
Pets That Learn

by

William H Coderre

SB, Electrical Engineering and Computer Science
Massachusetts Institute of Technology

1986

Submitted to the Media Arts and Sciences Section
in partial fulfillment of the degree of
Master of Science in Visual Studies

at the
Massachusetts Institute of Technology

February 1989

Copyright @ 1988 Massachusetts Institute of Technology. All rights reserved.

- j 10

Signature of Author
William H Coderre

Media Arts and Sciences Section
September 16, 1988

Certified by_

/
r 7

Marvin L Minsky
Donner Professor of Science

Thesis Supervisor

K
Accepted by

0 VV

Departmental

Stephen A Benton
Chairman

Committee on Graduate Students

1

Rotch

.f - 2

Pets That Learn
by

William H Coderre

Submitted to the Media Arts and Sciences Section
on September 16, 1988 in partial fulfillment

of the requirements for the degree of
Master of Science in Visual Studies.

Abstract

Two years ago I proposed a system called Petworld for modelling behavior. In
Petworld a hierarchy of agents determines the behavior of generic animals in a
simulated environment.

Now I propose a new system called SHERMAN that extends pets into learning
entities. Each agent in a hierarchy will be able to recognize, remember, and pre-
dict when its subordinate agents will produce a useful result. Thus SHERMAN is
capable of organizing and refining the hierarchy.

The initial demonstration of the system is based on a Petworld environment, and
shows how the system, given a collection of agents, will learn to connect them in a
propitious manner, using a variety of connections.

Thesis Supervisor: Marvin L Minsky

Title: Donner Professor of Science

2

Table of Contents
Table of Figures .. 4

Introduction .. 5
Overview

Section One: About The Petworld

C hapter 1: The Petw orld.. 7
Mechanics of the Petworld - About Pets

C hapter 2: Pet Intellect ... 10
Pets as Knowledge-Based Systems - Why a Hierarchy?-
What Kind of Hierarchy?

Chapter 3: An Example Pet Analyzed .. 16
Rules from the Sample Pet - Petworld Anecdotes

Section Two: SHERMAN - Agent Learning in the Petworld

Chapter 4: Learning in a Hierarchy.. 21
Why Learn? -How AI's Learn Now -
A Simplistic Model of Learning - About Goals

Chapter 5: H ow Agents Learn ... 25
Additional Mechanisms for Learning -How Agents Run

Chapter 6: Memory and Modelling in Agents...28
Details of Experiences - Why Build Models? -
Models, Clumps, and Cases -Details of Models in SHERMAN.
Creating and Refining Models -Retrieving Relevant Cases-
Adding Cases to Memory - Conclusions about Modelling

Section Three: Conclusions, Applications, and Extensions

Chapter 7: Additional Learning Agents .. 35
Goal Chaining -Agent Generation

Chapter 8: Conclusions and Applications.. 38
Applications

A cknow ledgem ents ... 40

R eferen ces...41

3

Table of Figures

Figure 1 A Petw orld screen dum p..8

Figure 2 A pet in com pleted nest ... 9

Figure 3 A ranking and w hat it represents.. 10

Figure 4 A hierarchy ... 10

Figure 5 A decision tree...12

Figure 6 Branching dow n.. 13

Figure 7 Burbling up... 14

Figure 8 A n exam ple pet brain... 16

Figure 9 Schem atic of the learning cycle... 23

Figure 10 Cases and clum ps ... 31

Figure 11 G oal chaining... 35

Figure 12 A gent generation ... 36

4

Introduction

Two years ago I proposed a system called Petworld for modelling the behavior of
simulated animals. Petworld uses a hierarchy of agents to model behavior, where
each agent gives to its superior a ranking (a weighted list) of potential actions.
The superior can resolve conflicts between agents with methods suggested from
animal behavior study: by choosing one agent outright, by compromising be-
tween agents, and by ignoring conflicting agents and allowing another agent to be
selected.

Despite the simple mechanism and small amount of internal state the pets con-
tain, an interesting set of behavior can be modelled. An example pet is presented,
which is capable of foraging, interacting with other pets, building a nest, and ex-
ploring the world. Emergent behavior is also demonstrated.

As an extension to the Petworld, I will describe SHERMAN (named after the car-
toon character), an approach to machine learning. Practically all animals do some
form of learning - from the simple associations that sea slugs make between
light and food, to the predictive behavior of predatory cats. As a teaching tool,
SHERMAN allows a student to train a pet and then study its behavior.

With SHERMAN, each agent learns by remembering when its subagents pro-
duced useful behavior. A set of behavioral goals drives the system. When a goal is
satisfied, the agent creates an experience record noting how the subagent filled
the goal. By making models of and generalizations about the experiences, the
agent is able to fill in its knowledge, and by adding goals, the agent is capable of
extending it. Last, by adding an agent generator capable of creating plausible
agents to handle new situations, the pet as a whole is able to restructure the hier-
archy, and adapt to a changing environmen.

One of the key features of SHERMAN is that it is capable of learning in a struc-
tured and organized manner. As behavioral skills are learned, they are used to
construct a hierarchical network of agents like the ones in Petworld.

5

SHERMAN can learn by refining an existing network - it can start with a
marginally useful network designed by hand (or borrowed from another applica-
tion) and allow the system to tune itself to the new environment.

Overview

In Section One of this thesis I will talk about the Petworld system for modelling
behavior: the simulated environment, the "pet" generic animal and its capabili-
ties, and the structure and capabilities of the pet intellect. I'll conclude with a
sample brain capable of foraging, interacting with other pets, building a nest, and
exploring the world.

In Section Two, I will describe SHERMAN, my approach to learning. Each agent
in the pet brain will be given an experience memory - a means of remembering
which subordinate agent was good under what circumstances. I'll analyze ways
of organizing, using, and extending the experiences collated, as well as the more
practical issues of controlling the explosive amount of experience information to
be stored and perused. I'll dub this kind of learning agent learning, since each
agent in the brain learns.

In Section Three, I will describe the uses of agent learning in other settings. One
additional method I will describe is learning by imitation, where the network learns
by mimicking an expert source. I'll describe how this method of learning can be
used in a teaching environment.

I've considered SHERMAN as both a logical learning extension to a simple cogni-
tive model and as a first step to a learning machine for Society Of Mind-like intel-
lects. Insights from SHERMAN should prove of interest to both behavior simula-
tion and machine learning.

6

SECTION ONE:
ABOUT THE PETWORLD

Chapter 1: The Petworld

Petworld is a system for modelling the behavior of simulated animals as a hi-
erarchy of simple interacting agents. Each agent passes a ranking (a weighted list)
of recommendations to its superior, which can resolve conflicting rankings by
straight choice, compromise, displacement, or substitution. When the rankings
have burbled up to the top of the hierarchy, the pet executes the highest-ranked
action.

This model is quite simple but can leverage knowledge - use a little knowledge at
the top of the hierarchy to control the information flow.

Pets contain very little internal state. Pets function in nearly a purely reactive
fashion: "What they see determines what they do." Although this is almost the
opposite of many AI approaches, it is well suited to the simulation of many kinds
of animals.

Petworld was designed for pedagogical uses as well as an exercise in AL. As part
of the Apple/MIT Vivarium Project, grade- and high-school students could use
Petworld in a science curriculum studying animal behavior.

Mechanics of the Petworld

Petworld is a world of pets, rocks, and trees which inhabit a bounded region of a
two-dimensional cartesian plane. Time passes in discrete quanta, and si-
multaneous action by all the inhabitants is simulated. Each action executed in the
world takes one tick, and brain calculations are instantaneous. This is similar to a
single-clock state machine. (I also tested a model with longer-duration actions and
computer-style interrupts. Although both offer about the same computational
power, I found the state machine model adequate and simpler.)

7

Pets have a body orientation and a limited field of view. Pets can move for a lim-

ited distance per round in the direction of their body orientation. Pets cannot

push or throw things, but can carry one rock at a time. Trees are food sources, and
pets are browsers. Each time a pet eats, the tree loses some meal points and dies

when the count reaches zero. Trees also grow (accrue meal points) as time passes.

New trees appear spontaneously around the play field. Famines are prevented by
creating a new tree when the last one dies.

Several pets are usually living in the world at once. In general, pets are mutually
antagonistic, and can attack each other. Pets cannot reproduce, but can die from
starvation or wounds.

r
4 File Edit Eual Tools Windows

.0@.

*0

-.

Akbar
HUNGER: 035

FEAR: 024
DAMAGE: 000
obtain rock RNGLE: 000
(MOUETO (5 13))

Jeff
HUNGER: 097

FEAR: 026
DAMAGE: 000
forage roamingANGLE: 135
(IOUETO (5 . 7))

Sheba

HUNGER: 098
020
000

ANGLE: 045
(13 . 4))

FEHR:
DAMAGE:
looking
(NOUETO

Figure 1: A Petworld screen dump. Each pet has a window showing its current state,which part of
its brain hierarchy is being utilized, and its next move. Pets, rocks, and trees are indicated in the
world window with a distinguishing character set.

8

p

V

A

About Pets

Each pet has a very limited set of internal states which indicate the condition of
the animal. HUNGER, FEAR, and INJURY have values between 0 and 100. A
hunger of 0 indicates being sated, and a hunger of 100 indicates death by starva-
tion. Eating reduces hunger, and the passage of time increases it. Fear is deter-
mined by the distance of other pets. A low fear indicates that others are far away,
and a high fear tells proximity. Injury is caused when one pet attacks another.
Each attack increases the pet's injury count, and with time the count goes back
down. If an animal's injury count exceeds 100, the animal dies from its wounds.
The flags PAYLOAD, IN-NEST, and NEST-COMPLETE have boolean values. If
the payload flag is true, the pet is carrying a rock. NEST-COMPLETE is set when
the pet has matched its internal nest pattern. The IN-NEST flag is set if the pet is
in the nest.

Figure 2: A pet in a completed nest.

In each time-unit cycle, pets perform a "SEE THINK DO" loop similar to a

"READ EVAL PRINT" loop in Lisp. First, every pet is given a chance to perceive

the world, then a chance to decide what to do, then all actions are performed.

Since there is still an order in which pets act (which might be important when,

say, there is very little food left), this order is shuffled occasionally.

The pets' actions are MOVE-TOWARDS, TURN, LIFT, DROP, EAT, and

ATTACK.

9

Chapter 2: Pet Intellect

A pet brain is a hierarchy of modules called experts. Each expert has inputs from
its subordinates and the world, and outputs a ranking of possible actions. A rank-
ing is a list of actions assigned weights assessed by the expert. The pet executes the
top-ranked action of the topmost expert.

((MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS
(MOVE-TOWARDS

12
12
12
11
11
11
10
10
10

1)
0)
2)
1)
0)
2)
1)
0)
2)

1.0)
0.5)
0.5)
0.0)
-0.5)
-0.5)
-1.0)
-1.5)
-1.5))

Figure 3: A ranking and what it represents. This ranking shows the opinion of the
the situation shown at right.

MOVE expert in

Decision information in the form of rankings flows up the hierarchy, processed by
each expert along the way. Typical expert processing strategies involve assigning
weights to rankings, filtering rankings to remove unwanted elements, merging
two rankings while possibly emphasizing one more than another, and reducing
the elements of a ranking to a single object. Thus, the ethological constructs of
competitive, compromise, and displacement behaviors can be directly imple-
mented.

Figure 4: A hierarchy.

10

. >

Pets as Knowledge-Based Systems

Pet brains contain strategic knowledge. In this sense pets are knowledge-based
systems where the knowledge is organized as a rigid hierarchy of interacting
agents. Unlike a decision tree, where the tree is used as a polynomial to score dif-
ferent moves, or a branching tree, where program control flows from top to bot-
tom, the Petworld tree is similar to a dataflow network, where information is
passed up from the bottom of the tree, being processed or decided upon at each
node in the hierarchy.

Typically, agents near the bottom of a tree tend to process information, as the
MOVE agent above ranks different directions of motion on how well they ap-
proach food. Agents near the middle of the hierarchy tend to make content-based
decisions. In the example pet below, the FORAGE agent decides whether to issue
an EAT or MOVE command. Agents near the top of the hierarchy tend to perform
the strategic decisions - for example the BRAIN5 agent will decide whether to
FORAGE or COMBAT based on pet state.

Why a Hierarchy?'

Using a hierarchy to encode knowledge offers several useful advantages:

Managing complexity: In a knowledge based system, it is easy to end up with
thousands of knowledge elements. The knowledge must be structured - if not
for efficiency in running the system, then for clarity maintaining it. Structure
indicates redundant elements, for example common clauses in rules, and allows
them to be centralized.

Controlling execution: Grouping ideas together suggests that some groups might
control others. For example, one group of rules could resolve conflicts between
other groups. (This is the root of meta-rules as described by Randall Davis.) It
could resolve conflicts not only by having a built-in preference for one of the sub-
ordinates, but also by effecting a compromise between groups. If an animal is
both scared and hungry, it might choose to run away in a direction that is favor-
able for finding food. Another possible resolution is called displacement behavior.

11

Dogs for example, when unable to decide between running from an enemy and

fighting, sometimes abruptly sit down and scratch an itch. A related concept in AI

is sometimes called Papert's Principle. If two experts conflict, both are ignored and

a third is employed.

Increasing leverage: By taking the grouping strategy one step further and ar-

ranging experts into something resembling a hierarchy, a phenomenon similar to
mechanical leverage arises: a little knowledge at the top of the hierarchy can have

the same effect as attaching a precondition to many rules lower in the hierarchy.

What Kind of Hierarchy?

The organization of the hierarchy of experts controls the flow of decisions. There
are several approaches to this form of hierarchical structuring. I examine them
below.

Moves Numerical Scores

Figure 5: A decision tree.

- A simple approach, called a decision tree, is based on a science known as op-

erations research, and is similar to how many computer games work. A move
generator feeds the hierarchy. Each expert passes to its superior a numeric rating

for each move based upon world state, pet state, and the opinions of its subordi-

nate experts. The action that gets the best numeric rating executes.

12

This approach has two drawbacks. First, it evaluates a lot to find out a little - the
entire tree might be calculated for dozens of possible moves. It also requires that
compromises be finagled as weightings of the scoring functions, rather than being
written out as rules. Some of the decision knowledge is hidden in the rating
scheme, an undesirable circumstance.

Figure 6: Branching Down.

* Another approach is similar to the meta-rule and grouping approaches ex-
tended to their logical extreme: control branches down the hierarchy by running
rules in each expert along the path until an expert at the bottom of the tree is cho-
sen. One of its rules then fires and action is finally taken.

This approach, although theoretically as powerful as any other, in practice still
has the reconciliation problem. To effect a compromise between two experts, a

"compromise between a and b" expert will have to be constructed, and more
rules will have to be added to the superior expert to decide when to choose it.

e Marvin Minsky proposes a more complex version of an agent hierarchy in his
recent book, Society of Mind. Agents take control, and can invoke other agents to
assist them. Other agents also attempt to take control, and agent conflicts are an
interesting part of behavior.

13

Figure 7: Burbling up.

e In my chosen method, low-level experts "burble up" rankings from which
higher levels choose actions. Each expert will be concerned with compromising
between actions presented to it, either by chosing one action, or by creating a new
action. Knowledge about making decisions is stored explicitly in the experts. The
experts output only a relative ranking, not an absolute one.

One of my other design constraints was to build pets with as little local state as
possible. Although originally undertaken as an exercise in seeing how much be-
havior could be obtained with how little a brain, I have since decided the decision
was a good one since it echos the constraints of most of the animals I saw my sys-
tem as capable of simulating.

I encountered a problem implementing concentration, the ability to stay focused on

one problem for some length of time. Concentration requires local state. The solu-
tion I chose adds a history of actions to the pet.

An example: pets must concentrate on finding food when they cannot see any. To

find food, the pets employ a simple strategy (called EXPLORE in the example

pet): turn around to look behind, and when that fails, go to another region on the

board and try looking around there. (As soon as food comes into sight, the

MOVE-TOWARD-FOOD agent will take over.) Some form of local memory is re-

quired to turn around just once, and then move for a long duration before trying

again.

14

To this end, I have incorporated a notion of agent history to allow concentration.
Each expert can remember a history of its recommendations. In the case of the ex-
ploring expert above, the mechanism allows it to turn around precisely once, and
then move several times in a row in a straight line. This history mechanism allows
much of the power of Minsky's Society of Mind, with a simpler mechanism.

15

Chapter 3: An Example Pet Analyzed

As an example of the Petworld system, I offer a sample pet which is capable of
several basic behavior patterns: interacting with other pets, foraging for food,
building a nest and staying in it once it is built, and exploring areas not visible.
This sample brain was made by hand.

Figure 8: An example pet brain. This brain is discussed below.

The strategies of the pet are decided between by the topmost expert, BRAIN5.

Finding food and interacting with other pets are most important, followed by

building a nest, exploring the world, and homing into the nest.

In the case of conflicting recommendations, several decision strategies are pur-

sued. If there is a conflict between foraging and combat, a compromise is made,

dependent on how serious the danger of starvation or attack is. Thresholds are

also used to ignore experts when the situation is stable. Assuming no life-or-death

situations are imminent, nest building takes priority over exploring.

The basic combat strategy is to avoid other pets. Another pet is attacked only

when the other is close enough and damage is low.

16

Foraging consists of either eating adjacent food, or moving toward the closest

food. If the pet cannot see any food, the foraging expert recommends nothing.

Nest building models a strategy similar to one sometimes suggested for bird nest
building: "If you are in your nest and have a rock, put the rock in the nest; other-
wise get a rock and bring it back." If the pet cannot see any rocks to get, then the
nest building expert recommends nothing. If the nest is already completed, the
nest building expert recommends returning to it.

Last is the exploring expert, which produces what Tinbergen calls "appetitive be-
havior." It is called by default, when nothing else works. Since pets have limited
sensory range, they will often be in places where no useful objects are visible. In
that case, they should first turn around, then go somewhere else. As soon as the
exploring expert brings something useful into view, another expert will be able to
take control. Since the exploring expert is able to remember what it was doing
previously, it can act as if it were performing long-duration actions.

Rules from the Sample Pet

BRAIN5
1. If both HUNGER and FEAR are high, effect a tradeoff between COMBAT and
FORAGE.

2. If FEAR is high, COMBAT.
3. If HUNGER is high, FORAGE.

4. If FORAGE is recommending that there is a food element immediately

available, then FORAGE.

5. If BUILD has some non-trivial action to perform, then BUILD.

6. Otherwise, HOME.

COMBAT

1. If you have an available attack, and your damage is low, then recommend a

tradeoff of attacking and running away.

2. Otherwise, recommend running away from any visible pets.

17

ATTACK

Construct a ranking of things you can attack standing right where you are.

RUN

Construct a ranking which scores movements on how well they bring you away
from other pets. (This includes just the current positions of the other pets, and
does not take into account their potential movement.)

FORAGE

1. If you are standing next to food, then recommend EAT.
2. Otherwise, recommend MOVE. If none are visible, no recommendation is
made.

MOVE

Construct a ranking which scores movements on how well they bring you toward

trees.

EAT

Construct a ranking of things you can eat standing right where you are.

NEST

1. If the nest is already built, then recommend HOME.

2. Otherwise, BUILD.

BUILD

In any of the following cases, if no forward progress can be made toward some destination,

a displacement behavior of wandering randomly is undertaken.

1. If you have a rock, and you are standing in the right spot, then drop the rock.

(DROP)

2. If you have a rock and and are not in the right spot, then move toward the right

spot. (PLACE)

3. If you don't have a rock, and are standing next to one that is not part of your

nest, then pick it up. (LIFT)

4. If you don't have a rock, and are not standing next to one that is not part of

your nest, then move toward the closest rock that is not part of your nest. (FIND)

18

FIND

Return a ranking scoring movements on how effectively they bring you towards

the closest rock that is not already part of your nest. If no rock is visible, no

recommendation is made.

PLACE

Return a ranking of movements on how effectively they bring you towards the

top-ranked spot in the nest to place a rock. (The nest is defined as a ranking of

squares in which to place rocks.)

HOME

Return a ranking scoring movements on how effectively they bring you towards

"home" (the position on the board in which you started the simulation). The pet

always knows where home is.

EXPLORE

Exploration is allowed when no other strategy fires, probably due to a lack of visible

objects. I have chosen a very simple exploration strategy: first turn about to look all

around, then move in a random direction a few units and try again.

1. Recommend LOOK enough times in a row so that one complete revolution is

made.

2. Recommend POINT once, to attain a random direction to travel in.

3. Otherwise, recommend ROAM several times in a row.

LOOK

Turn clockwise by one field of view.

POINT

Turn some random amount.

ROAM

1. If you can't move forward, turn right 90 degrees.

2. Otherwise, move forward.

19

Petworld Anecdotes

Figure 1 shows a frame from a pet simulation run. Three pets are shown in the

example, all with identical brains and all with display windows. (The practical

limits on Petworld as implemented on a Macintosh II computer seem to be about

10 pets in a world about 50 by 50 elements, constrained by running speed of one

brain cycle every five seconds.)

BRAIN5 contains several thresholds, but is surprisingly insensitive to the values

used. My first raw guesses of setting thresholds at about two-thirds of the range

of values worked well, and later tests at three-quarters and one-half range values

made little difference until a critical value was reached. For example, the thresh-

old of when to panic about finding food is well defined in relation to world size

(i.e. how long it will take to get to food), and unrelated to the threshold of avoid-

ing conflict.

Additionally, BRAIN5 is capable of emergent behavior. When two pets are building

nests close to each other, the strategy of finding nearby rocks leads to pets poach-

ing rocks from each others' nests, which in turn causes a great deal of conflict be-

tween pets. These conflicts are usually stalemates, and get resolved when one pet

backs off to forage.

Also, because a pet cannot see its nest when it is far away from it, it will deposit

rocks near the nest while returning from foraging expeditions. This behavior is in

retrospect very advantageous, and an unexpected result of the interplay of several

other behaviors.

20

SECTION Two:
SHERMAN -

AGENT LEARNING IN THE PETWORLD

Chapter 4: Learning in a Hierarchy

Learning is characterized by an improvement in
performance brought on by the useful acquisition of
knowledge.

-Ron Rivest

Why Learn?

In Part One of this thesis, Petworld is presented as a pedagogical model of animal

behavior. A simple hierarchy is used to drive the behavior, and can produce

complex and even emergent behavior as a result of relatively simple code. The

hierarchical structuring allows for leverage of the knowledge, where more general

knowledge at the top of the hierarchy controls the use of knowledge developed

lower down.

The most common criticism of Petworld was its lack of learning. Just about every

animal learns at some level. Sea slugs can learn to associate temperature and light

level with food concentration. Fish can learn a map, remembering food sources

and hiding places in their territory. And primates can learn new strategies such as

deception.

SHERMAN is a first attempt at incorporating machine-learning techniques in

Petworld's hierarchical scheme. SHERMAN will present learning at an agent level

- agents will have a learning engine and each one will learn separately. This

technique will allow a large amount of knowledge to be acquired - knowledge

for each agent to decide which subagent is likely to be helpful under which cir-

cumstances. But first an examination of common machine-learning techniques is

in order.

21

How Al's Learn Now

There are several approaches to machine learning that are relevant to my work:

e Learning From Examples creates and refines a model of a concept based on posi-

tive and negative examples identified and presented by a teacher. Although much

research has been done on the subject, the work of Winston remains definitive.

* Case Based Reasoning takes modelling one step further - models are made of

experience cases from all aspects of planning in problem solving, and these model

experiences are used to guide the system, and are refined and upgraded as expe-

riences accumulate. The learning model employed in SHERMAN is based on key

features of CBR, in particular the work of Kolodner.

* Knowledge Based Systems (KBS) offer excellent tools for modelling complex and

poorly understood systems. Systems can be built incrementally, allowing refine-

ment of the knowledge base, and knowledge can be compartmentalized, so a sys-

tem can be specified in small chunks organized topically. Learning in KBSs typi-

cally tends to involve chunking productions together - learning the tendency of

productions to fire in sequence. A thoroughly developed example is presented by
Klahr.

e Classifier Systems (by Holland, among others) are very similar to the most simple

of KBSs. The precondition and action are encoded as simple patterns, together

with a score of how well the rule is perceived to function. No overall organization

of the rule base is provided. New rules are created by simple pattern manipula-

tions: randomly mutating an element, twisting a subpattern, or "crossing over"

from one rule to another.

* Neural Networks operate by adjusting weights connecting simulated neurons in

a lattice. The network runs by sending pulses from input gates, between neurons,

and into the outputs. The network is capable of a form of learning commonly

called training. Examples are presented as both input conditions and correct out-

puts, and a process called simulated annealing is used to adjust the weights to

cause the network to correctly mimic the examples.

22

A Simplistic Model of Learning

Functionally, a learning system improves its behavior over time. It remembers
past experiences, and uses those experiences as guidelines in the future. If a pet

performs an action that results in a reward or punishment - for example, eating
reduces hunger - it should remember that experience and use it in the future to
achieve that reward again. Learning systems can be said to learn from their suc-
cesses and failures.

So there are four pieces to a learning engine:

e An experience memory which contains information linking situations
and actions,

" A decision engine which finds information in the memory relevant to the
current situation and uses that knowledge to determine behavior,

" A goal memory which contains information about the desirability of
conditions and actions, and

" A feedback engine which adds information to the memory based on the
satisfaction of goals.

Decision
Experience Engine World

Memory

-Feedback Engine
A 4~4A

Goal Memory

Figure 9: Schematic of the learning cycle.

23

SHERMAN will contain each of these parts in learning engines imbedded in cer-

tain agents in a Petworld brain.

The storage and retrieval mechanisms will be heuristically-driven, hard wired

code components of the system, and will work identically for each agent. Each

learning agent's memory will store experiences about which subordinate is good

when, and will be able to extract common features of these experiences to build

model experiences. These model experiences will allow knowledge to be ex-

tended by generalization, and then tested and updated.

Each agent will also have goals which provide feedback. The satisfaction of goals

will cause experiences to be remembered, and the creation of new goals will allow

knowledge to be extended.

About Goals

Learning always involves feedback. Feedback in SHERMAN will comprise a set

of goals that pay off credit or blame when conditions in the pet or in the world are

satisfied. I use the term goal in a simple sense: a condition of pet and world state

that results in a reward or punishment. These payoffs affect the future behavior of

the agent by educing models of when an action will trigger the payoff. Typical

conditions that result in payoffs: hunger just went down, damage just went up, or

the pet deposited a rock in the nest.

A feature of goals is that a clever strategy can create more of them as information

is acquired, fleshing out the pet's behavior. This could occur by allowing a payoff

in a higher level agent create a goal in a lower level agent, for example. When

FORAGE pays off, it will be propitious to create a goal in EAT.

Goals can also be created. One technique creates goals by chaining new goals

from the preconditions of old ones. A state that leads to the goal state is probably

nearly as desirable as the goal state, so it would be propitious to create a sec-

ondary goal for that state.

These techniques will be discussed further in Chapter 7.

24

Chapter 5: How Agents Learn
Intelligent behavior is to be repeatedly successful in
satisfying one's psychological needs in diverse, observably
different, situations on the basis of past experience.

- P.J. van Heerden

As described before, the pets' intellect is made of a hierarchy of agents, each of

which gets input from the world and its subordinates and passes on recom-

mendations to its superiors in the form of rankings.

Chapter 4 presented an overview of the learning method of SHERMAN, where

goals drove the hierarchy to strengthen pathways by remembering correct and

incorrect decisions that were made.

The next few chapters will describe a proposed implementation of these tactics.

First I will examine of the additions to the Petworld system to accommodate

learning. Then I'll discuss the way that the new system runs, and how it acquires

knowledge.

Additional Mechanisms for Learning

Several mechanisms will be needed for agents to learn. An agent history will let the

agent perform actions that take more than one tick. Experience memory will let the

agent remember under which circumstances subordinate agents are likely to pro-

vide winning recommendations. And a manager will direct the more complex

execution of the new agent.

Agent history
Agent history is a record of what the agent has done. Since the agent can look

back at the record, it can perform actions that take longer than one tick to execute

(such as spinning around in place to look behind).

Each entry in the history will contain a record of the ranking that the agent rec-

ommended to its superior. It will also store the experience record, if any, on

which the agent is basing its action, the subordinate agent which was chosen for

25

recommendation, and the other subordinate agents that recommended nearly the

same things.

There will also be an operator that tells how many times in a row the same action

was recommended at the top of the ranking. Thus, to spin once around, the pet

should turn 90 degrees four times.

Experience memory

Each agent will also need a memory mechanism, for storing experiences about

previous successes and failures. These experiences will be used in similar sit-

uations in the future.

Each experience has three parts: a precondition, an action, and a result. The pre-

condition records the circumstance under which the action was taken, the action

remembers which subordinate agent was chosen for execution, and the result tells

the outcome - which goals, if any, were satisfied by the action. Common features

of situations that caused the same payoff will be extracted into generalized

models.

Manager

Each agent also will have a manager to control the execution of the decision strat-

egy. The manager will fetch experience memories that are similar to the current

situation, resolve any conflicts between the experiences, create an appropriate

recommendation for the agent's superior, and create experiences to be stored in

memory.

How Agents Run

The first step of an agent's cycle is the acquisition of sensory information from the

world and from its subordinates. This information is provided in advance by the

underlying Petworld system.

The manager will then retrieve from memory all of the experiences that are simi-

lar to the current situation, based on the preconditions of the experiences stored in

26

the agent: nearby objects in the world, the condition of the pet, and the recent ac-

tions recommended by the agent.

If there are no relevant experiences, the manager will pick an action either by de-

fault or at random. If there are too many experiences, it will resolve the conflicting

experiences either by doing what's common to all, choosing one experience, or

recommending nothing and allowing displacement behavior.

Once the manager has decided what to do, it will create an appropriate rec-

ommendation ranking to give to its superiors. It will also put into the agent his-

tory a record of which experiences it used, what recommendation it made, and

which subordinate agents made that recommendation - both the one chosen by

the manager and the other agents which happened to produce the same recom-

mendation.

After the pet runs an action, credit - or lack of credit - should be assigned. For

each agent on the path of execution, an experience record will be created with the

precondition encoded from the situation, the action chosen by the manager, and

whatever goals were satisfied. The memory unit will then attempt to incorporate

the new experience with the existing model experiences, probably the ones that

were recalled at the beginning of the loop.

27

Chapter 6: Memory and Modelling in Agents
Experience is what causes one to make new mistakes instead
of old.

-from a fortune cookie

This chapter describes the organization and operation of the experience memory

that will be part of every decision agent - the details of storing cases in an expe-

rience memory, the advantages and mechanics of compressing cases into models,
and the retrieval of relevant experiences.

Many of the ideas concerning experience memory are based on a strategy called

Case Based Reasoning, and in particular work by Janet Kolodner.

Details of Experiences

Each agent will have an experience memory that stores information about previ-

ous situations in records called cases. Each case has three parts: a condition, which

describes the state of the world and the pet; an action, which tells what the pet

did; and a result, which records payoffs the action triggered, if any.

Condition
The condition contains three parts: world state, pet state, and agent history.

World state contains the relevant objects in the world - the closest objects in each

category, as well as the objects that are close enough to manipulate:

the nest - the closest rock - the closest tree - the closest pet

rocks that are close - trees that are close -pets that are close

The exact identity or position of the objects is less important than their existence

or relative position, so objects will be recorded in body-centered coordinates rela-

tive to the pet. For example, under the category closest rock might be stored the

coordinate (0 1), indicating the closest rock is one "south" of us.

Pet state is very simple: the variables hunger, fear, damage, and the flags payload,

nest-complete, and in-nest are used from the Petworld system.

28

Agent history will incorporate the agent's most recent recommendations.

Action
The action part of an experience tells the agent which subordinate to recommend
under the circumstances.

Result
The result part of an experience tells what resulted. If a goal paid off, the result is
the name of the goal. If a certain goal was expected to pay off (i.e. if a model was

being used to predict a result) and it didn't, the result is not <goalname>. If a pay-
off was neither expected or received, the result will be no payoff. If several payoffs

occurred, then several experience records are created, one with each payoff.

Why Build Models?

Memory is a repository for the experiences used to guide the agents in the pet.
Memory has two functions: storing experiences, and recalling poignant ones.

Yet if memory were merely to record and recall distinct experiences without
structure, several problems would arise:

- It would require enormous amounts of storage. Much of the information con-
tained in experiences is redundant.

* Finding experiences similar to a given situation would require an exhaustive
search of the experience base, and an expensive metric of similarity applied to

each experience.

* But most important, learning is impossible without structure. Consider ex-

periences as discreet data points in the condition-space of situations. It should be

possible to find regions of winning behavior by "connecting the dots" between

known experiences, and then learning from the feedback if the generalization

paid off.

29

The need to make models from experiences is clear. Modelling reduces storage
requirements, metricizes experiences, speeds retrieval, and predicts trends.

Models, Clumps, and Cases

An agent's experience memory is filled with cases - condition-action-result
triples. If these cases are grouped by result and action, they will define areas in
condition-space where a given action has a given result, both by positive exam-
ples, which are always recorded, and by negative ones, which are recorded when
the prediction of a model fails.

Modelling involves building clumps by collecting the relevant common features of
cases. Models can contain clumps and cases, which together define a region of
condition-space that a subagent will produce a predicted result. There might be a
fairly general clump and a specific exception case, for example.

As a model improves, it shows more clearly the set of circumstances under which
a given subagent is likely to pay off. And as the model becomes more general, it
predicts areas of condition-space that are likely to produce the given result, caus-
ing the model to be more clearly defined.

30

A A
Loondrion action A

condition action result

condition action result

condition action result

condition action result

condition action result

A A

actin ref_

Figure 10: Cases and clumps. As clumps generalize cases, they predict regions of likely outcome.

Details of Models in SHERMAN

Clumps are built by the process of generalization. Cases that are similar are exam-

ined, and common features (condition slot values) are extracted. Features that are

not the same among the cases are generalized - values are replaced with gener-

alization values that matches all the cases. Since condition slots use such a simple

representation, models can be constructed almost trivially via pattern matching

techniques.

The three generalization values of condition slots are some, don't care and this

many. When a slot is labelled this many with a number, it matches any conditions

which have that many entries in the slot. A don't care matches zero or more entries

in the slot. Some matches one or more. As before, an empty slot matches exactly

31

zero entries, and a slot filled in with a specific value matches that value. There is

also a marker inherit for inheriting the slot value of a more general model.

This method allows for a uniform representation across a hierarchy of models.

Specific cases can simply allow inherited parameters for some or all of the slots,

and supply any missing or exceptional slot values.

Creating and Refining Models

Creation and refinement of models is driven by heuristics which are currently

hard wired into the system. These heuristics are run whenever a new experience

is acquired.

* When incorporating a new experience into a model, generalize an existing

clump if there is one that fits well. Otherwise hold the experience separately until

more experiences accumulate.

" Make the smallest generalization possible.

" Don't create a new clump until there are several (perhaps five or ten) similar

experiences to generalize.

* If a set of experiences to be added is greatly variant from the target clump,

make another clump.

* If the experiences to be added to a clump seem to have the same exception over

and over again (i.e. the clump claims that eating requires a rock in a certain posi-

tion and the experiences repeatedly indicate not), then the model is too specific

and should have that feature removed.

e If the experiences seem to have the same additional feature over and over again

(i.e. they all indicate that nearby food is necessary for eating), then the model is

too general and should have that feature added.

32

Retrieving Relevant Cases

Retrieval of relevant experiences has a fairly straightforward goal: find the most
specific models that cover the current situation. Breadth-first search is ideal for
this process.

* If there are no models that are both similar to the given situation and more gen-
eral than it, the agent can choose between several strategies: an action might be

chosen at random, a default action could be used, or an overly-specific but similar
model might be chosen.

* If retrieval yields more than one applicable model, their conflicting

recommendations must be resolved. The simplest heuristic is to keep the most

specific model. Yet it might be propitious to recommend the most popular action,
or the action with the best potential payoff. It is important to keep the set of expe-

riences small, but improvising between several models might lead to improved

behavior.

Adding Cases to Memory

Often, the results of actions will provide useful experience information, and

should be made into cases in memory.

e If the action chosen is based on one or more models, update each model by
creating a case with either positive or negative result in each applicable model.

Then try to generalize the model by creating or refining a clump.

e If the action chosen is not based on a model, then create a case only if the result

is positive.

Conclusions about Modelling

Modelling reduces storage requirements, since most cases will end up shrinking

to just a few differences from an appropriate clump.

33

Modelling allows experiences to be compared intelligently, since features that are

not common in cases are not in the model. To find cases that are most similar to a

given situation, use a breadth-first search. This will match the most relevant fea-

tures first, since those features which maintain precise instead of general values

will be the deciding ones.

Last, modelling allows for the fleshing out of knowledge, filling the gaps between

known cases. When a new case arises, a recommendation can be made based on

existing models and then tested, refining the operative region of the model.

34

SECTION THREE:
CONCLUSIONS,

APPLICATIONS, AND EXTENSIONS

Chapter 7: Additional Learning Agents

So far SHERMAN is able to learn which subagent is good when by deciding when
goals are satisfied. This, however, is a very limited kind of learning since hierar-
chies only will learn about states immediately preceding the goal. SHERMAN is
unable to learn to trade off between agents. SHERMAN also cannot reorganize
the hierarchy, a mark of advanced learning systems. I'll briefly introduce several
new learning mechanisms to address these concerns.

Goal Chaining

By adding goals to an agent, we can expand the circumstances in which a goal is
used. Several heuristics can be employed to add new goals to an agent.

For a given target goal, there is a set of circumstances under which a certain action
will achieve the goal. In the agent in question, this is represented by a condition-
action-result model. But the target condition is almost as good as the target, since it
is only one action away. So create a new, secondary goal, which rewards the
achievement of the given condition.

An example: for the goal HungerGoingDown and the action EAT, the precondi-
tion will model the pet standing next to food. This condition becomes a secondary
goal, which might be called BeingNextToFood.

This particular strategy for goal creation is called goal chaining, since it creates

chains of goals leading to an eventual payoff, and resembles what machine learn-

ing calls backward chaining goal propagation.

35

If the model itself of the condition leading to the target goal is used as the sec-

ondary goal, then the new goal is continually refined as more information about

the circumstances leading to the eventual goal is acquired.

As the target condition is refined, some secondary conditions might no longer

lead to the payoff. Over time, these conditions will be discarded from the experi-

ence memory.

secondary goal

target goal
Figure 11: Goal chaining.

36

Agent Generation

Heuristic knowledge can also be used to generate agents. SHERMAN agents are

already capable of learning which subagents are good when, and so can narrow

down choices of subagents. Adding an agent generator will allow new agents to

be added to the hierarchy, which will allow new structures to evolve. This tech-

nique is reminiscent of work by Lenat.

As an example, consider tradeoff agents: a new agent that returns a tradeoff be-

tween two existing agents. An agent is created when there are two agents that

have overlapping circumstances where they might pay off. As an initial condition,
the agent generator could suggest that the new agent would be useful in the

intersection of regions of utility of the other agents. The superior agent could then
learn when a tradeoff is advantageous.

Figure 12: Agent generation. A tradeoff agent is generated, and proves to be more useful than the
other two agents it replaces. It therefore causes a restructuring of the hierarchy.

37

Chapter 8: Conclusions and Applications

I've shown that SHERMAN is capable of performing a specific kind of learning -

agents can learn which subordinate agent to choose when. It is also possible for

agents to generate new goals from old ones, thus expanding the regions that can

be learned. And it is possible for a hierarchy to grow new agents - adding to the

repertoire of transformations on the ranking.

SHERMAN is a powerful system capable of learning on several levels and even

building a structured network and adapting it to changing situations.

I expect that SHERMAN will offer insights into both pedagogical applications of

learning techniques and into Machine Learning.

Applications

Up until now, I have shown how SHERMAN could learn from feedback from the

environment as interpreted by a set of goals built into the starting hierarchy of

agents. But feedback can come from several sources, including an "expert" that

the pet is to be trained to be like. I'll call this form of learning Learning By Imita-

tion. An expert might be a body of case knowledge, a set of rules, or a child

"driving" the pet with a control panel. As the pet makes its suggestions, it is con-

stantly corrected by the expert, and this knowledge is built up and tunes the net-

work to behave more like the expert.

This is a pedagogical instance of the machine learning field of knowledge

acquisition. It's clear that the network must be very well developed if it will be

able to correctly classify the new knowledge and decide where in the hierarchy to

store it (this is one of the hardest problems in knowledge acquisition), but this

isn't really a problem in these pedagogical circumstances.

Now this form of learning - predictive learning based on mirroring the move-

ments of an "expert" - is similar to the kind of learning we expect neural nets to

do. But SHERMAN has the additional advantage of structure to its network,

which would allow analysis of the structure of the knowledge acquired. Addi-

38

tionally, case-based memory can reorganize itself if necessary, can defer model-

building until a clear consensus seems to be available, and can adapt to changing

situations, allowing the use of a hierarchy from another body of knowledge to be

used as a starter seed.

39

Acknowledgements

Dedicated to the memory of Thomas Trobaugh, who kept me going in times of

trouble and provided the key insights that made the original Petworld happen.

Without Mario Bourgoin, Mike Bove, Janet Kolodner, Henry Lieberman, and CJ

Silverio, this thesis would not exist.

I'd like to thank Jim Davis, Max Hailperin, Alan Ruttenberg, and Mike Travers for

their conspicuous insights.

The chocolate award goes to Steve Benton and Linda Peterson for administrative

support above and beyond the call.

40

References
Agre, Phil. "Routines." MIT AI Laboratory Memo 828. 1985.

Agre, Phil, and Chapman, David. "A recipe is Not an Algorithm: What Plans Are
and Aren't." Slides from a talk. 1987.

Alkon, Daniel L. "Learning in a Marine Snail." Scientific American. 1983. pp. 70-84.

Batali, John. "Computation Introspection." MIT Al Laboratory Memo 701. 1983.

Becker, Joseph D. "A Model for the Encoding of Experiential Information." Bolt,
Beranek, and Newman, Inc.

Beer, Colin. "Philosophical Questions about Animal Intentionality." Unpublished
manuscript. 1987.

Braitenberg, Valentino. Vehicles: Experiments in Synthetic Psychology. MIT
Press. 1984.

Brooks, Rodney A. "Achieving Artificial Intelligence Through Building Robots."
MIT AI Laboratory Memo 899. 1986.

Burstein, Mark and Adelson, Beth. "Analogical Learning: Mapping and
Integrating Partial Mental Models." Unpublished manuscript. 1986.

Burstein, Mark and Adelson, Beth. "Learning by Analogy: A Concept Paper."
Unpublished manuscript. 1986.

Camhi, Jeffrey M. "The Escape System of the Cockroach." Scientific American.
December 1982. pp. 158-172.

Chapman, David, and Agre, Philip E. "Abstract Reasoning as Emergent from
Concrete Activity." Reasoning about actions and plans. Proceedings of the
1986 workshop. Morgan Kaufman, 1987.

Coderre, William H. "PETWORLD: An Animal Behavior System Using Rules."
Bachelor's thesis. MIT. 1986.

Davis, James R. "Pesce Retrospective," Vivarium Technical Note, MIT Media
Laboratory, February 1988.

Davis, Randall. "Meta-Rules: Reasoning about Control." MIT AI Laboratory Memo
576. 1980.

Dennet, D. C. "Intentional Systems." The Journal of Philosophy. February 25, 1971.
pp. 87-106.

Drescher, Gary L. "Genetic AI: Translating Piaget into Lisp." MIT Al Laboratory
Memo 890. 1986.

Goldstein, Ira P. "Bargaining Between Goals." Proceedings of the Fourth IJCAI.
1976. pp. 175-180.

Groelich, Horst. Vehicles. Software package for Apple Macintosh. MIT Press. 1986.

41

Haase, Kenneth W., Jr. "TYPICAL: A Knowledge Representation System for
Automated Discovery and Inference." MIT AI Laboratory Technical Report 988.
1987.

Halbert, Daniel C. "Programming by Example." Xerox Corporation Report OSD-
T8402. December 1984.

Hoare, C. A. R. "Hints on Programming Language Design." Stanford AI Laboratory
Memo AIM 224. 1973.

Holland, John H. "Adaptive Algorithms for Discovering and Using General
Patterns in Growing Knowledge Bases," Policy Analysis and Information
Systems, v. 4(3), September 1980.

Holland, John H. "Escaping Brittleness: The Possibilities of General-Purpose
Learning Algorithms Applied to Parallel Rule-Based Systems," Machine
Learning II, 1986.

Hofstadter, Douglas R. "The Copycat Project: An Experiment in Nondeterminism
and Creative Analogies." MIT AI Laboratory Memo 755. 1984.

Jacobs, Walter. "How a Bug's Mind Works."

Johnston, Timothy D. "Introduction: Conceptual Issues in the Ecological Study of
Learning." Issues in the Ecological Study of Learning. 1985.

Kay, Alan C. "Computer Software." Computer Software. Scientific American,
1984.

Kehler, Thomas P., and Clemenson, Gregory D. KEE, The Knowledge
Engineering Environment for Industry. Intelligenetics, Inc., 1983.

Kolodner, Janet L. "Maintaining Organization in a Dynamic Long-Term
Memory." Cognitive Science v. 7, pp. 243-280, 1983.

Kolodner, Janet L. "Experiential Processes in Natural Problem Solving." GIT-ICS-
85/23, Georgia Institute of Technology. 1985.

Kolodner, Janet L. "Case-Based Inference: A Collection of Papers." GIT-ICS-
87/18, Georgia Institute of Technology. 1987.

Lebowitz, Michael. "Generalization from Natural Language Text." Cognitive
Science v. 7, pp. 1-40, 1983.

Lehnert, Wendy G. "Case-Based Reasoning as a Paradigm for Heuristic Search."
University of Massachusetts, Amherst.

Lenat, Douglas B. "Beings: Knowledge as Interacting Experts." Proceedings of
the Fourth IJCAI, pp. 126-133,1975.

Lenat, Douglas B. "The Role of Heuristics in Learning by Discovery: Three Case
Studies." Machine Learning, 1983.

Lenat, Douglas B., and Brown, John S. "Why AM and EURISKO Appear to
Work." Artificial Intelligence. 1984. pp. 269-294.

42

Lenat, Douglas B., and Harris, Gregory. "Designing a Rule System that Searches
for Scientific Discoveries." CMU Department of Computer Science. 1977.

Lorenz, Konrad. King Solomon's Ring. Thomas Y. Crowell Company, 1952.

Macphail, Euan M., "Ecology and Intelligence," Memory Systems of the Brain,
Guilford Press, 1985.

MacLaren, Lee S. "A production system architecture based on biological
examples." Doctoral thesis. University of Washington, Seattle. 1978.

Maruichi, Uchiki, and Tokoro. "Behavioral Simulation Based on Knowledge
Objects." Proceedings, ECOOP '87. Springer-Verlag Lecture Notes in
Computer Science #276.1987.

Minsky, Marvin. The Society of Mind. Simon and Schuster, 1986.

Rissland, Edwina L. and Ashley, Kevin D. "Credit Assignment and the Problem
of Competing Factors in Case-Based Reasoning." University of Massachusetts,
Amherst. 1988.

Robot Odyssey I. Computer program. The Learning Company.

Selfridge, Oliver G. Tracking and Trailing: Adaptation in Movement Strategies,
unpublished manuscript, 1978.

Stefik, Mark, et al. "Knowledge Programming in Loops: Report on an

Experimental Course." AI Magazine. Fall 1983.

Scientific American, eds. Brain: A Scientific American Book. 1979.

van Heerden, P.J. "The Foundation of Empirical Knowledge." Wassenar, The
Netherlands: Wistik. 1968.

Wilson, Stewart W. "Knowledge Programming in an Artificial Animal" Rowland
Institute for Science. 1986.

Winston, Patrick H. "Learning New Principles from Precedents and Exercises:
The Details." MIT AI Laboratory Memo 632, 1981.

Winston, Patrick H. "Learning by Augmenting Rules and Accumulating
Censors." MIT AI Laboratory Memo 678,1984.

Winston, Patrick H., Binford, Thomas 0., Katz, Boris, and Lowry, Michael.
"Learning Physical Descriptions from Functional Definitions, Examples, and
Precedents." MIT AI Laboratory Memo 679, 1983.

43

