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RANDOMIZED SCHEDULING ALGORITHM FOR
QUEUEING NETWORKS

By D. Shah J. Shin∗

Massachusetts Institute of Technology

There has recently been considerable interests in design of low-
complexity, myopic, distributed and stable scheduling policies for con-
strained queueing network models that arise in the context of emerg-
ing communication networks. Here, we consider two representative
models. One, a model for the collection of wireless nodes communi-
cating through a shared medium, that represents randomly varying
number of packets in the queues at the nodes of networks. Two, a
buffered circuit switched network model for an optical core of fu-
ture Internet, to capture the randomness in calls or flows present
in the network. The maximum weight scheduling policy proposed
by Tassiulas and Ephremide [32] leads to a myopic and stable pol-
icy for the packet-level wireless network model. But computationally
it is very expensive (NP-hard) and centralized. It is not applicable
to the buffered circuit switched network due to the requirement of
non-premption of the calls in the service. As the main contribution
of this paper, we present a stable scheduling algorithm for both of
these models. The algorithm is myopic, distributed and performs few
logical operations at each node per unit time.

1. Introduction. The primary task of a communication network archi-
tect is to provision as well as utilize network resources efficiently to satisfy
the demands imposed on it. The main algorithmic problem is that of al-
locating or scheduling resources among various entities or data units, e.g.
packets, flows, that are contending to access them. In recent years, the ques-
tion of designing a simple, myopic, distributed and high-performance (aka
stable) scheduling algorithm has received considerable interest in the con-
text of emerging communication network models. Two such models that we
consider this paper are that of a wireless network and a buffered circuit
switched network.
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2 SHAH & SHIN

The wireless network consists of wireless transmission capable nodes. Each
node receives exogenous demand in form of packets. These nodes communi-
cate these packets through a shared wireless medium. Hence their simultane-
ous transmission may contend with each other. The purpose of a scheduling
algorithm is to resolve these contentions among transmitting nodes so as to
utilize the wireless network bandwidth efficiently while keeping the queues
at nodes finite. Naturally the desired scheduling algorithm should be dis-
tributed, simple/low-complexity and myopic (i.e. utilize only the network
state information like queue-sizes).

The buffered circuit switched network can be utilized to model the dy-
namics of flows or calls in an optical core of future Internet. Here a link
capacitated network is given with a collection of end-to-end routes. At the
ingress (i.e. input or entry point) of each route, calls arriving as per ex-
ogenous process are buffered or queued. Each such call desires resources on
each link of its route for a random amount of time duration. Due to link
capacity constraints, calls of routes sharing links contend for resources. And,
a scheduling algorithm is required to resolve this contention so as to utilize
the network links efficiently while keeping buffers or queues at ingress of
routes finite. Again, the scheduling algorithm is desired to be distributed,
simple and myopic.

An important scheduling algorithm is the maximum weight policy that
was proposed by Tassiulas and Ephremides [32]. It was proposed in the
context of a packet queueing network model with generic scheduling con-
straints. It is primarily applicable in a scenario where scheduling decisions
are synchronized or made every discrete time. It suggests scheduling queues,
subject to constraints, that have the maximum net weight at each time step
with the weight of a queue being its queue-size. They established through-
put optimality property of this algorithm for this general class of networks.
Further, this algorithm, as the description suggests, is myopic. Due to the
general applicability and myopic nature, this algorithm and its variants have
received a lot of attention in recent years, e.g. [20, 5, 30, 27, 4, 28].

The maximum weight algorithm provides a myopic and stable schedul-
ing algorithm for the wireless network model. However, it requires solving
a combinatorial optimization problem, the maximum weight independent
set problem, to come up with a schedule every time. And the problem of
finding a maximum weight independent set is known to be NP-hard as well
as hard to approximate in general [33]. To address this concern, there has
been a long line of research conducted to devise implementable approxima-
tions of the maximum weight scheduling algorithm, e.g. [19, 31, 12, 7, 23].
A comprehensive survey of such maximum weight inspired and other algo-
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rithmic approaches that have been studied over more than four decades in
the context of wireless networks can be found in [25, 15].

In the context of buffered circuit switched network, calls have random ser-
vice requirement. Therefore, scheduling decisions can not be synchronized.
Therefore, the maximum weight scheduling algorithm is not applicable. To
the best of our knowledge, no other myopic and stable algorithm is known
for this network model.

1.1. Contributions. We propose a scheduling algorithm for both wireless
and buffered circuit switched network model. The algorithm utilizes only
local, queue-size information to make scheduling decisions. That is, the al-
gorithm is myopic and distributed. It requires each queue (or node) in the
network to perform few (literally, constant) logical operations per scheduling
decision. We establish that it is throughput optimal. That is, the network
Markov process is positive Harris recurrent as long as the network is under-
loaded (or not overloaded).

Philosophically, our algorithm design is motivated by a certain product-
form distribution that can be characterized as the stationary distribution of
a simple and distributed Markovian dynamics over the space of schedules.
For the wireless network, it corresponds to the known Glauber dynamics (cf.
[18]) over the space of independent sets of the wireless network interference
graph; for the buffered circuit switched network, it corresponds to the known
stochastic loss network (cf. [16]).

To establish the stability property of the algorithm, we exhibit an ap-
propriate Lyapunov function. This, along with standard machinery based
on identifying an appropriate ‘petit set’, leads to the positive Harris re-
currence property of the network Markov process. Technically, this is the
most challenging part of our result. It requires proving an effective ‘time
scale separation’ between the network queuing dynamics and the scheduling
dynamics induced by the algorithm. To make this possible, we use an appro-
priately slowly increasing function (log log(·+ e)) of queue-size as weight in
the scheduling algorithm. Subsequently, the time scale separation follows by
studying the mixing property of a specific time varying Markov chain over
the space of schedules.

We note that use of Lyapunov function for establishing stability is some-
what classical now (for example, see [32, 30, 27]). Usually difficulty lies in
finding an appropriate candidate function followed by establishing that it is
indeed a “Lyapunov” function.

1.2. Organization. We start by describing two network models, the wire-
less network and the buffered circuit switched network in Section 2. We
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formally introduce the problem of scheduling and performance metric for
scheduling algorithms. The maximum weight scheduling algorithm is de-
scribed as well. Our randomized algorithm and its throughput optimality for
both network models are presented in Section 3. The paper beyond Section
3 is dedicated to establishing the throughput optimality. Necessary techni-
cal preliminaries are presented in Section 4. Here we relate our algorithm
for both models with appropriate reversible Markov chains on the space
of schedules and state useful properties of these Markov chains. We also
describe known facts about the positive Harris recurrence as well as state
the known Lyapunov drift criteria, to establish positive Harris recurrence.
Detailed proofs of our main results are presented in Section 5.

2. Setup.

2.1. Wireless Network. We consider a single-hop wireless network of n
queues. Queues receive work as per exogenous arrivals and work leaves the
system upon receiving service. Specifically, let Qi(t) ∈ R+ = {x ∈ R : x ≥ 0}
denote the amount of work in the ith queue at time t ∈ R+ and Q(t) =
[Qi(t)]1≤i≤n; initially t = 0 and Q(0) = 01. Work arrives to each queue in
terms of unit-sized packets as per a discrete-time process. Let Ai(s, t) denote
the amount of work arriving to queue i in time interval [s, t] for 0 ≤ s < t. For
simplicity, assume that for each i, Ai(·) is an independent Bernoulli process

with parameter λi, where Ai(τ)
△
= Ai(0, τ). That is, Ai(τ+1)−Ai(τ) ∈ {0, 1}

and Pr(Ai(τ + 1)−Ai(τ) = 1) = λi for all i and τ ∈ Z+ = {k ∈ Z : k ≥ 0}.
Denote the arrival rate vector as λ = [λi]1≤i≤n. We assume that arrivals
happen at the end of a time slot.

The work from queues is served at the unit rate, but subject to inter-
ference constraints. Specifically, let G = (V,E) denote the inference graph
between the n queues, represented by vertices V = {1, . . . n} and edges E:
an (i, j) ∈ E implies that queues i and j can not transmit simultaneously
since their transmission interfere with each other. Formally, let σi(t) ∈ {0, 1}
denotes whether the queue i is transmitting at time t, i.e. work in queue i
is being served at unit rate at time t and σ(t) = [σi(t)]. Then, it must be
that for t ∈ R+,

σ(t) ∈ I(G)
∆
= {ρ = [ρi] ∈ {0, 1}n : ρi + ρj ≤ 1 for all (i, j) ∈ E}.

The total amount of work served at queue i in time interval [s, t] is

Di(s, t) =

∫ t

s

σi(y)I{Qi(y)>0}dy,

1Bold letters are reserved for vectors; 0,1 represent vectors of all 0s & all 1s respectively.
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where I{x} denotes the indicator function.
In summary, the above model induces the following queueing dynamics:

for any 0 ≤ s < t and 1 ≤ i ≤ n,

Qi(t) = Qi(s)−
∫ t

s

σi(y)I{Qi(y)>0}dy +Ai(s, t).

2.2. Buffered Circuit Switched Network. We consider a buffered circuit
switched network. Here the network is represented by a capacitated graph
G = (V,E) with V being vertices, E ⊂ V × V being links (or edges) with
each link e ∈ E having a finite integral capacity Ce ∈ N. This network is
accessed by a fixed set of n routes R1, . . . , Rn; each route is a collection
of interconnected links. At each route Ri, flows arrive as per an exogenous
arrival process. For simplicity, we assume it to be an independent Possion
process of rate λi and let Ai(s, t) denote total number of flow arrivals to
route Ri in time interval [s, t]. Upon arrival of a flow to route Ri, it joins the
queue or buffer at the ingress of Ri. Let Qi(t) denote the number of flows
in this queue at time t; initially t = 0 and Qi(0) = 0.

Each flow arriving to Ri, comes with the service requirement of using
unit capacity simultaneously on all the links of Ri for a time duration – it is
assumed to be distributed independently as per Exponential of unit mean.
Now a flow in the queue of route Ri can get simultaneous possession of links
along route Ri in the network at time t, if there is a unit capacity available
at all of these links. To this end, let zi(t) denote the number of flows that are
active along route Ri, i.e. posses links along the route Ri. Then, by capacity
constraints on the links of the network, it must be that z(t) = [zi(t)] satisfies

z(t) ∈ X ∆
= {z = [zi] ∈ Z

n
+ :

∑

i:e∈Ri

zi ≤ Ce, ∀ e ∈ E}.

This represents the scheduling constraints of the circuit switched network
model similar to the interference constraints of the wireless network model.

Finally, a flow active on routeRi, departs the network after the completion
of its service requirement and frees unit capacity on the links of Ri. Let
Di(s, t) denote the number of flows which are served (hence leave the system)
in time interval [s, t].

2.3. Scheduling Algorithm & Performance Metric. In both models de-
scribed above, the scheduling is the key operational question. In the wireless
network, queues need to decide which of them transmit subject to interfer-
ence constraints. In the circuit switched network, queues need to agree on
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which flows becomes active subject to network capacity constraints. And, a
scheduling algorithm is required to make these decisions every time.

In wireless network, the scheduling algorithm decides the schedule σ(t) ∈
I(G) at each time t. We are interested in distributed scheduling algorithms,
i.e. queue i decides σi(t) using its local information, such as its queue-size
Qi(t). We assume that queues have instantaneous carrier sensing informa-
tion, i.e. if a queue (or node) j starts transmitting at time t, then all neigh-
boring queues can listen to this transmission immediately.

In buffered circuit switched network, the scheduling algorithm decides ac-
tive flows or schedules z(t) at time t. Again, our interest is in distributed
scheduling algorithms, i.e. queue at ingress of route Ri decides zi(t) using
its local information. Each queue (or route) can obtain instantaneous infor-
mation on whether all links along its route have unit capacity available or
not.

In summary, both models need scheduling algorithms to decide when each
queue (or its ingress port) will request the network for availability of re-
sources; upon a positive answer (or successful request) from the network,
the queue acquires network resources for certain amount of time. And, these
algorithm need to be based on local information.

From the perspective of network performance, we would like the schedul-
ing algorithm to be such that the queues in network remain as small as
possible for the largest possible range of arrival rate vectors. To formalize
this notion of performance, we define the capacity regions for both of these
models. Let Λw be the capacity region of the wireless network model defined
as

Λw = Conv(I(G))

=



y ∈ R

n
+ : y ≤

∑

σ∈I(G)

ασσ, with ασ ≥ 0, and
∑

σ∈I(G)

ασ ≤ 1



 .(1)

And let Λcs be the capacity region of the buffered circuit switched network
defined as

Λcs = Conv(X )

=

{
y ∈ R

n
+ : y ≤

∑

z∈X

αzz, with αz ≥ 0, and
∑

z∈X

αz ≤ 1

}
.(2)

Intuitively, these bounds of capacity regions comes from the fact that any
algorithm produces the ‘service rate’ from I(G) (or X ) each time and hence
the time average of the service rate induced by any algorithm must belong
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to its convex hull. Therefore, if arrival rates λ can be ‘served well’ by any
algorithm then it must belong to Conv(I(G)) (or Conv(X )).

Motivated by this, we call an arrival rate vector λ admissible if λ ∈ Λ,
and say that an arrival rate vector λ is strictly admissible if λ ∈ Λo, where
Λo is the interior of Λ formally defined as

Λo =
{
λ ∈ R

n
+ : λ < λ∗ componentwise, for some λ∗ ∈ Λ

}
.

Equivalently, we may say that the network is under-loaded. Now we are ready
to define a performance metric for a scheduling algorithm. Specifically, we
desire the scheduling algorithm to be throughput optimal as defined below.

Definition 1 (throughput optimal) A scheduling algorithm is called
throughput optimal, or stable, or providing 100% throughput, if for any
λ ∈ Λo the (appropriately defined) underlying network Markov process is
positive (Harris) recurrent.

2.4. The MW Algorithm. Here we describe a popular algorithm known
as the maximum weight or in short MW algorithm that was proposed by
Tassiulas and Ephremides [32]. It is throughput optimal for a large class
of network models. The algorithm readily applies to the wireless network
model. However, it does not apply (exactly or any variant of it) in the case
of circuit switched network. Further, this algorithm requires solving a hard
combinatorial problem each time slot, e.g. maximum weight independent set
for wireless network, which is NP-hard in general. Therefore, it’s far from
being practically useful. In a nutshell, the randomized algorithm proposed
in this paper will overcome these drawbacks of the MW algorithm while
retaining the throughput optimality property. For completeness, next we
provide a brief description of the MW algorithm.

In the wireless network model, the MW algorithm chooses a schedule
σ(τ) ∈ I(G) every time step τ ∈ Z+ as follows2:

σ(τ) ∈ arg max
ρ∈I(G)

Q(τ) · ρ.

In other words, the algorithm changes its decision once in unit time utilizing
the information Q(τ). The maximum weight property allows one to estab-
lish positive recurrence by means of Lyapunov drift criteria (see Lemma
6) when the arrival rate is admissible, i.e. λ ∈ Λo

w. However, as indicated
above picking such a schedule every time is computationally burdensome.

2Here and everywhere else, we use notation u · v =
∑d

i=1
uivi for any d-dimensional

vectors u,v ∈ R
d. That is, Q(τ ) · ρ =

∑
i
Qi(τ ) · ρi.
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A natural generalization of this, called MW-f algorithm, that uses weight
f(Qi(·)) instead of Qi(·) for an increasing non-negative function f also leads
to throughput optimality (cf. see [30, 27, 28]).

For the buffered circuit switched network model, the MW algorithm is not
applicable. To understand this, consider the following. The MW algorithm
would require the network to schedule active flows as z(τ) ∈ X where

z(τ) ∈ argmax
z∈X

Q(τ) · z.

This will require the algorithm to possibly preempt some of active flows
without the completion of their service requirement. And this is not allowed
in this model.

3. Main Result: Simple & Efficient Randomized Algorithms.
As stated above, the MW algorithm is not practical for wireless network
and is not applicable to circuit switched network. However, it has the de-
sirable throughput optimality property. As the main result of this paper,
we provide a simple, randomized algorithm that is applicable to both wire-
less and circuit switched network as well as it’s throughput optimal. The
algorithm requires each node (or queue) to perform only a few logical op-
erations at each time step, it’s distributed and effectively it ‘simulates’ the
MW-f algorithm for an appropriate choice of f . In that sense, it’s a simple,
randomized, distributed implementation of the MW algorithm.

In what follows, we shall describe algorithms for wireless network and
buffered circuit switched network respectively. We will state their through-
put optimality property. While these algorithms seem different, philosoph-
ically they are very similar – also, witnessed in the commonality in their
proofs.

3.1. Algorithm for Wireless Network. Let t ∈ R+ denote the time index
and W (t) = [Wi(t)] ∈ R

n
+ be the vector of weights at the n queues. The

W (t) will be a function of Q(t) to be determined later. In a nutshell, the
algorithm described below will choose a schedule σ(t) ∈ I(G) so that the
weight, W (t) · σ(t), is as large as possible.

The algorithm is randomized and asynchronous. Each node (or queue)
has an independent Exponential clock of rate 1 (i.e. Poisson process of rate
1). Let the kth tick of the clock of node i happen at time T i

k; T
i
0 = 0 for

all i. By definition T i
k+1 − T i

k, k ≥ 0, are i.i.d. mean 1 Exponential random
variables. Each node changes its scheduling decision only at its clock ticks.
That is, for node i the σi(t) remains constant for t ∈ (T i

k, T
i
k+1]. Clearly,

with probability 1 no two clock ticks across nodes happen at the same time.
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Initially, we assume that σi(0) = 0 for all i. The node i at the kth clock
tick, t = T i

k, listens to the medium and does the following:

◦ If any neighbor of i is transmitting, i.e. σj(t) = 1 for some j ∈ N (i) =
{j′ : (i, j′) ∈ E}, then set σi(t

+) = 0.

◦ Else, set

σi(t
+) =

{
1 with probability exp(Wi(t))

1+exp(Wi(t))

0 otherwise.

Here, we assume that if σi(t) = 1, then node i will always transmit data
irrespective of the value of Qi(t) so that the neighbors of node i can infer
σi(t) by listening to the medium.

3.1.1. Throughout Optimality. The above described algorithm for wire-
less network is throughput optimal for an appropriate choice of weight W (t).
Define weight Wi(t) at node i in the algorithm for wireless network as
(3)

Wi(t) = max
{
f(Qi(⌊t⌋)),

√
f(Qmax(⌊t⌋))

}
,

where3 f(x) = log log(x + e) and Qmax(·) = maxi Qi(·). The non-local in-
formation of Qmax(⌊t⌋)) can be replaced by its approximate estimation that
can computed through a very simple distributed algorithm. This does not
alter the throughput optimality property of the algorithm. A discussion is
provided in Section 6. We state the following property of the algorithm.

Theorem 1 Suppose the algorithm of Section 3.1 uses the weight as per
(3). Then, for any λ ∈ Λo

w, the network Markov process is positive Harris
recurrent.

In this paper, Theorem 1 (as well as Theorem 2) is established for the
choice of f(x) = log log(x + e). However, the proof technique of this paper
extends naturally for any choice of f : R+ → R+ that satisfies the follow-
ing conditions: f(0) = 0, f is a monotonically strictly increasing function,
limx→∞ f(x) = ∞ and

lim
x→∞

exp
(
f(x)

)
f ′
(
f−1(δf(x))

)
= 0, for any δ ∈ (0, 1).

Examples of such functions includes: f(x) = ε(x) log(x+1), where ε(0) = 1,
ε(x) is monotonically decreasing function to 0 as x → ∞; f(x) =

√
log(x+ 1);

f(x) = log log log(x+ ee), etc.

3Unless stated otherwise, here and everywhere else the log(·) is natural logarithm, i.e.
base e.
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3.2. Algorithm for Buffered Circuit Switched Network. In a buffered cir-
cuit switched network, the scheduling algorithm decided when each of the
ingress node (or queue) should request the network for availability of re-
sources (links) along its route and upon positive response from the network,
it acquires the resources. Our algorithm to make such a decision at each
node is described as follows:

◦ Each ingress node of a route, say Ri, generates request as per a time
varying Poisson process whose rate at time t is equal to exp(Wi(t)).

◦ If the request generated by an ingress node of route, say Ri, is accepted,
a flow from the head of its queue leaves the queue and acquire the
resources in the network. Else, do nothing.

In above, like the algorithm for wireless network we assume that if the
request of ingress node i is accepted, a new flow will acquire resources in
the network along its route. This is irrespective of whether queue is empty
or not – if queue is empty, a dummy flow is generated. This is merely for
technical reasons.

3.2.1. Throughput Optimality. We describe a specific choice of weight
W (t) for which the algorithm for circuit switched network as described
above is throughput optimal. Specifically, for route Ri its weight at time t
is defined as
(4)

Wi(t) = max
{
f(Qi(⌊t⌋)),

√
f(Qmax(⌊t⌋))

}
,

where f(x) = log log(x + e). The remark about distributed estimation of
Qmax(⌊t⌋)) after (3) applies here as well. We state the following property of
the algorithm.

Theorem 2 Suppose the algorithm of Section 3.2 uses the weight as per
(4). Then, for any λ ∈ Λo

cs, the network Markov process is positive Harris
recurrent.

4. Technical Preliminaries.

4.1. Finite State Markov Chain. Consider a discrete-time, time homo-
geneous Markov chain over a finite state space Ω. Let its probability tran-

sition matrix be P = [Pij ] ∈ R
|Ω|×|Ω|
+ . If P is irreducible and aperiodic,

then the Markov chain is known to have a unique stationary distribution

π = [πi] ∈ R
|Ω|
+ and it is ergodic, i.e.

lim
τ→∞

P τ
ji → πi, for any i, j ∈ Ω.
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The adjoint of P , also known as the time-reversal of P , denoted by P ∗ is
defined as follows:

πiP
∗
ij = πjPji, for any i, j ∈ Ω.(5)

By definition, P ∗ has π as its stationary distribution as well. If P = P ∗ then
P is called reversible or time reversible.

Similar notions can be defined for a continuous time Markov proces over

Ω. To this end, let P (s, t) = [Pij(s, t)] ∈ R
|Ω|×|Ω|
+ denote its transition matrix

over time interval [s, t]. The Markov process is called time-homogeneous if
P (s, t) is stationary, i.e. P (s, t) = P (0, t − s) for all 0 ≤ s < t and is
called reversible if P (s, t) is reversible for all 0 ≤ s < t. Further, if P (0, t) is
irreducible and aperiodic for all t > 0, then this time-homogeneous reversible
Markov process has a unique stationary distribution π and it is ergodic, i.e.

lim
t→∞

Pji(0, t) → πi, for any i, j ∈ Ω.

4.2. Mixing Time of Markov Chain. Given an ergodic finite state Markov
chain, the distribution at time τ converge to the stationary distribution
starting from any initial condition as described above. We will need quan-
titative bounds on the time it takes for them to reach “close” to their sta-
tionary distribution. This time to reach stationarity is known as the mixing
time of the Markov chain. Here we introduce necessary preliminaries related
to this notion. We refer an interested reader to survey papers [17, 24]. We
start with the definition of distances between probability distributions.

Definition 2 (Distance of measures) Given two probability distributions ν
and µ on a finite space Ω, we define the following two distances. The total
variation distance, denoted as ‖ν − µ‖TV is

‖ν − µ‖TV =
1

2

∑

i∈Ω

|ν(i)− µ(i)| .

The χ2 distance, denoted as
∥∥∥ ν
µ
− 1
∥∥∥
2,µ

is

∥∥∥∥
ν

µ
− 1

∥∥∥∥
2

2,µ

= ‖ν − µ‖22, 1
µ

=
∑

i∈Ω

µ(i)

(
ν(i)

µ(i)
− 1

)2

.

More generally, for any two vectors u,v ∈ R
|Ω|
+ , we define

‖v‖22,u =
∑

i∈Ω

uiv
2
i .
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We make note of the following relation between the two distances defined
above: using the Cauchy-Schwarz inequality, we have
(6) ∥∥∥∥

ν

µ
− 1

∥∥∥∥
2,µ

≥ 2 ‖ν − µ‖TV .

Next, we define a matrix norm that will be useful in determining the rate of
convergence or the mixing time of a finite-state Markov chain.

Definition 3 (Matrix norm) Consider a |Ω| × |Ω| non-negative valued

matrix A ∈ R
|Ω|×|Ω|
+ and a given vector u ∈ R

|Ω|
+ . Then, the matrix norm of

A with respect to u is defined as follows:

‖A‖u = sup
v:Eu[v]=0

‖Av‖2,u
‖v‖2,u

,

where Eu[v] =
∑

i uivi.

It can be easily checked that the above definition of matrix norm satisfies
the following properties.

P1. For matrices A,B ∈ R
|Ω|×|Ω|
+ and π ∈ R

|Ω|
+

‖A+B‖π ≤ ‖A‖π + ‖B‖π.

P2. For matrix A ∈ R
|Ω|×|Ω|
+ , π ∈ R

|Ω|
+ and c ∈ R,

‖cA‖π = |c|‖A‖π .

P3. Let A and B be transition matrices of reversible Markov chains, i.e.
A = A∗ and B = B∗. Let both of them have π as their unique station-
ary distribution. Then,

‖AB‖π ≤ ‖A‖π‖B‖π.

P4. Let A be the transition matrix of a reversible Markov chain, i.e. A =
A∗. Then,

‖A‖ ≤ λmax,

where λmax = max{|λ| 6= 1 : λ is an eigenvalue of A}.
For a probability matrix P , we will mostly be interested in the matrix norm
of P with respect to its stationary distribution π, i.e. ‖P‖π. Therefore, in this
paper if we use a matrix norm for a probability matrix without mentioning
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the reference measure, then it is with respect to the stationary distribution.
That is, in the above example ‖P‖ will mean ‖P‖π.

With these definitions, it follows that for any distribution µ on Ω
(7) ∥∥∥∥

µP

π
− 1

∥∥∥∥
2,π

≤ ‖P ∗‖
∥∥∥µ
π
− 1
∥∥∥
2,π

,

since Eπ

[
µ
π
− 1
]
= 0, where µ

π
= [µ(i)/π(i)]. The Markov chain of our inter-

est, Glauber dynamics, is reversible i.e. P = P ∗. Therefore, for a reversible
Markov chain starting with initial distribution µ(0), the distribution µ(τ)
at time τ is such that

∥∥∥∥
µ(τ)

π
− 1

∥∥∥∥
2,π

≤ ‖P‖τ
∥∥∥∥
µ(0)

π
− 1

∥∥∥∥
2,π

.(8)

Now starting from any state i, i.e. probability distribution with unit mass

on state i, the initial distance
∥∥∥µ(0)

π
− 1
∥∥∥
2,π

in the worst case is bounded

above by
√

1/πmin where πmin = mini πi. Therefore, for any δ > 0 we have∥∥∥µ(τ)
π

− 1
∥∥∥
2,π

≤ δ for any τ such that4

τ ≥ log 1/πmin + log 1/δ

log 1/‖P‖ = Θ

(
log 1/πmin + log 1/δ

1− ‖P‖

)
.

This suggests that the “mixing time”, i.e. time to reach (close to) the
stationary distribution of the Markov chain scales inversely with 1 − ‖P‖.
Therefore, we will define the “mixing time” of a Markov chain with transition
matrix P as 1/(1 − ‖P‖).

4.3. Glauber Dynamics & Algorithm for Wireless Network. We will de-
scribe the relation between the algorithm for wireless network (cf. Section
3.1) and a specific irreducible, aperiodic, reversible Markov chain on the
space of independent sets I(G) or schedules for wireless network with graph
G = (V,E). It is also known as the Glauber dynamics, which is used by the
standard Metropolis-Hastings [21, 13] sampling mechanismthat is described
next.

4Throughout this paper, we shall utilize the standard order-notations: for two functions
g, f : R+ → R+, g(x) = ω(f(x)) means lim infx→∞ g(x)/f(x) = ∞; g(x) = Ω(f(x))
means lim infx→∞ g(x)/f(x) > 0; g(x) = Θ(f(x)) means 0 < lim infx→∞ g(x)/f(x) ≤
lim supx→∞

g(x)/f(x) < ∞; g(x) = O(f(x)) means lim supx→∞
g(x)/f(x) < ∞; g(x) =

o(f(x)) means lim supx→∞
g(x)/f(x) = 0.
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4.3.1. Glauber Dyanmics & Its Mixing Time. We shall start off with the
definition of the Glauber dynamics followed by a useful bound on its mixing
time.

Definition 4 (Glauber dynamics) Consider a graph G = (V,E) of n =
|V | nodes with node weights W = [Wi] ∈ R

n
+. The Glauber dynamics based

on weight W , denoted by GD(W ), is a Markov chain on the space of inde-
pendent sets of G, I(G). The transitions of this Markov chain are described
next. Suppose the Markov chain is currently in the state σ ∈ I(G). Then,
the next state, say σ′ is decided as follows: pick a node i ∈ V uniformly at
random and

◦ set σ′
j = σj for j 6= i,

◦ if σk = 0 for all k ∈ N (i), then set

σ′
i =

{
1 with probability exp(Wi)

1+exp(Wi)

0 otherwise,

◦ else set σ′
i = 0.

It can be verified that the Glauber dynamics GD(W ) is reversible with
stationary distribution π given by

πσ ∝ exp(W · σ), for any σ ∈ I(G).(9)

Now we describe bound on the mixing time of Glauber dynamics.

Lemma 3 Let P be the transition matrix of the Glauber dynamics GD(W )
with n nodes. Then,

‖P‖ ≤ 1− 1

n222n+3 exp (2(n+ 1)Wmax)
,(10)

∥∥∥en(P−I)
∥∥∥ ≤ 1− 1

n22n+4 exp(2(n + 1)Wmax)
.(11)

Proof. By the property P4 of the matrix norm and Cheeger’s inequality
[1, 8, 14, 6, 29], it is well known that ‖P‖ ≤ λmax ≤ 1 − Φ2

2 where Φ is the
conductance of P , defined as

Φ = min
S⊂I(G):π(S)≤ 1

2

Q(S, Sc)

π(S)π(Sc)
,



RANDOMIZED NETWORK SCHEDULING 15

where Sc = I(G)\S, Q(S, Sc) =
∑

σ∈S,σ′∈Sc π(σ)P (σ,σ′). Now we have

Φ ≥ min
S⊂I(G)

Q(S, Sc)

≥ min
P (σ,σ′)6=0

π(σ)P (σ,σ′)

≥ πmin ·min
i

1

n

1

1 + exp(Wi)

≥ 1

2n exp(nWmax)
· 1
n

1

1 + exp(Wmax)

≥ 1

n2n+1 exp ((n+ 1)Wmax)
.

Therefore

‖P‖ ≤ 1− 1

n222n+3 exp (2(n + 1)Wmax)
.

Now consider en(P (τ)−I). Using propertiesP1, P2 and P3 of matrix norm,
we have:

∥∥∥en(P−I)
∥∥∥ =

∥∥∥∥∥e
−n

∞∑

k=0

nkP k

k!

∥∥∥∥∥

≤ e−n
∞∑

k=0

nk ‖P‖k
k!

= en(‖P‖−1)

≤ 1− n(1− ‖P‖)
2

.(12)

In the last inequality, we have used the fact that ‖P‖ < 1 and e−x ≤ 1−x/2
for all x ∈ [0, 1]. Hence, from the bound of ‖P‖, we obtain

∥∥∥en(P−I)
∥∥∥ ≤ 1− 1

n22n+4 exp(2(n + 1)Wmax)
.(13)

This completes the proof of Lemma 3. �

4.3.2. Relation to Algorithm. Now we relate our algorithm for wireless
network scheduling described in Section 3.1 with an appropriate continuous
time version of the Glauber dynamics with time-varying weights. Recall
that Q(t) and σ(t) denote the queue-size vector and schedule at time t. The
algorithm changes its scheduling decision, σ(t), when a node’s exponential
clock of rate 1 ticks. Due to memoryless property of exponential distribution
and independence of clocks of all nodes, this is equivalent to having a global
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exponential clock of rate n and upon clock tick one of the n nodes gets
chosen. This node decides its transition as explained in Section 3.1. Thus, the
effective dynamics of the algorithm upon a global clock tick is such that the
schedule σ(t) evolves exactly as per the Glauber dynamics GD(W (t)). Here
recall that W (t) is determined based on Q(⌊t⌋). With abuse of notation, let
the transition matrix of this Glauber dynamics be denoted by GD(W (t)).

Now consider any τ ∈ Z+. Let Q(τ),σ(τ) be the states at time τ . Then,

E

[
δσ(τ+1)

∣∣∣Q(τ),σ(τ)
]

=

∞∑

k=0

δσ(τ) Pr(ζ = k)GD(W (τ))k,

where we have used notation δσ for the distribution with singleton support
{σ} and ζ is a Poisson random variable of mean n. In above, the expecta-
tion is taken with respect to the distribution of σ(τ + 1) given Q(τ),σ(τ).
Therefore, it follows that

E

[
δσ(τ+1)

∣∣∣Q(τ),σ(τ)
]

= δσ(τ)e
n(GD(W (τ))−I)

= δσ(τ)P (τ)(14)

where P (τ)
△
= en(GD(W (τ))−I). In general, for any δ ∈ [0, 1]

E

[
δσ(τ+δ)

∣∣∣Q(τ),σ(τ)
]

= δσ(τ)P
δ(τ),(15)

where P δ(τ)
△
= eδn(GD(W (τ))−I).

4.4. Loss Network & Algorithm for Circuit Switched Network. For the
buffered circuit switched network, the Markov chain of interest is related to
the classical stochastic loss network model. This model has been popularly
utilized to study the performance of various systems including the telephone
networks, human resource allocation, etc. (cf. see [16]). The stochastic loss
network model is very similar to the model of the buffered circuit switched
network with the only difference that it does not have any buffers at the
ingress nodes.

4.4.1. Loss Network & Its Mixing Time. A loss network is described
by a network graph G = (V,E) with capacitated links [Ce]e∈E, n routes
{Ri : Ri ⊂ E, 1 ≤ i ≤ n} and without any buffer or queues at the ingress of
each route. For each route Ri, there is a dedicated exogenous, independent
Poisson arrival process with rate φi. Let zi(t) be number of active flows on
route i at time t, with notation z(t) = [zi(t)]. Clearly, z(t) ∈ X due to



RANDOMIZED NETWORK SCHEDULING 17

network capacity constraints. At time t when a new exogenous flow arrives
on route Ri, if it can be accepted by the network, i.e. z(t)+ei ∈ X , then it is
accepted with zi(t) → zi(t)+1. Or else, it is dropped (and hence lost forever).
Each flow holds unit amount of capacity on all links along its route for time
that is distributed as Exponential distribution with mean 1, independent of
everything else. Upon the completion of holding time, the flow departs and
frees unit capacity on all links of its own route.

Therefore, effectively this loss network model can be described as a finite
state Markov process with state space X . Given state z = [zi] ∈ X , the
possible transitions and corresponding rates are given as
(16)

zi →
{
zi + 1, with rate φi if z + ei ∈ X ,

zi − 1, with rate xi.

It can be verified that this Markov process is irreducible, aperiodic, and
time-reversible. Therefore, it is positive recurrent (due to the finite state
space) and has a unique stationary distribution. Its stationary distribution
π is known (cf. [16]) to have the following product-form: for any z ∈ X ,

πz ∝
n∏

i=1

φzi
i

zi!
.(17)

We will be interested in the discrete-time (or embedded) version of this
Markov processes, which can be defined as follows.

Definition 5 (Loss Network) A loss network Markov chain with capac-
itated graph G = (V,E), capacities Ce, e ∈ E and n routes Ri, 1 ≤ i ≤ n,
denoted by LN(φ) is a Markov chain on X . The transition probabilities of
this Markov chain are described next. Given a current state z ∈ X , the next
state z∗ ∈ X is decided by first picking a route Ri uniformly at random and
performing the following:

◦ z∗j = zj for j 6= i and z∗i is decided by

z∗i =





zi + 1 with probability φi

R · 1{z+ei∈X}

zi − 1 with probability zi
R

zi otherwise.

,

where R =
∑

i φi + Cmax.

LN(φ) has the same stationary distribution as in (17), and it is also irre-
ducible, aperiodic, and reversible. Next, we state a bound on the mixing
time of the loss network Markov chain LN(φ) as follows.
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Lemma 4 Let P be the transition matrix of LN(φ) with n routes. If φ =
exp(W ) with 5 Wi ≥ 0 for all i, then,

‖P‖ ≤ 1− 1

8n4C2nCmax+2n+2
max exp (2(nCmax + 1)Wmax)

,(18)

∥∥∥enR(P−I)
∥∥∥ ≤ 1− 1

16n3C2nCmax+2n+2
max exp (2(nCmax + 1)Wmax)

.(19)

Proof. Similarly as the proof of Lemma 3, a simple lower bound for the
conductance Φ of P is given by

Φ ≥ πmin · min
P
z,z′ 6=0

Pz,z′ .(20)

To obtain the lower bound of πmin, recall the equation (17),

πz =
1

Z

n∏

i=1

φzi
i

zi!
,

where Z =
∑

z∈X

∏n
i=1

φ
zi
i

zi!
, and consider the following:

Z ≤ |X |φnCmax
max ≤ Cn

max exp(nCmaxWmax),

and

n∏

i=1

φzi
i

zi!
≥ 1

(Cmax!)
n ≥ 1

CnCmax
max

.

By combining the above inequalities, we obtain

πmin ≥ 1

CnCmax+n
max exp(nCmaxWmax)

.(21)

On the other hand, one can bound minP
z,z′ 6=0 Pz,z′ as follows:

Pz,z′ ≥ 1

n
· 1

R ≥ 1

n
· 1

nφmax + Cmax
≥ 1

2n2Cmax exp(Wmax)
,(22)

where we use the fact that x+ y ≤ 2xy if x, y ≥ 1. Now, by combining (21)
and (22), we have

Φ ≥ 1

2n2CnCmax+n+1
max exp ((nCmax + 1)Wmax)

.

5We use the following notation: given a function g : R → R and a d-dimensional vector
u ∈ R

d, let g(u) = [g(ui)] ∈ R
d.
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Therefore, using the property P4 of the matrix norm and Cheeger’s inequal-
ity, we obtain the desired conclusion as

‖P‖ ≤ λmax ≤ 1− Φ2

2
≤ 1

8n4C2nCmax+2n+2
max exp (2(nCmax + 1)Wmax)

.

Furthermore, using this bound and similar arguments in the proof of Lemma
3, we have

∥∥∥enR(P−I)
∥∥∥ ≤ 1− 1

16n3C2nCmax+2n+2
max exp (2(nCmax + 1)Wmax)

.

�

4.4.2. Relation to Algorithm. The scheduling algorithm for buffered cir-
cuit switched network described in Section 3.2 effectively simulates a stochas-
tic loss network with time-varying arrival rates φ(t) where φi(t) = exp(Wi(t)).
That is, the relation of the algorithm in Section 3.2 with loss network is sim-
ilar to the relation of the algorithm in Section 3.1 with Glauber dynamics
that we explained in the previous section. To this end, for a given τ ∈ Z+, let
Q(τ) and z(τ) be queue-size vector and active flows at time τ . With abuse of
notation, let LN(exp(W (τ))) be the transition matrix of the corresponding
Loss Network with W (τ) dependent on Q(τ). Then, for any δ ∈ [0, 1]
(23)

E

[
δz(τ+δ)

∣∣∣Q(τ),z(τ)
]
= δz(τ)e

nδR(τ)(LN(exp(W (τ)))−I),

where R(τ) =
∑

i exp(Wi(τ)) + Cmax.

4.4.3. Positive Harris Recurrence & Its Implication. For completeness,
we define the well known notion of positive Harris recurrence (e.g. see [2, 3]).
We also state its useful implications to explain its desirability. In this paper,
we will be concerned with discrete-time, time-homogeneous Markov process
or chain evolving over a complete, separable metric space X. Let BX denote
the Borel σ-algebra on X. We assume that the space X be endowed with a
norm6, denoted by | · |. Let X(τ) denote the state of Markov chain at time
τ ∈ Z+.

Consider any A ∈ BX. Define stopping time TA = inf{τ ≥ 1 : X(τ) ∈ A}.
Then the set A is called Harris recurrent if

Prx(TA < ∞) = 1 for any x ∈ X,

6One may assume it to be induced by the metric of X, denoted by d. For example, for
any x ∈ X, |x| = d(0,x) with respect to a fixed 0 ∈ X.
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where Prx(·) ≡ Pr(·|X(0) = x). A Markov chain is called Harris recurrent if
there exists a σ-finite measure µ on (X,BX) such that whenever µ(A) > 0 for
A ∈ BX, A is Harris recurrent. It is well known that if X is Harris recurrent
then an essentially unique invariant measure exists (e.g. see Getoor [11]). If
the invariant measure is finite, then it may be normalized to obtain a unique
invariant probability measure (or stationary probability distribution); in this
case X is called positive Harris recurrent.

Now we describe a useful implication of positive Harris recurrence. Let π
be the unique invariant (or stationary) probability distribution of the posi-
tive Harris recurrent Markov chain X. Then the following ergodic property
is satisfied: for any x ∈ X and non-negative measurable function f : X → R+,

lim
T→∞

1

T

T−1∑

τ=0

f(X(τ)) → Eπ[f ], Prx-almost surely.

Here Eπ[f ] =
∫
f(z)π(z). Note that Eπ[f ] may not be finite.

4.4.4. Criteria for Positive Harris Recurrence. Here we introduce a well
known criteria for establishing the positive Harris recurrence based on exis-
tence of a Lyapunov function and an appropriate petit set.

We will need some definitions to begin with. Given a probability distri-
bution (also called sampling distribution) a on N, the a-sampled transition
matrix of the Markov chain, denoted by Ka is defined as

Ka(x, B) =
∑

τ≥0

a(τ)P τ (x, B), for any x ∈ X, B ∈ BX.

Now, we define a notion of a petite set. A non-empty set A ∈ BX is called
µa-petite if µa is a non-trivial measure on (X,BX) and a is a probability
distribution on N such that for any x ∈ A,

Ka(x, ·) ≥ µa(·).
A set is called a petite set if it is µa-petite for some such non-trivial measure
µa. A known sufficient condition to establish positive Harris recurrence of a
Markov chain is to establish positive Harris recurrence of closed petite sets
as stated in the following lemma. We refer an interested reader to the book
by Meyn and Tweedie [22] or the recent survey by Foss and Konstantopoulos
[9] for details.

Lemma 5 Let B be a closed petite set. Suppose B is Harris recurrent, i.e.
Prx(TB < ∞) = 1 for any x ∈ X. Further, let

sup
x∈B

Ex [TB ] < ∞.
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Then the Markov chain is positive Harris recurrent. Here Ex is defined with
respect to Prx.

Lemma 5 suggests that to establish the positive Harris recurrence of the
network Markov chain, it is sufficient to find a closed petite set that satisfies
the conditions of Lemma 5. To establish positive recurrence of a closed petit
set, we shall utilize the drift criteria based on an appropriate Lyapunov
function stated in the following Lemma (cf. [9, Theorem 1]).

Lemma 6 Let L : X → R+ be a function such that L(x) → ∞ as |x| → ∞.
For any κ > 0, let Bκ = {x : L(x) ≤ κ}. And let there exist functions
h, g : X → Z+ such that for any x ∈ X,

E [L(X(g(x))) − L(X(0))|X(0) = x] ≤ −h(x),

that satisfy the following conditions:

(a) infx∈X h(x) > −∞.
(b) lim infL(x)→∞ h(x) > 0.
(c) supL(x)≤γ g(x) < ∞ for all γ > 0.
(d) lim supL(x)→∞ g(x)/h(x) < ∞.

Then, there exists constant κ0 > 0 so that for all κ0 < κ, the following holds:

Ex [TBκ ] < ∞, for any x ∈ X(24)

sup
x∈Bκ

Ex [TBκ ] < ∞.(25)

That is, Bκ is positive recurrent.

5. Proofs of Theorems 1 & 2. This section provides proofs of The-
orems 1 and 2. We shall start with necessary formalism followed by a sum-
mary of the entire proof. This summary will utilize a series of Lemmas whose
proofs will follow.

5.1. Network Markov Process. We describe discrete time network Markov
processes under both algorithms that we shall utilize throughout. Let τ ∈ Z+

be the time index. Let Q(τ) = [Qi(τ)] be the queue-size vector at time τ ,
x(τ) be the schedule at time τ with x(τ) = σ(τ) ∈ I(G) for the wireless
network and x(τ) = z(τ) ∈ X for the circuit switched network. It can be
checked that the tuple X(τ) = (Q(τ),x(τ)) is the Markov state of the net-
work for both setups. Here X(τ) ∈ X where X = R

n
+×I(G) or X = Z

n
+×X .

Clearly, X is a Polish space endowed with the natural product topology. Let
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BX be the Borel σ-algebra of X with respect to this product topology. For
any x = (Q,x) ∈ X, we define norm of x denoted by |x| as

|x| = |Q|+ |x|,

where |Q| denotes the standard ℓ1 norm while |x| is defined as its index in
{0, . . . , |Ω| − 1}, which is assigned arbitrarily. Since |x| is always bounded,
|x| → ∞ if and only if |Q| → ∞. Theorems 1 and 2 wish to establish that
the Markov process X(τ) is positive Harris recurrent.

5.2. Proof Plan. To establish the positive Harris recurrence of X(τ),
we will utilize the Lyapunov drift criteria to establish the positive recur-
rence property of an appropriate petit set (cf. Lemma 5). To establish the
existence of such a Lyapunov function, we shall study properties of our ran-
domized scheduling algorithms. Specifically, we shall show that in a nutshell
our schedule algorithms are simulating the maximum weight scheduling al-
gorithm with respect to an appropriate weight, function of the queue-size.
This will lead to the desired Lyapunov function and a drift criteria. The de-
tailed proof of positive Harris recurrence that follows this intuition is stated
in four steps. We briefly give an overview of these four steps.

To this end, recall that the randomized algorithms for wireless or circuit
switched network are effectively asynchronous, continuous versions of the
time-varying GD(W (t)) or LN(exp(W (t))) respectively. Let π(t) be the
stationary distribution of the Markov chain GD(W (t)) or LN(exp(W (t)));
µ(t) be the distribution of the schedule, either σ(t) or z(t), under our algo-
rithm at time t. In the first step, roughly speaking we argue that the weight
of schedule sampled as per the stationary distribution π(t) is close to the
weight of maximum weight schedule for both networks (with an appropri-
ately defined weight). In the second step, roughly speaking we argue that
indeed the distribution µ(t) is close enough to that of π(t) for all time t. In
the third step, using these two properties we establish the Lyapunov drift
criteria for appropriately defined Lyapunov function (cf. Lemma 6). In the
fourth and final step, we show that this implies positive recurrence of an
appropriate closed petit set. Therefore, due to Lemma 5 this will imply the
positive Harris recurrence property of the network Markov process.

5.3. Formal Proof. To this end, we are interested in establishing Lya-
punov drift criteria (cf. Lemma 6). For this, consider Markov process start-
ing at time 0 in state X(0) = (Q(0),x(0)) and as per hypothesis of both
Theorems, let λ ∈ (1 − ε)Conv(Ω) with some ε > 0 and Ω = I(G) (or X ).
Given this, we will go through four steps to prove positive Harris recurrence.
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5.3.1. Step One. Let π(0) be the stationary distribution of GD(W (0))
or LN(exp(W (0))). The following Lemma states that the average weight of
schedule as per π(0) is essentially as good as that of the maximum weight
schedule with respect to weight f(Q(0)).

Lemma 7 Let x be distributed over Ω as per π(0) given Q(0). Then,
(26)

Eπ(0)[f(Q(0)) · x] ≥
(
1− ε

4

)(
max
y∈Ω

f(Q(0)) · y
)
−O(1).

The proof of Lemma 7 is based on the variational characterization of distri-
bution in the exponential form. Specifically, we state the following proposi-
tion which is a direct adaptation of the known results in literature (cf. [10]).

Proposition 8 Let T : Ω → R and let M(Ω) be space of all distributions
on Ω. Define F : M(Ω) → R as

F (µ) = Eµ(T (x)) +HER(µ),

where HER(µ) is the standard discrete entropy of µ. Then, F is uniquely
maximized by the distribution ν, where

νx =
1

Z
exp (T (x)) , for any x ∈ Ω,

where Z is the normalization constant (or partition function). Further, with
respect to ν, we have

Eν[T (x)] ≥
[
max
x∈X

T (x)

]
− log |Ω|.

Proof. Observe that the definition of distribution ν implies that for any
x ∈ Ω,

T (x) = logZ + log νx.
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Using this, for any distribution µ on Ω, we obtain

F (µ) =
∑

x

µxT (x)−
∑

x

µx log µx

=
∑

x

µx(logZ + log νx)−
∑

x

µx log µx

=
∑

x

µx logZ +
∑

x

µx log
νx
µx

= logZ +
∑

x

µx log
νx
µx

≤ logZ + log

(∑

x

µx

νx
µx

)

= logZ

with equality if and only if µ = ν. To complete other claim of proposition,
consider x∗ ∈ argmaxT (x). Let µ be Dirac distribution µx = 1[x=x∗]. Then,
for this distribution

F (µ) = T (x∗).

But, F (ν) ≥ F (µ). Also, the maximal entropy of any distribution on Ω is
log |Ω|. Therefore,

T (x∗) ≤ F (ν)

= Eν [T (x)] +HER(ν)

≤ Eν [T (x)] + log |Ω|.(27)

Re-arrangement of terms in (27) will imply the second claim of Proposition
8. This completes the proof of Proposition 8. �

Proof of Lemma 7. The proof is based on known observations in the
context of classical Loss networks literature (cf. see [16]). In what follows,
for simplicity we use π = π(0) for a given Q = Q(0). From (9) and (17), it
follows that for both network models, the stationary distribution π has the
following form: for any x ∈ Ω,

πx ∝
∏

i

exp (Wixi)

xi!
= exp

(
∑

i

Wixi − log(xi!)

)
.

To apply Proposition 8, this suggest the choice of function T : X → R as

T (x) =
∑

i

Wixi − log(xi!), for any x ∈ Ω.
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Observe that for any x ∈ Ω, xi takes one of the finitely many values in
wireless or circuit switched network for all i. Therefore, it easily follows that

0 ≤
∑

i

log(xi!) ≤ O(1),

where the constant may depend on n and the problem parameter (e.g. Cmax

in circuit switched network). Therefore, for any x ∈ Ω,

T (x) ≤
∑

i

Wixi

≤ T (x) +O(1).(28)

Define x̂ = argmaxx∈Ω
∑

iWixi. From (28) and Proposition 8, it follows
that

Eπ

[
∑

i

Wixi

]
≥ Eπ [T (x)]

≥ max
x∈Ω

T (x)− log |Ω|
≥ T (x̂)− log |Ω|

=

(
∑

i

Wix̂i

)
−O(1)− log |Ω|

=

(
max
x∈Ω

W · x
)
−O(1).(29)

From the definition of weight in both algorithms ((3) and (4)) for a given
Q, weight W = [Wi] is defined as

Wi = max
{
f(Qi),

√
f(Qmax)

}
.

Define η
∆
= ε

4maxx∈Ω ‖x‖1
. To establish the proof of Lemma 7, we will consider

Qmax such that it is large enough satisfying

ηf(Qmax) ≥
√

f(Qmax).

For smaller Qmax we do not need to argue as in that case (26) (due to O(1)
term) is straightforward. Therefore, in the remainder we assume Qmax large
enough. For this large enough Qmax, it follows that for all i,

0 ≤ Wi − f(Qi) ≤
√

f(Qmax) ≤ ηf(Qmax)(30)
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Using (30), for any x ∈ Ω,

0 ≤ W · x− f(Q) · x = (W − f(Q)) · x
≤ ‖x‖1‖W − f(Q)‖∞
≤ ‖x‖1 × ηf(Qmax)

(a)

≤ ε

4
f(Qmax)

(b)

≤ ε

4

(
max
y∈Ω

f(Q) · y
)
,(31)

where (a) is from our choice of η = ε
4maxx∈Ω ‖x‖1

. For (b), we use the fact

that the singleton set {i}, i.e. independent set {i} for wireless network and
a single active on route i for circuit switched network, is a valid schedule.
And, for i = argmaxj Qj, it has weight f(Qmax). Therefore, the weight of
the maximum weighted schedule among all possible schedules in Ω is at least
f(Qmax). Finally, using (29) and (31) we obtain

Eπ [f(Q) · x] ≥ Eπ [W · x]− ε

4

(
max
y∈Ω

f(Q) · y
)

≥
(
max
y∈Ω

W · y
)
−O(1)− ε

4

(
max
y∈Ω

f(Q) · y
)

≥
(
max
y∈Ω

f(Q) · y
)
−O(1) − ε

4

(
max
y∈Ω

f(Q) · y
)

=
(
1− ε

4

)(
max
y∈Ω

f(Q) · y
)
−O(1).

This completes the proof of Lemma 7.

5.3.2. Step Two. Let µ(t) be the distribution of schedule x(t) over Ω at
time t, given initial state X(0) = (Q(0),x(0)). We wish to show that for
any initial condition x(0) ∈ Ω, for t large (but not too large) enough, µ(t)
is close to π(0) if Qmax(0) is large enough. Formal statement is as follows.

Lemma 9 For a large enough Qmax(0),

‖µ(t)− π(0)‖TV < ε/4,(32)

for t ∈ I = [b1(Qmax(0)), b2(Qmax(0))], where b1, b2 are integer-valued func-
tions on R+ such that

b1, b2 = polylog (Qmax(0)) and b2/b1 = Θ(log (Qmax(0))) .

In above the constants may depend on ε, Cmax and n.



RANDOMIZED NETWORK SCHEDULING 27

The notation polylog(z) represents a positive real-valued function of z that
scales no faster than a finite degree polynomial of log z.

Proof of Lemma 9. We shall prove this Lemma for the wireless network. The
proof of buffered circuit switch network follows in an identical manner. Hence
we shall skip it. Therefore, we shall assume Ω = I(G) and x(t) = σ(t).

First, we establish the desired claim for integral times. The argument for
non integral times will follow easily as argued near the end of this proof. For
t = τ ∈ Z+, we have

µ(τ + 1) = E
[
δσ(τ+1)

]

= E
[
δσ(τ) · P (τ)

]
,

where recall that P (τ)=en(GW (W (τ))−I) and the last equality follows from
(14). Again recall that the expectation is with respect to the joint distribu-
tion of {Q(τ),σ(τ)}. Hence, it follows that

µ(τ + 1) = E
[
δσ(τ) · P (τ)

]

= E

[
E

[
δσ(τ) · P (τ)

∣∣∣Q(τ)
]]

(a)
= E

[
E

[
δσ(τ)

∣∣∣Q(τ)
]
· P (τ)

]

= E [µ̃(τ) · P (τ)] ,

where

µ̃(τ) = µ̃(Q(τ))
∆
= E

[
δσ(τ)

∣∣∣Q(τ)
]
.

In above the expectation is taken with respect to the conditional marginal
distribution of σ(τ) given Q(τ); (a) follows since P (τ) is a function of Q(τ).
Next, we establish the relation between µ(τ) and µ(τ + 1).

µ(τ + 1) = E [µ̃(τ) · P (τ)]

= E [µ̃(τ) · P (0)] + E [µ̃(τ) · (P (τ)− P (0))]

= E [µ̃(τ)] · P (0) + e(τ)

= µ(τ) · P (0) + e(τ),

where e(τ)
∆
= E [µ̃(τ) · (P (τ)− P (0))]. Here the expectation is with respect

to Q(τ). Similarly,

µ(τ + 1) = µ(τ) · P (0) + e(τ)

= (µ(τ − 1) · P (0) + e(τ − 1)) · P (0) + e(τ)

= µ(τ − 1) · P (0)2 + e(τ − 1) · P (0) + e(τ).
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Therefore, recursively we obtain

µ(τ + 1) = µ(0) · P (0)τ+1 +
τ∑

s=0

e(τ − s) · P (0)s.(33)

We will choose b1 (which will depend on Qmax(0)) such that for τ ≥ b1,

‖µ(0) · P (0)τ − π(0)‖TV ≤ ε/8.(34)

That is, b1 is the mixing time of P (0). Using inequalities (8), (6) and Lemma
3, it follows that

b1 ≡ b1(Qmax(0)) = polylog (Qmax(0)) .

In above, constants may depend on n and ε. Therefore, from (33) and (34),
it suffices to show that

∥∥∥∥∥

τ−1∑

s=0

e(τ − 1− s) · P (0)s

∥∥∥∥∥
1

≤ ε/8,(35)

for τ ∈ I = [b1, b2] with an appropriate choice of b2 = b2(Qmax(0)). To this
end, we choose

b2 ≡ b2(Qmax(0)) = ⌈b1 log(Qmax(0))⌉.

Thus, b2(Qmax(0)) = polylog (Qmax(0)) as well. With this choice of b2, we
obtain the following bound on e(τ) to conclude (35).

‖e(τ)‖1 = ‖E [µ̃(τ) · (P (τ)− P (0))] ‖1
≤ E [‖µ̃(τ) · (P (τ)− P (0))‖1]
(a)

≤ O (E [‖P (τ)− P (0)‖∞])

(b)
= O (E [‖GW (W (τ))−GW (W (0))‖∞])

(c)
= O

(
E

[
max

i

∣∣∣∣
1

1 + exp(Wi(τ))
− 1

1 + exp(Wi(0))

∣∣∣∣
])

(d)
= O

(
E

[
max

i
|Wi(τ)−Wi(0)|

])

(e)
= O

(
max

i
E [|Wi(τ)−Wi(0)|]

)
.(36)

In above, (a) follows from the standard norm inequality and the fact
that ‖µ̃(τ)‖1 = 1, (b) follows from Lemma 11 in Appendix, (c) follows
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directly from the definition of transition matrix GD(W ), (d) follows from
1-Lipschitz7 property of function 1/(1 + ex) and (e) follows from the fact
that vector W (τ) being O(1) dimensional8.

Next, we will show that for all i and τ ≤ b2,

E [|Wi(τ)−Wi(0)|] = O

(
1

superpolylog (Qmax(0))

)
,(37)

the notation superpolylog(z) represents a positive real-valued function of z
that scales faster than any finite degree polynomial of log z. This is enough
to conclude (35) (hence complete the proof of Lemma 9) since

∥∥∥∥∥

τ−1∑

s=0

e(τ − 1− s) · P (0)s

∥∥∥∥∥
1

≤
τ−1∑

s=0

‖e(τ − 1− s) · P (0)s‖1

=

τ−1∑

s=0

O (‖e(τ − 1− s)‖1)

(a)
= O

(
τ

superpolylog (Qmax(0))

)

(b)

≤ ε

4
,

where we use (36) and (37) to obtain (a), (b) holds for large enough Qmax(0)
and τ ≤ b2 = polylog (Qmax(0)).

Now to complete the proof, we only need to establish (37). This is the
step that utilizes ‘slowly varying’ property of function f(x) = log log(x+ e).
First, we provide an intuitive sketch of the argument. Somewhat involved
details will be follow. To explain the intuition behind (37), let us consider
a simpler situation where i is such that Qi(0) = Qmax(0) and f(Qi(τ)) >√

f(Qmax(τ)) for a given τ ∈ [0, b2]. That is, let Wi(τ) = f(Qi(τ)). Now,

7A function f : R → R is k-Lipschitz if |f(s)− f(t)| ≤ k|s− t| for all s, t ∈ R.
8We note here that the O(·) notation means existences of constants that do not depend

scaling quantities such as time τ and Q(0); however it may depend on the fixed system
parameters such as number of queues. The use of this terminology is to retain the clarity
of exposition.
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consider following sequence of inequalities:

|Wi(τ)−Wi(0)| = |f(Qi(τ)− f(Qi(0))|
(a)

≤ f ′(ζ)|Qi(τ)−Qi(0)|, for some ζ around Qi(0)

(b)

≤ f ′(min{Qi(τ), Qi(0)})O(τ)

(c)

≤ f ′(Qi(0) −O(τ))O(τ)

(d)
= O

(
τ

Qi(0)

)
.(38)

In above, (a) follows from the mean value theorem; (b) follows from mono-
tonicity of f ′ and Lipschitz property of Qi(·) (as a function of τ) – which
holds deterministically for wireless network and probabilistically for circuit
switched network; (c) uses the same Lipschitz property; and (d) uses the
fact that τ ≤ b2 and b2 = polylog(Qmax(0)), Qmax(0) = Qi(0). Therefore,
effectively the bound of (38) is O(1/superpolylog(Qmax(0)).

The above explains the gist of the argument that is to follow. However,
to make it precise, we will need to provide lots more details. Toward this,
we consider the following two cases: (i) f(Qi(0)) ≥

√
f(Qmax(0)), and (ii)

f(Qi(0)) <
√

f(Qmax(0)). In what follows, we provide detailed arguments
for (i). The arguments for case (ii) are similar in spirit and will be provided
later in the proof.

Case (i): Consider an i such that f(Qi(0)) ≥
√

f(Qmax(0)). Then,

E [|Wi(τ)−Wi(0)|]
= E [|Wi(τ)− f(Qi(0))|]

= E

[
|f(Qi(τ))− f(Qi(0))| · I{

f(Qi(τ))≥
√

f(Qmax(τ))
}

]

+ E

[∣∣∣
√

f(Qmax(τ))− f(Qi(0))
∣∣∣ · I{

f(Qi(τ))<
√

f(Qmax(τ))
}

]
,(39)
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where each equality follows from (3). The first term in (39) can be bounded
as follows

E

[
|f(Qi(τ)) − f(Qi(0))| · I{f(Qi(τ))≥

√
f(Qmax(τ))}

]

≤ E [|f(Qi(τ))− f(Qi(0))|]
(o)

≤ E
[
f ′ (min{Qi(τ), Qi(0)}) |Qi(τ)−Qi(0)|

]

(a)

≤
√

E

[
f ′ (min{Qi(τ), Qi(0)})2

]
·
√

E [(Qi(τ)−Qi(0))2]

(b)

≤
√

f ′

(
Qi(0)

2

)2

+Θ

(
τ

Qi(0)

)
· O(τ)

(c)

≤

√√√√√f ′

(
1

2
f−1

(√
f(Qmax(0))

))2

+Θ


 τ

f−1
(√

f(Qmax(0))
)


 ·O(τ)

(d)
= O

(
1

superpolylog (Qmax(0))

)
.(40)

In above, (o) follows from concavity of f . For (a) we use the standard
Cauchy-Schwarz inequality E[XY ] ≤

√
E[X2]

√
E[Y 2]. For (b), note that

given Qi(0), E[[Qi(0) − Qi(τ)]
2] = O(τ2) for both network models – for

wireless network, it is deterministically true due to Lipschitz property of
Q(·); for circuit switched network, it is due to the fact that the arrival as
well as (the overall) departure processes are bounded rate Poisson processes.
Given this, using Markov’s inequality it follows that

Pr

(
min{Qi(τ), Qi(0)} ≤ Qi(0)

2

)
= O

(
τ

Qi(0)

)
.

Finally, using the fact that supy∈R+
f ′(y) = O(1), we obtain (b). Now (c)

follows from the condition of Qi(0) that f(Qi(0)) ≥
√

f(Qmax(0)). And, (d)
is implied by τ ≤ b2 = polylog(Qmax(0)), f(x) = log log(x+ e).

Next, we bound the second term in (39). We will use notation

A(τ) =
{
f(Qi(τ)) <

√
f(Qmax(τ)) &

√
f(Qmax(τ)) ≥ f(Qi(0))

}
,

B(τ) =
{
f(Qi(τ)) <

√
f(Qmax(τ))&

√
f(Qmax(τ)) < f(Qi(0))

}
.
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Then,

E

[∣∣∣
√

f(Qmax(τ))− f(Qi(0))
∣∣∣ · I{

f(Qi(τ))<
√

f(Qmax(τ))
}

]

= E

[(√
f(Qmax(τ))− f(Qi(0))

)
· IA(τ)

]

+ E

[(
f(Qi(0)) −

√
f(Qmax(τ))

)
· IB(τ)

]

(a)

≤ E

[(√
f(Qmax(τ)) −

√
f(Qmax(0))

)
· IA(τ)

]

+ E
[
(f(Qi(0)) − f(Qi(τ))) · IB(τ)

]

(b)

≤ E [|f(Qmax(τ)) − f(Qmax(0))|] + E [|f(Qi(0))− f(Qi(τ))|]

= O

(
1

superpolylog (Qmax(0))

)
.(41)

In above, (a) follows because we are considering case (i) with f(Qi(0)) ≥√
f(Qmax(0)) and definition of event B(τ); (b) follows from 1-Lipschitz prop-

erty of
√· function and appropriate removal of indicator random variables.

For the final conclusion, we observe that the arguments used to establish (40)
imply the O(1/superpolylog(Qmax(0))) bound on both the terms in very sim-
ilar manner: for the term corresponding to |f(Qmax(τ)) − f(Qmax(0))|, one
has to adapt arguments of (40) by essentially replacing the index i by max.
This concludes the proof of (37) for case (i) of f(Qi(0)) ≥

√
f(Qmax(0)).

Case (ii): Now consider i such that f(Qi(0)) <
√

f(Qmax(0)). Then,

E [|Wi(τ)−Wi(0)|] = E

[∣∣∣Wi(τ)−
√

f(Qmax(0))
∣∣∣
]

= E

[∣∣∣f(Qi(τ))−
√

f(Qmax(0))
∣∣∣ · I{

f(Qi(τ))≥
√

f(Qmax(τ))
}

]

+ E

[∣∣∣
√
f(Qmax(τ)) −

√
f(Qmax(0))

∣∣∣ · I{
f(Qi(τ))<

√
f(Qmax(τ))

}

]
.(42)

First observe that by 1-Lipschitz property of
√· function, the second term

can be bounded as (similar to (41))

E

[∣∣∣
√

f(Qmax(τ))−
√

f(Qmax(0))
∣∣∣ · I{

f(Qi(τ))<
√

f(Qmax(τ))
}

]

≤ E [|f(Qmax(τ))− f(Qmax(0))|]

= O

(
1

superpolylog (Qmax(0))

)
.(43)
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Therefore, we are left with proving the first term of (42). We will follow
similar line of arguments as those used for (41). Define

A′(τ) =
{
f(Qi(τ)) ≥

√
f(Qmax(τ))&

√
f(Qmax(0)) ≥ f(Qi(τ))

}
,

B′(τ) =
{
f(Qi(τ)) ≥

√
f(Qmax(τ))&

√
f(Qmax(0)) < f(Qi(τ))

}
.

Then,

E

[∣∣∣f(Qi(τ))−
√

f(Qmax(0))
∣∣∣ · I{

f(Qi(τ))≥
√

f(Qmax(τ))
}

]

= E

[(√
f(Qmax(0))− f(Qi(τ))

)
· IA(τ)

]

+ E

[(
f(Qi(τ))−

√
f(Qmax(0))

)
· IB(τ)

]

(a)

≤ E

[(√
f(Qmax(0)) −

√
f(Qmax(τ))

)
· IA(τ)

]

+ E

[(
f(Qi(τ))−

√
f(Qmax(0))

)
· IB(τ)

]

(b)

≤ O

(
1

superpolylog (Qmax(0))

)

+ E

[(
f(Qi(τ))−

√
f(Qmax(0))

)
· IB(τ)

]
.

(44)

In above, (a) follows because we are considering case (i) with f(Qi(τ)) ≥√
f(Qmax(τ)) and definition of event B(τ); (b) follows from 1-Lipschitz prop-

erty of
√· function and appropriate removal of indicator random variables

as follows:

E

[(√
f(Qmax(0))−

√
f(Qmax(τ))

)
· IA(τ)

]

≤ E [|f(Qmax(τ))− f(Qmax(0))|]

= O

(
1

superpolylog (Qmax(0))

)
.(45)

Finally, to complete the proof of case (ii) using (42), we wish to establish

E

[(
f(Qi(τ))−

√
f(Qmax(0))

)
· IB(τ)

]
= O

(
1

superpolylog (Qmax(0))

)
.

(46)
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Now suppose x ∈ R+ be such that f(x) =
√

f(Qmax(0). Then,

E

[(
f(Qi(τ))−

√
f(Qmax(0))

)
· IB(τ)

]

= E
[
(f(Qi(τ))− f(x)) · IB(τ)

]

(a)

≤ E
[
f ′(x)(Qi(τ)− x) · IB(τ)

]

= f ′(x) E
[
(Qi(τ)− x) · IB(τ)

]

(b)

≤ f ′(x) E
[
(Qi(τ)−Qi(0)) · IB(τ)

]

≤ f ′(x) E [|Qi(τ)−Qi(0)|]
(c)
= f ′(x) O (τ)

(d)
= O

(
1

superpolylog (Qmax(0))

)
.(47)

In above, (a) follows from concavity of f ; (b) from Qi(0) ≤ x and Qi(τ) ≥ x
implied by case (ii) and B′(τ) respectively; (c) follows from arguments used
earlier that for any i, E[(Qi(τ) − Qi(0))

2] = O(τ2); (d) follows from τ ≤
b2 = polylog (Qmax(0)) and

f ′(x) = O

(
1

superpolylog (Qmax(0))

)
.

This complete the proof of (37) for both cases and the proof of Lemma 9 for
integral time steps. A final remark validity of this result about non-integral
times is in order.

Consider t ∈ I and t /∈ Z+. Let τ = ⌊t⌋ and t = τ + δ for δ ∈ (0, 1). Then,
it follows that (using formal definition P δ as in (15))

µ(t) = µ(τ + δ) = µ(τ)P δ(0) + E

[
µ̃(τ)(P δ(τ)− P δ(0))

]

= µ(0)P (0)τP δ(0) + e(τ + δ).(48)

Now it can be checked that P δ(0) is a probability matrix and has π(0) as
its stationary distribution for any δ > 0; and we have argued that for τ large
enough µ(0)P (0)τ is close to π(0). Therefore, µ(0)P (0)τP δ(0) is also equally
close to π(0). For e(τ + δ), it can be easily argued that the bound obtained
in (36) for e(τ + 1) will dominate the bound for e(τ + δ). Therefore, the
statement of Lemma holds for any non-integral t as well. This complete the
proof of Lemma 9.
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5.3.3. Step Three: Wireless Network. In this section, we prove Lemma 6
for the wireless network model. For Markov process X(t) = (Q(t),σ(t)), we
consider Lyapunov function

L(X(t)) =
∑

i

F (Qi(t)),

where F (x) =
∫ x

0 f(y) dy and recall that f(x) = log log(x + e). For this
Lyapunov function, it suffices to find appropriate functions h and g as per
Lemma 6 for a large enough Qmax(0). Therefore, we assume that Qmax(0)
is large enough so that it satisfies the conditions of Lemma 9. To this end,
from Lemma 9, we have that for t ∈ I,

∣∣Eπ(0)[f(Q(0)) · σ]− Eµ(t)[f(Q(0)) · σ]
∣∣ ≤ ε

4

(
max

ρ∈I(G)
f(Q(0)) · ρ

)
.

Thus from Lemma 7, it follows that
(49)

Eµ(t)[f(Q(0)) · σ] ≥
(
1− ε

2

)(
max

ρ∈I(G)
f(Q(0)) · ρ

)
−O(1).

Now we can bound the difference between L(X(τ + 1)) and L(X(τ)) as
follows.

L(X(τ + 1)) − L(X(τ)) = (F (Q(τ + 1))− F (Q(τ))) · 1
≤ f(Q(τ + 1)) · (Q(τ + 1)−Q(τ)),

≤ f(Q(τ)) · (Q(τ + 1)−Q(τ)) + n,

where the first inequality is from the convexity of F and the last inequality
follows from the fact that f(Q) is 1-Lipschitz. Therefore,

L(X(τ + 1))− L(X(τ)) = (F (Q(τ + 1))− F (Q(τ))) · 1

≤ f(Q(τ)) ·
(
A(τ, τ + 1)−

∫ τ+1

τ

σ(y)1{Qi(y)>0} dy

)
+ n

(a)

≤ f(Q(τ)) ·A(τ, τ + 1)−
∫ τ+1

τ

f(Q(y)) · σ(y)1{Qi(y)>0} dy + 2n

= f(Q(τ)) ·A(τ, τ + 1)−
∫ τ+1

τ

f(Q(y)) · σ(y) dy + 2n,(50)
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where again (a) follows from the fact that f(Q) is 1-Lipschitz. Given initial
state X(0) = x, taking the expectation of (50) for τ, τ + 1 ∈ I,

Ex[L(X(τ + 1))− L(X(τ))]

≤ Ex[f(Q(τ)) · A(τ, τ + 1)]−
∫ τ+1

τ

Ex[f(Q(y)) · σ(y)] dy + 2n

= Ex[f(Q(τ)) · λ]−
∫ τ+1

τ

Ex[f(Q(y)) · σ(y)] dy + 2n,

where the last equality follows from the independence between Q(τ) and
A(τ, τ + 1) (recall, Bernoulli arrival process). Therefore,

Ex[L(X(τ + 1))− L(X(τ))]

≤ Ex[f(Q(τ)) · λ]−
∫ τ+1

τ

Ex[f(Q(0)) · σ(y)] dy

−
∫ τ+1

τ

Ex[(f(Q(y))− f(Q(0))) · σ(y)] dy + 2n

(a)

≤ f(Q(0) + τ · 1) · λ−
∫ τ+1

τ

Ex[f(Q(0)) · σ(y)] dy

−
∫ τ+1

τ

(f(Q(0)− y · 1)− f(Q(0))) · 1 dy + 2n

(b)

≤ f(Q(0)) · λ+ f(τ · 1) · λ−
(
1− ε

2

)(
max

ρ∈I(G)
f(Q(0)) · ρ

)

+

∫ τ+1

τ

f(y · 1) · 1 dy +O(1)

≤ f(Q(0)) · λ−
(
1− ε

2

)(
max

ρ∈I(G)
f(Q(0)) · ρ

)
+ 2nf(τ + 1) +O(1).

In above, (a) uses Lipschitz property of Q(·) (as a function of τ); (b) follows
from (49) and the inequality that for f(x) = log log(x + e), f(x) + f(y) +
log 2 ≥ f(x+ y) for all x, y ∈ R+. The O(1) term is constant, dependent on
n, and captures the constant from (49).
Now since λ ∈ (1− ε)Conv(I(G)), we obtain

Ex[L(X(τ + 1)) − L(X(τ))]

≤ −ε

2

(
max

ρ∈I(G)
f(Q(0)) · ρ

)
+ 2n f(τ + 1) +O(1)

≤ −ε

2
f(Qmax(0)) + 2n f(τ + 1) +O(1).
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Therefore, summing τ from b1 = b1(Qmax(0)) to b2 = b2(Qmax(0)), we have

Ex [L(X(b2))− L(X(b1))]

≤ −ε

2
(b2 − b1)f(Qmax(0)) + 2n

b2−1∑

τ=b1

f(τ + 1) +O(b2 − b1)

≤ −ε

2
(b2 − b1)f(Qmax(0)) + 2n(b2 − b1)f(b2) +O(b2 − b1).(51)

Thus, we obtain

Ex [L(X(b2))− L(X(0))]

= Ex [L(X(b1))− L(X(0))] + Ex [L(X(b2))− L(X(b1))]

(a)

≤ Ex [f(Q(b1)) · (Q(b1)−Q(0))]− ε

2
(b2 − b1)f(Qmax(0))

+2n

b2−1∑

τ=b1

f(τ + 1) +O(b2 − b1)

(b)

≤ nb1 f(Qmax(0) + b1))−
ε

2
(b2 − b1)f(Qmax(0))

+2n(b2 − b1)f(b2) +O(b2 − b1),(52)

where (a) follows from the convexity of L and (b) is due to the 1-Lipschitz
property of Q. Now if we choose g(x) = b2 and

h(x) = −nb1 f(Qmax(0)+b1))+
ε

2
(b2−b1)f(Qmax(0))−2n(b2−b1)f(b2)−O(b2−b1),

the desired inequality follows:

Ex [L(X(g(x))) − L(X(0))] ≤ −h(x).

The desired conditions of Lemma 6 can be checked as follows. First observe
that with respect toQmax(0), the function h scales as b2(Qmax(0))f(Qmax(0))
due to b2/b1 = Θ(logQmax(0)) as per Lemma 9. Further, h is a function that
is lower bounded and its value goes to ∞ as Qmax(0) goes to ∞. Therefore,
h/g scales as f(Qmax(0)). These propeties will imply the verification condi-
tions of Lemma 6.

5.3.4. Step Three: Buffered Circuit Switched Network. In this section, we
prove Lemma 6 for the circuit switched network model. Similar to wireless
network, we are interested in large enough Qmax(0) that satisfies condition
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of Lemma 9. Given the state X(t) = (Q(t),z(t)) of the Markov process, we
shall consider the following Lyapunov function :

L(X(t)) =
∑

i

F (Ri(t)).

Here R(t) = [Ri(t)] with Ri(t) = Qi(t) + zi(t) and as before F (x) =∫ x

0 f(y) dy. Now we proceed towards finding appropriate functions h and
g as desired in Lemma 6. For any τ ∈ Z+,

L(X(τ + 1))− L(X(τ))

= (F (R(τ + 1))− F (R(τ))) · 1
≤ f(R(τ + 1)) · (R(τ + 1)−R(τ)),

= f(R(τ) +A(τ, τ + 1)−D(τ, τ + 1)) · (A(τ, τ + 1)−D(τ, τ + 1))

≤ f(R(τ)) · (A(τ, τ + 1)−D(τ, τ + 1)) + ‖A(τ, τ + 1)−D(τ, τ + 1)‖22.

Given initial state X(0) = x, taking expectation for τ, τ + 1 ∈ I, we have

Ex[L(X(τ + 1)) − L(X(τ))]

≤ Ex [f(R(τ)) ·A(τ, τ + 1)]− Ex [f(R(τ)) ·D(τ, τ + 1)]

+Ex

[
‖A(τ, τ + 1)−D(τ, τ + 1)‖22

]

=Ex [f(R(τ)) · λ]− Ex [f(R(τ)) ·D(τ, τ + 1)] +O(1).(53)

The last equality follows from the fact that arrival process is Poisson with
rate vector λ and R(τ) is independent of A(τ, τ +1). In addition, the overall
departure process for any i, Di(·), is governed by a Poisson process of rate
at most Cmax. Therefore, the second moment of the difference of arrival and
departure processes in unit time is O(1). Now,

Ex [f(R(τ)) · λ] = f(R(0)) · λ+ Ex [(f(R(τ)) − f(R(0))) · λ] .(54)

And,

Ex [f(R(τ)) ·D(τ, τ + 1)]

= Ex [f(R(0)) ·D(τ, τ + 1)] + Ex [(f(R(τ))− f(R(0))) ·D(τ, τ + 1)] .(55)

The first term on the right hand side in (54) can be bounded as

f(R(0)) · λ ≤ (1− ε)

(
max
y∈X

f(R(0)) · y
)

≤ −3ε

4

(
max
y∈X

f(R(0)) · y
)
+ Eπ(0) [f(R(0)) · z] +O(1),(56)
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where the first inequality is due to λ ∈ (1 − ε)Conv(X ) and the second
inequality follows from Lemma 7 with the fact that |fi(R(τ))− fi(Q(τ))| <
f(Cmax) = O(1) for all i. On the other hand, the first term in the right hand
side of (55) can be bounded below as

Ex [f(R(0)) ·D(τ, τ + 1)] = f(R(0)) · Ex [D(τ, τ + 1)]

≥ f(R(0)) ·
∫ τ+1

τ

Ex [z(s)] ds

=

∫ τ+1

τ

Eµ(s) [f(R(0)) · z] ds.(57)

In above, we have used the fact that Di(·) is a Poisson process with rate
given by zi(·). Further, the second term in the right hand side of(53) can be
bounded as follows.

Ex [‖f(R(τ))− f(R(0))‖1] ≤ Ex [f (|R(τ)) −R(0)|)] +O(1)

≤ f (Ex [|R(τ)) −R(0)|]) +O(1)

≤ nf(Cmaxτ) +O(1)

= O(f(τ)),(58)

The first inequality follows from f(x+y) ≤ f(x)+f(y)+2 for any x, y ∈ R+.
This is because log(x + y + e) ≤ log(x + e) + log(y + e) for any x, y ≥ R+,
log a + b ≤ 2 + log a + log b for any a, b ≥ 1 and f(x) = log log(x + e).
The second inequality follows by applying Jensen’s inequality for concave
function f . Combining (53)-(58), we obtain

Ex[L(X(τ + 1))− L(X(τ))]

≤ −3ε

4

(
max
y∈X

f(R(0)) · y
)
+ Eπ(0) [f(R(0)) · z]

−
∫ τ+1

τ

Eµ(s) [f(R(0)) · z] ds+O(f(τ))

≤ −3ε

4

(
max
y∈X

f(R(0)) · y
)

+

∫ τ+1

τ

(
max
y∈X

f(R(0)) · y
)
‖µ(s)− π(0)‖TV ds+O(f(τ))

(a)

≤ −ε

2

(
max
y∈X

f(R(0)) · y
)
+O(f(τ))

≤ −ε

2
f(Qmax(0)) +O(f(τ)),
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where (a) follows from Lemma 9. Summing this for τ ∈ I = [b1, b2 − 1],
(59)

Ex[L(X(b2))− L(X(b1))] ≤ − ε

2
f(Qmax(0))(b2 − b1) +O((b2 − b1)f(b2)).

Therefore, we have

Ex[L(X(b2))− L(X(0))]

= Ex[L(X(b1))− L(X(0))] + Ex[L(X(b2))− L(X(b1))]

(a)

≤ Ex[f(R(b1)) · (R(b1)−R(0))] + Ex[L(X(b2))− L(X(b1))]

=
∑

i

Ex[f(Ri(b1)) · (Ri(b1)−Ri(0))] + Ex[L(X(b2))− L(X(b1))]

(b)

≤
∑

i

√
Ex[f(Ri(b1))2]

√
Ex[(Ri(b1)−Ri(0))2] + Ex[L(X(b2))− L(X(b1))]

(c)

≤
∑

i

√
f(Ex[Ri(b1)])2 +O(1) · O(b1) + Ex[L(X(b2))− L(X(b1))]

(d)
= n f(Qmax(0) +O(b1)) · O(b1)−

ε

2
f(Qmax(0))(b2 − b1)

+ O((b2 − b1)f(b2))
△
= −h(x).

Here (a) follows from convexity of L; (b) from Cauchy-Schwarz, (c) is due to
the bounded second moment Ex[|Ri(b1)−Ri(0)|] = O(b1) as argued earlier
in the proof and observing that there exists a concave function g such that
f2 = g+O(1) over R+, subsequently Jensen’s inequality can be applied; (d)
follows from (59). Finally, choose g(x) = b2.

With these choices of h and g, the desired conditions of Lemma 6 can be
checked as follows. First observe that with respect to Qmax(0), the function
h scales as b2(Qmax(0))f(Qmax(0)) due to b2/b1 = Θ(logQmax(0)) as per
Lemma 9. Further, h is a function that is lower bounded and its value goes
to ∞ as Qmax(0) goes to ∞. Therefore, h/g scales as f(Qmax(0)). These
properties will imply the verification conditions of Lemma 6.

5.3.5. Step Four. For completing the proof of the positive Harris recur-
rence of both algorithms, it only remains to show that for κ > 0, the set
Bκ = {x ∈ X : L(x) ≤ κ} is a closed petit. This is because other conditions
of Lemma 5 follow from Lemma 6. And the Step Three exhibited choice of
Lyapunov function L and desired ‘drift’ functions h, g.

To this end, first note that Bκ is closed by definition. To establish that
it is a petit set, we need to find a non-trivial measure µ on (X,BX) and
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sampling distribution a on Z+ so that for any x ∈ Bκ,

Ka(x, ·) ≥ µ(·).

To construct such a measure µ, we shall use the following Lemma.

Lemma 10 Let the network Markov chain X(·) start with the state x ∈ Bκ

at time 0 i.e. X(0) = x. Then, there exists Tκ ≥ 1 and γκ > 0 such that

Tκ∑

τ=1

Prx(X(τ) = 0) ≥ γκ, ∀x ∈ Bκ.

Here 0 = (0,0) ∈ X denote the state where all components of Q are 0 and
the schedule is the empty independent set.

Proof. We establish this for wireless network. The proof for circuit switched
network is identical and we skip the details. Consider any x ∈ Bκ. Then by
definition L(x) ≤ κ+1 for given κ > 0. Hence by definition of L(·) it can be
easily checked that each queue is bounded above by κ. Consider some large
enough (soon to be determined) Tκ. By the property of Bernoulli (or Poisson
for circuit switched network) arrival process, there is a positive probability
θ0κ > 0 of no arrivals happening to the system during time interval of length
Tκ. Assuming that no arrival happens, we will show that in large enough time
t1κ, with probability θ1κ > 0 each queue receives at least κ amount of service;
and after that in additional time t2 with positive probability θ2 > 0 the

empty set schedule is reached. This will imply that by defining Tκ
△
= t1κ + t2

the state 0 ∈ X is reached with probability at least

γκ
△
= θ0κθ

1
κθ

2 > 0.

And this will immediately imply the desired result of Lemma 10. To this
end, we need to show existence of t1κ, θ

1
κ and t2, θ2 with properties stated

above to complete the proof of Lemma 10.
First, existence of t1κ, θ

1
κ. For this, note that the Markov chain correspond-

ing to the scheduling algorithm has time varying transition probabilities and
is irreducible over the space of all independent sets, I(G). If there are no new
arrivals and initial x ∈ Bκ, then clearly queue-sizes are uniformly bounded
by κ. Therefore, the transition probabilities of all feasible transitions for
this time varying Markov chain is uniformly lower bounded by a strictly
positive constant (dependent on κ, n). It can be easily checked that the
transition probability induced graph on I(G) has diameter at most 2n and
Markov chain transits as per Exponential clock of overall rate n. Therefore,
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it follows that starting from any initial scheduling configuration, there exists
finite time t̂κ such that a schedule is reached so that any given queue i is
scheduled for at least unit amount of time with probability at least θ̂κ > 0.

Here, both t̂κ, θ̂κ depend on n, κ. Therefore, it follows that in time t1κ
△
= κnt̂κ

all queues become empty with probability at least θ1κ
△
=
(
θ̂κ

)nκ
. Next, to

establish existence of t2, θ2 as desired, observe that once the system reaches
empty queues, it follows that in the absence of new arrivals the empty sched-
ule 0 is reached after some finite time t2 with probability θ2 > 0 by similar
properties of the Markov chain on I(G) when all queues are 0. Here t2 and
θ2 are dependent on n only. This completes the proof of Lemma 10. �

In what follows, Lemma 10 will be used to complete the proof that Bκ is
a closed petit. To this end, consider Geometric(1/2) as the sampling distri-
bution a, i.e.

a(ℓ) = 2−ℓ, ℓ ≥ 1.

Let δ0 be the Dirac distribution on element 0 ∈ X. Then, define µ as

µ = 2−Tκγkδ0, that is µ(·) = 2−Tκγkδ0(·).

Clearly, µ is non-trivial measure on (X,BX). With these definitions of a and
µ, Lemma 10 immediately implies that for any x ∈ Bκ,

Ka(x, ·) ≥ µ(·).

This establishes that set Bκ is a closed petit set.

6. Discussion. This paper introduced a new randomized scheduling
algorithm for two constrained queueing network models: wireless network
and buffered circuit switched network. The algorithm is simple, distributed,
myopic and throughput optimal. The main reason behind the throughput
optimality property of the algorithm is two folds: (1) The relation of algo-
rithm dynamics to the Markovian dynamics over the space of schedules that
have a certain product-form stationary distribution, and (2) choice of slowly
increasing weight function log log(· + e) that allows for an effective time
scale separation between algorithm dynamics and the queueing dynamics.
We chose wireless network and buffered circuit switched network model to
explain the effectiveness of our algorithm because (a) they are becoming of
great interest [26, 34] and (b) they represent two different, general class of
network models: synchronized packet network model and asynchronous flow
network model.
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Now we turn to discuss the distributed implementation of our algorithm.
As described in Section 3.1, given the weight information at each wire-
less node (or ingress of a route), the algorithm completely distributed. The
weight, as defined in (3) (or (4)), depends on the local queue-size as well as
the Qmax information. As is, Qmax is global information. To keep the expo-
sition simpler, we have used the precise Qmax information to establish the
throughput property. However, as remarked earlier in the Section 3.1 (soon
after (3)), the Qmax can be replaced by its appropriate distributed estima-
tion without altering the throughput optimality property. Such a distributed
estimation can be obtained through an extremely simple Markovian like al-
gorithm that require each node to perform broadcast of exactly one number
in unit time. A detailed description of such an algorithm can be found in
Section 3.3 of [25].

On the other hand, consider the algorithm that does not use Qmax infor-
mation. That is, instead of (3) or (4), let weight be

Wi(t) = f(Qi(⌊t⌋)).

We conjecture that this algorithm is throughput optimal.
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APPENDIX A: A USEFUL LEMMA

Lemma 11 Let P1, P2 ∈ R
N×N . Then,

∥∥eP1 − eP2
∥∥
∞

≤ eNM ‖P1 − P2‖∞ ,

where M = max{‖P1‖∞, ‖P1‖∞}.
Proof. Using mathematical induction, we first establish that for any k ∈ N,

‖P k
1 − P k

2 ‖∞ ≤ k(NM)k−1‖P1 − P2‖∞.(60)

�

To this end, the base case k = 1 follows trivially. Suppose it is true for some
k ≥ 1. Then, the inductive step can be justified as follows.

‖P k+1
1 − P k+1

2 ‖∞ =
∥∥∥P1

(
P k
1 − P k

2

)
+ (P1 − P2)P

k
2

∥∥∥
∞

≤
∥∥∥P1

(
P k
1 − P k

2

)∥∥∥
∞

+
∥∥∥(P1 − P2)P

k
2

∥∥∥
∞

(a)

≤ N ‖P1‖∞
∥∥∥P k

1 − P k
2

∥∥∥
∞

+N ‖P1 − P2‖∞
∥∥∥P k

2

∥∥∥
∞

(b)

≤ NM × k(N M)k−1‖P1 − P2‖∞ +N ‖P1 − P2‖∞ ×Nk−1Mk

= (k + 1)(NM)k‖P1 − P2‖∞.

In above, (a) follows from an easily verifiable fact that for any Q1, Q2 ∈
R
N×N ,

‖Q1Q2‖∞ ≤ N‖Q1‖∞‖Q2‖∞.
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We use induction hypothesis to justify (b). Using (60), we have

∥∥eP1 − eP2
∥∥
∞

=

∥∥∥∥∥
∑

k

1

k!

(
P k
1 − P k

2

)∥∥∥∥∥
∞

≤
∑

k

1

k!

∥∥∥P k
1 − P k

2

∥∥∥
∞

≤
∑

k

1

k!
k(NM)k−1‖P1 − P2‖∞

= eNM‖P1 − P2‖∞.
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