
GUI Testing Using Computer Vision

Tsung-Hsiang Chang
MIT CSAIL
vgod@mit.edu

Tom Yeh
UMIACS & HCIL

University of Maryland
tomyeh@umiacs.umd.edu

Robert C. Miller
MIT CSAIL
rcm@mit.edu

ABSTRACT
Testing a GUI’s visual behavior typically requires human
testers to interact with the GUI and to observe whether the
expected results of interaction are presented. This paper
presents a new approach to GUI testing using computer vi-
sion for testers to automate their tasks. Testers can write
a visual test script that uses images to specify which GUI
components to interact with and what visual feedback to be
observed. Testers can also generate visual test scripts by
demonstration. By recording both input events and screen
images, it is possible to extract the images of components
interacted with and the visual feedback seen by the demon-
strator, and generate a visual test script automatically. We
show that a variety of GUI behavior can be tested using this
approach. Also, we show how this approach can facilitate
good testing practices such as unit testing, regression test-
ing, and test-driven development.

Author Keywords
GUI testing, GUI automation, test by demonstration

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Graphical user interfaces (GUI); D.2.5 Software En-
gineering: Testing and Debugging—Testing tools

General Terms
Algorithms, Design, Reliability

INTRODUCTION
Quality Assurance (QA) testers are critical to the develop-
ment of a GUI application. Working closely with both pro-
grammers and designers, QA testers make efforts to ensure
the GUI application is correctly implemented by the former
following the design specification drawn by the latter. With-
out such efforts, there is no guarantee the usability promised
by a good design is fully realized in the implementation.

However, GUI testing is a labor intensive task. Consider the
following GUI behavior defined in a design specification of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2010, April 10 – 15, 2010, Atlanta, Georgia, USA
Copyright 2010 ACM 978-1-60558-929-9/10/04...$10.00.

Figure 1. GUI testing (left) traditionally requires human testers to op-
erate the GUI and verify its behavior visually. Our new testing frame-
work allows the testers to write visual scripts (right) to automate this
labor-intensive task.

a video player: click the button and it becomes . To
test if this behavior is correctly implemented, a tester must
look for the “play” button on the screen, click on it, and see if
it is replaced by the “pause” button. Every time this behavior
needs to be tested again, the tester must manually repeat the
same task all over again.

While GUI testers often toil in their tedious tasks, testers of
non-GUI applications have been enjoying the convenience
of tools to automate their tasks. For example, to test if the
function call addOne(3) behaves correctly, a tester can
write a script that makes this function call, followed by an as-
sertion function call, such as assert(addOne(3) == 4),
to check if the result is equal to 4 and report an error if not.
This script can be run automatically as many times as de-
sired, which greatly reduces the tester’s effort.

In this paper, we present Sikuli Test, a new approach to GUI
testing that uses computer vision to help GUI testers auto-
mate their tasks. Sikuli Test enables GUI testers to write
visual scripts using images to define what GUI widgets to
be tested and what visual feedback to be observed. For ex-
ample, to automate the task of testing the behavior of the
video player described above, a tester can write the follow-
ing script:

click(); assertExist(); assertNotExist();

When this script is executed, it will act like a robotic tester
with eyes to look for the “play” button on the screen, click
on it, and see if it is replaced by the “pause” button, as if
the human tester is operating and observing the GUI him- or
herself (Figure 1).

We make the following contributions in this paper:

Interview study with GUI testers We examine the limita-
tions of current testing tools and suggest design require-
ments for a new testing framework.

Automation of visual assertion Based on the visual automa-
tion API provided by Sikuli Script [18], a set of visual as-
sertion API is added to determine if expected outputs are
shown or not. The extension of visual assertion fulfills the
automation of GUI testing by using images for verifying
outputs in addition to directing inputs.

Test-By-Demonstration Testers can interact with a GUI and
record the actions they perform and visual feedback they
see. Test scripts can be automatically generated to repro-
duce the actions and verify the visual feedback for testing
purposes.

Support of good testing practices Features are introduced
to support good testing practices including unit testing,
regression testing, and test driven development.

Comprehensive evaluation We analyze the testability of a
wide range of visual behavior based on five actual GUI ap-
plications. Also, we examine the reusability of test scripts
based on two actual GUI applications evolving over many
versions.

INTERVIEW STUDY
To guide the design and development of our new GUI testing
tool, we conducted informal interviews with four profession-
als of GUI testing from academia and industry. Questions
asked during the interviews were centered on three topics:
current testing practices, use of existing tools, and experi-
ence with existing tools.

In terms of testing practices, we found most of our subjects
are involved in the early design process to coordinate and
formulate workable test plans to ensure quality and testa-
bility. Testing is performed frequently (often daily) on the
core components. For example, underlying APIs are tested
with simulated inputs and checked if they produce expected
outputs. But testing the outward behavior of GUIs is less fre-
quent, usually on major milestones by a lot of human testers.
Some of them regularly apply good testing practices such as
unit testing, regression testing, and test-driven development;
but the scope of these practices is limited to the parts without
GUI.

In terms of the use of testing tools, some have developed
customized automation tools. They write scripts that refer
to GUI objects by pre-programmed names or by locations
to simulate user interactions with these objects. Some have
been using existing tools such as Autoit [1], a BASIC-like
scripting language designed to automate user interactions for
Windows GUI applications.

In terms of experience with these tools, our subjects ex-
pressed frustration and described their experience as some-
times “painful”, “slow”, and “too much manual work.” Sev-
eral problemswith current automatic testing tools were iden-

tified by the subjects, which might explain this frustration.
First, whenever the GUI design is modified and the positions
of GUI components are rearranged, automatic tools based on
the absolute position of components often fail and would ac-
tually “slow down the testing process” because of the need
to modify the test scripts. Second, while automatic tools
based on component naming may avoid this problem, many
components simply can not or have not been named.

Based on the findings of this interview, we identified the fol-
lowing five design goals to guide the design and develop-
ment of our new GUI testing tool:

• (G1) The tool should allow testers to write scripts to auto-
mate tests.

• (G2) The tool should not require testers to refer GUI com-
ponents by names or by locations.

• (G3) The tool should minimize the instances when test
scripts need to be modified due to design changes.

• (G4) The tool should minimize the effort of writing test
scripts.

• (G5) The tool should support good testing practices such
as unit testing, regression testing, and test-driven develop-
ment.

TESTING BY VISUAL AUTOMATION
We present Sikuli Test, a testing framework based on com-
puter vision that enables developers and QA testers to auto-
mate GUI testing tasks. Consider the following task descrip-
tion for testing a particular GUI feature:

Click on the color palette button. Check if the color
picking dialog appears.

To carry out this test case, QA testers need to manually in-
teract with the GUI and visually check if the outcome is cor-
rect. Using Sikuli Test, the testers can automate this pro-
cess by converting the task description into an automation
script. This script consists of action statements to simulate
the interactions and assertion statements to visually verify
the outcomes of these interactions. For example, the above
task description can be easily translated into a test script as:

click(); assertExist();

By taking this image-based scripting approach, Sikuli Test
meets the first three design goals: it allows testers to write
visual scripts to automate tests (G1), to refer to GUI objects
by their visual representation directly (G2), and to provide
robustness to changes in spatial arrangements of GUI com-
ponents (G3). The details of how to write test scripts using
action statements and assertion statements are given next.

Simulating Interactions using Action Statements
To simulate interactions involved in a test case, QA testers
can write action statements using the API defined in Sikuli

Figure 2. Sikuli Test interface consists of a test script editor and an
information panel summarizing the test result.

Script [18]. Sikuli Script is a visual automation system that
provides a library of functions to automate user inputs such
as mouse clicks and keystrokes. These functions take screen-
shots of GUI components as arguments. Given the image of
a component, Sikuli Script searches the whole screen for the
component to deliver the actions. For example,

• clicks on the close button,

• drags a word document to the trash,

• types “CHI” in a search box.

Since Sikuli Script is based on a full scripting language,
Python, it is possible for QA testers to programmatically
simulate a large variety of user interactions, simple or com-
plex.

Verifying Outcomes using Visual Assertion Statements
Sikuli Test introduces two visual assertion functions. QA
testers can include these functions in a test script to verify
whether certain GUI interaction generates the desired visual
feedback. These two assertion functions are:

assertExist(image or string [, region])
asserts that an image or string that should appear on screen
or in a specific screen region

assertNotExist(image or string [, region])
asserts that an image or a string should not appear on screen
or in a specific screen region

The image is specified as URL or a path to an image file.
It also can be captured by a screenshot tool provided in our
Integrated Development Environment (IDE). When a string

is specified, OCR (Optical Character Recognition) is per-
formed to check if the specified string can be found in the
screen region. The optional parameter region is specified
as a rectangular area on the screen (i.e., x, y, width, height).
If not specified, the entire screen is checked. Alternatively,
the region can be specified as a second image, in which case
the entire screen is searched for that image and the matching
region is searched for the first image. Spatial operators such
as inside, outside, right, bottom, left, and top can be further
applied to a region object to derive other regions in a relative
manner.

Examples
We present examples to illustrate how test scripts can be
written to verify visual feedback.

1. Appearance

1 type(":p")

2 assertExist()

In some instant messengers, textual emoticons, e.g. smiley
face :), are replaced by graphical representations automat-
ically. This example shows how to test the appearance of
the corresponding graphical face once the textual emoticon
is entered in Windows Live Messenger.

2. Disappearance

1 blueArea = find()[0]
2 closeButton =
3 click(closeButton)
4 assertNotExist(closeButton, blueArea)
5 assertNotExist("5", blueArea)

In this example, the close button is expected to clear the
content of the text box as well as itself. Suppose the GUI
is already in a state that contains a ”5”, at first we find the
blue text box on the screen and store the matched region that
has the highest similarity in blueArea. Then, after clicking
the close button, two assertNotExist are used to verify the
disappearance in the blue area.

3. Replacement

1 click()
2 assertNotExist()
3 click()
4 assertNotExist()
5 assertExist()

Typical media players have a toggle button that displays the
two possible states of the player, playing or pause. In this
example, we demonstrate a test case that tests the typical
toggle button on youtube.com, a popular website of video
collection. This script clicks on the play button first, and
asserts the disappearance of it. A trick here is that we do
not need an assertExist for the pause button, because
the second click implicitly asserts the existence of the pause
button. If the play button is not replaced by the pause button
as expected, an error will be thrown from the click statement.

4. Scrolling/Movement

1 sunset =
2 old_x = find(sunset)[0].x

3 click()
4 assert(find(sunset)[0].x > old_x)

Since Sikuli Test is independent of any GUI platform, it also
can be used to test mobile applications running on an emula-
tor. This example shows how to test scrolling and movement
on an Android emulator. This test case works by compar-
ing the position of the target before and after an action that
should move the target. After clicking on the left button, we
expect the series of images to scroll rightward. Therefore,
the new x coordinate should be larger than the old one. We
choose the image of sunset to be the target. Its x coordinate
that derived from the most similar match of find() is stored
in old x. After the clicking on the left button, its new x coor-
dinate derived from find() again is used to be compared with
the old x for verifying the correctness of the implementation.

TESTING BY DEMONSTRATION
Sikuli Test provides a record-playback utility that enables
QA testers to automate GUI testing by demonstration. The
operation of a GUI can be described as a cycle consisting of
actions and feedback. Given a test case, the testers follow
the given actions to operate a GUI, and verify if the visual
feedback is the same as expected. If so, they proceed to do
the next actions and to verify further feedback.

With the record-playbackmechanism, the testers can demon-
strate the interactions involved in the test case. The actions
as well as the screen are recorded and translated into a se-
quence of action and assertion statements automatically. The
action statements, when being executed, can replicate the ac-
tions, as if the testers are operating the GUI themselves. Be-
sides, the assertion statements can verify if the automated in-
teractions lead to the desired visual feedback, as if the testers
are looking at the screen themselves.

The test-by-demonstration capability of Sikuli Script satis-
fies the design goal of minimizing the effort needed to write
test scripts (G4). Details of how demonstration is recorded
and how actions and assertions are automatically generated
from the recorded demonstration will be given next.

Recording Demonstration
As QA testers demonstrate a test case, a recorder is run-
ning in the background to capture the actions they perform
and the visual feedback they see. To capture actions, the
recorder hooks into the global event queue of the operating
system to listen for input events related to the mouse and
the keyboard. The list of mouse events recorded includes
mouse down, mouse up, mouse move, andmouse drag. Each
mouse event is stored with the cursor location (x, y) and the
state of buttons. The keyboard events recorded are includes
key down and key up, stored together with key codes. All
events include a timestamp that is used to synchronize with
the screen recording. To capture screens, the recorder grabs
the screenshot of the entire screen from the video buffer
in the operating system periodically. In our prototype, the
recording can be done at 5 fps at a resolution of 1280x800
on a machine with 2Ghz CPU and 2GB memory.

Generating Action Statements
Given a series of screen images and input events captured
by the recorder, action statements can be generated to replay
the interactions demonstrated by the testers. For example,
a single mouse click recorded at time t at location (x, y)
can be directly mapped to click(I) where I is the image of
the GUI component that was clicked. The image I can be
obtained by cropping a region around (x, y) from the screen
image captured at time t − 1 right before the click event. In
our current implementation, a constant-size (80x50) region
around the input location is cropped to represent the target
GUI component receiving the input. Even though the region
may not necessarily fit the target component perfectly, often
it contains enough pixels to uniquely identify the component
on the screen. If ambiguity arises, the user can adjust the
cropping area to include more pixels of the component or
the context to resolve the ambiguity at any time.

To execute an action statement, the automation engine visu-
ally identifies the target GUI component’s current location
(x′, y′) by searching the current screen for an image region
matching the target image I . To find a given pattern, we
apply the template matching technique with the normalized
correlation coefficient implemented in OpenCV in our cur-
rent system [18]. This technique treats the pattern as a tem-
plate and compares the template to each regionwith the same
size in an input image to find the region most similar to the
template. Then, the click event is delivered to the center of
the matched region to simulate the desired user interaction.

Some input events may need to be grouped into a single ac-
tion statement. For example, two consecutive mouse clicks
in a short span of time is mapped to doubleClick(). Key-
board typing events can be clustered to form a string and
mapped to type(string). A mouse down event at one loca-
tion followed by a mouse up event at another location can
be mapped to dragDrop(I,J) where I and J denote the im-
ages extracted from the locations of the two mouse events
respectively.

Generating Assertion Statements
Assertion statements can also be automatically derived from
the screen images captured during the demonstration. We
developed and implemented a simple vision algorithm to ac-
complish this. We assume any salient change between the
two images is very likely to be the visual feedback caused by
an input event. Our algorithm compares the screen images
It and It+1 where t is the time of a recorded input event,
and identifies pixels that are visually different. It then clus-
ters the changed pixels in close proximity and merges them
into the same group. Each group of pixels would probably
correspond to the same GUI component. Finally, it com-
putes a bounding rectangle around each group and obtains a
cropped image containing the visual feedback of each GUI
component visually affected by the input event.

An assertion statement that can be later used to check the
presence of the visual feedback can be generated with this
algorithm. Figure 3 shows an example of deriving the visual
feedback where a drop-down box is opened by clicking. Of-
ten, more than one GUI component can exhibit visual feed-
back as the result of a single input event. In this case, our
algorithm results in a compound assertion statement includ-
ing multiple cropped image regions. For example, Figure 4
shows a dialog box with a checkbox that can be used to en-
able several GUI components at once. Checking this check-
box will cause all previously greyed out components in a
panel to regain their vivid colors.

An optional step for the tester to increase the reliability of
the automatic visual feedback detector is to provide hints
to where it should look for the visual feedback. After per-
forming an interaction and before moving on to the next, the
tester can move the mouse cursor to the area where the vi-
sual feedback has occurred and press a special key, say F5,
to trigger a hint. The detector can use the location of the cur-
sor to extract the relevant visual feedback more reliably and
generates an appropriate assertion statement.

Figure 4. Example of automatic generation of assertion statements
from detected visual feedback.

While we can identify many cases in which visual assertion
statements can be created automatically in this manner, there
remain a few challenges. First, periodic changes in the desk-
top background, such as those related to the system clock
or the wireless signal indicator, may be inadvertently de-
tected but irrelevant to the GUI to be tested. One solution
would be to ask the testers to specify the boundary of the
GUI beforehand so that background noises can be filtered
out. Second, certain actions might take longer to obtain any
visual feedback; the screen image captured immediately af-
ter the action might not contain the visual feedback. One so-
lution would be to wait until a significant change is detected.
Third, some visual feedback may involve animation span-
ning several frames, for example, a large window appearing
in a blind-rolling-down fashion. One solution would be to
wait until the screen has stabilized and focus only on the fi-
nal visual feedback. However, while it is possible to test the
final feedback, testing the intermediate steps of an animation
can still be unreliable, because it is difficult to synchronize
between the frames sampled during the demonstration time
and those sampled during the test time.

SUPPORTING GOOD TESTING PRACTICES
Sikuli Test comes with a set of features to help GUI develop-
ers and QA testers engage in good testing practices such as
unit testing, regression testing, and test-driven development,
satisfying the last design goal (G5).

Unit Testing
When a GUI is complex, to make sure it is tested thoroughly
requires a systematic approach. One such approach is to
break the GUI down into manageable units, each of which
targets a particular part, feature, or scenario. This approach
is known as unit testing.

To support unit testing for GUI, Sikuli Test draws many de-
sign inspirations from JUnit, a popular unit testing frame-
work for Java programming:

1. Testers can define each test as a functionwritten in Python.
Every test function is meant to be run independentlywith-

Figure 3. An example of taking the difference between two screens to derive the visual feedback automatically

out relying on the side-effects of another test function. For
example, after testing the exit button, which has the side
effect of closing the application, no more tests can be run
unless the GUI is restarted. Therefore, to run every test
independently, Sikuli Test provides two functions setUp()
tearDown() that can be overridden by testers to set up
and to clean up the testing environment. A typical way
to achieve the independence is always starting the GUI in
a fresh configuration before running a test.

2. Testers can define common action functions to automat-
ically advance the GUI to a particular state in order to
run certain tests only relevant in that state. Common ac-
tion functions can be shared among all test cases in the
same script to reduce redundant code and to prevent fu-
ture inconsistency. For example, suppose the Save Dialog
box is relevant to several test cases, the tester can write
a common action function to open Save Dialog that con-
tains a click() on the File menu followed by another
click() on the Save item. On the other hand, testers
can also define shared assertion functions to verify the
same visual feedback that are derived from different ac-
tions. For example, the appearance of a save dialog box
can be caused by a hotkey Ctrl-S, by a icon on the toolbar,
or by the Save item in the File menu; all could be verified
by assertSaveDialog().

3. Testers can run a test script and monitor the progress as
each test function in the script is run. They can see the
summary showingwhether each test has succeeded or failed
as well as the total number of successes and failures.

4. When errors are found, testers can communicate the er-
rors to programmers effectively. On the one hand, testers
are encouraged to assign each test function a meaningful
name, such as test click play button. On the other hand,
the images embedded in each function make it visually
clear which GUI components and what visual feedback
are involved in the errors.

Regression Testing
When a new feature is implemented, in addition to verify-
ing whether the implementation is correct, it is equally im-
portant to ensure that it does not break any existing feature
that used to be working. This practice is often known as
regression testing in software engineering. Many software
projects use daily builds to automatically check out and com-
pile the latest development version from the version control
system. The daily build is tested by automated unit testing
suites to validate the basic functionality. However, because

of the weaknesses of automatic testing tools for GUI, cur-
rent regression testing process is limited to work only on
internal components but not on GUI. Therefore, regression
testing becomes a tedious practice that requires QA testers
to manually repeat the same set of tests whenever there is a
modification to the GUI.

Sikuli Test is a labor-saving and time-saving tool enabling
QA testers to automate regression testing. Using Sikuli Test,
the testers only need to program test cases once and those
test cases can be repeatedly applied to check the integrity of
the GUI. To show the feasibility of Sikuli Test for supporting
regression testing, an evaluation will be given later.

Test-Driven Development
While our testing framework is originally designed for QA
testers, it can be used by both GUI designers and program-
mers during the development process. In large GUI projects
where the separation between design and implementation is
clearer, designers can create test cases based on design illus-
trations or high-fidelity prototypes. For example, a designer
can use a graphic editor such as Photoshop to create a pic-
ture illustrating the GUI’s desired visual appearance. Based
on this picture, the designer can crop representative images
of operable GUI components such as buttons to compose
action statements. The designer can also graphically illus-
trate the expected visual feedback when these GUI compo-
nents are operated. Again, this graphical illustration can be
used directly in assertion statements. Test cases can be cre-
ated and handed to programmers to implement the GUI’s
outward visual behavior. These test cases will initially fail
because none of the desired visual behavior has been imple-
mented yet. As more features are implemented, more test
cases can be passed. When all the test cases are passed,
the implementation is not only complete but also thoroughly
tested. This practice is often known as test-driven develop-
ment, which has been widely adopted by non-GUI devel-
opment projects. Our visual testing framework initiates an
opportunity for GUI designers and programmers to engage
in this good practice of software engineering.

Even in small projects when a programmer often doubles as
a designer and a tester, test-driven development can still be
practiced. For example, given a design specification, a pro-
gram can create the skin of a GUI without any functionality
using a Rapid Application Development (RAD) tool. Then,
before the actual implementation, the programmer can take
the screenshots of the skin to write test cases and start writ-
ing GUI code to pass these test cases.

Table 1. The testability of GUI visual behavior under Sikuli Test.

EVALUATION
To evaluate Sikuli Test, we performed testability analysis—
how diverse the visual behavior GUI testers can test auto-
matically, and reusability analysis—how likely testers can
reuse a test script as a GUI evolves.

Testability Analysis
We performed testability analysis on a diverse set of visual
behavior. Each visual behavior can be defined as a pairing
of a GUI widget and a visual effect rendered on it. We con-
sidered 27 common widgets (e.g., button, check box, slider,
etc.) and 25 visual effects (e.g., appearance, highlight, focus,
etc.). Out of the 675 possible pairings, we identified 368 to
be valid, excluding those that are improbable (e.g., scrollbar
+ font changing). We began the analysis by applying Sikuli
Test to test the visual behavior exhibited by four real GUI
applications (i.e., 1: Capivara, 2: jEdit, 3: DrJava, and 4:
System Preferences on Mac OS X).

Table 1 summarizes the result of the testability analysis. Each
cell corresponds to a visual behavior. Out of 368 valid visual
behaviors, 139 (indicated by the number of the application
used to be tested) are empirically testable, visual behavior
was found in the four applications and could be tested; 181
(indicated by a triangle ") are theoretically testable, visual
behavior was not found in the four applications but could be
inferred from the testability of other similar visual behavior;
and 48 (indicated by an “F”) are not testable. In addition
to these valid visual behaviors, there are 307 rarely paired
improbable visual behaviors indicated by an “X”.

As can be seen, the majority of the valid visual behavior con-
sidered in this analysis can be tested by Sikuli Test. How-
ever, complex visual behavior such as those involving ani-
mations (i.e., fading, animation) are currently not testable,
which is a topic for future work.

Reusability Analysis
We performed reusability analysis of test scripts based on
two real GUI applications: Capivara, a file synchronization

tool, and jEdit, a rich-text editor. These two applications
were selected from SourceForge.netwith two criteria: it must
have GUI, and it must have at least 5 major releases available
for download.

First, we focused on the two earliest versions that can be
downloaded of the two applications. For Capivara, we chose
versions 0.5.1 (Apr. ’05) and 0.6 (June ’05) (Figure 5 A,B).
For jEdit, we chose versions 2.3 (Mar. ’00) and 2.41 (Apr.
’00) (Figure 5 A,B). Since there were modifications to the
user interface between these two versions, we were inter-
ested in whether test cases written for the first version can be
applied to the second version to test the unmodified parts of
the application. We created 10 and 13 test cases for Capivara
and jEdit respectively. Most of the test cases were created
using the test-by-demonstration tool, while some required
manual adjustments such as giving hints and removing ex-
cess contexts from the detected visual feedback.

Table 2 summarizes our findings. These two tables include
the first two versions, plus a later version that showed dras-
tic change in the GUI for Capivara and jEdit respectively.
The column of the first version shows how each test case is
made: A denotes automatically generated, AM denotes auto-
matically generated with somemodifications, andM denotes
manually written. Each column of the other two versions
shows the result of each test case at the version: P denotes
passed, whereas F1 - F5 denote failure. (The cause of each
failure will be explained later.)

Between the first two versions of Capivara, we observed one
modification: the size limitation of the panel splitter was dif-
ferent. Thus, we only needed to update 1 of the 10 original
test cases to reflect this modification. In other words, we
were able to apply the other 9 test cases against the sec-
ond version to test the correctness of unmodified features.
Similarly, in the case of jEdit, we observed 3 modifications
among the features covered by the original 13 test cases.
Again, we were able to apply the remaining 10 test cases
against the second version.

Next, we examined the long-term reusability of test cases as
the applications undergomultiple design changes. For Capi-
vara, we considered two additional major versions: 0.7.0
(Aug. ’05) and 0.8.0 (Sep. ’06), whereas for jEdit, we con-
sidered five more: 2.5.1 (Jul. ’00), 2.6final (Nov. ’00), 3.0.1
(Jan. ’01), 3.1 (Apr. ’01), and 3.2.1 (Sep. ’01). We tested
whether each of the original test cases was still reusable to
test the later versions and for those no longer reusable, iden-
tified the causes.

Figure 6 summarizes our findings. To show the reusabil-
ity of the test cases, we arranged each version across the
horizontal axis. For each version, the height of the base-
line region (blue) indicates the number of the original test
cases still being reusable for that version. This region ex-
hibits a downward slope toward the direction of the newer
versions, reflecting the fact that fewer and fewer of the orig-
inal test cases remained applicable. The sharpest drop-off
can be observed at version 0.8.0 for Capivara (Figure 5.c)

(a) Capivara 0.5.1 (1st) (b) Capivara 0.6.0 (2nd) (c) Capivara 0.8.0 (4th)

(A) jEdit 2.3 (1st) (B) jEdit 2.4.1 (2nd) (C) jEdit 2.6 (4th)

Figure 5. GUI applications used to evaluate the reusability of Sikuli Test scripts as these applications evolve.

and at 2.6final for jEdit (Figure 5.C), which can be attributed
to the change of major design in these versions. The lesson
that can be drawn from this observation is that as long as
the design of a GUI evolve incrementally, as often the case,
a significant number of test cases can be reusable, which is
important for supporting regression testing.

Also, we identified five major causes for a test case to be-
come unusable: (F1) change in the visual style, e.g. skin,
size, font, etc.; (F2) removal of the action component; (F3)
removal of the expected visual feedback; (F4) change in the
surrounding of the target components; and (F5) change in
internal behavior.

Each cause of test failures is represented in the figure as
one of the colored regions above the baseline region, with
its height indicating the number of unusable test cases at-
tributed to it. As can be expected, the most dominant cause is
change in visual style (F1, orange), since our testing frame-
work is largely driven by high-level visual cues. One surpris-
ing observation is an unusual upward slope of F2 occurred at
jEdit 2.5.1, indicating that test cases that were not reusable in
the previous version became reusable. Upon close examina-
tion, we found that toolbar icons were removed at 2.4.1 but
reintroduced at 2.5.1, making the test cases targeting toolbar
icons reusable again. While such reversal of GUI design is
rare in practice, when it does happen, Sikuli Test is able to
capture it.

RELATED WORK
Testing is important for ensuring and improving GUI us-
ability. Many research efforts have been made in the HCI
community to study and develop tools for this critical task.

Boshernitsan et al [2] studied software developers’ need to
modify their programs to keep up with changing require-
ments and designs and developed a visual tool to simplify
code transformation. Subrahmaniyan et al. [15] examined
the testing and debugging strategies of end-user program-
mers and found testing and code-inspection are the two most
common strategies. To support these strategies, Ko and My-
ers developedWhyline for the Alice platform [5] and further
extended it to general Java GUI programming [6]. Using
Whyline, a GUI programmer can make a visual recording of
an interactive session with a GUI and watch this recording
to catch incorrectly programmed visual feedback (testing).
Whyline is able to intelligently suggest questions seeking to
explain problematic visual feedback (e.g., why did the color
of this button change to blue?). Such questions can help
the programmer quickly lookup and fix the lines of code re-
sponsible for the problem (code-inspection). Sikuli Test can
complement Whyline in that it can watch the recording on
behalf of the programmer to catch errors and suggest appro-
priate questions.

A GUI needs to be interacted with in order to be tested. Sev-
eral research works have focused on how to automate such
interaction by demonstration, a paradigmknown as Program-
ming By Demonstration (PBD). As early as early 90’s, Singh
et al [12] proposed the Sage system that can capture and
store GUI interactions demonstrated by users as reusable
templates. Wilcox et al. [16] illustrated the value of visual
feedback in programming by demonstration tools especially
during the testing process, a finding validates the design de-
cision of Sikuli Test to embed visual feedback directly in test
scripts. Given the popularity of Web-based applications, the
Koala system by Little et al. [8] and the CoScripter system
by Leshed et al. [7] both aim to enable Web users to capture,

Test Cases of Capivara (1st) (2nd) (4th)
0.5.1 0.6.0 0.8.0

connection-setting-cancel A P P
connection-setting-ok A P P
new-host-in-favorites AM P F1
text-changed-in-status-and-tab A P F1
menu-exit-dialog AM P F2
toolbar-sync-dialog A P P
name-size-column-in-listbox A P F1
menu-options-tree AM P F4
enabled-disabled-buttons AM P F1
splitter-resize M F3 F3
Test Cases of jEdit (1st) (2nd) (4th)

2.3final 2.4.1 2.6final
textarea-add-del-by-key AM P F1
textarea-add-del-by-menu AM P F1
new-tab-by-key A P P
new-tab-by-menu AM P P
new-tab-by-toolbar AM F2 F1
find-by-key AM P F1
find-by-menu AM P F1
find-by-toolbar AM P F2
textfield-on-toolbar AM F5 F3
toolbar-print-dialog A F2 F1
menu-submenu AM P P
scroll-textarea M P F1
quit-cancel A P F1

Table 2. Test cases created for the first version automatically (A), semi-
automatically (AM) or manually (M) and their reusability (Pass or Fail)
in subsequent versions (2nd and 4th).

share, automate, and personalize business processes. Zettle-
moyer and St. Amant [19] developed VisMap for visual ma-
nipulation through an application’s GUI, which inferred a
structued representaion of interface objects from their ap-
pearance and passed the representation to controllers for ma-
nipulation. Based on VisMap, St. Amant et al. [14] then de-
scribed several techniques of visual generalization for PBD,
and enlightened the possibility of real-time screen analysis
of screen images by PBD systems. In relation to these works,
Sikuli Test extends PBD to serve a new purpose—GUI test-
ing, and is also applicable to any Web-based GUI as long as
its visual feedback is observable.

In the software engineering literature, manyworks have dealt
with the issue of GUI testing from which many lessons and
inspirations can be drawn. Xie and Memon [17] surveyed
a large number of GUI testing frameworks and identified
four common approaches: (1) writing scripts manually, (2)
generating scripts by record-playback, (3) checking results
with assertions, and (4) testing internal functionalities only.
Sikuli Test supports the first three approaches by focusing
on outward visual feedback. Memon [9] further pointed out
that automation is important not only for simulating user in-
teractions but also for verification of the results. To auto-
mate interactions, Kasik and George [4] built a tool that uses
genetic algorithms to automatically generate test scripts to
act like novice-user in an unpredictable yet controlled man-
ner. Ostrand et al [11] developed a tool that can capture and
replay interactions demonstrated by testers. This tool rep-
resents captured actions in a flow-chart that can be edited
and rearranged. Similarly, Sikuli Test represents captured
interactions as visual action statements that can be edited at

(a) Capivara

(b) jEdit

Figure 6. Long-term regression testing.

will. To automate verification, Memon et al. [10] developed
the GUI Ripper tool that can explore a GUI and extract in-
ternal properties of GUI components to generate assertion
statements meant to check those properties. However, most
existing tools similar to GUI Ripper check results by in-
specting the internal properties of GUI components through
platform-specific APIs (e.g., Java APIs). Sikuli Test seeks to
eliminate this platform dependency by inspecting the visual
appearance directly.

Commercial GUI testing tools are also available to help QA
testers perform their tasks, such as WinRunner [3]. How-
ever, most tools only allow the testers to script user interac-
tion and direct the interaction by absolute positions. There is
still a need for QA testers to verify the outcome of the inter-
action manually and to modify test scripts whenever certain
GUI components are repositioned due to design changes.
Sikuli Test seeks to eliminate this need by using visual cues
to automate both the interaction and verification. CAPBAK

[13] is a rare exception of a tool that seeks to automate vi-
sual verification. It captures the image of the entire GUI
after each user activity so that this image can be used later
to test if the GUI still look exactly the same as before (i.e.,
regression testing). However, if the test fails, CAPBAK is
unable to localize the error. In contrast, by detecting the vi-
sual changes before and after each activity, Sikuli Test can
help the testers to pinpoint the problematic visual effect that
requires the programmer’s attention.

SUMMARY AND CONCLUSION
We presented Sikuli Test, a new approach to GUI testing
using computer vision. Besides meeting the five design goals
identified in an interview study with GUI testers, Sikuli Test
offers three additional advantages:

1. Readability of test cases: The semantic gap between the
test scripts and the test tasks automated by the scripts is
small. It is easy to read a test script and understand what
GUI feature the script is designed to test.

2. Platform independence: Regardless the platform a GUI
application is developed on, Sikuli Test can be used to
test the GUI’s visual feedback. We have shown the ex-
amples of test scripts written to test traditional desktop
GUI applications on Windows and Mac OS X, as well as
Web applications in a browser and mobile applications in
an Android emulator. Even though Sikuli Test is not de-
signed to let users write scripts once and use them across
multiple platforms, it is still possible to do so as long as
the appearance of the applications looks the same.

3. Separation of design and implementation: Test cases
can be generated by designers and handed to program-
mers to implement features that must pass the test cases,
to eliminate the biases that may arise when programmers
are asked to test their own implementation.

However, Sikuli Test currently has twomajor limitations that
can be improved upon in the future. First, while Sikuli Test
can assert what visual feedback is expected to appear or to
disappear, it is unable to detect unexpected visual feedback.
For example, if a programmer accidentally places a random
image in a blank area, it is an undetectable error since no
one would have anticipated the need to test that area with
assertions. One solution would be to run the visual feed-
back detector at the test time to see if there is any detected
visual feedback not covered by an assertion statement. Sec-
ond, Sikuli Test is designed to test a GUI’s outward visual
feedback and is thus unable to test the GUI’s internal func-
tionalities. For example, while Sikuli Test can check if a vi-
sual feedback is correctly provided to the user who clicks the
save button, it does not know if the file is indeed saved. One
solution would be to treat Sikuli Test not as a replacement of
but a complement to an existing testing tool. Together they
make sure both the outward feedback and inward function-
alities of a GUI can be sufficiently tested, a task neither can
accomplish alone.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and UID group for great
suggestions and feedback. This work was supported in part

by the National Science Foundation under award number
IIS-0447800 and by Quanta Computer as part of the TParty
project. Any opinions, findings, conclusions or recommen-
dations expressed in this publication are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES
1. Autoit. http://www.autoitscript.com/autoit3/ , 1999.
2. M. Boshernitsan, S. L. Graham, and M. A. Hearst. Aligning
development tools with the way programmers think about code
changes. In CHI ’07, pages 567–576, New York, NY, USA, 2007.
ACM.

3. HP Mercury Interactive. Winrunner.
http://www.winrunner.com.

4. D. J. Kasik and H. G. George. Toward automatic generation of novice
user test scripts. In CHI ’96, pages 244–251, New York, NY, USA,
1996. ACM.

5. A. J. Ko and B. A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In CHI ’04,
pages 151–158, New York, NY, USA, 2004. ACM.

6. A. J. Ko and B. A. Myers. Finding causes of program output with the
java whyline. In CHI ’09, pages 1569–1578, New York, NY, USA,
2009. ACM.

7. G. Leshed, E. M. Haber, T. Matthews, and T. Lau. Coscripter:
automating & sharing how-to knowledge in the enterprise. In CHI ’08,
pages 1719–1728, New York, NY, USA, 2008. ACM.

8. G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and E. Kandogan.
Koala: capture, share, automate, personalize business processes on the
web. In CHI ’07, pages 943–946, New York, NY, USA, 2007. ACM.

9. A. Memon. GUI testing: pitfalls and process. Computer, 35(8):87–88,
Aug 2002.

10. A. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: reverse
engineering of graphical user interfaces for testing. In Reverse
Engineering, 2003. WCRE 2003. Proceedings. 10th Working
Conference on, pages 260–269, Nov. 2003.

11. T. Ostrand, A. Anodide, H. Foster, and T. Goradia. A visual test
development environment for GUI systems. SIGSOFT Softw. Eng.
Notes, 23(2):82–92, 1998.

12. G. Singh and Z. Cuie. Sage: creating reusable, modularized interactive
behaviors by demonstration. In CHI ’94, pages 297–298, New York,
NY, USA, 1994. ACM.

13. SOFTWARE RESEARCH INC. Capbak. http://soft.com,
1999.

14. R. St. Amant, H. Lieberman, R. Potter, and L. Zettlemoyer.
Programming by example: visual generalization in programming by
example. Commun. ACM, 43(3):107–114, 2000.

15. N. Subrahmaniyan, L. Beckwith, V. Grigoreanu, M. Burnett,
S. Wiedenbeck, V. Narayanan, K. Bucht, R. Drummond, and X. Fern.
Testing vs. code inspection vs. what else?: male and female end users’
debugging strategies. In CHI ’08, pages 617–626, New York, NY,
USA, 2008. ACM.

16. E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R.
Cook. Does continuous visual feedback aid debugging in
direct-manipulation programming systems? In CHI ’97, pages
258–265, New York, NY, USA, 1997. ACM.

17. Q. Xie and A. M. Memon. Designing and comparing automated test
oracles for GUI-based software applications. ACM Trans. Softw. Eng.
Methodol., 16(1):4, 2007.

18. T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using GUI screenshots
for search and automation. In UIST ’09, pages 183–192. ACM, 2009.

19. L. S. Zettlemoyer and R. St. Amant. A visual medium for
programmatic control of interactive applications. In CHI ’99, pages
199–206, New York, NY, USA, 1999. ACM.

