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Abstract

We provide an optimal probabilistic mechanism for maximizing social welfare in
single-good auctions when each player does not know his true valuation for the good,
but only a set of valuations that is guaranteed to include his true one.

1 Preliminaries

Finite Focus Adopting a finite perspective, we focus on finite type spaces and on mecha-
nisms that assign finitely many (pure) strategies to the players.

Single-Good Auctions in the Classical and Knightian Settings We study single-
good auctions in an incomplete-information, non-Bayesian, private-value setting with quasi-
linear utilities.

A type, also called a valuation, consists of an integer between 0 and an integral bound,
B. The number of players is n, and the true valuation of a player i is θi. An outcome ω
consists of a pair of profiles, ω = (a, P ), where a ∈ {⊥, 1, . . . , n} and P ∈ Rn. We refer to a
as the allocation: a = ⊥ signifies that the good is unallocated, and otherwise a is the player
who wins the good. Each Pi represents the price paid by player i.

The only knowledge of a player i about the true valuation profile θ consists of a set Ki, i’s
approximate valuation, such that Ki 3 θi. A player i is Knightian if Ki 6= {θi}. The profile

of approximate valuations is K
def
= K1×· · ·×Kn. The auction (or the setting) is Knightian if

there exists at least one Knightian player, and classical otherwise. In either case, the social
welfare of an allocation A, SW(θ, a), is defined to be θa if a 6= ⊥, and 0 otherwise; and the
maximum social welfare, MSW(θ), is defined to be maxi θi.

For every player i, i’s utility function ui maps a valuation ti and an outcome ω = (a, P )

to ui(ti, ω)
def
= ti − Pi if a = i, and ui(ti, ω)

def
= −Pi otherwise.
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Incomplete Preferences The only assumption we make about the preferences of a Knigh-
tian player i is that i strictly prefers outcome ω to outcome ω′ if ui(ti, ω) ≥ ui(ti, ω

′) for all
ti ∈ Ki and ui(t

′
i, ω) > ui(t

′
i, ω
′) for some t′i ∈ Ki. (A Knightian player i is free to “complete”

his preferences in an arbitrary way, consistent with the above assumption, but a mechanism
designer has no clue on how each Knightian player might do that.)

Knowledge Inaccuracy The approximate valuation Ki of a player i is always well defined,
but can be very “inaccurate”. In particular, if every i has absolutely no clue about his own
θi, then every Ki coincides with the entire type space of i. In this case no mechanism can
be expected to perform well, but intuitively a good mechanism should perform better when
the inaccuracy of players’ knowledge decreases. Accordingly, we believe that mechanism
performance should be defined as a function of such inaccuracy, properly measured. Thus:
How should knowledge inaccuracy be measured?

In an auction of a single good, where a valuation essentially consists of a non-negative
integer, a simple measure of the knowledge inaccuracy of (a player i with an approximate
valuation) Ki would be the its “spread”, that is, maxKi−minKi, where maxKi and minKi

respectively are the maximum and the minimum candidate valuation in Ki. Such a measure,
however, is too coarse. For instance, the approximate valuations Ki = {10, 20} and K ′i =
{1010, 1020} would have the same inaccuracy, although Ki is intuitively less accurate than
K ′i. Indeed, approximately speaking, in the first case player i “knows that his true valuation
is 15 ± 33%”, while in the second case he “knows that his true valuation is 1015 ±0.05%”.
We thus choose to take into consideration not only spread but also “magnitude”, and define
the inaccuracy of a player i (a set Ki), δi, as follows:

δi
def
=

maxKi −minKi

maxKi + minKi

if Ki 6= {0}, and δi
def
= 0 otherwise.

It is immediately seen that δi is always in [0, 1] and that it has the following alternative
definition: the smallest value r such that Ki is contained in an interval of the form [x −
rx, x + rx]. Thus, according to our definition each player i knows his own true valuation
within a factor δi. Indeed, for Ki = {10, 20} we have δi ≈ 0.33; and for K ′i = {1010, 1020}
we have δi ≈ 0.05.

A Knightian single-good auction is δ-approximate if maxi δi ≤ δ.

For δ ∈ [0, 1], we denote by K(δ) the set of all δ-approximate valuations K.

Mechanisms In a Knightian auction context, a mechanism M specifies

• a set S = S1 × · · · × Sn, where Si is the set of pure strategies of player i, and

• a (possibly probabilistic) outcome function, typically denoted by M itself, mapping S
to (distributions over) outcomes.

We denote pure strategies by Latin letters, and possibly mixed strategies by Greek ones.
If σ ∈ ∆(S1)× · · · ×∆(Sn), then MA

i (σ) and MP
i (σ) respectively denote the probability

that the good is assigned to player i and the expected price paid by i.
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Implementation in Dominant and Undominated Strategies In a classical setting
of incomplete information there are two main notions of implementation: implementation
in dominant strategies and implementation in undominated strategies. The second-price
mechanism is efficient according to both notions.

Both notions are naturally extended to the Knightian setting, by properly quantifying
also over the members of the players’ approximate valuations. Namely, for a player i with
approximate valuation Ki, a pure strategy

• si ∈ Si Knightian very weakly dominates s′i ∈ Si, if

∀ θi ∈ Ki , ∀ t−i ∈ S−i : Eui(θi,M(si, t−i)) ≥ Eui(θi,M(s′i, t−i)) .

si ∈ Si is Knightian very weakly dominant if for all s′i ∈ Si, si very weakly dominates s′i.

• si ∈ Si is Knightian (weakly) dominated by σi, in symbols σi
w�
i,Ki

si, if

∀ θi ∈ Ki , ∀ t−i ∈ S−i : Eui(θi,M(σi, t−i)) ≥ Eui(θi,M(si, t−i)) , and

∃ θi ∈ Ki , ∃ t−i ∈ S−i : Eui(θi,M(σi, t−i)) > Eui(θi,M(si, t−i)) .

si ∈ Si is Knightian (weakly) undominated, si ∈ UDedi(Ki), if σi
w�
i,Ki

si for no σi ∈ ∆(Si).

Notice that a Knightian player i does not have a very weakly dominant strategy in the
second-price mechanism, and in many other mechanisms where Si coincides with {0, 1, . . . , B}.
Nevertheless, dominant-strategy mechanisms continue to be well-defined. Since a variant of
the revelation principle still applies, a property is implementable in very weakly dominant
strategies if there exists a (very weakly) dominant-strategy-truthful mechanism M such that
(1) a player i’s strategy set Si consists of bidding a set of valuations ; (2) bidding Ki is a
very weakly dominant strategy for player i; and (3) the property holds for M(K1, · · · , Kn).

A mechanism M implements a property in (weakly) undominated strategies if the prop-

erty holds for M(s) for all s ∈ UDed(K), where UDed(K)
def
= UDed1(K1)× · · · ×UDedn(Kn).

Social-welfare Performance Seeking very robust guarantees, we define the social-welfare
performance of a mechanism M in an “ex post manner”, by taking the worst case over all
sets of approximate valuation profiles and all possible true valuations. That is,

In a δ-approximate auction, the social-welfare performance of a very weakly dominant-
strategy-truthful mechanism M is

min
K∈K(δ),θ∈K

SW(θ,M(K1, . . . , Kn))

MSW(θ)
,

and that of an undominated-strategy mechanism M is

min
K∈K(δ),θ∈K,s∈UDed(K)

SW(θ,M(s))

MSW(θ)
.
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2 Our Prior Results

In our prior work (CMZ12), we prove two results for Knightian auctions of a single-good: a
“positive” result and a “negative” one. Namely,

Theorem ((CMZ12)). Let M be the second-price mechanism with any deterministic tie-
breaking rule. Then, for all δ ∈ [0, 1], all valuation bounds B, all profiles K of δ-approximate
valuations in {0, . . . , B}, all true valuation profiles θ ∈ K, and all strategy profiles v ∈
UDed(K):

SW
(
θ,M(v)

) ≥ (1− δ
1 + δ

)2

MSW(θ)− 2
1− δ
1 + δ

.

Theorem ((CMZ12)).

(a) Let M be a deterministic mechanism for n players with valuation bound B. If B ≥ 1+δ
δ

,
then there exist a profile K of δ-approximate valuations, a true valuation profile θ ∈ K,
and a strategy profile s ∈ UDed(K) such that:

SW
(
θ,M(s)

) ≤ ((1− δ
1 + δ

)2

+
3

B

)
MSW(θ) .

(b) Let M be a possibly probabilistic mechanism for n players with valuation bound B. If
B ≥ 1+δ

δ
, then there exists a profile K of δ-approximate valuations, a true valuation

profile θ ∈ K, and a strategy profile s ∈ UDed(K) such that:

SW
(
θ,M(s)

) ≤ ((1− δ
1 + δ

)2

+
3

B
+

4δ

(1 + δ)2n

)
MSW(θ) .

Our two results show that there is a potential gap between the performance of the optimal
deterministic and probabilistic mechanisms. Thus, can the performance of the second-price
mechanism in the Knightian setting be improved by a probabilistic mechanism? We prove
that the answer is yes, and we actually explicitly construct an optimal probabilistic mecha-
nism, provided that the inaccuracy parameter δ (but not the actual profile of δ-approximate
valuations!) is known to the mechanism designer.1

3 Statement and Discussion of Our Result

Theorem 1. ∀n, ∀δ ∈ (0, 1), and ∀B, there exists a mechanism M
(δ)
opt such that for every

profile K of δ-approximate valuations in {0, 1, . . . , B}, every true-valuation profile θ ∈ K,
and every undominated strategy profile v ∈ UDed(K):

E
[
SW
(
θ,M

(δ)
opt(v)

)] ≥ ((1− δ)2

(1 + δ)2
+

4δ

n(1 + δ)2

)
MSW(θ) .

1Actually one can show similar results when the designer knows an upper bound δ′ sufficiently close to δ.
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Practicality. The proof of Theorem 1 is very technically hard in this paper. Nonetheless,
we would like to emphasize that M

(δ)
opt is very practically played, as it requires almost no

computation from the players, and a very small amount of computation from the mechanism.
In addition, its performance is practically preferable to that of the second-price mechanism.
For instance, when δ = 0.5, M

(δ)
opt guarantees a social welfare that is at least five times higher

than that of the second-price mechanism when there are 2 players, and at least three times
higher when there are 4 players.
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(a) With n = 2 players, the second-price mech-
anism performs worse than randomly assigning
the good for δ > 0.18.
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(b) With n = 4 players, the second-price mech-
anism performs worse than randomly assigning
the good for δ > 0.34.
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(c) With δ = 0.15, the second-price mechanism
always performs better than randomly assigning
the good.
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(d) With δ = 0.3, the second-price mecha-
nism performs worse than randomly assigning
the good for n = 2, 3.

Figure 1: Performance of our optimal mechanism

Performance Diagrams In Figure 1 we compare the social welfare guarantees of:
• randomly assigning the good (ε = 1

n
),

• the second-price mechanism (ε = (1−δ)2
(1+δ)2

, see (CMZ12)), and

• our optimal mechanism (ε = (1−δ)2
(1+δ)2

+ 4δ
n(1+δ)2

, see Theorem 1).
In Figure 1a and Figure 1b we compare ε versus δ, and in Figure 1c and Figure 1d we
compare ε versus n. The green data, our mechanism, is always better (at times significantly)
than the other two mechanisms.
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4 Proof of Theorem 1

In this section we explicitly construct and analyze the desired mechanism M
(δ)
opt. This pro-

cess is not going to be trivial, so we first provide a concise representation of our mechanism
in Section 4.1 independent of our proof. Next, we show a generic lemma for construct-
ing undominated-strategy mechanisms in Knightian setting in Section 4.2. The details of
our proof are then broken into Section 4.3, Section 4.4 and Section 4.5, where we provide
intuitions as needed.

4.1 Our Optimal Mechanism M
(δ)
opt

In this section we provide a concise description to our optimal mechanism in Theorem 1 for
a single-good auction with n players, valuation bound B and approximation accuracy δ. We
first construct the following allocation function:

Definition 4.1. For every δ ∈ (0, 1), and let Dδ
def
=
(

1+δ
1−δ
)2 − 1 > 0. We define the function

f (δ) : [0, B][n] → [0, 1][n] as follows:
• for every z = (z1, . . . , zn) ∈ [0, B][n] such that z1 ≥ z2 ≥ · · · ≥ zn, let n∗ ∈ {1, 2, . . . , n}

be the index in [n] (which exists and is unique) such that

z1 ≥ · · · ≥ zn∗ >

∑n∗
j=1 zj

n∗ +Dδ

≥ zn∗+1 ≥ · · · ≥ zn ,

Then set

f
(δ)
i (z)

def
=

{
1
n
· n+Dδ
n∗+Dδ

· zi(n∗+Dδ)−
∑n∗
j=1 zj

ziDδ
, if i ≤ n∗,

0, if i > n∗;

• for other z, define f (δ) by extending it symmetrically.

The code for our mechanism M
(δ)
opt is:

Code for outcome function of M
(δ)
opt

public parameter: δ ∈ (0, 1)

inputs: v1, . . . , vn ∈ {0, 1, . . . , B}
output: (i, P ), where i ∈ [n] ∪ {⊥} is the winning player and P ∈ R[n] is the price profile

pseudocode:

1. Draw r uniformly at random in [0, 1].
2. (Define f (δ)

0
def= 0.)

3. If there exists i ∈ [n] such that
∑i−1

j=0 f
(δ)
i (v) < r ≤∑i

j=0 f
(δ)
i (v):

– Compute Pi
def= vi −

∫ vi
0 f

(δ)
i (z,v−i) dz
f

(δ)
i (v)

, and Pj = 0 for j 6= i, and output (i, P ).

4. Otherwise, output (⊥, (0, . . . , 0)). (No player is assigned the good.)
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We note that our mechanism can be tweaked to make sure that the good is always
assigned to some player. But the proof is more involved than it already is, and we leave it
to a future version of this paper.

4.2 The Distinguishable Monotonicity Lemma

To prove that a given social welfare performance is guaranteed in undominated strategies,
as it is needed for Theorem 1, we are happy to work with a suitable class of restricted
mechanisms, using only very special strategies and allocation functions. But what should
“suitable” mean?

On one hand, these restrictions should suffice for proving Theorem 1. On the other hand,
they should ensure that the undominated strategies corresponding to a given approximate-
valuation set can be characterized in a way that is both conceptually simple and easy to work
with.

Specifically, we consider mechanisms whose strategies consist of possible valuations,
namely the set {0, . . . , B}, and whose allocation functions (over {0, 1, . . . , B}[n]) are re-
strictions of integrable functions (over [0, B][n]) satisfying a suitable monotonicity property.
A simple lemma, the Distinguishable Monotonicity Lema, will then guarantee that for this
type of mechanisms:

the set of undominated strategies of a player i with approximate valuation Ki is
contained in {minKi,minKi + 1, . . . ,maxKi}.

We believe that this simple property will be useful beyond our immediate need to prove
Theorem 1. Note that:
• Our setting is still discrete: continuous domains are only tools for proving the lemma.
• The Distinguishable Monotonicity Lemma, when specialized to the case where players

know their valuations exactly, is a strengthening of a classical lemma that charac-
terizes those mechanisms that are (very-weakly-)dominant-strategy-truthful in single-
good auctions.
• The Distinguishable Monotonicity Lemma actually applies to all single-parameter do-

mains, not just single-good auctions (the same way that the classical lemma does).

4.2.1 Details

Before we describe our lemma, let us recall a traditional way to define auction mechanisms
from suitable allocation functions.

Definition 4.2. If f : [0, B][n] → [0, 1][n] is an integrable2 allocation function, then we denote
by Mf the mechanism where the strategy space S = {0, 1, . . . , B}[n] and, on input bid profile
v ∈ S,
• with probability fi(v) the good is assigned to player i, and

• if player i wins, he pays Pi = vi −
∫ vi
0 fi(z,v−i) dz
fi(vi,v−i)

(and all other players pay Pj = 0 for

j 6= i.)

2Specifically, we require that, for each v−i, the function fi(z, v−i) is integrable with respect to z on [0, B].
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Remark 4.3.
• Mf is deterministic if and only if f({0, 1, . . . , B}) ⊆ {0, 1}[n].
• For all player i and bid profile v, the expected price MP

i (v) = vi · fi(vi, v−i) −∫ vi
0
fi(z, v−i) dz.

• We stress that Mf continues to have discrete strategy space S = {0, 1, . . . , B}, as the
analysis over a continuous domain for f is only a tool for proving the lemma.
• Recall that an allocation function f is monotonic if each fi is non-decreasing in the

bid of player i, for any fixed choice of bids of all other players. In the exactly-valuation
world, the class of mechanisms Mf ’s when f is both integrable and monotonic gives
a full characterization to all (very-weakly-)dominant-strategy-truthful mechanisms in
single-good auctions.

Now, we want to slightly strengthen this notion of monotonicity.

Definition 4.4. Let f : [0, B][n] → [0, 1][n] be a allocation function. For d ∈ {1, 2}, we say
that f is d-distinguishably monotonic (d-DM, for short) if f is integrable, monotonic,
and satisfying the following “distinguishability” condition:

∀ i ∈ [n] , ∀vi, v′i ∈ Si s.t. vi ≤ v′i − d, ∃ v−i ∈ S−i
∫ v′i

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz > 0 .

If f is d-DM, we say that Mf is d-DM.

Distinguishable monotonicity is certainly an additional requirement to monotonicity, but
actually quite mild. Indeed, the second-price mechanism is 2-DM and, if ties are broken
at random, even 1-DM (see Example 4.5). Yet, in our approximate-valuation world, this
mild additional requirement is quite useful for “controlling” the undominated strategies of a
mechanism, and thus for engineering implementations of desirable social choice functions in
undominated strategies.

Example 4.5 (Second-Price Mechanism). Recall that the second-price mechanism is a direct
mechanism that assigns the good to the highest bidder at a price equal to the second-highest
bid: it is a pair M2P = (S2P,M2P) with S2P = {0, 1, . . . , B}[n] and

M2P(v)
def
=

1. Assign the good to the highest bidder: i∗ def
= arg maxi∈[n] vi.

2. Charge the highest bidder the second price: Pi∗
def
= maxi∈[n]

i 6=i∗
vi.

(And everyone else pays nothing.)

In the language of allocation functions, M2P can be represented as a mechanism Mf , where
f is 2-DM; also, if we require that the ties (for the highest bidder) are broken at random
(by giving a positive, but not necessarily equal, probability to every highest bidder), then f
is 1-DM. So let us prove these two facts:

Proof. At a high level, the allocation function f for M2P is almost unique, except for those
input bids that contain ties. Now take an arbitrary second-price mechanism M2P with a
specific tie breaking rule. For each player i ∈ [n], we define fi as follows: for every bid

sub-profile z−i ∈ [0, B][n]−{i}, letting x∗ def
= maxj 6=i zj,
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• for every x < x∗, define fi(x, z−i)
def
= 0,

• for every x > x∗, define fi(x, z−i)
def
= 1,

• for x = x∗ then there is a tie, in which case
– if z−i is a valid integer bid in {0, 1, . . . , B}[n]−{i}, then define fi(x

∗, z−i) to be the
winning probability according to how M2P breaks the tie,3 and

– if z−i is not a valid integer bid in {0, 1, . . . , B}[n]−{i}, then define fi(x
∗, z−i) arbi-

trarily (say 0 for example).4

One can verify that the mechanism Mf according to the definition above is exactly the given
M2P; this is because the two coincide on the allocation probabilities for all integer points
v ∈ {0, 1, . . . , B}[n], and the price (recall the integral in Definition 4.2) is exactly the winning
probability multiplied by the second highest bid.

It is clear that f is monotonic. Moreover, for any vi, v
′
i ∈ {0, 1, . . . , B} such that vi <

v′i − 1, let everyone else bid some integer x in the open interval (vi, v
′
i) by setting v−i =

{x, x, . . . , x}. By construction, fi(vi, v−i) = 0 and every (not necessarily integer) z ∈ (x, v′i]
satisfies f(z, v−i) = 1; but this establishes that f is 2-DM:∫ v′i

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz ≥ (v′i − x)(1− 0) ≥ 1 > 0 .

If instead we tweak M2P to break ties at random by giving a positive (but not necessarily
equal) probability to every highest bidder, then, for any vi, v

′
i ∈ {0, 1, . . . , B} such that

vi < v′i, let everyone else bid some x = vi by setting v−i = {x, x, . . . , x}. We have that for
every z ∈ (x, v′i], f(z, v−i) = 1, but f(vi, v−i) < 1 (since every highest bidder is awarded the
good with positive probability); but this establishes that f is 1-DM:∫ v′i

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz ≥ (v′i − x) · (1− f(vi, v−i)) > 0 ,

as desired.

Lemma 4.6 (Distinguishable Monotonicity Lemma). If f is a d-DM allocation func-
tion, then Mf is such that, for any player i and δ-approximate-valuation profile K,

UDedi(Ki) ⊆ {minKi, . . . ,maxKi} if d = 1, and

UDedi(Ki) ⊆ {minKi − 1, . . . ,maxKi + 1} if d = 2.

(Above, minKi and maxKi respectively denote the minimum and maximum integers in
Ki.)

Proof. For every i ∈ N , let v⊥i
def
= minKi and v>i

def
= maxKi. Then, to establish our lemma

it suffices to prove that, ∀i ∈ N and ∀d ∈ {1, 2}, the following four properties hold:

3If in M2P player i receives the good with probability 1, then we set fi(x∗, z−i)
def= 1; if player i receives

the good with probability 0.2, then fi(x∗, z−i)
def= 0.2, and so on.

4Indeed, Mf will never be invoked on an input with more than one non-integer points. It invokes integer
points for calculating allocation probabilities, and one non-integer points for calculating the price.
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1. v⊥i very-weakly dominates every vi ≤ v⊥i − d.
2. v>i very-weakly dominates every vi ≥ v>i + d.
3. There is a strategy sub-profile v−i for which v⊥i is strictly better than every vi ≤ v⊥i −d.
4. There is a strategy sub-profile v−i for which v>i is strictly better than every vi ≥ v>i +d.

Proof of Property 1. Fix any (pure) strategy sup-profile v−i ∈ S−i for the other players and
any possible true valuation θi ∈ Ki. Letting v⊥ = (v⊥i , v−i) and v = (vi, v−i), we prove that

E
[
ui
(
θi,M(v⊥)

)]− E
[
ui
(
θi,M(v)

)]
=
(
fi(v

⊥)− fi(v)
) · θi − (MP

i (v⊥)−MP
i (v)

)
=
(
fi(v

⊥)− fi(v)
) · θi −(v⊥i · fi(v⊥)−

∫ v⊥i

0

fi(z, v−i) dz − vi · fi(v) +

∫ vi

0

fi(z, v−i) dz

)

=
(
fi(v

⊥)− fi(v)
) · (θi − v⊥i ) +

∫ v⊥i

vi

(
fi(z, v−i)− fi(v)

)
dz .

Now note that, since θi ∈ Ki, θi − v⊥i = θi − minKi ≥ 0; moreover, by the monotonicity
of f , whenever z ≥ vi, it holds that fi(z, v−i) ≥ fi(v). We deduce that Eui

(
θi,M(v⊥)

) ≥
Eui
(
θi,M(v)

)
. We conclude that v⊥i very-weakly dominates vi.

Proof of Property 2. Analogous to that of Property 1 and omitted.

Proof of Property 3. Due to the d-distinguishable monotonicity of M , vi ≤ v⊥i − d implies

the existence of a strategy sub-profile v−i making
∫ v⊥i
vi

(
fi(z, v−i)− fi(v)

)
dz strictly positive.

For such v−i, therefore, playing v⊥i is strictly better than vi.
Proof of Property 4. Analogous to that of Property 3 and omitted.

4.3 A Very Restricted Search

In order to leverage our Distinguishably Monotonicity Lemma 4.6, it is natural for us to
search for M

(δ)
opt among 1-DM mechanisms. Let us now distill an additional requirement for

the underlying allocation function of such mechanisms that suffices for our goals. We shall
do so in terms of the following positive quantity Dδ: for all δ ∈ (0, 1),

Dδ
def
=

(
1 + δ

1− δ
)2

− 1.

Definition 4.7. We say that a allocation function f is δ-good if it is 1-DM and:

∀ i ∈ [n], ∀ v ∈ {0, 1, . . . , B}[n],

n∑
j=1

fj(v)vj +Dδ · fi(v)vi ≥ 1

n
· vi(n+Dδ) . (4.1)

The reason why the additional requirement is sufficient is easily understood:

Lemma 4.8. If f is δ-good, then Mf satisfies that such that for every δ-approximate-
valuation profile K, every strategy profile s ∈ UDed(K) and every true-valuation profile
θ ∈ K:

E
[
SW
(
θ,Mf (v)

)] ≥ ((1− δ)2 + 4δ
n

(1 + δ)2

)
MSW(θ) .
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Proof. Let K be an arbitrarily chosen δ-approximate-valuation profile. Then, because in any
allocation the social welfare coincides with the welfare of a given player, to prove our lemma
it suffices to prove that

∀θ ∈ K, ∀v ∈ UDed(K), ∀i ∈ [n],
n∑
j=1

θjfj(v) ≥
(

(1− δ)2 + 4δ
n

(1 + δ)2

)
θi . (4.2)

For every i ∈ [n], let xi ∈ R be such that Ki ⊆ δ[xi], and let δ[x] = δ[x1] × · · · × δ[xn].
Then, θ ∈ K and the Distinguishable Monotonicity Lemma respectively imply

(1− δ)xi ≤ θi ≤ (1 + δ)xi and (1− δ)xi ≤ minKi ≤ vi ≤ maxKi ≤ (1 + δ)xi.

Combining these two chains of inequalities yields

1− δ
1 + δ

vi ≤ θi ≤ 1 + δ

1− δ vi . (4.3)

Let us now argue that Eq. 4.2 holds by arbitrarily fixing v and i and showing that it is
impossible to construct a “bad” θ so as to violate Eq. 4.2.

In trying to construct a “bad” θ, it suffices to choose θj (for j 6= i) to be as small
as possible, since θj only appears on the left-hand side with a positive coefficient. For θi,

however, we may want to choose it as large as possible if fi(v) ≥ ( (1−δ)2+ 4δ
n

(1+δ)2

)
, or as small as

possible otherwise. So there are two extreme θ’s.
Considering these extreme choices, we conclude that no θ contradicts Eq. 4.2 if:

n∑
j=1

(1− δ
1 + δ

)
vjfj(v) ≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)(1− δ
1 + δ

)
vi , and

n∑
j=1

(1− δ
1 + δ

)
vjfj(v) +

(1 + δ

1− δ −
1− δ
1 + δ

)
vifi(v) ≥

(
(1− δ)2 + 4δ

n

(1 + δ)2

)(1 + δ

1− δ
)
vi .

Simplifying the above equations, Eq. 4.2 holds if both the following inequalities hold:

n∑
j=1

vjfj(v) ≥ n+Dδ

n
· 1

Dδ + 1
· vi , (4.4)

n∑
j=1

vjfj(v) +Dδ · vifi(v) ≥ n+Dδ

n
vi . (4.5)

Note that Eq. 4.5 holds because it is implied by the hypothesis that f is δ-good; note also

that Eq. 4.4 holds because it is implied by Eq. 4.5. Indeed, since 1
Dδ+1

=
(

1−δ
1+δ

)2
< 1 for all

δ ∈ (0, 1),

n∑
j=1

vjfj(v) ≥ 1

Dδ + 1

(
n∑
j=1

vjfj(v) +Dδvifi(v)

)
≥ 1

Dδ + 1

n+Dδ

n
vi .

Thus both Eq. 4.2 and our lemma hold.
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4.4 Our Allocation Function

In light of our last lemma, all is left is to find a suitable δ-good allocation function f .

Some intuition. If the players’ bids are not “clustered”, then f should clearly give a
much higher probability mass to the highest bids, as lower bids are less likely to come from
players with high true valuations. However, when the highest bids are close to each other,
it is hard for f to “infer” from them who the player with the highest true valuation really
is — after all, we are in an approximate-valuation model. The intelligent thing for f to do
in such a case is to assign the good to a randomly chosen high-bidding player. To achieve
optimality, however, one must be much more careful in allocating probability mass, and some
complexities should be expected.

Since the mechanism M
(δ)
opt of Theorem 1 is allowed to depend on the approximation

accuracy δ, we construct its allocation function, f (δ), depending on it. Our proposed f (δ)

derives from the players’ bids a threshold, and probabilistically chooses the winning player
only among those bids lying above the threshold. We now explain the rationale for these
choices.

Recall that, to be δ-good, a allocation function f : [0, B][n] → [0, 1][n] should satisfy
Eq. 4.1, that is:

∀ i ∈ [n], ∀ v ∈ {0, 1, . . . , B}[n],

n∑
j=1

fj(v)vj +Dδ · fi(v)vi ≥ 1

n
· vi(n+Dδ) .

A reasonable guess to “solve for f” is to restrict our attention to symmetric functions. The
most natural candidate is simply

∀z ∈ [0, B][n], fi(z) =
1

n
· zi(n+Dδ)−

∑n
j=1 zj

ziDδ

.

One could verify that the function f , in addition to being symmetric, sums up to 1, is 1-DM,
and satisfies the desired condition Eq. 4.1. (In fact, as we shall see, the above candidate
f coincides with our proposed f (δ) when no threshold is introduced.) We would be done,
except for one crucial fact: f sometimes takes negative values!

We therefore need to “patch” the guessed function f by forcing non-negativity while
maintaining the other required properties, and this is exactly where the idea of a threshold,
winners, and losers comes in. Roughly, only players with sufficiently low reported valuations
are at risk of a “negative probability” and, because are most likely to have low true valuations,
we remove them from the auction altogether. To preserve the other properties, though, we
need to re-weight the function, thereby obtaining Eq. 4.6. Thus, at high level, we simply
keep removing players until all of the players are given non-negative probability (by virtue
of being in the auction or having been thrown out). A similar idea previously appeared in
(CLS+11).

While the introduction of a threshold fixes the “negativity problem”, it introduces ad-
ditional complexities. (For example, even the simple task of verifying monotonicity, where
the bids of all players but i are fixed, becomes non-trivial. Indeed, the number of winners
n∗ varies as the bid of player i increases, and thus the definition of f (δ) varies too.)

Let us now proceed more formally. Recall that Dδ
def
=
(

1+δ
1−δ
)2 − 1 > 0.
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Definition 4.9. For every δ ∈ (0, 1), define the function f (δ) : [0, B][n] → [0, 1][n] as follows:
for every i ∈ [n] and every z = (z1, . . . , zn) ∈ [0, B][n]

• if z1 ≥ z2 ≥ · · · ≥ zn, then

f
(δ)
i (z)

def
=

{
1
n
· n+Dδ
n∗+Dδ

· zi(n∗+Dδ)−
∑n∗
j=1 zj

ziDδ
, if i ≤ n∗,

0, if i > n∗;
, (4.6)

where n∗ ∈ {1, 2, . . . , n} is the index in [n] (whose existence and uniqueness will be
proved shortly) such that

z1 ≥ · · · ≥ zn∗ >

∑n∗
j=1 zj

n∗ +Dδ

≥ zn∗+1 ≥ · · · ≥ zn . (4.7)

• else, f
(δ)
i (z)

def
= f

(δ)
π(i)(zπ(1), . . . , zπ(n)) where π is any permutation of the players such

that zπ(1) ≥ · · · ≥ zπ(n) (i.e., we define f
(δ)
i by extending it symmetrically).

We call
∑n∗
j=1 zj

n∗+Dδ
the threshold, players 1, . . . , n∗ the winners, and players n∗+ 1, . . . , n the

losers.

Lemma 4.10. f (δ) is a well-defined allocation function.

Proof. We first prove that n∗ exists and is unique, and begin with the existence proof.
Assume, without loss of generality, that z1 ≥ z2 ≥ · · · ≥ zn. Note that there exists an

index n′ in [n] such that

∀ i > n′, zi ≤
∑n′

j=1 zj

n′ +Dδ

.

Indeed, Eq. 4.8 vacuously holds for n′ = n. Now take n′′ to be the least such index. Accord-
ingly,

∀ i > n′′, zi ≤
∑n′′

j=1 zj

n′′ +Dδ

. (4.8)

Next we claim that

∀ i ≤ n′′, zi >

∑n′′
j=1 zj

n′′ +Dδ

. (4.9)

To prove Eq. 4.9, it suffices to consider i = n′′ because z is non-increasing. Indeed, by the
minimality of n′′ we know that (“n′′ − 1 does not work”, that is) there exists some j ≥ n′′

such that

zn′′ ≥ zj >

∑n′′−1
j=1 zj

n′′ − 1 +Dδ

,

which, after rearranging, is equivalent to zn′′ >
∑n′′
j=1 zj

n′′+Dδ
as desired.

At last, combining Eq. 4.8 and Eq. 4.9, and choosing n∗ = n′′, Eq. 4.7 is satisfied.
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Next, we prove that n∗ is unique. Suppose by way of contradiction that there exist two
integers n⊥ and n>, with n⊥ < n> both satisfying Eq. 4.7. Now define

S⊥
def
=

n⊥∑
j=1

zj, S>
def
=

n>∑
j=1

zj, S∆ def
= S> − S⊥, and n∆ def

= n> − n⊥ .

By invoking Eq. 4.7 with n> and n⊥, we deduce that for i ∈ {n⊥ + 1, . . . , n>},
S⊥

n⊥ +Dδ

≥ zi >
S>

n> +Dδ

=
S⊥ + S∆

n⊥ + n∆ +Dδ

.

Averaging over all zi for i ∈ {n⊥ + 1, . . . , n>}, we get

S⊥

n⊥ +Dδ

≥ S∆

n∆
>

S⊥ + S∆

n⊥ + n∆ +Dδ

. (4.10)

Let us now show that the second inequality of Eq. 4.10 contradicts the first inequality
Eq. 4.10:

S∆

n∆
>

S⊥ + S∆

n⊥ + n∆ +Dδ

⇔ (n⊥ + n∆ +Dδ)S
∆ > n∆(S⊥ + S∆)

⇔ (n⊥ +Dδ)S
∆ > n∆S⊥ ⇔ S∆

n∆
>

S⊥

(n⊥ +Dδ)
. (4.11)

The contradiction establishes the uniqueness of n∗.
We are left to prove that (a) f

(δ)
i (z) ≥ 0 for every i and z, and (b)

∑
i f

(δ)
i (z) ≤ 1 for

every z. (Indeed, the last two properties imply that f
(δ)
i (z) ≤ 1.)

Assume, again without loss of generality, that z1 ≥ z2 ≥ · · · ≥ zn. Eq. 4.7 tells us that
zi(n

∗ +Dδ)−
∑n∗

j=1 zj ≥ 0 for each i ≤ n∗, so (a) follows immediately. As for (b),

n∑
i=1

f
(δ)
i (z) =

1

n
· n+Dδ

n∗ +Dδ

·
n∗∑
i=1

zi(n
∗ +Dδ)−

∑n∗
j=1 zj

ziDδ

=
1

n
· n+Dδ

(n∗ +Dδ)Dδ

·
(
n∗(n∗ +Dδ)−

n∗∑
i=1

n∗∑
j=1

zj
zi

)

≤ 1

n
· n+Dδ

(n∗ +Dδ)Dδ

· (n∗(n∗ +Dδ)− n∗n∗) =
n+Dδ

n
· n∗

n∗ +Dδ

≤ 1 .

Lemma 4.11. f (δ) is monotonic.

Proof. By symmetry it suffices to show that f (δ) is monotonic with respect to the n-th
coordinate. Without loss of generality, assume z1 ≥ z2 ≥ · · · ≥ zn−1. We need to prove that
for any z⊥n and z>n with 0 ≤ z⊥n < z>n ≤ B,

f (δ)
n (z−n, z⊥n ) ≤ f (δ)

n (z−n, z>n ) . (4.12)

We will prove Eq. 4.12 in three steps.
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• Step 1. Letting n′ be the number of winners in a game where only the first n − 1
players are bidding z−n, we first prove that:

zn ≤
∑n′

j=1 zj

n′ +Dδ

−→ f (δ)
n (z−n, zn) = 0 (i.e., n is a loser) (4.13)

zn >

∑n′
j=1 zj

n′ +Dδ

−→ f (δ)
n (z−n, zn) > 0 (i.e., n is a winner) (4.14)

To show Eq. 4.13, recall that, in the game with only the first n − 1 players bidding
z−n, we have n′ winners satisfying,

∀i ∈ {1, 2, . . . , n′}, zi >
∑n′

j=1 zj

n′ +Dδ

; ∀i ∈ {n′ + 1, . . . , n− 1}, zi ≤
∑n′

j=1 zj

n′ +Dδ

.

Then imagine that player n comes with bid zn that is at most
∑n′
j=1 zj

n′+Dδ
. In this new game,

because the threshold does not change, the set of winners continues to be {1, 2, . . . , n′}
and therefore n must be a loser. Indeed,

∀i ∈ {1, 2, . . . , n′}, zi >
∑n′

j=1 zj

n′ +Dδ

; ∀i ∈ {n′ + 1, . . . , n}, zi ≤
∑n′

j=1 zj

n′ +Dδ

.

To show Eq. 4.14, we actually prove its contrapositive: namely,

f (δ)
n (z−n, zn) = 0 (i.e. n is a loser) −→ z ≤

∑n′
j=1 zj

n′ +Dδ

.

Let n∗ be the number of winners when f
(δ)
n (z−n, zn) = 0, that is, in the game where

there are n players, the bid profile is z, and player n is a loser; then,

∀i ∈ {1, 2, . . . , n∗}, zi >
∑n∗

j=1 zj

n∗ +Dδ

; ∀i ∈ {n∗ + 1, . . . , n}, zi ≤
∑n∗

j=1 zj

n∗ +Dδ

.

The above also implies the following, where player n has been removed:

∀i ∈ {1, 2, . . . , n∗}, zi >
∑n∗

j=1 zj

n∗ +Dδ

; ∀i ∈ {n∗ + 1, . . . , n− 1}, zi ≤
∑n∗

j=1 zj

n∗ +Dδ

.

This means, n∗ is also the number of winners for the (n− 1)-player game, i.e., n∗ = n′.

This gives zn ≤
∑n∗
j=1 zj

n∗+Dδ
=

∑n′
j=1 zj

n′+Dδ
.

Because of Step 1, we only need to show Eq. 4.12 for z⊥n and z>n satisfying z>n > z⊥n >∑n′
j=1 zj

n′+Dδ
. Notice that in such a case, player n is always a winner. Therefore, let {1, . . . , n⊥, n}

and {1, . . . , n>, n} be the winners when the bid profiles are (z−n, z⊥n ) and (z−n, z>n ) respec-
tively.
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• Step 2. We now prove that
n⊥ ≥ n> . (4.15)

Assume by way of contradiction that n⊥ < n> and. As in Lemma 4.10, set n∆ def
=

n> − n⊥, S⊥
def
=
∑n⊥

j=1 zj and S>
def
=
∑n>

j=1 zj = S⊥ + S∆. Then each player i, with
n⊥ ≤ i < n>, is a loser when the bid profile is (z−n, z⊥n ) while a winner when the bid
profile is (z−n, z>n ); in particular,

S⊥ + z⊥n
n⊥ + 1 +Dδ

≥ zi >
S> + z>n

n> + 1 +Dδ

=
S⊥ + S∆ + z>n

n⊥ + n∆ + 1 +Dδ

.

Averaging over all n⊥ ≤ i < n> we get:

S⊥ + z⊥n
n⊥ + 1 +Dδ

≥ S∆

n∆
>

S⊥ + S∆ + z>n
n⊥ + n∆ + 1 +Dδ

but this is already a contradiction, since the right hand side is equivalent to (using a
similar technique as Eq. 4.11):

S∆

n∆
>

S⊥ + S∆ + z>n
n⊥ + n∆ + 1 +Dδ

⇔ S∆

n∆
>

S⊥ + z>n
n⊥ + 1 +Dδ

,

which actually contradicts the left hand side, as z>n > z⊥n . Therefore, n⊥ ≥ n>.

We now use the fact that n⊥ ≥ n> to obtain Eq. 4.12 for such z⊥n and z>n satisfying

z>n > z⊥n >
∑n′
j=1 zj

n′+Dδ
.

• Step 3. We now prove Eq. 4.12.

If n⊥ = n>, then for both (z−n, z>n ) and (z−n, z⊥n ), the set of winners is {1, 2, . . . , n⊥, n}.
Let n∗ = n⊥ + 1 = n> + 1 be the number of winners and we get

f (δ)
n (z−n, z⊥n ) =

1

n
· n+Dδ

n∗ +Dδ

· z
⊥
n (n∗ +Dδ)−

∑n∗−1
j=1 zj − z⊥n

z⊥nDδ

≤ 1

n
· n+Dδ

n∗ +Dδ

· z
>
n (n∗ +Dδ)−

∑n∗−1
j=1 zj − z>n

z>nDδ

= f (δ)
n (z−n, z>n ) .

If n⊥ > n>, let n⊥ = n> + n∆, S> =
∑n>

j=1 zj and S⊥ =
∑n⊥

j=1 zj = S> + S∆ as before.
Then we average over all zi for n> < i ≤ n⊥ and get:

S∆

n∆
>

S⊥ + z⊥n
n⊥ + 1 +Dδ

=
S> + S∆ + z⊥n

n> + n∆ + 1 +Dδ

. (4.16)

But this is equivalent to (again using the same technique as Eq. 4.11)

S∆

n∆
>

S> + z⊥n
n> + 1 +Dδ

. (4.17)
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Letting C1 = n+Dδ
n

, we now do the final calculation:

f (δ)
n (z−n, z>n )− f (δ)

n (z−n, z⊥n )

= C1 ·
(z>n (n> + 1 +Dδ)− S> − z>n

(n> + 1 +Dδ)z>n
− z⊥n (n⊥ + 1 +Dδ)− S⊥ − z⊥n

(n⊥ + 1 +Dδ)z⊥n

)
= C1 ·

( S⊥ + z⊥n
(n⊥ + 1 +Dδ)z⊥n

− S> + z>n
(n> + 1 +Dδ)z>n

)
= C2 ·

(
(S⊥ + z⊥n )(n> + 1 +Dδ)z

>
n − (S> + z>n )(n⊥ + 1 +Dδ)z

⊥
n

)
= C2 ·

(
(S> + S∆ + z⊥n )(n> + 1 +Dδ)z

>
n − (S> + z>n )(n> + n∆ + 1 +Dδ)z

⊥
n

)
= C2 ·

(
S>(n> + 1 +Dδ)(z

>
n − z⊥n ) + S∆(n> + 1 +Dδ)z

>
n − n∆(S> + z>n )z⊥n

)
≥ C2 ·

(
S>(n> + 1 +Dδ)(z

>
n − z⊥n ) + S∆(n> + 1 +Dδ)z

>
n − n∆(S> + z⊥n )z>n

)
≥ 0

Here the last inequality has used z>n − z⊥n ≥ 0 and S∆(n>+ 1 +Dδ)−n∆(S>+ z⊥n ) > 0
(by Eq. 4.17).

This finishes the proof that f (δ) is monotonic.

Lemma 4.12. f (δ) is 1-distinguishably monotonic.

Proof. We already know from Lemma 4.11 that f (δ) is monotonic. Also, the integrability of
f (δ) is obvious, because f (δ) is piecewise continuous, and there are at most n pieces, as the
number of winners decreases when zn increases (recall Eq. 4.15). We are therefore left to
prove the “distinguishability condition”.

Fix a player i ∈ [n] and two distinct valuations vi, v
′
i ∈ {0, 1, . . . , B}, and assume that

vi < v′i. Define v−i
def
= (vi, vi, . . . , vi), then:

• f(vi, v−i) = 1
n

since there are n winners, all bidding the same valuation.

• f(z, v−i) = 1
nDδ

(Dδ + n− 1− vi
z

(n− 1)) > 1
n
, when vi < z ≤ (1 +Dδ)vi.

Here the upper bound z ≤ (1+Dδ)vi is to make sure that the number of winners is still n on
input (z, v−i). Notice that f(z, v−i) is a function that is strictly increasing when z increases
in such range, and therefore∫ v′i

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz ≥

∫ min{v′i,(1+Dδ)vi}

vi

(
fi(z, v−i)− fi(vi, v−i)

)
dz > 0 ,

as desired.

Lemma 4.13. f (δ) is δ-good.

Proof. We already know from Lemma 4.12 that f (δ) is 1-DM. Therefore, in order to prove
that f (δ) is δ-good, we only need to show that Eq. 4.1 holds. We will actually prove that
Eq. 4.1 holds not only for the discrete cube {0, 1, . . . , B}[n] but also in the continuous cube
[0, B][n].
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Without loss of generality, assume z1 ≥ z2 ≥ · · · ≥ zn. We first observe that:

n∑
i=1

f
(δ)
i (z)zi =

n∗∑
i=1

f
(δ)
i (z)zi =

1

n
· n+Dδ

n∗ +Dδ

·
n∗∑
i=1

zi(n
∗ +Dδ)−

∑n∗
j=1 zj

Dδ

=
1

n
· n+Dδ

n∗ +Dδ

·
(

n∗∑
i=1

zi

)
.

For each player k with k > n∗, because he is a loser, we have,

n∑
j=1

f
(δ)
j (z)zj +Dδ · f (δ)

k (z)zk =
n∑
i=1

f
(δ)
i (z)zi =

n+Dδ

n
·
∑n∗

i=1 zi
n∗ +Dδ

≥ n+Dδ

n
· zk

satisfying Eq. 4.1, where the last inequality is due to k > n∗ and Eq. 4.7.
For each winner i (i.e., with i ≤ n∗), we have

n∑
j=1

f
(δ)
j (z)zj +Dδ · f (δ)

i (z)zi =
1

n
· n+Dδ

n∗ +Dδ

·
(

n∗∑
i=1

zi

)
+Dδ · f (δ)

i (z)zi

=
1

n
· n+Dδ

n∗ +Dδ

zi(n
∗ +Dδ) =

1

n
· zi(n+Dδ)

again satisfying Eq. 4.1.

4.5 Our Mechanism M
(δ)
opt

Theorem 1. ∀n, ∀δ ∈ (0, 1), and ∀B, there exists a mechanism M
(δ)
opt such that for every

δ-approximate-valuation profile K, every true-valuation profile θ ∈ K, and every strategy
profile v ∈ UDed(K):

E
[
SW
(
θ,M

(δ)
opt(v)

)] ≥ ((1− δ)2 + 4δ
n

(1 + δ)2

)
MSW(θ) .

Proof. By Lemma 4.13, the function f (δ) from Definition 4.9 is a (well-defined) allocation

function that is also δ-good. Therefore, invoking Lemma 4.8, the mechanism M
(δ)
opt

def
= Mf (δ)

yields the target social welfare. �
Finally, we note that M

(δ)
opt can be implemented efficiently (just like the second-price

mechanism):

Claim 4.14. The outcome function M of M
(δ)
opt is efficiently computable.

Proof. It suffices to show that both the allocation functionMA = f (δ)
∣∣
{0,1,...,B}[n] and expected

price function MP are efficiently computable over {0, 1, . . . , B}[n].
First, f (δ) is efficiently computable for trivial reasons: the number of winners n∗ is between

1 and n and can be determined in linear time.
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However, MP is efficiently computable for a more involved reason. Without loss of
generality, we show how to compute the expected price for player n as a function of vn, i.e.,

MP
n (v−n, vn) = f (δ)

n (v−n, vn) · vn −
∫ vn

0

f (δ)
n (v−n, z) dz .

Indeed, when v−n is fixed, f
(δ)
n is a function piece-wisely defined according with respect

to vn, since different values of vn may result in different numbers of winners n∗. Assume
without loss of generality that v1 ≥ v2 ≥ · · · ≥ vn−1, and let n′ be the number of winners
when player n is absent.

When vn ≤
∑n′
j=1 vj

n′+Dδ
, the proof of the monotonicity of f (δ) implies that f

(δ)
n = 0, so that

integral below this line is zero.

When vn >
∑n′
j=1 vj

n′+Dδ
, one can again see from the proof of the monotonicity of f (δ) that

n∗ is non-increasing as a function of vn. Therefore, f
(δ)
n contains at most n different pieces

and, for each piece with n∗ fixed, f
(δ)
n (v−n, vn) = a + b/vn is a function that is symbolically

intergrable. Therefore, the only question is how to calculate the pieces for f
(δ)
n .

This is again not hard, by using a simple line sweep method. One can start from vn =∑n′
j=1 vj

n′+Dδ
and move vn upwards. At any moment, one can calculate the earliest time that

Eq. 4.7 is violated, and claim that another piece of f
(δ)
n is found.
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