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Abstract—This paper looks at the problem of designing wire-
less medium access algorithms. Inter-user interference at the
receivers is an important characteristic of wireless networks.
We show that decoding (or canceling) this interference results
in significant improvement in the system performance over
protocols that either treat interference as noise, or explicitly
avoid interference at the receivers by allowing at most one of
the transmitters in its range to transmit. This improvement
in performance is realized by means of a medium access
algorithm with: (a) polynomial computational complexity per
timeslot, (b) polynomially bounded expected queue-length at the
transmitters, and (c) a throughput region that is at least a poly-
logarithmic fraction of the largest possible throughput-region
under any algorithm operating using that treats interference as
noise. Thus, the hardness of low-delay network scheduling (a
result by Shah, Tse and Tsitsiklis [1]) is an artifact of explicitly
avoiding interference, or treating it as noise and can be overcome
by a rather simple medium access algorithm that does not require
information theoretic “block codes.”

I. INTRODUCTION

We are interested in designing “efficient” medium access

protocols in the context of wireless networks. In the most

general case, a wireless network consists of a set of transmit-

ters and receivers communicating over the wireless channel.

The signals transmitted by the different transmitters are cor-

rupted by noise, and also the simultaneous transmissions from

different transmitters potentially interfere with each other. By

“efficient” we mean a protocol that gives good throughput and

delay guarantees for all the users, and has small computational

complexity (polynomial in the system-size) per unit time.

A vast majority of previous research on this topic, starting

with the seminal work by Tassiulas and Ephremides [2], [3]

has focused on guaranteeing good throughput performance.

In these network models, the so-called independent set inter-

ference model is used: a link in the communication network

is represented as a node in a graph, and two nodes are

connected by an edge if the transmissions on the corresponding

communication links interfere with each other. The weight of a

node is proportional to the packet backlog at the corresponding

transmitter. The set of allowed schedules consists precisely

of all the independent sets in this graph. The MaxWeight

scheduler picks, in every timeslot, an independent set with the

maximum weight. This algorithm is known to be throughput-

optimal, but choosing “heavy” independent sets (even when

all nodes have a weight = 1) is an NP-hard problem. There

have been results [4], [5], [6], [7], [8], [9] for reducing the

computational complexity without compromising throughput,

but the expected queue-lengths at the transmitters under these

schemes are known to be super-polynomial in the system-size.

These results suggest that there is a tension between the

three objectives of providing high throughput, low delays, and

small computational complexity. This observation was made

concrete in [1] where the authors show that in the independent

set interference model or the analogous SINR1-based decoding

model, for general network graphs, there does not exist a

scheduling policy that:

1. provides at least an nǫ−1 fraction of the throughput

region, for some ǫ > 0,
2. results in O(nK) expected queue-sizes at each of the

transmitters, for some integer K, and

3. has O(nM ) computational complexity per timeslot for

some integer M,

unless P=NP. We would ideally like to guarantee a good

performance on each of these three metrics (throughput, delay

and complexity). This brings us to the next logical question:

how, if at all, can we get around this hardness result?

In this paper, we make a case for decoding interference,

i.e., not treating it as noise, and not taking any explicit efforts

to avoid it. There is a rich history of interference decoding

or (more recently) interference alignment schemes in the

information theory community [10], [11]. It is well-known that

decoding or aligning interference improves throughput. We

show that in addition, it helps in guaranteeing low2 expected

queuing delay and also low computational complexity per

timeslot. Specifically, we design a medium-access algorithm

(QNUB) that: (a) guarantees an arbitrarily large fraction of the

maximum throughput, and (b) results in polynomially bounded

expected queue-lengths and polynomially bounded number of

computations per timeslot, when the load is within a poly-

logarithmic fraction of the maximum throughput (which is

more than the nǫ−1-fraction throughput requirement for the

hardness result in [1]). The main reason why the hardness

result by Shah et al is circumvented is that we allow for

interference between transmissions and thus, are not required

to select independent sets as the only possible schedules.

The rest of this paper is organized as follows: in Section II

we define the system model and the problem statement. In

Section III we propose a medium access protocol (QNUB) for

1Signal-to-Interference and Noise Ratio
2In this paper, unless otherwise specified, “low” in the context of delay or

complexity means “polynomially bounded in the system-size.”
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this system. We show that the QNUB protocol can achieve any

pre-specified fraction of the throughput region for this system

(Section IV, Theorem 1). In Section V we derive the conditions

for a successful decoding of the symbols transmitted under

QNUB. In Section VI we analyze the complexity of decoding

the symbols under the QNUB protocol, and show that it is

polynomially bounded in the system-size per timeslot (Theo-

rem 3). In Section VII, we analyze the expected queue-size

at the transmitters, and show that it is bounded by a constant

independent of n under the QNUB protocol (Theorem 4). The

last two results (constant decoding delay and constant expected

queue-length) hold if the system has a load that is a poly-

logarithmic fraction of the maximum possible. We conclude

with a discussion of results and extensions in Section VIII.

Mainly due to space limitations, a number of proofs have been

omitted and presented in a technical report [12].

As a result of Theorems 1, 3 and 4, the hardness result of [1]

does not hold here. While this is not terribly surprising, it is

worth noting that the algorithm that we propose is distributed,

performs minimal computation and does not require classical

information theoretic “long block codes.” We believe it (more

precisely, its natural variant) would be of practical utility; it is

the first step of a long term research program with an end

goal of low complexity medium access that achieves high

throughput and low delay for generic wireless network.

II. SYSTEM MODEL, PROBLEM STATEMENT

A. System Model

We consider a system with n receivers (access points),

communicating with a set of users over the wireless channel.

Let the set of receivers be R = {R1, . . . , Rn}. The system

evolves in discrete time. A user in this system is associated

with a user-class, identified by the set of receivers within its

transmission range. There are S ≤ 2n−1 possible user-classes.

For any integer k ≥ 1, let [k] := {1, . . . , k}. For ℓ ∈ [n] and

s ∈ [S], let Hℓ,s = 1 if the users of class s have the receiver

Rℓ in their transmission range, and 0 otherwise.

We make the following simplifying assumption: there is

exactly one user belonging to each one of the S classes. This

assumption is WLOG because if there are more than one users

of the same class, then we treat it as one “super-user,” with

the external arrivals to the individual users being replaced by

one arrival process with an appropriately higher rate. Further,

if we show that the expected queue-length of this “super-user”

is “small,” then each of the individual user-queues are “small”

as well.

External arrivals: In every timeslot, a (potentially nonzero)

number of files enter the system. A file is a finite collection of

symbols (or bits). Let As(t) be the indicator random variable

that defines if a user-class s has a file-arrival at the end of

timeslot t. We assume that the file-arrival or non-arrival in

any class s is an i.i.d. Bernoulli process. That is,

As(t) =

{

1 with probability λs,

0 with probability 1− λs.

We assume that the (new) file-arrivals occur just before the end

of timeslot t, so the (new) arrival(s) in timeslot t, if any, are

available for transmission in timeslot t+1, depending upon the

particular medium access algorithm employed. All the random

variables {As(t)}s∈[S],t∈Z are mutually independent. When

no confusion is possible, we say that a given file belongs

to a class s if it arrives to the user of class s. We assume

that the size (in number of symbols) of a file of class s is

geometrically distributed with the parameter µs, independently

of all other random variables. For concreteness, the reader

may think of these symbols as bits or equivalently, Binary

Phase-shift Keying (BPSK) symbols ∈ {−1, 1}, or any other

constellation. In every timeslot, a receiver receives a channel-

coefficient-weighted linear combination of the transmissions

of the users within its range, where the channel coefficients

can be random in general. For ease of exposition, we assume

that the channel coefficients are all equal to 1. This is not a

binding assumption for any of the results (in qualitative sense).

Departure: When each one of the symbols in the file has been

successfully decoded by each one of the receivers within the

corresponding user’s transmission range, the file leaves the

system. (The exact mechanism of decoding the symbols is

protocol-dependent.)

B. Problem statement

We require successful decoding of all the symbols in every

file, at each of the receivers within the transmission range of

the corresponding user. Let ns(t) denote the number of files

of class s present in the system at the beginning of timeslot

t. Define ρs := λs/µs. Our objective is to design a medium

access protocol with the following properties:

1. Given any ǫ > 0, it stabilizes (makes positive recur-

rent) the Markov chain [n1(t), . . . , nS(t)] as long as
∑S

s=1 Hℓ,sρs ≤ 1/(1 + 2ǫ) for all ℓ ∈ [n]. Note that

if ρ = [ρs] can be supported by any algorithm that

treats interference as noise, then these inequalities are

necessarily satisfied: they are linear relaxation of the

independent set constraints.

2. For some integer K > 0, if
∑S

s=1 Hℓ,sρs ≤ 1/(log n)K

for all ℓ ∈ [n], then the expected number of symbols

(under the stationary measure) to be transmitted corre-

sponding to the user s is polynomially bounded in n for

all s, and the expected decoding complexity per timeslot

is polynomially bounded in n, for each receiver Rℓ.

Main result: We design a medium access algorithm called

QNUB (Section III) that satisfies the above two requirements.

III. MEDIUM ACCESS ALGORITHM

The Medium Access (MAC) algorithm that we propose

operates at the granularity of the “files,” which is finer than the

users. Thus effectively each user is making decision related to

the MAC. However for ease of exposition, we shall provide

behavioral description per-file. To that end, we define the

behavior of a given file, referred to as ⋆. Consider a timeslot

t, after the time in while file arrived, and has not yet departed:



it transmits a linear combination of (a subset of) its symbols.

The symbols involved in the linear combination include all

the symbols that were ever involved in a linear combination

in any previous timeslot, and possibly one more (new) symbol.

Suppose that in timeslot t − 1, the file ⋆ transmitted a linear

combination of k symbols. Then the transmission of ⋆ in

timeslot t is of the form

y(t) = (a1(t)x1 + · · ·+ ak(t)xk) + 1new · ak+1(t)xk+1

where xi denotes the ith symbol in the file, and the coefficients

ai(t) are chosen to be i.i.d. N (0, 1) random variables. Here

1new is the indicator that a “new” symbol is introduced in the

previous timeslot’s linear combination. It can be a function of

other system parameters (not shown here explicitly). The file

⋆ stops introducing newer symbols in the linear combinations

once all its symbols are already part of the linear combination,

i.e., it has no more new symbols to transmit.

When a receiver, say Rℓ is able to decode a subset of the

symbols transmitted by ⋆, it sends an acknowledgment that

informs ⋆ of the indices of the decoded symbols. The file ⋆
continues transmitting its linear combinations until it receives

an acknowledgment from each of the intended receivers for

each of its symbols, and then leaves the system.

Mathematically, define the random variables Ysj (t) and

Zsj (t) as follows:

1. Ysj (t) = 1 if in timeslot t the jth file of class s introduces

a new symbol in the current linear combination, and 0
otherwise.

2. Zsj (t) = 1 if at the end of timeslot t the jth file of class s
has at least one more new symbol to transmit (in timeslot

t + 1 or later, as part of the linear combination), and 0
otherwise.

The random variable Ysj (t) is defined by the policy, while

random variable Zsj (t) is defined (in general) by the file-

size distribution and the transmission policy. We assume that

the file-sizes for all users are geometrically distributed, so that

P(Zsj (t) = 0) = µs for all j and t. Thus, E[Zsj (t)] = 1/µs−
1, and the average size of a file of class s is 1/µs since a file

is assumed to have at least 1 symbol to begin with. Thus

ρs = λs/µs denotes the average “load” of files of class s.
Let ns(t) denote the number of files of class s that are

present in the system at the beginning of timeslot t. Then

ns(t+ 1) = ns(t)−
ns(t)
∑

r=1

Ysj (t)(1− Zsj (t)) +As(t+ 1).

Each of the receivers Rℓ maintains a price qℓ that is updated
according to

qℓ(t+ 1) =



qℓ(t) + αℓ





S∑

s=1

Hℓ,s

ns(t)∑

j=1

Ysj (t)− 1









+

, (1)

where αℓ is a small positive constant to be specified later.

There are two types of queue that naturally arise in this

system, defined below.

Definition 1 (Equation-queue). For a receiver Rℓ, define the

equation queue-length Qℓ(t) at the beginning of timeslot t to

be the total number of symbols that are involved in the any of

the linear combinations received by Rℓ, minus the number of

equations (or linear combinations) received, until the end of

timeslot t− 1. ⋄
Definition 2 (Symbol-queue). For each user s, define the

symbol queue-length Ps(t) at the end of timeslot t to be the

total number of symbols that are present (in one of the files)

at s that have not yet been successfully decoded by at least

one of the intended receivers, at the end of timeslot t. ⋄
The quantity qℓ(t) is proportional to the equation queue-

length at the beginning of timeslot t > 0, i.e., qℓ(t) = αℓQℓ(t)
if qℓ(0) = Qℓ(0) = 0. At the beginning of every timeslot t
for which qℓ(t) = 0, the receiver Rℓ sends (broadcasts) an

acknowledgment to each one of its transmitters that all the

symbols transmitted (to Rℓ) until the beginning of timeslot t
have been decoded. (That this is indeed the case is established

by Theorem 2.) The files leave the system based upon these

acknowledgments.
We let Ysj (t) = 1 with probability xs(t). This “transmission

rate” xs(t) is defined as

xs(t) = min

{
ws

ns(t) +
∑n

ℓ=1 Hℓ,sqℓ(t)
, 1

}

.

We choose ws = cρs for some constant c > 0 to be chosen

later. We call this scheme the Queue-length and Number of

Users Based (QNUB) scheme.

Some remarks on this medium access / congestion control

algorithm are in order.

(1) This medium access algorithm is motivated by [13],

where the objective is to establish the connection-level stability

of a class of congestion-control algorithms without the time-

scale separation assumption. In [13] the authors consider a

continuous-time model where each user transmits data at

a “rate” xs(t), and the receivers receive a vector of the

transmitted symbols (as opposed to a linear combination). This

would be the case if the different users were transmitting on

different carrier frequencies, and data were infinitely divisible.

Our analysis of QNUB requires only minor modifications to

show that even if the receivers receive a linear combination of

the transmitted symbols/packets (which would be the case if all

the users were transmitting on the same carrier frequency), the

connection-level stability result of [13] holds, i.e., the Markov

chain of the number of users (ns(t)) and the prices (effective

queue-lengths) at the receivers (qℓ(t)) is positive recurrent if
∑S

s=1 Hℓ,sρs < 1. Thus we strengthen the result of [13].

(2) The main qualitative difference between the congestion

controller in [13] and QNUB is the presence of the term ns(t)
in the denominator. It results in a possible loss of throughput:

depending upon the choice of c, we can only establish the

positive recurrence of the Markov chain [qℓ(t), ns(t)]ℓ,s for

a constant fraction of the throughput region. However, this

modification helps in keeping the expected decoding delay

within a polynomial of the system-size (n).



(3) Another difference between the two algorithms is that

each user needs to know ns(t) and ρs. A simple approach

would require communication between the receivers to cal-

culate (or estimate) these quantities. We plan to address this

issue in the future work.

IV. THROUGHPUT PERFORMANCE

We now analyze the throughput performance of the QNUB

algorithm. The following two technical lemmas are useful in

establishing the desired result (Theorem 1). Their proofs are

straightforward, and available in the tech report [12].

Lemma 1. E[ns(t + 1)2 − ns(t)
2 | ns(t), xs(t)] =

2ns(t)(λs − ns(t)xs(t)µs) + (λs − ns(t)xs(t)µs)
2 + λs(1−

λs) + ns(t)xs(t)µs(1− xs(t)µs).
Proof: Please see Appendix A.

Lemma 2. Define αmax := max
1≤i≤n

αi, L0 := max
1≤ℓ≤n

∑S
s=1 Hℓ,s

and S0 := max
1≤s≤S

∑n
ℓ=1 Hℓ,s. Then

E

[
n∑

ℓ=1

q2ℓ (t+ 1)− q2ℓ (t)

2αℓ

∣
∣
∣
∣
∣
n(t), q(t)

]

≤ −

n∑

ℓ=1

qℓ(t) + nαmax

+
S∑

s=1

{
n∑

ℓ=1

qℓ(t)Hℓ,s

}

ns(t)xs(t)

+ αmaxL0S0

S∑

s=1

(
n2
s(t)x

2
s(t) + ns(t)xs(t)(1− xs(t))

)
.

Proof: Please see [12].

Theorem 1. Fix any ǫ > 0. If (1+2ǫ)
∑S

s=1 Hℓ,sρs < 1 for all

ℓ, then choosing c > (1+ǫ)2/ǫ and αℓ ∈
(

0, µsws

100L0S0(1+ǫ)ρs

)

for all ℓ ∈ [n] in the QNUB algorithm makes the Markov

chain [n(t), q(t)] is positive recurrent.

Proof: This proof is based on the same ideas as the

stability proof in [13]. Please see [12] for a detailed proof.

Thus the QNUB algorithm achieves any pre-specified frac-

tion of the largest possible throughput region under any algo-

rithm, X := {ρ = [ρ1, . . . , ρs] :
∑S

s=1 Hℓ,sρs < 1 ∀ ℓ ∈ [n]}.
V. DECODABILITY

Our objective now is to establish that for the receiver Rℓ,
at the end of every timeslot t such that qℓ(t) = 0, all the

symbols that it has received so far (until the end of timeslot t)
are decodable (Theorem 2).

Definition 3 (Permutation-type matrix). A matrix A ∈
{0, 1}n×n is said to be a permutation-type matrix if there

exists a permutation σ of {1, 2, . . . , n} such that Ai,σ(i) = 1
for all 1 ≤ i ≤ n.

Lemma 3. Consider a matrix M ∈ ℜn×n with Mij ∼ N (0, 1)
for all 1 ≤ i, j ≤ n. Let A ∈ {0, 1}n×n be a permutation-

type matrix. Let B ∈ ℜn×n be obtained by the element-wise

product of M and A, i.e., Bij = MijAij . Then rank(B) = n
with probability 1.

Proof: Please see [12].

Remark 1. The result clearly holds for any continuous dis-

tribution on ℜ.
Theorem 2. Fix any ℓ ∈ [n]. Let qℓ(0) = 0 and let T > 0 be

the smallest integer (time-index) such that qℓ(T ) = 0. Then

with probability 1, all the symbols that are transmitted in any

of the timeslots in {0, . . . , T − 1}, intended to be received by

the receiver Rℓ, are decoded by the receiver Rℓ at the end of

timeslot T − 1.

Proof: Please see [12].

The main idea behind the proof of Theorem 2 is that if

qℓ(0) = qℓ(t) = 0, then from the beginning of timeslot 0 until

the beginning of timeslot t, the receiver Rℓ has received t
linear combinations of t symbols. Solving this linear system

involves inverting a matrix of coefficients, which is possible

because the coefficients are chosen to be i.i.d. N (0, 1) (or any

other continuous distribution).

VI. DECODING DELAY ANALYSIS

Our objective here is to analyze the return time to 0 of the

equation-queue Qℓ (corresponding to the receiver Rℓ). The

return time is denoted by Tℓ, and defined as

Tℓ = min{k > 0 : Qℓ(k) = 0, Qℓ(0) = 0}.

The reason we are interested in the return time is that from

Theorem 2, a receiver Rℓ can decode all the symbols received

in the timeslots {0, . . . , Tℓ−1} at the end of the timeslot Tℓ by

inverting a matrix of dimensions Tℓ × Tℓ, and the complexity

of this operation is O(T 3
ℓ ) computations over Tℓ timeslots

(there are faster algorithms, but the simple matrix inversion

algorithm suffices our purpose). Hence if Tℓ is “large,” say

Tℓ ∼ en, then the matrix inversion is a time-consuming step,

potentially hurting the “low complexity” part of the overall

scheme. The main result here is Theorem 3 which shows that

all the moments (in particular, the third moment) of the return

time to 0 of the queue Qℓ are bounded independently of n, if

the load is sufficiently small.

From Theorem 1, given ǫ > 0, with the choice c > (1 +
ǫ)2/ǫ, any load vector [ρ1, . . . , ρs] satisfying

∑s
s=1 Hℓ,sρs ≤

1/(1 + 2ǫ) for all ℓ is stabilized by the QNUB algorithm.

Consider the choice c = (log n)4. For n large enough, we

have c > (1+ǫ)2/ǫ for any pre-specified ǫ, implying at least a

fraction 1/3 (corresponding to ǫ = 1) of the throughput region

for n large enough (in fact, for n ≥ 5). Consider a vector

ρ = [ρ1, . . . , ρS ] such that
∑S

s=1 Hℓ,sρs ≤ 1/(log n)5. Since

the entire throughput region is given by X = {[ρ1, . . . , ρs] :
∑s

s=1 Hℓ,sρs < 1}, we have ρ ∈ (1/(log n)5)X . Our

objective is to show that for this choice of ρ, the equation

queue-length has a “small” expected size, as follows.

Definition 4 (Stochastic dominance). Given random variables

X and Y, we say that X is stochastically dominated by Y and

write X ≤st Y if for all z ∈ ℜ,P(X ≤ z) ≥ P(Y ≤ z). ⋄
Equation queue-length evolution: Choose n large enough
(say n ≥ 15) such that 2/ log n ≤ 3/4. The number of arrivals
to the equation-queue Qℓ at the beginning of timeslot t is



distributed according to

Jℓ(t)
d
=

∑

s:Hℓ,s=1

B(ns(t), xs(t))

≤st

∑

s:Hℓ,s=1

B

(

ns(t),
cρs
ns(t)

)

≤st

∑

s:Hℓ,s=1

Poi(2cρs)

d
= Poi

(

2c

S∑

s=1

Hℓ,sρs

)

≤st Poi

(
2

log n

)

, (2)

where the summation notation is used to describe a sum of

independent random variables with the specified distribution.

Here the first inequality holds because:

1) if X ∼ B(n, p) and Y ∼ B(n, q) with p < q, then

X ≤st Y (see [12]), and

2) if X ≤st X1 and Y ≤st Y1, and if the random variables

X,X1, Y, Y1 are mutually independent, then X+Y ≤st

X1 + Y1 (see [12]).

The second inequality holds because:

1) B(n, δ/n) ≤st Poi(2δ) as long as 1− δ ≥ e−2δ, which

holds if δ ≤ 0.75 (see [12]), and

2) if X ≤st X1 and Y ≤st Y1, and if the random variables

X,X1, Y, Y1 are mutually independent, then X+Y ≤st

X1 + Y1 (see [12]).

The second-last equality holds because the sum of independent

Poisson random variables is a Poisson random variable, while

the last stochastic dominance holds because if 0 < α < β and

X ∼ Poi(α) and Y ∼ Poi(β), then X ≤st Y.
In reference to Equation (2), our objective now is to show

that the length of Qℓ at the beginning of timeslot t, i.e.,

Qℓ(t), is stochastically dominated by the length of a single-

server queue, served by a deterministic, unit-capacity server,

and having i.i.d. Poi(2/ log n) arrivals in each timeslot. This

construction is useful because it is easier to handle a queuing

system with i.i.d. arrivals.

Lemma 4. Consider two queues Qℓ and R, each served by

a single server with a deterministic capacity of 1 packet per

timeslot. The evolution of Qℓ is given by

Qℓ(t+ 1) = (Qℓ(t) + Jℓ(t)− 1)
+
,

where Jℓ(t) is given by Equation (2). The evolution of R(t)
is given by

R(t+ 1) = (R(t) +B(t)− 1)
+
,

where B(t) ∼ Poi(2/ log n), i.i.d., independent of all other

random variables, and with log n ≥ 8/3. Let Qℓ(0) = R(0) =
0. Then Qℓ(t) ≤st R(t) for all t ≥ 0.

Proof: The proof follows an inductive argument. Please

see [12] for details.

We now analyze the return time to 0 of a Markov chain with

i.i.d. Poi(θ) arrivals and deterministic service of 1 packet per

timeslot, with θ < 1 for stability. We are interested in the

case when θ is small, and assume that θ < 1/(2e). The main

conclusion of Theorem 3 is that each of the moments of the

return time to 0 of the queue under consideration is finite,

and bounded by a constant independent of the system-size

n. Thus, the expected number of operations required for the

matrix-inversion operation mentioned at the beginning of this

section is finite, independent of n as long as 2/ log n < 1/(2e)
or log n > 4e.

Theorem 3. Consider two queues Qℓ and R, each served by

a single server with a deterministic capacity of 1 packet per

timeslot. The evolution of Qℓ is given by

Qℓ(t+ 1) = (Qℓ(t) + Jℓ(t)− 1)
+
,

where Jℓ(t) is given by Equation (2). The evolution of R(t)
is given by

R(t+ 1) = (R(t) +B(t)− 1)
+
,

where B(t) ∼ Poi(2/ log n), i.i.d., independent of all other
random variables, and with log n ≥ 8/3. Let Qℓ(0) = R(0) =
0. Define Tℓ := min{t ≥ 1 : Qℓ(t) = 0}. Then for θ <
1/(2e), we have P(Tℓ ≥ k) ≤ 2(eθ)k for all k ≥ 1. Further,
for all m ≥ 1,

E[Tm
ℓ ] ≤ 2

((
m

log 2
+ 1

)m+1

+m! ·

(
1

log 2

)m+1
)

.

Consequently, the expected decoding complexity (T 3
ℓ compu-

tations over Tℓ timeslots, or E[T 2
ℓ ] computations per timeslot)

at each of the receivers Rℓ is constant per timeslot.

Proof: Please see Appendix C.

As a consequence of Theorem 3, we show that the expected

value of the maximum of n return-time random variables

T1, . . . , Tn is O(log n). This claim does not require the queues

to have independent arrival processes as long as each arrival

process is uniformly dominated by an i.i.d. Poisson arrival

process for all timeslots.

Lemma 5. Consider a system [Q1, . . . , Qn] of n single-server

queues. Let T = max(T1, . . . , Tn), where Ti is the return time

to 0 of Qi. Let the number of arrivals to Qi at the beginning

of timeslot t be Ji(t). Let Ji(t) ≤st Poi(θ) for all i and t,
with 2eθ < 1. Each of the queues Qi is served a constant

service rate of 1 packet per timeslot. Then there exists a0 > 0
such that E[T ] ≤ a0 log n for all n large enough.

Proof: Please see [12].

VII. EXPECTED QUEUE-LENGTH ANALYSIS

Let Ps denote the symbol-queue maintained by the user

corresponding to the class s, and Ps(t) denote the queue-

length at the end of timeslot t. (See Definition 2 for the

definition of Ps(t).) The main result here (Theorem 4) is that

if the system has a sufficiently light load, then the expected

value of Ps(t) is bounded by a constant independent of n.
The arrival process for Ps: If A′

s(t) denotes the number of

arrivals to Ps at the beginning of timeslot t, then

A′
s(t) =

{

0 with probability 1− λs

k with probability λs(1− µs)
k−1µs, k ≥ 1.



The departure process for Ps: A given symbol leaves the

symbol-queue Ps when it has been successfully decoded by

each one of the intended receivers (i.e., every receiver within

the transmission range of the user of class s). For ease of

analysis, we consider a somewhat wasteful medium access

strategy as defined below, which we continue to call QNUB.

1) Starting with Qℓ(0) = 0 for all ℓ, let the medium access

algorithm QNUB run on its own and the queues evolve

accordingly.

2) When a given queue, say Qℓ becomes 0, it informs its

transmitters by broadcasting a message. The transmitters

continue transmitting according to the policy (QNUB),

but note the last new symbol that was transmitted before

receiving the acknowledgment that Qℓ has become 0.
Each transmitter notes the first time it hears from a

receiver that its queue has become 0, and calls that

timeslot a “marker.”

3) When each of the queues has become 0 at least once,

say at the end of timeslot T0, each of the transmitters

(with the understanding that each one of the symbols

transmitted before the marker has been decoded by each

one of the intended receivers) start transmitting the (lin-

ear combinations of the) symbols that were transmitted

after the marker. Each of the receivers starts with empty

queues (ignoring all the linear equations received in the

time when its queue first became empty, until the current

timeslot T0), and the process continues. ⋄
This strategy is wasteful as compared to the original QNUB

strategy because the receivers ignore all the linear combina-

tions received after the first time-instant when their equation-

queues become zero, until that time when each of the equation-

queues becomes 0 at least once, and the process repeats. The

advantage is that this strategy is easier to analyze, and yields

bounds on the expected symbol queue-lengths of the original

system. (It is possible to formally show this dominance, using

standard arguments similar to those in the proof of Lemma 4.)

We first consider a system with the arrival process as

described by A′
s(t), and deterministic service of 1 packet (or

symbol) per timeslot. We show that as long as ρs = λs/µs <
1, the system is stable and has an exponential decay of the

probability measure.

Lemma 6. Consider a single-server queue with deterministic

service of 1 packet per timeslot, and the number of arrivals

in every timeslot is equal to A′
s(t), i.i.d. across timeslots, with

λs/µs < 1. Then the stationary distribution of the resultant

queue-length Markov chain is given by

πk = π0λs

(

1− µs

1− λs

)k

, k ≥ 1

with π0 = (µs − λs)/(µs(1− λs)).
Proof: Elementary flow-balance.

An immediate consequence of Lemma 6 is that the expected

queue-length in a queuing system with A′
s(t) arrivals and 1

unit of service in every timeslot is constant. Now the actual

system at hand is such that it has A′
s(t) arrivals in every

timeslot, with (presumably) ρs ≪ 1, but the service process is

governed by a complex protocol. We show that as long as the

load is a poly-logarithmic fraction of the maximum possible

load, even this system has a “small” expected queue-size. We

need to consider a lightly loaded system because the exact

system is difficult to analyze. This restriction is acceptable

towards our final goal, because the hardness result in [1]

applies as long as the throughput achieved under the candidate

protocol is at least an nǫ−1 fraction of the maximum possible

for some ǫ > 0. We believe that the result can be proved

without the poly-logarithmic factors, but do not consider it

for this paper.

Theorem 4. Consider the choice c = (log n)4 in the

QNUB algorithm. Let the load be such that
∑S

s=1 Hℓ,sρs ≤
1/(log n)5. Then for n large enough, the expected length of Ps

under the stationary distribution is bounded by 8a0r0
3µs

for some

constant r0, and a0 as defined in the statement of Lemma 5.

Proof: Please see [12].

Thus, we have established that the expected queue-length

at each of the transmitters is polynomially bounded in the

system-size n (in fact, bounded by a constant) as long as the

load is within a poly-logarithmic fraction of the maximum

possible load.

VIII. CONCLUSIONS AND DISCUSSION

We considered a wireless network with a fixed set of n
receivers and a fixed set of transmitters. Each users sees

external file-arrivals. A file consists of a finite number of

symbols that need to be transmitted to each of the receivers

in the transmission range. For this system, we developed

a medium access algorithm (QNUB) that achieves any pre-

specified fraction of the throughput region. Further, if the

load is within a poly-logarithmic fraction of the maximum,

then the expected queue-length at each transmitter and the

decoding complexity per timeslot are constant independent of

the system-size (n). Thus, decoding interference not only helps

improve throughput, but also reduce computational complexity

and yields a better delay performance, in contrast with the

result by Shah et al [1] that in a general wireless network

with the independent set scheduling constraint, these three

objectives are unattainable unless P=NP.

This result can be strengthened to account for the following

modifications to the system-model.

(1) Noise: Consider a system where additive white Gaussian

noise corrupts the received symbols at the receiver Rℓ. In

this case the received signal can be written as y = V x + w.
A possible transmission strategy is transmitting M − PAM
symbols for x, and matrix-inversion and quantization-based

decoding: (V TV )−1V T y = x + (V TV )−1V Tw. Here V
denotes the coefficient matrix, with each entry Vij ∼ N (0, 1),
i.i.d. This scheme can be implemented by means of matrix

inversion and component-by-component quantization to an

M − PAM lattice, and has complexity that is polynomial

in the size of V. This scheme would result in a finite error

probability (owing to noise), but error-correction at higher



layers (resulting in retransmissions) can be used to achieve a

poly-logarithmic (constant?) fraction of the maximum possible

throughput of 1
2 log(1 + SNR).

(2) Poly-logarithmic fractions: Theorems 3 and 4 show

that if the system has a load that is a poly-logarithmic

fraction of the maximum possible load, the expected decoding

complexity and the expected queue-size at each transmitter are

polynomially bounded (in fact, constant) in the system-size.

We believe that the poly-logarithmic fractions are artifacts of

our proof techniques: because the QNUB protocol is difficult

to analyze in closed-form, we need an appropriate concen-

tration of measure for the arrival process to derive analytical

results. As Lemma 6 shows, if the service process is “simple,”

then the expected queue-size can be proved to be constant,

independent of the system-size n at any fixed fraction of the

maximum possible load.

(3) Distributed implementation: The proposed QNUB

algorithm is not entirely distributed, because each transmitter

needs to know ns(t) and ρs. In the specific system we

considered (1 transmitter for each class, with an appropriately

higher external arrival rate), the transmitters know ns(t) and

can (locally) estimate ρs. But when more than 1 users of

the same class are present, we need communication between

the receivers (among other possibilities) to implement the

protocol. Modifying the protocol to replace ns(t) with each

transmitter’s own symbol queue-length is one possible so-

lution. (The term ρs gets automatically adjusted, because

if we have two users U1 and U2 of the same class, with

external file arrival rates λ and η (instead of 1 user U of

the class with an external file arrival rate of λ + η), then

they can each (locally) estimate λ/µs and η/µs and transmit

with appropriately smaller attempt probabilities.) In the future

work, we plan to study this aspect of the problem.
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APPENDIX A

PROOF OF LEMMA 1

Let ∆ = ∆s(t) := As(t + 1) − ∑ns(t)
j=1 Ysj (t)(1 −

Zsj (t)). Then ns(t + 1) = ns(t) + ∆, and E[ns(t + 1)2 −
ns(t)

2 | ns(t), xs(t)] = 2ns(t)E[∆ | ns(t), xs(t)] + E[∆2 |
ns(t), xs(t)].

We have E[∆ | ns(t), xs(t)] = λs − ns(t)xs(t)µs and, by

the independence of As(t+1) and
∑ns(t)

j=1 Ysj (t)(1−Zsj (t)),

E[∆2 | ns(t), xs(t)] = (λs − ns(t)xs(t)µs)
2 + λs(1− λs)

+ ns(t)xs(t)µs(1− xs(t)µs).

The result follows by an addition of the above terms.

APPENDIX B

PROOF OF LEMMA 2

From Equation (1), we have

E

[
n∑

ℓ=1

q2ℓ (t+ 1)− q2ℓ (t)

2αℓ

∣
∣
∣
∣
∣
n(t), q(t)

]

≤ E





n∑

ℓ=1

qℓ(t)







S∑

s=1

Hℓ,s

ns(t)∑

j=1

Ysj (t)− 1







+

n∑

ℓ=1

αℓ

2







S∑

s=1

Hℓ,s

ns(t)∑

j=1

Ysj (t)− 1







2∣∣
∣
∣
∣
∣

n(t), q(t)



 . (3)

We have

T1 =
n∑

ℓ=1

qℓ(t)







S∑

s=1

Hℓ,s

ns(t)∑

j=1

Ysj (t)− 1







=
S∑

s=1

{
n∑

ℓ=1

qℓ(t)Hℓ,s

}



ns(t)∑

j=1

Ysj (t)



−
n∑

ℓ=1

qℓ(t),

implying

E[T1 | n(t), q(t)]

=

S∑

s=1

{
n∑

ℓ=1

qℓ(t)Hℓ,s

}

ns(t)xs(t)−

n∑

ℓ=1

qℓ(t).



Further,

T2 =
n∑

ℓ=1

αℓ

2





S∑

s=1

Hℓ,s

ns(t)∑

j=1

Ysj (t)− 1





2

≤
n∑

ℓ=1

αℓ









S∑

s=1

Hℓ,s

ns(t)∑

j=1

Ysj (t)





2

+ 1





≤
n∑

ℓ=1

αℓ

(
S∑

s=1

Hℓ,s

)

︸ ︷︷ ︸

≤L0





S∑

s=1

Hℓ,s





ns(t)∑

j=1

Ysj (t)





2



+ nαmax

≤ L0

S∑

s=1

(
n∑

ℓ=1

αℓHℓ,s

)

︸ ︷︷ ︸

≤αmaxS0





ns(t)∑

j=1

Ysj (t)





2

+ nαmax

≤ αmaxL0S0

S∑

s=1





ns(t)∑

j=1

Ysj (t)





2

+ nαmax.

Conditioned on [n(t), q(t)], the random variable
∑ns(t)

j=1 Ysj (t) is a binomial random variable

B(ns(t), xs(t)), and the expected value of its square is

n2
s(t)x

2
s(t) + ns(t)xs(t)(1− xs(t)), and the result follows.

APPENDIX C

PROOF OF THEOREM 3

Define S := min{t ≥ 1 : R(t) = 0}. Fix any integer

k ≥ 0. Generate a sequence of arrivals [Jℓ(1), . . . , Jℓ(k)] and

[B(1), . . . , B(k)] according to the appropriate joint distribu-

tions (with Bi being i.i.d.) and Jℓ(t) ≤ B(t) for all 1 ≤ t ≤ k.
We first show that such a construction is possible.

Consider a pair of random variables [X,Y ] and another pair

[P,Q] such that X ≤st P and Y ≤st Q, with continuous and

strictly increasing CDFs (other special cases can be handled

similarly), denoted by FXY (x, y) and FPQ(x, y). Suppose

further that FXY (x, y) ≥ FPQ(x, y) for all (x, y) ∈ ℜ2. Our

objective is to define random variables X1, Y1, P1, Q1 such

that X1 ≤ P1 a.s., Y1 ≤ Q1 a.s., [X,Y ]
d
= [X1, Y1] and

[P,Q]
d
= [P1, Q1]. Consider the probability space (Ω,F ,P) =

((0, 1)2,B((0, 1)2), λ) where B denotes the Borel σ-algebra

and λ, the Lebesgue measure. For any point (x, y) ∈ (0, 1)2

define [X1, Y1](x, y) = F−1
XY (x, y), and [P1, Q1](x, y) =

F−1
PQ(x, y). We therefore have X1 ≤ P1 a.s., Y1 ≤ Q1 a.s.,

and [X,Y ]
d
= [X1, Y1] and [P,Q]

d
= [P1, Q1], as desired.

Now for the queuing system under consideration, let k = 2
(the cases k = 0, 1 are trivial and standard respectively). For

any pair (x, y) ∈ ℜ2 we have

P(Jℓ(1) ≤ x, Jℓ(2) ≤ y)

= P(Jℓ(1) = x)P(Jℓ(2) ≤ y | Jℓ(1) ≤ x)
(a)

≥ P(B(1) ≤ x)P(Jℓ(2) ≤ y | Jℓ(1) ≤ x)
(b)

≥ P(B(1) ≤ x)P(B(2) ≤ y)

= P(B(1) ≤ x,B(2) ≤ y).

Here the inequality (a) holds because Jℓ(1) ≤st B(1) and

the inequality (b) holds because the random variable B(2)
uniformly stochastically dominates each one of the possible

conditional distributions of Jℓ(2). Hence the desired construc-

tion is possible for the case k = 2 and analogously, for any

integer k ≥ 0.
Now let Ek = {Tℓ > k} denote the event that the return

time to 0 of Qℓ is greater than k ≥ 0. Let Gk = {S > k}.
Since (on the equivalent probability space) Qℓ(t) ≤ R(t) for

1 ≤ t ≤ k, we have Ek ⇒ Gk and P(Ek) ≤ P(Gk). Let Fk

denote the event that in the k timeslots {1, . . . , k}, the system

R has a total of at least k + 1 arrivals. Since the service is

deterministic at 1 packet per timeslot, we have Gk ⇒ Fk and

P(Gk) ≤ P(Fk).
The number of arrivals in k timeslots is a Poisson random

variable with parameter kθ. From Lemma 7.3 in [14], m! ≥√
2πm(m/e)m for all m ≥ 0. Hence,

P(Fk) =
∞
∑

r=k+1

e−kθ(kθ)r

r! ≤
∞
∑

r=k+1

e−kθkrθrer√
2πr·rr

≤
∞
∑

r=k+1

(eθ)r ≤ 2(eθ)k+1,

since eθ < 1/2. Therefore, for all k ≥ 1,P(Ek−1) = P(Tℓ ≥
k) ≤ 2(eθ)k.

Now E[Tm
ℓ ] =

∞
∑

r=1
rmP(Tℓ = r) ≤

∞
∑

r=1
rmP(Tℓ ≥ r) ≤

2
∞
∑

r=1
rm(eθ)r. To bound

∞
∑

r=1
rm(eθ)r, let p := eθ. Note that

the function f(x) = xmpx reaches its maximum at x∗ =
m/ log(1/p), and monotonically decreases after x∗. Hence

∞∑

r=⌈x∗⌉+1

rm(eθ)r ≤

∫ ∞

⌈x∗⌉

xm(eθ)mdx

≤

∫ ∞

0

xm(eθ)xdx

= m! ·

(
1

log(1/(eθ))

)m+1

.

Further,

⌈x∗⌉
∑

r=1

rmpr ≤ ⌈x∗⌉·max((⌈x∗⌉)mp⌈x
∗⌉, (⌊x∗⌋)mp⌊x

∗⌋) ≤ ⌈x∗⌉m+1.

Combining the above inequalities and noting that ⌈x∗⌉ ≤
m/ log(1/p) + 1, we get

∞∑

r=1

rm(eθ)r ≤

(
m

log(1/(eθ))
+ 1

)m+1

+m!·

(
1

log(1/(eθ))

)m+1

.

Since eθ < 1/2, this translates to a looser upper-bound,

E[Tm
ℓ ] ≤ 2

((
m

log 2
+ 1

)m+1

+m! ·

(
1

log 2

)m+1
)

,

as desired.


