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Abstract

We propose a tractable optimization framework for network Air Traffic Flow Man-
agement (ATFM) with an eye towards the future. The thesis addresses two issues in
ATFM research: a) fairness and collaboration amongst airlines; and b) uncertainty
inherent in capacity forecasts. A unifying attraction of the overall dissertation is that
the Collaborative Decision-Making (CDM) paradigm, which is the current philosophy
governing the design of new ATFM initiatives, is treated as the starting point in the
research agenda.

In the first part of the thesis, we develop an optimization framework to extend
the CDM paradigm from a single-airport to a network setting by incorporating both
fairness and airline collaboration. We introduce different notions of fairness ema-
nating from a) First-Scheduled First-Served (FSFS) fairness; and b) Proportional
fairness. We propose exact discrete optimization models to incorporate them. The
first fairness paradigm which entails controlling number of reversals and total amount
of overtaking is especially appealing in the ATFM context as it is a natural extension
of Ration-By-Schedule (RBS). We allow for further airline collaboration by proposing
discrete optimization models for slot reallocation. We provide empirical results of
the proposed optimization models on national-scale, real world datasets that show
interesting tradeoffs between fairness and efficiency. In particular, schedules close to
the RBS policy (with single digit reversals) are possible for a less than 10% increase
in delay costs. We utilize case studies to highlight the considerable improvements in
the internal objective functions of the airlines as a result of slot exchanges. Finally,
the proposed models are computationally tractable (running times of less than 30
minutes).

In the second part, we address the important issue of capacity uncertainty by
presenting the first application of robust and adaptive optimization in the ATFM
problem. We introduce a weather-front based approach to model the uncertainty
inherent in airspace capacity estimates resulting from the impact of a small number of
weather fronts. We prove the equivalence of the robust problem to a modified instance
of the deterministic problem; solve the LP relaxation of the adaptive problem using
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affine policies; and report extensive empirical results to study the inherent tradeoffs.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Professor of Operations Research
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Chapter 1

Introduction

Each one of us has most likely experienced a canceled flight, missed a flight connection

or arrived late in our destination. The agony caused due to missing an important per-

sonal function or not making a conference on time is inexplicable. Consequently, the

smooth operation of the National Air Transportation System (NATS) is paramount

and a critical component of societal welfare.

To put in perspective the uncertain operating conditions of airlines, consider the

financial performance over the last 10 years. Figure 1-1 plots the airline profits for

the last 10 years (period of 2001-2010). The oscillating pattern of losses and profits

should be immediately apparent. The attacks of 9/11 meant that airlines suffered

losses for five straight years after 2001. Subsequent resurgence in traffic coupled with

stable fuel prices ensured profits during the next couple of years. But, the financial

crisis of 2008 and very high fuel prices lead to one of the worst years with total

losses exceeding $25 billion in 2008. Recently, airlines have posted a net profit of

$10 billion in 2010 with a forecast of a positive year during 2011. Airlines, thus,

typically operate in a very uncertain financial environment which is a consequence

of factors such as fluctuating fuel prices, market competition, strongly stochastic

airspace capacity (leading to delays) and a whole host of external events (like 9/11,

financial crisis, etc.). The lack of sustained profits further exacerbates the quality of

service provided by various airlines and leads to increased disruptions as airlines try

to manage their operations in the most cost-effective manner.

Although, a lot of research effort has been undertaken in the last two decades, there

is still a lack of a centralized optimization-based tractable framework which automat-

ically reroutes planes (under reduced capacity), cancels flights (to maximize system

efficiency) and dynamically adjusts schedules (in response to unexpected weather

events). Our aspiration in this research effort is to propose models which bridge this
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Figure 1-1: Airline profits during 2001-2010 (Data Source: IATA).

gap, at least from an Operations Research standpoint. The exact issues that this the-

sis addresses are elaborated later in Section 1.6. The implementation of these models

still requires political will and consensus amongst various stakeholders to transition

into practice. To drive home the point on the need for optimization models, we

present concrete evidence on the cost of delays.

1.1 The Case for Optimization

The sustained growth of the aviation industry has put a tremendous strain on the

available resources of the air transportation system. This is evidenced by the steady

increase in flight delays and severe congestion at airports. In 2010, approximately

18% of the flights in the United States were delayed by more than 15 minutes, while

another 2% were cancelled (Bureau of Transportation Statistics [35]). Moreover,

during the 12-month period ending in September 2008, 138 million minutes of system

delay led to an estimated $10 billion in costs for US airlines [28].

Figure 1-2 depicts the yearly trend on the commercial aviation delays over the last

10 years. There is a sharp dip in the delays in the aftermath of the terrorist attacks on

Sept 11, 2001. But, after 2003, there has again been a steady increase in the delays

until the economic recession in the year 2008 caused the traffic to plunge again.

Nonetheless, the magnitude of delays in recent years (around 0.3 million minutes)

highlights the widespread prevalence of delays.

To assess the impact of the cost of the delays to the economy (both direct and

indirect), Table 1.1 reports the cost of delay numbers calculated by various recognized

agencies. The reported numbers highlight the enormity of the economic impact of

aviation delays which provide ample impetus for the development of optimization
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Figure 1-2: OPSNET yearly delays for 2001-2010.

tools.

Source Year Cost ($ billion)

Direct Indirect

NEXTOR 2007 27 4
JEC 2007 31 10
IATA 2008 14 -

Table 1.1: Direct and indirect delay costs to economy.

Flight On-Time Statistics

To assess the performance of the current ATM system, Table 1.2 reports statistics on

the percentage of flights that are delayed by more than 15 minutes and those that are

cancelled altogether. As should be evident from these numbers, the percentage flights

which don’t arrive on-time consistently range between 18 and 25% which emphasizes

that almost 1 in 4 flights don’t arrive on time. Furthermore, typically 1-3% of all

flights are cancelled altogether. This is significant as cancelled flights cause subsequent

disruptions due to missed connections.

Impact of Weather

Weather accounts for the majority of the total air traffic delays caused due to termi-

nal, en-route congestion and several other operational factors. To assess the impact
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Year Total Flight % Flights % Cancelled
Operations Delayed

2006 2,685,218 21.66 1.50
2007 2,688,939 24.61 2.52
2008 2,644,820 24.11 2.26
2009 2,540,586 19.26 1.59
2010 2,517,616 18.45 2.08

Table 1.2: Flight On-Time Statistics (Data Source: Bureau of Transportation Statis-
tics [35]).

of weather on the total aviation delays, we consider the OPSNET1 delays data for the

year 2010. As evidenced in the monthly delays plot in Figure 1-3, there is a significant

spike in the delays for the summer months (May-July), when there is pronounced con-

vective weather activity. Moreover, Figure 1-4 indicates that approximately 65-75%

of total delays are attributable to weather in the last ten years. These two obser-

vations highlight the importance of addressing weather induced capacity uncertainty

for mitigating aviation delays.
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Figure 1-3: OPSNET monthwise
delays for 2010.
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Figure 1-4: Delays attributable to
weather during 2001-2010.

Challenges

The enormity of the aviation delays and the corresponding impact on the economy

gives ample motivation for the development and deployment of optimization tools to

mitigate them. In addition to the congestion problems being faced currently, there are

1The Operations Network (OPSNET) is one of the official sources of National Airspace (NAS)
air traffic operations and delay data.
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a number of other challenges which make the control of aviation delays an especially

arduous task. We elaborate upon them in this section.

• Current Airport Operations. Many airports in the US are currently oper-

ating at or near capacity. There is typically a nonlinear relationship between

delay and demand. This means that an incremental increase in demand causes

a significant (viz., non-linear) increase in the delays when the operations are

executed close to the system capacity. A consequence of this fact is that han-

dling increasing demand needs more prudent use of the available resources in

the NAS which manifests itself in the use of optimization tools.

• Enhanced Airport Infrastructure. A potential solution to mitigate the

impacts of increased demand on airport congestion is to enhance the capacity

by building new runways or increase the number of airports. Unfortunately,

these tools suffer from various logistical complexities (of design and planning)

and are further hindered by tedious legal approvals. Moreover, such projects

typically take years (if not decades) to be implemented in totality, a timeframe

not amenable for short-term congestion alleviation. Finally, such projects do

not ease congestion in the en-route airspace. Therefore, it becomes paramount

to seek alternative avenues for congestion management.

• Future Demand Trends. The FAA estimates that through 2025, demand

will increase by more than 60% averaging 3.4% per year in the domestic carrier

revenue passenger miles. This continued surge in demand seems daunting and

provides added thrust to sophisticated ATFM initiatives of the form aspired in

this thesis.

NextGen

Currently, in the United States, significant resources are being deployed in the de-

velopment of a future Air Traffic Management (ATM) system called the Next Gen-

eration Air Transportation System (NGATS or NextGen) [29]. The expected key

benefits of this new ATM system are improvements in various aspects of aviation en-

compassing ground and terminal operations, technological advancements in aircraft

monitoring, efficient coordination of various ATM tools and improved tracking of ac-

tual flight paths. In particular, a major proposal of NGATS is improvements in 4DT

(four-dimensional trajectory) uncertainty (4DT capability is defined as the ability to

precisely fly an assigned 3D trajectory while meeting specified timing constraints on
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arrival at waypoints [29]). This would lead to enhanced predictability and control

over the trajectory of an aircraft with the resulting decrease in the delays in the

system. These developments further motivate the design of optimization models as

the NGATS technologies would give tighter control over the exact trajectories that

aircraft fly and thereby lead to stricter adherence to optimized routes.

We now expand upon the tools currently in use by FAA for realizing the goal of

safe and expeditious aircraft movements.

1.2 Overview of Air Traffic Management

A multitude of factors like inclement weather, operational outages and demand surges

can collude together to cause severe disruptions to air traffic movements. This ne-

cessitates the use of tools that mitigate the potentially catastrophic impact on the

system performance. Air Traffic Management (ATM) is a broad term used to refer

to the composite of all such services. In terms of the exact objectives, ATM can be

further classified into two components (as depicted in Figure 1-5):

• Air Traffic Control (ATC)

• Air Traffic Flow Management (ATFM)

ATM

ATC ATFM

Tactical
Component

Strategic
Component

Figure 1-5: Components of ATM.

We discuss each of these in some detail now. Air Traffic Control (ATC) refers to

the set of “tactical” processes that aim to ensure safe separation between individual

flights. More precisely, these pertain to the separation services provided by human

controllers looking after different sectors. Each of these controllers keeps track of

the flights in their respective sectors and ensure that safe separation is maintained

between all flights and that the traffic to the next sector is presented in an orderly

manner. In contrast, Air Traffic Flow Management (ATFM) refers to the set of
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“strategic” processes that try to reduce congestion costs and support the goal of

safe, efficient and expeditious aircraft movement. ATFM procedures try to resolve

local demand-capacity mismatches by adjusting the aggregate traffic flows to match

scarce capacity resources. Ground Delay Programs (GDPs) are one of the most

sophisticated ATFM initiatives currently in use that attempt to address airport arrival

capacity reductions. Under this mechanism, delays are applied to flights at their

origin airports that are bound for a common destination airport which is suffering

from reduced capacity or excessive demand. The premise for this tool is that it is

better to absorb delays for a flight while it is grounded at its origin airport rather than

incurring airborne delay near the affected destination airport which is both unsafe

and more costly (in terms of fuel costs). Another recently introduced tool similar

to a GDP is an Airspace-Flow Program (AFP) which is used to control arrival rate

into a weather affected segment of the airspace, also known as a Flow Constrained

Area (FCA). AFPs have been operational since 2007. Some of the other ATFM tools

include assigning airborne delays, dynamic re-routing and speed control.

Stakeholders

There are essentially two sets of stakeholders in the air traffic domain:

1. Air Navigation Service Provider (ANSPs); and

2. Users (Airlines and general aviation)

The primary responsibility of ANSP is the smooth functioning of the ATM system.

In the US, FAA is the primary ANSP, whereas EUROCONTROL assumes this re-

sponsibility for continental Europe. The users are comprised of the airlines, general

aviation and military.

Figure 1-6 depicts the broad hierarchy of objectives that the ANSP and airlines try

to achieve. Safety at every stage of operations forms the most critical objective and

overrides every other goal. For the ANSPs, ensuring equitable workload amongst the

available resources (like controllers) represents the next important objective. Finally,

equitable distribution of resources amongst users is the least important aspect of the

overall planning process. In contrast, for airlines, ensuring that irregular operations

are managed appropriately and the total delays are minimized represent the next

important goals.
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Irregular
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ANSP Airlines

Figure 1-6: Objectives of ANSP and Airlines.

Organization of FAA’s ATC Capabilities

Figure 1-7 shows an example snapshot of flights in the NAS at any point in time

(there are around 5000 aircraft operating in the system during peak periods). The

FAA utilizes a multi-layered hierarchy of entities to implement ATC services. At the

apex of this pyramid is a state-of-the-art facility called Air Traffic Control System

Command Center (ATCSCC) which is the centralized decision-making engine of the

FAA. Operational since May 1994, this facility based near Washington DC houses

latest technology and is the most sophisticated facility of its kind in the world. The

primary responsibilities of ATCSCC include executing the strategic ATFM functions.

This involves continuous monitoring of current and projected demand and simulta-

neously updating estimates of capacity limits (in the presence of bad weather and

runway closures). As and when demand exceeds capacity, the ATCSCC decides on

the strategies to be implemented to resolve congestion. At the second level of this

hierarchy are entities that take a more localized view of traffic management. Thus, to

have a more focused control on the traffic at a regional level, the FAA has 22 Air Route

Traffic Control Centers (ARTCCs) encompassing the entire geographical landscape

of continental US. Each of these entities is responsible for ensuring safe separation

between aircraft that fall within its boundaries. The interaction amongst the various

ARTCCs is coordinated by the ATCSCC. To have a more microscopic control, each

ARTCC is further divided into a number of sectors which span a three-dimensional

volume of the airspace. A small number of human air traffic controllers control the

traffic within each of the sectors by communicating with the pilots. As an aircraft

arrives close to the terminal area, the control is shifted from the human air traffic
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controller of the sector to Terminal Radar Approach Control facilities (TRACONs).

Finally, during the taxi in and taxi out within the airport runway area, the aircraft is

controlled by airport towers. The third (and final) layer within this hierarchy is oc-

cupied by human controllers who ensure that the micro details of the overall schedule

is implemented in their respective regions of control.

Figure 1-7: Snapshot of flights in the NAS (Source: [20]).

Optimization Tools

The FAA has a number of tools available at its disposal to achieve the goal of safe

and expeditious aircraft movements. Some of the possible interventions are depicted

in Figure 1-8.
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Figure 1-8: Optimization Tools available to FAA.

A brief description of each of these tools is as follows:

• Ground Delay: Delays are applied to flights at their origin airports that are

bound for a common destination airport which is suffering from reduced capacity
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or excessive demand. The premise for this tool is that it is better to absorb

delays for a flight while it is grounded at its origin airport rather than incurring

airborne delay near the affected destination airport which is both unsafe and

more costly (in terms of fuel costs).

• Airborne Delay: Delays are applied to flights near the affected destination

airport by making them hover in the air because of landing capacity limitations

at the destination airport. This option is less preferred to ground-delays because

of the reasons outlined in the preceding bullet.

• Speed Control: Within a sector, aircraft speed can be controlled to meter its

arrival into the subsequent sector to match the controller workload and capacity

limitations in different sectors.

• Rerouting: FAA uses this tool to alter arrival rate into a Flow Constrained

Area (FCA), e.g., a weather affected segment of the airspace by rerouting flights

to different routes.

GDPs and AFPs are some of the most extensively used ATFM tools currently. As

already mentioned, GDPs control arrival rate into a weather affected airport whereas

AFPs control arrival rate into a weather affected segment of the airspace. Unfortu-

nately, these tools don’t take a network-wide view, thereby, not optimizing simulta-

neously disrupted operations at other affected airports due to delay propagation. In

addition, rerouting is done based on the National Playback [4] in current practice (in

the US). This database comprises of alternative routes that should be taken to avoid

parts of the airspace routinely affected by severe weather. These are computed based

on historical data. Although, it has been found that this playback-based rerouting

process sometimes leads to local congestion in the regions through which traffic is

rerouted. Thus, the current state of affairs beg for a more scientific mathematical

based approach that identifies on a global basis promising reroutes (and other ATFM

interventions), while remaining capacity-feasible throughout.

1.3 Collaborative Decision-Making

The decision-making responsibilities in ATFM initiatives are shared between a num-

ber of stakeholders (primarily, airlines and the FAA). This poses a major challenge as

their actions are highly interdependent and demand real-time exchange of information

between the FAA and the airlines. This realization of enhanced cooperation between
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the various stakeholders led to the adoption of Collaborative Decision-Making (CDM)

philosophy (Ball et al. [6], Wambsganss [39]) by the FAA in the 1990s. Under CDM,

all ATFM initiatives are conducted in a way that gives significant decision-making

responsibilities to airspace users (see Hoffman et al. [23] for details on CDM). All

recent efforts to improve ATFM have been guided by this philosophy. The overall

objectives of CDM can be summarized as follows (reproduced verbatim as visualized

by the designers, please refer to Ball et al. [6] for more details):

• generating better information, usually by merging flight data directly from the

Airspace System with information generated by airspace users;

• creating common situational awareness by distributing the same information

both to traffic managers and to airspace users; and

• creating tools and procedures that allow airspace users to respond directly to

capacity/demand imbalances and to collaborate with traffic flow managers in

the formulation of flow management actions.

In the US, “Ration-by-Schedule” (RBS) is the fundamental principle for GDPs

and all the CDM initiatives. We now elaborate upon this important principle below:

Ration-by-Schedule

Under this paradigm - arrival slots at airports are assigned to flights in accordance

with a first-scheduled, first-served (FSFS) priority discipline (see Ball et al. [6],

Wambsganss [39] for details on rationing). In the case of GDP planning, all stake-

holders have agreed that this principle is fair to all parties. This allocation process

is followed by a Compression algorithm, which fills open slots created by flights that

are canceled. The compression procedure gives airlines an incentive to report accu-

rate flight information, by rewarding them for reporting cancellations. The combined

process, RBS plus Compression (formally called RBS++) is the policy currently in

use for slot allocations during GDPs. The success of RBS in a single-airport GDP

setting is a consequence of the following three salient features:

1. The practical implementation of this principle is trivial and has a linear running

time with respect to the number of flight steps. Thus, the approach is attractive

from a scalability standpoint.

2. For an isolated GDP or AFP, the RBS method always leads to a solution that

minimizes the minutes of system delay [36].

29



3. This notion of fairness is endorsed by the primary stakeholders (i.e., the FAA

and the airlines) and is the industry accepted paradigm.

Despite the use of RBS in a GDP setting, there have been no network models that

satisfy the RBS principle in a multi-airport setting. This is because, applying RBS

to each of the airports individually might not lead to a schedule that preserves time,

sector and flight connectivities. In addition, the imposition of a maximum permissible

delay on each flight would mean that a feasible solution under RBS might not even

exist if the capacity reduction at some airports is significant. Hence, there is no

straightforward extension of RBS from a single-airport setting to an airspace context.

Finally, Odoni and Lulli [26] discuss examples highlighting the intrinsic inequities in

the network problem.

Operational Details of a GDP

Figure 1-9 depicts a schematic diagram of the various stages of executing a GDP

under CDM practice. There are three key stages involved in the decision-making

process:

1. RBS for each ATFM program. FAA invokes the RBS policy to allocate ar-

rival slots to the airlines for each ATFM program based on the original schedule

ordering.

2. Airline response to schedule disruption. Based on the slots allotted, an

airline is allowed to make changes to the schedule by canceling flights and swap-

ping the slots of two or more of its own flights if they are compatible with the

scheduled departure times.

3. Final coordination by the FAA. FAA accepts the relevant changes proposed

by the airlines to come up with a overall feasible schedule. This is further

complemented by Compression (wherein the FAA attempts to fill in any holes

created by cancellations to further optimize the final schedule).

Figure 1-10 depicts an example illustrating the current operational details of a GDP.

There are three airlines A, B and C operating seven flights between them. Airline A

has 3 flights (A1, A2 and A3), Airline B has 2 flights (B1, B2) and Airline C has 2

flights (C1, C2) in the GDP. The original published ordering is shown in the leftmost

table. The next table shows the output of applying the RBS principle to the original

sequence. Assume that the capacity is reduced by half, thereby leading to an Airport
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Figure 1-9: Schematic of a GDP under CDM.

Acceptance Rate (AAR) of one flight every two slots (compared to a flight every slot

under nominal conditions). As a result, each flight is assigned a Controlled Time of

Arrival (CTA) which is double the slot allotted in the original sequence. The RBS

sequence is followed by substitution-cancellation phase wherein the airlines are given

the flexibility of changing the order of the flights assigned to them as well as canceling

flights as long as the resulting schedule remains capacity-feasible. In this example,

Airline C substitutes flight C1 by C2 and Airline B cancels flight B1. The final step

in this sequence is the application of the Compression procedure wherein flights are

moved up to fill up the holes created by canceled flights (as long as the final allotment

is compatible with the earliest arrival times of all flights).

Published RBS
Substitution
Cancellation Compression

A1
B1
A2
A3
C1
B2
C2

A1

B1

A2

A3

C1

B2

C2
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C1

A1

A2
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Figure 1-10: An example demonstrating the current operational details of a GDP.
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1.4 Taxonomy of Existing Models

Table 1.3 summarizes a classification of the various ATFM models in terms of a broad

set of characteristics that govern the exact setting of the problem being modeled.

More precisely, factors like uncertainty, adaptability, connectivity, equity consider-

ations and rerouting govern the clustering of various ATFM models. As should be

evident from the table, the ATFM problem in full generality is as complex as an

engineering problem can potentially get. The optimization paradigm needed is multi-

stage dynamic and stochastic with the additional complexity of ensuring equity and

operating within a collaborative setting. For a detailed survey of the various con-

tributions and a taxonomy of all the problems, see Bertsimas and Odoni [12] and

Hoffman et al. [23].

Characteristic Classification

Adaptability Static Dynamic
Connectivity N/w of Capacitated Resources Single Capacitated Resource
Control Single Decision-Maker Collaborative Decision-Making
Equity Without Equity Considerations With Equity Considerations
Rerouting Without Rerouting With Rerouting
Uncertainty Deterministic Stochastic

Table 1.3: Taxonomy of ATFM Models.

Odoni [27] first conceptualized the problem of scheduling flights in real time in

order to minimize congestion costs. Thereafter, several models have been proposed

to handle different versions of the problem. We classify the various models based on

the characteristics listed in Table 1.3.

• Connectivity: Single Vs. Network.

– Single Capacitated Resource. The problem of assigning ground-delays

in the context of a single-airport (Single-Airport Ground-Holding Problem,

SAGHP henceforth) has been studied in Terrab and Odoni [33], Richetta

and Odoni [30], [31].

– Network of Capacitated Resources. The problem of assigning ground-

delays in the multiple airport setting (Multi-Airport Ground-Holding Prob-

lem) in Terrab and Paulose [34], Vranas et al. [38]. The problem of con-

trolling release times and speed adjustments of aircraft while airborne for
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a network of airports taking into account the capacitated airspace (Air

Traffic Flow Management Problem) has been studied in Bertsimas and

Stock-Patterson [13], Helme [22], Lindsay et al. [25].

• Control: Centralized Vs. Collaborative.

– Single Decision-Maker. Most of the network models (e.g. Vranas et al.

[38], Bertsimas and Stock-Patterson [13]) do not incorporate airlines into

the decision-making.

– Collaborative Decision Making. As part of the CDM philosophy, re-

searchers have also explored dynamic interaction with airlines. Towards

this aim, Vossen, Ball [36] [37] have studied opportunities for slot trading

in a single-airport setting where the aim is to formalize an optimization

problem for the FAA given the offers to trade from various airlines.

• Equity. Socially Optimum Vs. Equitable Distribution amongst Airlines.

– Without. Most of the network models (e.g. Vranas et al. [38], Bertsimas

and Stock-Patterson [13]) do not address fairness amongst airlines.

– With. Barnhart et al. [8] develop a way to address fairness in the context

of network ATFM. They develop a fairness metric that measures deviation

from FSFS and propose a discrete optimization model that directly mini-

mizes this metric. They further develop an exponential penalty approach,

and report encouraging computational results using simulated regional and

national scenarios. Please refer to the PhD thesis of Fearing [21] for ex-

tensive details.

• Rerouting. Fixed Trajectories Vs. Multiple Routes.

– Without. Most of the network models (e.g. Vranas et al. [38], Bertsimas

and Stock-Patterson [13]) do not incorporate rerouting.

– With. The problem with the added complication of dynamically re-

routing aircrafts (Air Traffic Flow Management Rerouting Problem) was

first studied by Bertsimas and Stock-Patterson [14]. Recently, Bertsimas et

al. [10] have presented a new mathematical model for the ATFM problem

with dynamic re-routing which has superior computational performance.

• Uncertainty. Deterministic Vs. Stochastic.
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– Deterministic. Most of the network models (e.g. Vranas et al. [38],

Bertsimas and Stock-Patterson [13]) do not address uncertainty inherent

in the capacity forecasts.

– Stochastic. One of the first attempts at dealing with Stochastic SAGHP

was by Richetta and Odoni [30], [31]. Subsequently, Ball et al. [7] pro-

posed another model for the same problem. Recently, Mukherjee and

Hansen [3] study the SAGHP in a dynamic stochastic setting. Kotnyek

and Richetta [5] present equitable models for the stochastic SAGHP and

prove the equivalence of integrality and equity in the model presented in

[31].
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1.5 Starting Point: Bertsimas Stock-PattersonModel

In this section, we reproduce the Bertsimas Stock-Patterson model [13] for the ATFM

problem which provides the starting point for all the models presented in this thesis.

Notation

The model’s formulation requires definition of the following notation:

K : set of airports,

F : set of flights,

T : set of time periods,

S : set of sectors,

Sf ⊆ S : set of sectors that can be flown by flight f,

C : set of pairs of flights that are continued,

P f
i : preceding sector of sector i in flight f’s path,

Lf
i : subsequent sector of sector i in flight f’s path,

Dk(t) : departure capacity of airport k at time t,

Ak(t) : arrival capacity of airport k at time t,

Sj(t) : capacity of sector j at time t,

df : scheduled departure time of flight f,

af : scheduled arrival time of flight f,

sf : turnaround time of an airplane after flight f,

origf : airport of departure of flight f,

destf : airport of arrival of flight f,

lfj : minimum number of time units that flight f must spend in sector j,

T f
j : set of feasible time periods for flight f to arrive in sector j,

T f
j : first time period in the set T f

j ,

T
f

j : last time period in the set T f
j .
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The Objective Function

The objective function minimizes the total delay costs (which is a combination of the

costs of airborne delay (AH) and ground-holding delay (GH)). We use an adapted

expression introduced recently in Bertsimas et al. [10].

The total delay (TD) cost is a combination of the costs of airborne delay (AD) and

ground-holding delay (GD) (TD = GD+α ·AD, where α > 1 because airborne delay

is typically more costly than ground-holding delay). By substituting AD in terms of

TD (i.e., AD = TD−GD), the objective can be rewritten as α · TD− (α− 1) ·GD.

Consequently, the objective function is composed of two terms: a first term that

takes into account the cost of the total delay assigned to a flight and a second term

which accounts for the cost reduction obtained when a part of the total delay is taken

as ground delay at the origin airport. The objective function cost coefficients are a

super-linear function of the tardiness of a flight of the form (t − akf )
1+ǫ, with ǫ close

to zero. Hence, for each flight f and for each time period t, we define the following

two cost coefficients:

cftotal(t) = α(t− akf)
1+ǫ : total cost of delaying flight f for (t− akf )

units of time,

cfg (t) = (α− 1)(t− df)
1+ǫ : cost reduction obtained by holding flight f on the

ground for (t− df) units of time,

The motivation of using super-linear cost coefficients is that it will favor moderate

assignment of total delays between two flights rather than assigning much larger delay

to one as compared to the other flight. To elaborate, consider the following example:

Example 1.5.1. Suppose we wish to assign 2 units of delay to 2 flights. Then,

an objective function with linear cost coefficients is equally likely to generate the

following two assignments: i) 1 unit of delay to both flights and ii) 2 units of delay to

one flight and 0 to the other. In contrast, super-linear cost coefficients (with ǫ = 0.001

for example) will assign 1 unit to both flights because 11.001 + 11.001 < 21.001 + 0.
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The TFMP model

The complete description of the model, referred to as (TFMP), is as follows:

IZTFMP =min
∑

f∈F

( ∑

t∈T f
destf

cftotal(t) · (w
f
destf ,t

− wf
destf ,t−1)

−
∑

t∈T f
origf

cfg (t) · (w
f
origf ,t

− wf
origf ,t−1)

)

subject to:

∑

f∈F :origf=k

(wf
k,t − wf

k,t−1) ≤ Dk(t), ∀k ∈ K, t ∈ T . (1.1a)

∑

f∈F :destf=k

(wf
k,t − wf

k,t−1) ≤ Ak(t), ∀k ∈ K, t ∈ T . (1.1b)

∑

f∈F :j∈Sf ,j
′=L

f
j

(wf
j,t − wf

j′,t) ≤ Sj(t), ∀j ∈ S, t ∈ T . (1.1c)

wf
j,t − wf

j′,t−lfj′
≤ 0, ∀f ∈ F , t ∈ T f

j ,

j ∈ Sf : j 6= origf , j
′ = P f

j . (1.1d)

wf
origf ,t

− wf ′

destf ′ ,t−sf
≤ 0, ∀(f, f ′) ∈ C, ∀t ∈ T f

k . (1.1e)

wf
j,t−1 − wf

j,t ≤ 0, ∀f ∈ F , j ∈ Sf , t ∈ T f
j . (1.1f)

wf
j,t ∈ {0, 1}, ∀f ∈ F , j ∈ Sf , t ∈ T f

j .

The first three sets of constraints take into account the capacities of the various

elements of the system. Constraints (1.1a) ensure that the number of flights which

may take off from airport k at time t, will not exceed the departure capacity of airport

k at time t. Likewise, Constraints (1.1b) ensure that the number of flights which may

arrive at airport k at time t, will not exceed the arrival capacity of airport k at time t.

Finally, Constraints (1.1c) ensure that the total number of flights which may feasibly

be in Sector j at time t will not exceed the capacity of Sector j at time t.

The next three sets of constraints capture the various connectivities - namely

sector, flight and time connectivity. Constraints (1.1d) stipulate that a flight cannot

arrive at Sector j by time t if it has not arrived at the preceding sector by time

t − lfj′ . In other words, a flight cannot enter the next sector on its path until it

has spent at least lfj′ time units (the minimum possible) traveling through one of
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the preceding sectors on its current path. Constraints (1.1e) represent connectivity

between flights. They handle the cases in which a flight is continued, i.e., the flight’s

aircraft is scheduled to perform a subsequent flight within some user-specified time

interval. The first flight in such cases is denoted as f ′ and the subsequent flight as

f , while sf is the minimum amount of time needed to prepare flight f for departure,

following the landing of flight f ′. Constraints (1.1f) ensure connectivity in time. Thus,

if a flight has arrived at element j by time t̃, then wf
j,t has to have a value of 1 for all

later time periods (t ≥ t̃).

In the remainder, we shall refer to the model just introduced as TFMP.

Remark 1. Aircraft and Passenger connectivities. In TFMP, flight connectivity

constraints are included as hard constraints, i.e., they need to be satisfied a priori

based on planned aircraft connections. In current practice, this is not exactly the

approach taken due to the presence of hub and spoke networks which motivate the

use of banks of flights arriving at a hub and then departing within a short duration

of time. The presence of spare aircraft too inhibit the enforcement of strict aircraft

connectivities. Nonetheless, we make a modeling choice to keep these constraints as

they enable stronger polyhedral structure (thereby leading to shorter computational

times) and are consistent with the original model proposed by Bertsimas and Stock-

Patterson. Nonetheless, in all the models presented in this thesis, these constraints

can be removed and our proposal will still remain entirely consistent with its global

objectives. Thus, this modeling is not a consequence of any other restrictions. Fi-

nally, the model does not capture Minimum Connection Times (MCT) to permit pax

transfers.

1.6 Contributions and Thesis Outline

Very broadly, the thesis comprises of three core topics as illustrated in Figure 1-11.

The first topic of fairness (or equity) is of central importance if any optimization-

based proposal has to be deployed online. This is a consequence of the competitive

marketplace and mistrust between the airlines and the FAA. The second topic of

airline collaboration is more relevant now than ever before because of the acceptance

of CDM philosophy. Finally, addressing capacity uncertainty is the third important

topic. As already emphasized that convective weather and thunderstorms account for

majority (around 70%) of the total delays. Thus, optimization models that consider

static deterministic capacity are of limited practical use.

Our overall aspiration therefore is to use these three pillars to propose a tractable
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and optimization-based framework which will help FAA in identifying promising

ATFM interventions dynamically while operating in a stochastic environment. These

three topics are organized into two main parts of the thesis. A brief description of

the two parts is as follows:

• Part 1: Extending CDM to an airspace setting. In the first part, we ex-

tend the Collaborative Decision-Making (CDM) paradigm from a single-airport

setting to an airspace context. More precisely, we propose an optimization

framework in a network setting which incorporates fairness and airline collabo-

ration (covered in Chapters 2 and 3).

• Part 2: Addressing capacity uncertainty. In the second part, we address

the important issue of capacity uncertainty lacking in deterministic models.

Towards this goal, we present the first application of robust and adaptive op-

timization in the Air Traffic Flow Management (ATFM) problem (covered in

Chapter 4).

Thesis Sub-parts

Fairness Airline
Collaboration

Capacity
Uncertainty

Topic 1 Topic 2 Topic 3

Figure 1-11: Three core topics of the thesis.

A brief summary of all the chapters is as follows:

• Chapter 2. Fairness. In this chapter, we present network models that in-

corporate different notions of fairness, namely i) FSFS fairness - controlling

number of reversals and total amount of overtaking; ii) Proportional fairness -

equalizing airline delays; and iii) a combination of the FSFS and Proportional

fairness paradigms. We provide empirical results of the proposed optimization

models on national-scale, real world datasets spanning across six days that show

interesting tradeoffs between fairness and efficiency. The important takeaways
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are the possibility of generating schedules close to the RBS policy (at a less than

10% increase in delay costs) and the price of fairness for proportional fairness

is negligible. We report promising computational times of less than 30 minutes

on large-scale instances which are encouraging for real-time deployment.

• Chapter 3. Airline Collaboration. In this chapter, we allow for further

airline collaboration by proposing network models for slot reallocation. This is

a generalization of the intra-airline substitution phase of the current CDM prac-

tice to inter-airline reallocation across multiple airports. An attractive feature

of this stage of our proposal is the airline input in the form of AMAL (“at-most,

at-least”) trade offers which enable multiple trade combinations to be possible

without needing sophisticated data input. We develop two models: i) a gener-

alization of the Vossen-Ball slot trading model to a network setting; and ii) a

model based on the monotone variables used in the Bertsimas Stock-Patterson

model. We study the polyhedral structure of the two models and design case

studies to demonstrate the potential benefits to internal objective functions of

airlines. Both optimization models solve to optimality in seconds.

• Chapter 4. Capacity Uncertainty. In this chapter, we address the issue of

capacity uncertainty. We introduce a weather-front based approach to model the

uncertainty inherent in airspace capacity estimates resulting from the impact of

a small number of weather fronts moving across the National Airspace (NAS).

The key advantage of our uncertainty set construction is its low-dimensionality

(uncertainty in only two parameters govern the overall uncertainty set for each

airspace element). We formulate the resulting ATFM problem under capacity

uncertainty within the robust and adaptive optimization framework. We prove

the equivalence of the robust problem to a modified instance of the deterministic

problem and solve optimally the LP relaxation of the adaptive problem using

affine policies. Finally, we report empirical results from the proposed models on

real-world flight schedules augmented with simulated weather fronts that illumi-

nate the merits of our proposal. The key takeaways are: a) the robust problem

inherits all the attractive properties of the deterministic problem (e.g., strong

integrality properties and fast computational times); b) the price of robustness

is typically small; and c) adaptability leads to useful benefits.
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Notation and Preliminaries

Throughout the thesis, we denote scalar quantities by lowercase, non-bold face sym-

bols (e.g., w ∈ R, k ∈ N), vector quantities by lowercase, boldface symbols (e.g., w ∈

R
n, n > 1), and matrices by uppercase, boldface symbols (e.g., A ∈ R

n×n, n > 1).

We use prime (′) to denote transpose (e.g., x′y). We denote by e the unit vector

(1, . . . , 1) comprising of all ones. The dimension is implicit in the context (e.g., e′w

where w ∈ R
3 =⇒ e ∈ R

3).
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Chapter 2

Network Models that Incorporate

Concepts of Fairness

The optimization model proposed by Bertsimas Stock-Patterson [13] (introduced in

Chapter 1) took a viewpoint of a Centralized Decision-Maker (FAA) without ad-

dressing the preferences of individual airlines. Such a perspective does not take into

account the possible disparity in the distribution of delays across airlines. This is an

important consideration given the competitive marketplace and the mistrust between

the airlines and FAA. Consequently, in this chapter, we augment the optimization

model to address this critical issue of fairness among airlines. We present empiri-

cal and theoretical evidence that the models developed in this chapter provide high

quality solutions on national-scale datasets in reasonable computational times.

2.1 Introduction

As mentioned in Chapter 1, the first goal in this thesis is to propose an optimization

based approach that:

1. incorporates network effects and builds upon the ATFM literature; and

2. takes into account fairness considerations among airlines by building upon the

CDM philosophy.

Specifically, our proposal consists of the following two stages:

Stage I - Network ATFM model incorporating fairness:

We generalize the classical ATFM models ([13]) to incorporate fairness considerations

for airlines. The objective function used in the existing network ATFM models is to
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minimize the total delay costs across all flights, i.e., the focus is on overall system

efficiency. A disadvantage of such an approach is that the solution to such models

can have a large number of reversals, i.e., the resulting order of flight arrivals can be

quite different as compared to the published flight schedules. Moreover, across these

reversals, there might be different number of time-periods of overtaking. Hence, the

total overtaking across these reversals might be large. Because of this deviation from

the original flight ordering, it becomes difficult to implement such a solution because

of the coupling in the crew assignments and the use of hub and spoke networks.

Thus, this leads to the application of First-Scheduled, First-Served (FSFS) fairness

paradigm which enables control on the number of reversals and amount of overtaking.

Furthermore, the resulting allocations might have disparity in the distribution of

delays across airlines. This motivates the application of Proportional fairness. We

propose integer programming models that add these fairness controls. The key output

in this stage is the assignment of flights to different time periods.

Stage II - Slot reallocation through airline collaboration:

We generalize the notion of Compression, a key component of the current CDM

practice in a single-airport setting to network-wide slot reallocation among airlines.

Specifically, we propose an optimization model which takes as input the assignment

of flights to different time periods from Stage I and permits the airlines to trade

these assigned slots across different airports, thereby, resulting in improved internal

objective functions. The model proposed for Stage II of our proposal allow airlines

to react to the schedule determined in Stage I by taking into account their flights in

the entire network and making appropriate tradeoffs.

Given that each of these two stages are quite detailed, we devote a full chapter

to each one of them. As a result, this chapter exclusively focuses on Stage I of our

proposal, namely, models for the network ATFM fairness which incorporates notions

of fairness. Chapter 3 delves into Stage II of our proposal, namely, models for slot

reallocation, thereby facilitating airline collaboration.

Figure 2.1 depicts the mapping of our proposal to various stages of the current

CDM practice (introduced in Chapter 1). Stage I outputs the next best alternative to

RBS, i.e, a schedule that minimizes the number of reversals (and amount of overtak-

ing). Stage II generalizes the Substitution+Compression phase of the current CDM

practice by utilizing models for slot reallocation. We believe this proposal presents a

natural framework to extend CDM from an airport to an airspace context.
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Ration-By-
Schedule (RBS)

Substitution
Cancellations Compression

Stage I Stage II

Control
Reversals

Airline
Collaboration

Figure 2-1: Mapping of our proposal with the current three-stage CDM practice. This
chapter covers Stage I of the overall proposal whereas Chapter 3 covers Stage II.

Notation

W : set of airlines,

Fw ⊆ F : set of flights belonging to airline w,

Rj : set of pairs of flights that are reversible in resource j,

RS : set of pairs of flights that are reversible in sectors,

RA : set of pairs of flights that are reversible at airports,

T reversal
f,f ′,j : set of time-periods common for flights f and f ′ where a reversal

could occur in resource j,

Omax
f,f ′,j : maximum amount of overtaking possible between flights f and f ′

in resource j,

M : maximum permissible delay for a flight.

The key additions relative to the notation used in [13] are W, Fw, Rj , RS , RA,

T reversal
f,f ′,j , Omax

f,f ′,j, M .

The sets Rj, RS and RA

We give next the definition of Rj (set of pairs of flights that are reversible in resource

j). We make a distinction between the case when the resource j is a sector and when

it is an airport.
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Definition 2.1.1. For an airport k ∈ K, a pair of flights (f, f ′) belongs to Rk if the

following two conditions are satisfied:

1. destf = destf ′ = k, i.e., the destination airport of both flights f and f ′ is the

same.

2. akf ≤ akf ′ ≤ akf +M , i.e., the scheduled time of arrival of flight f ′ at the desti-

nation airport lies between the scheduled time of arrival of flight f and the last

time period in the set of feasible time periods that the flight f can arrive at its

destination airport.

Definition 2.1.2. For a sector j ∈ S, a pair of flights (f, f ′) belongs to Rj if the

following two conditions are satisfied:

1. j ∈ Sf and j ∈ Sf ′

, i.e., sector j is common to the path of flights f and f ′.

2. ajf ≤ ajf ′ ≤ ajf +M , i.e., the scheduled time of arrival of flight f ′ in sector j lies

between the scheduled time of arrival of flight f and the last time period in the

set of feasible time periods that the flight f can arrive in sector j.

For each pair of flights (f, f ′) ∈ Rj , we count a reversal, if in the resulting solution,

flight f ′ arrives before flight f in resource j (i.e., ∃t such that wf ′

j,t > wf
j,t). We call the

reversals occurring in sectors as sector reversals and the reversals occurring at the

airports as airport reversals. This clustering is motivated from fairness considerations

in a network setting (elaborated upon later in the chapter). Figure 2-2 pictorially

depicts a reversal. The shaded aircraft is scheduled to arrive before the non-shaded

aircraft, but the opposite sequence is realized, thereby, leading to a reversal.
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Figure 2-2: Pictorial depiction of a reversal.

Definition 2.1.3. The set of pairs of flights that are reversible in sectors (RS) and

at airports (RA) is defined as:

1. RS =
⋃

j∈S

Rj

2. RA =
⋃

k∈K

Rk
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The set T reversal
f,f ′,j and parameter Omax

f,f ′,j

Definition 2.1.4. The set T reversal
f,f ′,j (set of time-periods common for flights f and f ′

where a reversal could occur) is defined as {T f ′

j , . . . , T
f

j − 1}.

To elaborate on Definition 2.1.4, T reversal
f,f ′,j is the set of time-periods t, such that it

is possible to have the following assignment: wf
j,t = 0 and wf ′

j,t = 1. This assignment

would imply that a reversal occurs at time t.

Definition 2.1.5. The parameter Omax
f,f ′,j is defined as |T reversal

f,f ′,j | (cardinality of the set

T reversal
f,f ′,j ), and hence is equal to T

f

j − T f ′

j − 1.

To elaborate on Definition 2.1.4, Omax
f,f ′,j is the maximum amount of overtaking

possible between flights f and f ′ and would be attained when wf

j,T
f

j−1
= 0 and wf ′

j,T
f ′

j

=

1.

Example 2.1.1. Figure 2-3 depicts a reversible pair of flights (f, f ′) ∈ RA. Let

destf = destf ′ = k. In this example, the arrows correspond to the set of time-periods

common for both flights. Moreover, the set of time-periods marked by these arrows

(except for the last one) constitute T reversal
f,f ′,k . This is because, the model enforces

wf

k,ak
f
+M

= 1 at the outset and hence, it is not possible to have a reversal at akf +M .

Finally, Omax
f,f ′,k = |T reversal

f,f ′,k | = 6.

     

   

    

akf akf +M

akf ′ akf ′ +M

Feasible times of arrival for flight f

Feasible times of arrival for flight f ′

T reversal
f,f ′,k

Figure 2-3: A reversible pair of flights (f, f ′) ∈ RA (destf = k).

Solutions from (TFMP)

Here, we illustrate the difficulties relative to fairness considerations in the solutions

obtained from the formulation (TFMP). We report a solution from (TFMP) for one
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of the six datasets on which we have performed our experiments in this chapter. This

dataset comprises of 5092 flights, 5 airlines, 55 airports and 100 sectors. The analysis

is carried over 96 time-periods each of duration 15 minutes. First, the total number of

reversals in the resulting solution is 915. Moreover, there are 1492 units of overtaking

across these reversals. To put the number of reversals in perspective, the maximum

possible number of reversals is around 9500 (this is attained when maximum elements

ofRA are reversed with the resulting schedule remaining feasible). This indicates that

the sequence of flight arrivals in the solutions from (TFMP) differ significantly from

the scheduled sequence of flight arrivals (note that if M was large enough, then the

schedule with 0 reversals would be considered most fair). Moreover, the distribution

of delays across airlines is non-uniform with one airline getting almost three times

the delay of another airline. These observations in the solutions obtained from the

formulation (TFMP) is present across all the six datasets.

Comparison with RBS

To demonstrate the utility of FSFS fairness, consider the scenario depicted in Figure

2-4. We have two airports and two airlines (A and B) operating a set of flights.

Flight A1 (arriving at airport 1) is continued by flight A5 (arriving at airport 2).

The turnaround time is 1 unit followed by 2 units of flight time for the subsequent

flight. Similarly, flight B2 (arriving at airport 1) is continued by flight B5 (arriving

at airport 2). The capacity at Airport 1 gets reduced by 66% meaning that we

have 1 flight arriving every 3 slots as opposed to 1 flight every slot (under nominal

conditions). In contrast, the capacity at Airport 2 gets reduced by 33% meaning that

we have 2 flights arriving every 3 slots. Let us first consider the utility of a schedule

which controls reversals compared to the RBS schedule. Because of the coupling

between A5 and A1, flight A5 is unable to utilize the slot allotted to it under the

RBS paradigm because it is not compatible with the earliest slot it can have given

the slot assigned to A1. A similar situation holds for flight B5. Therefore, in the

RBS schedule, there is available capacity which is not utilized. Even though RBS is

delay-optimal in a single-airport setting (see [36]), this example illustrates that in a

multi-airport setting, the attractive property of delay optimality is not necessarily true.

By allowing reversals, these unused slots can be potentially filled, thereby, leading to

a more efficient schedule. For instance, in this example, by reversing flights B1 and

A1 at Airport 1, flight A5 can now utilize the slot assigned under the original RBS

sequence. Using a similar argument, by reversing flights B2 and A2, flight B5 can
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utilize the original RBS slot. Furthermore, by allowing reversals, the final schedule

can overcome cancellations which might occur in the RBS schedule (for instance,

flights B6 and A7 get cancelled in the RBS schedule).

Time Period:

Airport 1

Airport 1

Airport 2

Airport 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RBS

Controlling
Reversals

B1

B1

A1

A1

A2

A2

B2

B2

A3

A3

B3

B3

B1 A1 A2 B2 A3

A4

A4

B4

B4

A5

A5

A6

A6

B5

B5

B6

B6

A7

A7

A4 B4 ∗ ∗ ∗ A5 A6 ∗ ∗ B5

A1 B1 B2 A2 A3

A4 B4 ∗ A5 A6 ∗ ∗ B5 B6 A7

Figure 2-4: Example demonstrating the utility of controlling reversals over the RBS
solution. * denotes slots which remain unutilized despite being available. The capac-
ity of Airport 1 gets reduced by two-thirds, whereas that of Airport 2 by one-third.

Table 2.1 summarizes the advantages of our proposal relative to RBS++ (RBS

+ Compression) on the performance metrics of total delay, cancellations, capacity

(under) utilization, reversals and on-time performance. As is evident, by allowing

reversals, we get the dual benefits of reduced delays and better utilization of the

available capacity relative to the RBS schedule. In addition, a by-product of reduced

wastage of capacity is decrease in the number of cancellations.

2.2 Controlling the Total Amount of Overtaking

A notion of fairness widely agreed upon by the airlines is to have a schedule that

preserves the order of flight arrivals at an airport according to the published schedules

in the Online Airline Guide (OAG). As previously mentioned, this is known as Ration-
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Metric Our Proposal RBS++

Total Delay 43 54
(no. of slots)
Cancellations 1 3
Slots Unused 3 5
Reversals 2 0

Table 2.1: Utility of our proposal of enforcing FSFS fairness.

by-Schedule (RBS). But, given the capacity reductions at the airports, it might not

always be possible to have a feasible solution under RBS in a network setting. A close

equivalent to the RBS solution would be one which has a small amount of overtaking.

Hence, in such a scenario, a plan which minimizes the total overtaking while keeping

the total delay cost small might be a more desirable solution. As the first approach,

we present a model which achieves this objective.

For every reversible pair of flights (f, f ′) ∈ Rj , let gf,f ′,j denote the total amount

of overtaking between flights f and f ′. Then, we need to define the following set of

variables to express gf,f ′,j.

sif,f ′,j =







1, if flight f ′ arrives but f does not arrive by time T f ′

j + i

in resource j,

0, otherwise.

The definition above implies the following:

sif,f ′,j = 1 ⇐⇒

{

wf

j,T
f ′

j +i
= 0, wf ′

j,T
f ′

j +i
= 1

}

Table 2.2 summarizes the various feasible combinations of these variables under the

above definition. Thus, an alternative way to express sif,f ′,j is as follows:

sif,f ′,j = max

{

wf ′

j,T
f ′

j
+i

− wf

j,T
f ′

j
+i
, 0

}

. (2.1)

Equation (2.1) implies that the following constraints suffice to express sif,f ′,j in a
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S.No. wf

j,T
f ′

j +i
wf ′

j,T
f ′

j +i
sif,f ′,j

1 0 0 0
2 0 1 1
3 1 0 0
4 1 1 0

Table 2.2: Truth table for modeling the overtaking variables.

mathematical programming framework if the objective is to minimize sif,f ′,j:

sif,f ′,j ≥ wf ′

j,T
f ′

j +i
− wf

j,T
f ′

j +i
, (2.2a)

sif,f ′,j ≥ 0. (2.2b)

The set of variables sif,f ′,j are defined for i ∈ {0, . . . , Omax
f,f ′,j}. Now, gf,f ′,j ∈ {0, . . . , Omax

f,f ′,j}

can be defined as follows:

gf,f ′,j =

Omax
f,f ′,j∑

i=0

sif,f ′,j. (2.3)

We shall work with an alternative description of Equation (2.2a) to make the expo-

sition on overtaking clearer. We substitute i = t− T f ′

j in Equation (2.2a) to rewrite

it as follows:

wf ′

j,t ≤ wf
j,t + s

t−T
f ′

j

f,f ′,j . (2.4)

We prove next that the following set of constraints are required to model overtaking

between (f, f ′) ∈ Rj if we use an objective function to minimize gf,f ′,j in addition

with s
t−T

f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal
i,i′,r :

wf ′

j,t ≤ wf
j,t + s

t−T
f ′

j

f,f ′,j , ∀t ∈ T reversal
i,i′,r . (2.5)

Theorem 1. If we use an objective function of minimizing gf,f ′,j (the total amount

of overtaking for (f, f ′) ∈ Rj) in addition with s
t−T

f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal

i,i′,r , then

Constraint (2.5) correctly captures the semantics of overtaking.

Proof. In case, there is no reversal, i.e.,

wf ′

j,t ≤ wf
j,t, ∀t ∈ T reversal

i,i′,r ,

then Constraint (2.5) becomes reduntant. Since we minimize total amount of over-
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taking (and s
t−T

f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal
i,i′,r ), it forces:

s
t−T

f ′

j

f,f ′,j = 0, ∀t ∈ T reversal
i,i′,r ,

leading to gf,f ′,j = 0. On the contrary, if there are i units of overtaking, then ∃t ∈

{T f ′

j , . . . , T
f ′

j +Omax
f,f ′,j − i} such that:

wf ′

j,t−1 = 0, wf ′

j,t = 1,

wf
j,t+i−1 = 0, wf

j,t+i = 1.

Now, the time-connectivity constraints (Constraints (1.1f)) imply that:

wf ′

j,t+m = 1, wf
j,t+m = 0, ∀ 0 ≤ m ≤ i− 1.

Constraint (2.5) then enforces

skf,f ′,j = 1, ∀ t ≤ k ≤ t+ i− 1.

Again, since we minimize total amount of overtaking (and s
t−T

f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal
i,i′,r ),

therefore,

skf,f ′,j = 0, ∀ 0 ≤ k < t, t+ i− 1 < k ≤ Omax
f,f ′,j,

leading to gf,f ′,j = i. In summary, Constraint (2.5) (in addition with s
t−T

f ′

j

f,f ′,j ≥ 0),

correctly model overtaking if the objective function is to minimize gf,f ′,j.

The proof of Theorem 1 relied critically on the assumption that we use an objective

function that minimizes gf,f ′,j . Next, we propose a formulation to model overtaking

which is independent of the objective function used. We propose a set of constraints

that capture the convex hull of the four feasible integer points enumerated in Table

2.2, namely (0, 0, 0), (0, 1, 1), (1, 0, 0) and (1, 1, 0). Figure 2-5 depicts the convex hull

52



of these four points. We introduce the following set of constraints to model overtaking:

wf ′

j,t ≤ wf
j,t + s

t−T
f ′

j

f,f ′,j , ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
i,i′,r . (2.6a)

wf
j,t ≤ wf ′

j,t + 1− s
t−T

f ′

j

f,f ′,j , ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
i,i′,r . (2.6b)

wf
j,t + s

t−T
f ′

j

f,f ′,j ≤ 1, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
i,i′,r . (2.6c)

−wf ′

j,t + s
t−T

f ′

j

f,f ′,j ≤ 0, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
i,i′,r . (2.6d)
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Figure 2-5: Convex hull of the integer points in Table 2.2 to model overtaking (i =

t− T f ′

j ).

The TFMP model with the additional control on total amount of overtaking (referred

to as TFMP-Overtake henceforth) is as follows:

IZTFMP-Overtake =

min
∑

f∈F






∑

t∈T f
destf

cftotal(t) · (w
f
destf ,t

− wf
destf ,t−1)−

∑

t∈T f
origf

cfg (t) · (w
f
origf ,t

− wf
origf ,t−1)




+

λo
s ·




∑

j∈S, (f,f ′)∈Rj

Omax
f,f ′,j∑

i=0

sif,f ′,j



+ λo
a ·




∑

k∈K, (f,f ′)∈Rk

Omax
f,f ′,k∑

i=0

sif,f ′,k




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subject to:

(1.1a)− (1.1f).

(2.6a)− (2.6d).

sif,f ′,j ∈ {0, 1}, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, i ∈ {0, . . . , Omax
f,f ′,j}.

2.3 Controlling the Total Number of Reversals

The model introduced in Section 2.2 took into account the magnitude of overtaking

within each reversal. In this section, we introduce a model which controls the total

number of reversals.

For each element (f, f ′) ∈ Rj , we introduce the following new variable:

sf,f ′,j =







1, if there is a reversal,

0, otherwise.

Next, we relate the variables sf,f ′,j (used to model a reversal) to the variables sif,f ′,j

(used to model overtaking). It is evident that a reversal occurs if and only if there is

at least one time-period of overtaking. Mathematically, it translates to the following:

sf,f ′,j = 1 ⇐⇒
{

∃i ∈ {0, . . . , Omax
f,f ′,j}, sif,f ′,j = 1

}

(2.7)

Building upon Equation (2.7), we have the following:

sf,f ′,j = max
t∈T reversal

f,f ′,j

{

s
t−T

f ′

j

f,f ′,j

}

,

sf,f ′,j = max
t∈T reversal

f,f ′,j

{

max{wf ′

j,t − wf
j,t, 0}

}

,

sf,f ′,j = max
{

max
t∈T reversal

f,f ′,j

{wf ′

j,t − wf
j,t}, 0

}

. (2.8)

Equation (2.8) implies that the following constraints suffice to express sf,f ′,j in a

mathematical programming framework if the objective is to minimize sf,f ′,j:

sf,f ′,j ≥ wf ′

j,t − wf
j,t, ∀t ∈ T reversal

f,f ′,j . (2.9a)

sf,f ′,j ≥ 0. (2.9b)
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Equation (2.9a) can be rearranged as follows:

wf ′

j,t ≤ wf
j,t + sf,f ′,j, ∀t ∈ T reversal

f,f ′,j . (2.10)

Theorem 2. If we use an objective function of minimizing sf,f ′,j, then Constraint

(2.10) in addition with sf,f ′,j ≥ 0 correctly captures the semantics of modeling a

reversal.

Proof. In case, there is no reversal, i.e.,

wf ′

j,t ≤ wf
j,t, ∀t ∈ T reversal

i,i′,r ,

then Constraint (2.10) becomes redundant. Since we minimize sf,f ′,j (and sf,f ′,j ≥ 0),

it forces sf,f ′,j = 0. On the contrary, if there is a reversal, then ∃t ∈ T reversal
f,f ′,j such

that:

wf ′

j,t = 1, wf
j,t = 0.

Constraint (2.10) then implies that sf,f ′,j ≥ 1. Again, minimizing sf,f ′,j makes sf,f ′,j =

1 ensuring that Constraint (2.10) indeed models a reversal correctly.

The proof of Theorem 2 relied critically on the assumption that we use an objective

function that minimizes sf,f ′,j. Here, we present a formulation that models a reversal

correctly independently of the objective function used. For each element (f, f ′) ∈ Rj ,

we introduce the following constraints to (TFMP):

wf ′

j,t ≤ wf
j,t + sf,f ′,j, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal

f,f ′,j . (2.11a)

wf
j,t ≤ wf ′

j,t + 1− sf,f ′,j, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
f,f ′,j . (2.11b)

If there is a reversal between flights f and f ′ in resource j, i.e., sf,f ′,j = 1, then

Constraint (2.11a) becomes redundant and Constraint (2.11b) stipulates that if flight

f has arrived by time t, then flight f ′ has to arrive by that time, hence ensuring that

flight f cannot arrive before flight f ′. Similarly, if there is no reversal, i.e., sf,f ′,j = 0,

then Constraint (2.11b) becomes redundant and Constraint (2.11a) stipulates that if

flight f ′ has arrived by time t, then flight f has to arrive by that time, hence ensuring

that flight f ′ cannot arrive before flight f . Thus, we are able to model a reversal with

the addition of only one variable (sf,f ′,j).

Given this additional set of constraints, the model then minimizes a weighted

combination of total delay costs and total number of reversals. The parameters λr
s
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and λr
a are chosen appropriately to control the degree of fairness in sector reversals

and airport reversals respectively.

The TFMP model with the additional control on reversals is as follows:

IZTFMP-Reversal =

min
∑

f∈F






∑

t∈T f
destf

cftotal(t) · (w
f
destf ,t

− wf
destf ,t−1)−

∑

t∈T f
origf

cfg (t) · (w
f
origf ,t

− wf
origf ,t−1)




+

λr
s ·




∑

j∈S, (f,f ′)∈Rj

sf,f ′,j



+ λr
a ·




∑

k∈K, (f,f ′)∈Rk

sf,f ′,k





subject to:

(1.1a)− (1.1f).

(2.11a)− (2.11b).

sf,f ′,j ∈ {0, 1}, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K.

For each element (f, f ′) ∈ Rj , let IPReversal(f, f
′, j) denote the set of all feasible

binary vectors satisfying Constraints (2.11a) and (2.11b). We show in the Appendix

that the polyhedron induced by Constraints (2.11a) and (2.11b) is the convex hull of

solutions in IPReversal(f, f
′, j).

IPReversal(f, f
′, j) =

{
wf

j,t ∈ {0, 1}, sf,f ′,j ∈ {0, 1}|

wf ′

j,t − wf
j,t − sf,f ′,j ≤ 0, t ∈ T reversal

f,f ′,j ,

wf
j,t − wf ′

j,t + sf,f ′,j ≤ 1, t ∈ T reversal
f,f ′,j .

}

Remark 2. RBS Policy - a special case of (TFMP-Reversal). When there is

sufficient capacity at all airports, such that a feasible solution under RBS exists (i.e.,

there are no reversals), this model is capable of generating that solution (using a

sufficiently high λr
a) while minimizing the total delay costs. Hence, a solution under

RBS policy is a special case of our model. Since, a solution under RBS preserves the

order of flight arrivals, therefore, for every pair of flights (f, f ′) ∈ RA, the variable

sf,f ′,destf = 0, and Constraints (2.11a) and (2.11b) reduce to Constraint (2.12) which

ensures that flight f ′ cannot arrive before flight f :

wf ′

destf ′ ,t
≤ wf

destf ,t
, ∀(f, f ′) ∈ RA, t ∈ T reversal

f,f ′,destf
. (2.12)

56



2.4 Controlling the Difference between Per Flight

Airline Delays

The models presented so far did not include the airlines explicitly in the decision-

making process, i.e., the carrier identity is not taken into account while assigning

delays to flights, and hence, the distribution of delays among the airlines can still

be non-uniform. In this section, we introduce a metric which enforces the per flight

airline delay as close to each other as possible. The premise for such a metric is that

the load (number of operating flights) that an airline imposes on a weather affected

area should be taken into account while executing an ATFM program. To elaborate,

suppose a weather front impacts 1000 flights of Airline A, but only 100 flights of

Airline B. It would be unfair if both airlines get the same minutes of total delay as

it would mean a ten-fold increase in the per flight delay of Airline A when compared

to Airline B. Hence, this metric captures the general notion of fairness in resource

allocation problems, namely, coming up with a solution which balances the net utility

generated for every player. In this setup, the utility for each player (an airline) is

taken to be the per flight airline delay on the set of impacted flights.

This metric, albeit, has some conceptual difficulties - consider an example where

100 flights of Airline A get affected but only 1 flight of Airline B gets affected, then

requiring that both the airlines get the same per flight airline delay means that every

flight of Airline A gets the same delay as that of Airline B, which, in turn implies an

unnecessary increase in the delays for Airline A. Thus, in such a setting, this metric is

unlikely to be useful. In summary, we feel the that this metric would be advantageous

in a setting when an ATFM initiative impacts similar number of flights of the airlines

involved.

In this chapter, we use this metric on national scale datasets to empirically quan-

tify the price of fairness under this paradigm. This is because we do not have in-

formation on the exact weather conditions prevalent on the datasets we experiment

upon, and hence, we are unable to filter in the set of flights that have been impacted

due to capacity reductions at airports. Finally, we feel that such a metric also helps

obtain computational insights on how our framework can accommodate alternative

objective functions.

Let dw denote the per flight delay for airline w and γ denote the mean of the per

flight airline delay across all airlines.
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dw =
∑

f∈Fw

(
∑

t∈T f
destf

cftotal(t) · (w
f
destf ,t

− wf
destf ,t−1)

−
∑

t∈T f
origf

cfg (t) · (w
f
origf ,t

− wf
origf ,t−1)

)/

|Fw|,

γ =

(
∑

w∈W

dw

)/

|W|.

The TFMP model with the additional control on the per flight airline delays is as

follows:

IZTFMP-Dev = min
∑

f∈F

( ∑

t∈T f
destf

cftotal(t) · (w
f
destf ,t

− wf
destf ,t−1)

−
∑

t∈T f
origf

cfg (t) · (w
f
origf ,t

− wf
origf ,t−1)

)

+ λd ·
( ∑

w∈W

|dw − γ|
)

subject to: (1.1a)-(1.1f).

The absolute value terms |dw − γ| are linearized by replacing each such term by a

new variable and enforcing that variable to be greater than both dw − γ and γ − dw.

2.5 Controlling both Reversals and Difference in

Per Flight Airline Delays

The final model we study is to control both the total number of reversals and the

difference in per flight airline delays. Hence, the objective function in this case is a

weighted sum of three components - total delay cost, total number of reversals and

difference in per flight airline delays costs.

The TFMP model with control on both reversals and per flight airline delays is

as follows:
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IZTFMP-Rev-Dev =

min
∑

f∈F






∑

t∈T f
destf

cftotal(t) · (w
f
destf ,t

− wf
destf ,t−1)−

∑

t∈T f
origf

cfg (t) · (w
f
origf ,t

− wf
origf ,t−1)




+

λr
a ·




∑

k∈K, (f,f ′)∈Rk

sf,f ′,k



+ λd ·

(
∑

w∈W

|dw − γ|

)

subject to:

(1.1a)− (1.1f).

(2.11a)− (2.11b).

sf,f ′,k ∈ {0, 1} ∀(f, f ′) ∈ Rk.

Extensions.

We now elaborate on how the proposed models (TFMP-Reversal and TFMP-Overtake)

can be extended to accommodate alternative objective functions.

• Incorporating alternative objective functions:

Although the models presented in this chapter minimize the number of rever-

sals and amount of overtaking, it is possible to extend them to accommodate

alternative objective functions. For instance, suppose we want to equalize the

resulting reversals and overtaking among airlines taking into account the num-

ber of flights they operate. This can be achieved as follows:

Let rw denote the number of reversals per flight for airline w and γ denote the

mean of the rw’s across all airlines.

rw =

(
∑

f ′∈Fw

sf,f ′

)
/

|Fw|,

γ =

(
∑

w∈W

rw

)
/

|W|.

Then, we add
∣
∣rw − γ

∣
∣ term to the objective function of minimizing the total

delay cost with an appropriate tradeoff parameter.
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Size of the Formulations.

Denoting with

M = max
f∈F ,j∈Pf

|T j
f |, N = max

f∈F
|Sf |,

the total number of decision variables and constraints for the various models can be

bounded as listed in Table 2.3.

Model No. of Decision No. of
Variables Constraints

TFMP |F|MN 2|K||T |+ |S||T |+ 2|F|MN+
2|F|N +M |C|

TFMP-Reversal |F|MN + |RA| 2|K||T |+ |S||T |+ 2|F|MN+
2|F|M +M |C|+ 2|RA|M

TFMP-Overtake |F|MN +M |RA| 2|K||T |+ |S||T |+ 2|F|MN+
2|F|N +M |C|+ |RA|M

Table 2.3: Upper bound on the size of the models.

In order to get a feeling of the size of the formulations, let us consider an example

that adequately represents the U.S. network: K = 50, T = 100, S = 100, R = 50000,

F = 10000, C = 8000, M = 6 and N = 5. For this example, the upper bound on the

number of variables and constraints are listed in Table 2.4.

Model No. of Decision No. of
Variables Constraints

TFMP 300,000 780,000
TFMP-Reversal 350,000 1,380,000
TFMP-Overtake 600,000 1,080,000

Table 2.4: Numerical Example: Upper bound on the size of the models.

Since we introduce only one class of variables sf,f ′,j for all elements (f, f ′) ∈ Rj ,

the number of variables in the model (TFMP-Reversal) are comparable to the original

model (TFMP).
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2.6 Prioritizing between Airport Reversals and Sec-

tor Reversals

Currently RBS is the principle used to maintain the sequencing of flights at capaci-

tated elements of NAS (both for GDPs and AFPs) and indirectly allocate delays to

airlines. By optimizing over reversals, we control the degree of disruptions to such

sequences when capacity decreases. This allows us to decrease the overall delay (rela-

tive to RBS) at the expense of increasing reversals. That is, we allow more flexibility

on the tradeoff between optimality (i.e., delays) and fairness (i.e., reversals). This

tradeoff is controlled by the parameters λr
a and λr

s which control the airport and sector

reversals respectively. In Section 2.7, we provide empirical evidence on the tradeoff

between fairness and optimality. We now examine multiple contrasting scenarios to

understand better the pros and cons of controlling sector reversals.

The operational details of AFPs (one of the recent ATFM programs) under the

current CDM practice facilitate the control of sector reversals. The recently intro-

duced AFPs operate much like GDPs, i.e., the arrival slots in the affected airspace

are allotted using the RBS principle. Therefore, in a scenario where multiple AFPs

and GDPs operate simultaneously, a natural extension of fairness is controlling rever-

sals in the en-route airspace affected by an AFP. To elaborate, we give the following

example:

Example 2.6.1. Consider the scenario depicted in Figure 2-6. There is an AFP

operational in the en-route airspace followed by a GDP at BOS (Boston). Simulta-

neously, there is another airport LGA (New York LaGuardia) nearby with no GDP.

There are two streams of flights going through the AFP to one of these airports. In

a scenario where sector reversals in the AFP are not controlled, a schedule with no

airport reversals might be such that all flights going to BOS are allowed to go first

before any other flight to LGA through the AFP. Such a plan might not be accept-

able to the stakeholders of LGA because all flights destined to LGA are assigned large

delays even though they are part of an ATFM program (the AFP in this case). This

might get further exacerbated in a scenario where LGA (the non-GDP airport) is a

hub airport for a particular airline, in which case this airline is clearly not treated

equitably.

On the negative side, we believe that imposing additional constraints of controlling

sector reversals will lead to two key impacts: i) increase in system delays over a

solution which only controls airport reversals; and ii) potential change in the number
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BOS (GDP)

LGA (No GDP)

AFP

Figure 2-6: Illustration of a scenario where controlling sector reversals seems appro-
priate. There are multiple ATFM programs operating simultaneously. Specifically,
an AFP is spatially followed by an airport with a GDP (BOS) and an airport with
no GDP (LGA).

of airport reversals (due to downstream effects). Thus, in this balancing act, these two

consequences have to be carefully mitigated to ensure neither one gets exacerbated. In

addition, it seems reasonable to expect that primary stakeholders (airlines and flying

passengers) would be less concerned as to how the en-route resources are allocated

if they are satisfied with the final arrival sequences at the airports. To elaborate,

from a passengers’ standpoint, the key objective is to reach the destination on-time

(which is correlated with the concerned flight not overtaking other flights). The exact

trajectory of the flight is of little importance as long as that objective is achieved.

In a similar vein, an airline is primarily concerned with ensuring excellent on-time

performance at destination airports. Therefore, in a setting where rerouting is not

allowed, airlines would be less concerned with the way en-route resources are allocated

(if FSFS guarantees are satisfied at the airports). Finally, this scheme of things would

be attractive to the FAA as its key objective in designing various ATFM programs is

to satisfy these primary stakeholders.

Example 2.6.2. Consider the scenario depicted in Figure 2-7. There are two airports

spatially close where GDPs (BOS and LGA) are operational. There is no ATFM

program operational in the en-route airspace. There are two streams of flights going

through the airspace to one of these airports. In this scenario, we believe there is no

compelling reason to control reversals in the en-route airspace. In fact, controlling

sector reversals appears an overkill as it would increase the delay costs.

To analyze the relevance of controlling sector reversals in scenarios where com-

peting schedules have the same number of airport reversals, we study the following

example:

Example 2.6.3. Consider the two settings as depicted in Figure 2-8. In Scenario

1, there are two separate sequence of flights traveling between two distinct origin-

destination pairs. Specifically, there is one sequence traveling from airport A to
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BOS (GDP)

LGA (GDP)

No AFP

Figure 2-7: Illustration of a scenario where controlling sector reversals seems an
overkill. There are multiple ATFM programs operating simultaneously. Specifically,
there are GDPs operating at two nearby airports (BOS) and (LGA). Moreover, there
is no ATFM program operating en-route.

airport A
′

through the congested sector S1. There is a separate sequence of flights

from airport B to airport B
′

through the same sector S1. Consider two competing

schedules as follows: i) all flights from A to A
′

go before flights from B to B
′

; and ii)

all flights from B to B
′

go before flights from A to A
′

. It is evident that both these

schedules have 0 airport reversals, but it is difficult to conclude which one is more

equitable. Thus, there is some truth to the premise of controlling sector reversals

in sector S1. In Scenario 2, there are two streams of flights traveling from the same

origin airport C to the destination airport C
′

but through different sectors S2 and

S3 respectively. In this setting, it is difficult to comprehend the rationale behind

controlling sector reversals. The reason being that this is similar to a single-airport

GDP scenario (at airport C
′

), and currently there are no equity considerations on the

en-route resources when executing a GDP. Moreover, controlling reversals in sectors

S2 or S3 will strictly lead to increase in total delay which seems unnecessary.

Scenario 1 Scenario 2

A

B

S1

A
′

B
′

C

S2

S3

C
′

Figure 2-8: Two scenarios to study the relevance of controlling sector reversals in
addition to airport reversals.

In summary, the discussion in this section leads to the following conclusions:

• Controlling airport reversals (where GDPs are implemented) should be the first

order objective.

• Simultaneously, sector reversals should only be controlled in the en-route airspace
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where AFPs (or other ATFM programs) are operational. We propose that in

the model TFMP-Reversal, the tradeoff parameter λr
s used to control sector re-

versals be set to a relatively lower value as compared to the parameter λr
a used

to control airport reversals.

2.7 Computational Results

In this section, we report computational results from the optimization models intro-

duced in the previous section on national-scale, real world datasets spanning across

six days. The dataset for each day encompasses 55 major airports of the US and

covers operations of the top five airlines. Each dataset contains data on the actual

flight arrival and departure times for that particular day which lets us compute the

actual delays.

Statistics of the Datasets

Table 2.5 summarizes the statistics of six days of flights data. These correspond to the

operations at the 55 major airports of the US. We filter in the flights corresponding

to the operations of the top 5 airlines (measured by the number of flight operations)

- Southwest (SWA), American (AAL), Delta (DAL), United (UAL) and Northwest

(NWA) to enable us to better analyze the distribution of delays across airlines.

Day No. of Total Delay Reversals Overtaking
Flights CF (units of 15 min.)

1 5092 2691 4438 9944 30652
2 5844 3298 4926 7756 19003
3 5780 3310 3079 4797 12231
4 4590 2301 3907 6488 18825
5 5128 2728 3326 6399 19998
6 4781 2504 3101 4351 12954

Table 2.5: Summary of the datasets. CF denotes the number of connecting flights.

Experimental Setup

In our experimental setup, the airspace is subdivided into sectors of equal dimensions

(10 by 10) that form a grid, thereby, having a total of 100 sectors. Each of the
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55 major airports of the US is then mapped to one of these 100 sectors based on its

geographical coordinates. For each flight, we fix its flight trajectory (i.e., the sequence

of sectors in its path) based on the shortest path from the origin to the destination

airport. Using the information on its flight time, we compute the minimum amount

of time that each flight has to spend in a sector. This value is then used to calculate

the set of feasible times that a flight can be in a sector. By tracking the tail number

of an aircraft, we form the set of connecting flights.

For a sample day, we know the scheduled departure and arrival times of a flight as

well as what actually happened on that day. We use this to compute its ground and

air-hold delays. Further, we compute the capacities at all the airports by noting the

actual times of departure and arrival of the flights and we use these values as capacity

inputs to run the optimization models. It is important to note that this capacity

corresponds to the exact number of flight departures and arrivals that happened on

that particular day and hence, is the most conservative estimates of the capacity. The

available airport capacities on that day has to be higher than the actual number of

operations. Finally, we set values for the nominal sector capacities that lead to no

delays when these airport capacities are used.

A critical parameter of the optimization models is the maximum permissible delay

for a flight (M). This value is used to define the set of feasible times that a flight can

be in a particular sector. For example, the set of feasible times that a flight f can

arrive at its destination airport is given by all values in af through (af + M). The

size of all the optimization models and hence, the computational times, are sensitive

to the value of M . We use a value of M = 6, which corresponds to 6 time periods

(each of length 15 minutes), hence permitting a maximum delay of 90 minutes.

To compute optimal solutions, we use the CPLEX-MIP solver 11.0, implemented

using AMPL as a modeling language on a laptop with 2 GB RAM and Linux Ubuntu

OS. The instances reported in this chapter have a typical size of the order of 300,000

variables (this increases significantly for TFMP-Overtake) and 800,000 constraints

(this increases significantly for TFMP-Reversal).

Performance of TFMP

Table 2.6 reports solutions from the (TFMP) model for the case when the capacity

used is 20% over and above the actual number of aircraft operations. There is an

average reduction of 23% in the total absolute delays. This illustrates the benefits that

could be achieved by using a centralized optimization-based approach. Furthermore,
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the number of reversals consistently range between 500 and 1000 and amount of

overtaking range between 800 and 1500 across all days. This confirms that, although,

there can be significant benefits in the total delay costs by using the model (TFMP),

the number of reversals and overtaking might be high.

Day No. of Delay (15 min.) Actual TFMP

Flights Actual TFMP RV OV RV OV

1 5092 4438 3385 9944 30652 915 1492
2 5844 4926 3492 7756 19003 924 1426
3 5780 3079 2242 4797 12231 753 1191
4 4590 3907 3053 6488 18825 769 1235
5 5128 3326 2648 6399 19998 801 1291
6 4781 3101 2542 4351 12954 526 822

Table 2.6: Performance of TFMP. RV denotes the number of reversals and OV the
amount of overtaking.
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Figure 2-9: Distribution of per flight airline delays from (TFMP) in units of 15
minutes.

Performance of TFMP-Overtake

Table 2.7 reports the computational performance of (TFMP-Overtake) model on the

six datasets. These results pertain to the parameter λa
o set to 100. The number

reported under ‘Total overtaking’ takes into account the relative magnitudes of over-

taking within each reversal, i.e., the number of time periods by which a flight overtakes
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its preceding flight when a reversal occurs. The degradation in total delay costs from

(TFMP-Overtake) model over the (TFMP) solution range between 13% and 41% for

fairness at 25 airports, the average being 24.5%. The model on average takes less

than 30 minutes to converge to optimality for up to 25 airports.

Performance of TFMP-Reversal

The (TFMP-Reversal) model minimizes a weighted combination of total delay costs

and total number of reversals where λr
a is the weight parameter. We study the tradeoff

inherent in these conflicting objectives in two ways - a) as a function of the tradeoff

parameter λr
a and b) as a function of the number of airports where this fairness

criterion is imposed.

The effect of the tradeoff paramater

Figure 2-10 plots the tradeoff in the number of reversals with the total delay cost

as a function of λr
a for fairness based on controlling total reversals imposed at 25

airports. The five points on the plot for each day correspond to the result from

(TFMP-Reversal) with λr
a = 0, 1, 10, 100 and 1000. Initially, there is a significant

reduction in the number of reversals at the cost of a small increase in total delay cost,

but the subsequent benefits in the number of reversals come at a high cost. For all

days, the model is able to achieve less than 100 reversals for a degradation of at most

10% in the total delay cost. To achieve reversals between 10 and 30, the degradation

in total delay costs range between 10% and 40% across all days.

The effect of the number of airports

Table 2.8 reports the computational performance of the (TFMP-Reversal) model on

the six datasets as a function of the number of airports where this fairness criterion is

imposed. The capacity input used for the results in Table 2.8 is 20% higher than the

exact number of aircraft operations that happened on the day under consideration.

These results pertain to the tradeoff parameter λr
a set to 100. As is evident from the

results reported across all days, the number of reversals can be controlled up to 10-30.

The degradation in total delay costs from (TFMP-Reversal) model over the (TFMP)

solution range between 13% and 40% for fairness at 25 airports, the average being

24.5%. The model on average takes less than 30 minutes to converge to optimality
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Day Solution % Increase in
(# of AF Time RV OV Delay Cost Delay Cost
Flights) (sec.) (15 min.) over (TFMP)

0 261 915 1492 3525
1 5 186 2 4 3690 4.68
(5092) 15 727 13 27 4243 20.36

25 3073 26 39 4662 32.25
30 3600 39 65 4815 36.59

0 108 924 1426 3604
2 5 206 1 2 3802 5.49
(5844) 15 596 6 9 4029 11.79

25 806 9 12 4080 13.20
30 3530 16 18 4510 25.13

0 311 753 1191 2313
3 5 170 3 6 2401 3.80
(5780) 15 397 8 18 2584 11.71

25 295 11 22 2651 14.61
30 3394 17 28 3096 33.85

0 51 769 1235 3173
4 5 150 1 1 3628 14.33
(4590) 15 746 5 6 4201 32.39

25 691 13 18 4452 40.30
30 3600 29 33 4743 49.47

0 178 801 1291 2744
5 5 116 0 0 2871 4.62
(5128) 15 492 10 18 3319 20.95

25 1983 17 26 3505 27.73
30 3600 25 36 3804 38.62

0 49 526 822 2637
6 5 143 5 7 2826 7.16
(4781) 15 378 9 15 3070 16.42

25 479 15 22 3145 19.26
30 1305 28 49 3383 28.28

Table 2.7: Computational performance of (TFMP-Overtake). Note that the row
with k airports corresponds to imposing fairness at k airports and no fairness at the
remaining |K|−k airports. In particular, k = 0 corresponds to the (TFMP) solution.
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Figure 2-10: Effect of the tradeoff parameter λr
a. The five points for each day corre-

spond to the result from (TFMP-Reversal) with λr
a = 0, 1, 10, 100 and 1000.

for up to 25 airports. As expected, the total amount of reversals reported in Table

2.8 is always less than the corresponding number in Table 2.7, whereas the opposite

is true for the amount of overtaking.

The computational times of both (TFMP-Reversal) and (TFMP-Overtake) are

consistently less than 30 minutes for up to 25 airports, but they break down when

we impose fairness at 30 airports and above. We believe that this is due to memory

limitations.
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Figure 2-11: Distribution of per flight airline delays from (TFMP-Reversal) in units
of 15 minutes.
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Day Solution % Increase in
(# of AF Time RV OV Delay Cost Delay Cost
Flights) (sec.) (15 min.) over (TFMP)

0 261 915 1492 3525
1 5 228 2 4 3691 4.70
(5092) 15 899 13 30 4246 20.45

25 3600 25 53 4402 24.87
30 3600 37 84 4586 30.09

0 108 924 1426 3604
2 5 213 1 2 3785 5.02
(5844) 15 837 6 9 4028 11.76

25 1024 9 12 4077 13.12
30 3600 16 30 4403 22.16

0 311 753 1191 2313
3 5 219 3 6 2406 4.02
(5780) 15 282 8 19 2583 11.67

25 384 11 24 2648 14.48
30 3600 15 35 3048 31.77

0 51 769 1235 3173
4 5 165 1 1 3627 14.30
(4590) 15 1367 5 10 4138 30.41

25 2292 12 22 4468 40.81
30 3600 29 55 4558 43.64

0 178 801 1291 2744
5 5 225 0 0 2866 4.44
(5128) 15 654 10 24 3319 20.95

25 1556 16 35 3504 27.69
30 3600 25 38 3925 43.03

0 49 526 822 2637
6 5 213 5 7 2836 7.54
(4781) 15 751 9 16 3059 16.00

25 654 15 25 3125 18.50
30 3600 28 51 3387 28.44

Table 2.8: Computational performance of (TFMP-Reversal). Note that the row with
k airports corresponds to imposing fairness at k airports and no fairness at the re-
maining |K| − k airports. In particular, k = 0 corresponds to the (TFMP) solution.
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Performance of TFMP-Dev
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Figure 2-12: Distribution of per flight airline delays from (TFMP-Dev) in units of 15
minutes.

Day No. of Total Delay Cost Sol. Time No. of % Increase over
Flights (units of 15 min.) (in sec.) Reversals (TFMP)

1 5092 4835 1459 1317 6.35
2 5844 5086 1862 1256 0.24
3 5780 3184 1484 1100 1.30
4 4590 4024 1050 1061 0.54
5 5128 3422 1079 882 0.41
6 4781 3170 1010 509 0.00

Table 2.9: Computational Performance of (TFMP-Dev).

Table 2.9 reports computational performance of the (TFMP-Dev) model on the

six datasets. These results pertain to the parameter λd set to 100. The average

increase in total delay costs across the different days over the (TFMP) solution is

1.46% which suggests that this fairness criterion is satisfied at a small cost. Since the

increase in total delay costs over the (TFMP) solution is small, we do not explore

the degradation in total delay costs as a function of λd. It is evident from Figure

2-12 that the distribution of per flight delays across all airlines is nearly the same.

But, the number of reversals with this model is large in all cases (1021 on average).

(TFMP-Dev) takes an average time of 1324 seconds (less than 25 minutes) to come

up with an optimal solution.
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Day No. of Total Delay Sol. Time % Increase Gap
Flights Cost (15 min.) (in sec.) RV over TFMP %

1 5092 5366 7200 39 18.03 13.56
2 5844 5786 3298 13 14.07 2.02
3 5780 3845 7200 12 20.99 2.65
4 4590 5505 7200 34 37.55 8.04
5 5128 4504 5737 32 24.28 0.57
6 4781 3833 7200 26 20.91 13.17

Table 2.10: Computational performance of (TFMP-Rev-Dev) in units of 15 minutes.
RV denotes the number of reversals.
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Figure 2-13: (TFMP-Rev-Dev): Tradeoff between reversals and difference in airline
delays. Note that the horizontal axis corresponds to

∑

w∈W |dw − γ| (in units of 15
minutes). Specifically, the value 0.2 corresponds to 3 minutes. For each day, the five
points correspond to (λr

a, λd) set to (0, 100), (10, 100), (100, 100), (100, 10) and (100,
0) respectively.
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Performance of TFMP-Rev-Dev

The preceding discussions suggest that (TFMP-Reversal) can give a solution with a

small number of reversals but the per flight airline delays are, in general, quite differ-

ent, whereas (TFMP-Dev) model can give a solution with nearly the same per flight

airline delays but, a large number of reversals. This gives motivation for studying

the model (TFMP-Rev-Dev) so as to satisfy both the fairness properties. Table 2.10

reports the results from the model (TFMP-Rev-Dev) with the parameters λr
a = 100

and λd = 100. The model is able to achieve a small number of reversals (between 10

and 40). Moreover, the distribution of delays across airlines (shown in Figure 2-14) is

better than (TFMP) and (TFMP-Reversal). Thus, the model is able to satisfy both

the objectives well. The computational times from this model are less attractive than

the previous models (in four cases, the model does not reach provable optimality even

after 7200 seconds).

Effect of the tradeoff parameters

Figure 2-13 shows the tradeoff between reversals and difference in per flight airline

delays as a function of λr
a and λd. The five points on the graph for each day correspond

to the results from (TFMP-Rev-Dev) for the parameters (λr
a, λd) set to (0, 100), (10,

100), (100, 100), (100, 10) and (100, 0). The tradeoff frontier is sharp. It falls

off quickly and thereafter become constant. There is a narrow band where both

objectives (number of reversals and difference in per flight airline delays) take a small

value. The average increase in total delay costs over the (TFMP) solution for the

parameters (λr
a, λd) set to (10, 100) is 8.34% and for (100, 10), it is 24.38%. Since

the solution corresponding to the weight parameters (10, 100) has a small number of

reversals (less than 100) and small difference in airline delays (less than 3 minutes),

it suggests that we can obtain solutions satisfying both the fairness criteria for less

than 10% increase in delay costs.

Controlling Sector Reversals and Balancing with Airport Re-

versals

We believe that controlling airport reversals (and overtaking) should be the primary

objective, and controlling sector reversals the secondary goal. In this section, we study

the interaction of the two objectives with the aim to quantify the price of controlling
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Figure 2-14: Distribution of per flight airline delays from (TFMP-Rev-Dev) in units
of 15 minutes.

sector reversals (on airport reversals and total delay cost). Our setup for this exercise

comprises of controlling reversals in 5 sectors of the north-east region of the US and

a set of 10 airports that lie spatially close to these sectors (we believe this would be

the typical setting with multiple AFPs and GDPs operating simultaneously). Table

2.11 reports the sector reversals, airport reversals and total delay cost for different

combinations of the tradeoff parameters λs
r and λa

r .

The left plot in Figure 2-15 is a box plot quantifying the percentage increase in the

number of airport reversals and the delay cost by enforcing the additional control on

sector reversals for the tradeoff parameter λs
r = 10. The percentage increase in delay

cost lies between 5% and 20% with a mean of around 13%, whereas the percentage

increase in airport reversals is around 5%. Moreover, the sector reversals can be

reduced from the order of 1000s to 10s. In contrast, for λs
r = 1, the average increase

in the total delay cost is 3% on average but the sector reversals are still in the 100s.

The right plot in Figure 2-15 depicts the reduction in number of sector reversals

possible by this explicit control (potential reduction from four digit reversals to two

digit reversals).

Consequently, our overall conclusion regarding control of sector reversals is as

follows:

1. We have developed a model capable of controlling sector reversals in conjunction

with airport reversals.

2. We believe controlling sector reversals is a secondary goal after achieving the

primary objective of controlling airport reversals. This is validated by our
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computational experiments of the form presented here (the impact on total

delay cost is substantial (13% on average) for large λs
r (=10) and is relatively

small (3% on average) for small λs
r (=1)).

Day λs
r = 0, λa

r = 100 λs
r = 1, λa

r = 100 λs
r = 10, λa

r = 100

SR AR DC SR AR DC SR AR DC

1 3174 8 3780 253 11 3865 127 12 4261
2 3455 6 3860 169 8 3944 59 8 4235
3 1289 9 2486 58 9 2493 14 10 2631
4 3242 5 3663 326 6 3874 136 4 4292
5 1646 0 2897 268 0 2958 75 1 3456
6 1615 10 2832 144 10 2907 46 9 3235

Table 2.11: Balancing Sector Reversals with Airport Reversals (SR denotes the num-
ber of sector reversals, AR denotes the number of airport reversals and DC denotes
the delay cost). Fairness imposed in 5 sectors of the north-east region and 10 airports
spatially close to these sectors.
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Figure 2-15: Impact of controlling sector reversals on i) airport reversals and total
delay cost (Left); and ii) sector reversals (Right).

Interaction with Super-linear Cost Coefficients

We used super-linear cost coefficients in the overall objective function as additional

means to impose equity as it eliminates flights with extreme delays. Since, our primary

fairness proposal is controlling reversals and overtaking, we study the interaction of

super-linear cost coefficients with this fairness criteria.
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The left plot in Figure 2-16 is a box plot quantifying the percentage increase in

the number of airport reversals and the total delay by using super-linear coefficients

over the solution obtained using linear coefficients (i.e., ǫ = 0). The percentage

increase in reversals consistently lies between -2% and 2% with a mean of around 0.3%.

Furthermore, the total delays never differ by more than 1% with a mean difference of

0.1%. This highlights that using super-linear coefficients causes insignificant changes

to the fairness and delay characteristics of the resulting schedules. The right side of

Figure 2-16 is a table depicting the distribution of delays across flights. As is evident,

the use of super-linear coefficients induces a more moderate assignment of delays in

contrast to linear coefficients which lead to more flights with either 0 (minimum) or

6 (maximum) units of delay.

In summary, the use of super-linear cost coefficients achieves its objective of reduc-

ing flights with extreme delays while not causing any material changes to the number

of reversals and total delay cost.
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Figure 2-16: Impact of super-linear cost coefficients on i) reversals and total delay
cost (Left); and ii) distribution of flight delays (Right).

2.8 Conclusions

In this chapter, we propose integer programming models that add fairness controls

to the network ATFM problem. The issue of fairness is critical, as is evident from

the fact that no optimization model (in a network setting) has been deployed online

inspite of the significant number of models proposed in the research literature. We

propose different metrics of fairness such as i) FSFS fairness (control of reversals and

overtaking); ii) Proportional fairness (equalizing airline delays); and iii) a combination

of both. The numerical results we report indicate that TFMP (the optimization
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model without fairness) is able to reduce the total delays by 23% on average when

we take reasonable estimates on the available capacity (increasing it by 20% from

the actual number of flight operations). We obtain solutions that are able to control

the total reversals and overtaking up to less than 100 (from the models TFMP-

Reversal and TFMP-Overtake respectively) with a less than 10% increase in delay

costs. In contrast, the price of fairness for equalizing delays is relatively small, 1.46%

on average. In addition, we report promising computational times of less than 30

minutes for up to 25 airports from both models which make them well suited for

online use.
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Chapter 3

Network Models that Incorporate

Airline Collaboration

In this chapter, we present Stage II of our proposal to extend CDM from an airport to

an airspace setting. We generalize the intra-airline flight substitution and compression

phase in current CDM practice to inter-airline slot exchanges across airports. We

introduce two models to achieve this functionality. In the first model, we extend the

single-airport model (a network flow model with side constraints) proposed by Vossen

and Ball [36] to a network setting. In the second model, we propose a new formulation

that introduces only one additional variable per offer above the TFMP model. We

let airlines submit offers to trade across various airports. Finally, we report extensive

empirical results to highlight the utility of the proposed models.

3.1 Motivation

The motivation for encouraging slot reallocation amongst airlines follows from the

observation that each airline typically has very different internal objective functions.

These are opaque to other airlines and to the FAA. In fact, significant uncertainty

(at every step of the planning process) and schedule disruptions imply that airline

objectives change dramatically from one period to another. Thus, it is reasonable

to assume that the exact motives of individual airlines should not be expected to be

known to anyone but the airline itself. To elaborate upon this discussion, consider

the setting depicted in Figure 3-1. Three airlines A, B, C have contrasting objective

functions that they are trying to internally optimize. Airline A is concerned with

79



maximizing the on-time performance of its flights. In contrast, Airline B faces strong

coupling between the incoming and outgoing flights at the hub airport. Consequently,

its main concern is to ensure that flights bound to its hub airport have minimum de-

lays. Yet another Airline C aspires to minimize the number of flight cancellations.

Starting from an initial schedule, it is possible that exchange of slots amongst these

three airlines leads to a schedule wherein each of the three airline derives more utility

with respect to its objective functions. Therefore, a market mechanism wherein air-

lines propose options for flight reallocations to the FAA would be attractive because

the airlines are not revealing their exact motives and the FAA can ensure a solution

with greater global welfare without making any airline unhappier from the status quo.

There are two key ingredients in the practical implementation of such a mechanism

from an operational standpoint:

1. Input from Airlines. The first pertains to the exact structure of the in-

put needed from the airlines that describes their substitution preferences. A

critical requirement for this is that it should be simple enough for the Airline

Operational Centers (AOCs) to be able to decide it in real-time. Furthermore,

simplicity in input data would enable the FAA to execute the matching problem

between different airlines in a more expeditious manner.

2. Mediation from FAA. Given airline preferences, the FAA then needs to me-

diate and solve the optimization problem resulting from matching the offers.

The critical requirement in this phase is that the method should be efficient to

be run in near real-time. This way a new schedule can be announced to the

airlines so that multiple iterations can be performed successively.

Possible Mechanisms

A myriad of different schemes could be implemented to achieve the desired function-

ality of slot trading (depicted in Figure 3-2). As a decentralized mechanism, one

could envision airlines buying and selling slots amongst themselves (once they have

an initial allocation from RBS). As an alternative, there could be a market mecha-

nism to achieve the same functionality. In contrast, a centralized mechanism could

be designed wherein airlines propose offers which are appealing to them to exchange

slots. The FAA would then act as the centralized clearing agency tasked with eval-

uating and selecting possible trades. The pros-and-cons of the two approaches are

relatively straightforward to visualize. The decentralized mechanism suffers from
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Figure 3-1: Illustration of a Scenario Motivating Airline Collaboration.

various pitfalls. For starters, given the significant uncertainty and dynamic environ-

ment, exchanges carried amongst airlines could interfere with other ATFM initiatives,

thereby, resulting in potential operational infeasibility. Furthermore, there has to be

a notion of equity built-in into the new schedule that is generated as a result of slot

exchanges. In fact, a decentralized mechanism could facilitate monopolistic markets.

Whereas, the centralized approach is attractive from two counts: i) the proposals

from the airlines can be quite complex which allows for multiple possible exchanges;

and ii) since the FAA can now solve a formal mediation problem, the critical aspect

of ensuring equity can be explicitly incorporated in determining the overall set of

executed trades. Given the competitive marketplace, the latter advantage is espe-

cially appealing as the fundamental tenet of CDM paradigm is ensuring equity in the

allocation of resources at every step of the planning process.

Airline 1

Airline 2

Airline 3

FAA

Airline 1

Airline 2

Airline 3
Offers

Figure 3-2: Illustration of centralized and decentralized mechanisms for airline col-
laboration.
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Centralized Decentralized

Ensuring Equity Possible Impossible
Network Implementability Possible Impossible
Running Times Less Quick Very Quick

Table 3.1: Relative benefits of a centralized and decentralized slot reallocation mech-
anism.

Example Illustration

To concretely motivate the utility of slot trading, consider the following examples.

Figure 3-3 depicts a scenario motivating reallocation in a single-airport setting. There

are five slots that need to be assigned between two Airlines A and B at this airport.

The slots marked with red are the ones currently allotted to Airline A, whereas the

ones marked with green are currently allotted to Airline B. The priority (based on

delay cost levels) associated with the current assignment of flights to slots might be

such that the total value to both airlines might be greater as a result of a 2-for-2

trade. Suppose the value of the four slots s1, s2, s3 and s4 to both airlines A and B

is as depicted in Table 3.2. Then, in case, a 2-for-2 trade occurs (i.e., A trades its

current assignment of slots s1 and s2 for Airline B slots s3 and s4), the net gain to

A is: 2500 - 100 + 300 - 2000 = $700 and to B is: 500 - 600 + 2500 - 2000 = $400.

Thus, even though both airlines place positive values on all of the slots, both airlines

benefit from the trade.

Value for Airline

Slot A B

s1 $2000 $500
s2 $100 $2500
s3 $2500 $600
s4 $300 $2000

Airline

Total Value A B

Before trade $2100 $2600
After trade $2800 $3000

Gain $700 $400

Table 3.2: Left: Value of the slots to the two airlines; Right: Value proposition of
various assignments.

Figure 3-4 depicts a scenario motivating slot reallocation in a network setting.

The initial slot assignment is similar to the one shown in Figure 3-3 except for the

fact that the two favorable slots (for each airline) are at different airports. The

only added complication in this case is that if a trade happens, then the resulting
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Figure 3-3: Motivation for slot trading in a single-airport setting.

assignment should also be feasible (in the network setting), i.e., it should satisfy the

various connectivity constraints.
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Figure 3-4: Motivation for slot trading in a multi-airport (network) setting.

3.2 Input Data

In this section, we elaborate upon the data required from airlines. First, we introduce

some notation:

O : set of all possible airline offers (definition below),

Of ⊆ O : set of offers containing flight f,

Df : time period assigned to flight f from Stage I optimization.

The set O (Set of Airline Offers)

We give next the definition of O (set of airline offers). We use a structure proposed

by Vossen, Ball [36] that allows the airlines to submit so-called AMAL, “at-most,

at-least” offers. Airlines submit offers of the following kind: (fd, td′; fu, tu′) which

means that the airline is willing to move flight fd to a later time-period, but no later

than td′ ; in return for moving flight fu to an earlier time-period, but no later than tu′ .

The destination airports of flights fd and fu are allowed to be distinct. The set O

contains all such four-tuples (fd, td′; fu, tu′) submitted by the airlines after a schedule
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is generated from Stage I of our proposal. Note that Dfd and Dfu denote the slots

allotted to the two flights from Stage I, and hence, for such an offer to be useful, we

must have Dfd < td′ and Dfu > tu′ . Please see Figure 3-5 for an example.

Dfd

td′

tu′

Dfu

Airport A Airport B

Figure 3-5: Illustration of the structure of an offer (fd, td′ ; fu, tu′). destfd = A,
destfu = B, td′ = Dfd + 3 and tu′ = Dfu − 4. The offer states that the airline is
willing to delay flight fd by at-most 3 slots if in return flight fu is moved earlier by
at-least 4 slots.

Utility of Slot Reallocation

Given the allocation from the fairness stage, we now contrast the utility of the inter-

airline slot reallocation phase of our proposal compared to the intra-airline substitu-

tion phase in current CDM practice. We build upon the scenario depicted in Figure

2-4 (in Chapter 2). We use the RBS solution and the solution controlling reversals

as the starting point for Stage II. Figure 3-6 depicts the resulting schedule. In the

example we consider, each airline is concerned with maximizing the number of flights

arriving on-time (defined as arrival within one time-period) at its hub airport. Air-

port 1 is the hub of A and Airport 2 is the hub of B. Then, if Airline A submits

an offer (A6, 6; A3, 10) and Airline B submits another offer (B1, 9; B6, 6), then a

trade gets executed. The key observation is that by allowing inter-airline substitu-

tion (with airline offers across multiple airports), we are able to have 2 more flights

(B6, A3) arrive on-time. It is not difficult to envision potential benefits that might

ensue because of trades across multiple airlines. In contrast, with the intra-airline

substitution phase, it is not possible to have flights A3 and B6 arrive on-time.
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Time Period:

Airport 1

Airport 1

Airport 2

Airport 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Intra-airline
Substitution

Inter-airline
Slot Reallocation

B1 A1 A2 B2 A3

A4 B4 ∗ ∗ ∗ A6 A5 ∗ ∗ B5

A1 A3 B2 A2 B1

A4 B4 ∗ A5 B6 ∗ ∗ B5 A6 A7

Figure 3-6: Example demonstrating the utility of our slot reallocation phase over the
intra-airline substitution.

A Graph Theoretic Interpretation of Trade Offers

Based on the structure of the AMAL airline offers, the resulting set of trade offers

has an insightful interpretation using the toolset of graph theory. This interpretation

was first noted in Sherali et al. [32]. This facilitates modeling the slot exchange func-

tionality in terms of network flow constraints in the graph. More precisely, consider a

graph where the set of nodes are the slots and the arcs represent flights being assigned

a new slot (pointed to by the arc head) from the currently allotted one (given by tail

of the arc). Thus, the input airline offers can be viewed on a directed network (see

Figure 3-8 for example). The set of acceptable trades correspond to directed cycles

in this graph.

As a concrete example, Figure 3-7 depicts a setting in an airspace region involving

three airlines A, B and C. There are six slots that need to be assigned between

six flights (two belonging to each of the three airlines). Most importantly it shows

examples of AMAL trade offers proposed by the three airlines. For instance, Airline

A inputs the offer (A1, 3; A2, 4) meaning that it is willing to delay flight A1 to

at-most slot 3, if in return, flight A1 is moved to at-least slot 4.

111
222
333
444
555
666

A1A1A1
B1B1B1
C1C1C1
B2B2B2
C2C2C2
A2A2A2

Airline A Offers Airline B Offers Airline C Offers

Figure 3-7: Example Illustration of AMAL offers. Using the terminology of set O,
the proposed trade offers are (A1, 3; A2, 4), (B1, 6; B2, 2) and (C1, 4; C2, 1).

Figure 3-8 shows the directed graph network representation of the example de-
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scribed by Figure 3-7. Any feasible set of trades corresponds to directed cycles in the

network. Although, the opposite is not true, because every cycle does not necessarily

conform to the trade restrictions (e.g., the cycle {(2, 4, 2)} does not correspond to

feasible trades). Some examples of cycles that correspond to sets of possible trades

resulting in overall feasibility in this graph are {(2, 5, 2), (3, 4, 3)} and {(1, 2, 6, 5, 1)}.

1 2

3

45

6

(A1, 2)

(B1, 3)

(B2, 4)

Figure 3-8: Representation of trade offers on a directed graph. The set of nodes
correspond to the six slots, whereas the arcs represent various possible flight plans.
For example, arc (A1, 2) denotes the assignment of slot 2 to flight A1 (from the
currently allotted slot 1).

Starting from the initial RBS allottment shown on the left in Figure 3-9, the right

side shows the final arrival sequence resulting from the execution of a feasible set of

trades. The new sequence corresponds to the cycle {(1, 2, 6, 5, 1)} in the directed

graph representation.

11
22
33
44
55
66

A1
B1
C1
B2
C2
A2

C2
A1
B2
C1
A2
B1

After TradesInitial Assignment

Figure 3-9: One of the final assignments after the execution of a feasible combination
of trades.

There are two insightful observations that emanate from the preceding example.

First, the benefits of inter-airline exchanges is immediately apparent. This is because

in the current permissible CDM procedures, only intra-airline swapping of flights is

allowed. But, it is possible that Airline A is not willing to swap flights A1 and A2, but

still wants to (somehow) decrease the delay of flight A2. This scenario is at least made

probable with the inter-airline exchanges. Second, the final sequence of flight arrivals

is not a simple consequence of a two-for-two trade between two airlines. In fact, it
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is a more complex transaction involving all three airlines interacting simultaneously

amongst themselves. To elaborate, Airline A’s slot (held initially by A1) is taken

by Airline C (flight C2); Airline B’s slot (held initially by B1) is taken by Airline A

(flight A1); and finally, Airline C’s slot (held initially by C1) is taken by Airline B

(flight B2). In this sense, the presence of multiple airlines and AMAL trade offers

facilitate more synergistic trade executions.

3.3 Generalization of Vossen-Ball Single-Airport

Model

We now present the first model for slot reallocation in a network setting by extending

the single-airport model of Vossen and Ball [36]. For each flight (fi ∈ F), the offers

to trade determine a sequence of classes, which can be represented by the indices of

the corresponding time-periods. Specifically, let ki be the number of unique classes

corresponding to all offers for flight fi. Then, the offers specify a sequence i1, ..., iki of

classes, where tik < tik′ , if k < k′ (please see Figure 3-10 for an example illustration).

Moreover, within these ki classes, there exists a class which corresponds to the origi-

nally allotted time-slot, so that if no trade is executed, then the flight will be assigned

to this time-slot (we will call the execution of such an offer as a default offer). Let

DT contain the classes that correspond to downward moves for each flight and UT

contain the classes that correspond to upward moves for each flight. Finally, for each

flight fi ∈ F , let pi denote the index of the class corresponding to the default offer.

fi

Flights Classes Slots

xi,1

xi,2

xi,3

zi,1

zi,2

yi,10

yi,11

yi,12

yi,13

si0

si1

si2

si3

si4

Figure 3-10: Illustration of network flow constraints in the single-airport model.
(Taken from [36])

Let us give a numerical example to concretize the above notions of a class and
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default offer. Suppose, flight f8 ∈ F occurs in the following set of offers:

(f8, 6; f1, 3), (f8, 7; f2, 5), (f8, 9; f3, 1), (f4, 10; f8, 4), (f5, 12; f8, 4) and (f6, 22; f8, 2). More-

over, suppose flight f8 was assigned time-period 5 from Stage I, then, k8 = 6 and the

unique sequence of classes for flight f8 would be 2, 4, 5, 6, 7, 9. In the above example,

the elements (f8, 6), (f8, 7) and (f8, 9) belong to the set DT , while the elements (f8, 4)

and (f8, 2) belong to the set UT . Moreover, p8 = 3.

The Decision Variables

• xik ∈ {0, 1} = 1 if flight fi is assigned to class ik.

• yij ∈ {0, 1} = 1 if flight fi is assigned to time-period tj .

• zik ∈ {0, 1} = 1 if flight fi has been assigned to a class with index lower than k

in the sequence of classes for fi but receives at least slot tik .

• odd′uu′ ∈ {0, 1} = 1 if offer (fd, td′; fu, tu′) is executed.

Note that the variables yij are naturally captured in terms of the fundamental

variables wf
j,t.

• yij = wfi
destfi ,tj

− wfi
destfi ,tj−1.
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Constraints

(1.1a)− (1.1f).

ki∑

k=1

xik = 1 ∀fi ∈ F . (3.1a)

xi1 + zi1 = wfi
destfi ,ti1

− wfi
destfi ,ti0−1

∀fi ∈ F . (3.1b)

xik + zik − zi(k−1) = wfi
destfi ,tik

− wfi
destfi ,tik−1

∀fi ∈ F , 1 < k ≤ ki. (3.1c)

xdd′ =
∑

(fd,td′ ,fu,tu′)∈O

odd′uu′ ∀(fd, td′) ∈ DT . (3.1d)

xuu′ =
∑

(fd,td′ ,fu,tu′)∈O

odd′uu′ ∀(fu, tu′) ∈ UT . (3.1e)

wfi
destfi ,Dfi

− wfi
destfi ,Dfi

−1 ≥ xipi ∀fi ∈ F . (3.1f)

wf
j,t ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f

j .

odd′uu′ ∈ {0, 1} ∀(fd, td′ ; fu, tu′) ∈ O.

xik ∈ {0, 1} ∀fi ∈ F , 1 ≤ k ≤ ki.

zik ∈ {0, 1} ∀fi ∈ F , 1 ≤ k ≤ ki.

Constraint (3.1a) represents the assignment of flights to classes, i.e., it enforces

that every flight will be assigned to exactly one class. Constraints (3.1b) and (3.1c)

represents the subsequent assignment of classes to time-slots, i.e., once a flight is as-

signed to a class, this set of constraints assigns the flight to one of the time-slots fea-

sible for this class. In addition to these network flow constraints, the side constraints

(3.1d) and (3.1e) ensure that the resulting trades only include offers proposed by the

airlines, i.e., if a flight is assigned to a class, it should correspond to the execution of

one of the offers corresponding to this class. Constraint ensures that if the default

offer gets executed, then, the flight is assigned the slot in the initial assignment. The

above set of constraints define the set of feasible trades.

3.4 A Model based on Monotone Variables

The second model we propose introduces only one additional variable per offer above

the variables used in the TFMP model of Bertsimas-Stock [13], namely, wf
j,t.
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The Decision Variables

• odd′uu′ ∈ {0, 1} = 1 if offer (fd, td′; fu, tu′) is executed.

Constraints

(1.1a)− (1.1f).

odd′uu′ ≤ wfd
destfd ,td′

∀(fd, td′ ; fu, tu′) ∈ O. (3.2a)

odd′uu′ ≤ wfu
destfu ,tu′

∀(fd, td′ ; fu, tu′) ∈ O. (3.2b)
∑

j∈Of

oj ≤ 1 ∀f ∈ F . (3.2c)

wf
destf ,Df

− wf
destf ,Df−1 ≥ 1− (

∑

j∈Of

oj) ∀f ∈ F . (3.2d)

wf
j,t ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f

j .

odd′uu′ ∈ {0, 1} ∀(fd, td′ ; fu, tu′) ∈ O.

Constraints (3.2a) and (3.2b) enforce that when an offer odd′uu′ is executed (i.e.,

odd′uu′ = 1), then wfd
destfd ,td′

= 1 and wfu
destfu ,tu′

= 1, i.e., flights fd and fu cannot arrive

after the respective time-periods in the offer, namely, t′d and t′u. This ensures that the

semantics of the structure of an offer are satisfied. Constraint (3.2c) enforces that for

each flight, at most one offer can get executed. Moreover, constraint (3.2d) stipulates

that if no offer for a flight f is executed (i.e., oj = 0, ∀j ∈ Of), then the flight will

arrive at the time-period allotted from Stage I (Df).

Objective Function

In the models presented, we have not explicitly stated the objective function that

should be used. It is evident that fairness in the number of executed offers across

airlines would again be relevant in this stage of our proposal.

Let nw denote the number of trades executed corresponding to airline w, and let
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γ denote the mean of the trades executed across all airlines.

nw =
∑

f∈Fw ,j∈Of

oj ,

γ =

(
∑

w∈W

nw

)/

|W|.

In the next section, we report computational results based on the following two

objective functions:

• Objective 1 : maximize the total number of trades

(max
∑

(fd,td′ ;fu,tu′)∈O
odd′uu′).

• Objective 2 : minimize the difference in the number of trades executed for each

airline from the mean (min
∑

w∈W |nw − γ|).

3.5 Computational Results

Given the assignment of flights to various time-periods from Stage I, we generate offers

to trade for each airline which maximizes its on-time performance. In other words,

each airline tries to maximize the number of flights with delay less than one time-unit

(15 minutes). To elaborate, suppose two flights f1 and f2 (belonging to the same

airline) have been assigned two time-units of delay each from Stage I optimization.

Moreover, let t1 and t2 be the time-periods assigned to the two flights respectively.

Then, the owner airline generates an offer to trade which says that it is willing to

delay flight f1 further by three time-units if in return flight f2 can arrive within one

time-unit of delay, i.e., it generates the offer (f1, t1 + 3; f2, t2 − 1). Thus, in case

this trade is executed, flight f2 will arrive on-time (given the definition of on-time

performance).

Table 3.5 reports the results from the two network slot reallocation models when

the objective function used is to maximize the total number of executed trades, while

Table 3.4 reports the results when the objective function used is to minimize the

difference in the number of trades executed across different airlines. We show in

Appendix B that the set of feasible binary integer vectors of the two formulations

is the same, and hence, as expected, both models give the same optimal solution in

all cases. The computational times of the model TFMP-Trading-VB is consistently
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smaller than the model TFMP-Trading-BG, although the solution times for both the

models are less than a minute.

TFMP-Trading-VB TFMP-Trading-BG

Day No. of OE Time OE Time
Flights (in sec.) (in sec.)

1 5092 283 13 283 22
2 5844 256 14 256 26
3 5780 150 5 150 15
4 4590 278 11 278 19
5 5128 194 9 194 20
6 4781 153 6 153 13

Table 3.3: Computational performance of the two trading models - Objective Function
1 (maximize the total number of executed trades).

TFMP-Trading-VB TFMP-Trading-BG

Day No. of OE Time OE Time
Flights (in sec.) (in sec.)

1 5092 190 20 190 29
2 5844 180 20 180 31
3 5780 140 8 140 19
4 4590 215 19 215 27
5 5128 140 12 140 22
6 4781 90 9 90 16

Table 3.4: Computational performance of the two trading models - Objective Function
2 (minimize the deviation in the number of trades executed for an airline from the
mean).

Comparison of TFMP-Trading-BG between single-airport and

network-wide settings.

In this section, we contrast the performance of TFMP-Trading-BG between single-

airport and network-wide settings. It is evident that in the network version, there is a

tradeoff between the flexibility of trading slots at different airports versus the added
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constraint of satisfying all network connectivities. In contrast, in a single-airport set-

ting, there is the advantage of not having to satisfy the network connectivity require-

ments at the expense of losing on trades across different airports. So, to compare the

two settings, we divide the set of generated offers between local and network offers. A

local offer is one where both the flights involved have the same destination airport. On

the contrary, a network offer contains flights whose destination airports are distinct.

Hence, the single-airport model will not have any executed trades that correspond to

the network offers. Table 3.6 reports the results from the two versions under the two

objectives described before. The number reported under TFMP-Trading-BG is the

number of offers executed from the network model proposed in this chapter, whereas,

SA-Trading reports the results obtained from TFMP-Trading-BG after removing all

the network satisfiability constraints and only taking into account the local offers.

The numbers reported highlight the tradeoffs inherent in ignoring the network effects

vis-a-vis trading slots at different airports. As the percentage of local offers increases,

SA-Trading outperforms TFMP-Trading-BG emphasizing that network connectivities

are indeed relevant, whereas, for higher fraction of network offers, TFMP-Trading-BG

performs better reinforcing the utility of network offers.

TFMP-Trading-BG

Objective 1 Objective 2

No. of Offers Sol. Time Offers Sol. Time
Day Flights Executed (in sec.) Executed (in sec.)

14 Jul’04 5092 283 13 190 29
4 Aug’04 5844 256 14 180 31
13 May’05 5780 150 5 140 19
16 Jul’05 4590 278 11 215 27
27 Jul’05 5128 194 9 140 22
27 Jul’06 4781 153 6 90 16

Table 3.5: Computational performance of TFMP-Trading-BG.
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Figure 3-11: Distribution of number of executed trades across airlines from TFMP-
Trading-BG. Left: (Objective 1 ); Right: (Objective 2 )

No. of Offers Executed

% Local % Network Objective 1 Objective 2

Offers Offers SA NW SA NW

0 100 0 281 0 190
25 75 152 255 130 90
50 50 221 241 175 125
75 25 269 238 195 120
100 0 308 258 240 175

Table 3.6: Comparison of TFMP-Trading-BG between single-airport and network-
wide settings. SA denotes the results from SA-TRADING and NW denotes the
results from TFMP-TRADING.
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3.6 Integration and Comparison with Current CDM

Practice

Given that our aspiration in the first part of the thesis (extending CDM from an

airport to an airspace setting) is to bridge the gap between theory and practice,

we now elaborate on how our proposal can be integrated within the broader CDM

paradigm currently in use.

We start by revisiting the CDM paradigm alluded to in the Introduction and

provide a detailed description of the phases involved in the coordination of various

ATFM initiatives (like GDPs and AFPs). There are three key phases involved in the

decision-making process:

1. RBS for each ATFM program. FAA invokes the RBS policy to allocate ar-

rival slots to the airlines for each ATFM program based on the original schedule

ordering.

2. Airline response to schedule disruption. Based on the slots allotted, an

airline is allowed to make changes to the schedule by canceling flights and swap-

ping the slots of two or more of its own flights if they are compatible with the

scheduled departure times.

3. Final coordination by the FAA. FAA accepts the relevant changes proposed

by the airlines to come up with a overall feasible schedule. This is further

complemented by Compression (wherein the FAA attempts to fill in any holes

created by cancellations to further optimize the final schedule).

We now demonstrate how our proposal can be integrated within the three-stage

CDM framework described above. To start with, we propose to filter in the flights

affected by all ATFM programs that the FAA intends to use. The trajectories of

all other flights are deterministically fixed and the capacity corresponding to them is

removed from the capacity inputs to our optimization models.

• Stage 1: Control reversals/overtaking. This stage of our proposal inter-

faces with phase 1 of the CDM framework. Rather than applying RBS to each

ATFM program, we control the reversals and overtaking in the resulting flight

sequences by using TFMP-Reversal and TFMP-Overtake. The input require-

ments for our models, namely, the set of feasible times that a flight can be in a
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sector and the capacity inputs are readily available from Flight Schedule Mon-

itor (FSM)1. Furthermore, the output of our models can be easily converted to

a slot assignment for each flight (by following the scheduled order of the slots

allotted for flights during each time-period) and thus is compatible with the

current operational practice.

• Stage 2: Airline collaboration. This stage of our proposal interfaces with

the last two phases of the CDM framework. The input required from the airlines

on the offers to trade are readily available as the airlines know the slots allotted

to them from Stage 1. Moreover, airlines also propose flights cancellations (em-

anating from operational infeasibility) after considering their slot assignments.

The final exercise of Compression goes through as is done presently to fill in

gaps.

These two stages can be repeated (if necessary) to enable program revisions. In

summary, we believe that our proposal fits well within the CDM framework used

currently and the data input and output requirements are compatible with operational

feasibility.

3.7 Conclusions

In this chapter, we propose models for slot reallocation in a network setting. The key

advantages of the models were the simplicity of the data input requirement from the

airlines and the fast running times which are attractive for potential deployment in

real-time settings. In the numerical results, there are 220 trades executed on average

when the objective function used is to maximize the number of trades, and 160 when

we impose fairness. This reinforces the utility of the slot reallocation phase of our

proposal as the airlines are able to increase the number of flights arriving on-time

(the objective function in our case study).

1FSM is an important software technology currently used by FAA that provides users with
up-to-date, real-time information on the future flight behavior and provides common system-wide
situational awareness for all stakeholders
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Chapter 4

Addressing Capacity Uncertainty

As alluded to in Chapter 1, weather accounts for the majority of the total air traffic de-

lays caused due to terminal, en-route congestion and several other operational factors.

In this chapter, we study the first application of robust and adaptive optimization in

the Air Traffic Flow Management (ATFM) problem to address capacity uncertainty.

Finally, we report extensive empirical results from the proposed models on real-world

flight schedules augmented with simulated weather fronts that illuminate the merits

of our proposal.

4.1 Motivation

To assess the impact of weather on the total aviation delays, we consider the OP-

SNET1 delays data for the year 2010. As evidenced in the monthly delays plot in

Figure 4-1, there is a significant spike in the delays for the summer months (May-

July), when there is pronounced convective weather activity. Moreover, Figure 4-2

indicates that approximately 65-75% of total delays is attributable to weather in the

last ten years. These two observations highlight the importance of addressing weather

induced capacity uncertainty for mitigating aviation delays.

During GDP planning in current practice, AARs are determined based on fore-

casted capacity estimates. But, these forecasts are rarely achieved in practice as it

is difficult to predict exact airport operating conditions several hours in advance.

An overly optimistic estimate would result in air-borne delays for flights close on

arrival which is much more undesirable than ground-holds at the departing airport.

1The Operations Network (OPSNET) is one of the official sources of National Airspace (NAS)
air traffic operations and delay data.
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Figure 4-1: OPSNET monthwise
delays for 2010.
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Figure 4-2: Delays attributable to
weather during 2001-2010.

In contrast, a pessimistic estimate results in avoidable ground delays for some flights

and the subsequent propagated delays to connecting flights. To partly mitigate the

impact of this uncertainty, FAA exempts long-distance flights from the set of flights

considered in the GDP. This is done by defining a geographical region around the

destination airport (where the GDP is being implemented) and limiting the scope of

this initiative to flights within this area. This modification still suffers from the pitfall

that in case of low realized capacity, the flights within the locally defined area will

get much larger delays as priority is given to the long-haul flights to use the limited

slots. Thus, it should be evident that a optimization-based dynamic approach might

overcome these challenges for the GDP setting.

Even though convective weather en-route and reduced visibility in terminal areas

cause significant disruption, there is a lack of network-wide ATFM optimization tools

that address the stochastic nature of the airspace capacity. In fact, the existing

academic models for network ATFM assume a deterministic estimate on the available

capacities at airports and sectors (airspace elements henceforth). Not accounting for

capacity uncertainty may lead to suboptimal and possibly infeasible solutions. This

state of affairs invites a new mathematical approach that incorporates the uncertainty

inherent in the estimates of the airspace resources to come up with a robust schedule.

Background

There are primarily two approaches in the literature to address decision-making un-

der uncertainty, namely, i) Stochastic Programming ; and ii) Robust Optimization.

Dantzig [19] proposed the approach of stochastic programming which entails gener-

ating scenarios for uncertain data with appropriate probabilities. Unfortunately, this
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approach suffers significantly from the practical difficulty of not knowing the exact

distribution of the data to generate relevant scenarios. Furthermore, it generally

becomes intractable quickly as the number of scenarios increases, thereby posing sub-

stantial computational challenges. In the last two decades, an alternative approach by

the name of robust optimization has been studied to overcome these challenges (see

Bertsimas et al. [16] and the recent book by Ben Tal et al. [2] for extensive literature

review and references). The key idea of robust optimization is to construct appro-

priate uncertainty sets for the uncertain parameters that captures the probabilistic

properties of the problem. The goal subsequently is to construct a solution that is

feasible for all outcomes of the uncertainty set and which optimizes the worst-case

objective. The key advantage of robust optimization is that it presents a tractable

framework to model optimization problems under uncertainty. Specifically, the robust

counterpart of a linear optimization problem (LOP) is still a LOP [16].

Although, robust optimization has been successful in tractably solving many

classes of optimization problems with uncertainty, it may suffer from a pitfall of

the possibility of conservative solutions. This is a consequence of the optimization

over the worst-case realization of the uncertain parameters. This drawback is further

aggravated in multi-stage problems as robust optimization produces a single (static)

solution. Consequently, there is an alternative paradigm for multi-period decision-

making called adaptive optimization wherein decisions are adapted to capture the

progressive information revealed over time. There are two classes of models within

adaptive optimization: i) policy-based full adaptability ; and ii) finite adaptability. The

former class (also referred to as adjustable robust policies) concerns itself with solu-

tions which depend on realizations of the uncertainty in past stages and optimizes the

worst-case objective (see Ben Tal et al. [2] for extensive details). In contrast, finite

adaptability (introduced in Bertsimas and Caramanis [9]) takes the middle ground

between fully-adaptable and the robust (single static) solution and uses a finite num-

ber of possible outcomes for each stage a priori such that at least one outcome is

feasible for each stage. Within the fully-adaptable framework, the most extensively

studied class of policies is affine2 or linear decision rules (LDRs). The success of

affine policies is due to its computational tractability and strong empirical evidence

reported in a variety of application settings. This is further complemented by recent

theoretical results, for instance, Bertsimas et al. [17] show that affine policies are

optimal for two-stage adaptive optimization problem for simplex uncertainty sets.

2Affine policies have been studied extensively in control theory (please refer to survey by Bem-
porad et al. [1] for details).
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Assuming we have a methodology to deal with the two issues (corresponding

modules) outlined above, we now describe our proposal for solving the multi-period

uncertain ATFM problem. Figure 4-3 plots a block diagram of our macro proposal to

incorporate the two modules into actual operations. Each time an ATFM initiative

is sought, the multitude of FAA weather technologies are called upon to provide

information to a central coordinator to model the capacity uncertainties under Module

I. Subsequently, this object is passed on to Module II where in conjunction with

the current flight information and trajectories (as extracted from Flight Schedule

Monitor3), an optimized schedule is realized. This interplay between the two modules

continues every time a new loop of optimization is sought to exploit the progressive

information revealed over time.

4.2 Our Proposal

Our overall strategy to address capacity uncertainty in the network-wide ATFM prob-

lem under the robust and adaptive paradigm consists of two inter-related issues:

• Issue I: Model of weather-induced uncertain capacity. We propose a low-

dimensional uncertainty model (viz., which can be constructed by few underly-

ing parameters) that intuitively captures the dynamics of moving weather fronts.

Normally, the most severe disruptions occur due to the presence of an ongoing

weather front which traverses through some part of the NAS. We believe that

the uncertainty governing the movement of this weather front is dictated by the

uncertainty in the time of arrival, the duration of impact and the reduction in

capacity commensurate with the intensity of the front. The overall uncertainty

model is the result of the impact of a small number of weather fronts moving

across different parts of the NAS. We refer to this model as a weather-front

based approach.

• Issue II: Tractable solution methodologies for the robust and adaptive ATFM

problem. Given the model for capacity uncertainty, we invoke the recent ad-

vances in the theory of robust and adaptive optimization as surveyed earlier

to solve the uncertain ATFM problem. Specifically, we prove the equivalence

of the robust problem to a modified instance of the deterministic problem and

solve the linear relaxation of the adaptive problem using affine policies.

3Flight Schedule Monitor (FSM) is an important FAA tool that creates a common situational
awareness among all users and service providers in the National Airspace System.
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Figure 4-3: Illustration of our overall proposal for solving multi-period ATFM problem
addressing capacity uncertainty.

Preliminaries. In this chapter, vertical vector concatenation is denoted by the

comma (,) operator, e.g., u = (u1, . . . , un) ∈ R
n and v = (v1, . . . , vn) ∈ R

n, then

(u,v) , (u1, . . . , un, v1, . . . , vn). Vectors indexed by a particular time-period are

quite pervasive. Therefore, we refer to vectors specific to time-period t in two ways:

i) including the index in parenthesis, e.g., w(t), or ii) as a subscript, e.g., wt. To refer

to the i-th component of a vector at time t, we always use the parenthesis notation for

time, e.g., wi(t). Moreover, we also work extensively with quantities which depend

on the entire history of available information at a given time t. Therefore, we define,

for any time-varying vector quantity {bt ∈ R
n}t=1,...,T , the following stacked vector

b[t] , (b1,b2, . . . ,bt−1) ∈ R
n×(t−1), which represents measurements available at the

beginning of period t. We use
⊕

to denote polyhedron concatenation. More precisely,

for two polyhedron P1 and P2, P1

⊕
P2 = {(x, y)| x ∈ P1, y ∈ P2}.

4.3 Model of Weather-front Induced Capacity Un-

certainty

In this section, we model capacity uncertainty by considering the impact of a small

number of weather fronts moving across the airspace. An important advantage of

this approach is that a few parameters can be used to capture the dynamics of a

weather-front; thereby, leading to a low-dimensional description of the uncertainty

set.

To motivate our approach, consider a day in which it is expected with high con-

viction that a storm would start during a certain time-period of the day (say, 4 to

6 pm). But, within this two hour interval, it is difficult to predict the exact time

of arrival of storm, and thus it seems prudent to consider uncertainty in the time
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of arrival. Furthermore, the resulting drop in capacity over the planning period is

not known exactly. An overly pessimistic estimate might result in loss of capacity,

whereas, an optimistic estimate might impact the subsequent connections if the ac-

tual reduction is worse. This suggests that there is uncertainty associated with the

intensity of weather disruption. Finally, the last time of the impact of the storm (or

alternatively, the duration of the storm) is not known precisely and should be cap-

tured in the uncertainty set. We believe, that a reasonable set of parameters which

correctly model the dynamics of a weather front are the time of arrival, the duration

and the capacity reduction.

Exact description for single airspace element. Following this discussion, we

next describe the uncertainty set for a single airspace element. The key parameters

of the weather-front affecting an airspace element are:

1. Time of arrival: Ta ∈ {T a, . . . , T a}.

2. Duration: d ∈ {d, . . . , d}.

3. Reduction in capacity: α ∈ {α, . . . , α}.

Subsequently, we use Tb to denote Ta+d (time of revival of the weather-front), which

implies that given the bounds on Ta and d, we have Tb ∈ {T a + d, . . . , T a + d}.

For a particular realization of the three parameters, Ta, d and α, the capacity vector

b can be written as follows:

b = (C, . . . , C, αC, . . . , αC, C, . . . , C),

that is (see also Figure 4-4),

bk =

{

αC, k ∈ {Ta, . . . , Tb},

C, k ∈ T \ {Ta, . . . , Tb}.

Assumption 1. We assume that the value of α is such that αC is an integer. The

reason for this assumption is that the integrality proofs presented in Section 4.4

simplify as a result of this assumption.

We now give a concrete example of the uncertainty set we are trying to model.

Example 4.3.1. Suppose, we have a time-horizon of 5 periods, i.e, T = 5. Moreover,

let Ta ∈ {3, 4}, d ∈ {1, 2}, α ∈ {0.6, 0.8} and C = 30. Then, U =
{
(30, 30, 18, 30, 30),
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Ta Ta + d

C

(1− α)C

αC

Figure 4-4: Depiction of the capacity profile under a weather-front based uncertainty
set for a single affected airspace element. The plot is for a particular realization of
the parameters (Ta, d, α).

(30, 30, 18, 18, 30), (30, 30, 30, 18, 30), (30, 30, 30, 18, 18), (30, 30, 24, 30, 30),

(30, 30, 24, 24, 30), (30, 30, 30, 24, 30), (30, 30, 30, 24, 24)
}
.

To concretely motivate the appropriateness of our proposal for modeling the ca-

pacity uncertainty, we present practical evidence of the applicability of fitting step

functions to actual capacity profiles. Figure 4-5 plots the capacity profiles for two

sectors from data obtained from Lincoln Labs. It should be evident from the plot

that fitting these profiles by step functions is an appropriate approximation. A similar

trend is true across many other sectors.
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Figure 4-5: Illustration of the applicability of step functions to model capacity profiles.
AC denotes actual sector capacity and SF denotes the step function capacity.

Remark 3. Although, we use the parameter set (Ta, d, α) to construct the uncertainty

set, in some regions of the airspace, the parameter Ta may not be uncertain. For

instance, in the SFO (San Fransisco) bay area, it is known with reasonable certainty,

that weather disruptions due to fog will start daily from 5 am. Therefore, in this

case, the uncertainty is only governed by the duration d and capacity reduction α.

Extending to an airspace setting. We now extend the uncertainty set proposed for

a single airspace element to multiple airspace elements. We define a weather front as
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an entity which is independent of all weather disturbances from other fronts. Suppose

we have k weather fronts (denoted by W1,W2, . . . ,Wk) over the course of a day. On

a typical day, k would take a small value (say k = 3, 4). We model the traversal of a

weather front through the day by dividing it into a number of phases, where a phase

transition materializes when the spatial or temporal composition of the front changes

substantially. This approach also leverages air controllers’ human expertize and gives

significant flexibility to the modeler in capturing the subtle details of the entire front

profile. Each weather front Wi is further decomposed into phases: (W1
i , . . . , W

pi
i ),

where pi is the number of phases of the ith weather front. Wj
i captures the snapshot

of the weather front during phase j. In particular, the following details are expected

to be known during each phase:

• Wj
i (S) : set of sectors impacted by the ith weather front during phase j;

• Wj
i (K) : set of airports impacted by the ith weather front during phase j.

Ta1 Tb1

C

(1− α1)C

Ta2 Tb2

C

(1− α2)C

Ta3
Tb3

C

(1− α3)C

Figure 4-6: Traversal of a weather-front across the NAS. It has three phases over the
course of its existence.

Model of weather front propagation. A key distinction between the modeling ap-

proach for a single airspace element and multiple airspace elements is the augmented

set of parameters governing the uncertainty set for the latter case. Specifically, we

introduce another parameter L which captures the lag between the front’s time of

arrival across consecutive phases. During phase I, the parameters (Ta1 , d1, α1) govern

the capacity realizations for W1
i . Subsequently, the lag (denoted by L1) dictates the

set of parameters (Ta2 , d2, α2) of the weather front in phase II, and so on so forth.

This way we model the strong correlation of Ta2 with Ta1 . More generally,

Tak = Tak−1
+ Lk−1 = Ta1 +

k−1∑

j=1

Lj
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We model the uncertainty inherent in Lj in an analogous way as Ta, i.e., Lj ∈

{Lj , . . . , Lj}. Subsequently, the range of possible values for Tak is given by {T ak−1
+

Lk−1, . . . , T ak−1
+ Lk−1}. Note that, even though we use the additional parameter

Lj for front propagation, the eventual description of the uncertainty set is described

completely by (Ta, d, α). But, we emphasize that modeling the propagation with our

proposed way (i.e., using Lj) is quite intuitive and also facilitates developing the

uncertainty intervals in which the parameters lie.

Models

We now formalize the setting in which we intend to solve the robust and adaptive

ATFM problem. Using the discretization T = {1, . . . , T} introduced in the formula-

tion of TFMP (the deterministic ATFM problem), the right-hand side capacity vector

b can be decomposed into time indexed sub-vectors, i.e., it can be written as:

b =
(
b1, . . . ,bT

)
,

where bt has the following description:

bt =
(
bA
t ,b

D
t ,b

S
t

)
.

bA
t ,b

D
t ,b

S
t correspond to the components of bt pertaining to the arrival capacity at

airports, departure capacity at airports and sector capacities, respectively.

• bA
t =

(

A1(t), . . . , A|K|(t)
)

; bD
t =

(

D1(t), . . . , D|K|(t)
)

;

• bS
t =

(

S1(t), . . . , S|S|(t)
)

;

To make the notation clearer, Figure 4-7 depicts the stacked capacity vector (b[t])

and the recourse variables (w(b)):

   

  

t = 1 t = 2 t = 5

b[3] b4

w3(b[3])

Figure 4-7: Explanation of some of the notation (T = 5).
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To make the dependence of time on b explicit, we define the following sub-vector

of bt indexed by time t:

bt =
(
A1(t), . . . , AK(t)) ∪

{
Dk(t) | k ∈ K

}
∪
{
Sj(t) | j ∈ S

}

Before formulating the adaptive problem, we introduce the notation specific to

recourse variables. We use wi(b[i]) to denote the decision variables during period i

which take a functional form of the capacity b[i] (i.e., capacities during time-periods

1, . . . , i− 1).

Multi-stage models. We first present the multi-stage adaptive and robust opti-

mization models (over T periods):

IZAdapt = min
w1,wi(b[i])

[

c′1w1 +max
b∈U

[

c′2w2(b[2]) + · · ·+

max
b∈U

[
c′T−1wT−1(b[T−1]) + max

b∈U
c′TwT (b[T ])

]]
]

s.t.A1w1 +

T∑

i=2

Aiwi(b[i]) ≤ b, ∀b ∈ U , (ΠT
Adapt)

wi(b[i]) ∈ {0, 1}ni.

In the problem ΠT
Adapt, the uncertainty only affects the right-hand side capacity vector

b. The constraint matrices Ai and the cost vectors ci are assumed certain. The only

restriction on the uncertainty set U is that U ⊆ R
n
+ or U ⊆ Z

n
+ (this corresponds

to the requirement of non-negative, possibly integer capacities). The decisions wi in

every time-period i depend on the realizations of the uncertain parameters during the

earlier periods (viz. b[i]). This requirement is known as non-anticipativity, and is a

manifestation of the fact that while making decisions during a particular stage, the

uncertainty realizations of later periods is not known and therefore, cannot be used.

Finally, ni is the number of decision variables in period i. The equivalent robust
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version of the multi-stage adaptive problem is as follows:

IZRob = min
w

T∑

i=1

ciwi

s.t.

T∑

i=1

Aiwi ≤ b, ∀b ∈ U , (ΠRob)

wi ∈ {0, 1}ni.

Let ZAdapt and ZRob denote the objective functions for the linear relaxation of ΠT
Adapt

and ΠRob respectively. Note that any feasible solution of ΠRob is also feasible for

ΠT
Adapt. Hence, IZAdapt ≤ IZRob and this re-emphasizes the benefit of adaptability

for mitigating the possibility of highly conservative robust solutions.

Remark 4. Although, we include the requirement of non-anticipativity in the most

general form in the formulations above (i.e., the decisions wi in every time-period i

depend on the entire history b[i]), it is important to remark that in our application

setting, this is a rather strong requirement. More precisely, since weather propagation

is typically a Markovian phenomenon, it suffices to have wi depend only on bi−1 (viz.,

the capacity realizations in the immediately previous time-period) as opposed to the

entire history b[i]. This has an added advantage of easing the required computational

effort as the optimal recourse policy requires the knowledge of fewer coefficients.

Two-stage models. We now give a special case of the multi-stage model with T = 2.

We divide the variables w into two parts w := ( u
v ).

IZAdapt = min
u,v(b)

c′u+max
b∈U

d′v(b)

s.t. Au+Bv(b) ≤ b, ∀b ∈ U , (Π2
Adapt)

u ∈ {0, 1}n1,v(b) ∈ {0, 1}n−n1.

Note that the problem Π2
Adapt is also referred to as an adjustable robust problem in

the literature (see Ben Tal et al. [2]). n1 corresponds to the number of variables in
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u. The equivalent robust version of the two-stage adaptive problem is as follows:

IZRob = min
u,v

c′u+ d′v

s.t. Au+Bv ≤ b, ∀b ∈ U , (ΠRob)

u ∈ {0, 1}n1,v ∈ {0, 1}n−n1.

Before proceeding further, it would be beneficial to present a qualitative picture of

the relative merits of the robust and adaptive solutions. Figure 4-8 depicts a scenario

comprising of a flight traversing through a reduced capacity segment of the airspace.

Assume that the deterministic capacity estimate is non-zero but the set of possible

capacity scenarios include the zero capacity realization. As a result, the deterministic

route of the flight goes directly through this affected air-segment. In contrast, the

robust route corresponds to ignoring the segment altogether as the worst-case scenario

corresponds to 0 capacity and the robust route needs to be feasible (for all scenarios).

These two extreme possibilities are bridged by the adaptive solution which consists

of multiple paths depending on the exact realization of the uncertain capacity (in

fact, the path might traverse through the segment or miss it depending on the actual

capacity reduction).

Flight

A Reduced Capacity
Segment of the Airspace

Det
Robust
Adaptive

Figure 4-8: Illustration of the characteristics of the deterministic, robust and adaptive
routes of a flight.

4.4 Characterization of Weather-front Induced Un-

certainty Set

We now proceed towards incorporating the discrete uncertainty set introduced in

Section 4.3 within a mathematical programming framework to solve the robust and

adaptive ATFM problems.
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Transitioning from U to conv(U)

Consider the following general optimization problem (OptDU denotes the optimiza-

tion problem under discrete uncertainty set U0):

ZOptDU = min
x

c′x

s.t. Ax ≤ b, ∀b ∈ U0.
(4.1)

Although, the robust equivalent of OptDU is still an LP (with the right-hand side

capacity b replaced by the component-wise minimum vector), the solution methodol-

ogy for the adaptive problem is not straightforward. We need an alternative tractable

line of attack for the case of discrete uncertainty sets. A standard approach to over-

come this hurdle is to work with its convex hull to enable a polyhedral description.

We formalize below the equivalence of solving over a discrete set and over the convex

hull of this set (please refer to Appendix C.1 for the proof).

Proposition 1. Let U0 denote a discrete set. Then, ZOptDU can be calculated as:

ZOptDU = min
x

c′x

s.t. Ax ≤ b, ∀b ∈ conv(U0).
(4.2)

where conv(U0) denotes the convex hull of U0.

We next characterize conv(U) for the discrete uncertainty set introduced in Section

4.3.

Polyhedral description of conv(U)

We use the following auxiliary variables:

yt =







1, if capacity drops by time t,

0, otherwise.

zt =







1, if capacity revives by time t,

0, otherwise.
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The variables yt and zt are defined for t ∈ {T a, . . . , T b}. But, given that the

capacity drop cannot occur after T a and capacity revival cannot occur before T b, we

can set a few variables as parameters at the outset:

• yt = 1, t ∈ {T a, . . . , T b};

• zt = 0, t ∈ {T a, . . . , T b − 1}; zt = 1, t ∈ {T b}

The definition of the auxiliary variables yt and zt as “by” rather than “at” enables a

natural polyhedral description of the capacity profile.

We give a mathematical description of the uncertainty set for the capacity pro-

file as depicted in Figure 4-4. We start by providing a description for a particular

realization of α:

Uα =
{
b ∈ Z

m
+ | bt = C(1− yt) + αCyt + (1− α)Czt, ∀t ∈ {T a, . . . , T b};

bt = C, ∀t ∈ T \ {T a, . . . , T b};

yt ≤ yt+1; zt ≤ zt+1; zt ≤ yt;

yTa
= 1; zT b−1 = 0; zT b

= 1; yt, zt ∈ {0, 1}
}

The three components C(1 − yt), αCyt, (1 − α)Czt comprising bt have the following

semantics:

bt = C(1− yt)
︸ ︷︷ ︸

before drop

+

︸ ︷︷ ︸

after drop

after revival
︷ ︸︸ ︷
before revival
︷ ︸︸ ︷

αCyt +(1− α)Czt

Let |Uα| = K, where K = (T a − T a + 1) × (d − d + 1). The K elements of Uα

are indexed by (i, j) where i ∈ {T a, . . . , T a}, j ∈ {i+ d, . . . , i+ d}. Formally, bi,j is

defined as follows:

bi,jk =







αC, k ∈ {i, . . . , j},

C, k ∈ T \ {i, . . . , j}.
(4.3)

A polyhedral description of conv(Uα). Our goal now is to come up with a poly-

hedral description of conv(Uα). We claim that the following polyhedron is precisely
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conv(Uα):

Pα =
{
b ∈ R

m
+ | bt = C(1− yt) + αCyt + (1− α)Czt, ∀t ∈ {T a, . . . , T b};

bt = C, ∀t ∈ T \ {T a, . . . , T b};

yt ≤ yt+1; zt ≤ zt+1; zt ≤ yt;

yTa
= 1; zT b−1 = 0; zT b

= 1; 0 ≤ yt, zt ≤ 1
}

Remark 5. In the description of Uα and Pα, it is useful to note that if T a < T b, then,

the constraints zt ≤ yt are redundant and hence, can be removed from the polyhedral

description.

Theorem 3. Suppose Assumption 1 holds. Then, Pα is integral and is exactly the

convex hull of Uα, i.e.,

Pα = conv(Uα) (4.4)

Proof. We use a technique to prove integrality of a polyhedron based on random-

ization known as Randomized Rounding (please refer to Chapter 3 of Bertsimas and

Weismantel [15] for details). Let y∗, z∗ be an optimal solution of the following prob-

lem:

ZLO = min
y,z

c′y + d′z

s.t. (y, z) ∈ X .
(4.5)

where X =
{
y, z| yt ≤ yt+1, zt ≤ zt+1, ∀t ∈ {T a, . . . , T b − 1};

zt ≤ yt; 0 ≤ yt, zt ≤ 1, ∀t ∈ {T a, . . . , T b}
}
.

Let ZIP denote the optimal value of the optimization problem above with addi-

tional integrality constraints on yt and zt (i.e., yt, zt ∈ {0, 1}). From y∗, z∗, we create

a new random integer solution (y, z), that is feasible in X . The randomization we use

is as follows: sort the values y∗, z∗ from smallest to largest in the interval [0, 1]. Sub-

sequently, generate a random variable U distributed uniformly in [0, 1]. The rounding
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is then done as follows:

yt =







1, y∗t ≥ U ,

0, y∗t < U .

zt =







1, z∗t ≥ U ,

0, z∗t < U .

Note that the solution produced is clearly feasible because yt ≤ yt+1 and zt ≤ zt+1

is trivially satisfied. Moreover, zt ≤ yt because z∗t ≤ y∗t (the optimal solution is

feasible), and after rounding, zt can never become 1 unless yt becomes 1 (please see

Figure 4-9 for an easy visualization).

0 1

y∗2 is rounded to 0

U uniformly generated between 0 and 1

y∗4 is rounded to 1

z∗3 is rounded to 0 z∗4 is rounded to 1

Uy∗1 y∗2 y∗3 y∗4

z∗1 z∗2 z∗3 z∗4

Figure 4-9: Illustration of the geometry of the randomized rounding algorithm for
proving the integrality of polyhedron X . y∗, z∗ satisfy y∗t ≤ y∗t+1, z

∗
t ≤ z∗t+1 and

z∗t ≤ y∗t .

Let ZH be the value of the solution produced. The expected value of the solution

is:

E[ZH] =
∑

t∈{T a,...,T b}

ctP(yt = 1) + dtP(zt = 1)

=
∑

t∈{T a,...,T b}

ctP(y
∗
t ≤ U) + dtP(z

∗
t ≤ U)

=
∑

t∈{T a,...,T b}

cty
∗
t + dtz

∗
t

= ZLO,

and thus ZIP = ZLO. Since, c and d are arbitrary, the polyhedron X is integral. This

implies that Pα is integral.
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The overall uncertainty set for the capacity profile as depicted in Figure 4-4 is as

follows:

U =




⋃

α∈{α,...,α}

Uα





A polyhedral description of conv(U). We show that Pα is precisely conv(U). For

this, we need the following intermediate result:

Theorem 4.

conv(U) = conv(Uα) (4.6)

Proof. Note the following relation,

⋃

α∈{α,...,α}

conv(Uα) ⊆ conv
( ⋃

α∈{α,...,α}

Uα

)

= conv(U)

In particular, for α = α,

conv(Uα) ⊆ conv(U) (4.7)

Next, we show that U ⊆ conv(Uα) by using the equivalence of conv(Uα) and Pα from

Theorem 3. For a particular value of α, let bi,j ∈ Uα. Consider the following4:

yk =







0, if k ∈
{
T a, . . . , T a + i− 1

}
,

1−α
1−α

, if k ∈
{
T a + i, . . . ,min(T a − 1, T a + j − 1)

}
,

1, otherwise.

4The reason for the complicated indexing is that y
Ta

is set to 1 in the polyhedral description Pα.
Therefore, the definitions of yk and zk need to account for whether the capacity drop occurs before
or after T a. Hence, the need for min(T a − 1, T

a
+ j − 1).

113



zk =







0, if k ∈
{
T a, . . . ,min(T a − 1, T a + j − 1)

}
,

α−α

1−α
, if k ∈

{
min(T a, T a + j), . . . , T a + j − 1

}
,

1, otherwise.

Using these yk and zk, we expand bk using the definition of an element in Pα (note

that the definitions of yk and zk imply yk ≤ yk+1, zk ≤ zk+1 and zk ≤ yk):

bk = C(1− yk) + αCyk + (1− α)Czk

for all possible combinations of yk and zk over the various indices as shown below:

bk =







C + 0 + 0 = C, if k ∈
{
T a, . . . , T a + i− 1

}
,

(
α−α

1−α

)
C + α

(
1−α
1−α

)
C + 0 = αC, if k ∈

{
T a + i, . . . ,

min(T a − 1, T a + j − 1)
}
,

0 + αC + (1− α)
(
α−α

1−α

)
C = αC, if k ∈

{
min(T a, T a + j), . . . ,

T a + j − 1
}
,

0 + αC + (1− α)C = C, if k ∈
{
T a + j, . . . , T b

}
.

(4.8)

But, (4.8) has exactly the form of (4.3), the element bi,j ∈ Uα. Hence, bi,j ∈ Pα.

This implies Uα ⊆ Pα. Since α is arbitrary, therefore,

U ⊆ Pα = conv(Uα)
︸ ︷︷ ︸

Using Theorem 3

Thus, conv(Uα) is a convex set (a polyhedron). This implies that all convex combi-

nations of the set U belongs to conv(Uα). Hence,

conv(U) ⊆ conv(Uα) (4.9)
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The proposition subsequently follows from (4.7) and (4.9).

We now have the equipment to state the main theorem of this section:

Theorem 5.

Pα = conv(U) (4.10)

Proof. The proof follows trivially from Theorem 3 and Theorem 4.

Note that only α is needed to characterize conv(U). This implies that only two

parameters Ta and d govern the uncertainty set for each airspace element. Let Pe
αij

denote the uncertain realizations for airspace element e (where airspace element e

belongs to the set of airspace elements affected by weather front i during phase j).

The overall uncertainty set spanning all airspace elements is given by (please refer to

Preliminaries in the Introduction for the meaning of the notation
⊕

):

Poverall =
⊕

i=1,...,k,j=1,...,pi,

e∈Wj
i (S)∪W

j
i (K)

Pe
αij

Note that the total number of uncertain parameters in the weather-front based

modeling approach is 2 ∗ k ∗P , where k is the number of weather fronts and P is the

maximum number of phases across all weather fronts.

4.5 Solution Methodologies

In this section, we propose solution approaches for the robust and adaptive versions

of the TFMP problem under the uncertainty sets constructed in Section 4.4.

Robust TFMP

We explicitly characterize an equivalent form of the robust TFMP problem as a

specific instance of the deterministic TFMP problem for an arbitrary uncertainty

set. First, we introduce a definition on the component-wise minimum capacity vector

relative to an uncertainty set to facilitate our proofs.

Definition 4.5.1. bmin = (b1, b2, . . . , bm), where bi = min
{
bi| b ∈ U

}
.
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Theorem 6. For an arbitrary uncertainty set U for the right hand side capacity, the

robust problem is equivalent to solving the following modified TFMP instance:

min
w

c′w

s.t. Aw ≤ bmin,

w ∈ {0, 1}n.

(4.11)

Proof. We show the equivalence of the set of feasible solutions of the robust model

(denoted by W) with the instance of TFMP where the right-hand side is bmin (de-

noted by W). Specifically, W =
{
w ∈ {0, 1}n|Aw ≤ b, b ∈ U

}
and W =

{
w ∈

{0, 1}n|Aw ≤ bmin

}
.

Suppose w ∈ W, then for the ith constraint, we have:

a′
iw ≤ bi, ∀b ∈ U ,

⇒ a′
iw ≤ min

b∈U
bi = bi. (4.12)

Since i is arbitrary, (4.12) further implies the following:

a′
iw ≤ min

b∈U
bi, i = 1, . . . , m,

⇒Aw ≤ bmin,

⇒w ∈ W. (4.13)

Suppose w ∈ W, then by definition of bmin:

bmin ≤ b, ∀b ∈ U ,

⇒Aw ≤ b, ∀b ∈ U ,

⇒w ∈ W. (4.14)

From (4.13) and (4.14), we have W = W . The proposition subsequently follows,

as the set of feasible solutions of the two problems and the objective function being

minimized is exactly the same.
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Since TFMP is efficiently solvable in practice and has strong integrality properties,

Theorem 6 suggests that the robust problem is no harder to solve than TFMP. Con-

sequently, it is expected to be computationally efficient and have majority of the

solutions from the linear relaxation integral. We report extensive computational re-

sults in Section 4.6 which will validate this remark.

Adaptive TFMP

In this section, we utilize affine policies to solve the linear relaxation of the adaptive

problem. The adaptive problem with affine recourse enforced a priori becomes as

follows:

IZAdapt = min
w1,Pi,qi

[

c′1w1 +max
b∈U

[

c′2(P2b+ q2) + · · ·+

max
b∈U

[
c′T−1(PT−1b+ qT−1) + max

b∈U
c′T (PTb+ qT )

]]
]

s.t.A1w1 +
T∑

i=2

Ai(Pib+ qi) ≤ b, ∀b ∈ U , (ΠT
Adapt)

0 ≤ Pib+ qi ≤ 1

Pi ∈ R
n
+,qi ∈ R

ni
+ .

The above formulation can be converted to a single linear program (the exact de-

scription for a two-stage adaptive problem is given in Appendix C.2). Although, we

enforce affine recourse in the adaptive problem, it is not always optimal. As a result,

we now explicitly characterize the cases when an affine policy is optimal. The key

property which governs this is the number of extreme points in the uncertainty set

(relative of m).

Characterizing the Optimality of Affine Policies

Bertsimas and Goyal [18] study the two-stage adaptive optimization problem Π2
Adapt

and prove the optimality of affine policy for a simplex5 uncertainty set. Since, the

TFMP problem is inherently a multi-period problem, it is appropriate that we extend

5A simplex is a set which is generated by m + 1 extreme points, where m is the number of
constraints.
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the result for multiple periods as done below (please refer to Appendix C.2 for the

proof):

Theorem 7. Consider the problem ΠT
Adapt(U) such that U is a simplex. Then, there

is an optimal multi-stage solution ŵi(b) such that ŵi(b) are affine functions of b,

i.e., for all b ∈ U ,

ŵi(b) = Pib+ qi, (4.15)

where Pi ∈ R
ni×m, qi ∈ R

ni.

Figure 4-10 shows two examples of uncertainty sets (in R
2) and classifies cases

where an affine policy is optimal. On the left is a simplex uncertainty set for which

an affine policy is optimal. In contrast, the right side shows a a polyhedron with

more than 3 extreme points for which a piece-wise affine policy (with three pieces) is

optimal.
One piece of the optimal
piece-wise affine policy

corresponds to this simplex
An affine policy is optimal

for this simplex

Figure 4-10: Left: A simplex uncertainty set in R
2. Right: A polyhedral set in R

2

broken into three simplices.

Remark 6. Although, the number of extreme points in the uncertainty set governs

the cases when an affine recourse is optimal, they do not have any impact on the

computational performance of both the robust and adaptive models. This is because

the robust model is simply solving another deterministic instance, whereas the adap-

tive problem becomes an equivalent LP whose size is independent of the number of

extreme points.

4.6 Computational Results

In this section, we report numerical results from the solution approaches introduced

in Section 4.5.
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Data and Setup

We utilize a national-scale database of real flight delays data over the past few years

(also used for the fairness and collaboration chapters) to present proof-of-concept of

the usefulness of the optimization methodologies proposed in this chapter.

The basic setup of the airspace is exactly the same as used in the fairness chapter.

In addition, the entire airspace is subsequently divided into three regions, namely,

north-east, south-west and central. Each of these regions is then subjected to sim-

ulated weather-fronts. The time of arrival, duration and capacity reduction of each

weather-front is generated randomly from appropriate intervals. This enables the con-

struction of uncertainty sets with varying magnitude of extreme points to study the

implications on the complexity of solving the robust and adaptive problems and the

corresponding price. Finally, the capacity inputs used for all the instances are at the

“infeasibility border”, i.e., values which when perturbed slightly on the conservative

side lead to infeasibility of the overall problem.

Figure 4-11 plots the flight traffic (departures and arrivals). The left plot shows

the aggregate demand as a function of time of day whereas the right plot is as a

function of airport of operation. As expected, the distribution across airports is quite

non-uniform as there are considerably more operations at hub airports.
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Figure 4-11: Flight traffic (departures and arrivals) as a) a function of time of day
(Left); and b) a function of airport (Right).

To solve the robust and adaptive models (which use various uncertainty sets), we

use a new tool for robust optimization - Robust Optimization Made Easy (ROME)

[24]. We use the same tool to compute optimal solutions for the deterministic prob-

lem. ROME is a MATLAB-based algebraic toolbox which solves robust optimization

problems in its full generality and provides support for adaptive routines by imple-

menting affine policies.
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Before undertaking an extensive set of computational experiments, we now put

forth the following questions we wish to answer:

1. Are the running times obtained suitable for practical deployment?

2. How favorable are the integrality properties of the robust and adaptive solu-

tions?

3. What is the price for incorporating robustness and adaptability?

4. How different are the robust and adaptive schedules compared to the determin-

istic counterpart (in terms of the resulting flight sequences)?

Results and Discussion

Table 4.1 reports the performance of the robust model. The running times reported

in the table correspond to both the solver time and the ROME input parsing time

(which accounts for majority of the total time). The integrality properties of the

robust equivalent closely mimics the deterministic version which is known to have

strong integrality properties (as evidenced by the fact that in all cases the % non-

integral solutions is less than 1%). Furthermore, the running times for the robust

model compares favorably with the deterministic counterpart.

Characteristics of Robust Schedules. To study the nature of robust schedules,

we define two quantities which qualitatively govern the factors impacting the price

of robustness and the deviation in the robust schedule (relative to the deterministic

counterpart). The first is the percentage capacity reduction in the capacity vector

used to solve the robust problem (viz. bmin) relative to the deterministic capacity

estimate bdet (mathematically, this is 100 ∗ e′(bdet−bmin)
e′bdet

and will be denoted by CRed

henceforth). This quantity is expected to govern the price of robustness in that

higher the reduction, higher is the objective cost for the robust problem (ZRob →

∞ as bmin → 0). The second quantity (somewhat correlated with the first one)

is the difference in the deterministic and robust flight schedules. It is defined as

e′(aDet − aRob) where the vector a consists of the time of arrival of all flights at its

destination airport (Det corresponds to deterministic and Rob to the robust problem).

Figure 4-12 plots the price of robustness (POR) and schedule deviation (SD) as a

function of CRed. The key insight from the plot is that when bmin is “close” to the

deterministic capacity, both metrics POR and SD are small. Furthermore, the price

of robustness and schedule deviation follow an approximately linear relationship with
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Deterministic Robust

Region Cost Time Cost Time % Nonint
(# of Flights) (sec.) (sec.)

208 378 229 407 0
North-East 227 515 230 643 0
(500-1000) 145 636 161.5 638 0.15

281 466 281 533 0
935 4839 971.5 4721 0

650 1996 677 1984 0
Central 193 103 193 95 0
(500-1000) 647 1770 675 1779 0

935 4685 1013 4607 0
240 401 248 402 0.10

642 1937 647 1977 0
South-West 137 578 144 566 0.10
(500-1000) 208 358 208 387 0

51 105 52 103 0
935 4540 1044 4713 0

Table 4.1: Computational Experience with Π2.
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CRed (the “goodness of fit” measure R2 is greater than 0.8 for all plots which implies

statistical significance). The results validate our intuitive expectation.
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Figure 4-12: Characteristics of Robust Solutions. Left: Price of robustness as a
function of capacity reduction. Right: Schedule deviation as a function of capacity
reduction. The red line corresponds to the best linear fit.

While the preceding discussion sheds light on the relation between the determin-

istic and robust schedules, the price of robustness depicted in Figure 4-12 does not

paint the complete picture. The reason being that the deterministic solution would

most likely not even be feasible for a particular scenario of the uncertainty set, and so

POR is not really the price the decision-maker has to pay for achieving robustness.

Therefore, to better assess the utility of robust schedules, we propose the following

thought experiment: we fix a particular scenario from the uncertainty set and use this

as the actual capacity profile that materialized (we use the scenarios corresponding

to α = α, α+α

2
and α). Subsequently, we construct a feasible schedule (starting from

the optimal deterministic solution) by protracting flight arrivals as and when capacity

becomes available. The delays so obtained for the new deterministic schedule enable

a more apt comparison with the robust schedule (which is guaranteed to be feasi-

ble for this capacity realization). Figure 4-13 plots the results of this exercise. The

important takeaways are: i) robust schedules come at a small cost (as evidenced by

the closeness of the red line to the 45 degree blue line); and ii) the cost of the pro-

tracted deterministic solution (corresponding to a scenario from the uncertainty set)

is higher (sometimes substantially) than the robust solution in most cases, thereby,

emphasizing the utility of deterministic schedules.

Characteristics of Adaptive Schedules. Table 4.3 reports solutions for the adap-

tive problem across a random set of instances. The worst-case adaptive cost (min-max

objective) is the same as the robust cost in all cases. But, to demonstrate the utility of
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Figure 4-13: Utility of Robust Solutions. The plot depicts the relation between robust
and new deterministic cost (for the protracted feasible schedule) for different scenarios
of the uncertainty set.

Capacity Scenario Best Linear Fit R2

α = α y = 0.80x + 11.61 0.92

α = α+α

2
y = 0.89x + 8.02 0.94

α = α y = 0.93x + 6.89 0.95

Table 4.2: Utility of Robust Solutions: Best fit lines.
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adaptive solutions, we implement the adaptive solution on a rolling horizon basis. We

implement the first-stage decisions of the optimal adaptive solution. Subsequently,

we fix a scenario from the uncertainty set (corresponding to α = α+α

2
) and use this as

the actual capacity profile that materialized. Finally, we re-optimize the second-stage

decisions using this capacity scenario as deterministic input and refer to the aggregate

cost as “Adjusted”. The first observation pertaining to the adaptive schedules is the

viability of generating integral first-stage variables (while enforcing affine dependence

of the recourse variables). Some of other remarks are as follows:

• The results for adaptive problem indicate that in terms of running times, adap-

tive is quite expensive compared to the robust model (this is expected as the

transformed LOP for the adaptive problem is of a much larger size).

• In all cases, the (worst-case) adaptive cost is exactly the same as the robust

cost. But, the (“adjusted”) cost obtained by re-optimizing over the intermediate

realization of the uncertainty set leads to improvements in the cost.

Robust Adaptive

Region Cost Time Cost Time

(# of Flights) (sec.) Worst-case Adjusted (sec.)

92 84 92 84 265
North-East 119 73 119 110 491
(300-500) 54 55 54 48 369

112 127 112 109 326

87 43 87 83 813
Central 125 34 125 120 287
(300-500) 86 98 86 80 257

35 63 35 33 382

75 86 75 72 250
South-West 42 87 42 35 431
(300-500) 123 133 123 120 519

99 106 99 95 294

Table 4.3: Computational Experience with Π6.

Finally, Figure 4-14 plots the box plots of the running times for the robust and

adaptive problems.
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Figure 4-14: Running times for i) deterministic and robust problems (Left); and ii)
adaptive problem (Right). C denotes CPLEX solver time and T denotes Total time
(including ROME parsing time).

4.7 Conclusions

This chapter presents a framework for solving network air traffic flow management

problems in a stochastic setting under the robust and adaptive optimization paradigm.

To address uncertainty, we introduce a new weather-front based approach to construct

the uncertainty set of possible capacity realizations. The key benefits of this approach

are the low-dimensionality of the resulting discrete sets (as uncertainty in only two

parameters govern the uncertainty set for each airspace element) and the intuitive

appeal in the modeling approach. We propose a polyhedral description of the convex

hull of the discrete uncertainty set to formulate the stochastic ATFM problem mean-

ingfully. Subsequently, we formulate robust and adaptive optimization equivalent of

the deterministic problem and propose tractable solution methodologies. We prove

the equivalence of the robust problem to a new instance of the deterministic problem.

For the adaptive counterpart, we utilize affine policies to solve the linear relaxation.

Extensive empirical results highlight the utility of robust and adaptive solutions.
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Chapter 5

Conclusion

In this chapter, we summarize the overall contributions of the thesis and point out

directions for future research.

5.1 Thesis Summary

Our aspiration in this dissertation was to propose a tractable optimization framework

which can provide decision engines to control air traffic while addressing the practical

issues of equity, collaboration amongst airlines and capacity uncertainty. In doing

so, we tried to adhere to the CDM philosophy (the governing set of principles for all

ATM initiatives), which is to involve airlines at every step of the planning process.

More precisely, we attacked three critical issues in ATFM research, namely:

1. Fairness. We introduced different notions of fairness, namely i) FSFS fairness

- controlling number of reversals and total amount of overtaking; ii) Propor-

tional fairness - equalizing airline delays; and iii) a combination of the FSFS

and Proportional fairness paradigms in the ATFM problem. The FSFS fairness

paradigm, in particular, is intuitively appealing as it represents the next best

alternative to RBS (the currently agreed upon and implemented principle). We

reported extensive empirical results of the proposed optimization models on

national-scale, real world datasets that showed interesting tradeoffs between

fairness and efficiency. The important takeaways were the possibility of gener-

ating schedules with single-digit reversals and overtaking (close to RBS) for less

than 10% increase in the delay costs. Finally, computational times were less

than 30 minutes which are encouraging for real-time deployment.
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2. Airline Collaboration. Subsequently, we allowed for further collaboration

amongst airlines by proposing network models for slot reallocation. This was a

generalization of the intra-airline substitution phase of the current CDM prac-

tice to inter-airline reallocation across multiple airports. A structure of airline

offers called AMAL (at-most, at-least) offers were used as data input. The at-

tractive features of this input was the simplicity of offer structure which still

made possible multiple combinations of feasible trades. Based on this data, two

models were developed for slot reallocation flexibility. Finally, we reported on

case studies which highlighted the considerable improvements in the internal

objective functions of the airlines as a result of this flexibility. Both models

were fast (solving to optimality in seconds), thereby being suited for real-time

deployment.

3. Capacity Uncertainty. We addressed the issue of capacity uncertainty by

studying the first application of the robust and adaptive optimization paradigm

to the deterministic ATFM problem. We developed a weather-front based ap-

proach to model the uncertainty inherent in airspace capacity estimates result-

ing from the impact of a small number of weather fronts moving across the

National Airspace (NAS). The key advantage of our uncertainty set construc-

tion was its low-dimensionality (uncertainty in only two parameters govern the

overall uncertainty set for each airspace element). We proved that the result-

ing robust ATFM problem is just another deterministic instance. The adaptive

problem, in contrast, was solved using affine policies. We reported extensive

empirical results from the proposed models on real-world flight schedules aug-

mented with simulated weather fronts that demonstrated interesting tradeoffs

between deterministic, robust and adaptive solutions.

5.2 Directions for Future Research

We conclude by providing some directions for future research which builds upon the

research done in this thesis.

1. ATFM Problems. First and foremost, within the ATFM context, there still

remain important challenges and opportunities from a research standpoint.

• Robust ATFM Problem under Capacity Uncertainty. In this the-

sis, we showed that the robust ATFM problem corresponds to solving a new
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instance of the deterministic problem with the component-wise minimum

capacity vector. A consequence of this result is that the robust problem

may suffer from the possibility of over-conservative schedules. Therefore,

to mitigate this, we need robust models that incorporate budgets of uncer-

tainty on the simultaneous realizations of worst-case capacity for different

weather-fronts. This problem potentially has ramifications for a generic

tractable robust model under right hand side uncertainty.

• Rerouting under Stochastic Capacity. Although, we design a new

framework for the ATFM problem under capacity uncertainty by invok-

ing the robust and adaptive paradigm, the added complication of rerout-

ing deserves more focused attention. In particular, there is a significant

tractability challenge in addressing rerouting in the presence of capacity

uncertainty. Therefore, a model which outputs different rerouting plans

for various capacity realizations would be immensely appealing from a

controller standpoint.

• Market Mechanisms facilitating Airline Collaboration. Even though

this thesis proposes models for slot reallocation by allowing airlines to pro-

pose offers to trade slots at different airports, there still remains opportu-

nities for more complex models which mimic trading just as in a financial

marketplace. Thus, there is the opportunity for a more generalized model

which involves side-payments for giving up slots voluntarily and allows for

more sophisticated airline input.

2. Robust and Adaptive Optimization. Robust and Adaptive Optimization

has been successful in presenting an alternative tractable paradigm for decision-

making under uncertainty. There has been prolific research over the past decade

on the theoretical foundations as well as in its application to a diverse set

of problems. Nonetheless, there still remain challenges which deserve focused

research attention.

• Robust Optimization under Discrete Uncertainty Sets. The ATFM

problem under capacity uncertainty has to account for the discreteness of

the possible capacity estimates. This extends itself to the opportunity

for developing a generic tractable robust model under discrete uncertainty

sets.

• Complexity of Recourse Policies for Adaptive Optimization. It

would be appropriate to characterize the complexity of solving the prob-
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lems resulting from using a particular class of recourse (for example, affine,

polynomial, etc.). This would classify certain problems as being intrinsi-

cally intractable compared to those for which polynomial time algorithms

can be designed.
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Appendix A

Fairness Models

A.1 Strength of TFMP-Reversal

Let us denote the polyhedron induced by the the additional set of constraints to

model a reversal for each element (f, f ′) ∈ Rj as PReversal(f, f
′, j).

Proposition 2. The polyhedron PReversal(f, f
′, j) is integral.

Proof. PReversal(f, f
′, j) can be written as follows:

PReversal(f, f
′, j) =

{

x = (wf
j,t, sf,f ′,j)| 0 ≤ wf

j,t ≤ 1, 0 ≤ sf,f ′,j ≤ 1,

wf ′

j,t − wf
j,t − sf,f ′,j ≤ 0, t ∈ T reversal

f,f ′,j ,

wf
j,t − wf ′

j,t + sf,f ′,j ≤ 1, t ∈ T reversal
f,f ′,j .

}

We make use of the following two facts from discrete optimization [15]:

Fact 1. Let A be an integral matrix. A is totally unimodular if and only if

{x| a ≤ Ax ≤ b, l ≤ x ≤ u} is integral, for all integral vectors a, b, l, u.

Fact 2. A matrix A is totally unimodular if and only if each collection Q of rows of

A can be partitioned into two parts so that the sum of the rows in one part minus the

sum of the rows in the other part is a vector with entries only 0, +1 and -1.

Consider the following polyhedron P and let A be the matrix such that P =
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{x|Ax ≤ b}:

P =
{

x = (wf
j,t, sf,f ′,j)|

wf ′

j,t − wf
j,t − sf,f ′,j ≤ 0, t ∈ T reversal

f,f ′,j ,

wf
j,t − wf ′

j,t + sf,f ′,j ≤ 1, t ∈ T reversal
f,f ′,j .

}

A =























1 −1 0 0 0 · · · · · · 0 −1

−1 1 0 0 0 · · · · · · 0 1

0 0 1 −1 0 · · · · · · 0 −1

0 0 −1 1 0 · · · · · · 0 1
...

...
. . .

. . .
. . .

. . .
...

... −1
...

...
. . .

. . .
. . .

. . .
...

... 1

0 0 · · · · · · 0 0 1 −1 −1

0 0 · · · · · · 0 0 −1 1 1























The matrixA has a special structure. If we remove the last column, the remaining

matrix is a network matrix.

Let B1,B2, . . . ,Bn be consecutive blocks of two rows of A each, i.e., block Bk

contains the rows 2k−1 and 2k. For any collectionQ of rows of the matrixA, we show

how to partition it into two parts J1 and J2 so that the sum of the rows in J1 minus

sum of the rows in J2 is a vector with entries 0, +1 and -1 only. Suppose Q contains

both the rows of some block Bi, then, put both these rows in J1. The remaining rows

(say m) in Q then come from different blocks, call them Rj1,Rj2, . . . ,Rjm. These m

rows are partitioned as follows:

Let Q+ be the subset of these m rows where the last element is +1 and Q− be

those rows where the last element is -1. Then, put ⌈ |Q+|
2

⌉ rows of Q+ in J1 and the

remaining rows in J2. Similarly, put ⌈ |Q−|
2

⌉ rows of Q− in J1 and the remaining rows

in J2. Since the sum of two rows in the same block is all zeroes, all such blocks in J1

do not affect the sum of all the rows in J1. Let J̃ denote the vector resulting from

the sum of the rows in J1 minus the sum of the rows in J2. All the elements except
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the last one in J̃ is exactly 0, +1 or -1 because of the structure of the matrix A. The

contribution of the rows from Q+ to the last element of J̃ is either 0 or +1. Similarly,

the contribution of the rows from Q− to the last element of J̃ is either -1 or 0. This

implies that the last element of J̃ which is the sum of these two contributions can

only be +1, −1 or 0.

This shows that the matrix A is totally unimodular. Using Fact 1, we conclude

that PReversal(f, f
′, j) is integral.
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Appendix B

Airline Collaboration

B.1 Strength of Slot Reallocation Models

We analyze the polyhedral structure of the two network formulations, namely, TFMP-

Trading-VB and TFMP-Trading-BG. Let IPV B and IPBG denote the set of all feasible

binary vectors in the two formulations respectively. Moreover, let PV B and PBG

denote the polyhedra induced by the LP relaxations of the two models respectively.

Let us denote the decision space of the two models by u and v respectively, u =

(wf
j,t, odd′uu′, xik, zik) and v = (wf

j,t, odd′uu′). Note that v ⊆ u. Let A and D be

the constraint matrices of the two formulations respectively and let b and d be the

right-hand vectors.

The polyhedra PV B and PBG can be written as follows:

PV B = {u = (wf
j,t, odd′uu′, xik, zik)| 0 ≤ wf

j,t ≤ 1, 0 ≤ odd′uu′ ≤ 1,

0 ≤ xik ≤ 1, 0 ≤ zik ≤ 1, Au ≤ b}

PBG = {v = (wf
j,t, odd′uu′)| 0 ≤ wf

j,t ≤ 1, 0 ≤ odd′uu′ ≤ 1,Dv ≤ d}

The set of all feasible binary vectors in the two polyhedra (denoted by IPV B and

IPBG) can be written as follows:

IPV B = {u ∈ {0, 1}n| Au ≤ b}

IPBG = {v ∈ {0, 1}n| Dv ≤ d}
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Let πv(PV B) be the projection of the polyhedron PV B onto the v space. Moreover,

let πv(IPV B) be the projection of the set IPV B onto the v space. We need to answer

the following questions:

1. Are the polyhedra PV B and PBG integral?

2. Is πv(PV B) = PBG?

3. Is πv(IPV B) = IPBG?

4. Are the two formulations equivalent?

Since the capacity and connectivity constraints are common to both formulations,

they don’t matter in the analysis.

Proposition 3. The polyhedra PV B and PBG are not integral.

Proof. We provide the following counter-example: there are two flights departing

from a single-airport. The data of the problem is: F = {f1, f2}, K = {a}, T =

{1, 2, 3}, O = {o1}, C = ∅. The capacities are: D(1) = D(2) = D(3) = 1. The

slot assignment from Stage I is Df1 = 1, Df2 = 3 and the submitted offer to trade is

o1 = {f1, 2; f2, 2}.

Non-integrality of PV B:

The decision variables are: x = (w1
a,1, w

1
a,2, w

1
a,3, w

2
a,1, w

2
a,2, w

2
a,3, x11,

x12 x21, x22, z11, z12, z21, z22, o1). Letting bineq = (1, 1, 1, 0, 0, 0, 0, 0, 0) and beq =

(1, 1, 0, 0, 0, 0, 0, 0), the feasible space can be written as Aineqx ≤ bineq, Aeqx = beq.

We omit the description of Aineq and Aeq for brevity. The objective function min:

w1
a,1 + w1

a,2 + w1
a,3 + w2

a,1 + w2
a,2 + w2

a,3 + 2o1 gives an optimal solution of w1
a,1 =

0.4179, w1
a,2 = 1, w1

a,3 = 1, w2
a,1 = 0, w2

a,2 = 0.4179, w2
a,3 = 1, x11 = 0.4179, x12 =

0.5821, x21 = 0.4179, x22 = 0.5821, z11 = 0, z12 = 0, z21 = 0, z22 = 0, o1 = 0.5821,

which shows that the polyhedron PV B is not integral.

Non-integrality of PBG:

The decision variables are: x = (w1
a,1, w

1
a,2, w

1
a,3, w

2
a,1, w

2
a,2, w

2
a,3, o1). The resulting

formulation (TFMP-Trading-BG) is:

w1
a,1+w2

a,1 ≤ 1; w1
a,2−w1

a,1+w2
a,2−w2

a,1 ≤ 1; w1
a,3−w1

a,2+w2
a,3−w2

a,2 ≤ 1; w1
a,1−w1

a,2 ≤
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0; w1
a,2 − w1

a,3 ≤ 0; w2
a,1 − w2

a,2 ≤ 0; w2
a,2 − w2

a,3 ≤ 0; o1 − w1
a,2 ≤ 0; o1 − w2

a,3 ≤

0; −o1 − w1
a,1 ≤ −1; −o1 − w2

a,3 + w2
a,2 ≤ −1.

Letting b = (1, 1, 1, 0, 0, 0, 0, 0, 0,−1,−1), and

A =
































1 0 0 1 0 0 0

−1 1 0 −1 1 0 0

0 −1 1 0 −1 1 0

1 −1 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 1 −1 0

0 −1 0 0 0 0 1

0 0 0 0 −1 0 1

−1 0 0 0 0 0 −1

0 0 0 0 1 −1 −1
































the feasible space can be written as Ax ≤ b.

The objective function min: w1
a,1 + w1

a,2 + w1
a,3 + w2

a,1 + w2
a,2 + w2

a,3 + o1 gives an

optimal solution of w1
a,1 = 1/2, w1

a,2 = 1/2, w1
a,3 = 1/2, w2

a,1 = 0, w2
a,2 = 1/2, w2

a,3 =

1, o1 = 1/2 which shows that the polyhedron PBG is not integral.

B.2 Integer Equivalence of Slot Trading Models

Proposition 4. πv(IPV B) = IPBG.

Proof. Claim 1. IPBG ⊆ πv(IPV B). Let ṽ ∈ IPBG, we will construct a vector

ũ ∈ IPV B such that πv(ũ) = ṽ.

For each flight fi ∈ F , there are exactly two possibilities: either i) no trade will get

executed, or ii) exactly one trade will be executed. Let ũi ⊆ ũ and ṽi ⊆ ṽ denote the

subsets of the respective decision spaces that contain variables corresponding to flight

fi. Under both scenarios, we construct a vector ũi ∈ IPV B such that πv(ũi) = ṽi.

In case, no trade is executed (i.e., õj = 0, ∀j ∈ Ofi), then constraint (3.2d) implies

that w̃fi
destfi ,Dfi

= 1 and w̃fi
destfi ,Dfi

−1 = 0. Constraints (3.1d) and (3.1e) further imply
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that x̃ik = 0, ∀k 6= pi. This makes x̃ipi = 1 because of constraint (3.1a). From

constraint (3.3), this implies w̃fi
destfi ,Dfi

= 1 and w̃fi
destfi ,Dfi

−1 = 0. Putting z̃ik = 0, ∀k

makes constraints (3.1b) and (3.1c) feasible and hence, the constructed vector ũi is

feasible for TFMP-Trading-VB. In case, exactly one trade is executed (i.e., ∃s ∈ Ofi

such that õs = 1 and õr = 0, ∀r 6= s), then constraints (3.1d) and (3.1e) imply that

∃l 6= pi such that x̃il = 1. This makes x̃ipi = 0 (from constraint (3.1a)). Again, putting

z̃ik = 0, ∀k makes constraints (3.1b) and (3.1c) feasible and hence, the constructed

vector ũi is feasible for TFMP-Trading-VB.

Claim 2. πv(IPV B) ⊆ IPBG.

Now, let ũ = (w̃f
j,t, õdd′uu′, x̃ik, z̃ik) ∈ IPV B. We will show that ṽ = πv(ũ) ∈

IPBG. Suppose for a flight fi, x̃ipi = 1. Then, constraint (3.3) implies w̃fi
destfi ,Dfi

= 1

and w̃fi
destfi ,Dfi

−1 = 0 and constraints (3.1d) and (3.1e) imply that õj = 0, ∀j ∈

Ofi (because x̃ik = 0, ∀k 6= pi from constraint (3.1a)). This satisfies all constraints

of TFMP-Trading-BG. On the contrary, if ∃k 6= pi such that x̃ik = 1, then from

constraints (3.1d) and (3.1e), there exists an offer containing flight fi that will be

executed. This satisfies constraints (3.2c) and (3.2d), and constraints (3.2a) and

(3.2b) are also satisfied because of the structure of the network flow constraints.

From the claims above, it follows that πv(IPV B) = IPBG.

Since the set of feasible binary vectors of the two formulations is the same, this

implies that the optimal objective function value (as long as it is a function of the

variables odd′uu′) will be the same. This fact corroborates the exact same number of

trades executed from the two models as reported in the computational results section.

Proposition 5. πv(PV B) 6= PBG.

Proof. Claim 1. PBG 6⊆ πv(PV B). Let ṽ = (w̃f
j,t, õdd′uu′) ∈ PBG. Suppose there

are two offers that contain flight fi (let us denote the offers by j1 and j2 and assume

the time-periods corresponding to the two classes is the same, say i1). Moreover,

let õj1 = 0.3 and õj2 = 0.7 so that
∑

j∈Ofi õj = 1. This satisfies constraints (3.2c)

and (3.2d). Further, constraints (3.2a) and (3.2b) ensure that w̃fi
destfi ,ti1

≥ õj1 and

w̃fi
destfi ,ti1

≥ õj2 . Finally, let w̃fi
destfi ,ti0−1

= 0 and w̃fi
destfi ,ti1

= 0.7. We will show that

under this setting 6 ∃ũ ∈ PV B such that πv(ũ) = ṽ.
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From Constraint (3.1b), we have:

z̃i1 = w̃fi
destfi ,ti1

− w̃fi
destfi ,ti0−1

− x̃i1

z̃i1 = w̃fi
destfi ,ti1

− w̃fi
destfi ,ti0−1

− (õj1 + õj2)

z̃i1 = −0.3 < 0

The above implies that we cannot construct a vector ũ ∈ PV B such that πv(ũ) = ṽ.

Claim 2. πv(PV B) 6⊆ PBG.

Let ũ = (w̃f
j,t, õdd′uu′, x̃ik, z̃ik) ∈ PV B such that z̃ik < z̃ik−1 and w̃fi

destfi ,tik−1
= 0.

Moreover, suppose there is only one offer corresponding to class k for flight fi which

implies x̃ik = õikuu′ (from constraints (3.1d) and (3.1e)).

From constraint (3.1c), we have:

w̃fi
destfi ,tik

= w̃fi
destfi ,tik−1

+ x̃ik + z̃ik − z̃i(k−1)

w̃fi
destfi ,tik

= x̃ik + z̃ik − z̃i(k−1)

w̃fi
destfi ,tik

= õikuu′ + z̃ik − z̃i(k−1)

w̃fi
destfi ,tik

< õikuu′

The above is not satisfied by constraint (3.2a) and hence, πv(ũ) 6∈ PBG.
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Appendix C

Robust and Adaptive Optimization

C.1 Optimization Under Discrete Uncertainty Sets

Proof of Proposition 1. Let x̂ be feasible for OptDU, i.e., Ax̂ ≤ b, ∀b ∈ U0. We will

show that x̂ is feasible for OptDUConv as well. Let b∗ ∈ conv(U0). Since, conv(U0)

is a polytope, therefore, by the Resolution Theorem, ∃λ ≥ 0, e′λ = 1, such that,

b∗ =
∑K

i=1 λi · bi.

Ax̂ ≤ b, ∀b ∈ U0,

=⇒ λi ·Ax̂ ≤ λi · bi, i = 1, ..., K,

=⇒
(

K∑

i=1

λi

)
·Ax̂ ≤

K∑

i=1

λi · bi,

=⇒ Ax̂ ≤ b∗.

The above implies that x̂ is feasible for b∗. Since, b∗ ∈ conv(U0) was arbitrary (and

hence spans conv(U0)), therefore x̂ is feasible for OptDUConv. Hence,

x̂ ∈ OptDU =⇒ x̂ ∈ OptDUConv (C.1)
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The opposite direction is obvious as U0 ⊆ conv(U0). Therefore,

x̂ ∈ OptDUConv =⇒ x̂ ∈ OptDU (C.2)

The proposition follows from (C.1) and (C.2).

C.2 Power of Affine Policies in Multistage Adap-

tive Optimization

We closely mimic the proof technique presented in Bertsimas and Goyal [17] for the

optimality of affine policies in two-stage adaptive problem under simplex uncertainty

set.

Proof of Theorem 7. Let w∗
i (b) be an optimal solution of ΠT

Adapt(U). We will con-

struct an alternative solution ŵi(b) such that ŵi(b) are affine functions of b for i ≥ 2

and the worst case cost of this solution is equal to ZAdapt. Let

Q =
[(
b1 − bm+1

)
. . .
(
bm − bm+1

)]

(C.3)

Since b1, . . . ,bm+1 are affinely independent, (b1−bm+1), . . . , (bm−bm+1) are linearly

independent and Q is an invertible full-rank matrix. For any b ∈ U , ∃γ, 0 ≤ γ ≤

1, e′γ = 1,

b =

m+1∑

i=1

γib
i,

b =
m∑

i=1

γi(b
i − bm+1) + bm+1,

b = Q · γ + bm+1, γ = (γ1, . . . , γm)
T . (C.4)

Since Q is invertible, we have,

Q−1
(
b− bm+1

)
= γ (C.5)
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Let, Wi =
[(
w∗

i (b
1)−w∗

i (b
m+1)

)
. . .
(
w∗

i (b
m)−w∗

i (b
m+1)

)]

For all b ∈ U , where b =
∑m+1

j=1 γjb
j for 0 ≤ γ ≤ 1, consider the following

solution:

ŵi(b) = WiQ
−1(b− bm+1) +w∗

i (b
m+1)

= Wiγ +w∗
i (b

m+1)

=

m+1∑

j=1

γjw
∗
i (b

j)

The worst case cost of the solution ŵi(b) can be bounded as follows:

max
b∈U

c′iŵi(b) = max
b∈U

c′i

m+1∑

j=1

γjw
∗
i (b

j)

= max
b∈U

m+1∑

j=1

γjc
′
iw

∗
i (b

j)

≤ max
j=1,...,m+1

c′iw
∗
i (b

j) (C.6)

Consider the worst-case objective cost for the last two stages:

max
b∈U

[

c′T−1ŵT−1(b) + max
b∈U

c′T ŵT (b)
]

≤ max
b∈U

[

c′T−1ŵT−1(b)

+ max
j=1,...,m+1

c′Tw
∗
T (b

j)
]

≤ max
j=1,...,m+1

c′T−1w
∗
T−1(b

j) + max
j=1,...,m+1

c′Tw
∗
T (b

j)

This indicates that the worst-case objective cost becomes separable. Using the same

argument one step at a time in the backward direction (i.e., for i = T − 2, . . . , 1), we

have,

c′1ŵ1 +max
b∈U

[

c′2ŵ2(b) + · · ·+max
b∈U

[
c′T−1ŵT−1(b) + max

b∈U
c′T ŵT (b)

]]

≤ c′1w
∗ +

T∑

i=2

[

max
j=1,...,m+1

c′iw
∗
i (b

j)
]

≤ ZT
Adapt
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Therefore, the worst case cost of the solution ŵi(b) is equal to the optimal cost

of ΠT
Adapt(U), which implies that the affine policy for each stage (after deterministic

first stage variables) is optimal.

To get a more qualitative understanding of the optimality of affine policies for

uncertainty set with less than m + 1 extreme points (say K), note that the solution

in the ith stage, ŵi(b) is described completely by describing the solution at all the

extreme points. Thus, we need to find Pi ∈ R
ni×m and qi ∈ R

ni such that:

Pib
j + qi = w∗

i (b
j), ∀j = 1, . . . , K,

This system has a solution for Pi and qi as long as K ≤ m + 1. Subsequently, the

remainder of the proof consists of showing the feasibility of ŵi(b) for an arbitrary b

followed by bounding the worst-case cost of ŵi(b) by ZT
Adapt.

Equivalent LP for Two-stage Adaptive Problem with Affine

Recourse

Bertsimas, Maes [11] show that a two-stage adaptive optimization problem with affine

recourse can be converted to a single deterministic linear program. The two-stage

adaptive optimization problem

min
x,y(b)

c′x +max
b∈U

d′y(b)

s.t.Ax+By(b) ≥ b, ∀b ∈ U

y(b) ≥ 0, ∀b ∈ U (Adapt)

x ≥ 0.
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with polyhedral uncertainty set of the form: P = {b|Gb ≤ f} where G ∈ R
l×m and

f ∈ R
l can be converted to a single deterministic linear program:

min
x,F,q,η,W,V,w

c′x+ η

s.t. f ′w ≤ η − d′q,

G′w = F′d

W′f ≤ Ax+Bq,

G′W = I− F′B′,

V′f ≤ q,

G′V = −F′,

x,w,V,W ≥ 0.

The problem above contains n+(m+1)p+(m+p+1)l variables and 1+2m(1+l)+p

constraints.

Relating Robust and Adaptive Problems

The optimal objective values of the robust and adaptive problems are related by a

specific property of the uncertainty set – whether the uncertainty set contains the

component-wise minimum element (bmin) or not.

Proposition 6. Consider the multi-stage adaptive optimization problem ΠT
Adapt and

its robust counterpart ΠRob. If bmin ∈ U , then,

IZAdapt = IZRob.

Proof. Let w∗
1,w

∗
i , i ≥ 2 be an optimal solution of ΠRob and ŵ1, ŵi(b), ∀b ∈ U be an

optimal solution of ΠT
Adapt. Since w∗

1,w
∗
i , i ≥ 2 is the optimal solution, it is clearly

feasible for ΠRob. Therefore,

A1w
∗
1 +

T∑

i=2

Aiw
∗
i ≤ b, ∀b ∈ U
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This implies that the solution w1 = w∗
1; wi(b) = w∗

i , ∀b ∈ U is feasible for ΠT
Adapt.

IZAdapt ≤ c′1w
∗
1 +

T∑

i=2

c′iw
∗
i

= IZRob (C.7)

Since bmin ∈ U ,

IZAdapt = c′1ŵ1 +max
b∈U

[

c′2ŵ2(b2) + · · ·+ (C.8)

max
b∈U

[
c′T−1ŵT−1(bT−1)+max

b∈U
c′T ŵT (bT )

]]

≥ c′1ŵ1 +
T∑

i=2

c′iŵi(bmin) (C.9)

Now, (ŵ1, ŵi(bmin)) is a feasible solution of ΠRob, therefore,

IZRob ≤ c′1ŵ1 +

T∑

i=2

c′iŵi(bmin)

≤ IZAdapt (C.10)

From (C.7) and (C.10),

IZRob = IZAdapt (C.11)

Figure C-1 depicts two examples of uncertainty sets. For the inverted triangle on

the left, bmin /∈ U . In contrast, for the triangle on the right, bmin ∈ U , and thus,

IZRob = IZAdapt.

C.3 Number of Extreme Points

We now quantify the number of extreme points in the polyhedral description of our

uncertainty set U for the TFMP problem (done in Table C.1) so as to classify the
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bmin /∈ U bmin ∈ U

Figure C-1: Example uncertainty sets with and without bmin (black filled circle de-
notes bmin).

cases in which affine recourse would be optimal. We introduce some more notation:

• E j
i : number of extreme points in the polytope corresponding to phase j of

weather front i.

• Ei: number of extreme points in the polytope corresponding to weather front i

(across all phases).

• E : number of extreme points in the polytope corresponding to all weather fronts.

Description Uncertainty Set # of Extreme Points
(Denoted By)

1 WF, Single
airspace element,

one phase
(EPi)

Pαi
=
{
b∈Rm

+ | bt=C(1−yt)+αiCyt

+(1−αi)Czt, ∀t∈{T ai
,...,T bi

};

bt=C, ∀t∈T \{Tai
,...,T bi

};

yt≤yt+1; zt≤zt+1; zt≤yt; 0≤yt,zt≤1
}

(T ai − T ai
+ 1)× (di − di + 1)

1 WF, Airspace,
one phase

(Ej
i )

PAS,OP
αi

=
⊕

k∈A
Pk
αi

EP
|Wj

i (S)|+|Wj
i (K)|

i

1 WF, Airspace,
all phases

(Ei)
P

AS,AP
αi

=
⊕pi

j=1 P
j
αi Πpi

j=1E
j
i

k WF, Airspace,
all phases

(E)
PAS,AP
α =

⊕k
i=1 Pαi Πk

i=1Ei

Table C.1: Number of extreme points for the weather-front based polytope. AS
denotes airspace, OP denotes one-phase and AP denotes all-phases.

⊕
denotes

polyhedron concatenation.

Number of Extreme Points (E) Relative to the Number of Constraints (m). Table

C.1 implies that E increases exponentially with an increase in the number of airspace

elements affected by weather and an increase in the number of time-periods. In

contrast, m ∝ (2|K| + |S|)|T | which implies that it increases linearly in the number

of airspace elements and the total number of time-periods. Consequently, in the
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asymptotic regime, E will dominate m. But, the more interesting (and practically

relevant) case pertains to the number of extreme points when there is a reasonable

upper bound on |Wj
i (K)|, |Wj

i (S)| and the uncertainty set of Ta and d.

Theorem 8. Let k be the number of weather fronts and P be the maximum number

of phases across all fronts. Moreover, let, τ = maxi

{

T ai − T ai
+ 1, di − di + 1

}

.

Then, E can be upper bounded as follows:

E ≤ τ 4k∗∆∗P (C.12)

Proof. Note that:

E = Πk
i=1Π

pi
j=1EP

|Wj
i (S)|+|Wj

i (K)|
i

≤ Πk
i=1Π

pi
j=1τ

2∗(|Wj
i (S)|+|Wj

i (K)|)

≤ Πk
i=1Π

pi
j=1τ

4∆

≤ τ 4k∗∆∗P

The left side of Figure C-2 lists an upper bound on E for various combinations

of τ and ∆. The main observation is that if any of the two parameters τ or ∆ is

less than 3, then E is in the thousands and is thus, quite likely to be less than the

number of constraints. This table suggests that in many real-world instances, a single

affine policy is likely to be optimal. In addition, the right side of Figure C-2 depicts

the surface plot of the upper bound on E highlighting the speedy increase with an

increase in τ and ∆.
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τ ∆ Upper Bound on E

P = 1 P = 2

1 1 1 1
2 2 256 65536
2 3 4096 16777216
3 2 6561 43046721
3 3 531441 2.8*1011
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log(τ)∆
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Figure C-2: Left: Upper bound on the number of extreme points in the weather-front
based uncertainty set (k = 1). The bold numbers indicate the attractive cases from
the point of view of obtaining a single affine policy; and Right: Plot of the upper
bound on E (k = 1, P = 2).
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