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Optimal scaling of average queue sizes in an input-queued
switch: an open problem
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Abstract We review some known results and state a few versions of an open problem

related to the scaling of the total queue size (in steady-state) in an n×n input-queued

switch, as a function of the port number n and the load factor ρ. Loosely speaking, the

question is whether the total number of packets in queue, under either the maximum

weight policy or under an optimal policy, scales (ignoring any logarithmic factors) as

O(n/(1− ρ)).
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1 Introduction

Stochastic processing networks, as formalized by Harrison [3], provide a general model

that captures a variety of dynamic resource allocation scenarios. Generally speaking,

in such a model, there are several queues that need to be served, subject to certain

constraints. The performance of such a queueing network is strongly dependent on

the policy that determines which queues are to be served at each time-slot. The ca-

pacity region as well as throughput-optimal1 policies for such queueing networks are

reasonably well understood, cf. [12]. However, the development of general performance

analysis methods for estimating the distribution or the moments of the queue sizes

induced by throughput optimal scheduling policies remains an important challenge.

In this note, we put forth a particular performance analysis question. While the

development of general analytical results may be too difficult, we focus on a special class

of processing networks (input-queued switches) and on asymptotics. More concretely,

we are interested in the way that the total queue size (in steady-state) scales with the

number of ports and with the load factor. Input-queued switches are, in our opinion,

the simplest non-trivial example of a stochastic processing network. Over the years, it

has served as a guiding example for designing as well as analyzing scheduling policies
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1 For our purposes, a (Markovian) policy is called throughput optimal if the resulting Markov
chain is positive recurrent whenever the network is underloaded.
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Fig. 1 An input-queued switch, and two example matchings of inputs to outputs.

(cf. [10,11]). Thus, we hope that making progress on the questions posed in this note

will lead to further advances in the performance analysis of more general stochastic

processing networks.

2 Input-queued switch model

An input-queued switch is a popular, and commercially available, architecture for

switching packets in an Internet router. Abstractly, an n× n switch has n input ports

and n output ports. At each time-slot, each input port (respectively, output port) can

be matched to at most one output port (respectively, input port) and packets are for-

warded according to this matching. See Figure 1 for an illustration of a 3 × 3 switch

and some possible matchings.

The switch operates in discrete time, indexed by τ ∈ {0, 1, . . . }. At each time step,

and for every port pair (i, j), unit-sized packets may arrive at input port i destined

for output port j, according to an exogenous arrival process. Let Ai,j(τ) denote the

cumulative number of such arriving packets until the beginning of timeslot τ . We

assume that the processes Ai,j(·) are independent for different pairs (i, j). Furthermore,

for every input-output pair (i, j), Ai,j(·) is a Bernoulli process with parameter λi,j . In

particular,

lim
τ→∞

1

τ
Ai,j(τ) = λi,j , with probability 1.

Let λ = [λi,j ] ∈ [0, 1]n×n denote the arrival rate vector. For every input-output pair

(i, j), the associated arriving packets are stored in separate queues, so that we have

a total of n2 queues. Let Qi,j(τ) be the number of packets waiting at input port i,

destined for output j, at the beginning of time slot τ ; let Q(τ) = [Qi,j(τ)].

In each time slot, the switch can transmit a number of packets from input ports to

output ports, subject to the following two constraints: (i) each input port can transmit

at most one packet; and, (ii) each output port can receive at most one packet. In other

words, the actions of a switch at a particular time-slot constitute a matching between

input and output ports.

A matching, or schedule, can be described by a vector π ∈ {0, 1}n×n, where πi,j = 1

if input port i is matched to output port j, and πi,j = 0 otherwise. Thus, the set of all

feasible schedules is

S =
n

π ∈ {0, 1}n×n :
X
k

πi,k ≤ 1,
X
k

πk,j ≤ 1, ∀ (i, j) with 1 ≤ i, j ≤ n
o
.
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A scheduling policy (or simply policy) is a rule that, at any given time τ , chooses a

schedule σ(τ) = [σi,j(τ)] ∈ S, based on the current queue vector Q(τ). If σi,j(τ) = 1

and Qi,j(τ) > 0, then one packet is removed from the queue associated with the

pair (i, j). For simplicity we have restricted to so-called stationary Markovian policies.

Under our restriction, for any given policy, Q(·) is a Markov chain.

Regarding the details of the model, we adopt the following conventions. At the

beginning of time slot τ , the queue vector Q(τ) is observed by the policy. The schedule

σ(τ) is applied in the middle of the time slot. Finally, at the end of the time slot, the

new arrivals happen. Mathematically, for all i, j, and τ ≥ 0, we have

Qi,j(τ + 1) = Qi,j(τ)− σi,j(τ)1{Qi,j(τ)>0} +Ai,j(τ + 1)−Ai,j(τ). (1)

Without loss of generality, we can assume that Qi,j(0) = 0, for all i, j.

2.1 Performance metrics

The overall performance goal of a scheduling policy is to keep the queue sizes small. The

primary objective is usually to ensure the positive recurrence of the resulting Markov

chain, for the largest possible set of arrival rates. This is because positive recurrence

guarantees the existence of a unique stationary distribution and ergodicity (so that the

queue sizes are prevented from drifting to ever increasing values).

To understand the nature of this primary objective, we note that since any schedul-

ing policy must choose schedules or actions from S, the resulting (time-average) service

rate vector µ = [µi,j ] must belong to the convex hull of S. By the Birhoff-von Neumann

theorem [1,8], this convex hull is the same as the set

Λ =
n

π ∈ [0, 1]n×n :
X
k

πi,k ≤ 1,
X
k

πk,j ≤ 1, ∀ (i, j) with 1 ≤ i, j ≤ n
o
.

We define the load factor2 associated with a given given arrival rate vector λ to be

ρ(λ) = max
1≤i,j≤n

nX
k

λi,k,
X
k

λk,j

o
.

Clearly, if ρ(λ) > 1, then the arrival rate vector λ does not belong to the set Λ of feasible

service rate vectors. Thus, services cannot keep up with arrivals, and the system cannot

be positive recurrent. On the other hand, if ρ(λ) < 1, then the arrival rate vector λ

can be accommodated by a suitable combination of matchings (with some extra margin

to accommodate stochastic fluctuations). As a result, for every λ for which ρ(λ) < 1,

there exists a policy that results in a positively recurrent Markov chain. Interestingly,

it turns out that one can find a single policy (independent of λ) that guarantees this

positive recurrence property [12,4]. We call such policies throughput optimal.

Besides throughput optimality, an important secondary performance metric is the

average queue size in steady-state. Specifically, for any given λ with ρ(λ) < 1, we are

interested in the least possible value of Q = E
ˆP

i,j Qi,j
˜
. Here, the expectation is

with respect to the steady-state distribution of the queue size vector Q, which is well

defined for policies that result in a positive recurrent Markov chain. (For a Markov

2 This definition coincides with the natural definition of the load factor when the arrival
streams are deterministic, as in the “static planning problem” in [3].
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chain which is not positive recurrent, we just let Q =∞.) We let Q∗(n,λ) denote the

optimal (over all policies) value of Q, for given n and λ.

Obtaining analytical expressions or somewhat detailed bounds on Q∗(n,λ) seems

to be very difficult. For this reason, we will focus on the asymptotics of Q∗(n,λ), in

the limit as n→∞ and ρ(λ)→ 1.

2.2 The maximum weight scheduling policy

The maximum weight (MW, for short) scheduling policy was introduced in [12] and

then studied in the context of input-queued switches in [4]. Under this policy, the

schedule σ(τ) chosen at timeslot τ satisfies

σ(τ) ∈ arg max
π∈S

X
i,j

πi,jQi,j(τ),

breaking ties according to some prespecified rule. We note that the MW policy is

stationary and Markovian, and does not require knowledge of the value of λ. It is known

to result in a positive recurrent Markov chain whenever ρ(λ) < 1, and is therefore

throughput optimal.

3 Problem statement

The basic problem of interest is to identify the best possible simultaneous dependence

of Q on n and ρ = ρ(λ). Loosely speaking, the issue is the following.3 As discussed

in the next section, there exist policies that attain Q = O(n2/(1 − ρ)) and Q =

O(n logn/(1− ρ)2). The question is whether there exist policies that combine the best

features of the above two bounds, i.e., with Q = O(n1+ε/(1− ρ)) for arbitrarily small

ε > 0, and whether this is achieved by the MW policy. A slightly different way of

framing the question is to ask for the best possible scaling as a function of n, when we

restrict to policies for which the dependence on ρ scales as 1/(1− ρ).

There are a variety of ways of formalizing the above questions. We state a few

below.

1. Find β∗0 , the infimum over all positive numbers β for which there exists a constant

c > 0 such that

Q∗(n,λ) ≤ c · nβ

1− ρ(λ)
, (2)

for all n and all λ with ρ(λ) ∈ (0, 1).

2. Find β∗1 , the infimum over all positive numbers β for which there exists a constant

c > 0 such that

lim sup
ρ(λ)→1

(1− ρ(λ)) ·Q∗(n,λ) ≤ c · nβ , (3)

for all n. In the above, the limit superior is taken along sequences of λ that satisfy

ρ(λ) < 1.

3 The reason why this discussion is loose is that the O(·) notation, for a function of two
parameters, can admit different interpretations.
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3. Find β∗2 , the infimum over all positive numbers β for which there exists a constant

c > 0 such that

lim sup
n→∞

1

nβ
·Q∗(n,λ) ≤ c

1− ρ(λ)
, (4)

for all λ that satisfy ρ(λ) < 1.

It can be seen that Eq. (2) is a stronger requirement than (and thus implies) Eqs.

(3) and (4). For this reason, β∗1 ≤ β∗0 and β∗2 ≤ β∗0 . As will be discussed shortly, all

of these coefficients lie in the interval [1, 2]. We conjecture that β∗0 = 1, which would

also imply that β∗1 = 1 and β∗2 = 1. The reason for introducing β∗1 and β∗2 is that an

intermediate (weaker) conjecture, such as β∗1 = 1, may be easier to prove.

We also have the much stronger conjecture that β∗0 is equal to one even if we restrict

to the MW policy (as opposed to considering optimal policies). In a further variation,

the same questions can be posed for the case of uniform traffic, where λi,j = ρ/n, for

all i and j.

4 Known results

In this section, we review the most relevant available results. We first discuss the reason

why 1 ≤ β∗i ≤ 2. Then, in Section 4.3, we explain the reason why the exponents of

interest are expected to be equal to one if the dependence on ρ(λ) were to be ignored.

To keep notation simple, we will be writing ρ instead of ρ(λ).

4.1 Lower bound: β∗i ≥ 1

Consider uniform loading λ = [ρ(λ)/n] with ρ = ρ(λ) ∈ (1/2, 1]. Consider the ag-

gregate queue size at input port i: Qi =
P
k Qi,k. It follows from (1) that for any

τ ≥ 1,

Qi(τ) ≥ Ai(τ)− τ, (5)

where Ai(τ) =
P
k Ai,k(τ) is the aggregate arrival process at input port i. The random

variable Ai(τ) is binomial with parameters nτ and ρ/n. It can be checked (either using

Stirling’s approximation or an argument along the lines of Lemma 2.1 in [9]), that there

exists a positive constant β > 0 (independent of n and ρ) such that for any ρ ≥ 1/2,

any n, and any τ ≥ 1,

P
“
Ai(τ) ≥ ρτ +

√
ρτ
”
≥ β. (6)

From (5) and (6), by setting τ = ρ(1− ρ)−2/4, it follows that

P
“
Qi(τ) ≥ ρ

4(1− ρ)

”
≥ β. (7)

Furthermore, for any τ ′ ≥ ρ(1−ρ)−2/4, the exact same bound holds for Qi(τ
′) (due to

the stationarity of the Bernoulli process). Therefore, the steady-state expectation of Qi
(if well defined) must be at least βρ(1− ρ)−1/4. Due to the symmetry of the uniform
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traffic, it follows that the steady-state expectation of
P
i,j Qi,j is lower bounded as

follows:

E
hX
i,j

Qi,j

i
≥ CL

n

1− ρ , (8)

whenever ρ ≥ 1/2 and for all n, where CL > 0 is a universal constant.

4.2 Upper bound: β∗i ≤ 2

In order to obtain an upper bound, it suffices to establish an upper bound under a

particular policy. The following result is well known; cf. [12,4]. We include a proof for

completeness.

Theorem 1 Under the maximum weight policy, we have

Q ≤ n2

1− ρ ,

for all n and all λ with ρ < 1,

Proof The proof makes use of the Foster-Lyapunov moment bound (cf. [5]). We con-

sider a quadratic Lyapunov function and define F (τ) = 1
2

P
i,j Q

2
i,j(τ). A standard

calculation [12,4] shows that under the MW policy

E
h
F (τ + 1)− F (τ) | Q(τ)

i
≤ −1− ρ

n

“X
i,j

Qij(τ)
”

+ n. (9)

Therefore,

E
h
F (τ + 1)− F (τ)

i
≤ −1− ρ

n
E
hX
i,j

Qi,j(τ)
i

+ n. (10)

By summing both sides of (10), for τ = 0, . . . , T , and with Q(0) = 0, we obtain

1− ρ
nT

T−1X
τ=0

E
hX
i,j

Qi,j(τ)
i
≤ n. (11)

Therefore,

lim inf
T→∞

1

T

T−1X
τ=0

E
hX
i,j

Qi,j(τ)
i
≤ n2

1− ρ . (12)

Equation (9) and the Foster-Lyapunov criterion imply that Q(·) is a positive recur-

rent Markov chain. It is also irreducible and aperiodic. Therefore, Q(τ) converges in

distribution to a random variable Q(∞) that has the steady state distribution. By

Skorohod’s representation theorem, Q(τ) and Q(∞) can be embedded in a common

probability space on which Q(τ) → Q(∞) almost surely, as τ → ∞. Then, using

Fatou’s lemma,

Q = E
hX
i,j

Qij(∞)
i
≤ lim inf

T→∞

1

T

T−1X
τ=0

E
hX
i,j

Qi,j(τ)
i
≤ n2

1− ρ . (13)

Theorem 1 readily implies that β∗i ≤ 2, for i = 0, 1, 2.
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4.3 A batching policy

By comparing the results in the last two subsections, a natural question is whether

the dependence of Q∗ on n is of order n or n2. In this subsection, we indicate that a

O(n logn) scaling is possible, using a certain non-Markovian policy. On the other hand,

the particular policy that leads to an O(n logn) bound has an undesirable dependence

on ρ. In light of this, our open problem is essentially whether some other policy can

achieve an O(n1+ε) scaling (for arbitrarily small ε > 0), without causing an undesirable

dependence on ρ.

We will derive an upper bound by using a batching policy. Such a policy was first

considered by Neely, Modiano, and Cheng [7], who established an O(n logn) upper

bound for any fixed ρ, but without studying explicitly the detailed dependence of

the upper bound on ρ. Here, we present a slight variant of the policy in [7], with

a somewhat tighter analysis of the dependence on ρ. Without loss of generality, we

assume that 1/2 ≤ ρ < 1.

The batching policy operates as follows. Given λ, choose a batching interval length

equal to

T =
25ρ logn

(1− ρ)2
. (14)

The policy serves all the packets that arrive during the interval [kT, (k + 1)T ) (the

“kth batch”) separately for each k ≥ 0. That is, the policy collects the packets in the

kth batch; it starts serving them after the batching interval has elapsed (that is, after

time (k+ 1)T ), and after having served all packets in the (k− 1)st batch. To keep the

proof simple, we shall also require that each batch is served for at least Z time slots,

where

Z = ρT + 3
p
T logn. (15)

Let L(k) = [Li,j(k)] be a matrix whose typical entry, Li,j(k), equals the number of

packets that arrived at input i, destined for output j, during the kth batch. For every

i and j, let Ri(k) =
P
j Li,j(k) and Cj(k) =

P
i Li,j(k). Then, Ri(k) (respectively,

Cj(k)) is the sum of nT Bernoulli random variables, with mean µi ≤ ρT (resp. µj ≤
ρT ). Using a suitable variant of the Chernoff bound (see [6]), it follows that

P
“
Ri(k) ≥ µi +

√
µi(
p

4 logn+K)
”
≤ 1

n2
exp
“
−K

2

2

”
, (16)

for any K ≥ 1. Using (16) and the union bound, we obtain that

P
“

max
i,j

˘
Ri(k), Cj(k)

¯
≥ ρT +

p
ρT (

p
4 logn+K)

”
≤ 2

n
exp
“
−K

2

2

”
, (17)

for all K ≥ 1.

A well known corollary of the Birkhoff-von Neumann theorem [1,8] asserts that the

total time required to serve all of the packets in the kth batch, is equal to L∗(k) =

maxi,j
˘
Ri(k), Cj(k)

¯
(cf. see [2]). Therefore, the service time S(k) of the kth batch is

S(k) = max{L∗(k), Z}.
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Using (17), an elementary calculation, and the assumption ρ < 1, it follows that

for large enough n, there exist universal positive constants c1, c2 (independent of λ, n,

and T ) such that

ρT + 4
p
T logn ≤ T − c1(1− ρ)T, (18)

E
ˆ
S(k)

˜
≤ ρT + 4

p
T logn, (19)

E
ˆ
S2(k)

˜
≤
“
ρT + 3

p
T logn

”2
+ c2T. (20)

The inequality in Eq. (18), which is critical in the development that follows, made use

of the definition of T , in Eq. (14). By definition S(k) ≥ Z = ρT + 3
√
T logn. Using

this inequality, together with Eq. (20), we obtain

var(S(k)) ≤ c2T. (21)

Note that to obtain this particular variance bound of S(k), we used the convenient

requirement of service time being at least Z.

Under the batching policy, the resulting queue sizes are the same as if all of the

arrivals in the kth batch were to arrive simultaneously at time (k + 1)T . Thus, we

can aggregate the arrivals in a batch and view them as an arrival of a single job,

with a random processing time of S(k). We are then faced with a D/G/1 queue, with

interarrival times equal to T . We can now apply Kingman’s upper bound on the waiting

time of a batch, in steady-state. (The waiting time is the time it takes between the

arrival of the batch, until the beginning of the service of the batch.) Because the

interarrival times have zero variance, Kingman’s bound takes the form

var(S(k))

2(T − E[S(k)])
≤ c2T

2c1(1− ρ)T
≤ c4T, (22)

for some new absolute constant c4.

Now, the waiting time of a packet is the sum of three contributions: (i) the time

from the arrival of the packet until the end of the interval [kT, (k+ 1)T ) during which

the packet arrived (and when the batch arrival gets recorded); (ii) the waiting time

of the batch; (iii) the time from the beginning of the service of the batch until the

packet gets served. The first contribution is bounded above by T . The second contri-

bution is bounded above (in expectation) by c4T (cf. Eq. (22)). The third contribution

is somewhat more subtle, because a “typical” packet is more likely to belong to an

uncharacteristically larger batch. Renewal theory (or the so-called random incidence

formula) show that the expected service time of the batch that a typical arriving packet

belongs to is equal to E[S(k)2]/E[S(k)]. Using S(k) ≥ ρT + 3
√
T logn and Eq. (20),

this term is also upper bounded by a constant times T . We conclude that the waiting

time of a typical packet is upper bounded by cT , for some absolute constant c. Using

Little’s law, and the fact that the total arrival rate is upper bounded by n, we obtain

Q ≤ cnT ≤ c′ n logn

(1− ρ)2
,

for some new absolute constant c′.
Note that the batching policy is not Markovian: its action at each time depends in

a complicated manner on all of the past history, not just the current queue vector. On

the other hand, it is often the case in dynamic programming theory that Markovian
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policies are no inferior to general policies. We are not aware of existing results of this

kind that would apply directly to the problem at hand, but we conjecture this property

to be true, so that Markovian policies can also deliver O(n1+ε) performance (for any

ε > 0) when ρ is held fixed.
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