
Rendermatic: An Implementation of the Three
Dimensional Computer Graphics Rendering Pipeline

by

Brian M. Croll

B.S., Mathematical Sciences
Stanford University
Stanford, California

1984
SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE

OF

MASTER OF SCIENCE

AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1986

@Massachusetts Institute of Technology

Signature of the Author

Brian M. Croll
Department of Architecture

--.. ugust 15, 1986

Certified by

avid Zeltzer
Assistant Professor

Thesis Supervisor

Accepted by
.........

Nicholas Negroponte
Chairman

Departmental Committee on GraduateStudents

s. INST. rEC .

AU2 91986
'~~~ A qO

Rotch

Rendermatic: An Implementation of the Rendering
Pipeline

by

Brian M. Croll

Submitted to the Department of Architecture on August 15, 1986 in

partial fulfillment of the requirements of the degree of Master of Science.

Abstract

Computer graphics rendering of three dimensional objects is viewed as

a three step process: sampling, mapping, and reconstruction. Each com-

ponent of the rendering pipeline is described in this light. Problems which

occur with the implementation of scan conversion and the a-buffer are dis-

cussed. A modular program architecture suitable for parallel processing

is proposed. Rendermatic, a C library including routines for Gouraud

and Phong shading, z-buffer hidden surface elimination, and a-buffer anti-

aliasing is introduced.

Thesis Supervisor: David Zeltzer
Title: Assistant Professor of Computer Graphics

This work was supported in part by NHK (Japan Broadcasting Corp.) and Defence

Advance Research Projects Agency (DARPA) contract #MOA903-85-K-0351.

2

Acknowledgements

Special thanks are extended to:

My advisor, David Zeltzer, for giving me the opportunity to study com-

puter graphics.

David Chen for always being cheerfully available to answer questions, to

provide stimulation, and to write code that needed writing. Special credit

goes to David for being a partner in the ideas and hard work that went

into Rendermatic.

Masa Inakage and Jonathon Linowes for introducing me to ray tracing

and interactive graphics.

My roommates and honorary roommate who provided comic relief, sup-

port, and one hell of a good time.

Julia for the fun times and memories.

All the crew in the Garden and VLW for their encouragement, advice,

and friendship.

And, finally, to my family for a quarter century of love and nourishment.

3

Contents

1 Introduction

2 The Development of Computer Graphics Rendering

3 An Overview of the Rendering Pipeline: Sampling, Map-
ping, and Reconstructing

4 Sampling
4.1 Sampling an Object for Geometric Modeling
4.2 Sampling The Scene for Rendering
4.3 A Comparison of Phong and Gouraud Shading
4.4 Summary

5 Mapping the Samples

6 Reconstructing the Surface
6.1 Scan Converting the Surface

6.1.1 Spatial Coherence
6.1.2 Exploiting Coherence .

6.1.3 The Edge Structure
6.1.4 The Edge Table
6.1.5 The AET
6.1.6 Summary of The Algorithm .
6.1.7 Problems Encountered in Scan
6.1.8 Summary

6.2 Interpolating Values
6.3 The A-buffer: Anti-aliasing.....

6.3.1 The A-Buffer Algorithm

Conversion

4

10

20

24
24
26
27
29

31

33
33
34
34
36
37
38
38
39
40
40
43
45

6.3.2 Modifying Scan Conversion 48
6.3.3 A Summary of the New Scan Conversion 51
6.3.4 Creating a Pixelstruct 53
6.3.5 Inserting Fragments 55
6.3.6 The Fragment Packer 55

6.4 Summary . 60

7 Conclusion 61
7.1 A Look Back . 61

7.1.1 A Quick Review . 62
7.1.2 Lim itations . 63

7.2 A Look Ahead . 64
7.2.1 An Overview of the Proposed Pipeline 65
7.2.2 Data Structures . 67
7.2.3 Functions . 69
7.2.4 Summary . 71

7.3 Conclusion . 74

A Rendermatic 75

B The Data Structures 77
B.1 The Object Structures . 81

B.1.1 Object Information 81
B.1.2 A Polyhedron For Each Space 87
B.1.3 Functions that apply to the whole object 89
B.1.4 Transforming the Object 89

B.2 The Polyhedron Structure 91
B.2.1 Allocating and De-allocating Polyhedra 95
B.2.2 Transforming the Polyhedra 96
B.2.3 General Polyhedron Functions 96
B.2.4 Accessing Polyhedra from the Object Level 97

B.3 The Polygon Structure . 98
B.3.1 Allocating and De-allocating Polygons 100
B.3.2 Polygon Extent . 100

B.4 The Polygon Information Structure 101
B.4.1 Allocating and De-allocating Poly-Info 104

B.5 The Point Structure . 105

5

B.5.1 Allocating and De-allocating POINTS 106
B.6 The Point Information Information Structure 107

B.6.1 Allocating and De-allocating PT.INFO 109
B.7 Optical . 110

B.7.1 Allocating and De-Allocating Optical Structures . . 112

C Rendermatic Rendering 114
C..2 Wireframe Rendering 115
C..3 Rendering Shaded Images 116

C.1 The A-Buffer . 116
C.1.1 The Data Structures 116
C.1.2 Functions . 118

D The Viewing Transformations 122
D .1 Definitions . 122
D.2 An Overview . 123

D.2.1 World Space to Eye Space 124
D.2.2 Eye Space to Clipping Space 126
D.2.3 Concatenating the matrices 127
D.2.4 Clipping Space to Image Space 128

6

Chapter 1

Introduction

A painter stares into a blank canvass. Facing the painter is a fundamental

problem: how can the painter arrange pigment on the canvass to create a

meaningful pattern?

A computer graphics system starts with a blank framebuffer. The ques-

tion posed to the system is how can it load the framebuffer with an array

of numbers which creates a meaningful image?

One approach is to mathematically calculate the numbers. The numbers

filling the array have no significance beyond being the result of an abstract

function; the image generated is a visual representation of a mathematical

entity. Images generated by the Mandelbrot set and by cellular automata

are popular examples of this type of graphics.

Another approach to generating the pattern is to hand place the num-

bers in the array. This can be done with the aid of an interactive painting

system. By "painting" with the system, one gets the illusion of placing

pigment on a surface while creating the underlying grid of numbers.

The final approach, the topic of this thesis, is to simulate photography.

7

The user creates a model of three dimensional objects; the computer system

takes the picture.

In order to "take" a convincing picture, the system must process an

enormous volume of information. Traditionally, a computer graphics sys-

tem has been viewed primarily as an assortment of programming techniques

used to condense and manipulate this information. Accordingly, computer

graphics rendering has been presented from this point of view.

This thesis notes that these programming techniques are the result of a

deeper problem inherent in computer graphics. No matter how much mem-

ory, how much processing power, and how many programming techniques

one employs, there will be an overabundance of information to model and

process; the visual world is extraordinarily complex, and our eyes are re-

markably sensitive. To overcome these obstacles, each computer graphics

system must sample the three dimensional model and reconstruct a two

dimensional image from those samples. This thesis presents the rendering

pipeline as a process of sampling three dimensional objects, mapping the

samples to the screen, and finally, constructing the final image from the

samples.

Chapter 2 reviews the history of computer graphics rendering. Chapter

3 is an overview of the rendering pipeline from the sampling perspective.

Chapter 4 discusses the process of sampling objects. Gouraud and Phong

shading are viewed as two separate methods of sampling an object. Phong

shading's superior performance is explained from this point of view. Chap-

ter 5 briefly discusses mapping the objects from three dimensions onto the

screen. Chapter 6 reviews the techniques used to reconstruct the image

8

from the samples. Scan conversion and interpolation are discussed. A de-

tailed explanation of the a-buffer[5] is included. The mask buffer, a new

data structure, is introduced in order to assist in creating the correct pixel

mask at the corners of a polygon. Finally, in Chapter 7, the conclusion,

the sampling and reconstruction process is applied to rendering in a par-

allel processing environment. A modular, flexible, and easy to maintain

rendering pipeline suitable for a parallel machine is proposed.

In the appendices, an implementation of the serial rendering pipeline,

Rendermatic, is presented. Rendermatic is a C library of graphics rou-

tines used for wireframe and smooth shaded images. The library includes

functions for Gouraud and Phong shading, multiple light sources, and the

a-buffer. The major data structures, their accompanying functions, and

the rendering functions are described.

In the appendices, the data structures and functions of an implementa-

tion of the serial pipeline are presented. The implementation, Rendermatic,

is a C library of graphics routines for wireframe and smooth-shaded ren-

dering. The library includes functions for Gouraud and Phong shading,

multiple light sources, and anti-aliasing with the a-buffer. The final ap-

pendix, included primarily as a reference, is an explanation of the viewing

transformation.

9

Chapter 2

The Development of Computer

Graphics Rendering

Computer graphics has been around nearly as long as computers. As far

back as the Whirlwind computer in 1953[23] , output from computers has

been displayed graphically. However, the potential of computer graph-

ics was not recognized until 1963 when Ivan Sutherland's doctoral thesis,

Sketchpad [33], broke the ground and laid the foundation for the discipline

of computer graphics. Sketchpad introduced computers as an instrument

to create easily manipulated and easily modified two dimensional drawings.

Sketchpad explicitly demonstrated the utility of computer graphics, from

circuit design to computer animation. While Sketchpad introduced com-

puter graphics, a follow up project, Sketchpad III by Timothy Johnson{20]

introduced three dimensional (3-D) computer graphics ' in 1963. Sketchpad

'The name 3-D computer graphics is perhaps a misnomer. Most computer graphic

images are two dimensional; they are displayed on two dimensional surfaces. Computer

generated holography and computer generated sculpture may rightly lay claim to the term

3-D computer graphics. Perhaps "synthetic photography" is a better name for what is

10

III applied the homogeneous coordinate system[30] with its accompanying

rotation, scaling, translation, and perspective transformations to position

three dimensional objects and project them onto a viewing plane. All the

objects created by Sketchpad III were polygonal in nature, and only the

outlines of the objects were drawn. Sketchpad III did not handle curved

surfaces. Furthermore, lines that were obstructed by surfaces closer to the

viewer were not removed. By the early sixties, then, the promise of 3-D

computer graphics was established; so were the technical problems. The

type of objects rendered had to be extended to include objects with curved

surfaces, the hidden edges and surfaces had to be removed, and the outlines

of the objects had to be filled in.

The most straightforward approach to rendering curved surfaces was

to apply the three dimensional techniques explored in Sketchpad III to a

curved surface[36][25]. Unfortunately, the time needed to calculate which

curves lay behind others was exorbitant. To speed up the hidden surface

calculations, another approach was taken. Instead of rendering curved sur-

faces directly, the surfaces were approximated by polygons. The hidden

surface problem for polygons was less formidable than for curved surfaces;

Roberts had already found a mathematically correct, though computation-

ally inefficient, solution. Thus, from the start, there were two distinct

approaches to rendering curved surfaces. One approach side-stepped the

complexity of curved surfaces by approximating them with simple polygons.

The other attacked the problem by performing hidden surface calculations

11

currently called 3-D computer graphics

on the curved surfaces.

As would be expected, approximating curved surfaces with polygons

diminished the quality and accuracy of the images produced. The surfaces

clearly showed the edges of the polygons of the constituent polygons. Addi-

tionally, the silhouettes of the supposedly smooth curved surfaces appeared

faceted. Since this method simplified the hidden surface problem substan-

tially, the degradation of the quality of the resultant image was tolerable.

This simple polygonal approach stimulated a number of successful algo-

rithms used to draw approximate representations of curved surfaces.2 At

the heart of each of these rendering systems was a new hidden surface algo-

rithm. By 1972 there was a wide enough range of hidden surface algorithms

for polygons to warrant the writing of the classic paper, "A Characteriza-

tion of Ten Hidden Surface Algorithms[34]" classifying and comparing ten

distinct hidden surface algorithms.

To a large degree, the hidden surface problem for polygons was satisfac-

torily solved by the early 1970's. The task of smoothly shading the visible

polygons, however, was not. Early on it was recognized that the diffuse

shading of a point in a polygon depended on the angle between the surface

normal, the vector to the light source, and the distance from the viewer

to the surface. In order to fill the interior points of a polygon, a simple

illumination model was used to find the color at the vertices of the polygon.

The normal at each vertex was assumed to be the polygon normal. Since

it is possible to have abrupt changes in the normal between adjacent poly-

2 See [34] for an excellent survey of these techniques.

12

gons, it is not surprising that the creases between the polygons were clearly

visible. Because of Mach banding even boundaries between polygons with

only a subtle change in color were pronounced.

In 1972, Gouraud[191 introduced a new interpolation scheme to smooth

the kinks in the polygonal surfaces. Gouraud's algorithm was similar to

previous algorithms except that the normal used in the illumination cal-

culation at each vertex was not the polygon normal. Instead, the normal

assigned to each vertex was either an average of the surface normals of con-

stituent polygons, or the actual surface normal taken from the surface that

the polygon was approximating. Gouraud's interpolation method guaran-

teed that the change in color over the edge of one polygon onto the next

would be constant. The resulting images looked smooth, but as Gouraud

pointed out, because of the sensitivity of the visual system to changes in

color, even linear interpolation of the color over the edge of two polygons

did not entirely eliminate Mach bands.

Phong[4] introduced an improved illumination model and shading algo-

rithm in 1975 to produce smoother and more convincing images. Phong

recognized that the illumination of an object depended on the specular

properties, or the gloss, of an object as well as its diffuse properties. To

model the specular reflection, Phong developed a specular function depen-

dent on the the angle between the vector from the object to the viewer

and the direction of the light reflecting off the object. Phong's illumina-

tion model was a linear combination of the diffuse and specular compo-

nents of light emitted from the object. The model did not work well with

Gouraud's shading method. Specular highlights are very sensitive to the

13

shape, or more precisely, the surface normal, of the object. With Gouraud

shading, there is information about the surface normal only at the vertices

of the polygons approximating the surface; unless there is a huge num-

ber of polygons, there is not enough information to render the specular

highlights correctly. To provide more information about the shape of the

surface, Phong interpolated the vertex normals over the face of the poly-

gon so that there would be a normal associated with each point in the

polygon. Because an illumination calculation has to be calculated at every

point within the polygon, Phong's algorithm is substantially slower than

Gouraud's. However, the resulting images are smoother and more realistic

than the images produced by Gouraud's algorithm. Thus with Phong and

Gouraud shading, there were two efficient algorithms to smooth out the

kinks in the polygonal surfaces.

With polygonal approximations the silhouettes of curved objects were

still approximated by line segments. Because of this and the need to ren-

der exact data, work continued in displaying curved surfaces without first

approximating them as polygons. In 1975, Catmull(6] introduced the z-

buffer as a method to eliminate the hidden surfaces from surface patches.

Although the z-buffer solved the problem of removing the hidden surfaces

of curved surfaces, its speed, simplicity, and generality, coupled with the

decreasing cost of memory, cemented the use of polygons to approximate

curved surfaces. Ironically, the z-buffer persisted not as a hidden surface

method for curved surfaces, but as a simple, cheap, and fast method for

removing the hidden surfaces of polygons.

The basic elements of an efficient rendering pipeline for polygonal ob-

14

jects were intact by 1976. The algorithms to manipulate objects in three di-

mensions and then project them onto the viewing plane had been known for

a long time; eliminating hidden surfaces could be done simply and quickly

by using a z-buffer; and reconstructing the appearance of the curved sur-

face, complete with simulated illumination, had been solved satisfactorily

by Gouraud and Phong. With the basics in hand, the next challenge was

to increase complexity and quality of the images generated by polygonally

based renderers. The task of merely rendering objects was complete.

Now, the problem of rendering realistic objects had to be confronted.

In order to create realistic computer generated images, the computational

model had to more closely approximate nature. That meant that the illu-

mination model had to be expanded to include more complicated lighting

effects. With the more natural lighting, the shape of the objects had to

become more detailed. In order to improve the illumination model, the

rich models found in physics were tapped. Blinn[3] was the first to ex-

tend the illumination model by implementing the Torrence-Sparrow model

for specular reflection. Cook[11] argued that computer graphics images

looked like plastic because the standard specular reflection calculation was

wrong. Cook pointed out that the color of a specular reflection off of a

surface depends heavily on the properties of the surface; each type of mate-

rial reflects different wavelengths in a unique manner. Warn[35] looked to

theatrical lighting to create a more complex lighting model, complete with

barn doors and directional lighting. More recently, Greenberg et. al. {18][8]
have modelled the second order effects of light bouncing from one object

onto another. Transparencies were first accomplished by Newell, Newell

15

and Sancha[29] in 1972 but improved by Kay[211 in 1979.

There are two ways to create more detail on the surface of an object. The

most obvious way is to create very detailed objects. With the application of

fractals[26]to computer graphics much progress has been made in this area.

Another way to create detail is to "paint" it onto the surface. Catmull[61

introduced this method, texture mapping, in 1975. Although effective in

producing objects with patterns painted on them, this method did not

successfully simulate natural textures. Instead of looking like part of the

object, the natural textures looked as if they too were painted onto the

object. As Blinn[2] pointed out, the texture existed independent of the

lights. When the lights changed position, the texture remained unchanged.

To solve this problem, Blinn mapped the surface normals of a textured

surface onto the object instead of colors. This way, when the lights changed,

so did the illumination of the texture. Unfortunately, since only the normals

were perturbed, no matter how bumpy the surface was, the silhouette of

the object remained smooth.

With more complex objects, more accurate illumination models, and

finer surface detail, much progress was made in creating realistic images

using polygons. However, two problems loomed large. When using the

z-buffer for hidden surface elimination, it was difficult to do transparen-

cies and anti-aliasing correctly. In order to do anti-aliasing correctly, one

needs to know the color of neighboring pixels in the final image. With the

z-buffer algorithm, polygons are written to the framebuffer in arbitrary or-

der. Therefore, when the color of a pixel is stored in the framebuffer, it is

not known what color its neighboring pixels will be, thereby making anti-

16

aliasing impossible. Similarly, to calculate transparency, one must know

the color of the object directly in back of the transparent object. When

an object is being written to the framebuffer, this information is not avail-

able. The problem, then, with the z-buffer is that pixel values are being

calculated before all the relevant data has been gathered.

If one put off calculating a pixel's value until all the polygons have

been processed, it would then be possible to calculate the correct value

for the pixel. The a-buffer implemented by Carpenter{5} does just that.

At every pixel, all relevant information is kept in a list. Then, after all

the polygons have been processed, the final color value for each pixel is

calculated. Like the z-buffer before it, the a-buffer is a memory intensive

algorithm. However, in the spirit of polygonal rendering techniques, the

a-buffer produces reasonable quality images quickly.

With the success of the polygonal approach, interest in displaying exact

curved surfaces waned in the late 1970's only to be revived by Turner

Whitted[37] in 1980. Whitted resurrected an old rendering algorithm for

quadric surfaces first pioneered by MAGI{24]{17]in 1968 - ray tracing. To

solve the hidden surface problem for quadric surfaces, MAGI "shot" rays

from the viewing plane to see which object the ray intersected first. Whitted

extended this algorithm by tracing the ray even further; if the object was

transparent or reflective, Whitted recursively traced the transparent and

reflective rays. Furthermore, Whitted included shadows by checking to see

if a ray from a point on a surface to a light source intersected any objects.

The pictures Whitted produced were stunning. Because of the superb image

quality, interest in rendering curved surfaces was once again piqued.

17

Unfortunately, ray tracing objects was slow; anti-aliasing the image was

very slow. In order to calculate which objects a ray intersected, the ray had

to be tested with each object. Thus, the way to speed up ray tracing sub-

stantially is to minimize the number of intersection calculations. The most

successful approach to this problem so far has been to partition the space in

order to limit the number of objects a ray could possibly intersect.[16 [271

Beyond the improvements in the basic ray tracing algorithm, another cause

for optimism is the ease with which ray tracing can be implemented on a

parallel machine. Since each pixel is calculated independently, the color at

all the pixels could be calculated concurrently. Numerous schemes for the

implementation of ray tracing on a parallel machine have been proposed

[7][281, and some have been implemented with excellent results[31].

Since the ray tracing paradigm closely followed the physical model of

light, extending the algorithm to include phenomenon such as translucency,

lens effects, accurate shadows, and motion blur was straightforward. Fur-

thermore, at its heart and at the surface, ray tracing is a sampling process.

Therefore, the traditional methods used to solve anti-aliasing could be ap-

plied directly to ray tracing[13][9](22]. In one fell swoop, Cook, Porter,

and Carpenter's distributed ray tracing algorithm(10] provided a general

model to include complex lighting phenomenon and the method to solve

the anti-aliasing problem. In the same way the a-buffer provided a general

model to solve the major problems of polygonal rendering, distributed ray

tracing is the general model for rendering arbitrary curved surfaces with

high precision, complexity, and, in the end, quality.

In 1984, both of the approaches to rendering set in motion in the early

18

1960's came to fruitful conclusions. The a-buffer allowed for fast rendering

and anti-aliasing of polygonal objects. Distributed ray tracing successfully

solved the problem of rendering high quality images of curved surfaces.

19

Chapter 3

An Overview of the Rendering
Pipeline: Sampling, Mapping,
and Reconstructing

On one side, there is a mathematical world filled with information. On the

other side lies a grid of zeros in a framebuffer. Three dimensional computer

graphics links the two. It determines which points from three dimensions

should be mapped to the screen, how they should be mapped, and finally,

how the image should be constructed from the points.3

To move points on an object from three dimensions to the two dimen-

sional screen, one must create a projection map tying a point on an object

to a point on the screen. The two main types of rendering, ray tracing and

polygonal rendering, both address this problem, but from different direc-

tions. In ray tracing, the map I starts in two dimensions and goes to three.

'This map corresponds only to the first level of rays. This first level of rays determines

the map from three space to the viewing plane. Subsequent rays define the reflectance

and refraction maps from one surface to another.

20

Sample Map Reconstruct

Figure 3.1: Sampling, mapping, and reconstructing a surface.

One chooses a pixel in two dimensions and asks the question: Which point

in three dimensional space will be assigned here? The map for polygonal

rendering is the inverse. One chooses a point on a three dimensional surface

and asks: To which pixel on the screen will this point be assigned? Though

by different methods, both ray tracing and polygonal rendering explicitly

create a map linking three dimensional surfaces to the screen.

Even if one knows the map between a surface and the screen, it is clear

that one cannot map all the points of the surface; the surfaces are con-

tinuous. To solve this problem, a finite number of discrete samples are

taken from the surface to approximate it. Both ray tracers and polygo-

nal renderers sample the surfaces in order to project the surface into two

dimensions.

The method of sampling the objects differs slightly in ray tracing and

polygonal rendering. Since the projection map for ray tracing is from two

dimensions to three, one can use the screen as a guide to taking the three

dimensional samples. One finds a pixel on the screen and uses the projection

21

map to find which point on a surface is mapped to it; a ray is cast from

the pixel to find which object it intersects. One is guaranteed that every

sample taken will be seen.

In polygonal rendering, sampling transforms the continuous curvaceous

surface into a networks of flat polygons. Each vertex in this net represents

a sample point from the surface. Since one samples the surface irrespective

of the screen, many of the samples will be extraneous. Hidden surface

elimination and clipping sift the samples, leaving only those destined for

the screen.

After the samples have been mapped from three dimensions to two, the

final image must be constructed from these samples. In ray tracing, the

samples' final destination on the screen is carefully chosen. 2 Therefore,

to construct the final image, the samples must only be filtered to mini-

mize the artifacts of sampling. With polygonal rendering, the samples are

spread sparsely on the screen.' Since the number of samples is less than the

resolution of the screen, the image must be reconstructed on the viewing

plane.

In short, both ray tracing and polygonal rendering share the three basic

steps of rendering: sampling the objects, mapping the samples from three

dimensions to two, and constructing the final image in two dimensions from

those samples. The next chapters will examine the polygonal rendering
2 The destination of the sample might have been chosen by a stochastic method, for

instance jittering or a poisson distribution, to facilitate anti-aliasing.
'It is assumed that the original surface was sparsely sampled; a viewpoint can be

chosen arbitrarily close to the object to guarantee that the number of samples mapped to

the screen will be less than the number of pixels.

22

pipeline more carefully.

23

Chapter 4

Sampling

Sampling surfaces for rendering is a two step process. In the first step,

each surface is sampled in its own local frame of reference, object space.

The resulting set of samples form a general polygonal representation of the

surface. This representation can be stored and used over again from scene

to scene. The second round of sampling occurs in eyespace when all the

surfaces have been assembled into one scene. These samples are used to

create the final image. Since these new samples are intimately connected

to the specific scene, they must be re-calculated for every new scene(fig. 4).

4.1 Sampling an Object for Geometric Mod-

eling

One wishes to describe a three dimensional, continuous surface with a set of

samples. This continuous surface may only be in one's imagination, serving

as a guide to constructing the samples directly, as is the case with most

24

Object Space Eye Space

Sample Re-sample

Figure 4.1: The objects are sampled in object space, then again in eyeepace.

object generation programs. Or, the continuous surface may be paramet-

rically defined, with its control points either taken from a real object, or

synthesized on a computer. In both of these cases, the samples have to

provide enough information to generate a facsimile of the original surface.

What information is enough to generate the surface? The amount and

type of information taken at each sample point depends on how one plans

to re-create the image. However, there are two broad classes of information

that a sample might contain. The first class describes the shape of the

surface. The other describes how the surface interacts with light.

Shape Information

The most rudimentary information a sample point must contain is its loca-

tion and how it connects to other points. For its location, three coordinates,

(X, y, z) are kept. There are a variety of ways to specify the connectivity of

25

a point with other points. This information can be expressed explicitly in a

list of edges, or implicitly by the ordering of the points. In either case, both

the location and connectivity of the point must be attached to the sample.

If a shaded image is desired, the normal of the surface at the sample point

is kept. In short, the location of each sample point, the connectivity be-

tween sample points, and the surface normal at each of sample point are

the major components describing the shape of a surface.

Surface Qualities

To create a shaded image of an illuminated object, it is important to keep

information describing how the object interacts with light. Depending on

the lighting model being used, this information varies in type and quan-

tity. However, at the very least, each sample should contain information

regarding the diffuse and specular properties of the object. For a slightly

more sophisticated illumination model, the transparency, the reflectivity,

and the index of refraction of the surface at the sample point are kept.

4.2 Sampling The Scene for Rendering

When a continuous surface is sampled, it is sampled in isolation without

regard to other objects. The resulting samples' locations and surface nor-

mals are defined in the surface's local frame of reference. In a lighted scene

with numerous surfaces, the surface's position in relation to the lights, the

eyepoint, and other surfaces determines its final illumination. Therefore, to

calculate the illumination of a surface properly, information regarding the

26

relationship of the surfaces to each other must be included in the samples.

To get this information, all the lights, all the surfaces, and the eyepoint are

transformed into the same frame of reference.

The samples are then re-calculated in the new frame of reference. The

content of these outgoing samples depends on the type of shading being

used. In Gouraud shading, the illumination for each sample is calculated.

The outgoing sample contains a color value and a location. In contrast

to Gouraud shading, the illumination calculations for Phong shading are

put off until the two dimensional surface is being reconstructed. Therefore,

with Phong shading, the samples contain the list of parameters necessary

for the illumination calculations.

4.3 A Comparison of Phong and Gouraud

Shading

In Gouraud shading, one illumination calculation is performed for each

vertex of a polygon. In Phong shading, an illumination calculation is per-

formed for these vertices and each point inside of the polygon. Therefore,

Phong shading is slower than Gouraud shading. Furthermore, since the il-

lumination calculations are put off until the very end, Phong shading must

store the illumination parameters for each polygon 1 Thus, in addition

to being slower than Gouraud shading, Phong shading also requires more

'This memory load can be relieved if it assumed that the illumination parameters are

constant over a surface. Then the parameters are stored for each object.

27

memory.

Although more efficiently produced, the image created by Gouraud

shading is substantially inferior to the image created by Phong shading.

To understand why, one must look at how the illumination calculation af-

fects the reconstruction of a object from its samples. When the geometric

model of the object's surface is created, enough samples are generated to

adequately describe the surface. The sampling rate for the surface is tai-

lored to the spatial frequency inherent to the continuous object's shape. As

a result, the shape of the object can be re-constructed accurately with the

given sampling rate.

Due to lighting effects such as specular reflection, the spatial frequencies

of the colors in an object tend to be higher than the frequencies of its shape.

Therefore, the sampling rate used to determine the shape of the object is

not adequate for the color. If the color is sampled at this rate, aliasing can

occur.

Since the color of an object depends on the lights, the eyepoint, and sur-

rounding objects, the information regarding the object's color is re-sampled

in the common frame of reference. Ideally one would hope to adjust the

sampling rate to the spatial frequency of an object's color. Unfortunately,

the sampling rate is already set; there are as many samples as there are ver-

tices in the polygonal approximation of the surface. Gouraud shading goes

ahead and samples the color at this point, thereby risking the possibility of

aliasing in the reconstructed image.

Phong shading takes a more conservative approach. Instead of sam-

pling the color, Phong shading retains enough information to reconstruct

28

the shape of the surface. Since, at the outset, the sampling rate was tailored

to the shape of the object, the shape can be reconstructed faithfully. Only

after the shape of the surface has been reconstructed does Phong shading

illuminate the surface and calculate its color. This way, the color never has

to cross the barrier of being sampled and then reconstructed. The final

image produced by Phong shading is superior to the image produced by

Gouraus shading because Phong shading avoids sampling and reconstruct-

ing the high spatial frequencies of the surface's color.

4.4 Summary

The first step in rendering a continuous surface is to distill into a manage-

able form the overwhelming amount of information describing a continuous

surface. Taking discrete samples of the surface solves this problem.

Each sample taken from the surface contains data regarding the surface's

shape and optical properties. The shape of the surface is defined in a local

coordinate system without regard to any other surface. In order to render

a scene with many objects, the samples have to be moved into a common

frame of reference. Each sample is re-calculated in this general frame of

reference. In Gouraud shading the samples are condensed into a location

and an r, g, b value. In Phong shading the location and surface normal

of each point are converted to the new frame of reference and retained.

Since the illumination value introduces high frequency components due to

specular reflection, Gouraud shading introduces high frequency components

to the samples. These frequencies are not faithfully reproduced when the

29

image is reconstructed. Phong shading avoids this problem by introducing

the high frequencies after the image has been sampled and reconstructed.

During the sampling process described in this chapter, the samples were

moved from their local space to a common frame of reference. The next

chapter examines this transformation and the subsequent mapping of the

points to the screen.

30

Chapter 5

Mapping the Samples

As the last chapter alluded, there are two sections in a sample's journey

from its local coordinates to its final place on the screen. The first goes

from the local coordinates, object space, to the common frame of reference,

eye space. 1 The second goes from eye space to the screen.

On the first leg, all the information is carried along. The lights, the

surface normals, and the sample locations are all transformed by the mod-

eling matrices into a common frame of reference. Only the locations of

the samples are transformed further to the screen; the surface normals, the

lights, and the eye point stay put in eye space.

On the second leg of the journey, only the locations of the sample points

change. In effect, this creates a link between the information necessary for

illumination in eye space and its position on the screen. The viewing trans-

formations change the location of each sample point from eye space to the

'World space can also be used as a common frame of reference. However, eye space is

more convenient because the eye point is located at the origin. Therefore, the vector from

the eye to the surface is the coordinates of the point on the surface.

31

screen. After the viewing transformation is complete, each sample contains

illumination information in eye space, and an accompanying location on the

screen. The illumination calculations can then be performed properly in

eye space, with the resulting color located at its correct spot on the screen.

Thus, the first transforms, the modeling matrices, move all the lights

and sample points into a common frame of reference. The modeling matri-

ces are the familiar scaling, translation, and rotation matrices. After the

objects have been maneuvered into their position in eyespace, the locations

of these samples are transformed to the display by the viewing transforma-

tions. The viewing transforms are described in detail in appendix D.

32

Chapter 6

Reconstructing the Surface

There are three main steps to reconstructing the surface: scan conversion,

interpolation, and, for anti-aliasing, fragment packing in the a-buffer. Scan

conversion fills each polygon with new sample points. Interpolation at-

taches illumination values to these constructed samples. And, the a-buffer

and fragment packer convert the samples collected from all the polygons

into a final image.

6.1 Scan Converting the Surface

Given the points and edges of a polygon that have been projected onto a

display device, it is now necessary to generate a grid of points which fill

the polygon. Scan conversion creates that grid. The basic idea behind

scan converting a polygon is to intersect the polygon with a series of evenly

spaced lines corresponding to scanlines on the output device. The resulting

intersections define the edges of the polygon on each scanline. The regions

between the polygon edges on each scanline are then filled. To speed up this

33

process, it is desirable to take advantage of the continuity of the polygon.

Each point on a polygon is similar to its neighbors. Therefore, to get

information about a point, one needs only to modify the information already

known about its neighbor. Scan conversion is the algorithm which exploits

the continuity of a polygon in order to fill in the polygon's outlines with a

regular grid of points.

6.1.1 Spatial Coherence

Scan conversion uses two types of spatial coherence. The first is coherence

from point to point within the polygon. Since a polygon is continuous over

its surface, one needs to know only the polygon's edges to fill its interior.

The second type of coherence is scanline to scanline coherence. One can

calculate the edge intersection on a scanline given the intersection of that

edge with the previous scanline. Thus, point to point coherence allows

one to fill a region on a scanline by defining only the region's endpoints.

Scanline to scanline coherence allows one to incrementally calculate the

region's endpoints from one scanline to the next.

6.1.2 Exploiting Coherence

Exploiting the point to point coherence is trivial knowing only the bound-

aries of a scanline region; one simply fills the region. Taking advantage

of scanline to scanline coherence is slightly more involved. The first step

34

is to scan the polygon in order, from bottom to top.1 As one goes from

one scanline to the next, the edge intersections can be calculated incre-

mentally. To do this, one needs to know the initial intersection point and

a rule for finding subsequent intersections. The initial intersection point

comes for free; it is the minimum endpoint of the edge. The rule for finding

subsequent intersection is the following:

z.1= xi + k (6.1)

y1+1= y + 1

where k = 1/m and m is the slope of the edge.

Thus, by exploiting the polygon's coherence, after the initial overhead,

calculating an edge intersections involves only one addition. Filling the

region between two edges requires one addition for each point.

The question now is, how does one know which of the edges of the poly-

gon the scanline intersects? The answer is found by sorting the polygons

according to their range in y. If the scanline falls within the range of an

edge, then the scanline intersects that edge. And, subsequent scanlines will

continue to intersect that edge until a scanline exceeds the edge's maximum

y value. So, the strategy is to sort the edges according to their minimum

y value. The edges are kept sorted in the edge table (ET). As soon as the

scanline intersects an edge, the edge becomes "active" and is put onto a

list of active edges (the AET). When the scanline exceeds the range of an

'It is assumed that positive y points up; positive x points to the right. The "minimum

endpoint" of an edge is the endpoint with the smallest y value. The "maximum endpoint"

is the endpoint with the larges y value.

35

field description

ymax The maximum y value of the edge.

x The boundary of the scanline region associated with this edge.

dx The change in x for each increment in the scanline.

Figure 6.1: The representation of an edge during scan conversion.

edge, the edge is removed from the AET and is retired.

6.1.3 The Edge Structure

Each edge has the value of x for the current scanline, the maximum y

value for the edge, and the increment dz/dy. When the edge is in the

ET, the x value represents the x at the minimum endpoint. Then, as the

scanline rises, the increment dx/dy is added to x. As a result, in the AET,

x represents the boundary for a scanline region.

The minimum representation of an edge for scan conversion is shown in

Figure 6.1.

If memory limitations permit, it is also useful to keep additional infor-

mation. Explicitly storing both endpoints in addition to the x value at the

current scanline oftentimes eases expansions in the basic scan conversion

algorithm. Also, a flag to indicate whether the edge is part of a local max-

imum, or the edge is a silhouette edge is useful to maintain. Therefore, a

slightly more complete representation is shown in figure 6.2 2:

2 When values associated with the vertices are interpolated in conjunction with scan

conversion, the edge representation grows larger

36

field description

ymax The maximum y value of the edge.

x The boundary of the scanline region.

dx The change in x for each increment in the scanline.

maxx The x value at the maximum endpoint.

miny The y value at the minimum endpoint.

flag For general use.

Figure 6.2: A more complete edge representation.

6.1.4 The Edge Table

The edge table (ET) is a one dimensional array with one slot for each

scanline. If the image is going to be scanned with a vertical resolution

of one thousand scanlines, the array will have one thousand elements. In

each of these elements there is a list of the edges which begin 3 at the

corresponding scanline. If there are no edges which start at a given scanline,

the corresponding slot has a null value. ' All of the edges in the ET are in

holding, waiting to be intersected by the scanline moving up the polygon.

An edge is "activated" when the scanline reaches its slot in the ET. When

the edge is activated, it is removed from the ET and sent to the AET. By

sorting the edges and by storing them in order, the ET simplifies the search

3 When placing an edge in the ET, the fractional part of the beginning point of the edge

is ignored, ie. the edge is indexed into the array by the truncated value of its minimum y

value.
4 Horizontal edges are not loaded into the ET. Since the edge is parallel to the scanline,

ignoring the edge will not affect the shape of the polygon.

37

for newly intersected edges.

6.1.5 The AET

The AET is a sorted list containing all the edges intersect the current

scanline. All of these edges come in pairs; one edge defines the beginning

of a scanline region, with its complement edge defining the end. To find

which edges bracket a scanline region, the edges on the AET are sorted by

their minimum x value. Stepping through the sorted list, then, the first

two edges define the first scanline region, the second two define the second

scanline region, and so forth.' After these regions have been filled, the

scanline intersections for the next scanline are calculated. To find these new

intersections, one increments the existing ones by the appropriate increment

in equation 6.1.

6.1.6 Summary of The Algorithm

The following is an outline of the basic scan conversion algorithm:

1. Load the ET with the edges of a polygon.

(a) If an edge is horizontal, ignore it; do not load it into the edge

table.

2. For each scanline:

(a) Add edges to the AET

'Notice that the AET will always have an even number of edges in it.

38

(b) Remove inactive edges from the AET.

(c) Use the AET as a guide to fill each scanline regions.

(d) Increment the edge intersections.

3. Stop when there are no more edges on the AET.

6.1.7 Problems Encountered in Scan Conversion

Order of The AET

When an edge is inserted into the AET, it is imperative to ensure that

the AET is sorted correctly. If it is not, the beginning and end edges of

a scanline region can be reversed. This occurs when the endpoints of two

incoming edges form a local minimum of the polygon. In this case, the two

edges have the same x value. Since the edges are sorted according to their

x values when they are inserted into the AET, there is no guarantee that

the beginning edge will fall on the correct side of the end edge. To protect

against the edges' order being inverted, it is necessary to examine the dx

value (1/slope) of the edges if two edges share the same x value. The edge

with the smaller dx value lies to the left of the other edge.

Sub-Pixel Polygons and Slivers

If a polygon's extent in y is less than one, it will be scanned incorrectly with

the current algorithm. The algorithm fails because the resolution of the ET

is not fine enough to sort the sub-pixel polygon's edges in y. Therefore, the

beginning and end of the scan region for this polygon cannot be determined.

39

To obtain values for a these problem polygons, they must be treated as

special cases.

The following is a simple solution to filling the in sub-pixel polygons

and slivers. First detect these polygons by testing each polygon's extent in

y. Then, find the edge with the minimum x value, and the edge with the

maximum x value. Set the edge with the minimum x value as the beginning

edge of a scanline region and the maximum x value as the end of a scanline

region. Fill this region.

6.1.8 Summary

Filling polygons is a central step in the rendering pipeline. Because testing

each pixel serially to check if it lies within a polygon would be too slow, the

polygon scan conversion algorithm described above was developed. This

method of scan conversion can be easily modified to act as an interpolator

of values over the polygon. Interpolating values associated with the polygon

vertices is the next step in the pipeline.

6.2 Interpolating Values

Scan conversion easily can be modified to interpolate values associated

with the vertices over the entire polygon. Usually, the values represent

the color, transparency, reflection, refraction, and other illumination pa-

rameters. Gouraud[19] used it to interpolate color values. Phong[4] used

it to interpolate surface normals. For z-buffer hidden surface, the z values

40

field description

ymax The maximum value of the edge.

x The boundary of the scanline region.

dx The change in x for each increment in the scanline.

valuel A value to be interpolated over the polygon.

A valuel The increment for valuel with respect to y.

value2 A value to be interpolated over the polygon.

A value2 The increment for valuel with respect to y.

value3 A value to be interpolated over the polygon.

A value3 The increment for valuel with respect to y.

etc. Other interpolated values and their increments.

Figure 6.3: An edge modified for interpolation.

at the vertex are also interpolated over the polygon. Interpolating these

values involves only minor additions to the scan conversion of polygons.

Similar to simple scan conversion, interpolating values over the polygon

exploits scanline to scanline and point to point coherence. The method is

to incrementally interpolate the values at the vertex both horizontally and

vertically, so that as each new point is filled in, an interpolated value can

be given to it. The first step is to interpolate the values along the edges

of the polygon. Then, the values are interpolated vertically between the

polygon's edges. Usually this interpolation occurs in conjunction with scan

conversion.

41

The New Edge Structure Since this interpolation occurs along with

scan conversion, it is convenient to extend the edge structure used in scan

conversion. The resulting edge structure is shown in figure 6.3, where

Avalue = (Vmaz - Vin)/(ymaz - ymin); Vmaz is the interpolated value at

the maximum endpoint of the edge; Vmin is the interpolated value at the

minimum endpoint of the edge; and (Ymaz - ymin) is the rise of the edge.

Interpolating Over a Scan Region These values serve as the bounds

of a second interpolation along the horizontal points on the scanline. For

each region on a scanline, the increment is the following:

(Vend - Vbegin)/(Xbegin - Xend)

where Vbgin is the value associated with the begin edge, Vend is the value

associated with the end edge, and (x2 - Xi) is the length of the scan region.

As a region is filled in, Vbein is incremented by AV. For instance, the n*h

point from the beginning edge will be assigned the value, Vzbfl + nAV.

A Summary of the Modified Algorithm

The following is an outline of the modified scan conversion algorithm.

1. Convert the polygon into edges suitable for scan conversion.

2. Load the ET with the edges of a polygon

3. For each scanline:

(a) Add edges to the AET

(b) Remove inactive edges from the AET

42

(c) For each scanline region

i. Calculate increments for interpolated values over scanline

region.

ii. For each new pixel

* Use the interpolated value.

* Draw the pixel

* Increment the interpolated value.

(d) Increment the interpolated values for new scanline.

(e) Increment the edge intersections.

4. Stop when there are no edges left in the AET

6.3 The A-buffer: Anti-aliasing

When trying to include anti-aliasing in a renderer which uses a z-buffer,

fundamental problems with the z-buffer arise. One of the strengths of the

z-buffer is its simplicity. This simplicity, however, complicates anti-aliasing.

First, A Flawed Anti-Aliasing Algorithm

If one were trying to modify the z-buffer algorithm to include anti-aliasing,

one might try the following. As each new polygon is scan converted, each

pixel lying on the polygon is given a coverage value. 6 Then as the color

'If a pixel is thought of as a box, the coverage is the percentage of the box that is filled

by a polygon. Pixels completely inside the polygon have a coverage of 1.0; pixels on the

edge have a coverage between 0.0 and 1.0; pixels outside of the polygon have a coverage

43

values for each pixel are written ito the frame buffer, the new color value is

mixed with the color already in the frame buffer to arrive at the final color

value. The following formula determines the mix:

color = (newcolor) (coverage) + (oldcolor)(1.0 - coverage),

where coverage is a number from 0.0 to 1.0, with 1.0 meaning that the pixel

is completely covered by the polygon.

To see the problem with this algorithm, imagine that the frame buffer

is initialized to black. A white object is being written to the frame buffer.

At the edges of the polygon, the coverage is less than one, so the resulting

polygon in the framebuffer is white with a grey border. Later, an adjacent

white polygon is written to the framebuffer. At its edges, the coverage, too,

is less than one. Therefore, when it is laid down beside the polygon already

in the framebuffer, the color at its edges are mixed with the grey edge of

the first polygon. Grey is mixed with grey, resulting in grey. Unfortunately,

the edge between the two polygons should be solid white.

An alternate solution is to anti-alias only edges which form the silhou-

ette of an object. Although this solves the problem for adjacent polygons,

a line will still appear between adjacent objects. The fundamental problem

with both of these approaches is that the final color value for the pixels on

either side of an edge must be known before that edge can be anti-aliased

correctly. The manner in which the polygons are written to the screen in a

z-buffer algorithm precludes knowing this information until all the polygons

have been processed.

of 1.0.

44

The a-buffer introduced by Loren Carpenter{5] solves this problem by

retaining all relevant information until all the polygons have been processed.

Each polygon is is split into fragments along the boundaries of the pixels it

covers. The fragments from every polygon are stored in the a-buffer. Only

when all of the polygons have been processed are the final colors for each

pixel calculated. The a-buffer puts off anti-aliasing until the color values

on either side of all the edges are known.

6.3.1 The A-Buffer Algorithm

Data Structures

The a-buffer is a two-dimensional array the same size as the framebuffer,

except that in addition to storing a minimum z for each pixel, the a-buffer

stores a list of polygon fragments. The structure containing the list of

fragments is a pixelstruct. There is one pixelstruct in the a-buffer for each

pixel on the screen.

Why store a list of fragments at a pixel instead of just the closest one?

When a fragment is the closest to the viewer, opaque, and fully covers the

pixel, a list of fragments is not necessary; only the color of the polygon

and the z value at the pixel are stored in the pixelstruct. This type of

pixelstruct is termed simple. However, if a polygon fragment does not fill

the entire polygon, or if the polygon is transparent, a list of fragments must

be maintained. This list is necessary to calculate the pixel's final value.

This type of pixelstruct is called a fragment list. In short, depending on

the nature of the covering polygons, a pixelstruct will either be simple or a

45

Figure 6.4: The simple pixelstruct.

Figure 6.5: A fragment list.

field description

next The next fragment on the list.

r,g,b The color of the fragment.

opacity The opacity of the fragment.

area The exact area of the pixel that the fragment fills.

object The object from which the fragment came.

m The bit mask representing the shape of the fragment.

zmax The maximum z of the fragment.

zmin The minimum z of the fragment.

Figure 6.6: A pixel fragment.

46

field description

z The minimum z for the pixel.

r,g,b The color of the pixel.

a The coverage of the pixel.

field description

z The minimum z for the pixel.

fragment list This is the head of the fragment list.

fragment list. The structure in figure 6.4 represents a simple pixelstruct, the

structure in figure 6.5 represents the head of a fragment list, and figure 6.6

represents a fragment on that list.

The Z Value No matter if the pixelstruct is simple or a fragment list,

the pixelstruct has single z associated with it. Beyond merely storing the

minimum z value at the pixels, the z also serves as a flag specifying whether

the pixelstruct is simple, a fragment list or empty. If the pixelstruct is

simple, z is positive; if the pixelstruct is a fragment list, z is negative; and,

if the z is set to a small number (minus the machine size), the fragment is

empty.

PixelMasks The percentage that an edge covers a pixel is not enough

information to specify fully the nature of the intersection between an edge

and a pixel. For example, suppose that an edge vertically splits a pixel in

half. Suppose also that another edge farther away from the viewer horizon-

tally splits the same pixel in half (see figure 6.7).

The coverage for both these pixels is 0.5. Therefore, both will con-

tribute 50% to the final color of the picture. However, only half of the back

fragment is seen by the viewer; the other half is blocked by the edge in

front. As a result, the front fragment should contribute 50% to the final

color, the back edge should contribute 25%, and the remaining 25% should

come from the background. From this example, it is clear that in addition

to the coverage at pixel, the shape of the region inside of a polygon must

be stored.

47

a b c

Figure 6.7: The final coverage value for a pixel depends on the shape and

location of the edges.

To solve this problem, pixel masks are introduced. A pixel mask is a

grid of bits representing a pixel at a higher than screen resolution. If a bit

lies within a polygon, its value is 1; if it is on the outside, its value is 0. The

pixel mask, thus defines the shape of the pixel region covered by a polygon.

By knowing the shape of pixel fragments, the correct coverages for a pixel

can be calculated.

6.3.2 Modifying Scan Conversion

Scan conversion proceeds as usual in the a-buffer algorithm until it is time

to write a pixel to the framebuffer. Instead of loading a color into the

framebuffer as usual, a bitmask must be created, a coverage has to be cal-

culated, and the minimum z and the maximum z of the fragment covering

the pixel have to be calculated. Given the intersection points of an edge

and a pixel, the coverage and the bitmasks can be found by table look-up,

or by analytic calculations. But first, one must find these intersections.

48

(xO,yO)

Figure 6.8: An edge intersecting a scan line of pixels at points (z 0 , yo) and

(xi, yi).

During scan conversion, it is assumed that the scanlines occur on integer

values, 0.0, 1.0, 2.0,... Thus, the initial intersection between the scanline

and the edge occurs at the bottom of the pixel. (see figure 6.8.)

If the edge is the start of a new scan region, zO will be the boundary of

the region. Pixel e is the first pixel in the region. Pixels b and c will not

be scanned. As a result of this case, it is important to find and scan the

region of partially covered pixels on an edge explicitly. Given the starting

point, (xO, Yo), and the slope of the edge, these intersections can be found

by starting at (xO, yo) and using the following formula to find subsequent

intersections:

zj+1 = xi + increment (6.2)

yi+1 = yi + 1/dx

where increment is -1 if the slope of the line is negative, and +1 if the

slope is positive.7 Incrementing stops when the current y value is greater

7Note that the first z may not be on an integer value. Therefore, the first increment

49

field description

mask The bitmask describing the covered region.

area The area of the covered region.

zmin The minimum z value for the fragment.

zmax The maximum z value for the fragment.

Figure 6.9: An element in the mask buffer.

than or equal to yo + 1, or is greater than or equal to the maximum y of

the edge. 8

If the maximum y occurs within a pixel, the process described above

encounters a problem: there is not enough information to fill the remainder

of the pixel. A simple solution to this problem is to scan the edges into

a temporary buffer before the scan regions are filled. The following is an

explanation of this algorithm.

The Mask Buffer The mask buffer is a one dimensional array the length

of one scanline. It serves as a holding cell for all the pixel masks, areas,

zmin's, and zmax's created by the intersection of scanline with a polygon.

Each element in the array corresponds to an pixel in the scanline. The

elements contain the information shown in 6.9

For each new scanline, the masks in the buffer are initialized. These

masks are assumed to be fully covered; their bits are all set to 1. After the

masks have been initialized, the new edges (if any) in the edge table (ET)

in z may be a fraction of the normal unit increment.

gThe code for this function appears in the appendix.

50

are loaded into the active edge table (AET). Before the inactive edges are

purged from the AET, every edge on the AET is scanned into the mask

buffer. For each edge, the bitmasks, areas, and z values are created as

described previously. When the bitmasks are loaded into the mask buffer,

they are "and'ed" to masks currently in the buffer.

Once all the edges in the AET have been scanned, the inactive edges are

removed from the AET, and scan conversion continues as usual. When it is

time to create a fragment, the mask buffer is indexed to find the mask, the

area, and the z values in mask buffer element corresponding to the current

pixel being written.

An example will show how this procedure solves the maximum y prob-

lem described earlier. Suppose one is scanning the polygon vertex shown

in figure 6.10. Since the edges are being loaded into the mask buffer after

the new edges have been added to the AET yet before the inactive edges

have been flushed, both edge a and edge b are still in the AET. After edge

a has been scanned into the mask buffer, the resulting bitmask is shown

in figure 6.10(ii). Then, after b is scanned in and "and'ed" into the mask

buffer, the final bitmask correctly defines the corner of the polygon (fig-

ure 6.10(iv)). Note that this process will also create the correct mask for

sub-pixel polygons.

6.3.3 A Summary of the New Scan Conversion

The following is an outline of the basic scan conversion modified to accom-

modate the a-buffer.

51

b

(i) (ii) (iii) (iv)

Figure 6.10: (i) The polygon corner defined by edges a and b. (ii) The pixel

mask resulting from edge a. (iii) The pixel mask resulting from edge b. (iv)

The result of "and"ing the two masks. This is the final pixel mask in the

mask buffer.

1. Load the ET with the edges of a polygon.

(a) If an edge is horizontal, ignore it; do not load it into the edge

table.

2. For each scanline:

(a) Add newly activated edges to the AET

(b) Load the mask buffer with all the edges in the AET. All the pix-

elmasks, areas, zmin's and zmax's for a scan line are computed.

(c) Remove the inactive edges from the AET.

(d) For each pixel in each scan region:

i. Calculate the color value

ii. Find the bitmask, area, zmin and zmax for the current pixel

in the mask buffer.

52

iii. Create a fragment.

iv. Insert it into the a-buffer.

(e) Increment the edge intersections.

3. Stop when there are no more edges on the AET.

4. After all the polygons have been processed, pack the a-buffer.

6.3.4 Creating a Pixelstruct

How a pixelstruct is created depends on both the incoming data and the

data already existing in the pixel's location in the a-buffer. There are two

types of incoming polygon fragments: partially covered and completely

covered. These cases are handled differently depending on the state of the

pixelstruct receiving the new fragment. The pixelstruct can be simple, it

can be a fragment list, or it can empty. Thus, there are six possible cases.

The following are how each these cases is handled:

Incoming Pixel is Completely Covered, Existing PixelStruct is

Empty This requires no extra computations past transferring the data

into the simple pixelstruct.

Incoming Pixel is Completely Covered, Existing Pixelstruct is

Simple

e Now that there are two fragments for this pixelstruct, a fragment list

must be created.

53

" The existing simple pixelstruct is converted into a fragment and made

head of the fragment list.

" A new fragment is allocated for the incoming data.

" The new fragment is inserted into the newly formed list.

" To indicate that the pixelstruct is a list, the sign of the pixelstruct's

z is switched from positive to negative.

Incoming Pixel is Completely Covered, Existing Pixelstruct is a

Fragment List The incoming fragment is allocated and inserted into the

fragment list.

Incoming Pixel is Partially Covered, Existing Pixelstruct is Empty

" The incoming fragment is allocated and made the head of the frag-

ment list.

* To indicate that the pixelstruct is a list, the sign of the pixelstruct's

z is switched from positive to negative.

Incoming Pixel is Partially Covered, Existing Pixelstruct is

Simple

* The existing simple pixelstruct is converted into a fragment and made

head of the fragment list.

" The new fragment is inserted into the newly formed list.

" To indicate that the pixelstruct is a fragment list, the sign of the

pixelstruct's z is switched from positive to negative.

54

Pixel is Partially Covered, Existing Pixelstruct is a Fragment List

The incoming fragment allocated and is inserted the fragment list.

6.3.5 Inserting Fragments

Inserting a fragment into a fragment list involves three functions, sorting

the fragments in z, combining fragments, and throwing away fragments

to save space. The fragments are sorted in z to facilitate packing them

later on. Combining fragments occurs when fragments on the fragment

list have the same color, and their pixelmasks combine to make a fully

covered pixel mask. This happens at the border of polygons from the same

object. Another method to save space is to throw away all the fragments

behind fully covered, opaque fragments. Note that after pixelmasks are

combined, they may form fully covered, opaque fragments, in which case all

the fragments behind can thrown out. Thus, after combining fragments, the

resulting fragment should be checked to see if it is opaque and fully covered.

If the opaque and fully covered fragment is the first on the fragment list,

the list can be condensed into a simple pixelstruct.

6.3.6 The Fragment Packer

The fragment packer is a recursive routine to convert the data stored in the

a-buffer into an array of r, g, b, and coverage values. The packer is applied

to each pixelstruct in the a-buffer. Simple pixelstructs need no processing.

Fragments lists, on the other hand, need to be collapsed into the final color

and coverage values.

55

Packing a Fragment List

To understand how the fragment packer works, it is useful to think of each

fragment as a painted pane of glass. The painted region corresponds to

the part of the fragment which is covered by a polygon. The clear region

corresponds to the part of the fragment which is not covered. Simply put,

the fragment packer finds the average color of a fragment. The following

equation finds this average:

Cfinal = CtAi + C 1 A 1 (6.3)

where

Cfinal is the average color;

Ci is the color of the painted portion of the fragment;

Ci_ 1 is the color which shines through the clear region of the

fragment;

Ai is the region of the fragment which the pain covers;

and Ai_ 1 is the area of the clear region;

Note that the area Ai_ 1 can also be thought of as the area of the visible

region of the fragment behind, fragment N in figure 6.11.

For the first fragment on the list, fragment M (figure 6.11), the areas

Ai and A,_ 1 are known: Ai is given and the visible region of the second

fragment, M, Ai_ 1, is equal to 1.0 - A1 . The color Cj- 1 , however, is not

yet known. Therefore, before calculating the color of M, one must first

calculate the color, Ci_1, of fragment N.

56

M NO

ii-1 1-2

Figure 6.11: A list of fragments in a pixelstruct.

The color Ci_1 is the average color of the visible region of fragment N

in figure 6.11. This region consists of a clear and a painted region. Finding

the average color of the visible region of fragment N is a similar problem

to finding the average color of fragment M. Thus equation 6.3 again can be

used to find Ci- 1.

-Restating equation 6.3, the following recursive equation is used to find

the average color of fragments from opaque polygons:

Caverage = PA, + TQj (6.4)

T= P- 1 Aj- 1 + T- 1 Qj- 1

Q = Qji - Ai

To= Cbackground

where

Caverage is the final value for the fragment;

P is the color of the covered region of the current fragment;

57

P,-1 is the color of the covered region of the next fragment

on the list;

Ai is the area of the covered and visible region of the current

fragment;

Aj_ 1 is the area of the covered and visible region of the next

fragment on the list.;

T is the color of the region of the current fragment which is

not covered;

Ti_ 1 is the color of the uncovered region of the next fragment on

the list.

Qj+i is the area of the uncovered and visible region of the

previous fragment on the list.

Qj is the area of the uncovered and visible region of the

current fragment;

and Qj_1 is the area of the uncovered and visible region of the

next fragment on the list.

So far, packing fragments from only opaque polygons has been ad-

dressed. If a fragment is transparent, both the covered and uncovered

regions of the fragment are influenced by fragments behind. Therefore, the

color of both regions has to be found by the following recursive equation:

Caverage PtotaLAi + T1Qj (6.5)

where

Ptotai = P;(1.0 - transparency) + Pi-1 (transparency)

58

Ptotalo = Po(1.0 - transparency) + Packground (transparency)

Ti = Ptotali_,Ai-i + T- 1 Q1

To = Pbackground

= +1 ~ Ai

Ptotai is the final color of the current fragment;

Ptotai_ is the final color of the next fragment on the list;

Ptot,. 0 1 is the final color of the last fragment on the list;

Qj+1 is the area of the visible and uncovered

region of the fragment on the list.

and

Q is the area of the visible region of the current fragment.

Notice that Q must be passed down from one level of recursion to the next

and deeper level.

Implementation of the Fragment Packer

When the fragment packer is implemented, both the covered and uncovered

regions are represented by bitmasks. The area of a mask can be found by

simply counting the percentage of "on" bits.

In the algorithm presented above, two areas, A and Q, must be cal-

culated. Let MA be the bitmask defining the region A and Mg be the

bitmask define the region Q. The following relationships are used to find

these bitmasks:

59

MA, = MQ, 1 n Mi (6.6)

MQ = MQ 1 nAM

Mini= I

where I is a full mask.

6.4 Summary

After the ponts have been sampled and transformed into image space, a

facsimile of the surface is reconstructed on the viewing plane. The surface

is reconstructed one polygon at a time. Each polygon is filled by scan

conversion. By modifying the scan conversion algorithm, its vertex values

can be interpolated over the interior of the polygon. The polygon is then

broken into pixel-sized fragments. These fragments are stored in the a-

buffer. After all the polygons have been processed, the fragments in the

a-buffer are packed to create the final image.

60

Chapter 7

Conclusion

The three dimensional rendering pipeline is well established, so are its dif-

ficulties. Although the pipeline is conceptually simple, implementations of

it are notoriously inelegant, and the resulting code undecipherable. Given

the limitations of a serial processor, these labyrinthine programs are in-

escapable. However, freed of these limitations in a parallel processing en-

vironment, one can construct a simple, modular, and easy to maintain

rendering pipeline. In the following conclusion, the serial pipeline is re-

viewed and its major weaknesses noted. With these limitations in mind, a

proposal for a modular parallel rendering pipeline is presented.

7.1 A Look Back

In the preceding chapters, the algorithms used to create a shaded image

from a three dimensional polygonal database have been described. This

pipeline of algorithms was divided into three phases: sampling, mapping,

61

and reconstruction.

7.1.1 A Quick Review

Sampling The initial sampling process converts each continuous surface

into a manageable network of polygons. Each vertex in the network repre-

sents a sample point from the original surface. A second round of sampling

occurs after the objects have been assembled into a coherent scene in eye

space. With the surface normals in eye space, the vectors from the vertices

to the lights in eye space, and the vectors from the eyepoint to the vertices

in eye space, all the relevant information is in place to illuminate the sur-

face. Having prepared the illumination data, the next step is to link the

points in eye space to a position on the screen.

Mapping The mapping from eye space to the screen is performed by

applying the viewing transformations to each vertex in eye space. After

these transformations, each vertex contains its illumination parameters in

eye space and a location in image space on the screen. 1

Reconstruction The last phase of the pipeline reconstructs the trans-

formed surface. To reconstruct the surface, the scan converter fills each

polygon with illumination data interpolated from the vertices. Given this

data, the illumination function calculates a color for each point inside the

polygon. The resulting pixel-sized regions of the polygon are converted into

'If Gouraud shading is being used, the illumination calculation is performed at this

point; the transformed point contains a color instead of the illuminated parameters.

62

pixel fragments and inserted into the a-buffer. Finally, after all the poly-

gons have been processed, the fragment packer calculates the color value

for each pixel on the screen. The image is then displayed.

7.1.2 Limitations

Over the years that the algorithms in the pipeline were developed, the algo-

rithms were molded by the available hardware. In the beginning, the algo-

rithms were designed for machines which, by today's standards, lacked both

processing power and memory. As processing power and memory became

cheaper, the antiquated algorithms gave way to calculationally complex al-

gorithms such as ray tracing, and memory intensive algorithms such as the

a-buffer. At the present, the constraints limiting the rendering algorithms

come not so much from lack of memory or processing speed, but from the

sequential nature of the von Neumann computer.

The effects of these limitations are especially apparent in the recon-

struction phase of the rendering pipeline. When an image is reconstructed,

the pixels are processed one at a time. For a screen resolution of 1,000 x

1,000 pixels, up to a million pixel calculations must be performed. So that

each pixel does not have to be calculated from scratch, the reconstruction

algorithms take advantage of the spatial coherence of the image to carry

information from one pixel calculation to the next. Thus, at a fundamen-

tal level, the limitations of a sequential computer have have shaped the

reconstruction algorithms.

Consequently, the algorithms are efficient, but the programs they pro-

63

duce are difficult to modify and to comprehend. Since information from

one pixel is used as a starting point for the next pixel calculation, it is

desirable to calculate as much information regarding one pixel as possible

before moving on. Thus, scan conversion, interpolation, illumination, and

anti-aliasing are rolled into one large function, the tiler. The tiler performs

each of these functions on one pixel before moving to the next.

The constituents of the tiler are heavily interdependent. For instance, if

one wishes to alter the interpolation function, one would also have to modify

the scan conversion algorithm, and possibly the anti-aliasing function. The

tiler is hard to understand because it is large; its constituent functions are

not easily divided into manageable chunks of code. In summary, the drive

to make the serial reconstruction of an image efficient resulted in programs

that are both difficult to understand and difficult to modify.

With memory cheap and parallel machines already here, it is useful to

reconsider the present rendering pipeline. The following is a proposal for a

more modular rendering pipeline.

7.2 A Look Ahead

In order to overcome the limitations in the current pipeline, a new pipeline

should fulfill two criteria: it should be easy to modify, and it should be

adaptable to parallel processing. For the pipeline to be easily modified,

each function in the rendering pipeline should exist as a distinct module.

Each of these modules should handle a variety of data types; the same

modules should be used by Gouruad and Phong shading, with or without

64

the a-buffer. If the pipeline is decomposed into modules which closely

mirror the functions found in the pipeline, the resulting program will be

easy to understand.

To make the pipeline adaptable to parallel processing, each function

in the pipeline should apply to one of the three pervasive data structures:

points, polygons, or pixels. Thus, the same function could be applied to a

number of chunks of data simultaneously. An added benefit of a modular

pipeline is that the pipeline can be converted easily from serial to paral-

lel processing by replacing each serial module with an equivalent parallel

module.

7.2.1 An Overview of the Proposed Pipeline

The proposed pipeline is divided into three steps: mapping, reconstruc-

tion, and picture generation. (It is assumed that the data coming into the

pipeline has already been sampled in object space; it is already a database

of polygons.) The mapping step is performed by the modeling matrices

and the viewing transformations. Reconstruction corresponds to the inter-

polation and scan conversion steps of the traditional pipeline. And, image

generation is similar to the a-buffer's fragment packer. Each of these steps

can also be divided according to the type of data it processes. The mapping

module transforms points; the reconstruction module fills and interpolates

polygons; and the image generation module processes pixels.

Mapping Points The mapping module is the same as in the traditional

rendering pipeline. Since the same pre-calculated matrix can be applied

65

Polygons Polygon Buffers Screen Buffer

m _ Final
~ -Image

Figure 7.1: An overview of the data structures.

to all the points simultaneously, this module easily can be converted to a

parallel process.

Reconstructing Polygons The reconstruction module is broken into

three sub-modules. The first, the scan converter fills a polygon defined by a

list of vertices with a grid of points. The next sub-module, the interpolator,

attaches data interpolated from the vertices to each point inside of the

polygon. The final module, the fragment creator, generates the appropriate

pixel fragment for each pixel in the polygon.

Generating Pixel Colors The image generator converts the data stored

at each pixel into an r, g, b value. For Gouraud shading, the image genera-

tor merely returns the existing r, g, b values. For Phong shading, the image

generator performs the illumination calculation. And, for an a-buffer algo-

rithm, the image generator packs each fragment list.

66

7.2.2 Data Structures

An overview of how the data structures relate to the pipeline can be found

in figure 7.1.

Mapping Points

For mapping points from eyespace to display space, the data structures

will depend on the details of the system. Conceptually, the point data

structures used in the traditional pipeline will suffice.

Reconstructing Polygons: The Polygon Buffer

To reconstruct the polygons, a new data structure is introduced - the poly-

gon buffer. The polygon buffer is a two dimensional array the size of the

polygon's bounding box. Each element in the array corresponds to a pixel.

The purpose of the polygon buffer initially is to store the vertices of a poly-

gon. After the polygon is scan converted, the polygon buffer contains the

filled polygon.

Each element in the buffer contains a z value used for hidden surface

removal. The other data filling the polygon will vary depending on the

rendering model being used. For Gouraud shading, each element in the

buffer will contain a color; for Phong shading, each element will contain

two vectors, 2 and the information necessary for illumination; and, for an
2 The location of the lights is stored separately. Since the eye to surface vector was

calculated in eye space, the vector is also the location of the sample in eye space. Therefore,

the light vectors can be derived by subtracting the eye to surface vector from each light

vector.

67

a-buffer algorithm, each element will contain a fragment.3 Therefore, the

elements in the buffer must be flexible enough to accommodate a num-

ber of different structures efficiently. The implementation of this feature

varies according to the limitations of the programming language. A flag is

included to indicate what type of data is stored.

Image Generation: The Screen Buffer

The screen buffer is similar to the a-buffer; it serves as a buffer to store

data describing an image until that data is converted into r, g, b values. The

screen buffer is the same size as the final image; each element in the buffer

corresponds to a pixel. At each element, a z value is stored. As in the z-

buffer, this z represents the distance to the closest surface from that pixel.

The data loaded into the screenbuffer differs according to which rendering

model is being used. If Gouraud shading is used, the buffer will contain

the color value for the final image. For Phong shading, the buffer will

contain the information necessary for an illumination calculation, that is, a

surface normal, a vector from the eyepoint to the surface, the color of the

surface, and the other illumination parameters. If the a-buffer algorithm is

being used, each element contains a pixelstruct similar to the pixel struct

described previously.

3The fragment will be a slightly expanded version of the fragment used in the a-buffer.

The vectors used in Phong shading will be included in the fragment.

68

The Reconstructer

Figure 7.2: The functions in the reconstructer.

7.2.3 Functions

For each of the data structures described in the previous section, there is

an associated function. These functions pass over the data in the buffers,

modifying the buffers contents as it goes. The following section describes

these functions.

Mapping Points

The modeling matrices and the viewing transformations are applied to each

point.

Reconstructing Points: The Reconstructer

The reconstructer passes over a polygon buffer containing the vertices of a

polygon and the associated illumination information and returns a buffer

filled with interpolated values and pixel masks. Three separate modules

are composited to form the reconstructer. (See fig. 7.2.) Depending on the

type of data within the buffer, the reconstructer behaves differently. The

69

L\-> Scan Bitmask
Converter Interpolator + Creator +4.t1

first step, then, is to query the flag in the buffer find what type of data is

in it. With the data types known, the interpolator can proceed, using the

correct functions for the data.

The first module, the filler, determines which points are inside the

polyon, which are outside, and which lie on the edge. With a serial ma-

chine, this can be accomplished with the standard scan conversion algo-

rithm. With a parallel machine, each pixel can be tested against the edges

concurrently. Thus, a simple algorithm to decide if the pixel is in, out, or

on the edge of a polygon can be used. Once the state of the each pixel is

determined, each pixel is given an "in", "out," or "on the edge" value.

The next module, the interpolator, interpolates the values found at the

vertices of the polygon. Only pixels that are either in the polygon or on

the edge are given values. Once again, for a serial machine, the standard

scan conversion algorithms used to interpolate the values can be used. In

a parallel environment, an analytic function can be used to find interpo-

lated values simultaneously for each pixel in the polygon. (See [141 for and

example.)

Finally, if the image is to be anti-aliased, the final function, the mask

creator, is applied to the polygon buffer. Using techniques described in by

Fiume[15], the creator makes a pixel mask for each pixel in the buffer.

Generating an Image: The Image Function

As each polygon passes through the reconstructer, it is loaded into the

screenbuffer. There the data is kept until all of the polygons have been

loaded. Then, the image function is passed over the loaded screen buffer.

70

The image function transforms the data stored at each element in the

screenbuffer into r, g, b values. Like the reconstructer, the image function

conforms to the data in the buffer; it behaves differently depending on the

contents of an element. Before it acts on each element in the buffer, the

image function checks the element's flag to determine the data type found

in the element. It then acts upon the data accordingly.

For Gouraud shading, the image function does not act; it leaves the

existing r, g, b values in the buffer. For Phong shading, the image function

performs an illumination calculation using the values stored in the buffer

and a list of lights found outside of the buffer as parameters. Note that by

changing the list of lights while keeping the contents of the buffer constant,

it is possible to test different light positions and colors quickly. If the a-

buffer algorithm is being used, the image function acts like the fragment

packer described earlier. Since each pixel is processed independently, the

image function can be applied to each pixel concurrently.

7.2.4 Summary

The pipeline (see fig7.3) proposed above transforms a polygonal object in

object space into a shaded image on the screen. The first step of the pipeline

is to transform all the vertices into image space. Once all of the vertices

have been transformed, each polygon is loaded into its own polygon buffer.

In the polygon buffer, the filler function passes over the buffer, changing

the wireframe polygons into solid surfaces. After the filler is done, the

interpolator assigns values interpolated from the vertices of the polygon.

71

The Pipeline

Viewing

Transformation f~

PONS

Polygon Buffer

Reconstructer

Filler Interpolator Bitmask Creator

FaMN

Screen Buffer

PDELS

Figure 7.3: The proposed rendering pipeline.

Image Function

The last step in the polygon buffer is to convert each pixel-sized region

within the polygon into a fragment. Passing over the polygon buffer one

at a time, each of the above modules can process the points in the buffer

concurrently. Furthermore, all the polygons of a scene can be processed

simultaneously (barring memory and processor limitations.)

After the interpolator is through with the polygon, the polygon is loaded

into the screenbuffer. The points in a polygon can be loaded concurrently,

but because of the sequential nature of the z comparisons needed for hidden

surface elimination, the polygons must be loaded one at a time. However,

as Crow[12] points out, a certain degree of parallelism can be achieved

in this step by subdividing the screen into areas that can be rendered

independently. Once all the polygons are loaded into the screenbuffer, the

image function packs the information stored at each element into an r, g, b

value. Since each pixel is independent from the next, the image function

can work simultaneously on all of the pixels.

The pipeline described above is arranged so that one module at a time

acts on one type of data. The points are processed in one batch by the

viewing transformations; the polygons are all processed by the reconstruc-

ter; and finally, all the pixels are processed together by the image function.

Since each module contains only one function, the pipeline is easy to mod-

ify; to change a function, one has to change only one black box. And finally,

since each function acts on a large amount of similar data, the pipeline is

well suited for parallel processing.

73

7.3 Conclusion

Having had its foundations laid in the 1960's and early 1970's, computer

graphics has been steadily building up from its origins. The fundamental

techniques underlying both polygonal rendering and ray tracing were es-

tablished early on in the history of computer graphics. In 1984, with the

introduction of distributed ray tracing and the a-buffer, it appeared that

the details were also in place.

Parallel processing, however, has been rocking the foundations. No

longer are the tried and true methods sufficient; as is exemplified by the

scan conversion algorithm, much of the effort in the past has been defined by

the limitations of a serial computer. In the future, many of the fundamental

algorithms will have to be re-thought. As the golden age of serial computer

graphics is coming to a close, a new era dominated by parallel processing

is beginning.

74

Appendix A

Rendermatic

Rendermatic is a set of library routines written in C which render three-

dimensional polygonal objects. At its core, the package supports wireframe

rendering, Gouraud and Phong shading, multiple lights sources, z-buffer

hidden surface elimination, and an a-buffer for anti-aliasing, transparency,

and picture compositing. These routines are not meant to be a single pro-

gram complete with a user-interface and transparent functionality. Instead,

these routines form a package of subroutines called from a C program.

Thus, the package serves as the basis for a wide variety of applications.

Although the system was developed on a Digital Equipment Corp. VAX

785 accompanied by a Ramtek 9300 framebuffer, the code was written

in a device independent manor. At present, while running on the VAX,

Rendermatic supports a Rastertek framebuffer. Additionally, Rendermatic

runs on the Hewlett-Packard Model 3000 workstation.

After Rendermatic reads the object data in from a file, the data is con-

verted to Rendermatic's own internal data structures. These data struc-

75

tures contain a list of attributes describing how their data should be ren-

dered. These data structures are sent through the rendering pipeline and

rendered according to these attributes. If no attributes have been set, Ren-

dermatic provides default values. One need only specify an attribute if the

default is insufficient.

The following section describes the data-structures and their associated

functions. Afterwards, the rendering functions are presented and discussed.

76

Appendix B

The Data Structures

Rendermatic organizes the data describing a surface into four major lev-

els of detail: points, polygons, polyhedra, and objects. Points represent

samples taken from the ideal, continuous surface at the outset of the ren-

dering pipeline. These samples, coupled with information regarding their

connectivity, pull together to form a polygon. One polygon describes a

region defined by a set of connected sample points. When all the polygons

of a surface are grouped together, they form a polyhedron. A polyhedron

represents a surface in one of the succession of spaces visitied during the

viewing transformations. There is one polyhedron for each of these spaces.

Each of the polyhedra describe the same surface. An object serves as the

umbrella covering each of the polyhedra descendant from one surface.

At each of these levels of detail, Rendermatic divides the data into two

classes: information regarding the basic shape of surface, and information

describing the quirks of a specific object. This division allows the data

describing numerous instances of the same class of object to be stored effi-

77

ciently. Each instance of an object can share a large amount of data with

other objects from that class. For example, each maple leaf in a forest

has roughly the same shape. This shape can be generated by modifying a

generic maple leaf template. Thus, the data points describing the template

need to be stored only once. While the general shape of a surface is com-

mon to each instance, the color, luster, and other characteristics caused

by illumination tend to vary from one instance to another. Additionally,

the scale, orientation, and location of each instance can differ for each ob-

ject. These data describing the quirks of an individual surface are stored

separately for each instance. By separating the information describing the

generic shape of the surface from rest of the surface data, Rendermatic

efficiently shares the shape information, yet allows each object to retain its

own characteristics.

Once an object starts through the viewing transformations, the infor-

mation describing its particular quirks does not change, only the points

describing its shape do. Therefore, as the object moves from world space

to image space, only the points have to be copied; the other information

can be shared throughout the viewing transformations. During the viewing

transformations, the split between the location information and the object's

attributes allows the object to exist simultaneously in the different space

encountered during the viewing transformations while sharing the same

attribute information.

The data structures are shown in block diagram form in figure B.

The OBJECT, POLYHEDRON, POLYGON, and POINT structures ref-

erence the generic shape data shared by each instance of the object. The

78

Figure B.1: The object data structures.

79

OBJ_INFO, POLYINFO, and PT-INFO structures contain the informa-

tion specific to one instance of the object.

80

B.1 The Object Structures

The structure for an object is the following:

typedef struct

{ POLYHEDRON *wph

POLYHEDRON *eph

POLYHEDRON *cph

POLYHEDRON *dph

POLYHEDRON *iph

OBJINFO *info

}OBJECT;

The object is the broadest representation of a polygonal surface. Each

object represents one instance of a surface. The major structures within an

object are one polyhedron for each space visited during the viewing trans-

formations and a structure, the OBJINFO structure, containing qualities

specific to this instance of the surface. Unless otherwise specified, the data

in the OBJ.INFO structure is inherited to the more detailed structures

constituting the object.

B.1.1 Object Information

The OBJ-INFO structure looks like the following:

ypedef struct

{ Matrix M

Color *color

81

OPTICAL *optical

Light *spots

char *texture-nap

char *detail

int flag

} OBJINFO;

The following is a description of each of the fields in the info structure,

and the functions which manipulate them.

M M is the modelling matrix which defines the position, orientation, and

scale of the surface in worldspace.

RotateObject(name, rotation-matrix)

string *name

Matrix rotation-matrix

ScaleObject(name, scale-matrix)

string *name

Matrix scale-matrix

TranslateObject(name, translation.matrix)

string *name

Matrix translation-matrix

obj scale(obj, sx,sy,sz)

OBJECT *obj

WorldType sx,sy,sz

obj-rotate(obj, rx,ry,rz)

OBJECT *obj

82

WorldType rx,ry,rz

obj.translate(obj, dx,dy,dz)

OBJECT *obj

WorldType dx,dy,dz

obj-reorigin(obj)

This function sets the modelling matrix to the identity matrix.

OBJECT *obj

Matrix *obj get-get..matrix(obj)

OBJECT *obj

Color Color is a pointer to a color structure containing the r,g,b values

for the entire object. Unless the color of a polygon, or a color of a point

is explicitly set, every polygon and every point of a surface will have this

color.

obj -set_color(obj,r,g,b)

OBJECT *obj

ColorType r,g,b

objget_color(obj,r,g,b)

OBJECT *obj

Colortype *r,*g,*b

Optical Optical is a pointer to the optical structure containing the light

information for the entire object. Like the color structure, the optical will

be inheritied by each polygon and point unless the optical information for

83

a point or a polygon is set explicitly.

obj set-optical(obj, optical)

OBJECT *obj

OPTICAL *optical

obj .get.-optical(obj, optical)

OBJECT *obj

OPTICAL *optical

obj set-shading-params(obj, diffuse, specular, exponent, ambient)

OBJECT *obj

WorldType diffuse, specular, exponent, ambient

obj-get-shading-params(obj, diffuse, specular, exponent, ambient)

OBJECT *obj

WorldType *diffuse, *specular, *exponent, *ambient

objset-fudge(obj, fudge)

Fudge is the fudge factor used in most simple illumination models.

OBJECT *obj

WorldType fudge

obj-get-fudge(obj, fudge)

OBJECT *obj

WorldType *obj

obj set ..transparency (obj, transparency)

OBJECT *obj

WorldType transparency

obj get transparency (obj, transparency)

OBJECT *obj

WorldType *transparency

84

Spotlight Spotlight is the list of lights which illuminate this object.

This list can be a subset of all the lights illuminating a scene.

obj-add.ight(obj, light)

OBJECT *obj

Light *light

obj-del-ight(obj, light)

OBJECT *obj

Light *light

Texture Map Texture map is a slot reserved to point to the file contain-

ing a texture map for the object.

Detail Detail is a file pointer pointing to the ".det" file describing object

data in Ohio State format.

Flag Flag contains bits used to indicate which object attributes are on

or off.

Smooth or Faceted ?

obj -set-faceted(obj)

OBJECT *obj

int obj-is-faceted(obj)

Returns "True" if the object is faceted.

OBJECT *obj

obj -set.-smooth(obj)

OBJECT *obj

int obj is-smooth(obj)

OBJECT *obj

Gouraud, or Phong Shaded ?

obj set-gouraud(obj)

OBJECT *obj

obj-set-phong(obj)

OBJECT *obj

int obj -get..shading -model(obj)

OBJECT *obj

Should the object be backface culled ?

obj -set-backfacecull(obj)

OBJECT *obj

obj-unset-backfacecull(obj)

OBJECT *obj

int obj -iscullable(obj)

OBJECT *obj

Should the Object be posted on the list to be rendered?

obj-post(obj)

OBJECT *obj

obj-unpost(obj)

OBJECT *obj

int obj-isposted(obj)

OBJECT *obj

Return the flag

86

int obj -get-flag(obj)

OBJECT *obj

Name Name is a string containing the name of the object.

obj..set..name(obj, name)

OBJECT *obg

string *name

obj -get-name(obj)

OBJECT *obj

OBJECT *obj -name2ptr(name)

string *name

Next Next is an object pointer pointing to the next object on the list.

These functions are used to cycle through lists of objects.

int obj-is-tail(obj)

Returns "True" if the object is at the end of the list.

OBJECT *obj

*OBJECT obj-get-head()

Returns returns the head of the object list.

B.1.2 A Polyhedron For Each Space

Each of the polyhedra within the object represents the polyhedron in each

of the spaces visited during the viewing transformations.

87

wph Wph slot is reserved for a polyhedron in world space.

obj-get-wph(obj)

OBJECT *obj

eph Eph is a slot reserved for a polyhedron in eyespace.

obj-get-eph(obj)

OBJECT *obj

cph Cph is slot reserved for a polyhedron in clipping space.

objget-cph(obj)

OBJECT *obj

dph Dph is a slot reserved for a polyhedron in display space.

obj-get-dph(obj)

OBJECT *obj

iph Iph is a slot reserved for a polyhedron in image space.

obj-get-iph(obj)

OBJECT *obj

88

B.1.3 Functions that apply to the whole object

OBJECT *obj-alloc()

obj -free(obj)

OBJECT *obj

obj-init(obj)

Initializes the object with all the default values.

obj -cull(obj)

Backface culls an object.

OBJECT *obj

B.1.4 Transforming the Object

obj _wsp2esp-wireframe(obj)

Transforms an object from world space to eyespace.

This routine is used if the object will be a wireframe drawing.

OBJECT *obj

obj wsp2esp-zb(obj)

OBJECT *obj

Transforms an object from world space to eyespace.

This routine is used if smooth shading is being used.

obj-esp2csp(obj)

OBJECT *obj

Transforms an object from eyespace to clipping space

(the canonical viewing frustrum.)

obj csp2dsp(obj)

89

OBJECT *obj

Transforms the object to floating point display space.

obj-dsp2isp(obj)

OBJECT *obj

Transformas the object to integer image space.

90

B.2 The Polyhedron Structure

A polyhedron describes an entire surface in one of the spaces encountered

during the viewing transformation. The information in the polyhedron is

divided into shape information and illumination information. The shape

of the polygon is described by an array of polygons, an array points, and

an array of edges. For the polygon array and the point array there is a

corresponding array describing the characteristics of the surface when it is

illuminated. This information is specified by an array of point information

structures, and an array of polygon structures.

The elements within the point and point information arrays correspond

exactly. Similarly, the elements within the polygon and polygon informa-

tion arrays correspond exactly. For example, the information in the fifth

cell in the polygon array describes the same polygon as the information in

the fifth cell of the poly-info array. Given the index of a point, one can

gather all the information relevant to the point by using this index to access

the array of points and the array of point information. Similarly, all the

information relevent to a polygon can be found by accessing the polygon

array and the polygon information array with the polygon's index.

This correspondence holds true not only for the arrays within one poly-

hedron, but also for the point, polygon, and edge arrays within all polyhe-

dra found in an object. The zth point refers to the same point in the world

space polyhedron, the eyspace polyhedron, the clipped space polyhedron,

the display polyhedron, and the image space polyhedron. Thus, one index

can access a specific point in all of the polyhedra within an object. The

91

same holds true for the pt-info arrays, the polygon arrays, the poly-info

arrays, and the edge arrays.

The following is the polyhedron structure:

typedef struct

{ short

short

short

POINT

PTINFO

POLYGON

POLY-INFO

EDGE

Vector

}POLYHEDRON

Nopts

Nopolys

Noedges

*pts

*pt-info

*polys

*poly-info

*edges

bbox[2]

The following is a description of the fields in the POLYHEDRON data

structure, and their associated funtions.

Nopts Nopts contains the number of points in the polyhedron.

ph-set-nopts(ph)

POLYHEDRON *ph

int ph-get-nopts(ph)

Returns the number of points in a polyhedron.

POLYHEDRON *ph

92

Nopolys Nopolys contains the number of polygons in the polyhedron.

int ph-get-nopolys(ph)

Returns the number of polygons in a polyhedron.

POLYHEDRON *ph

ph-set-nopolys(ph)

POLYHEDRON *ph

Noedges Noedges contains the number of edges in the polyhedron.

int ph-get-noedges(ph)

Returns the number of edges in the polyhedron.

POLYHEDRON *ph

ph-set-noedges(ph)

POLYHEDRON *ph

pts Point is a dynamically allocated array of all the POINT structure for

the polyhedron. The index used to a specify a point in the pts array will

specify the same point in the pt-info array.

POINT *ph-get-pts(ph)

Returns a pointer to the array of points in the polyhedron.

POLYHEDRON *ph

93

ptinfo Pt info is a dynamically allocated array containing all the PTINFO

structures for the polyhedron. The index used to specify a point in the

pt-info array will specify the same point in the pts array.

PTANFO *ph-get-pt-info(ph)

POLYHEDRON *ph

Returns a pointer to the array of point information

structures in the polyhedron.

polys Polys is a dynamically allocated array containing all the POLY-

GON structures for the polyhedron. The index used to specify a polygon

in the polys array will specify the same polygon in the poly-info array.

POLYGON *ph-get-polys(ph)

POLYHEDRON *ph

Returns a pointer to the array of polygon structures in

the polyhedron.

poly-info Poly-info is a dynamically allocated array containing all the

POLY-INFO structures for the polyhedron. The index to used specify a

polygon in the poly-info array will specify the same polygon in the polys

array.

POLYINFO *ph get poly-info(ph)

POLYHEDRON *ph

Returns a pointer to the array of polygon information structures in

the polyhedron.

94

edges Edges is a dynamically allocated array containing all the EDGE

structures for a polyhedron.

EDGE *ph get edges(ph)

Returns a pointer to the array of edges int the polyhedron.

POLYHEDRON *ph

bbox Bbox is an array of two coordinate triplets (x,y,z). The first coordi-

nate contains the minimum x,y, and z value of the polyhedron. The second

coordinate contains the maximum x,y, and z value of the polyhedron.

ph-set-bbox(ph, xmin,ymin,zmin,zmax,ymax,zmax)

POLYHEDRON *ph

WorldType xmin, ymin, zmin, zmax, ymax,zmax

ph-get bbox(ph,xmin,ymin,zmin,xmax,ymax,zmax)

POLYHEDRON *ph

WorldType *xmin,*ymin,*zmin,*xmax,*ymax,*zmax

B.2.1 Allocating and De-allocating Polyhedra

POLYHEDRON *ph-alloc()

phfree(ph)

POLYHEDRON *ph

95

B.2.2 Transforming the Polyhedra

ph.wsp2esp(ph, vm, mm, flag)

POLYHEDRON *ph

Matrix vm (The view matrix)

Matrix mm (The modelling matrix)

int flag (The type of perpective,ORTHOGONAL or PERSPECTIVE.)

ph-esp2csp(ph,nr, perspective)

POLYHEDRON *ph

Matrix nr (The right normalization matrix.)

ph-csp2dsp(ph, dm)

POLYHEDRON *ph

Matrix din (The display matrix.)

ph-dsp2isp(ph)

POLYHEDRON *ph

B.2.3 General Polyhedron Functions

ph-cull(ph)

POLYHEDRON *ph

ph-get.centroid(ph)

POLYHEDRON *ph

ph.findsilhouette(ph)

Marks the edges on the silhouette of the polyhedron.

POLYHEDRON *ph

96

B.2.4 Accessing Polyhedra from the Object Level

POLYHEDRON *obj-get-wph(obj)

OBJECT *obj

POLYHEDRON *obj-get-eph(obj)

OBJECT *obj

POLYHEDRON *obj-get-cph(obj)

OBJECT *obj

POLYHEDRON *obj-get.iph(obj)

OBJECT *obj

97

B.3 The Polygon Structure

The polygon structure defines the topology of a polygon. The information

regarding the illumination and rendering attributes of a polygon can be

found in the polygon information structures. The actual points and edges

are not contained in the polygon structure. Instead, the indices into the

point and edge lists are stored.

The POLYGON data structure:

typedef struct

{ short

short

short

Vector

}POLYGON;

The following

structure:

Noindices

*pt-indices

*edge-indices

normal

is a description of the fields found in the POLYGON

Noindices Noindices is the number of vertices and edges in the polygon.

poly -set-noindices(poly, numb)

POLYGON *poly

int numb

int poly-get-noindices(poly)

POLYGON *poly

98

Pt-indices Pt-indices (point indices) is a dynamically allocated array

filled with the indices of the constituent points of the polygon. An index

from the pt-indices array can be used to access pts array and pt.info array

found in a polyhedron to obtain information about a specific point.

poly-set-index(poly, which, index)

POLYGON *poly

int which (This is which vertex is being set)

int index (This is the point index that the vertex is being set to.)

int poly -getpt-index(poly, which)

If "which" is 3, then this routine would return the point index of the

third vertex.

POLYGON *poly

int which

EdgeIndices Edge-indices (edge indices) is a dynamically allocated ar-

ray filled with the indices of the edges which form the polygon. Information

about the edge can be found by using an index from the edge-indices to

access the edge in the edge array found in a polyhedron.

poly .get-edge-index(poly, which)

POLYGON *poly

int which

Normal Normal is a vector representing the surface normal of the poly-

gon.

99

poly-set-normal(poly, x, y, z)

POLYGON *poly

WorldType x.y,z

poly-get-normal(poly, x, y, z)

POLYGON *poly

WorldType *x, * y, *z

B.3.1 Allocating and De-allocating Polygons

*POLYGON poly -alloc(numb)

Returns the address of the top of an array of polygons.

int numb

poly -free(polys, numb)

Frees a block of polygons.

POLYGON *polys

int numb

B.3.2 Polygon Extent

poly _find-extent(poly, pts, xmin, ymin, zmin, xmax, ymax, zmax)

POLYGON *poly

POINT *pts (This is the point list into

which the polygon vertices index)

100

B.4 The Polygon Information Structure

The polygon information structure (POLY-INFO) contains all the informa-

tion describing how a region within a polygon interacts with light and how

it should be rendered. If any of the elements in the POLYINFO structure

are empty, when queried, the values returned will be inherited from the

OBJ-INFO data structure.

The POLYINFO structure:

typedef struct

{ Color *color

OPTICAL *optical

Spotlight *spots

}POLYINFO;

The following is a description of the fields within the POLY-INFO data

structure:

Color Color is a pointer to a color structure of r,g,b values describing the

color of the region within the polygon. If the color pointer is NIL, then the

color stored in OBJINFO will be returned as the color of the polygon.

poly _info.set-color(r,g,b)

ColorType r, g, b

poly-info-get-color(r,g,b)

ColorType *r,*g,*b

101

Optical Optical is a pointer to the optical properties of the polygonal

surface. If the optical pointer is NIL, then the optical structure is inherited

from the OBJ_INFO structure.

poly -info-set-optical(info, opt)

POLYINFO *info

OPTICAL *opt

OPTICAL *poly-info-get-optical(info)

POLYINFO *info

poly-info-set-shading-params(info,diffuse,specular,exponent, ambient)

POLY.INFO

WorldType diffuse, specular, exponent, ambient

Spotlights Spotlights is a list of lights that illuminate the polygon. This

list can be a subset of the list of lights that are illuminating the whole scene.

poly _info addiight(info, light)

POLYINFO *info

Light *light

poly _info.rm-ight(info, light)

POLY-INFO *info

Light *light

Flag Flag is an integer describing rendering attributes of the polygon.

poly-info-set-flag(info, flag)

102

POLYINFO *info

int flag

int poly info-getflag(info)

POLY-INFO *info

Faceted polygon, or smooth ?

poly _info.set _faceted(info)

POLY-INFO *info

int poly..info-is-aceted(info)

Returns "True" if the polygon is faceted.

POLY-INFO *info

poly _info-set _smooth(info)

POLYINFO *info

poly _info .is -smooth (info)

Returns "True" if the polygon represents a curved surface.

POLY-INFO *info

Gouraud or Phong shading ?

poly-info-set gouraud(info)

POLY INFO *info

poly..info -set _phong (info)

POLY-INFO *info

int poly-info-get-shading-model(info)

POLYINFO *info

Backface Culling the polygon.

poly-info-cull(poly, info, ph)

"De-activates" a polygon if it is facing backwards.

POLYGON *poly (The specific polygon)

103

POLY-INFO *info (The corresponding

POLYHEDRON *ph (The parent polyhedron.)

int poly info-isculled(info)

Returns "True" if the the polygon has been culled.

POLYINFO *info

B.4.1 Allocating and De-allocating Poly-Info

POLY.INFO *polyjinfo-alloc()

poly..info.free(info)

POLYINFO *info

104

B.5 The Point Structure

A point represents one sample point of a continuous surface. The POINT

data structure contains the shape information at one point on the surface.

The information describing the other attributes of the surface are found in

the PTINFO structure.

The information found in the POINT structure:

typedef struct

{ Vector point

Vector normal

}POINT;

The following is a description of each of the fields within the POINT

structure:

Point Point is a triplet (x,y,z) containing the coordinate of the sample

point.

pt-set..point(pt, x, y, z)

POINT *pt

WorldType x,y,z

pt-get-point(pt, x, y, z)

POINT *pt

WorldType *x, * y, *z

105

Normal Normal is a vector containing the direction of the surface normal

at the sample point. If the parent polygon is faceted, then the normal the

point returns is the surface normal of the polygon.

pt.set-normal(pt, x, y, z)

POINT *pt

WorldType x, y, z

pt-get-normal(pt, x, y, z)

POINT *pt

WorldType *x, *y, *z

B.5.1 Allocating and De-allocating POINTS

POINT *pt-alloc(numb)

int numb

pt-free(pt)

POINT *pt

106

B.6 The Point Information Information Struc-

ture

The PTINFO structure describes how one sample point on a surface inter-

acts with light. Information detailing the shape of the object at this point

can be found in the POINT structure.

The following information is found in the PTINFO structure:

typedef struct

{ Color *color

OPTICAL *optical

SpotLight *spots

int flag

}PTINFO;

The following is a description of the fields within the PTINFO struc-

ture:

Color Color is a pointer to a structure containing the r,g.b colors of the

surface at one point. If the color pointer is NIL, then the color value

returned is inherited from the parent POLYINFO structure. (Note that if

the color pointer in the POLY-INFO structure is NIL, then POLY.INFO

returns the color from the parent OBJINFO structure.)

pt-info -set-color(info, r, g, b)

PTINFO *info

WorldType r, g, b

107

pt-info-get-color(info, r, g, b)

PTANFO *info

WorldType *r, *g, *b

Optical Optical is a pointer to a structure containing the optical prop-

erties of the surface at this point. If the optical pointer is NIL, then the

optical structure returned is inherited from the parent POLYINFO struc-

ture. (Note that if the optical pointer in the POLY-INFO structure is NIL,

then POLY-INFO returns the optical structure from the OBJ-INFO.)

pt-info -set-optical(info, optical)

PTANFO *info

OPTICAL *optical

*OPTICAL pt-info-get-optical(info)

PTANFO *info

Flag

pt infolocal-max (info)

Marks a point as a local maximum of a polygon.

PTINFO *info

int pt info-islocal-max(info)

Returns "True" if the point is a local maximum.

PTANFO *info

108

B.6.1 Allocating and De-allocating PTANFO

PT-INFO *pt-info-alloc(numb)

int numb

pt-infolree(numb)

int numb

109

B.7 Optical

The optical structure contains the information describing how light inter-

acts with a surface. The optical structure is found at the point, polygon,

and object level of a surface. The optical properties are inherited from the

object to the polygon, then from the polygon to the point.

The OPTICAL structure:

typedef struct

{ ColorType

ColorType

ColorType

ColorType

ColorType

ColorType

}OPTICAL;

diffuse

specular

exponent

ambient

transparency

fudge

The follow is description of the functions and quantities found in the

OPTICAL structure:

Diffuse This real number is the diffuse component used in the lighting

calculation.

opt-set-diffuse(opt)

OPTICAL *opt

WorldType opt-get-diffuse(opt)

OPTICAL *opt

110

Specular This real number is the specular coefficient used in the lighting

calculation.

opt-set..specular(opt)

OPTICAL *opt

WorldType opt-get specular(opt)

OPTICAL *opt

Exponent This real number is the exponent used in Phong illumination

to define the spread of the specular highlight.

opt-set-exponent(opt)

OPTICAL *opt

WorldType opt-get-exponent(opt)

OPTICAL *opt

Ambient This real number is the ambient coefficient used in the illumi-

nation calculations.

opt..set-ambient(opt)

OPTICAL *opt

WorldType opt-get-ambient(opt)

OPTICAL *opt

111

Transparency This real number between 0.0 and 1.0 determines the level

of transparency of the object. If the object is transparent, the value is 1.0;

if the object is opaque, the value is 0.0.

opt..set-transparency (opt)

OPTICAL *opt

WorldType opt..get-transparency(opt)

OPTICAL *opt

Fudge This real number is the fudge factor used to attenuate the drop

off in illumination intensity.

opt -set-fudge(opt)

OPTICAL *opt

WorldType opt-get-fudge(opt)

OPTICAL *opt

B.7.1 Allocating and De-Allocating Optical Structures

OPTICAL *opt-alloc()

opt-free(opt)

OPTICAL *opt

opt-inherit(pt-info, poly-info, obj)

This routine attempts to return the optical at the point

level first. If the structure is NULL, then the routine

112

looks to the polygon level. If the polygon has not been

assigned an optical structure, the routine returns the

object's optical structure.

PTINFO *ptinfo

POLYINFO *poly-info

OBJECT *obj

113

Appendix C

Rendermatic Rendering

The first step in the rendering pipeline is to load the Rendermatic data

structures with objects. Objects are loaded into the Rendermatic data

structures by InstanceObject. All the surface normal calculations, vertex

normal calculations, and bounding box calculations are done in InstanceOb-

ject. After the data structure has been loaded, InstanceObject inserts the

new object into the object list.

Rendering an object in Rendermatic is simple; it involves one of two

commands, either Wireframe() or Rendermatic(. Wireframe renders a

wireframe representation of the objects; Rendermatic renders a smooth-

shaded representation. The modelling transformations, viewing transfor-

mations, and image reconstruction all occur within each of these com-

mands. The two rendering commands send one object at a time through

the pipeline. When an object reaches image space, it is reconstructed and

written to either a file or a framebuffer.

The viewing transformations are performed by the functions objwsp2esp,

114

objesp2csp, objcsp2dsp, and finally, obj-dsp2isp. After and object makes

it to image space, zbuffobject takes over. Zbuff.object splits the object into

polygons, sending one polygon at a time to be rendered by zbuff..poly. Inside

of zbuff-poly the polygon is loaded into the edge table (ET) by ET-load-poly.

The resulting ET is scan converted, interpolated, and rendered by zbuff-ET.

For Gouraud shading, illumination is performed in ET-load...poly; for Phong

shading, illumination is performed in zbuff-ET.

The special rendering options are specified by the attributes of the ob-

jects, not by the rendering functions. In short, the objects are loaded into

the data structures; then one of the rendering commands, either WireFrame

or Rendermatic, sets the rendering process in motion.

C..2 Wireframe Rendering

WireFrame() Wireframe draws a all of the objects posted on the object

list in a wireframe representaton.

The following functions set of wireframe attributes for the scene.

WireFrameQuickOn() When WireFrameQuick is set, only the bound-

ing boxes of each object are drawn.

WireFrameSilhouetteOn(),WireframeSilhouetteOff() When Wire-

frameSilhoueette is on, only the silhouettes of the objects are drawn. Wire-

frameSilhouetteOn ()

115

C..3 Rendering Shaded Images

Rendermatic() Rendermatic renders all the posted objects on the object

list. Depending on the state of the object, it will render each object with

Gouraud shading or Phong shading.

PostObject(obj), UnPostObject(obj) If an object is posted, then the

object will be rendered when Rendermatic or WireFrame is called.

Render2File(image,z) This function sets Rendermatic() to render the

image to a file. Image is the name of the image file, and z is the name of

the file to store the z-buffer.

RenderPrintf() This is similar to a "verbose" switch. This command

causes Rendermatic to write a message when it finishes rendering an object.

C.1 The A-Buffer

The following as a listing of the important data structures and functions

used for the a-buffer. They follow closely to the structures listed in the

paper [5] by Carpenter.

C.1.1 The Data Structures

Pixel Masks A pixel mask is two 32 bit words.

typedef struct byte pixelmask[8]

116

Fragment The fragment structure is similar to the fragment in Carpen-

ter's paper.

typedef struct fragmnt

{ struct _fragmnt

Color

WorldType

WorldType

OBJECT

pixelmask

WorldType

}fragment;

*next

color

opacity

area

*object-ptr

m

zmax, zmin

SimplePixel The SimplePixel structure is similar to Carpenter's struc-

ture.

typedef struct _fragmnt

{ Color color

WorldType coverage

}simplepixel;

PixelStruct

typedef struct _fragmnt

{
WorldType z

union

117

{
simplepixel simple

fragment *fragptr

}pixel;

}pixelstruct;

PixelMasklnfo The PixelMaskInfo stucture is unique to Rendermatic.

This is the buffer used to store pixel masks and their related information

during scan conversion. The buffer is explained more fully in Chapter 5.

typedef struct

{
WorldType

WorldType

pixelmask m

}PixelMaskInfo;

zmin,zmax

area

C.1.2 Functions

Loading the a-buffer

prepare -abuff-scanline(screen y, AET, pmaskiline)

ScreenType

ETElement

screen-y (This is the current scan line.)

*AET (This is the current active edge list.)

118

pmask-line[] (This is the mask buffer.)

Prepare-abuff-scanline calculates the area, pixel mask, zmin, and zmax for

each pixel on a scanline. This information is calculated before the scanline

is filled, and accessed when the scanline regions are being filled.

edge..to-pixel-masks(cur _x, cur-y, curz, max-y, dxdy, dzdy, edge-kind,

mask-line)

ScreenType

WorldType

ScreenType

int

WorldType

PixelMaskInfo

cur-x, cur.y

cur-z

max-y (This is the maximum value of the edge).

edge-kind (Indicates whether the edge is beginning or

end of a scanline region).

dxdy,dzdy (Incrments with respect to y)

pmask.line[] (This is the mask buffer.)

Edge to-pixel-masks loads the information from one edge into the mask

buffer. This routine is called by prepare abuff-scanline.

create -edge-mask (xy,edge-y max, incr, mask)

ScreenType

ScreenType

ScreenType

pixelmask

x,y (Where the scanline enters the pixel.)

edge-y-max (The maximum y value of the

current edge.)

incr (The increment in x with respect to y.)

mask (The mask returned from this function.)

119

PixelMaskInfo

This procedure converts the covered region of a pixel into a pixelmask.

calc pixel-area(cur-x,cur-y,dxdy)

ScreenType

ScreenType

cur-x, cur-y

dxdy

Given the point where an edge enters a pixel and 1/slope of the edge, this

routine returns the area of the pixel under the edge.

create frag (zmin,zmax,mask, area,opacity,r,g,b,A-buff)

Screentype zmin,zmax

pixelmask mask

WorldType area,opacity

ColorType r,g,b

pixelstruct **A-buff

This routine creates a fragment for one pixel

fragment-insert(p-struct, frag-in)

pixelstruct

fragment

*p-struct

*frag-in

This function inserts one fragment into an element from the a-buffer.

120

Packing the a-buffer

pack (A -buff)

pixelstruct **A-buff

Pack takes an a-buffer filled with picture information and returns the r,g,b

values for the final image.

121

Appendix D

The Viewing Transformations

The following sections are based on Alvy Ray Smith's SIGGRAPH tutorial[32].

The material in Smith's article is reiterated with special attention paid to

the transformations that affect the illumination calculations. Furthermore,

the terminology used differs slightly than Smith's. This appendix serves

well as a reference for the preceding chapters.

D.1 Definitions

Object Space: The local coordinate system of an object. Usually, the

origin of the local coordinate system lies at the center of the object.

World Space: A common frame of reference for the lights, the eytepoint,

and the objects. Illumination can be performed here, but eye space

is more convenient.

122

Eye Space: The standard frame of reference. This space is similar to

world space except the eyepoint is always located at the origin and is

looking down the z-axis.

Clipping Space: The canonical viewing frustum used for clipping.

Display Space: The coordinate system of the display. Coordinates in

display space are floating point numbers.

Image Space: The discrete coordinate system of the display device. Im-

age Space coordinates are integer values.

D.2 An Overview

The viewing transformations find the map needed to guide a sample point

from the three dimensional world space to the two dimensional image space.

One way to perform these transformations would be to find a single trans-

formation that takes objects directly from world space to image space.

However, to make illumination calculations and clipping calculations man-

ageable, two stops are made on the road from world space to eye space.

The first one is in eye space to perform the illumination calculations; the

second is in clipping space in order to simplify the clipping calculations.

The viewing transformation takes the following path: world space to eye

space, eye space to clipping space, and finally clipping space to image space.

123

D.2.1 World Space to Eye Space

The modeling matrices transform the objects from object space to world

space. In world space, all the objects, all the lights, and the viewpoint

are positioned relative to each other in the same coordinate system. The

frame of reference is neutral. In eye space, however, all the objects are

defined in the eyepoint's frame of reference. The eyepoint occupies the

origin, the eyepoint's view normal is aligned with the z-axis, the eyepoint's

view-up vector is aligned with the y-axis, and the remaining eyepoint vector

u is aligned with the x-axis. Since both of these coordinates systems are

orthonormal and of the same scale, the angles between objects are preserved

in the transition from world space to eye space. Furthermore, because

the eyepoint's position is at the origin, the vector from the eyepoint to a

point on the surface is just the coordinate of the object. The illumination

calculation depends on the angles between the objects, the viewer, and the

light source. Therefore, eye space is ideal for the illumination calculations.

The world space to eye space transform is the matrix that will transform

the axes defining world space coordinates into the coordinates defining the

eyepoint local coordinate system. In order to understand this transforma-

tion, it is helpful to break this transformation into two distinct operations.

The first matrix, A, translates the world space origin to the location of

the eyepoint. This matrix is the following:

124

which can be thought of

Now the two coordinate

matrix, B, aligns their axes.

1

0

0

-V

0

1

0

-V,

0

0

1

-Vz

0

0

0

1

as the partitioned matrix,

A =[3 f
-V 1

systems share a common origin. The second

This matrix is the following:

uz

UV

uz

0

vz

VY

vz

0

nz

ny

nz

0

0

0

0

1

where U', V, and n' are the vectors defining the axes of the local coordinate

system at the eyepoint.

Note that the world space coordinate system is right-handed 1; the

eyepoint's local coordinate system is left-handed2 .

'the z-axis points to the right, the y-axis points up, and the z-axis points into the

distance.
2 the x axis points to the right, the y axis points to the distance, and the z axis points

up

125

D.2.2 Eye Space to Clipping Space

The next transformation coerces one pyramid, the field of view in eye space,

into another pyramid, the canonical view volume' in clipping space. The

field of view in eye space is the volume bounded by the four edges which

run from the origin, pass through the corners of the viewing window, and

then end at the far plane. The canonical view volume is bounded by the

four edges which run from the origin to the points (-1,1,1,), (1,1,1),

(1, -, 1) and (-1, -1, 1). Note that the transformation from eye space to

clipping space deforms the original space; the angles between points are

not preserved in clipping space. Therefore, the illumination calculations

cannot be done in clipping space. 4

To understand this transformation, it is useful to view it as the con-

catenation of four transformations. The first matrix, E, deforms the space

so that the view window becomes square:

1/su 0 0 0

E= 0 1/s, 0 0

0 0 1 0

0 0 0 1

where s, is the window halfsize in the horizontal direction, and the s,,

is the window halfsize vertical direction.
3The canonical view volume is the similar to the canonical viewing frustum except the

volume between the near clipping plane and the origin is included
4It is interesting to note that the viewing plane and the objects lie close to the viewpoint

in most cases; therefore, the coordinates of the objects in clipping space are diminutive.

126

The next matrix, D, shears the space so that the center of the viewplane

window lies on the z-axis:

1 0 0 0

0 1 0 0
D=

-c, -c, 1 0

0 0 0 1

where (cU, cV) is the center on the viewplane window.

And the final matrix scales the space so that the far view plane is at

z = 1:

d/f 0

C 0 d/f

0 0

0 0

where d is the distance from the eye

distance from the eye to the far plane.

0

0

1/f

0

to the

0

0

0

1

viewing plane, and f is the

D.2.3 Concatenating the matrices

The matrices which bring an object from world space to clipping space can

be concatenated into one matrix and then factored into two matrices:

NLNR = ABCD

NL depends solely on the orientation and direction of the view, and the

other matrix, NR,depends on the lens attributes of the camera at the eye-

point. Thus, to change the position and orientation of the eyepoint, one

need only to change one of the matrices.

127

The matrix which moves the viewing position is NL:

ux v, n. 0

NL= Ut V nu 0

uz vz nz 0

-u-V -v-V -n-V 1

where U', V-, and n' are the vectors defining the axes of the local coordinate

system at the eyepoint; where V is the vector from the origin to the eye

position, and where u -V ,u -V, u -V are the dot products of the coordinate

vectors and the eyepoint vector.

The matrix which relies only on the lens attributes of the camera is NR:

1/su 0 0 0

No 1/s, 0 0

0 0 1/(f - n) 0

-cU/s. -cv/sv -n/(f - n) 1

where s. and sv are the window half sizes, cu and c,, define the center

of the window on the viewplane, f is the far clipping plane, n is the near

clipping plane, and d is the distance from the eye to the viewplane.

D.2.4 Clipping Space to Image Space

The trip from clipping space to image space is done in two stages. The

first is device independent. It transforms the three dimensional points into

normalized device coordinates (NDC)5 . The second stage maps the NDC

5Normalized device coordinates is a coordinate system where the x,y, and z values fall

between 0.0 and 1.0

128

points onto a display device. This second stage depends entirely upon the

coordinate system of the display device.

Stage One: Clipping space to NDC

There are two transformations which bring the coordinates from the clip-

ping space into NDC. First, the viewing pyramid in clipping space is trans-

formed into a cube shaped space. This space, the perspective space, is

bounded by the planes x = -1.0, x = 1.0, y = -1.0, y = 1.0, z = 0.0,

and z = 1.0. Notice that the objects are distorted when they are trans-

formed into perspective space. In this new distorted space, the orthogonal

projection of the objects onto the viewing plane is equivalent to a perspec-

tive projection of the points in clipping space. Since this transformation

brings the points to a space where the perspective projection is trivial, this

transformation is called the perspective transformation. The perspective

transformation is performed by the following matrix, F:

1 0 0 0

0 1 0 0
F =-

0 0 f/(f - n) 1

0 0 -n/(f - n) 1

Next, the coordinates of the objects in the perspective cube are trans-

formed to NDC. The matrix G performs this transformation:

129

0.5 0 0 0

0 0.5 0 0
G =

0 0 1 0

0.5 0.5 0 1

Stage Two: NDC to ScreenSpace

In this final stage, the samples are constructed into a final image on the

display. There are two distinct operations that occur in this stage. During

the first, the image is constructed by scan conversion. This constructed

image is a continuous image residing in display space. The transformation

which takes the image from NDC to display space depends solely on the

coordinates of the display device. The following matrix, H, performs this

transformation:

XMax - Xin 0 0 0

0 Ymax - Ymin 0 0

0 0 Zma - Zmin 0

Xmin Ymin Zmin 1

In order for the resulting continuous image to be viewed on a device, it

must be broken into discrete pixels on the screen. Aliasing occurs during

this last round of sampling. Therefore, any filters used for anti-aliasing are

applied during this last step to the screen.

130

Bibliography

{1] Appel, Arthur, "The Notion of Quantitative Invisibility and the

Machine Rendering Solids," Proceedings, ACM National Conference

(Oct.), ACM, New York, 1967, pp. 387-393.

(2] Blinn, James F., "Simulation of Wrinkled Surfaces," Computer Graph-

ics, 12(2), Proc. SIGGRAPH 78, 1978, pp. 286-292.

[3] Blinn, James F., "Models of Light Reflection For Computer Synthe-

sized Pictures," Computer Graphics, 11(2), Summer 1977, pp. 192-198.

[4] Bui-Tuong, Phong, "Illumination for Computer Generated Pictures,"

Communications of the ACM, 18(6), June 1975, pp. 311-317.

[5] Carpenter, Loren, "The A-buffer, an Antialiased Hidden Surface

Method," Computer Graphics, 18(3), Proc. SIGGRAPH 84, 1984, pp.

103-108.

[6] Catmull, Edwin, "Computer Display of Curved Surfaces," Tutorial

and Selected Readings in Interactive Computer Graphics, H. Freeman

(ed.), IEEE, 1980, pp. 309-315.

[7] Cleary, John G., Brian Wyvill, Grahamn M. Birtwistle, and Reddy

131

Vatti, "Multiprocessor Ray Tracing," Department of Computer Sci-

ence, The University of Calgary, Research Report No. 83/128/17, Oc-

tober 1973.

[8] Cohen, Michael F., "The Hemi-Cube: A Radiosity Solution for Com-

plex Environments," Computer Graphics, 19(3), Proc. SIGGRAPH 85,

1985, pp. 31-40.

[9] Cook, Rob, "Antialiasing by Stochastic Sampling," Course Notes:

State of the Art in Image Synthesis ACM SIGGRAPH '85, July 22,

1985

1101 Cook, Robert L., Thomas Porter, and Loren Carpenter, "Distributed

Ray Tracing," Computer Graphics, 18(3), Proc. ACM Siggraph 84,

July 1984, pp 137-145.

(11] Cook, Robert, and Kenneth E. Torrence, "A Reflectance Model for

Computer Graphics," ACM Trans. on Graphics, Vol. 1, No. 1, 1982,

pp. 7-24.

1121 Crow, F.C., "A More Flexible Image Generation Environment," Com-

puter Graphics, 16(3), Proc. SIGGRAPH 82, 1982, pp. 9-18.

[13] Dippe, Mark Z.and Erling Henry Wold, "Antialiasing Through

Stochastic Sampling," Computer Graphics, 19(3), Proc. SIGGRAPH

85, July 1985, pp. 69-78.

[141 Duff, Tom, "Smoothly Shaded Renderings of Polyhedral Objects on

Raster Displays," Computer Graphics, 13(2), Proc. SIGGRAPH 79,

August, 1979, pp. 270-275..

132

[15] Fiume, Eugene, and Alain Fournier, "A Parallel Scan Conversion Al-

gorithm With Anit-Aliasing for a General-Purpose Ultracomputer,"

Computer Graphics, 17(3), Proc. SIGGRAPH 83, July, 1983, pp 141-

149.

[16] Glassner, Andrew, "Space Subdivision for Fast Ray Tracing," IEEE

Computer Graphics & Aplications, 4(10), October, 1984, pp. 15-22,

[17] Goldstein, R.A., and Nagel, R., "3-D Visual Simulation," Simulation,

January 1971, pp. 25-31,

[18] Goral, Cindy M., Kenneth E. Torrence, Donald P. Greenberg, and

Bennet Battaile, "Modeling the Interaction of Light Between Diffuse

Surfaces," Computer Graphics, 18(3), Proc. SIGGRAPH 84, 1984, pp.

213-222.

[19] Gouraud, Henri, "Continuous Shading of Curved Surfaces," IEEE

Transactions on Computers, C-20(6), June 1971, pp. 623-628.

[20] Johnson, T.T., "Sketchpad III, A Computer for Drawing in Three

Dimensions," Proceedings of the Spring Joint Computer Conference,

Detroit, Michigan, May21-23, 1963.

[21] Kay, Douglass Scott, and Donald Greenberg, "Transparency for Com-

puter Synthesized Images," Computer Graphics, 13(2), Proc. SIG-

GRAPH 79, August, 1979, pp. 158-164.

[22] Lee, Mark E., Richard A. Redner, and Samuel P. Uselton, "Statis-

tically Optimized Sampling for Distributed Ray Tracing," Computer

Graphics, 19(3), Proc. ACM Siggraph 85, July 1985, pp. 61-65.

133

[23] Machover, Carl, "A Brief, Personal History of Computer Graphics,"

Computer, November 1978.

[24] MAGI, "3-D Simulated Graphics Offered by Service Bureau," Simula-

tion, p. 69, February 1968.

[25] Mahl, Robert, "Visible Surface Algorithms for Quadric Patches",

IEEE Transactions on Computers, C-21(1), January 1972, pp. 1-5.

[26] Mandelbrot, B., Fractals: Form, Chance, and Dimension, W.H. Free-

man, San Francisco, 1977.

[27] Naylor, Bruce F., and William C. Thibault, "Application of BSP Trees

to Ray-Tracing and CSG Evaluation," School of Information and Com-

puter Science Tech. Rep., GIT-ICS 86/03, February 4, 1984.

[28] Nemoto, Keiji, and Takao Omachi, "An Adaptive Subdivision by Slid-

ing Boundary Surfaces for Fast Ray Tracing," Graphics Interface, May

1986, pp. 43-48.

[29] Newell, M.E., R.G. Newell, and T.L. Sancha, "A Solution to the Hid-

den Surface Problem," Proc. ACM National Conference, 1972.

[30] Riesenfeld, R.F., "Homogeneous Coordinates and Projective Planes

in Computer Graphics," IEEE Computer Graphics & Applications,

January, 1981, pp. 50-55.

[31] Simms, Karl, personal communication, Thinking Machines Corp. &

The Media Laboratory, M.I.T.

[32] Smith, Alvy Ray, "The Viewing Transformation," Computer Graphics

Project, Computer Division, Lucasfilm, Ltd. Technical Memo. No. 84,

134

June, 1983.

133] Sutherland, Ivan E., "Sketchpad, A Man-Machine Graphical Commu-

nication System," Proceedings of the Spring Joint Computer Confer-

ence, Detroit, Michigan, May21-23, 1963.

[34] Sutherland, Ivan E., R.F. Sproull and R.A. Schumacker, "A Char-

acterization of Ten Hidden-Surface Algorithms," Computing Surveys,

6(1), March 1974, pp. 1-55.

135] Warn, David R., "Lighting Controls for Synthetic Images," Computer

Graphics, 17(3), Proc. ACM Siggraph 83, 1983, pp. 13-21E

[36] Weiss, Ruth A., "BE VISION, A Package of IBM 7090 FORTRAN

Programs to Draw Orthographic Views of Combinations of Plane and

Quadric Surfaces," Journal of the Association for Computing Machin-

ery, 13(2), April 1966, pp. 194-204.

[37] Whitted, Turner, "An Improved Illumination Model for Shaded Dis-

play," Communications of the ACM, 23(6), June 1980, pp. 343-349.

135

