this inequality becomes

X + R 0 7.7
-R 3 [R2 + X 21 1

or finally

1 3[1 + (R/X) 7.8

Since (R/X)2 is positive, it is clear that the inequality

holds and therefore a value for R2 does exist.

Thus it has been proved that z22 (s) is p.r. if and only if

nQO 1' is realizable at infinity as before. These results

are rather surprising since for passive impedances Conditions

I, II, and III must hold whereas for active impedances, only

Conditions II and III must hold. The simplicity of the re-

sult is certainly not expected.

Although Condition I need not be fulfilled, in general, for

active impedances, the condition that the polynomial A1 /AO
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be a perfect square is now very important. This is so be-

cause in the case of active impedances with no right half-

plane poles, the real part goes negative only because the

polynomial A1 or A has odd order jw-axis zeros. Hence if

A1 /AO is a polynomial with any odd order ja-axis zeros,

the impedance Z 1 (s) cannot be augmented and therefore the

impedances cannot be compatible. This is obviously physically

for Z (s) is to be realized as a lossless network termin-

ated in Z0 (s). From power considerations, whenever the

real part of ZO(s) is positive, so must the real part of

Z (s) and when the real part of ZO(s) is negative, so must

the real part of Z0 (s). It follows that the even parts of

the two impedances must have coincident jw-axis odd-order

zeros.

If the two impedances satisfy the three conditions, the

open-circuit impedance parameters of the lossless coupling

network are calculated in the same way as for passive imped-

ances. If the two impedances are not compatible as they

stand, a common factor may be added. The calculation pro-

ceeds in exactly the same way as for passive impedances

since the common factor must be the square of a Hurwitz poly-

nomial. Hence, the more general problem of compatible active

impedances works out almost exactly the same as for passive

impedances.
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Chapter Eight

Conclusions

The result of this thesis has been the derivation of a con-

cise set of necessary and sufficient conditions under which

two impedances can be compatible. Augmenting factors, when

they exist, are found by an element-by-element calculation

of the network realization of z a(s) which is the ratio of

the even to odd parts of the common factor P a(s). This

facilitates testing P a(s) for Hurwitz character since this is

guaranteed if all of the elements of z a(s) are positive.

Once the two given impedances have been proved compatible,

simple formulae for the open-circuit impedances of the loss-

less coupling network are available from which the coupling

network can be determined.

In order to determine the conditions under which augmenting

factors exist, the problem of calculating a reactance function

from its power series expansion about zero or infinity was

solved. The result is a simple technique for an element-

by-element calculation of the Cauer form of the impedance.

The problem of determining a reactance function which assumes

certain prescribed complex values at specified complex fre-

quencies has also been investigated and a technique devel-

oped to determine whether or not a simple solution exists and
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also a trial and error method for finding the solution

when it is known to exist.

All of this work is also applicable on the admittance basis

if every letter z is changed to the letter y, that is, if

Z and Z are replaced by Y1 and Y0 respectively and open-

circuit impedance parameters replaced by short-circuit

admittance parameters. This follows because the two formu-

lations are exact duals of one another.

The conditions under which two stable but active impedances

are compatible has also been determined by extending the

results derived for p.r. impedances. The results for active

impedances are almost exactly the same in form as for p.r.

impedances.

As pointed out in the introduction, the importance of com-

patible impedances lies in the many applications. The sol-

ution, therefore, must be simple enough to apply to these

problems. The simple set of necessary and sufficient con-

ditions derived in Chapter Four satisfy this requirement

completely. Since in a synthesis problem common factors

can usually be ignored, the simple form of Conditions I, II,

and III should provide much insight into the applications dis-

cussed.
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For example, consider the broadbanding problem. Suppose

the load impedance is Z0 (s) as usual and the numerator of

its even part is AO. Since A0 is an even polynomial, it

can be factored into the product of two polynomials R(s)

and R(-s) where R(s) is a Hurwitz polynomial. It is well

known that an impedance (minimum reactive) can be defined

by its even part. Therefore, define the impedance Z (s)

by its even part:

Ev Z - .A8.1

Q (s) (-s)

It is clear from Condition I [A1 must contain A0 as a fac-

torJ that the smallest possible impedance Z1 (s) is one for

which A 1 = AO. Assuming that the even part of Z has no

zeros at infinity, it is permissible to define

Ev Z = = 1  8.2
R(s)R(-s)

If the even part of Z has some zeros at infinity, a larger

polynomial R(s) must be selected so that the even part of

Z 1 (s) will have the same number of zeros at infinity. This

might be done by multiplying R(s) by a factor of appropriate

size with coefficients to be determined.

Although this impedance Z 1 (s) can not be compatible with Z0,
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Conditions II and III show that the only thing preventing

compatibility is the denominator of Z1 (s), the polynomial

R(s). If R(s) is replaced by another polynomial R (s)

which not only satisfies Conditions II and III but also

approximates the polynomial R(s) over some given frequency

interval, then the impedance Z 1 (s) defined by

Ev Z 1 (s) = A0  8.3
R 1 (s)R 1 (-s)

is compatible with Z0 (s) and also approximates a resistance

over the given frequency range. Note that the broadbanding

problem has reduced to the choosing of only one polynomial,

certainly not an impossible job.

Conditions II and III will not leave much freedom in the

choice of R 1 (s). This difficulty can be alleviated somewhat

by multiplying both numerator and denominator of the even

part of Z (s) by a factor P 2(s), an arbitrary common factor.

Then the broadbanding process reduces to the selection of a

polynomial R 1 (s) which satisfies Conditions II and III and

also approximates the polynomial P (s)R(s) over some fre-a

quency interval. The arbitrary coefficients of P (s) shoulda

make the choice of R 1 (s) easier and allow a better solution to

the broadbanding problem.

This approach to the broadbanding problem is attractive be-
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cause the work done is restricted to choosing a polynomial.

Once this is done, the open-circuit impedance parameters of

the lossless coupling network are easily found by the re-

lations in Table 4.1. Hence despite the fact that the re-

sulting coupling network may be very large, the approximation

problem should be relatively simple. This is in marked con-

trast with the method of Ligomenides, for example, which be-

comes very difficult when networks of more than three elements

are considered.

The problem of limitations on allowable transfer functions

for lossless networks terminated in a specified impedance

is also an interesting and practical area which has not

been fully investigated. In simple cases, this reduces

directly to the compatibility requirement on two impedances.

However this is not true in general. The results of this

thesis should provide an approach to this problem.
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Appendix One

On the Determination of a Reactance Function From

Its Series Expansion About Infinity

Any physically realizable reactance function may be real-

ized by its cannonical Cauer form with series inductances

and shunt capacitances. If the inductances are labeled

L1, L3, L5, etc., and the capacitances C29 C49 C69 etc.

as shown in Fig. Al.l, the input impedance, z(s), may be

written as an infinite series about infinity. The first

few terms are

z(s) = sL + (sC2) 1 - s-3 (L3 C)~ 1 + s-5 [(L CSc 4 )~1 +

(L 2 C3)~]- s~7 [(CL 2C2L 5) 1 + (C2L2C2)~1 +

(cAL 2 4 ~1 + (C L3)] + ....... Al.1

This expansion is verified by taking a network with five

elements, calculating the input impedance and expanding it

into a series. The number of terms in each of the coeffic-

ients of the higher order terms increases very quickly,

making it unfeasible to write them out explicitly in terms

of the various elements. Ignoring this problem for the mom-

ent, several things suggest themselves.

1. Guillemin, op. cit., p. 87.
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For example, if the terms are numbered 1, 2, ..... with the

k th term denoted by tk, it is clear from an examination of

the above series that the k th term involves the first k

elements but not any higher numbered elements. That is,

each term of the series introduces an element not in the

previous terms, and introduces only one such element. This

stops of course when k = b, the number of elements in the

given reactance.

Moreover, the element ek fe k is Lk if k is odd, and is Ck if

k is even] appears as 1/ek in the first term in which it

appears, and not to some higher power. Also, in case the

term tk is made up of the sum of several quantities, ek

appears in only one of these quantities. Hence the term tk

can be written

tk = A + B/ek Al.2

where A and B are functions of elements ek-l' ek-2' '''''''

L , and C2 but are not functions of ek or any higher numbered

elements. These statements are true for at least the first

five terms of the series by inspection of Eq. A1.1 and are

now proved in general.

That element ek+l appears for the first time in term tk+l

can be proved by induction since it is known to be true for
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the first five terms. Hence, assume it is true for element

ek and prove that this implies that it is necessarily true

for element ek+1 also.

Write the impedance z(s) in its continued fraction expansion

about infinity

z(s) = sL1 + 1 Al1.3
sC+ 1

sek + 1

sek+1

This expression for the impedance of the network with k+l

elements can be rewritten as a similiar expression involving

only k elements by defining

e = ek[l + 1 2] Al.4
ekek+ls

By assumption, the kth term of the expansion of z(s) about

infinity is given by

tk = [A + B/ek]/s 2k-3  Al.5

where A and B are functions of elements C2, L3 ' ' e'k-l'

Substituting for ek from Eq. Al.4 gives
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tk = [A +

ek(1 + ee
ek k+ls

Expanding about infinity gives

tk = [A + B/ek]/s 2k-3
2 B2k1 + ... Al.7

ek k+l

Hence, the element ek+l appears with s raised to a power

two greater than that in the term tk and therefore must

appear in term tk+l Moreover, it appears linearily in that

term as shown above. Thus the theorem is proved by induction.

Inspection of this proof and the original equation shows

also that the coefficients of ek in the first term in which

it appears is given by the square of the products of all the

previous elements, C2, L3 ' '''''' ek-l. That is, in term tk'

the element ek appears in the term

1

e k(C 2L 3C4 ' .. e ek-2ek-l)2
Al. 8

Thus if an impedance z(s) is specified by its expansion about

infinity and if it has five or fewer elements, the deter-

mination of the impedance is straightforward.

If z(s) is specified as
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z(s)= a s + a2 s~ + a~ + ....... , Al.9

then the following equations may be written:

a1 = L

a2 = 1/02

a -/L C2

a = l/L2 C2C + 1/LC2

00.0..0...0..0 Al.10

As many equations may be written as terms in Eq. A1.1 are

known. Notice that these are not simultaneous equations,

but are solvable in order. That is, from the first equation,

L is determined, from the second equation, C2 determined,

from the third equation and the value of C2 already calculated,

L determined, etc. Thus no simultaneous equations need be

solved. The determination of the elements is an easy cal-

culation. If more than five elements are needed, this pro-

cedure becomes computationally difficult even though there

are no theoretical problems because of the difficulty of

writing out explicitly the higher numbered terms as functions

of the elements.

If more than five elements are necessary, another procedure

is available. Suppose element ek+1 and all higher numbered

elements are removed from the network (let element en be-
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come infinite for n = k+l, k+2, .... ). Then the series

expansion of the resulting impedance z'(s) has its first

k terms the same as those in the expansion of z(s) since

none of the higher numbered elements appear in these terms.

But the (k+l)th term is different. Denote this term by

tk+1. The relation between tk+1 and tk is given by

tk+1 k + 2 . Al.ll
ek+1(ekek-l...L C 2)

Although t' is a very complicated function of elements ek'k+l k

ek-l,....., L , and C2 , it can be determined numerically in

a straightforward manner. The impedance z'(s) is found

from the known elements and expanded into an infinite series

about infinity. The (k+l)th term is t' This allows

Eq. Al.ll to be used to solve for the element ek+l. Then

the process can be repeated again.

The procedure for determining the reactance from its series

expansion may be summarized as follows.

1. Determine L , C2, L3, C4, and L5 from Eqs. Al.10.

2. Let the impedance corresponding to these elements

be z5. Calculate z5 and expand it about infinity.

The coefficient of the sixth term is t'. Calculate6

06 from the relation

t= t, + [C6 (L5 0CL 2 ) 2 r- 1 ,
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3. Calculate the impedance z6 which corresponds to the

six known elements. Expand it into a series and find

the seventh term, ti. Calculate L from the relation
7 7

t= t + [L (C6L5 C4L3C 2 )2 1 .

4. Continue this process until an element comes out in-

finite. This must be the end of the network or else

the series does not represent a physically real-

izable reactance function.

2
This problem is similiar to one which Fano investigated. He

expanded the reflection factor of a lossless network term-

inated in a resistance about infinity and showed that the

network could be found from the series expansion. His

technique, however, was limited to a four or five element

network because it required that the terms in the series

be written explicitly as functions of the elements in the

network, and this becomes impossible to carry out when there

are many elements in the network.

As an example of this process, consider the impedance z(s)

defined by

z(s) = 2s + s S-3 + 2s -5s 7 + 14s~9 - 42s 1 1 +
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+ 132~ 53 - 428s-15 + 1416s~17

Equations Al.lO yield the first five elements from the first

five terms:

L = 2 C2 = 1 L3 = 1 o4 = 1 L5 =1

Since no further explicit coefficients are known, the ex-

tended procedure must be used. Impedance 5 is calculated

from these five elements to be

s3 + 2s
z5 = 2. + s4 + 3s2 + 1

= 2s + s~ - S3 + 2s-5 - 5s~7 + 13B~9 + ...

The sixth term is t' = 13. Hence (since the product of the6

elements C2 through L5 is unity) element C6 is given by

1/C6 = t6 - 13 = 14 - 13 = 1.

Using this value for C6, impedance z6 is calculated to be

8s + 3s2 + 1
z6 = 2s + S5 + 4s 3 + 38

= 2s + s 1 - s-3 + 2s- 5 - 5s~7 + 14s~9 -

41sll + . . .

Here t' = 41 and t = 42. Again the product of the elements7 7
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C2 thro.2 gh L5 is unity and C6 is unity. Hence

L7 = 1.

This process is continued and yields the eighth element to

be

C8 = 1.

The impedance z8 is calculated and expanded into a series.

The result is exactly the same as the original series. Hence

element L is infinite as are all higher numbered elements.

The impedance z8 is then the desired impedance and is guar-

anteed p.r. because all of its elements are positive.

The only difficult part of these computations is the cal-

culation of the impedances z6, z , etc., and even these are

simple to carry out if the standard ladder techniques are

used. Hence a straightforward technique for constructing an

impedance from ito expansion about infinity has been found.
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Appendix Two

On the Determination of a Reactance Function From Its

Power Series Expansion About the Origin

If the power series expansion about the origin of a reactance

is specified in the form

z(s) = b 1 s 1 + b2s + b3s 3 + b4s5 + *...... A2.1

the simple frequency transformation obtained by replacing s

by 1/s changes this series into the form

z(s) = b 1 s + b2 s
1 + b3 s~

3 + b4 s-5 + .... A2.2

which is recognized as the power series expansion about in-

finity of a reactance. If the original series represented

a p.r. function, so must the modified series since a p.r.

function of a p.r. function is itself p.r. Thus using the

results of Appendix I, the elements in the network realization

of z(s~) are found and then the reverse transformation

applied. An inductance of L henries is replaced by a cap-

acitance C = 1/L and a capacitor C is replaced by an inductance

L = 1/C.

The determination of the reactance may be done directly

without the use of the frequency transformation in a manner
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similiar to that used in Appendix I. The network reali-

zation must be of the form shown in Fig. A2.1.

If the impedance of this network is expanded into a series

about the origin, the first few terms are

z(s) = 1/sC + sL ~ s3L2 C + 35 [LC 2 + L2 C2 L] + .. A2.31 2 3 23 2 34

Again it is noticed that the kth term must be of the form

tk = tk + ekek-lek 3 ...L4C3L2 2 A2.4

where t' is a function of L, *'**' , ek only.k 2' C3,k-

Hence the procedure is to determine the first few elements

from the explicit formulae given above. Then with element k

set equal to zero, the impedance of the network is deter-

mined from the known values of elements C , ek-1 and

expanded about the origin to determine term t'. Then

element k is calculated from Eq. A2.4 and the procedure re-

peated until all elements have been found.

At any step in the solution, a negative element means z(s)

is not realizable and hence the calculation stops. A quick

rejection test exists. A necessary condition on the coef-

ficients is that the pole at the origin must have a positive
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coefficient. The remaining coefficients must alternate in

sign with the first one positive.
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Appendix III

On the Determination of a Reactance Function Whose Value Is

Specified at a Number of Complex Frequencies

It is of some interest to investigate the problem of deter-

mining a reactance function from its value specified at a

number of complex frequencies. That is, if l s 2 ''''' 8n

are complex frequencies and if z(s) is the desired reactance

function, then the following data are specified:

z(s 1 ) = r1 + jx 1

z(s2) = r2 + jx2

z(sn) = rn + jxn A3.1

The problem is to find a physically realizable reactance

function z(s) which assumes these complex values at the given

frequencies.

A similiar problem arises in an extension of the Miyata pro-

cedure for the synthesis of RLC driving-point impedances.1

There it is necessary to determine a reactance function

which assumes prescribed values at real frequencies.2 The

solution proposed by E.A. Guillemin makes use of real-part

1. Guillemin, op. cit., pp. 412-431.

2. Neitzert, Carl, "The Synthesis of a Two-Terminal Non-
Dissipative Network For a Finite Band of Frequencies,"
Sc. D. Thesis, MIT, 1936.
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sufficiency techniques and may lead to non-realizable

impedances.

In this Miyata procedure, the data is presented not as values

of the reactance at certain real frequencies, but rather in

the form of a p.r. reactance function. That is, it is re-

quired that a reactance function z(s) be found which is equal

to the negative of another reactance function at certain

prescribed real frequencies. Thus the Miyata problem

differs from the present problem in that no such reactance

function is available.

If in the Miyata problem a non p.r. function results, it is

not clear whether or not a more complicated p.r. function

exists. In the application contemplated for the present

problem, it is necessary to know not only whether or not a

solution exists, but also how complex the resulting reac-

tance function must be. Hence it is desirable to form-

ulate a technique for going from the given frequency data

directly to a reactance function and a method for predicting

the complexity of this reactance function. Moreover, the

method must not be restricted to the case of real frequencies

only.

Consider the number of independent pieces of data specified.

If n values of the reactance function are specified, there

are 2n pieces of data since at each frequency the reactance
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has both a real and imaginary part. Hence the smallest

reactance function which can satisfy this data is one with

2n poles (this is clear from consideration of the Cauer

realization of a reactance function which produces one

element for each pole and hence one element for each indepen-

dent piece of specified information). Thus if a polynomial

P (s) is defined as

P x (s)= m x + n

=a2 ns2n + a 2n-1 + ... + a s + 1 A3.2

then a reactance function z (s) can be defined as the ratioxo

of even to odd parts of this polynomial:

z x (s) = m 0 /n 0  A3.3

If this reactance is now evaluated at each complex frequency

and the given value for z (s) used, a set of complex linear

equations result. If these n equations are separated into

2n equations by separating the real and imaginary parts of

each equation, there result a set of 2n linear algebraic

equations in the 2n unknown coefficients a, .. a2, a1 .

Since there are as many equations as unknowns, a solution

will usually exist. If an infinite number of solutions exist,

this means that a smaller reactance function can be used to

satisfy the given data. In any case, the reactance function
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may be found and therefore the polynomial P (s) also.

In addition to specifying the reactance at a given fre-

quency, its derivative may also be specified. In this

case, a linear equation also results. This may be seen

by multiplying out Eq. A3.3 to get

n (s)z 0 (s) = m X(s) A3.4

Taking the derivative of both sides of this equation gives

ni (s)z (s) + n (s)zk0 (s) = m'0 (s) A3.5

Evaluating this expression at the given frequency and using

the specified value of z(s) and z'(s) gives a linear equa-

tion in the unknown coefficients. It follows that deriv-

atives of any order may be specified and a linear set of

equations will still result.

Solving these simultaneous equations gives the coefficients

of the polynomial P (s). If this polynomial is Hurwitz,

the problem is solved for then z (s) is p.r. However there

is no guarantee that is will be Hurwitz except in the case

where only one frequency is specified.

There is no lack of generality in assuming all of the
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specified frequencies to be in the first quadrant of the

s-plane or on the jw axis since a reactance function is an

odd function of frequency. A necessary condition on the

given data is that each of the real parts be positive and

the argument associated with each of the specified values

of the reactance be less than the argument of the frequency

variable, s, for z(s) must be a p.r. function. If this

condition is fulfilled, a p.r. impedance necessarily exists

which assumes these values at these frequencies. However

a reactance function--which is a special case of an impedance

function--need not exist. Moreover, the p.r. criterion

says nothing at all about the complexity of the impedance

assuming it exists at all.

From the above argument, it is clear that the assumption of

minimum size reactance functions will often lead to a non

p.r. function. Hence a method of determining whether or

not a simple reactance function exists and a method for find-

ing it are necessary.

One approach is as follows. Let the reactance function just

found be z (s) and the desired reactance function z (s).

Then the desired result is

z (s) = z (s) at s = s,....,s'n. A3.6
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- ~ - -

In terms of the even and odd parts of the corresponding

polynomials this becomes

m m
xo _ x= - at s = s ,..,,s A3.7

n xo n x1 n*

Notice that the original data has now been put into the

form in which Guillemin's data is presented. The only

differance between the two problems is that sl ,..,a,n may

be complex and z x0 is not p.r.

This requirement (Eq. A3.7) can be rewritten as

xo nx = 1 at s = s ,...A3.8
nxo mx

If now a constant K is placed on the left side, the problem

reduces to the requirement that the equation be satisfied at

each specified frequency with the constant K equal to unity.

m 0 n~
K lm = 1 at s = s and K = 1. A3.9
nxo xk

If now K is varied from zero to infinity and the locus of

solutions to the equation plotted, the result is the fam-

iliar root locus plot.) If z (s) = n /m rather than

3. Truxal, J.G., "Control System Synthesis," McGraw-Hill,
NYC, 1955, Ch. 4.
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m/nx , the polynomials mx and nx are merely interchanged in

Eq. A3.9.

However this problem is much simpler than the one usually

encountered in the study of Feedback Systems for here all

of the polynomials are even or odd and hence the loci will

have four quadrant symmetry. Moreover, the polynomials m

and n come from a physically realizable reactance function

and hence all of their zeros must lie on the jo axis and must

separate one another (poles and zeros of z (s) must alternate

on the jo axis).

To draw the loci, the zeros of mx0 and nxO are determined

approximately--that is, their approximate location in the s-

plane is found. It is not necessary to know them exactly,

but only whether they lie on the real axis or in the complex

plane or on the jo axis. Then the alternating poles and zeros

of z (s) are sketched on the jco axis. There will be very

little choice how these are entered. If z (s) has noxo

poles or zeros on the jw axis, there is no choice at all.

Notice that the exact locations are not of interest yet.

From experience with root loci plots, it is known that the

general form of the loci does not change as poles and zeros

move around but changes only when the relative placement is

modified.
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Once the loci have been sketched--and this is easily done--

the requirement is that the loci pass through the frequencies

S ,....., n when K = 1. The value of K is not important for

this can be changed by moving the locations of the jo axis

poles and zeros of z (s). What is important is that the loci

pass through or in the vicinity of the desired frequencies.

For example, If s lies in the complex plane and no loci

ever go into the complex plane for any choice of z (s), it

is clear that no matter how complex a function is assumed, no

p.r. function exists to satisfy the given data.

From examination of the root locus plot, it is possible to tell

at a glance whether or not a solution will exist and also

approximately how complex an impedance z (s) is necessary.

This is the use of the plot, to tell the approximate order of

complexity of the solution. If the solution appears to exist,

a general polynomial P (s) with coefficients to be determined

is assumed. Then the requirement is equivalent to

Odd P (s)P (-s) = nA0  A3.lO

where A is the even polynomial containing the required roots

S l***. n (and their images and conjugates), with each

root appearing to the required order. The quantity n in

Eq. A3.10 is merely the leftover part of the left-hand-side

of the equation and has no physical significance. Note that
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A0 is the same polynomial which occurs in the numerator of

the even part of ZO(s) except that any zeros at the origin

are removed. If zx (s) = n /m , Eq. A3.10 becomes

Ev P (s)P 0 (-s) = mA0  A3.ll

Multiplying out Eq. A3.10 gives a number of equations re-

lating the unknown coefficients of P (s) and n. The

coefficients of n are of no interest so that the set of

equations is solved for the coefficients of P (s) in terms of

the coefficients of n (there are more unknowns than equations).

Then these coefficients of n are chosen so as to leave P

a Hurwitz polynomial. This last procedure requires some

trial and error, but since a solution is known to exist,

success is assured. Notice that multiple order zeros of

A0-"-implying that z (s) and some derivatives were specified

in Eqs. A3.1--do not affect this procedure at all. The

method is best illustrated by examples.

Example 1

Let a reactance be defined at the two frequencies listed:

z(s) = 31'/10[3 + i at s = (1 + j)//

z(s) = 10/27 at s = 2

4. This method is similiar to the real-part sufficiency
method used by Guillemin in reference 1.
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Assume a third order polynomial P (s) = a3S + a2 2 + a + 1.

Then z (s) is the ratio of, say, the odd part to the even

part. Evaluating this impedance at the two given frequen-

cies gives the following three equations:

2a - 4a3 = 10/3

4a1 - (10/3)a2 + 2a = 0

2a1 - (40/27)a2 + 8a3  10/27

These equations have the unique solution

a3 = 0 a2 = 2 a1 = 5/3.

Hence the reactance z (s) is given by

(5/3)s
z (s) = 2s2 + 1

This reactance is seen by inspection to be p.r. and hence

the solution is complete.

Example 2

Define the impedance as in example 1 except that at the

second frequency, s = 2, let the impedance be z(s) = 2.

The equations corresponding to the assumed third order

reactance function are given by
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2a1 - 4a3 = 10/3

4a1 - (10/3)a2 + 2a3 = 0

2a - 8a2 + 8a3 = 2

Their solution is

a3 = -11/9 a2 = -15/9 a1 = -7/9

Hence z (s) is given by

lls + 7s
zy( = 15s2 g

This is seen to be non p.r. The pole-zero plot of this

impedance and the root-locus plots for the two possibil-

ities z (s) = m /n and z (s) = n /m are shown in Fig. A3.1.

Examination of these loci shows that it is impossible to

find a p.r. reactance function which will assume the re-

quired values. This is so because although the loci pass

through the required two frequencies, the same locus passes

through both frequencies and certainly can't do this for a

single value of gain K. Notice also that the addition of

more poles and zeros to the reactance z (s) doesn't change

the general shape of the root locus plot. Thus no matter

how complex a z (s) may be assumed, there will be no sol-

ution to the problem.
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Suppose the specified frequencies are such that the poly-

nomial A0 is given by

A0 = (s4 + 1)(s + s2 + 4)

and z o(s) has been found to be

(S2 + 3)(B2 + 4)(s2 + 5)

z xo(s) s(s2 + 1)(s2 + 2)

The pole-zero plot of this impedance is shown in Fig. A3.2.

The impedance is obviously not p.r. If z = m /n , the

root locus plot is shown in Fig. A3.2 for one choice of

placement of the zeros and poles of z . Note that two

different loci pass through the complex plane in the vicinity

of the required frequencies. It seems plausible therefore

that a solution does exist. In this case, an eighth order

polynomial will probably suffice (P o is sixth order so

P must be at least seventh order) since the 
loci must not

be severely distorted in order to pass through the required

frequencies.
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Figure A3.1

Root Locus Plot for Example Two

Pole-zero plot of z (s)

z m /n
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Figure A3.2

Root Locus Plot for Example Three

)

Pole-zero plot of z (8)

Zx = n
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