
A Queuing Model of Airport Congestion and

Policy Implications at JFK and EWR

by

Alexandre Jacquillat
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Abstract

Since the phasing-out of the High Density Rule, access to major commercial airports
in the United States has been unconstrained or, in the case of the airports of New
York, weakly constrained. This largely unregulated demand combined with capacity
constraints led to record delay levels in 2007, whose costs were estimated as in excess
of $30 billion a year. Mitigating airport congestion may be achieved through demand
management measures. Quantifying the benefits of such measures requires careful
modeling of flight delays as a function of flight schedules.

This thesis applies a stochastic and dynamic queuing model to analyze operations
at JFK and Newark (EWR), two of the most congested airports in the United States.
Two models are used to approximate the dynamics of the queuing system: a numeri-
cal model called DELAYS and a new Monte Carlo simulation model, which combines
time-varying stochastic models of demand and capacity. These two models are then
calibrated and validated using historical records of operations. In particular, they
provide estimates of the average throughput rate at JFK and EWR under different
weather conditions. The models are then shown to predict accurately both the mag-
nitude of the delays and their evolution over the course of a day of operations. In
addition, the Monte Carlo simulation model evaluates reasonably well the variability
of the delays between successive days of operations.

These two models are then applied to a study of recent trends in scheduling and on-
time performance at JFK and EWR. The analysis indicates that the significant delay
reductions observed between 2007 and 2010 can be largely attributed to the relatively
small reduction of airport demand over this period. In particular, it demonstrates
the strongly nonlinear relationship between demand and delays when airports operate
close to capacity. It also shows that, for a given daily number of flights, the more
evenly they are distributed in a day, the lower the resulting delays are likely to be.

Thesis Supervisor: Amedeo R. Odoni
Title: Professor of Aeronautics and Astronautics and of Civil and Environmental
Engineering
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Chapter 1

Introduction and Background

1.1 Airport Congestion in New York City

Since the deregulation of the US airline industry in 1978, air traffic operations have

significantly increased worldwide while airport capacity has been lagging. Conse-

quently, most commercial airports have experienced severe congestion, resulting in

delays and cancellations. In particular, the New York region has been for decades

one of the most congested aviation areas in the United States.

New York City is served by three primary airports: John F. Kennedy Interna-

tional Airport (JFK), Newark Liberty International Airport (EWR) and LaGuardia

Airport (LGA), as well as the major general aviation airport of Teterboro and other

secondary and general aviation airports. A map of the region is provided in Fig-

ure 1-1. Over the past decades, these airports have been facing increasing demand,

which is due to many different factors, including the growth and the globalization

of the economy, the growth of airline operations, the decrease of air fares etc. Two

recent exceptions to this increase are to be noted: the post-9/11 air transportation

crisis and the economic downturn between 2007 and 2010, which negatively affected

air transportation demand. Nevertheless, approximately 30% more flights have been

operated in the New York region in 2010 than in 1990.

However, airport capacity in the New York region is limited. Each of the primary

airports is constrained in size and has fewer runways than the largest airports in the
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Figure 1-1: Airports in the New York metropolitan region (Bonnefoy, 2008)

United States, as illustrated in Table 1.1. Because of the high urban density, any

land expansion is extremely costly and infeasible in the short-term. The construction

of new runways would also raise many environmental concerns1. In addition, the

region’s airspace is very crowded because of the proximity of the different airports,

which also constrains the operations at any single airport. Improvements in air traffic

control procedures, including the implementation of NextGen, may enhance airport

capacity but would not be sufficient to scale the system up to meet demand.

Table 1.1: New York’s airports vs. Hartsfield-Jackson Atlanta International Air-
port (ATL), Chicago O’Hare International Airport (ORD) and Denver International
Airport (DEN)

Airport LGA EWR JFK ATL ORD DEN
Number of Runways 2 3 4 5 7 6
Land Area (in Acres) 680 2,207 4,930 4,700 7,200 33,920

Demand growth and capacity limitations have resulted in important congestion in

the New York region. Figure 1-2 shows that the three primary airports in New York

have experienced the largest delays nationwide between 2007 and 2010. Moreover,

1As an example, any runway expansion of JFK into Jamaica Bay is legally prohibited due to the
presence of the federally-protected Gateway National Recreational Area.
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delays originating from New York’s airports are known to propagate throughout the

National Airspace System and therefore to deteriorate the on-time performance of

the entire US air transportation system. Among the three primary airports in the

New York region, JFK and EWR are the ones from which delays propagate the most,

while, by contrast, many flights operated at LGA are regional.

Figure 1-2: Average delays between 2007 and 2010 at the 35 major US airports
(source: ASPM database)

High scheduling levels are responsible for most of the delays at JFK and EWR.

Figure 1-3 shows the main causes of the delays experienced between 2007 and 2010

at JFK (Figure 1-3a) and EWR (Figure 1-3b), and compares them with the causes of

the delays at the 35 major airports in the United States together (Figure 1-3c). Most

of the flight delays in the United States are reported as National Aviation System

delays, which include delays due to inefficient airport operations, to heavy traffic

volume and to non-extreme weather conditions. In general, these delays are created

by local demand-capacity mismatch. Note that the importance of these delays is

larger at JFK and EWR than at other major US airports: National Aviation System

delays indeed account for more than half of the delays at JFK and EWR and for only

40% of the delays on average in the United States. The two other important causes

of delays are the propagation of delays from previous flight legs and inefficiencies

in airlines’ operations (e.g. aircraft maintenance and fueling, baggage loading, crew

delays etc.).
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(a) JFK (b) EWR

(c) 35 major US airports

Figure 1-3: Cause of the flight delays between 2007 and 2010 (source: Bureau of
Transportation Statistics)

The objective of this study is to quantify the relationship between flight schedules

and flight delays at JFK and EWR, in order to test the impact of different demand

scenarios on airport congestion.

1.2 Air Traffic Management in the United States

1.2.1 Air Traffic Management policies

Recent comparisons undertaken by the FAA and EUROCONTROL (Enaud et al.,

2009) and supported by academic findings (Morisset, 2008) have indicated that the

US and European airports achieve very different performance levels. On the one

hand, more flights are operated in the United States than in Europe for comparable

runway layouts. On the other hand, on-time performance is better in Europe than

18



in the United States, where, on average, delays are both larger and more variable.

These differences are primarily due to differences in Air Traffic Management policies

and practices.

First, airport demand is currently largely unregulated in the United States. In-

deed, US airports do not declare their capacity and no schedule limitation policy is

implemented. As a result, flight scheduling is weakly constrained: an airline remains

free to schedule a landing or takeoff at any time, as long as it can obtain access to

the airfield through an adequate number of gates and aircraft stands (Odoni, 2009).

These policies rely on the assumption that the air transportation market will regulate

itself and that delays will not grow beyond levels perceived as tolerable by aircraft

operators.

Second, air traffic control procedures depend on weather conditions in the United

States. Indeed, under good weather conditions (i.e. high ceiling and good visibility),

referred to as “visual meteorological conditions” (VMC), flights are operated under

“visual flight rules” (VFR). In this case, pilots are responsible for maintaining visual

separations from preceding aircraft during the final phases of the flight. However,

when the weather is poor - i.e. under “instrument meteorological conditions” (IMC)

- air traffic controllers use “instrument flight rules” (IFR) to comply with a set of

required minimum separations between aircraft. As a result, airport capacity is sig-

nificantly larger under VMC than under IMC. By contrast, outside of the United

States, IFR separations are applied in all weather conditions.

These two exceptional characteristics lead to high scheduling levels in the United

States. Figure 1-4 shows the average number of scheduled flights for any 15-minute

period of the day at JFK (Figure 1-4a) and EWR (Figure 1-4b) and estimates of the

maximum throughput rates under VMC and IMC. Both airports operate very close

to capacity and in some cases above their optimal capacity. In addition, scheduling

levels exceed the airport’s IMC capacity during many periods of the day, which results

in large delays if the weather deteriorates.

An important issue faced by the Federal Aviation Administration (FAA) is there-

fore how demand should be managed at JFK and EWR and whether a schedule
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(a) JFK (b) EWR

Figure 1-4: Average scheduling levels in August 2007 at JFK and EWR

limitation policy should be adopted.

Historically, regulatory authorities have attempted to limit scheduling levels at

some congested airports in the United States. Most notably, the High Density Rule

(HDR) was adopted in 1968 to restrict access to five busy airports, namely Wash-

ington/Reagan, Chicago/O’Hare, and the three primary airports in the New York

region2 by imposing schedule limitations. Initially, the process of slot allocation un-

der HDR was quite similar to schedule coordination as practiced at the majority of

busy airports outside of the United States: the number of hourly operations was re-

stricted and slots were allocated through an administrative procedure by the FAA.

However, the deregulation of the airline industry in 1978 made the implementation of

this process extremely difficult as the number of available slots fell far short of satis-

fying the demand of all airlines. Therefore, the FAA switched in December 1985 to a

buy-and-sell mechanism, which created a market for slots among competing airlines.

However, in 2000, Congress enacted the Wendell H. Ford Aviation Investment and

Reform Act of the 21st Century (AIR-21) phasing out the HDR3. The rationale was

that the HDR distorted competition among airlines by unfairly favoring established

ones against new entrants. In accordance with AIR-21, the phasing out of the HDR

was completed in 2007.

Since then, the FAA has attempted to mitigate congestion by maintaining some

restrictions on the number of operations at EWR, JFK and LGA. It designed a slot

2The rule was suspended at EWR in 1970.
3United States Code Service, 49 USCS 41715
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allocation mechanism based on slot auctions to limit the negative effects of such re-

strictions on competition and to prevent fare increases. The Congestion Management

Rule for JFK and EWR in October 2008 (Federal Aviation Administration, 2008a)

proposed that some slots be relinquished annually and then allocated to the highest

bidder for each slot. A similar rule was adopted for LGA (Federal Aviation Admin-

istration, 2008b). The legality of this slot auction plan was challenged by the Air

Transport Association of America (ATA), which was joined by some airlines and the

Port Authority of New York and New Jersey (PANYNJ). The ATA and its allies

claimed that the plan exceeded the FAA’s statutory authority. The United States

Court of Appeals for the District of Columbia Circuit granted a stay pending fur-

ther order in 20084, and the FAA eventually rescinded the rule (Federal Aviation

Administration, 2009).

While considering alternatives, the FAA promulgated a temporary order in May

2008 that capped operations at both JFK and EWR at 81 scheduled flights and

2 unscheduled flights per hour. However, these limitations are substantially less

restrictive than those in most airports worldwide. The Office of Inspector General of

the US Department of Transportation argued that these limits have not managed to

mitigate congestion at New York’s airports and recommended that the FAA reexamine

them (Office of Inspector General, 2010).

1.2.2 Stakeholder Identification

The regulation of airport operations raises numerous economic, political and legal

concerns because of the diversity of the stakeholders involved and the multiplicity of

their interests. On the one hand, flight delays are extremely costly: their impact has

been estimated to more than $30 billion in 2007 (Ball et al., 2010), broken down as

reported in Table 1.2. On the other hand, regulating airport demand also raises a

large variety of economic concerns. This section identifies the main stakeholders and

discusses how they may be affected by schedule limitations and flight delays.

4Port Authority of New York and New Jersey v. Federal Aviation Administration, United States
Court of Appeals, District of Columbia Circuit, No. 08-1329, September 2008
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Table 1.2: Costs of delays in 2007 (Ball et al., 2010)

Cost Component Cost (in $ billions)
Cost to Airlines 8.3

Cost to Passengers 16.7
Costs from Lost Demand 3.9

Total Direct Cost 28.9
Impact on GDP 4.0

Total Cost 32.9

In the United States, civil aviation is regulated by the Federal Aviation Adminis-

tration (FAA). This agency was created in 1958 by an Act of Congress5 and became

part of the US Department of Transportation in 1966. Its budget for the year 2010 was

approximately $16 billion. It is responsible for maintaining secure, safe and efficient

air traffic operations. It is primarily in charge of establishing and enforcing standards

ensuring aircraft and airport safety, issuing pilot certificates and developing and oper-

ating the air traffic control system. It also manages airport development and planning

in collaboration with airport authorities. However, as indicated in Section 1.2, its au-

thority to regulate demand at congested airports has not been established.

The primary airports in the New York region are managed and operated by the

Port Authority of New York and New Jersey (PANYNJ). As previously mentioned,

these airports are space constrained and any expansion of their runway systems is

virtually infeasible. Their attractiveness to passengers depends on their ability to

maintain safe, efficient and reliable operations. Schedule limitations may increase

system reliability, but may also lead to lost throughput. In addition, they may impede

the implementation of innovative capacity enhancement strategies.

The commercial airlines are major stakeholders. They aim primarily at attracting

as many consumers as possible, while maintaining costs as low as possible. Inten-

sified competition creates incentives for airlines to maximize the frequency of their

operations on each market served. This generally results in large numbers of flights

on many markets and in the use of small- and intermediate-sized aircraft (Belobaba

5Federal Aviation Act of 1958, Public Law 85-726; 72 Stat. 737
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et al., 2009). In addition, airlines typically operate flights in a large and intercon-

nected operational network, so that schedule changes at some congested airports may

have consequences for a large number of flight legs. These considerations create a

concern that regulatory action may restrict market flexibility and distort competi-

tion. Airlines are also concerned by the possibility that any slot allocation process

may increase their operating costs or limit their ability to enter new markets. On the

other hand, airport congestion increases travel times, crew costs and fuel emissions.

In addition, delays may result into customer dissatisfaction and missed revenue op-

portunities. Altogether, delays cost airlines billions of dollars each year. They would

therefore benefit greatly from carefully crafted policies that would mitigate congestion

at busy airports.

Air taxi and general aviation operators are also importantly affected by the reg-

ulation of airport operations. Unlike major airlines, these operators often rely on

last-minute scheduling of flights, which, of course, depends on runway availability.

In addition, these unscheduled operations represent a very small fraction of airport

operations and they are not the main contributors to runway congestion, which would

raise issues of fairness in the slot allocation process.

Airline passengers constitute another major set of stakeholders. Flight delays also

cost billions of dollars each year to them due to increased trip times, missed connec-

tions and unplanned expenses. Passengers have to adjust their departure and arrival

times to the supply of flights: the higher the flight frequency, the more convenient air

transportation is for passengers. In addition, schedule limitations may also drive up

travel fares. Consequently, regulatory policies are likely to have complex impacts on

passengers. Moreover, all market segments will not be equally affected. For instance,

business passengers are less flexible than leisure passengers regarding their departure

times and may be more sensitive to delays as well.

Air transportation also has important impacts on the environment and on sur-

rounding communities. Although these considerations are primarily addressed in the

design of an airport and its runway layout, they are also affected by the regulation of

airport operations. Indeed, aircraft queues significantly contribute to fuel emissions
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at airports and thereby reduce air quality. From this standpoint, schedule limita-

tions may reduce environmental pollution. However, they may also shift operations

to later at night or earlier in the morning, which may increase noise impacts on local

communities.

Finally, economic activity in New York City depends, in no small measure, on the

quality and the reliability of air transportation access to the city. More generally, the

performance of the National Aviation System has important consequences for the US

economy. For these reasons, local and federal governmental authorities are also key

stakeholders.

In conclusion, demand management at US airports gives rise to acute tradeoffs

involving a large variety of stakeholders. From the perspective of the FAA, these

considerations are to be taken into account in the evaluation of the costs and benefits

of any potential policy regulating or restricting airport flight schedules.

1.3 Thesis Outline

The objective of this study is to quantify the relationship between airport capacity,

scheduling levels and flight delays at two primary airports in the New York region:

JFK and EWR. To this end, we consider a numerical queuing model of airport con-

gestion and we develop a macroscopic Monte Carlo simulation model, and we show

that they estimate accurately the delays observed in practice at these airports. These

models are then used to perform a case study at these airports.

This work is based on data reported in the Aviation System Performance Metrics

(ASPM) database which is maintained by the FAA. The data are described in Chapter

2, which also discusses some limitations and gaps of this database.

In Chapter 3, we introduce a general dynamic and stochastic queuing model of

airport operations and two approximation methods: an analytical approximation of

the average delay called DELAYS (Kivestu, 1974) and a new Monte Carlo simulation

model, which approximates the behavior of the queuing system by randomly sampling

each takeoff and each landing individually in a day of operations. We also present
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dynamic and time-varying models of airport demand and of airport capacity which

are combined into the Monte Carlo simulation algorithm.

In Chapter 4, the models are calibrated and validated using historical records of

operations at JFK and EWR in 2007. We show that they estimate well the magnitude

of the delays at these airports as well as the dynamics of their formation and propa-

gation over the course of one day of operations. We also show that they approximate

well the variability of the delays between successive days of operations.

Chapter 5 then uses this model to analyze recent trends in demand and delays

at JFK and EWR between 2007 and 2010 by comparing the observed delays with

the model’s predictions. We first present the evolution of scheduling levels at these

airports over this period. Then, we show that the significant delay decrease observed

between 2007 and 2010 is largely explained by the small reduction of the demand due

to the economic downturn. Last, we demonstrate that the distribution of the flights

over the course of the day also has an impact on the extent of congestion: for the

same number of flights, “smoother” distributions lead to lower delays than uneven

schedules.

These results are summarized in Chapter 6, which identifies the primary drivers of

queue formation and propagation at congested airports. The chapter concludes with

a brief discussion of how this model can be integrated into a broader study, which

would compare the costs and benefits of a schedule limitation policy.

1.4 Literature Review

Several models of airport operations have been developed over the years. They gen-

erally fall into three categories: microscopic, mesoscopic and macroscopic.

First, microscopic models consider each aircraft individually and reproduce as

precisely as possible airport operations, including the specificities of each airport’s

layout and the operating rules at gates, taxiways and runways. Examples include

SIMMOD or TAAM (Odoni et al., 1997). Whereas they provide useful insights on how

different airport procedures and tactical methods to reduce congestion compare to one

25



another, they are not well-suited to performing strategic evaluations and planning

that considers a wide range of scenarios and alternatives.

Mesoscopic approaches consider flow dynamics at the tactical level. Movements

are typically aggregated and operating procedures are not included in these models.

Early studies have defined the departure process as a queuing system (Shumsky,

1995), and stochastic models have later improved the model’s validity (Pujet et al.,

1999). More recently, the takeoff rate has been determined as a function of the number

of departing and arriving aircraft in the queue (Simaiakis and Balakrishnan, 2009).

This work has been used to design efficient air traffic control procedures by specifying

optimal pushback rates for different extents of airport congestion (Simaiakis, 2009),

which result in smaller average taxi-out times. These techniques alleviate surface

congestion and mitigate the environmental impacts of air transportation. However,

they cannot be directly used in the assessment of the costs and benefits of a schedule

limitation policy because they do not directly link scheduling levels and flight delays.

The relationship between airport demand and flight delays may be determined

by macroscopic models, which typically consider low levels of detail and aggregate

operations at the airport level. These models may then be used to test the impact of

alternative schedules on system on-time performance.

Some of the models are based on econometric analyses; they evaluate delays as a

function of scheduling levels and airport capacity as well as an array of contextual

factors, including weather conditions, the number of gates and the runway config-

uration in use (Kwan and Hansen, 2010; Morrison and Winston, 2008; Xu, 2007).

However, the econometric models do not describe the dynamics of delay formation

and propagation over the course of the day. By contrast, other models of airport

operations, based on queuing theory, predict the average delay levels over the course

of a day of operations as a function of scheduling levels and airport capacity at each

period of the day. They may be either deterministic (Hansen, 2002) or stochastic.

In this study, stochastic models will be considered in order to take into account the

variability and the uncertainty of the processes at stake. However, the main results

of queuing theory (Gross and Harris, 1988) and its applications (Larson and Odoni,
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1981) are obtained under steady-state conditions. Since both the demand rate and

the service rate at an airport are typically highly variable in practice, the time to

reach steady-state is often much longer than the time scale of the system in case of

congestion (Odoni and Roth, 1983). Therefore, dynamic queuing models must be

considered6.

A model of airport congestion which has received considerable attention is the

M(t)/Ek(t)/1 queuing system, in which the demand process and the service process

are respectively approximated as a Poisson process and an Erlang process. Given

the computational intractability of this dynamic model, a numerical approximation

called DELAYS has been developed (Kivestu, 1974) and algorithmically implemented

(Gupta, 2010). DELAYS has been shown to accurately estimate taxi-out delays

(Pyrgiotis and Simaiakis, 2010) and arrival delays (Lovell et al., 2007) and has also

been used to model propagation of flight delays in a network of airports (Malone,

1995; Pyrgiotis, 2011) and to assess alternative demand management strategies (Fan,

2003; Pyrgiotis, 2011).

The same family of queuing models of flight delays has also been used to evaluate

the extent to which congestion may be mitigated if scheduling levels are reduced.

In particular, it has been shown that a small demand reduction at LaGuardia in

2000 to comply with the Wendell-Ford Aviation Act for the 21st Century resulted

in significant delay reductions (Fan, 2003). This non-linear relationship between air

transportation demand and flight delays (de Neufville and Odoni, 2003) provides the

motivation for looking carefully into the relationship between flight schedules and

delays in order to evaluate the potential of scheduling limits at some of the busiest

airports in the United States.

6This also allows one to consider demand profiles which at some point exceed airport capacity.
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Chapter 2

Presentation of the Data and

Definition of Variables

The process of building, calibrating and validating a model of runway congestion re-

quires the use of data on airport operations and delays. The most comprehensive

database with information on activity at US airports is the Aviation System Per-

formance Metrics (ASPM), which is maintained by the FAA1. The purpose of this

chapter is to define the quantities involved in our models of airport congestion and

describe how they may be measured from available data. We also discuss potential

data limitations and sources of data inaccuracies.

2.1 Presentation of the Database

The ASPM database provides data on all flights to and from 77 major US airports,

including JFK and EWR. It offers two distinct modules:

• The “Individual Flights” module records information on every flight, including

the times when departing aircraft leave the gate and take off and the times when

arriving aircraft land and arrive at the gate. For each flight, both the scheduled

time and the actual time are presented. Cancelled flights are not reported.

1In the United States, airlines are required by law to provide the relevant data for their operations.
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• The “Airport” module aggregates information per 15-minute period through

the course of the day. It includes data on scheduling levels, on the number of

movements which actually took place and on the average delays experienced

at a given airport. These data can be compared to those from the “Individual

Flights” module. It also presents estimates of the airport capacity for any period

of the day. In addition, it includes data on the conditions of airport operations,

including the runway configuration in use and the weather conditions.

Both modules provide extensive data on scheduled and actual operations, and

may be used to characterize demand and delays at airports. However, they do not

perfectly match with each other, thus creating some uncertainty about the actual

situation.

First, the majority of the metrics presented in the ASPM database do not include

unscheduled operations, such as general aviation and military flights. These flights

nonetheless contribute to runway congestion and may increase delays experienced by

scheduled aircraft. Only one metric in the “Airport” module, called “Operations for

Efficiency Computation”, includes these flights. As shown in Table 2.1, approximately

5 % of flights are not reported in the rest of the database.

Table 2.1: Comparison between the number of flights reported in the ASPM database
and the total number of operations in 2010

Airport JFK EWR
All Flights (“Efficiency Computation”) 401,490 404,165

Reported Flights (“Metric Computation”) 382,131 383,989
Proportion of Reported Flights 95.2% 95.0%

Second, flight delays are not exclusively due to local runway congestion. Indeed,

an aircraft may be delayed before it demands the usage of the runway (e.g. because

of delays in previous flight legs, mechanical problems etc.). Consequently, the time

at which a flight is planned to be operated may be readjusted dynamically over the

course of the day. The ASPM database reports data provided by two sources:

• The schedule: published in advance of the day of the flight, it comes from the
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Computer Reservation System. It represents the time at which the operation

was supposed to take place when the flight was originally planned.

• The latest flight plan filed before departure: created less than 24 hours prior to

departure, the flight plan may be updated over the course of the day if major

changes occur. Obviously, for the majority of flights, the planned time is equal

to or later than the scheduled time; nonetheless, some flights are rescheduled

earlier than originally.

Flight plan filing varies from one airline to another and from one day of operations

to another and there is no standardized procedure in this respect. In addition, if a

flight plan is updated after takeoff, this change is not reported in the ASPM database.

Therefore, the extent to which flight plans account for previous disturbances cannot

be known with perfect accuracy.

Last, records of actual times of operations also involve some uncertainty. The

ASPM database separates flights into two categories: the OOOI flights and the non-

OOOI flights. The gate-out, wheels-off, wheels-on and gate-in times of OOOI flights

are automatically recorded by aircraft equipped with ACARS sensors. For the other

flights, however, these data are not available and they are thus estimated by the

ASPM; these calculations essentially use information from air traffic controllers and

approximations that use median values among OOOI flights. Table 2.2 shows that in

August 2010 a large proportion of flights were reported as non-OOOI flights, which

contributes to the uncertainty these data are subject to.

Table 2.2: OOOI and non-OOOI flights in August 2010

Airport JFK EWR
Proportion of OOOI flights 61.9 % 66.7 %
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2.2 Quantities of interest

In this study, system performance is primarily characterized by operation delays,

which are modeled as a function of airfield demand and airport capacity. Conse-

quently, these three variables must be carefully defined and identified from available

data. This section compares data from the “Airport” module and data from the

“Individual Flights” module and illustrates the nature and the extent of differences

between data from the original schedule and data from the flight plan. To these ends,

a specific day of operations is considered as an example: Wednesday, August 4, 2010

at JFK.

The airfield demand: It is defined as the number of aircraft demanding the use

of the runway system per unit of time. It is estimated by the number of scheduled

departures and arrivals for any time period of the day.

In the “Airport” module, these quantities are directly available. In the “Individual

Flights” module demand is computed by aggregating flights on the basis of their

scheduled gate-out times for departures and gate-in times for arrivals. Figure 2-

1 shows that the estimated demand differs slightly depending on which module is

considered. These differences may be due to a lack of uniformity in the aggregation of

departures and arrivals: the departure (resp. arrival) time considered in the “Airport”

module may not correspond to the scheduled gate-out (resp. gate-in) time for all

flights. In addition, flights reported in the “Airport” module include the small number

of cancelled flights.

The evaluation of demand also depends on whether the original schedule or the

flight plan is considered. Both sources lead to the same total number of flights but

their distribution through the course of the day is slightly different, as illustrated in

Figure 2-2. Unsurprisingly, the most notable differences occur in the afternoon, when

previous events may have led to changes in the flight plans.

The capacity: For the purposes of this study, capacity is defined as the average

number of aircraft movements/operations which may be sustainably operated per unit
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Figure 2-1: Demand Profile at JFK on Wednesday, August 4th 2010, from the “Air-
port” module and from the “Individual Flights” module

Figure 2-2: Demand Profile at JFK on Wednesday, August 4th 2010, from the original
schedule and from the flight plan

of time at an airport2. It is primarily determined by airport infrastructure - especially

the runway system - and air traffic control procedures, including safety requirements.

Several models have been developed to estimate capacity from inputs and data on

airport operations through theoretical (Blumstein, 1959) and empirical approaches

(Gilbo, 1993).

The ASPM database itself provides estimates of the departure capacity and the

arrival capacity of the airport based on air traffic reports, respectively called “Average

2Alternative definitions of airport capacity accounting for the level of service may be considered;
as an example, the practical hourly capacity is defined as the average number of operations which
can be handled per hour with an average delay per operation less than 4 minutes (de Neufville and
Odoni, 2003).
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Departure Rate” and “Average Arrival Rate”. The total capacity estimate is obtained

by summing up these two quantities and shown as the “ASPM Capacity” graph in

Figure 2-3. For any period of the day, this estimate can be compared to the number

of flights which were actually operated. The ASPM database provides three different

data sources on actual operations, which are also shown in Figure 2-3:

• The “Operations for Efficiency Computation” in the “Airport” module;

• The “Operations for Metric Computation” in the “Airport” module; and

• The total number of flights reported in the “Individual Flights” module.

According to the ASPM documentation, the “Operations for Efficiency Compu-

tation” include all the flights which actually took place, including general aviation

and military flights, whereas the “Operations for Metric Computation” only reports

scheduled flights. Consequently, the total number of “Operations for Efficiency Com-

putation” (1205 on August 4, 2010) is larger than the total number of “Operations

for Metric Computation” (1155) over the entire day. The flights reported in the “In-

dividual Flights” module are exactly the same as the ones reported as “Operations

for Metric Computation” in the “Airport” module and the total number of flights

(1155) over the entire day matches exactly in both cases.

However, as shown in Figure 2-3, the patterns are different. Notably, the data

reported as “Operations for Metric Computation” often make little sense: as can

be seen in the figure, the number of actual operations exceeds airport capacity by a

wide margin during some periods. On the other hand, there seems to be a very good

match between the “Individual Flights” module and the “Operations for Efficiency

Computation” reported in the “Airport” module; the small differences between these

series seem to be due solely to the inclusion of unscheduled flights in the latter.

Most importantly, we have concluded on the basis of extensive experience with the

ASPM data that the estimates of airport capacity which are reported in the database

overestimate the rate at which flights may be sustainably operated. Indeed, it can

be seen from Figure 2-3 that during peak afternoon hours, when the airport operates
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under continuous demand, fewer movements than the total reported ASPM capacity

were actually operated at JFK on August 4, 2010. For this reason, we will not use the

ASPM capacity, as reported in the ASPM database, as an input to our queuing model,

but instead we will consider the airport capacity as a degree of freedom which we will

adjust to match the magnitude of the delays observed in practice (see Section 4.1.2).

Figure 2-3: Actual Operations at JFK on Wednesday, August 4th 2010, from the
“Airport” module and from the “Individual Flights” module

Operation Delay: The departure (resp. arrival) delay is estimated by the differ-

ence between the actual wheels-off (resp. gate-in) time and the scheduled wheel-off

(resp. gate-in) time, if positive. In other words, if Off(i) and In(i) respectively rep-

resent the wheels-off time and the gate-in time of flight i, its delay is computed as

follows:

Departure Delay (i) = max (0,Act. Off (i)− Sch. Off (i))

Arrival Delay (i) = max (0,Act. In (i)− Sch. In (i))

In addition, an aggregate measure of delays for a given period of the day can

be defined in several ways. In particular, the average flight delay - including both

departure delays and arrival delays - may be calculated among the flights which were

scheduled during the considered period or among the flights which actually took place

during it. For a period P, they are respectively given by:
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Average Delay =

∑

Sch. Off (i)∈P Dep. Delay (i) +
∑

Sch. In (i)∈P Arr. Delay (i)

Number of Scheduled Operations during P
(2.1)

Average Delay =

∑

Act. Off (i)∈P Dep. Delay (i) +
∑

Act. In (i)∈P Arr. Delay (i)

Number of Actual Operations during P
(2.2)

Figure 2-4 shows these two measures and airfield demand for August 4th 2010.

Note that when aggregating delays on the basis of the schedule, as computed in

equation (2.1), the average delays (in blue) are large at times when the system is

actually congested (between 7 p.m. and 9 p.m. for instance) whereas if the flights

are aggregated on the basis of the actual operations, as in equation (2.2), then delays

(in red) are higher in some periods when the demand is very low and the queue is

actually decreasing (between 9 p.m. and 11 p.m.). Therefore, aggregating the flights

on the basis of the schedule leads to more realistic delay patterns.

Figure 2-4: Operation Delays at JFK on Wednesday, August 4th 2010, using two
distinct ways of aggregating delays per 15-minute periods

In addition, these delays may be computed by comparing the actual operation

time of a flight with either its scheduled time or the time reported in its flight plan.

Figure 2-5 compares the two corresponding series. It shows that delays calculated

against the original schedule are larger than delays calculated against the flight plan
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in the late morning and in the late afternoon, when some aircraft may have been

previously delayed and may not have recovered from these delays. Therefore, using

the flight plan in the computation of delays eliminates upstream delays to some extent.

Figure 2-5: Operation Delays at JFK on Wednesday, August 4th 2010, calculated
against the original schedule and against the flight plan

In conclusion, local runway congestion is better estimated by (1) aggregating

flights according to their scheduled time instead of the time when they were actually

operated and (2) using the flight plan instead of the original schedule as a baseline.

Under these conditions, the average delays computed from the “Individual Flights”

module may be compared to the delays presented in the “Airport” module. Figure 2-

6 shows these two series of delays. Note that the data do not match perfectly: even

though delay levels and patterns are reasonably close to each other in both cases,

some differences may be noted.

In summary, there exist some differences between the different data reports avail-

able in the ASPM database. First, data in the “Airport” module and in the “Indi-

vidual Flights” module differ noticeably from each other. Several alternative ways

may also be used to define the main quantities of interest. Based on the observations

described in this chapter, and unless otherwise explicitly stated, the following choices

will be made henceforth:

• The “Individual Flights” module will be used to define the airfield demand, the

number of actual operations and the flight delays. This choice is motivated by
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Figure 2-6: Operation Delays at JFK on Wednesday, August 4th 2010, from the
“Airport” module and from the “Individual Flights” module

the larger flexibility in the use of the data and the prevention of some data

inconsistencies underlined above. (Note, however, that this module provides

no information when it comes to unscheduled operations and cancelled flights.)

The “Airport” module will still be used to determine the contextual factors of

airport operations, such as the runway configuration in use and the weather

conditions.

• The flight plan is used to compute airport demand and delays, because it reduces

the extent of upstream disturbances. However, this has three major limitations.

First, since the flight plan is not actually known days ahead, long-term planning

considers flight schedules. Second, delays computed against the flight plan,

though better capturing local runway congestion, are not directly related to

delays experienced by passengers. Third, there is no uniform procedure of

issuance of the flight plan. The procedure may vary from one airline to another

and from one day of operations to another.

This discussion highlights sources of uncertainty in the available data about both

scheduled and actual operations. In the macroscopic approach adopted in this study,

little attention is given to such details, but the data limitations must be understood.
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Chapter 3

Presentation of the Models of

Airport Congestion

This chapter introduces the queuing model of airport operations which is used to

evaluate flight delays at a given airport as a function of airport demand and capacity.

Two numerical approximation models of the queue dynamics are then presented: the

analytical model called DELAYS (Kivestu, 1974) (Section 3.2) and an alternative

model based on Monte Carlo simulation (Section 3.3).

3.1 A dynamic M(t)/E(t)/1 Queuing Model

Airport operations can be modeled by considering the airport as a queuing system.

Service is provided by the runway system, which is generally the main bottleneck of

operations at congested airports (de Neufville and Odoni, 2003). Physically, departing

aircraft are queuing on the ground, primarily on the taxiways; arriving aircraft are

queuing in the terminal airspace or in the en route airspace, or on the ground at the

origin airport, if a Ground Delay program is implemented. A virtual single queue

with both types of movements is assumed here.

A schematic representation of the runway system at JFK and EWR is provided

in Appendix A.

A typical process for a given aircraft at a given airport is described in Figure 3-1:
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the aircraft first arrives in the queuing system when it is ready to land and leaves it

when it actually lands. It then goes through a similar process when it departs from

the airport. The arrival and departure delays that it experiences are equal to the

times it spends in the queue while it undergoes these processes.

(a) Arrival

(b) Departure

Figure 3-1: Demand process: arrival and departure of a single aircraft

A day of operations is divided into 96 15-minute periods.

The model takes as inputs:

• the demand profile, i.e. the number of scheduled flights at each period of the

day, including both departures and arrivals

• the capacity profile, i.e. the airport capacity at each period of the day

The model computes flight delays at each period of the day as a function of the

demand and capacity profiles.

Note that the capacity profile is not known beforehand in practice. For any period

of the day, the number of flights which can be operated depends on the weather
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conditions and an array of other factors, including the runway configuration in use,

the air traffic control procedures, the aircraft mix etc. These operating conditions are

not known in advance. Two different approaches will be considered to address this

issue:

• Flat capacity profiles may be considered. For instance, the model may be used

to compute the VMC delays, i.e. the delays if the weather is good during an

entire day of operations. Similarly, it may be used to compute IMC delays

or delays associated with any pre-specified capacity profile that includes some

combination of VMC and IMC time intervals.

• A dynamic model of airport capacity is introduced in section 3.3.3 to take into

account the uncertainty and the variability of the airport capacity.

The queuing model is stochastic and dynamic: both the demand and the service

are modeled as time-varying random processes. Therefore, it takes into account the

variability of the actual queuing processes.

The scope of this model is macroscopic: the detailed operational procedures at

each airport are not considered by the model. For example, air traffic controllers may

implement various strategies to operate flights and to mitigate congestion at the tac-

tical level, which result in changes in the service process. In this macroscopic model,

these aspects are not taken into account and it is assumed that the stochasticity of

the demand and service processes account for these sources of uncertainty.

More specifically, the model considered is an M(t)/Ek(t)/1/FCFS/∞ model:

1. The demand process is modeled as a Poisson process with time-varying intensity.

This provides a mathematical representation of the times when aircraft demand

use of a runway, either for a takeoff or for a landing. The stochasticity of this

process is motivated by the uncertainty regarding the times at which aircraft

are ready to take-off or to land and join the queue. Indeed, these times are

determined by several factors which are largely uncertain and variable, including

airline operations, the operations in passenger buildings, on-time performance

at other airports, etc.
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In this study, the term “airport demand” refers to the demand for use of the

runways, i.e. the number of flights scheduled at an airport, including both

departures and arrivals. This demand is primarily determined by the business

decisions the airlines make, based on the underlying passenger (or cargo) de-

mand for air travel. Airport demand (the number of flights scheduled) does

not necessarily change at the same rates (or, even, in the same direction) as

passenger demand, especially at slot controlled airports. This study focuses on

the airport demand and on its effects on airport delays, and does not consider

passenger demand.

2. The service times are defined by the airport capacity and modeled as an Erlang

random variable. That is to say, the time between two consecutive movements

is assumed to follow an Erlang distribution with a fixed parameter k. When

k = 1, this results in an exponential distribution (and the service process is

then a Poisson process); when k =∞, the process is deterministic. In-between,

the service process is a random variable whose variability is lower than the

variability of a Poisson process. This is motivated by the fact that the service

rate is strongly influenced by considerations such as safety requirements and air

traffic control procedures.
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Figure 3-2: Erlang distribution with different orders k and with mean 5

The service rate is airport-specific and primarily determined by the number of

runways and their geometric layout.
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3. A single-server model is used, which represents the runway system as a whole.

In particular, the queue includes both departing and arriving aircraft.

4. The aircraft are served on a first-come first-served basis.

5. The queue capacity is infinite.

On the basis of Assumptions 3 and 4, the runway system is modeled as a single

server, with all aircraft joining a single virtual queue and being served in a first-come

first-served order. This is, of course, a significant simplification of reality, consistent

with the macroscopic nature of our model. At a multi-runway airport, aircraft gen-

erally queue up at a number of active runways (typically 2 or 3 at JFK and EWR,

depending on the runway configuration being used) with some runways serving ex-

clusively arrivals or departures, and others mixed operations, However, in the case of

JFK and EWR (see airport layouts in Appendix A) the simplification of using a single

server is partly justified by the interdependence of operations on different runways,

especially at EWR, during peak air traffic hours in a typical day. Operations are often

conducted on configurations consisting of two parallel (closely-spaced in the case of

EWR) and one intersecting runways, and air traffic control procedures are aimed at

optimizing the global service rate of aircraft for any given runway configuration and

a given mix of departures and arrivals.

Note, however, that this choice is far from perfect in modeling the actual opera-

tions at JFK and EWR. Indeed, flights may be operated simultaneously on different

runways, which challenges the single-server assumption. In addition, arrivals are often

given priority over departures by air traffic controllers, both for safety and efficiency

reasons, which challenges the first-come first-served assumption. Therefore, the accu-

racy of the single-server approximation depends on the runway configuration in use,

the demand for arrivals and departures and the air traffic control procedures. In two

recent studies, the departure throughput rate has been quantified as a function of de-

parture demand and of the arrival throughput rate for given runway configurations at

Boston Logan International Airport (BOS) (Simaiakis and Balakrishnan, 2011) and

at EWR (Pyrgiotis, 2011). In the latter study, delays at EWR have been computed
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with two servers, one used for departures and the other one for arrivals (Pyrgiotis,

2011). This approach compensates to some extent for the limitations of our model.

In conclusion, we shall continue to use throughout this work the single-server model,

consistently with Assumptions 3 and 4, but the above considerations may be sources

of some inaccuracies.

With the 5 assumptions outlined above, the time-varying demand rate and service

rate are respectively denoted by λ(t) and µ(t).

An Erlang process with order k and rate µ is equivalent to the sum of k successive

phases each with a negative exponential distribution with a rate parameter equal

to kµ. Therefore, the service process is equivalent to k independent and successive

service phases, each one being Markovian. Each additional aircraft joining the queue

is equivalent to k additional phases in the service. Thus, at each time t, the state of

the system may be described by the number of phases in the system; if n designates

the number of aircraft in the system, that is to say both in the queue and in the

service facility, and if j represents the number of remaining phases in the current

service, the state is given by:

m = max(n− 1, 0) + j.

If n = 0, then j is fixed to 0.

The resulting state-transition diagram is shown in Figure 3-3.

Figure 3-3: State-transition diagram of the M/Ek/1 model

The queuing system is assumed to be empty initially. This is a realistic assumption

in practice if one chooses an appropriate local time (such as 3 a.m. or 4 a.m. or 5
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a.m. at practically any US airport).

During a day of operations, the system’s evolution is described by the system (3.1)

of the Chapman-Kolmogorov first-order differential equations. In these equations, N

denotes the queuing capacity of the system (including the customer being served) and

Pi(t) the probability of being in state i at time t.

dP0(t)
dt

= −λ(t)P0(t) + kµ(t)P1(t)

dPi(t)
dt

= −(λ(t) + kµ(t))Pi(t) + kµ(t)Pi+1(t) ∀i ∈ {1, ..., k}

dPi(t)
dt

= λ(t)Pi−k(t)− (λ(t) + kµ(t))Pi(t) + kµ(t)Pi+1(t) ∀i ∈ {k + 1, ..., (N − 1)k}

dPi(t)
dt

= λ(t)Pi−k(t)− kµ(t)Pi(t) + kµ(t)Pi+1(t) ∀i ∈ {(N − 1)k + 1, ..., kN − 1}

dPkN (t)
dt

= λ(t)Pk(N−1)(t)− kµ(t)PkN (t)

(3.1)

With a queuing capacity equal to N , the number of states in the system is equal to

kN+1. In order to model an infinite queue capacity, N must be set very large and, as a

consequence, the computational times needed to solve the system numerically increase

quickly. In cases of severe congestion, the numerical solution may be extremely time-

consuming.

Therefore, numerical approximations are developed to approximate the dynam-

ics of this model. In the remainder of this chapter, the analytical approximation

called DELAYS and a new model based on Monte Carlo simulation are successively

introduced.

3.2 An analytical approximation: DELAYS

DELAYS is based on an analytical approximation scheme of the queuing system which

describes its evolution through a system of difference equations instead of the system

of the Chapman-Kolmogorov differential equations (Kivestu, 1974). The system is

described by the number of aircraft in the queue when a service has been completed,

so that the number of states in the system is reduced from kN + 1 to N + 1.

This model is based on the following dynamics. Between two successive services, a

certain number of aircraft demand use of the runway system and join the queue. The
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probability that during the service of aircraft j, x aircraft arrive in the queuing system

is denoted by αj(x). The state probabilities are denoted by pn(tj) and they represent

the probability that n aircraft are queuing when the service of the jth aircraft is

completed.

The difference equations are given by:

pn(tj+1) = p0(tj)αj+1(n) +

j+1
∑

i=1

pi(tj)αj+1(n− i+ 1), ∀j ∈ {0, ..., N} (3.2)

with:

tj+1 − tj =
k + 1

k

1

µ(tj)
(3.3)

and:

αj+1(x) =

(

λ(tl)
µ(tl)

)x

e
−

λ(tj)

µ(tj )

x!
, ∀x ≥ 0 (3.4)

These equations approximate the state probabilities for every time period of a day,

which are used to evaluate the expected delay over the course of the day. Indeed, the

average number of aircraft in the queue at time t is given by Lq(t) =
∑N

i=1(i−1)pi(t).

Consequently, Equation (3.5) provides an approximation of the average delay at time

t:

Wq(t) =

∑N

i=1(i− 1)pi(t)

µ(t)
(3.5)

Kivestu’s approximation assumes that an aircraft is served at the rate which pre-

vails at the moment the aircraft demands service - instead of the rate which exists

when it is actually served. This is accurate if the service rate varies slowly relative

to the time each aircraft spends in the queue. In general, this is a reasonable as-

sumption since variations of the service rate typically occur over long periods of time.

For example, significant weather variations may take 1 to 2 hours to take effect, an

amount of time which typically far exceeds the average flight delays. However, this

assumption may be challenged in cases of sharp capacity variations and severe con-
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gestion. More recently, (Gupta, 2010) has incorporated into DELAYS the notion of

the effective service rate µeff which considers the short-term variations of the service

rate that may take place between the time aircraft join the queue and the time they

are served.

DELAYS has been implemented in software (Gupta, 2010; Pyrgiotis, 2011) which

is computationally extremely efficient and requires less than one second to estimate

the expected delays as a function of time of the day for an entire day of operations. It

has been shown that the expected delays of theM(t)/Ek(t)/1 model are approximated

very accurately by the DELAYS model (Malone, 1995; Gupta, 2010). In addition,

DELAYS provides reasonable estimates of the state probabilities at each time period

of the day. Therefore, this analytical model approximates very accurately and effi-

ciently the dynamics of the M(t)/Ek(t)/1 model, for known demand and capacity

profiles.

In order to compute the delays experienced by aircraft over extended periods of

time (e.g. one month), this model may be used with inputs consisting of the average

daily demand profile over the entire period and a flat capacity profile. The chosen

capacity may be set successively equal to the airport capacity under VMC and the

airport capacity under IMC. In other words, the VMC delays and the IMC delays

are computed separately, for an “all VMC” day and an “all IMC” day, i.e. under

the assumption that the weather does not change during an entire day of operations.

The weighted average of these delay profiles can then be used to estimate the overall

average delay, the weights being the proportion of days during which each period of

the day was VMC or IMC over the set of days which is considered. This relies on the

assumption that IMC periods tend be consecutive and concentrated in time.

The approach outlined in the previous paragraph has some serious limitations. In

order to compute the average delay accurately, it is necessary to have a posteriori

knowledge of the weather conditions which were actually experienced at a given air-

port over a given period of time. This is a limitation when it comes to computing the

expected delay in future months for different demand scenarios. In addition, the mere

proportion of VMC and IMC for any given set of days does not provide information
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on the timing, sequence and duration of VMC and IMC time periods during each

day. But these factors (timing, sequence and duration) have a significant impact on

airport congestion. If, for instance, the weather deteriorates during peak hours, the

impact on delays is much more important than if the weather deteriorates at off-peak

hours. Note, however, that more complex capacity models, which account to a larger

extent for these effects, could be used with this model. In particular, some researchers

have applied statistical clustering techniques to derive sets of typical day-of-operation

capacity profiles, with each profile associated with a probability of occurring, which

could then be used as inputs to the DELAYS model (Lin et al., 2008; Buxi and

Hansen, 2011).

3.3 Monte Carlo Simulation

In this section, an alternative numerical approximation of the M(t)/Ek(t)/1 model is

presented. It is based on Monte Carlo simulation and it samples the times at which

each aircraft joins the queue and is served. These may be used to compute delay

statistics such as the expected value and the standard deviation of the delays. All

algorithmic implementations are done in MATLAB.

The development of this alternative model was motivated by two main objectives.

First, the DELAYS model presented in section 3.2 captures the stochasticity of the

demand and service processes, as long as their expected values for any time period

of the day are known and specified. However, in practice, these expected values

are subject to considerable uncertainty and in addition they may vary significantly

from day to day. In fact, the average demand changes as a function of the day

of the week, of short-term demand fluctuations due to holidays or special events,

of the number of unscheduled operations etc. In addition, planned departure and

arrival times may be dynamically readjusted over the course of the day if operations

have been significantly disturbed, which also contributes to the uncertainty regarding

airport demand. As well, the expected capacity depends on weather conditions, on

the runway configuration in use, on air traffic control procedures, on the aircraft
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mix, on the mix of departures and arrivals etc. The flexibility of the Monte Carlo

simulation allows modeling the combination of these effects through more complex

distributions. A model of airport demand and a Markovian model of airport capacity

are respectively presented in Sections 3.3.2 and 3.3.3.

A second reason for using a simulation model is that this approach provides es-

timates of the variability of the delays from one day of operations to another: each

simulation run represents one day of operations and the extent to which delays vary

from one day to another over a month (or other extended period of time) may thus

be measured.

3.3.1 General algorithm

A discrete-event simulation is used to sample demands and services over the course

of one day. The algorithm is initialized at the beginning of the day with no aircraft in

the system. The first aircraft then arrives and is immediately served. Throughout the

day, each aircraft demanding access to the runway system joins the queue in the last

position or is immediately served, if the queue is empty. Once an aircraft is served,

it is removed from the queue and each remaining aircraft advances by one position in

the queue. The new service then starts if the queue has not become empty.

The pseudo-code is given in Algorithm 1. A binary variable event is introduced

at each iteration and represents the type of the next event: it is equal to 1 if the next

event is a demand and to 0 if it is a service.

All delay statistics computed with this Monte Carlo simulation model and pre-

sented in Chapters 4 and 5 are obtained with 10,000 simulation runs.

The models of airport demand and airport capacity are presented in Sections 3.3.2

and 3.3.3, respectively.

3.3.2 Model of Airport Demand

A model of airport demand is developed in order to take into account the variations

of the demand between successive days of operations. It attempts to capture the
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Algorithm 1 General algorithm of the Monte Carlo simulation

Inputs: Demand profile, Capacity profile

1. Initialization: t = 0, Queue empty and QueueLength = 0

2. Generation of the first demand at time t
(0)
D : Update of the time t = t

(0)
D and

definition of event = 1

3. Queue update:

while t ≤ Tmax do

⊲ While the end of the day of operations is not reached
Empty ← QueueLength == 0 ⊲ Empty is a binary variable
NextEmpty ← QueueLength == 1 ⊲ NextEmpty is a binary variable
if event=1 then ⊲ The next event is a demand

Add the aircraft at the end of Queue
if Empty TRUE then

Start a new service, which ends at time tS
end if

Generate the next demand, at time tD
else ⊲ The next event is a service

Remove the aircraft from Queue and reorganize Queue
if NextEmpty FALSE then

⊲ After the aircraft is served, the queue is not empty
Start a new service, which ends at time tS

end if

end if

Empty ← QueueLength == 0
Time update:
if Empty TRUE then ⊲ The queue is empty

t = tD
event = 1

else ⊲ The queue is not empty
if tS < tD then

t = tS
event = 0

else

t = tD
event = 1

end if

end if

end while

Output: Times of demands, times of services and service time of each aircraft
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variability of both the total number of flights in a day and of how these flights are

distributed over the course of the day.

The average demand vector is denoted as (X1, ..., X96). For each 15-minute period

i, Xi represents the average number of flights which are scheduled during period i

over one month of operations. The demand vector (Y1, ..., Y96) in effect on any given

day is then sampled as follows:

1. The total number of flights scheduled in a day, denoted by N , is randomly sam-

pled from the Poisson distribution with average
∑96

i=1Xi. Figure 3-4 shows the

histogram of the number of operations between 6 a.m. and midnight in July and

August 2010 at JFK and the probability distribution function of this Poisson

distribution. A chi-squared goodness-of-fit test with 3 degrees of freedom has

been performed. The null hypothesis is that the number of flights per day fol-

lows a Poisson distribution. The results are reported in Table 3-4. The p-value

is equal to 0.103, which indicates that, at a level of significance 0.05, the null

hypothesis cannot be rejected, and consequently that the Poisson distribution

provides an acceptable model for the total number of flights in a day.

Statistics Value
χ2 6.19
σ 3

p-value 0.103

Figure 3-4: Histogram of the number of daily flights at JFK in July and August 2010
and the distribution function of the Poisson distribution
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2. The N flights of the previous step are then distributed temporally over the

course of the day in a manner consistent with the demand vector (X1, ..., X96),

thus maintaining the typical pattern of peaks and valleys during the day of

operations. For example, if Xi, for some particular time period i is equal to 2

per cent of
∑96

i=1Xi, then a number of flights equal to 2 per cent of N will be

allocated to time period i.

3. A perturbation, uniformly sampled from the five integers between -2 and +2

is then added to the number of flights allocated to each time period. In other

words, for every time period i, the number of scheduled flights on a given day

of operations is equal to Yi =
Xi∑96
i=1 Xi

N +U , where U is uniformly sampled from

{−2,−1, 0, 1, 2}. The reason for this perturbation is our desire to capture the

day-to-day variability in demand due to general aviation flights, other unsched-

uled flights, flight cancellations due to mechanical problems, etc. The expected

value of this perturbation term is equal to 0.

4. For every period i, the actual time when each of the Yi flights demands the

usage of the runway - i.e., joins the queue - is independently sampled from the

uniform distribution over the 15 minutes of each period. This is consistent with

the Poisson model of the demand process.

Steps 1 to 3 sample flight schedules, which may be compared to field observations.

Table 3.1 shows some statistics of the sampled demand and the observed demand

at JFK for the 31 days of August 2010 for two separate periods of the day and for

the entire day. The sampled demand matches quite accurately the average value,

the variance and the range of the observed demand. Note that the low variance of

the number of planned flights during a given period may still be consistent with the

Poisson model of the demand process. It is likely that the number of aircraft joining

the queuing system during any period of time - i.e. demanding use of the runway

system - is more variable than the number of planned flights during the same period

of time, because of the deviations from planned departure and arrival times over the

course of one day of operations.

52



Table 3.1: Comparison of the sampled and the actual schedules at JFK in August
2010

Periods Statistics Model Field Data

3:45 - 4:00 PM

Average 24.01 23.71
Variance 2.59 5.76
Minimum 20 19
Maximum 28 28

8:45 - 9:00 PM

Average 13.00 13.10
Variance 2.21 3.47
Minimum 10 9
Maximum 16 18

All day

Average 1,198 1,193
Variance 1,189 1,095
Minimum 1,047 1,089
Maximum 1,354 1,292

3.3.3 Model of Airport Capacity

The capacity of the airport is modeled as a stochastic process that takes into account

its variability over the course of each day. Since capacity variations are primarily

due to weather variations, a dynamic model of weather conditions is developed. Two

categories of days are introduced: all-VMC days that have only VMC periods, and

VMC/IMC days that have some VMC and some IMC periods. The weather “profile”

on VMC/IMC days is modeled by means of a Markov chain.

Given average capacity values of CVMC (resp. CIMC) operations per period in

VMC (resp. IMC) conditions, the evolution of the capacity over the course of a day

is thus modeled as follows:

1. Sampling of the weather conditions:

• The day is all-VMC with probability π and VMC/IMC with probability

1−π. An unbiased estimator of π is the empirical proportion of days which

have only VMC periods.

• If the day is VMC/IMC, the weather conditions are modeled as a Markov
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chain with transition matrix P given by:

P =





VMC IMC

VMC 1− p p

IMC q 1− q



 (3.6)

The transition diagram of this Markov chain is shown in Figure 3-5.

Figure 3-5: Transition diagram of the Markov chain on VMC/IMC days

The process starts at the beginning of each VMC/IMC day in the VMC state

with probability τ and in the IMC state with probability 1−τ . The probability

τ is unbiasedly estimated as the empirical proportion of VMC/IMC days which

start in the VMC state.

The probability p (resp. q) represents the probability that, for a VMC/IMC

day, the weather conditions are IMC (resp. VMC) during period i+1 given that

the weather is VMC (resp. IMC) during period i. Thus, the weather conditions

at period i + 1 only depend on the weather conditions at period i. For this 2-

state Markov process it is known that the number of consecutive periods during

which the weather is VMC (resp. IMC) follows a geometric distribution with

parameter p (resp. q). This property was used to estimate the parameters p

and q as the reciprocal of the average number of consecutive VMC and IMC

periods during VMC/IMC days.

2. For each period, the airport capacity is uniformly sampled in the set {CVMC −

1, CVMC , CVMC+1} (resp. {CIMC−1, CIMC , CIMC+1}) under VMC conditions

(resp. IMC conditions). In other words, a perturbation, equally likely to be -1,

0, or +1, is added to the capacity in each period; this takes into account short-

term capacity variations, which may, for instance, be due to different runway
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configurations being used or to variations in the aircraft mix.

The Markov model was then validated by comparing the empirical distribution

of the number of consecutive VMC and IMC periods for VMC/IMC days in recent

summer months with the model’s predictions. For both distributions, a chi-squared

goodness-of-fit test with 1 degree of freedom has been performed, the null hypothesis

being that the number of consecutive periods in the same weather state follows a

geometric distribution. The histogram of the number of consecutive VMC (resp.

IMC) periods during VMC/IMC days and the results of the chi-squared tests are

shown in Figures 3-6 (resp. 3-7) for JFK, with similar figures obtained for EWR.

Statistics Value
χ2 1.25
σ 1

p-value 0.263

Figure 3-6: Histogram of the number of consecutive VMC periods at JFK in July
and August during VMC/IMC days and the distribution function of the geometric
distribution

Figure 3-6 shows that the geometric distribution provides an acceptable model for

the number of consecutive VMC periods. The p-value is indeed equal to 0.263, so

that the null hypothesis cannot be rejected at a level of significance 0.05.

However, Figure 3-7 shows that the number of consecutive IMC periods is not

perfectly modeled by a geometric distribution. The p-value is indeed very low, so that

the null hypothesis is rejected. This is mainly due to from the model’s underestimation

of the probability of a very large number of consecutive IMC periods, as shown in
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Statistics Value
χ2 26.9
σ 1

p-value 2.1 ∗ 10−7

Figure 3-7: Histogram of the number of consecutive IMC periods at JFK in July
and August during VMC/IMC days and the distribution function of the geometric
distribution

the right end of Figure 3-7. In practice, there may indeed be some days during which

the weather conditions are extreme, in which case it is very likely that flights will be

operated under IMC for a long time. In this case, the transition probability between

the IMC state and the VMC state is almost equal to 0. This challenges the assumption

of the Markov model, according to which the transition probabilities are independent

over time. We nevertheless assume that these days (that are characterized by extreme

weather conditions) are outliers and cannot be fully accounted for by this simple model

of weather variations.

The estimates of the parameters π, p, q and τ are reported in Table 3.2.

Table 3.2: Best estimates of the capacity model parameters for JFK and EWR

Airport JFK EWR
π 0.698 0.645
p 0.0440 0.0490
q 0.0557 0.0638
τ 0.618 0.595

One way to validate the model is by using it to estimate the expected fraction of
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time occupied by VMC and by IMC periods, which we denote by νVMC and νIMC

respectively, and comparing these estimates with the empirical fractions. The Markov

chain which models the weather variations on VMC/IMC days is irreducible, positive

recurrent and aperiodic, and thus ergodic. Therefore, there exists a steady-state

probability distribution σ = (σV MC , σIMC) corresponding to the long-term average

probability distribution of the weather conditions on VMC/IMC days. Since the

proportion of VMC/IMC days is equal to 1 − π, the expected proportions of VMC

and IMC periods are obtained from the steady-state probability distribution, σ, of

this Markov chain. We proceed as follows:

νVMC = π + (1− π)σVMC

νIMC = (1− π)σIMC

This steady-state probability distribution σ of the 2-state Markov chain satisfies

σ = σP , where P is the transition matrix given in Equation (3.6). We therefore have:

σVMC = (1− p)σVMC + qσIMC

σIMC = pσVMC + (1− q)σIMC

Since, in addition, σV MC + σIMC = 1, σ is obtained from the following system of

equations:











pσVMC = qσIMC

σVMC + σIMC = 1

As a result, σ is given by:

σVMC = q

p+q

σIMC = p

p+q

In conclusion, the expected fractions (or proportions) of VMC and IMC periods

are equal to:
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νVMC = π + (1− π) q

p+q

νIMC = (1− π) p

p+q

Table 3.3 shows these expected proportions of VMC and IMC periods at JFK and

EWR in July and August and compares them with the empirical proportions. Again,

the model slightly underestimates the proportion of IMC periods, because, as it was

previously pointed out, it does not take into account extreme weather conditions.

Nevertheless, the expected and empirical weather proportions are reasonably close

to each other, which confirms the accuracy of the weather model developed in this

section.

Table 3.3: Expected and empirical proportion of VMC and IMC periods at JFK and
EWR in July and August

Airport JFK EWR
Weather State VMC IMC VMC IMC

Expected Proportion 0.867 0.133 0.846 0.154
Empirical Proportion 0.910 0.090 0.881 0.119

Figure 3-8 shows sampled capacity profiles for one all-VMC day and for one

VMC/IMC day according to this model, with hypothetical VMC and IMC capac-

ities respectively equal to 20 and 17 movements per 15-minute period.
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Figure 3-8: Sampled capacity profiles
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3.4 Summary

Airport operations are macroscopically modeled by means of an M(t)/Ek(t)/1 queu-

ing model. This model is stochastic and dynamic, i.e., it considers the uncertainty and

the variability over time associated with both the demand and the service processes.

Two numerical methods have been presented to approximate the dynamics of the

system:

• DELAYS (Kivestu, 1974; Gupta, 2010) provides an analytical approximation of

the average delays for each time period of the day. It is computationally very fast

and efficient. The average delays are computed as the weighted average of the

VMC and the IMC delays. Other performance metrics can also be computed.

• The Monte Carlo simulation model, described in this chapter, samples randomly

each landing and each takeoff individually for an entire day of operations. It

may be used to compute various statistics, including the average delay and

the standard deviation of the delays between successive simulation runs. In

this discrete-event simulation model, the profiles of the average demand and

the capacity of the airport are sampled according to the models presented in

Sections 3.3.2 and 3.3.3. Therefore, this model takes into account the day-to-

day variability of the demand and of the capacity, as well as the variability of

demand and capacity within the course of each day of operations.
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Chapter 4

Calibration and Validation of the

Models

The objective of this chapter is to calibrate and to validate the queuing models of

airport congestion introduced in chapter 3 as tools for estimating the average value

and the variability of air traffic delays at JFK and EWR. The analytical approxima-

tion DELAYS (Section 3.2) and the Monte Carlo simulation model (Section 3.3) are

both considered in this chapter.

In the first section, the models are calibrated using historical records of operations

at JFK and EWR from July 2007, with respect to delay magnitude. In other words,

the model parameters are adjusted so that the expected value of the delays, as com-

puted by the model, provide reasonably accurate estimates of the magnitude of the

delays experienced in practice at these airports in July 2007. It is shown that the ac-

curacy of the predictions depends to only a very limited extent on whether DELAYS

or the Monte Carlo simulation method is used as the approximation method.

Then, the models are validated using data from August 2007. We demonstrate

that both DELAYS and the Monte Carlo simulation model estimate accurately the

average delays observed in practice at JFK and EWR, as well as their evolution over

the course of a day of operations. In addition, we show that the Monte Carlo simu-

lation model predicts with reasonable accuracy the variability of the delays between

successive days of operations at JFK and EWR.

61



4.1 Calibration of the Models

4.1.1 Need for Calibration

The un-calibrated models have the following characteristics:

• The demand is defined as the number of planned operations for each time period

of the day; this number is obtained from the “Individual Flights” module of the

ASPM database.

• The airport capacity is given by the value reported in ASPM database; it is ob-

tained by summing up the “Average Departure Rate” and the “Average Arrival

Rate”, from the “Airport” module.

• The Erlang order k, which describes the variability of the service process, is

unknown.

• The delay is computed as the weighted average of, on the one hand, the de-

parture delay - i.e. the difference between the actual wheels-off time and the

planned wheels-off time for departing aircraft - and, on the other hand, the ar-

rival delay - i.e. the difference between the actual gate-in time and the planned

gate-in time for arriving aircraft. The aggregate measures are computed as in

Equation (2.1).

Figure 4-1 shows the average delays predicted by the un-calibrated model and

compares them with the operation delays which were measured at JFK and EWR in

July 2007. DELAYS is used as the approximation method in this case. Two extreme

values of the Erlang order k are considered: k = 1 and k =∞. Note that the model

greatly underestimates the delays experienced at both JFK and EWR. At JFK, for

instance, peak delays were larger than 60 minutes on average in July 2007, while the

model predicts that their expected value is approximately equal to 20 minutes. As

well, computed delays are lower than 10 minutes at EWR, while peak delays have

been larger than 50 minute in practice.
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(a) JFK (b) EWR

Figure 4-1: Results of the un-calibrated model in July 2007

4.1.2 Calibration Steps

The difference between the delays actually observed in practice at JFK and EWR in

August 2007 and the delays predicted by the un-calibrated model may be due to the

combination of three factors:

• The number of scheduled flights may underestimate the number of flights which

actually contribute to airport congestion.

• The capacity values reported in the ASPM database may overestimate the

throughput rate which may be sustained over significant periods of time.

• The average delays observed in practice may be larger than the delays which

are due to runway congestion at JFK and EWR.

The objective of the calibration of the model is therefore to determine three quan-

tities: the demand for use of the runways, the service provided by the runway system

- including its capacity, and the actual delays incurred by aircraft using the runways.

The two former ones are the inputs to the model, and therefore determine the delays

predicted by the model. The latter one is the quantity which the model’s outputs are

trying to estimate and should be compared to. This section presents and discusses

the main choices which have been made to determine these quantities and to estimate

the model parameters.
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Demand process

In addition to commercial flights, demand for use of the runways includes unscheduled

operations, such as general aviation and military flights. Indeed, these flights con-

tribute to congestion because they occupy the runway system during their operation.

As shown in table 2.1, they represent approximately 5% of the total air traffic volume

at JFK and EWR, i.e. 50 to 100 flights per day. It is assumed that, on average,

the temporal distribution of these flights through the course of the day is the same

as the distribution of the scheduled flights; in other words, if 2% of the daily flights

are scheduled between 3 PM and 3:15 PM, then 2% of the unscheduled flights also

demand use of the runway system during this time interval.

Including these unscheduled operations increases the demand; as a consequence,

the computed delays will be larger and thus closer to the reported ones.

Service process

When it comes to the capacity of the runway system, we have chosen to disregard

the capacity estimates for each part of the day that are given in the ASPM database.

The reason is that these estimates are determined rather subjectively by the air

traffic control system and often seem overly optimistic (Figure 2-3). Instead, we have

adjusted by trial-and-error the runway capacities under VMC and under IMC with

the objective of matching as closely as possible the average delays observed in practice

at JFK and EWR. In other words, we estimate the sustained throughput rate, which

is defined as the average service rate (i.e., capacity) which, if sustained over extended

periods of time, results in delay levels similar to those which are observed in practice.

This led to the use of k = 3 for the cases described here. Note that this choice is

subject to some uncertainty, as service times are rounded up to an integer number of

minutes (i.e., 1 minute, 2, 3) in the database, so that the precision of the service time

data is limited. Moreover, the fact that both airports typically operate with two or

three simultaneously active runways creates problems of data interpretation because

of the assumption (Chapter 3) of a single-server system.
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Actual Delays

We are interested here in the delays that can be attributed to local runway system

congestion. Indeed, we wish to compare the model’s outputs to field data on actual

local delays. But the available data are contaminated by delays due to many factors

other than the relationship between local demand and local runway system capacity.

These factors may include mechanical problems with the aircraft, late-arriving cock-

pit or cabin crews, delayed passengers in terminal buildings and, most important,

late-arriving aircraft due to “upstream” delays on earlier flight legs. It is therefore

necessary to select carefully the data on which the estimates of actual local delays are

based. As indicated in Chapter 2, we have assumed that the unimpeded arrival time

of a flight is given by the time predicted in the flight plan. On the departure side,

the local delay is assumed to be given by the taxi-out delay only, instead of the sum

of the gate delay and the taxi-out delay. These choices eliminate to a large extent,

upstream delays and delays from other causes. Note, however, that this is a far from

perfect procedure. For example, some of the gate delays that departures suffer are

indeed caused by local congestion: if many aircraft are already queued for takeoff on

the taxiway system, air traffic controllers may decide to delay the departure of more

aircraft from the gates to avoid aggravating further the congestion of the airfield.

In addition, we subtract from the delay data any “residual” delays, i.e. delays

suffered for various unknown reasons during non-congested periods of the day. Thus,

we assume, in effect, that no delays should exist during these very low-traffic periods.

We have used thes procedures in estimating the actual local delays, but must

underline that these estimates are subject to considerable uncertainty and should be

treated only as approximate. As detailed in Chapter 2, the ASPM database itself is

not fully reliable in some respects, in the first place. Moreover, the estimation of the

true value of local congestion delays is affected by such complexities as the practice

of schedule padding by airlines, the use of different surface congestion management

techniques at different airports and the initiation of Ground Delay Programs when

severe congestion is predicted.
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4.1.3 Calibration Results

The procedures described in Section 4.1.2 have been implemented at JFK and EWR

with data from July 2007. Figure 4-2 shows the demand profiles that were used as

inputs to the model (in black) for JFK (Figure 4-2a) and EWR (Figure 4-2b). The

demand profiles are further broken down into scheduled departures, scheduled arrivals

and unscheduled flights. In addition, we estimate the sustained throughput rates, as

defined in Section 4.1.2 under “Service process”. These rates essentially amount to

our best estimates of expected runway capacity at JFK and EWR per 15-minute

period. They are given in Table 4.1.

(a) JFK (b) EWR

Figure 4-2: Average demand profiles at JFK and EWR in July 2007

Table 4.1: Values of the service rate considered

Airport Weather Capacity

JFK
VFR 21 per 15 minutes
IFR 18 per 15 minutes

EWR
VFR 19 per 15 minutes
IFR 16 per 15 minutes

Figure 4-3 shows the results of the calibrated model for JFK (figure 4-3a) and for

EWR (figure 4-3b) and the delays actually observed in practice at these airports in

July 2007. The results of both DELAYS and the Monte Carlo simulation model are

shown in these figures.
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(a) JFK

(b) EWR

Figure 4-3: Predicted and Actual Delays at JFK and EWR in July 2007

Note, first, that DELAYS and the Monte Carlo simulation model provide very

similar estimates of the expected value of flight delays at JFK and EWR in July 2007.

Thus, the predicted delays do not depend significantly on whether one method or the

other is applied. This confirms that the two numerical models, which approximate

the dynamics of the M(t)/Ek(t)/1 queuing model, are consistent with each other.

Moreover, the delays that these models predict approximate very well the delays
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that were actually experienced at JFK and EWR in July 2007. In general, these

delays tend to form in the morning, dissipate around noon and return again in the

afternoon with large delays experienced during the evening hours. These patterns are

predicted well by the models. It is also noteworthy that the expected value of the

delays computed by the models is close to the average actual flight delays throughout

the day and, especially, during the peak delay periods.

Actual delays cannot, of course, be predicted with perfect accuracy because of the

complexity of the processes at stake and because of the multiple sources of uncertainty.

For instance, the delays observed late at night (after 22:00) at both airports are much

higher than predicted by the models. The reason, we believe, is that the delays

observed during that period are associated with a small number of aircraft which

suffer “propagated delay”, i.e. delay due to the ripple effect of congestion earlier in

the day that affects aircraft which visit JFK or EWR multiple times in the course

of a day (Pyrgiotis, 2011). Moreover, the model seems to underestimate the delays

suffered around noon, after the morning peak, especially at JFK. This may be due, in

part, to similar propagation of delays experienced earlier in the morning. In addition,

the imbalance of departures and arrivals at JFK between 8 a.m. and 10 a.m. observed

in Figure 4-2a may also explain, in part, the model’s underestimation of these delays.

Nevertheless, it is clear that the calibrated model captures quite well the dynamics

of formation and propagation of delays over the course of one day of operations and

estimates well the extent of congestion observed at JFK and EWR in July 2007.

4.1.4 Sensitivity to Model Parameters

Through the calibration of the model, as outlined in Section 4.1.2, several model

parameters have been estimated. Given the uncertainty which these estimations are

subject to, we conduct sensitivity analyses to investigate the effects that changes in

the input estimates may have on the magnitude of the delays predicted by the model.

We specifically focus on two questions in this section:

• To which extent does the magnitude of the predicted delays depend on the
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estimate of the airport capacity?

• To which extent does the magnitude of the predicted delays depend on the

variability of the service process?

Airport Capacity

The sustained throughput rate has been estimated by comparing the model’s outputs

with the delays observed in practice at JFK and EWR. Since airport capacity may not

be estimated with perfect accuracy and certainty, it is important to analyze the extent

to which the model’s predictions may change if alternative estimates are considered.

Figure 4-4 shows the expected value of the delays predicted by the Monte Carlo

simulation model at JFK (Figure 4-4a) and EWR (Figure 4-4b) in July 2007, for

different combinations of VMC and IMC capacity estimates. For example, the “Cap.

22/19” graph for JFK in Figure 4-4a corresponds to the case in which the VMC

capacity of JFK is assumed to be 22 movements per 15 minutes and the IMC capacity

19 movements per 15 minutes. Note that even marginal variations of capacity lead

to significant changes of the predicted delays when the runway system operates close

to capacity. In some cases, if the estimate of the capacity of the runway system is

reduced by 1 flight per 15-minute period (or 4 per hour), the expected value of the

peak delays may increase by as much as 15 to 20 minutes.

(a) JFK (b) EWR

Figure 4-4: Average delays and predicted delays with different VMC and IMC capac-
ity estimates, at JFK and EWR in July 2007
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Variability of the service process

One indicator of the variability of the service process is the Erlang order k: the

smaller k, the more variable the service process. Figure 4-5 shows the expected value

of the delays predicted by the Monte Carlo simulation model at JFK (Figure 4-5a) and

EWR (Figure 4-5b) in July 2007, for different values of k. Note that the smaller k, the

larger the average delays are. In other words, for the same values of airport capacity

(i.e. for the same average service time), a more variable service process results in

larger delays than a less variable one. At peak hours, the difference between the two

extreme cases at EWR may be as large as 6 minutes, or approximately 20% of the

predicted delays. The adopted value of k=3 seems to be a reasonable choice, in any

event.

(a) JFK (b) EWR

Figure 4-5: Average delays and predicted delays with different Erlang orders, at JFK
and EWR in July 2007

Conclusion

In conclusion, the delays predicted by the models are very sensitive to changes in

the model’s inputs. We have demonstrated that the expected value of the delays

depends critically on the estimate of the airport capacity and, to a lesser extent,

on the variability of the service process (for a fixed value of the airport capacity).

Changes in other model parameters might have similar effects, including changes

in demand estimates or alternative choices in the definition of airport demand and

capacity in the Monte Carlo simulation (Sections 3.3.2 and 3.3.3).
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The estimation of the models’ inputs may thus have significant effects on its out-

puts, and therefore the predicted delays should be treated as approximate. Sensitivity

analyses should always be conducted to account for some of the uncertainty associated

with the models’ inputs.

4.1.5 A note on Airport Capacity

In this study, we have estimated the sustained throughput rate, defined as the average

service rate which, if sustained over long periods of time, creates delays of a level

similar to the one observed in practice at JFK and EWR. Table 4.2 compares this

estimate to two alternative evaluations of airport capacity. It reports:

• Our estimate of the sustained throughput rate;

• The estimate of the maximum throughput rate at EWR, defined as the maximal

number of flights which may be operated per unit of time. It is evaluated

by computing the 95th percentile highest value of observed throughput (Odoni

et al., 2011).

• A range of capacity estimates obtained by the Office of Inspector General (OIG)

of the US Department of Transportation (Office of Inspector General, 2010).

Table 4.2: Comparison of capacity estimates

Airport Weather Sustained Rate Maximum Rate OIG range

JFK
VFR 21 N/A 19-22
IFR 18 N/A 16-17

EWR
VFR 19 21 21-23
IFR 16 19 15-17

Note, first, that the sustained throughput rate obtained is lower than the maxi-

mum throughput rate at EWR. In other words, delays observed at EWR are larger

than those which would be experienced if the airport could operate sustainably at its

maximum throughput rate. In addition, our capacity estimates fall within the range

of the evaluations of the OIG, with the exception of the VMC capacity at EWR.
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4.2 Validation of the Model

The calibrated models can now be validated by predicting the expected local delays

and the variability of these delays at JFK and EWR in the month of August 2007 and

then comparing the predictions with the reported actual delays. We consider as fixed

the parameters of the model that were estimated during the model calibration stage

which was presented in Section 4.1. In particular, the airport capacity is given by the

values reported in Table 4.1. We only change the estimate of the airport demand,

which is given by the average number of planned flights for any period of the day

in August 2007 at JFK and EWR. The new outputs of this model are compared to

the delays actually experienced at these airports in August 2007. We show that the

delays predicted by the model approximate very well both the magnitude and the

variability of the reported delays.

4.2.1 Validation of the Model with respect to Delay Magni-

tude

The expected value of the delays predicted by the model in each 15-minute period

of a day in August 2007 turns out to be a good approximation of the average delays

actually observed in practice. Figure 4-6 presents the results for JFK (Figure 4-6a)

and for EWR (Figure 4-6b) for August 2007. The figures show the average delays

observed in practice and the expected value of the delays predicted by the model.

The results of both DELAYS and the Monte Carlo simulation model are presented

in these figures. Note that these results are similar to those obtained for July 2007

(Figure 4-3) and that the model predicts well the magnitude of the delays and their

evolution over the course of one day of operations. Exactly as in the calibration stage,

the predictions are least accurate during the late night hours (after 22:00) at both

airports and during late morning at JFK.

A first measure of the model’s accuracy is the difference between the average delay

over an entire day of operations predicted by the model and the average delay observed

in practice. Table 4.3 compares these statistics for the 18-hour period between 6 a.m.
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(a) JFK

(b) EWR

Figure 4-6: Predicted and Actual Delays at JFK and EWR in August 2007

and 12 a.m., as well as lists the absolute and relative differences between them. The

average delays are well estimated by the model: indeed, the model’s error is lower

than 10%, which corresponds to an absolute error equal to 2 minutes at most. Given

the model’s macroscopic nature, this level of accuracy is entirely adequate.

Another measure of the model’s performance is the correlation between the time

series of predicted and actual delays pictured in Figure 4-3. A regression analysis
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Table 4.3: Predicted and observed average delay (in minutes) between 6 a.m. and 12
a.m. in August 2007

Airport JFK EWR
Actual Delays 22.46 20.97

Method DELAYS Simulation DELAYS Simulation
Predicted Delays 20.29 20.48 23.22 20.68
Absolute Error 2.18 1.99 2.25 0.29
Relative Error 9.69% 8.85% 10.72% 1.38%

was performed comparing the actual delay profile - i.e. the average actual delay for

every 15-minute period of the day, and the predicted delay profile - i.e. the expected

value of the delay computed by the model for every 15-minute period of the day. The

correlation between these time series is a measure of the accuracy with which the

model predicts the evolution and fluctuations of delays over the course of the day.

Figure 4-7 shows scatter diagrams for the actual and predicted demand profiles

in August 2007 at JFK (Figure 4-7b) and JFK (Figure 4-7a). (The predictions of

the Monte Carlo simulation are shown in the figure.) It demonstrates that the actual

and predicted delays are quite similar for most of the 15-minute intervals. This is

confirmed by the high values of the correlation coefficient between the actual and the

predicted delay profiles reported in Table 4.4.

(a) JFK (b) EWR

Figure 4-7: Actual delays vs. predicted delays at EWR in August 2007

In summary, the simulation model estimates well the magnitude of the queues at

the two airports and captures accurately their dynamics.
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Table 4.4: Correlation between the actual and predicted delay profiles over the course
of a day in August 2007

Airport JFK EWR
Method DELAYS Simulation DELAYS Simulation

Pearson’s correlation 0.834 0.889 0.887 0.898
Coefficient of determination R2 0.695 0.790 0.786 0.806

4.2.2 Validation of the Model with respect to Delay Variabil-

ity

One of the objectives of the Monte Carlo simulation model is to predict the variability

of the delays from one day of operations to another. This topic has attracted only

limited attention to date despite the fact that delay variability is a very important

aspect of airport performance and reliability. For instance, if delays from day to day

tend to stay close to their long-term average values, then they can be anticipated

with reasonable accuracy and airlines may be able to accommodate them through

adjustments in their operations or schedules. If, however, delays are extremely vari-

able from day to day, knowing the average long-term delay is of limited value. The

likelihood of very large deviations from the average on any particular day is now much

higher and schedule reliability lower.

The variability of the delays is typically measured by the following two quantities:

• The range of the delays, i.e. the difference between the highest and the lowest

delays experienced during a given period of time.

• The standard deviation of the delays, i.e. the extent to which the daily average

of delays varies between successive days of operations over a longer period of

time - typically one month.

In this section, we compare the range and the standard deviation of the delays

observed in practice at JFK and EWR in August 2007 to the model’s predictions.

According to queuing theory, the average and the variability of the delays (i.e., the

expected value and standard deviation, respectively) are correlated to each other, but
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their exact mathematical relationship under transient conditions is unknown.

We compute the predicted range of delays by considering the 10th quantile of the

simulation results. In general terms, a data point is said to be at the τ th quantile of a

data set if it is larger than a proportion of τ
100

of the data points in the set and if it is

smaller than a proportion of 1− τ
100

. We thus eliminate simulation runs with average

delays larger than 90% of the other runs and those with average delays less than 10%

of the other runs. This procedure robustly eliminates outliers in the evaluation of the

range of flight delays. Figure 4-8 compares this predicted range (in full lines) to the

range of delays observed in practice at JFK (Figure 4-8a) and EWR (Figure 4-8b)

during peak afternoon hours (i.e. between 3 p.m. and 12 a.m.). The dashed lines

in this figures represent the delays observed at these airports on each day of August

2007. The days are separated according to the distinction introduced in Section 3.3.3:

all-VMC days are represented in blue and VMC/IMC days are represented in red.

Figure 4-9 compares the standard deviation of the delays predicted by the model

with the standard deviation observed in practice at JFK (figure 4-9a) and EWR

(figure 4-9b) in August 2007 for all 15-minute periods of the day.

Note, first, that delay variability is large at both JFK and EWR. First, the range

of the delays is very large. Even for days during which all flights are operated under

VMC, peak delays may be very different from one day of operations to another. For

instance, at JFK, they may be as low as 20 minutes and as large as 60 minutes.

Unsurprisingly, the range of the delays is even larger if days with some IMC periods

are considered. In addition, the standard deviation of the delays at peak hours is

approximately equal to 20 minutes, roughly the same order of magnitude as the aver-

age delays during these hours - which are slightly larger than 30 minutes. Note also

that the standard deviation of the delays is largest in the afternoon when the average

delays are also the largest. As a result, runway congestion not only creates large

delays on average, but also increases the variability of delays around their average

value.

Figures 4-8 and 4-9 show that these aspects of delay variability are captured well

by the model. First, the range of the delays is well approximated by the model for
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Figure 4-8: Comparison of the range of delays at JFK and EWR in August 2007

(a) JFK (b) EWR

Figure 4-9: Comparison of the standard deviation of delays at JFK and EWR in
August 2007
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both categories of days. There is only a very limited number of days where observed

delays do not fall within the range predicted by the model, and at the same time the

upper and lower bounds estimate reasonably the maximum and the minimum delays

observed in practice. In addition, the predicted and actual standard deviations of the

delays are of the same order of magnitude, and they evolve similarly in the course of

the day.

In summary, the Monte Carlo simulation model estimates accurately the variabil-

ity of the delays across a set of many days of operations. This model may therefore

be used not only to predict the average value of flight delays, but also their dispersion

around this average. In particular, it may be used to quantify the probability that

on-time performance will be below a given threshold on a given day.

4.3 Conclusion

In this chapter, the M(t)/E(t)/1 queuing model of airport congestion has been cali-

brated and validated using historical records of airport operations at JFK and EWR

in Summer 2007. The month of July 2007 has been used for calibration and the

month of August 2007 has been used for validation.

It has been shown that the two numerical approximation models of theM(t)/Ek(t)/1

queuing model presented in Chapter 3, i.e. DELAYS and the Monte Carlo simulation

model, estimate accurately the magnitude of the delays at these airports and the dy-

namics of their formation and their propagation over the course of the day. Sensitivity

analyses have indicated the extent to which the magnitude of the delays depends on

the average and the variability of the service process. First, even incremental changes

in capacity result in substantial changes in delays when the system operates close

to capacity. In particular, weather variations result in significant delay variations.

All else being equal, the more variable the service process, the larger delays are on

average.

In addition, the Monte Carlo simulation model has been shown to estimate accu-

rately the variability of the delays. Both the range and the standard deviation of the

78



predicted delays match well with those which are observed in practice. Therefore,

the simulation model may be used to quantify the extent to which the level of service

varies from one day of operations to another. In particular, it may be used to evaluate

the likelihood that the level of service during a particular day will be worse than a

given threshold - given an average number of flights scheduled at the airport.

This model may now be used to analyze the evolution of performance levels at

JFK and EWR between 2007 and 2010 and to evaluate the impact that alternative

schedules may have on on-time performance.
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Chapter 5

Policy Implications

In Chapter 4, the queuing models have been calibrated and validated using data from

July and August 2007. We have shown that they estimate accurately the magnitude

and the variability of the delays for these two months. In this chapter, we use this

model to analyze trends in scheduling and on-time performance at JFK and EWR

between 2007 and 2010. First, we present the evolution of airport demand and delays

at both airports over this period. We then apply the model with average demand

profiles from 2007 to 2010 and we show that the large delay reductions observed at

JFK and EWR since 2007 have been primarily due to changes in flight schedules. In

particular, we demonstrate that the relationship between airport demand and delays

is highly nonlinear at congested airports. In addition, for a given number of flights,

their distribution over the course of the day may have significant effects on flight

delays. Finally, we use the Monte Carlo simulation model to quantify the effects of a

slot control policy on the average and the variability of airport delays.

5.1 Demand and Delay Trends between August

2007 and August 2010 at JFK and EWR

In this section, we analyze trends in scheduling and delays at JFK and EWR between

August 2007 and August 2010.
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Figure 5-1 (resp. Figure 5-2) shows the changes, percent-wise, of the average

number of flights operated in a day and of the average local delays1 between July 2007

and July 2008, 2009 and 2010 (resp. August 2007 and August 2008, 2009 and 2010)

at JFK (Figures 5-1a and 5-2a) and EWR (Figures 5-1b and 5-2b). Note that airport

demand, as measured by the number of aircraft movements, has declined slightly at

both JFK and EWR between 2007 and 2010. At the same time, very significant

delay reductions have been observed at both airports. The decline in delay has been

much larger, percent-wise, than the decrease in the demand: whereas the demand

has decreased by approximately 5 to 10%, the local delays in August 2010 were, on

average, about one half of what they were in August 2007, both at JFK and EWR2.

(a) JFK (b) EWR

Figure 5-1: Evolution of average demand and delays from July 2007 onwards

This reduction of airport demand at both JFK and EWR between 2007 and 2010

is primarily due, we believe, to the combination of the economic downturn during

this period, which has affected air transportation demand negatively and the imple-

mentation of schedule caps at these airports from May 2008 onwards. Figure 5-3

(resp. Figure 5-4) shows the number of scheduled departures and arrivals at JFK

(resp. EWR) during all 1-hour periods between 6 a.m. and 12 a.m. for the months of

August 2007-2010. Each point in these scatter plots corresponds to an observed count

of scheduled departures and arrivals, its size being proportional to the frequency of

1The actual delays represent the local congestion delays defined in Section 4.1.2 and modeled in
this study.

2Obviously, the total flight delays have also declined substantially over the same period of time.
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(a) JFK (b) EWR

Figure 5-2: Evolution of average demand and delays from August 2007 onwards

each observation. The red points indicate 1-hour periods during which more flights

than the the recommended cap of 81 operations have been scheduled.

Note that the proportion of time during which the number of scheduled operations

exceeded 81 was significantly larger in 2007 than in 2008, 2009 and 2010. In particular,

while approximately the same number of flights were scheduled in August 2008 as in

August 2007 at both airports, as indicated in Figure 5-2, the 81-slot limit was exceeded

much less often in August 2008 than in August 2007. Therefore, the implementation

of the recommended cap in 2008 has resulted in smoothing the demand on an hourly

basis over the course of a day. This may explain, in part, the delay reduction between

August 2007 and August 2008 observed at both JFK and EWR in Figure 5-2.

Note, also, that the schedule caps have not been strictly enforced since 2008 at

JFK. Indeed, there have been on average 1 to 2 hours per day in August 2009 and

August 2010 with more than 81 movements scheduled at JFK. By contrast, this limit

was almost never exceeded at EWR in August 2009 and 2010 (Figures 5-4c and 5-4d).

However, the number of scheduled operations exceeds airport capacity much more

often if flights are aggregated on a 15-minute basis. Figure 5-5 shows the scatter

plots of scheduled departures and arrivals aggregated on a 1-hour basis (Figure 5-

5a) and on a 15-minute basis (Figure 5-5b) at EWR in August 2009. As shown

in Figure 5-4c, scheduling levels never exceeded the 81-flight hourly cap during this

month. Note, however, that more than 20 flights are scheduled during a significant

number of 15-minute periods.
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(a) August 2007 (b) August 2008

(c) August 2009 (d) August 2010

Figure 5-3: Number of scheduled flights during all 1-hour periods at JFK between
August 2007 and 2010

Table 5.1 reports the proportion of 1-hour periods with more than 81 scheduled

flights and the proportion of 15-minute periods with more than 20 scheduled flights

in August 2007, 2008, 2009 and 2010 at JFK and EWR. Note that, although the

proportion of time during which scheduling levels exceed the 81-flight hourly cap has

substantially decreased over time, the proportion of 15-minute periods with above-

capacity scheduling has remained approximately the same over these years. In August
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(a) August 2007 (b) August 2008

(c) August 2009 (d) August 2010

Figure 5-4: Number of scheduled flights during all 1-hour periods at EWR between
August 2007 and 2010

2009 and 2010, the number of scheduled operations almost never exceeded the 81-

operations cap at EWR, and it did so on average between 1 and 2 one-hour periods

of the day at JFK; however, schedules exceeded 20 flights in more than 25% of the

15-minute periods per day on average at these two airports. Therefore, the imple-

mentation of the hourly caps at JFK and EWR has not reduced scheduling levels on

a 15-minute basis.
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(a) 1-hour periods (b) 15-minute periods

Figure 5-5: Number of scheduled flights at EWR in August 2009

Table 5.1: Proportion of 1-hour periods with more than 81 scheduled flights and
proportion of 15-minute periods with more than 20 scheduled flights

Airport JFK EWR
Aggregation Basis 1-hour 15 minute 1-hour 15-minute

August 2007 22.8% 33.9% 14.9% 31.8%
August 2008 10.2% 31.7% 6.6% 33.5%
August 2009 8.4% 32.3% 0% 29.3%
August 2010 8.1% 27.6% 0.2% 30.0%

The main takeaway from this section is twofold. First, demand has slightly de-

creased at both JFK and EWR between 2007 and 2010 and, at the same time, average

delays have declined substantially. The objective of Section 5.2 is to determine the

extent to which this delay reduction may be explained by changes in demand. Sec-

ond, the implementation of hourly schedule caps at these airports from May 2008

has resulted in reducing hourly scheduling levels, but airport capacity is very often

exceeded on a 15-minute basis. Section 5.3 quantifies the effect of these changes in

the distribution of flights over the course of one day of operations on airport delays.

86



5.2 Relationship between Scheduling Levels and

Delay Magnitude

The objective of this section is to determine the extent to which the delay decrease

observed at JFK and EWR between 2007 and 2010 can be attributed to changes in

airport demand. To this end, we use the queuing model presented in Chapter 3 and

validated in Chapter 4 with the average demand profiles of the eight months from July

and August 2007 to July to August 2010. The other input parameters are identical

for all months. In particular, the runway system capacity estimates are the same in all

cases, as reported in Table 4.1. Therefore, the observed changes in predicted delays

are solely due to the changes in airport demand between 2007 and 2010. If the model

predicts an evolution of delays of similar magnitude to the one observed in practice,

then the delay decrease can be attributed primarily to the changes in demand between

2007 and 2010. If, on the other hand, the model predicts a delay reduction which

is significantly smaller than the one observed in practice, then the reduction of the

delays observed in practice is likely to be due to other factors than the changes in

demand, including an improvement of airport traffic-handling performance.

Figures 5-6 and 5-7 show the average delays observed at JFK and EWR between

July and August 2007 and July and August 2010, and compares them to the model’s

predictions. The results of both DELAYS and the Monte Carlo simulation model are

presented.

First, DELAYS and the Monte Carlo simulation model both predict very similar

evolutions of delay averages over the period of time considered. This confirms the

earlier observation that the two models provide consistent approximations of the

M(t)/Ek(t)/1 queuing model. The small differences are, we believe, essentially due

to the different weather conditions which were observed at JFK and EWR during the

months considered. Indeed, we approximate average delays with the DELAYS model

using the a posteriori observations of the timing, sequence and duration of VMC

and IMC periods at these airports, while, by contrast, the Monte Carlo simulation

considers an axiomatic and a priori model of weather variations. Therefore, if the
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(a) JFK (b) EWR

Figure 5-6: Comparison of the predicted and actual average delays from July 2007 to
July 2010

(a) JFK (b) EWR

Figure 5-7: Comparison of the predicted and actual average delays from August 2007
to August 2010

weather has been particularly bad in practice in a given month, the delays predicted

by DELAYS are likely to be larger than the delays predicted by the Monte Carlo

simulation model. However, Figure 5-6 and 5-7 show that these differences are small.

In addition, it can be seen that the two models overall predict delay reductions

of a magnitude similar to what was observed at JFK and EWR between 2007 and

2010. Indeed, they both approximate reasonably well the evolution of the actual

delays over time. Nonetheless, some fluctuations may be observed and the accuracy

of the estimates varies from month to month. In particular, the model seems to

underestimate the delays at JFK in 2008 and 2009. The reason, we believe, is that,

due to their macroscopic nature, the models do not consider a number of factors that
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may influence significantly airport operations and ultimately an airport’s on-time

performance. Moreover, the estimates of the sustained throughput rate considered in

this study are only approximate, and in practice the capacity of the runway system

is subject to variations and uncertainty. For instance, delays significantly larger than

the model’s predictions may be indicative of a particularly poor performance of an

airport during the month considered, and vice versa.

A more detailed presentation of the results of the Monte Carlo simulation model

between 2007 and 2010 is provided in Appendix B. As indicated above, the results

of the DELAYS model during this period are very similar to the simulations. Since

the model slightly underestimates the delays at JFK in 2008 and 2009, we show in

these figures results at JFK with two sets of capacity estimates: the values of the

sustained throughput rate considered in this study (21 flights per period under VMC

and 18 under IMC), and a set with slightly lower capacity values (20 flights per period

under VMC and 17 under IMC). For EWR, we have solely considered the values of

the sustained throughput rate considered in this study (19 flights under VMC and 16

under IMC). These more detailed graphs confirm the results observed in Figures 5-

6 and 5-7: the model predicts a magnitude of delays which matches well the ones

observed in practice at JFK and EWR between 2007 and 2010.

Overall, the model estimates accurately the delay decrease that has been expe-

rienced at JFK and EWR between 2007 and 2010. Table 5.2 reports the change,

percent-wise, of the demand, the actual local delays and the delays predicted by the

two numerical models between July and August 2007 and July and August 2010 at

JFK and EWR. The models predict delay decreases that are remarkably similar to

the ones observed in practice, with the exception of August 2007 vs. August 2010 at

EWR, where the actual delay decrease has been slightly greater than the prediction.

These results suggest that the decrease in delays that has been observed at JFK

and EWR over the past few years is primarily due to the reduction of the demand.

Indeed, the queuing model predicts a delay reduction similar to the one observed in

practice, and this predicted delay reduction results solely from the changes in demand

between 2007 and 2010.
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Table 5.2: Percent of change of the demand and of the delays at JFK and EWR
between 2007 and 2010

Airport JFK EWR
Month July August July August

Total Demand -6.84% -8.02% -3.37% -5.16%
Actual Delays -46.90% -53.15% -32.93% -52.02%

Predicted Delays (DELAYS) -54.00% -52.67% -40.72% -42.33%
Predicted Delays (Simulation) -48.69% -51.30% -36.14% -41.56%

Since the demand reduction over this period has been much more limited than the

delay decrease, the relationship between demand and delays at congested airports is

highly nonlinear. In other words, small changes in demand result in large changes in

the magnitude of the delays, when the airports are operated close to their capacity.

This observation has been well established in the literature of queuing theory

under steady-state conditions (Larson and Odoni, 1981). Indeed, the average delay

under steady-state conditions is known to be proportional to 1
1−ρ

, where ρ is the ratio

of demand over capacity. The nonlinear relationship between demand and delays

is illustrated in Figure 5-8, which shows the expected delay as a function of the

utilization ratio ρ under steady-state conditions. When ρ is close to 1 (i.e. when

demand is close to capacity), small changes in ρ (i.e., if capacity is fixed, small

changes in demand) result in large delay variations.

Figure 5-8: Non-linear relationship between the utilization ratio and the expected
delay under steady-state conditions

This study extends this nonlinear relationship between demand and delays to the
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operation of airports under dynamic conditions, in which the demand and service

rates are time-varying and steady-state is not reached. Over the period 2007-2010,

delays at JFK and EWR have decreased non-linearly in response to small declines in

demand. Conversely, if demand increases again over the next few years, delays are

likely to increase much more rapidly under existing operating conditions.

5.3 Impact of the distribution of flights within a

day

In Section 5.2, we argued that the delay decrease which has been observed at JFK and

EWR between 2007 and 2010 can be attributed primarily to changes in demand. In

addition to the reduction of the number of scheduled flights, illustrated in Figures 5-1

and 5-2, their distribution over the course of the day may also have an effect on airport

congestion. It is reasonable to expect that, for any given total number of flights, the

more unevenly they are distributed in a day of operations, the larger the delays will

be on average. Indeed, if too many flights demand use of the runway within a very

limited period of time, long queues are likely to be formed and to propagate through

time.

5.3.1 An example

To test the impact of the distribution of flights in the course of one day of operations,

we have selected two days of operations at JFK: Sunday, July 22nd 2007 and Tuesday,

July 26th 2008. During these two days, almost exactly the same number of flights were

operated between 6 a.m. and 12 a.m., as indicated in Table 5-9. The hourly demand

profile on these two days is shown in Figure 5-10, which indicates that the distribution

of these flights was much more uneven on 07/22/2007 than on 08/26/2008. The peak

scheduled demand levels were much higher on 07/22/2007: for instance, 115 flights

were planned between 4 p.m. and 5 p.m., a number which greatly exceeds JFK’s

capacity. In addition, the 81-flight cap, which has been recommended by the FAA
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beginning in May 2008, was exceeded during 7 one-hour periods on 07/22/2007. By

contrast, the schedule on 08/26/2008 was much smoother: the 81-flight cap was

exceeded during only 3 periods and the maximal number of movements planned in

any hour was 89.

Figure 5-9: Total number of flights between 6 a.m. and 12 a.m. on 07/22/2007 and
on 08/26/2008 at JFK

Day Number of Planned Flights
07/22/2007 1257
08/26/2008 1258

(a) 07/22/2007 (b) 08/26/2008

Figure 5-10: Planned demand on 07/22/2007 and on 08/26/2008 at JFK

We now wish to test the effect that these different schedules have had on airside

delay performance at JFK. To this end, we compare the magnitude of the delays

on these two days. Operations on both days were conducted under VMC, so that

weather fluctuations were not a factor and did not bias the results. Figure 5-11 shows

the actual and predicted delays on each of these days. Since the schedules of flights

and the weather conditions on this particular day are a posteriori known, we have

used DELAYS to compute the expected value of the delays, with the same estimate

of the airport capacity (21 per 15-minute period) in both cases. Note that delays at

JFK are significantly larger on 07/22/2007 than on 08/26/2008, and also that the

model predicts delays which are of a similar magnitude to those observed in practice

on both of these days. Table 5.3 shows that the model predicts a difference between

the average delays on these days which is very similar to the one observed in practice.
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(a) 07/22/2007 (b) 08/26/2008

Figure 5-11: Actual and predicted delays on 07/22/2007 and on 08/26/2008 at JFK

Table 5.3: Average delays at JFK on 07/22/2007 and on 08/26/2008

Metrics Actual Delays Predicted Delays
07/22/2007 20.88 minutes 18.33 minutes
08/26/2008 9.31 minutes 8.05 minutes

Absolute Difference 11.57 minutes 10.28 minutes
Relative Difference 55.42% 56.07%

This comparison shows that the distribution of flights over the course of the day

may have a very significant effect on airport congestion, and that this effect is well

captured by the queuing model considered in this study. For a given total number

of flights, a “smoother” distribution may result in much lower delays than a more

uneven one.

5.3.2 Average distribution of flights at JFK and EWR

We now analyze the average distribution of flights at JFK and EWR and its evolution

between August 2007 and 2010.

Figure 5-12 presents the average proportion of flights planned on weekdays during

any one-hour period of the day at JFK (Figure 5-12a) and EWR (Figure 5-12b)

between August 2007 and August 2010. If the schedule were perfectly even, 5.56% of

flights would be planned during every period. As can be seen, the schedules at both

JFK and EWR include peaks and valleys: more flights are scheduled in the early
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morning and in the afternoon than in the late morning or in the late evening.

In addition, note that the distribution of flights over the course of the day has

changed significantly at JFK between August 2007 and August 2010. Indeed, schedul-

ing peaks were noticeable in August 2007 at 8 a.m. and 4 p.m., during which more

than 7.5 % of the daily flights were planned. Flight schedules were more evenly dis-

tributed in August 2008 and August 2009: during every period of the day, less than

7% of the daily volume of flights were planned in these 2 months. However, the

distribution of flights seems to have become more uneven again by August 2010.

In contrast, the changes in the distribution of flights during the day seem to have

been quite limited at EWR between August 2007 and August 2010. Indeed, the

proportion of flights planned at peak hours has remained the same over these years,

ranging between 6% and 7% throughout.

(a) JFK (b) EWR

Figure 5-12: Proportion of flights during every hour at JFK and EWR between
August 2007 and August 2010

In order to quantify the effect of the flight distributions on airport congestion, we

consider eight different demand profiles four each for JFK and EWR with:

• the same total number of flights (1,200 flights between 6 a.m. and 12 a.m.)

• different distributions of flights over the course of the day: the 1,200 flights
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are distributed proportionally to the distributions observed at JFK and EWR

between August 2007 and August 2010 and shown in Figure 5-12

We use the queuing model to compare the expected value of the delays under

these different demand scenarios. Since in all cases the total number of flights in a

day is the same, the potential differences are only due to the different distributions of

the flights over the course of the day. Figure 5-13 shows the delays predicted by the

Monte Carlo simulation model with the distributions observed at JFK (Figure 5-13a)

and EWR (Figure 5-13b) between August 2007 and August 2010.

First, note that the distribution of flights has an important effect on average

delays at JFK. Indeed, the expected value of the peak delays varies from 10 minutes

with the flight distribution from August 2008 to more than 30 minutes, with the

distribution from August 2010. More generally, for the same total number of flights,

average delays are much smaller with distributions from August 2008 and 2009 than

from August 2007 and 2010; this result confirms that the schedule has been much

smoother in August 2008 and August 2009 than in August 2007 and 2010:

As expected, the differences at EWR are much more limited. Nevertheless, al-

though differences in flight distributions have been negligible, as indicated in Fig-

ure 5-12b, average delays may vary from a year to another by 5 minutes at peak

hours, which corresponds to a relative difference larger than 10%.

Interestingly, the distribution of flights over the day at both JFK and EWR has

been smoother in 2008 and 2009 than in 2007, and more uneven again in 2010. First,

the introduction of flight caps in May 2008 contributed to reducing peak scheduling

levels. Since the average number of daily flights did not decline between 2007 and

2008, and, in fact, even increased in some cases, as shown in Figures 5-1 and 5-2, the

flight caps resulted in smoothing the airport demand. In other words, approximately

the same number of flights were scheduled, but were distributed more evenly over

the course of the day, in part because of the schedule limitations. These trends

are confirmed by Figure 5-14 and Table 5.4, which report the average number of

scheduled flights per hour in the afternoon at JFK in August 2007, 2008 and 2010:

the total number of flights scheduled in the afternoon remained similar between 2007
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(a) JFK

(b) EWR

Figure 5-13: Predicted average delays with the distributions of flights observed at
JFK and EWR from August 2007 to August 2010 and the same total number of
flights in the day (1,200 flights)

and 2008, but less flights were scheduled during the peak period in 2008 than in

2007. However, between 2008 and 2010, the demand declined significantly because of

the economic downturn, and the results from this section suggest that this demand

reduction mostly occurred at off-peak periods. This is also confirmed by Figure 5-14
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and Table 5.4. Indeed, the total number of flights scheduled in the afternoon decreased

between August 2008 and August 2010, but the number of flights scheduled between

2 p.m. and 9 p.m. remained approximately the same. Therefore, airlines eliminated

primarily off-peak flights, which are generally less profitable than peak-hour flights.

Figure 5-14: Average number of flights per hour in the afternoon at JFK in August
2007, 2008 and 2010

Table 5.4: Average number of flights in the afternoon at JFK in August 2007, 2008
and 2010

Time Window August 2007 August 2008 August 2010
12 p.m. - 2 p.m. 124 146 115
2 p.m. - 9 p.m. 581 544 547
9 p.m. - 12 a.m. 157 176 155
12 p.m. - 12 a.m. 863 866 816

Table 5.5 reports the average and peak delays with distributions from August 2007

to August 2010 at JFK and EWR, and the same total number of flights. These results,

of course, depend on the total number of flights which is assumed for the entire day.

The choice of 1,200 flights here is arbitrary (but reasonable for these two airports) and

any other choice would have led to different average delays. Nonetheless, the results

underline the fact that the distribution of flights may have a substantial effect on
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delays. As shown, delays are on average approximately 50% larger with distributions

from August 2007 and 2010 at JFK than with distributions from August 2008 and

2009 at JFK.

Table 5.5: Average and peak delays (in minutes) with different distribution of flights
and the same total number of flights in the day (1,200 flights)

Airport JFK EWR
Metrics Average Delays Peak Delays Average Delays Peak Delays

August 2007 9.93 24.83 15.50 37.61
August 2008 5.30 9.94 14.05 30.23
August 2009 5.30 14.43 13.50 31.24
August 2010 11.39 29.85 14.93 37.94

Therefore, the distribution of flights over the course of the day has an impor-

tant impact on the formation and the propagation of queues at congested airports,

and variations of flight distributions at JFK and EWR between 2007 and 2010 have

contributed to changes in delays over this period.

5.4 Conclusions

In this chapter, we have quantified the impact of flight schedules on airport delays.

In particular, we have shown that both the total number of flights operated in a day

and their distribution over the course of the day have an impact on delays.

First, the more flights are scheduled in a day, the larger the average delays will be.

The application of the queuing model to JFK and EWR has demonstrated clearly

that the relationship between demand and delays is highly nonlinear when an airport

operates close to capacity. As a result, the delay reductions that have been observed

at JFK and EWR between 2007 and 2010 can be largely attributed to the relatively

small decline in flight demand at these two airports during the same period of time.

Second, for a given total number of flights in a day, the more evenly they are

distributed over its course, the smaller the average delays will be. In particular,

the institution of the 81-movement caps at JFK and EWR in May 2008 resulted
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in smoother schedules in August 2008 and 2009 than in August 2007, which has

contributed to the delay reductions observed at JFK and EWR during this period.

However, scheduling levels have remained very high during a large number of 15-

minute periods and this has contributed to the continuing high (on an absolute scale)

level of delays at these airports. Therefore, a slot control system at JFK and EWR

might be more effective if it specified limits on a 15-minute, rather than on an hourly,

basis.
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Chapter 6

Conclusion

6.1 Summary of the Results

In this thesis, we have modeled airport operations at a macroscopic level at JFK and

EWR, two of the most important and most congested airports in the United States.

To this end, we have used a stochastic and dynamic M(t)/Ek(t)/1 queuing model.

Two approximation methods have been considered:

• an analytical approximation scheme called DELAYS (Kivestu, 1974; Gupta,

2010), which approximates the expected value of the delays through the course

of one day of operations; and

• a new Monte Carlo simulation model introduced in this study, which samples

randomly each landing and each takeoff in a day and which may be used to

evaluate the expected value and also the probability distribution of flight delays.

Dynamic models of airport demand and airport capacity have also been developed

and combined into the Monte Carlo simulation model. They capture the uncertainty

regarding scheduling levels and airport capacity, and their variability from one day

of operations to another.

Both DELAYS and the Monte-Carlo simulation model have been calibrated and

validated using historical records of airport operations at JFK and EWR. First, we
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have shown that both models provide similar estimates of the expected value of the

delays. Then, we have demonstrated that both the predicted magnitude of the delays

and the predicted evolution of the delays over the course of the day are very close to

what has been observed at these airports. In addition, the Monte Carlo simulation

model estimates accurately the variability of the delays across a set of many days of

operations at JFK and EWR. This model may therefore be used not only to predict

the average value of flight delays, but also their dispersion around this average. In

particular, it can be used to quantify the probability that on-time performance will

be below a given threshold on a given day.

The sustained throughput rate has been defined as the average service rate which,

if sustained over long periods of time, leads to delays which are at a level similar to

those observed in practice. The sustained throughput rate is essentially the effective

long-term capacity of the runway system in VMC and in IMC and can be estimated

by adjusting the service rates at an airport until the delays predicted by the models

are of about the same magnitude as the actual ones. The sustained throughput rate

at EWR has been shown in our analysis to be slightly lower than the estimated the

maximum throughput rate there.

The two models have been used to conduct a case study on scheduling and delays

at JFK and EWR between 2007 and 2010. It has been shown that both airports op-

erate very close to capacity, and that under these conditions the relationship between

demand and capacity on the one hand and delays on the other is highly nonlinear. In

other words, the magnitude of the delays is extremely sensitive to even small changes

in:

• the number of scheduled flights in a day of operations: the more flights, the

larger the delays;

• the distribution of flights over the course of the day: all else being equal, the

more evenly flights are distributed, the lower the delays; and

• the capacity of the airport: the larger the capacity, the lower the delays.
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We have shown that the large delay reductions observed at JFK and EWR be-

tween 2007 and 2010 can be largely attributed to changes in flight schedules, and

in particular to the relatively small decline in airport demand at these two airports

during that same period of time. Conversely, if airport demand increases again over

the next few years, then flight delays are likely to grow at a faster rate.

6.2 Contribution of the Thesis

The major contributions of the thesis are:

• A general framework for using ASPM data was presented and sources of data

uncertainty were identified.

• A new approximation scheme of the M(t)/Ek(t)/1 queuing model based on

Monte Carlo simulation was developed. This model is macroscopic in nature.

The calibration of its parameters is easy. It can be used to compute the expected

value of delays for any period of a day. In addition, it provides the means for

computing delay variability.

• A stochastic model for simulating flight schedules and associated uncertainty

was developed and tested. Given an average demand vector, i.e. the aver-

age number of scheduled flights for every period of a day, the model samples

randomly demand vectors, thus taking into account the variability of flight

schedules from one day of operations to another, due to demand changes as

a function of the day of the week, of short-term demand fluctuations, of dif-

ferent numbers of unscheduled operations, etc., as well as deviations from the

scheduled departure and arrival times over the course of one day of operations.

• A Markov chain model of airport capacity was developed and tested. Given

average service rates under VMC and IMC, it samples randomly the evolution

of airport capacity over the course of one day of operations. In particular, this

model captures capacity variations due to changes in weather conditions.
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• DELAYS and the Monte Carlo simulation model were applied to study recent

trends in scheduling and delays at JFK and EWR. It was shown that the delay

decline over the period 2007-2010 was primarily due to changes in flight sched-

ules. The effects of scheduling levels and the distribution of flights over the

course of a day on flight delays were also quantified.

6.3 Further Research

The highly nonlinear relationship between demand and delays demonstrated in this

thesis provides the motivation for looking carefully into the potential of scheduling

limits at some of the busiest airports in the United States. Indeed, a limited reduction

in scheduling levels may result in large delay reductions. In this case, the benefits

of the improvements of system on-time performance and reliability might outweigh

the economic losses associated with the implementation of and the compliance with

scheduling limits. The queuing model presented in this thesis can be used to quanti-

tatively estimate the effects of such limits on airport congestion. On the other hand,

scheduling constraints at airports also engender costs to the stakeholders involved,

as they may result in changes in flight schedules and potentially in the elimination

of some flights. Moreover, because of the complexity of the air transportation sys-

tem, there may be additional effects on competition and fares, as well as changes in

environmental impacts. The question of setting slot limits at congested airports in

Europe and in the United States has been widely discussed (Czerny et al., 2008), but

only one recent paper (Ball et al., 2011) has attempted to quantitatively determine

optimal scheduling limits.

The queuing simulation model presented in this paper can therefore be integrated

into a broader study which would compare the benefits associated with reduced con-

gestion - both locally and nationwide - due to scheduling limits, with the costs that

such policies would engender for airlines, airports, passengers and other stakeholders.

This analysis would determine whether an airport might benefit from the imposition

of scheduling limits and, if so, what the optimal limits would be.
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Appendix A

Airport Diagrams
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Figure A-1: Airport Diagram: JFK
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Figure A-2: Airport Diagram: EWR
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Appendix B

Results of the Monte Carlo

simulation model
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(a) JFK

(b) EWR

Figure B-1: Results of the Monte Carlo simulation model in July 2007
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(a) JFK

(b) EWR

Figure B-2: Results of the Monte Carlo simulation model in August 2007
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(a) JFK

(b) EWR

Figure B-3: Results of the Monte Carlo simulation model in July 2008
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(a) JFK

(b) EWR

Figure B-4: Results of the Monte Carlo simulation model in August 2008
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(a) JFK

(b) EWR

Figure B-5: Results of the Monte Carlo simulation model in July 2009
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(a) JFK

(b) EWR

Figure B-6: Results of the Monte Carlo simulation model in August 2009
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(a) JFK

(b) EWR

Figure B-7: Results of the Monte Carlo simulation model in July 2010
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(a) JFK

(b) EWR

Figure B-8: Results of the Monte Carlo simulation model in August 2010
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