
TurKit: Tools for Iterative Tasks on Mechanical Turk

Greg Little, Lydia B. Chilton, Robert C. Miller, and Max Goldman
MIT CSAIL

32 Vassar St
Cambridge, MA 02139 USA

{glittle,hmslydia,rcm,maxg}@mit.edu

ABSTRACT

Mechanical Turk (MTurk) is an increasingly popular web service
for paying people small rewards to do human computation tasks.
Current uses of MTurk typically post independent parallel tasks.
We are exploring an alternative iterative paradigm, in which
workers build on or evaluate each other’s work. We describe
TurKit, a new toolkit for deploying iterative tasks to MTurk, with
a familiar imperative programming paradigm that effectively uses
MTurk workers as subroutines.

Categories and Subject Descriptors

H5.2 [Information interfaces and presentation]: User
Interfaces. - Prototyping.

General Terms

Algorithms, Design, Economics, Experimentation

Keywords

Human computation, Mechanical Turk, toolkit

1. INTRODUCTION
MTurk is an increasingly popular web service for paying people
to do simple human computation tasks. Workers on the system
(turkers) are typically paid a few cents for Human Intelligence
Tasks (HITs) that can be done in under a minute. Currently,
MTurk is largely used for independent tasks. Task requesters post
a group of HITs that can be done in parallel, such as labeling 1000
images. This demo considers a different model for employing
turkers: iterative tasks, in which a succession of turkers do tasks
that build each other. For example, turkers can take turns
improving a passage of text; verify each other’s work by voting
on it; and implement the comparison function of an iterative
sorting algorithm.

Next we will touch on some related work, followed by a
presentation of an example of an iterative task on Mechanical
Turk. We will finish with an overview of TurKit—the toolkit used
to create this task—followed by directions for future work.

2. RELATED WORK
One challenge in writing human computation algorithms is

motivating humans to do work. One approach is Games With a
Purpose [1], where humans perform useful computation as a
byproduct of playing computer games. User-generated content
websites such as Wikipedia use human computation to generate
content, and this content along with social factors seem to
motivate future contributions. MTurk provides a platform for
performing Human Intelligence Tasks (HITs) where humans are
motivated by money.

3. ITERATIVE TEXT IMPROVEMENT
The iterative text improvement experiments take inspiration from
the way some Wikipedia articles grow from a simple sentence into
a fully fledged article as multiple people make small contributions
[3]. In our experiments, we start with a seed of text and ask
turkers to improve it according to some instructions. After each
attempted improvement, additional turkers vote whether the
change is indeed an improvement. The winning text is fed back
into the system for further improvement, until a stopping
condition is met.

We have explored a number of iterative text improvement tasks,
including image description, copy editing, and brainstorming. For
reasons of space, we present only one example here: handwriting
recognition.

3.1 HANDWRITING RECOGNITION
Most OCR software focuses on recognizing printed fonts. The
reCAPTCHA project applies human computation to correct errors
in OCR [2]. Recognizing handwriting is difficult for computers. It
can even be difficult for humans. Many students receive feedback
on papers that they cannot decipher. A common solution to this
problem is to show the bit of text to multiple people.

We wrote a passage with purposefully bad handwriting (Figure 1).
Turkers were shown this image and offered $0.05 to make
progress toward deciphering it. They were instructed to leave
words they were unsure about in (parenthesis).

Figure 1: A sample of bad handwriting.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD-HCOMP'09, June 28, 2009, Paris, France. Copyright 2009 ACM
1-59593-439-1...$5.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9342166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Selected iterations of this experiment are shown:

version 1:

You (?) (?) (?) (work). (?) (?) (?) work (not) (time). I (?)
(?) a few grammatical mistakes. Overall your writing
style is a bit too (phoney). You do (?)
(points), but they got lost amidst the (writing).
(signature)

version 4:

You (misspelled) (several) (words). (?) (?) (?) work
(time). I also notice a few grammatical mistakes. …

version 5:

You (misspelled) (several) (words). (Plan?) (spellch
(your) work next time. I also notice a few grammatical
mistakes. Overall your writing style is a bit too
You do make some good (points), but they got lost
amidst the (writing). (signature)

version 6:

You (misspelled) (several) (words).
your work next time. I also notice a few grammatical
mistakes. Overall your writing style is a bit too
You do make some good (points), but they
amidst the (writing). (signature)

The final version has only four mistakes highlight
According to our ground truth, these words should be “flowery”,
“get”, “verbiage” and “B-” respectively. Some other words are
still left in parentheses. Workers made good use of
and it is interesting to see how the words in them change between
iterations.

4. TurKit
An overview of TurKit and related systems is shown in Figure
A programmer writes a JavaScript program that
TurKit. TurKit stores information about the running program in
the JavaScript database, so that it can restart if the system crashes.

TurKit can create Human Computation Tasks (HITs) on MTurk.
These HITs may point to web pages supplied by the programmer.
These web pages may access the JavaScript database before being
displayed to turkers.

When turkers complete tasks, it is possible for the web server to
store the results directly in the database, or pass the results back to
MTurk. In the latter case, the program running in TurKit can
retrieve the results from MTurk and store them in the database.

The programmer may retrieve results directly from the JavaScript
database, or output them to a file.

A core component of TurKit is the once function,
information about a program’s trace of execution
is restarted, it can return to where it left off, without re
expensive code. The once function accepts a function as a
argument, and will only execute this function once ever
runs of the program. If the function executes successfully
throwing an exception), then the result is memo
subsequent runs of the program will not re-execute the functi
common use case for once is wrapping a function that creates a
HIT on MTurk, and returns the HIT identifier.

Selected iterations of this experiment are shown:

You (?) (?) (?) (work). (?) (?) (?) work (not) (time). I (?)
(?) a few grammatical mistakes. Overall your writing
style is a bit too (phoney). You do (?) have good
(points), but they got lost amidst the (writing).

) (several) (words). (?) (?) (?) work next
a few grammatical mistakes. …

(Plan?) (spellcheck)
work next time. I also notice a few grammatical

mistakes. Overall your writing style is a bit too phoney.
good (points), but they got lost

You (misspelled) (several) (words). Please spellcheck
work next time. I also notice a few grammatical

mistakes. Overall your writing style is a bit too phoney.
You do make some good (points), but they got lost

highlighted in light blue.
According to our ground truth, these words should be “flowery”,

Some other words are
e good use of parentheses,

words in them change between

An overview of TurKit and related systems is shown in Figure 2.
that is executed by

TurKit. TurKit stores information about the running program in
t database, so that it can restart if the system crashes.

Human Computation Tasks (HITs) on MTurk.
These HITs may point to web pages supplied by the programmer.
These web pages may access the JavaScript database before being

When turkers complete tasks, it is possible for the web server to
store the results directly in the database, or pass the results back to
MTurk. In the latter case, the program running in TurKit can

n the database.

The programmer may retrieve results directly from the JavaScript

function, which stores
information about a program’s trace of execution so that when it
is restarted, it can return to where it left off, without re-executing

function accepts a function as an
argument, and will only execute this function once ever, in all

. If the function executes successfully (without
, then the result is memoized so that

execute the function. A
is wrapping a function that creates a

5. CONCLUSION AND FUTURE WORK
We have described TurKit, a new toolkit for programming
iterative tasks on MTurk using a familiar imperative pro
model, and applied it to a variety of example tasks. For future
work, we plan to explore more complicated algorithms using
TurKit, such as a parallel sort algorithm that is more robust to
human comparison functions that may be noisy or only partia
ordered. Also valuable to users of TurKit would be a detailed
study of MTurk’s properties as a programming system
error rate, turker expertise, etc.

6. ACKNOWLEDGMENTS
We would like to thank everyone who contributed sugges
and ideas to this work, including Thomas W. Malone, Robert
Laubacher, and members of the UID group. This work was
supported in part by the National Science Foun
number IIS-0447800, by Quanta Computer as part of the TParty
project, and by the MIT Center for Collective Intelligence. Any
opinions, findings, conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the sponsors.

7. REFERENCES
[1] Luis von Ahn. Games With A Purpose.

Magazine, June 2006. Pages 96-98.

[2] Luis von Ahn, Ben Maurer, Colin McMillen, David
Abraham and Manuel Blum. reCAPTCHA: Human
Character Recognition via Web Security Measures.
September 12, 2008. pp 1465-1468.

[3] Kittur, A. and Kraut, R. E. 2008. Harnessing the wisdom of
crowds in wikipedia: quality through coordination.
'08. ACM, New York, NY, 37-46

Figure 2: Overview of TurKit and related system

CONCLUSION AND FUTURE WORK
We have described TurKit, a new toolkit for programming
iterative tasks on MTurk using a familiar imperative programming
model, and applied it to a variety of example tasks. For future
work, we plan to explore more complicated algorithms using
TurKit, such as a parallel sort algorithm that is more robust to
human comparison functions that may be noisy or only partially
ordered. Also valuable to users of TurKit would be a detailed
study of MTurk’s properties as a programming system – latency,

ACKNOWLEDGMENTS
everyone who contributed suggestions

this work, including Thomas W. Malone, Robert
Laubacher, and members of the UID group. This work was

rt by the National Science Foundation under award
0447800, by Quanta Computer as part of the TParty

r for Collective Intelligence. Any
indings, conclusions or recommendations expressed in

this publication are those of the authors and do not necessarily

Luis von Ahn. Games With A Purpose. IEEE Computer

98.

Luis von Ahn, Ben Maurer, Colin McMillen, David
Abraham and Manuel Blum. reCAPTCHA: Human-Based
Character Recognition via Web Security Measures. Science,

1468.

2008. Harnessing the wisdom of
crowds in wikipedia: quality through coordination. CSCW

Figure 2: Overview of TurKit and related systems.

