

Sikuli: Using GUI Screenshots for Search and Automation
Tom Yeh Tsung-Hsiang Chang Robert C. Miller

EECS MIT & CSAIL
Cambridge, MA, USA 02139

{tomyeh,vgod,rcm}@csail.mit.edu

ABSTRACT
We present Sikuli, a visual approach to search and automa-
tion of graphical user interfaces using screenshots. Sikuli
allows users to take a screenshot of a GUI element (such as
a toolbar button, icon, or dialog box) and query a help sys-
tem using the screenshot instead of name.
Sikuli also provides a visual scripting API for automating
GUI interactions, using screenshot patterns to direct mouse
and keyboard events. We report a web-based user study
showing that searching by screenshot is easy to learn and
faster to specify than keywords. We also demonstrate sev-
eral automation tasks suitable for visual scripting, such as
map navigation and bus tracking, and show how visual
scripting can improve interactive help systems previously
proposed in the literature.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors, Languages
Keywords: online help, image search, automation
INTRODUCTION
In human-to-human communication, asking for information
about tangible objects can be naturally accomplished by
making direct visual references to them. For example, to
ask a tour guide to explain more about a painting, we would

say while pointing to . Giving
verbal commands involving tangible objects can also be
naturally accomplished by making similar visual refer-
ences. For example, to instruct a mover to put a lamp on
top of a nightstand, we would put this over there
while pointing to and respectively.
Likewise, in human-to-computer communication, finding
information or issuing commands involving GUI elements
can be accomplished naturally by making direct visual ref-
erence to them. For example, asking the computer to
information about this while pointing to , we would
like the computer to tell us about the Lasso tool for Photo-
shop and hopefully even give us links to web pages ex-
plaining this tool in detail. Asking the computer to

all these while pointing to and re-
spectively, means we would like the computer to move all
the Word documents to the recycle bin.
However, some interfaces do not interact with us visually
and force us to rely on non-visual alternatives. One exam-
ple is search. With the explosion of information on the
web, search engines are increasingly useful as a first resort
for help with a GUI application, because the web may have
fresher, more accurate, more abundant information than the

-in help. Searching the web currently
requires coming up with the right keywords to describe an

GUI elements, which can be challenging.
Another example is automation. Scripts or macros that con-
trol GUI elements either refer to an element by name,
which may be unfamiliar or even unavailable to the user, or
by screen location, which may change.
This paper presents Sikuli1, a visual approach to searching
and automating GUI elements (Figure 1). Sikuli allows
users or programmers to make direct visual reference to
GUI elements. To search a documentation database about a
GUI element, a user can draw a rectangle around it and take

1In Huichol Indian language, Sikuli

power of seeing and understanding things unknown.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

7, 2009, Victoria, British Columbia, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00.

Figure 1: Sikuli Search allows users to search docu-
mentation and save custom annotations for a GUI
element using its screenshot (captured by stretching a
rectangle around it). Sikuli Script allows users to au-
tomate GUI interactions also using screenshots.

Sikuli Search

Sikuli Script

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9342165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a screenshot as a query. Similarly, to automate interactions
with a GUI element, a programmer can insert
screenshot directly into a script statement and specify what
keyboard or mouse actions to invoke when this element is
seen on the screen. Compared to the non-visual alterna-
tives, taking screenshots is an intuitive way to specify a
variety of GUI elements. Also, screenshots are universally
accessible for all applications on all GUI platforms, since it
is always possible to take a screenshot of a GUI element.
We make the following contributions in this paper:
 Sikuli Search, a system that enables users to search a

large collection of online documentation about GUI
elements using screenshots;

 an empirical demonstration of the
retrieve relevant information about a wide variety of
dialog boxes, plus a user study showing that screen-
shots are faster than keywords for formulating queries
about GUI elements;

 Sikuli Script, a scripting system that enables program-
mers to use screenshots of GUI elements to control
them programmatically. The system incorporates a
full-featured scripting language (Python) and an editor
interface specifically designed for writing screenshot-
based automation scripts;

 two examples of how screenshot-based interactive
techniques can improve other innovative interactive
help systems (Stencils [8] and Graphstract [7]).

This paper is divided into two parts. First we describe and
evaluate Sikuli Search. Then we describe Sikuli Script and
present several example scripts. Finally we review related
work, discuss limitations of our approach, and conclude.
SCREENSHOTS FOR SEARCH
This section presents Sikuli Search, a system for searching
GUI documentation by screenshots. We describe motiva-
tion, system architecture, prototype implementation, the
user study, and performance evaluation.
Motivation
The development of our screenshot search system is moti-
vated by the lack of an efficient and intuitive mechanism to
search for documentation about a GUI element, such as a
toolbar button, icon, dialog box, or error message. The abil-

ity to search for documentation about an arbitrary GUI
element is crucial when users have trouble interacting with
the element and the appli -in help features are
inadequate. Users may want to search not only the official
documentation, but also computer books, blogs, forums, or
online tutorials to find more help about the element.
Current approaches require users to enter keywords for the
GUI elements in order to find information about them, but
suitable keywords may not be immediately obvious.
Instead, we propose to use a screenshot of the element as a
query. Given their graphical nature, GUI elements can be
most directly represented by screenshots. In addition,
screenshots are accessible across all applications and plat-
forms by all users, in contrast to other mechanisms, like
tooltips and help hotkeys (F1), that may or may not be im-
plemented by the application.
System Architecture
Our screenshot search system, Sikuli Search, consists of
three components: a screenshot search engine, a user inter-
face for querying the search engine, and a user interface for
adding screenshots with custom annotations to the index.
Screenshot Search Engine
Our prototype system indexes screenshots extracted from a
wide variety of resources such as online tutorials, official
documentation, and computer books. The system represents
each screenshot using three different types of features (Fig-
ure 2). First, we use the text surrounding it in the source
document, which is a typical approach taken by current
keyword-based image search engines.

Second, we use visual features. Recent advances in com-
puter vision have demonstrated the effectiveness of
representing an image as a set of visual words [18]. A visu-
al word is a vector of values computed to describe the visu-
al properties of a small patch in an image. Patches are typi-
cally sampled from salient image locations such as corners
that can be reliably detected in despite of variations in
scale, translation, brightness, and rotation. We use the SIFT
feature descriptor [11] to compute visual words from sa-
lient elliptical patches (Figure 2.3) detected by the MSER
detector [12].

Figure 2: Screenshots can be indexed by surrounding text, visual features, and embedded text (via OCR).

Screenshot images represented as visual words can be in-
dexed and searched efficiently using an inverted index that
contains an entry for each distinct visual word. To index an
image, we extract visual words and for each word add the
image ID to the corresponding entry. To query with another
image, we also extract visual words and for each word re-
trieve from the corresponding entry the IDs of the images
previously indexed under this word. Then, we find the IDs
retrieved the most number of times and return the corres-
ponding images as the top matches.

Third, since GUI elements often contain text, we can index
their screenshots based on embedded text extracted by opti-
cal character recognition (OCR). To improve robustness to
OCR errors, instead of using raw strings extracted by OCR,
we compute 3-grams from the characters in these strings.
For example, the word system might be incorrectly recog-
nized as systen. But when represented as a set of 3-grams
over characters, these two terms are {sys, yst, ste, tem} and
{sys, yst, ste, ten} respectively, which results in a 75%
match, rather than a complete mismatch. We consider only
letters, numbers and common punctuation, which together
define a space of 50,000 unique 3-grams. We treat each
unique 3-gram as a visual word and include it in the same
index structure used for visual features.

User Interface for Searching Screenshots
Sikuli Search allows a user to select a region of interest on
the screen, submit the image in the region as a query to the
search engine, and browse the search results. To specify the
region of interest, a user presses a hot-key to switch to Si-
kuli Search mode and begins to drag out a rubber-band
rectangle around it (Figure 1). Users do not need to fit the
rectangle perfectly around a GUI element since our screen-
shot representation scheme allows inexact match. After the
rectangle is drawn, a search button appears next to it, which
submits the image in the rectangle as a query to the search
engine and opens a web browser to display the results.
User Interface for Annotating Screenshots
We have also explored using screenshots as hooks for an-
notation. Annotation systems are common on the web (e.g.
WebNotes2 and Shiftspace3), where URLs and HTML page
structure provide robust attachment points, but similar sys-
tems for the desktop have previously required application
support (e.g. Stencils [8]). Using screenshots as queries,
we can provide general-purpose GUI element annotation
for the desktop, which may be useful for both personal and
community contexts. For example, consider a dialog box
for opening up a remote desktop connection. A user may
want to attach a personal note listing the IP addresses of the
remote machines accessible by the user, whereas a commu-
nity expert may want to create a tutorial document and link
the document to this dialog box.

annotation interface allows a user to save
screenshots with custom annotations that can be looked up

2 http://www.webnotes.com/
3 http://shiftspace.org/

using screenshots. To save a screenshot of a GUI element,
the user draws a rectangle around it to capture its screen-
shot to save in the visual index. The user then enters the
annotation to be linked to the screenshot. Optionally, the
user can mark a specific part of the GUI element (e.g., a
button in a dialog box) to which the annotation is directed.
Prototype Implementation
The Sikuli Search prototype has a database of 102 popular
computer books covering various operating systems (e.g.,
Windows XP, MacOS) and applications (e.g., Photoshop,
Office), all represented in PDF4. This database contains
more than 50k screenshots. The three-feature indexing
scheme is written in C++ to index these screenshots, using
SIFT [11] to extract visual features, Tesseract5 for OCR,
and Ferret6 for indexing the text surrounding the screen-
shots. All other server-side functionality, such as accepting
queries and formatting search results, is implemented in
Ruby on Rails7 with a SQL database. On the client side, the
interfaces for searching and annotating screenshots are im-
plemented in Java.
User Study
We have argued that a screenshot search system can simpli-
fy query formulation without sacrificing the quality of the
results. To support these claims, we carried out a user study
to test two hypotheses: (1) screenshot queries are faster to
specify than keyword queries, and (2) results of screenshot
and keyword search have roughly the same relevance as
judged by users. We also used a questionnaire to shed light

of both search methods.
Method
The study was a within-subject design and took place
online. Subjects were recruited from Craigslist and
compensated with $10 gift certificates. Each subject was
asked to perform two sets of five search tasks (1 practice +
4 actual tasks). Each set of tasks corresponds to one of the
two conditions (i.e., image or keyword) that are randomly
ordered. The details of a task are as follows. First, the

4 http://www.pdfchm.com/
5 http://code.google.com/p/tesseract-ocr/
6 http://ferret.davebalmain.com/
7 http://rubyonrails.org/

Figure 3: User study task, presenting a desktop im-
age containing a dialog box (left) from which to for-
mulate a query, and search results (right) to judge
for relevance to the dialog box.

Figure 5: Retrieval performance of search prototype.

subject was presented an image of the whole desktop with
an arbitrarily-positioned dialog box window. Each dialog
box was randomly drawn without replacement from the
same pool of 10 dialog boxes. This pool was created by
randomly choosing from those in our database known to
have relevant matches. Next, the subject was told to specify
queries by entering keywords or by selecting a screen
region depending on which condition. The elapsed time
between the first input event (keypress or mouse press) and
the submit action was recorded as the query formulation
time. Finally, the top 5 matches were shown and the subject
was asked to examine each match and to indicate whether it
seemed relevant or irrelevant (Figure 3).
After completing all the tasks, the subject was directed to
an online questionnaire to rate subjective experiences with
the two methods on a 7-point Likert scale (7: most
positive). The questions were adapted from the evaluation
of the Assieme search interface [6] and are listed below:
1. What is your overall impression of the system?
2. How relevant are the results?
3. Does the presentation provide good overview of the results?
4. Does the presentation help you judge the relevance?
5. Does the input method make it easy to specify your query?
6. Is the input method familiar?
7. Is the input method easy to learn?

Results
Twelve subjects, six males and six females, from diverse
backgrounds (e.g., student, waiter, retiree, financial consul-
tant) and age range (21 to 66, mean = 33.6, sd = 12.7), partici-
pated in our study and filled out the questionnaire. All but
one were native English speakers.
The findings supported both hypotheses. The average query
formulation time was less than half as long for screenshots
(4.02 sec, s.e.=1.07) as for keyword queries (8.58 sec,
s.e.=.78), which is a statistically significant difference t(11)
= 3.87, p = 0.003. The number of results rated relevant (out
of 5) averaged 2.62 (s.e.=.26) for screenshot queries and
2.87 (s.e.=.26) for keyword queries, which was not signifi-
cant t(11) = .76, p = .46.
The responses to the questionnaire for subjective rating of
the two query methods are summarized in Figure 4. The
most dramatic difference was familiarity (Q6) t(11) = 4.33,
p < .001. Most subjects found keyword queries more famil-

iar than screenshot queries. There was a trend that subjects
reported screenshot queries as easier to use (Q5) and to
learn (Q7) compared to keyword queries p < .1.
We observed several subjects improved speed in making
screenshot queries over several tasks, which may suggest
that while they were initially unfamiliar with this method,
they were able to learn it rather quickly.
Performance Evaluation
We evaluated the technical performance of the Sikuli
Search prototype, which employs the three-feature indexing
scheme (surrounding text, embedded text, and visual fea-
tures), and compared it to that of a baseline system using
only traditional keyword search over surrounding text. The
evaluation used a set of 500 dialog box screenshots from a
tutorial website for Windows XP 8 (which was not part of
the corpus used to create the database). For the keyword
search baseline, we manually generated search terms for
each dialog box using words in the title bar, heading, tab,
and/or the first sentence in the instruction, removing stop
words, and capping the number of search terms to 10.
We measured coverage, recall, and precision. Coverage
measures the likelihood that our database contains a rele-
vant document for an arbitrary dialog box. Since the exact
measurement of coverage is difficult given the size of our
database, we examined the top 10 matches of both methods
and obtained an estimate of 70.5% (i.e., 361/500 dialogs
had at least one relevant document). To estimate precision
and recall, we obtained a ground-truth sample by taking the
union of all the correct matches given by both methods for
the queries under coverage (since recall is undefined for
queries outside the coverage).
Figure 5 shows the precision/recall curves of the two me-
thods. As can be seen, the screenshot method achieved the
best results. We speculate that the keyword baseline per-
formed poorly because it only relies on the text surrounding
a screenshot that might not necessarily correlate with the
text actually embedded in the screenshot. The surrounding
text often provides additional information rather than re-
peating what is already visible in the screenshot. However,
users often choose keywords based on the visible text in the
dialog box and these keywords are less likely to retrieve
documents with the screenshots of the right dialog box.

8 http://www.leeindy.com/

Figure 4: Mean and standard error of the subjec-
tive ratings of the two query methods.

SCREENSHOTS FOR AUTOMATION
This section presents Sikuli Script, a visual approach to UI
automation by screenshots. We describe motivation, algo-
rithms for matching screenshot patterns, our visual script-
ing API, an editor for composing visual scripts, and several
example scripts.
Motivation
The development of our visual scripting API for UI auto-
mation is motivated by the desire to address the limitations
of current automation approaches. Current approaches tend
to require support from application developers (e.g., Ap-
pleScript and Windows Scripting, which require applica-
tions to provide APIs) or accessible text labels for GUI
elements (e.g. DocWizards [2], Chickenfoot [3], and Co-
Scripter [10]). Some macro recorders (e.g. Jitbit9 and
QuicKeys10) achieve cross-application and cross-platform
operability by capturing and replaying low-level mouse and
keyboard events on a GUI element based on its absolute
position on the desktop or relative position to the corner of
its containing window. However, these positions may be-
come invalid if the window is moved or if the elements in
the window are rearranged due to resizing.
Therefore, we propose to use screenshots of GUI elements
directly in an automation script to programmatically control
the elements with low-level keyboard and mouse input.
Since screenshots are universally accessible across different
applications and platforms, this approach is not limited to a
specific application. Furthermore, the GUI element a pro-
grammer wishes to control can be dynamically located on
the screen by its visual appearance, which eliminates the
movement problem suffered by existing approaches.
Finding GUI Patterns on the Screen
At the core of our visual automation approach is an effi-
cient and reliable method for finding a target pattern on the
screen. We adopt a hybrid method that uses template-
matching for finding small patterns and invariant feature
voting for finding large patterns (Figure 6).
If the target pattern is small, like an icon or button, tem-
plate matching based on normalized cross-validation [4]
can be done efficiently and produce accurate results. Tem-
plate matching can also be applied at multiple scales to find
resized versions of the target pattern (to handle possible
changes in screen resolution) or at grayscale to find pat-
terns texturally similar but with different color palettes (to
handle custom color themes).
However, if the target pattern is large, like a window or
dialog box, template-matching might become too slow for
interactive applications, especially if we allow variations in
scale. In this case, we can consider an algorithm based on
invariant local features such as SIFT [11] that have been
used to solve various computer vision problems successful-
ly over the past few years. The particular algorithm we
have adapted for our purpose [13] was originally used for

9 http://www.jitbit.com/macrorecorder.aspx
10 http://www.startly.com/products/qkx.html

detecting cars and pedestrians in a street scene. This algo-
rithm learns from a set of invariant local features extracted
from a training pattern (a screenshot of a GUI element) and
derives an object model that is invariant to scale and rota-
tion. Encoded in the object model is the location of its cen-
ter relative to each local feature. To detect this object mod-
el in a test image (screen), we first extract invariant features
from the image. For each feature, we can look up the cor-
responding feature in the object model and infer where the
location of the object center is if this feature actually con-
stitutes a part of the object. If a cluster of features consis-
tently point at the same object center, it is likely these fea-
tures actually form an object. Such clusters can be identi-
fied efficiently by voting on a grid, where each feature
casts a vote on a grid location closest to the inferred object
center. We identify the grid locations with the most votes
and obtain a set of hypotheses. Each hypothesis can be ve-
rified for its geometric layout by checking whether a trans-
formation can be computed between this hypothesis and the
training pattern based on the set of feature correspondences
between the two. The result is a set of matches and their
positions, scales, and orientations, relative to the target pat-
tern. Note that while rotational invariance may be unneces-
sary in traditional 2D desktop GUIs, it can potentially bene-
fit next-generation GUIs such as tabletop GUIs where ele-
ments are oriented according to s.
Visual Scripting API
Sikuli Script is our visual scripting API for GUI automa-
tion. The goal of this API is to give an existing full-
featured scripting language a set of image-based interactive
capabilities. While in this paper we describe the API in
Python syntax, adapting it to other scripting languages such
as Ruby and JavaScript should be straightforward.
The Sikuli Script API has several components. The find()
function takes a target pattern and returns screen regions
matching the pattern. The Pattern and Region classes
represent the target pattern and matching screen regions,
respectively. A set of action commands invoke mouse and
keyboard actions on screen regions. Finally, the visual dic-
tionary data type stores key-values pairs using images as
keys. We describe these components in more detail below.

Figure 6: Examples of finding small patterns of
varing sizes (a) and colors (b) by template-
matching, and large patterns of varying sizes and
orientations (c) by invariant feature voting.

(a)

(b)

(c)

Find
The find() function locates a particular GUI element to in-
teract with. It takes a visual pattern that specifies the ele-
ment ppearance, searches the whole screen or part of the
screen, and returns regions matching this pattern or false if

no such region can be found. For example, find() returns
regions containing a Word document icon.
Pattern
The Pattern class is an abstraction for visual patterns. A
pattern object can be created from an image or a string of
text. When created from an image, the computer vision
algorithm described earlier is used to find matching screen
regions. When created from a string, OCR is used to find
screen regions matching the text of the string.
An image-based pattern object has four methods for tuning
how general or specific the desired matches must be:
 exact(): Require matches to be identical to the given

search pattern pixel-by-pixel.
 similar(float similarity): Allow matches that are

somewhat different from the given pattern. A similari-
ty threshold between 0 and 1 specifies how similar the
matching regions must be (1.0 = exact).

 anyColor(): Allow matches with different colors than
the given pattern.

 anySize(): Allow matches of a different size than the
given pattern.

Each method produces a new pattern, so they can be
chained together. For example,

Pattern().similar(0.8).anyColor().anySize()

matches screen regions that are 80% similar to of any
size and of any color composition. Note that these pattern
methods can impact the computational cost of the search;
the more general the pattern, the longer it takes to find it.
Region
The Region class provides an abstraction for the screen
region(s) returned by the find() function matching a given
visual pattern. Its attributes are x and y coordinates, height,
width, and similarity score. Typically, a Region object

represents the top match, for example, r = find() finds

the region most similar to and assigns it to the variable
r. When used in conjunction with an iterative statement, a
Region object represents an array of matches. For example,

for r in find() iterates through an array of matching re-
gions and the programmer can specify what operations to
perform on each region represented by r.
Another use of a Region object is to constrain the search to
a particular region instead of the entire screen. For exam-

ple, find().find() constrains the search
space of the second find() for the ok button to only the re-
gion occupied by the dialog box returned by the first find().

To support other types of constrained search, our visual
scripting API provides a versatile set of constraint opera-
tors: left, right, above, below, nearby, inside, outside in
2D screen space and after, before in reading order (e.g.,
top-down, left-right for Western reading order). These op-
erators can be used in combination to express a rich set of
search semantics, for example,

find().inside().find().right().find().

Action
The action commands specify what keyword and/or mouse
events to be issued to the center of a region found by find().
The set of commands currently supported in our API are:
 click(Region), doubleClick(Region): These two com-

mands issue mouse-click events to the center of a tar-

get region. For example, click() performs a single
click on the first close button found on the screen.
Modifier keys such as Ctrl and Command can be
passed as a second argument.

 dragDrop(Region target, Region destination): This
command drags the element in the center of a target
region and drops it in the center of a destination region.

For example, dragDrop(,) drags a word icon
and drops it in the recycle bin.

 type(Region target, String text): This command enters
a given text in a target region by sending keystrokes to

its center. For example, type(

, UIST) types the UIST in the Google search box.

Visual Dictionary
A visual dictionary is a data type for storing key-value pairs
using images as keys. It provides Sikuli Script with a con-
venient progr
core functionality. Using a visual dictionary, a user can
easily automate the tasks of saving and retrieving data
based on images. The syntax of the visual dictionary is
modeled after that of the built-in Python dictionary. For

example, d = VisualDict({ : "word", : "powerpoint"})

creates a visual dictionary associating two application

names with their icon images. Then, d[] retrieves the

string powerpoint and d[] = "excel" stores the string

excel under . Because is not a key, in d re-

turns false and d[] raises a KeyError exception. Using
the pattern modifiers described earlier, it is possible to ex-
plicitly control how strict or fuzzy the matching criterion

should be. For instance, d[Pattern().exact()] requires

pixel perfect matching, whereas d[Pattern().anysize()]

retrieves an array of values associated with different sizes
of the same image.

Figure 7: Editor for writing Sikuli scripts in Python.

Script Editor
We developed an editor to help users write visual scripts
(Figure 7). To take a screenshot of a GUI element to add to
a script, a user can click on the camera button (a) in the
toolbar to enter the screen capture mode. The editor hides
itself automatically to reveal the desktop underneath and
the user can draw a rectangle around an element to capture
its screenshot. The captured image can be embedded in any
statement and displayed as an inline image. The editor also
provides code completion. When the user types a com-
mand, the editor automatically displays the corresponding
command template to remind the user what arguments to
supply. For example, when the user types find, the editor
will expand the command into . The user can
click on the camera button to capture a screenshot to be the
argument for this find() statement. Alternatively, the user
can load an existing image file from disk (b), or type the
filename or URL of an image, and the editor automatically
loads it and displays it as a thumbnail. The editor also al-
lows the user to specify an arbitrary region of screen to
confine the search to that region (c). Finally, the user can
press the execute button (d) and the editor will be hidden
and the script will be executed.
The editor can also preview how a pattern matches the cur-
rent desktop (Figure 8) under different parameters such as
similarity threshold (a) and maximum number of matches
(b), so that these can be tuned to include only the desired
regions. Match scores are mapped to the hue and the alpha
value of the highlight, so that regions with higher score are
redder and more visible.
Implementation and Performance
We implemented the core pattern matching algorithm in
C++ using OpenCV, an open-source computer vision li-
brary. The full API was implemented in Java using the Java
Robot class to execute keyboard and mouse actions. Based
on the Java API, we built a Python library to offer high-

level scripting syntax described above. Libraries for other
high-level scripting languages can also be built based on
this API. We built the editor using Java Swing. To visual-
ize the search patterns embedded in a script, we imple-
mented a custom EditorKit to convert from pure-text to
rich-text view. Finally, we used Jython to execute the Py-
thon scripts written by programmers. All components of
the system are highly portable and have been tested on
Windows and Mac OS X. We benchmarked the speed on a
3.2 GHz Windows PC. A typical call to find() for a
100x100 target on a 1600x1200 screen takes less than 200
msec, which is reasonable for many interactive applica-
tions. Further speed gains might be obtained by moving
functionality to the GPU if needed in the future.
Sikuli Script Examples
We present six example scripts to demonstrate the basic
features of Sikuli Script. For convenience in Python pro-
gramming, we introduce two variables; find.region and
find.regions, that respectively cache the top region and all
the regions returned by the last call to find. While each
script can be executed alone, it can also be integrated into a
larger Python script that contains calls to other Python li-
braries and/or more complex logic statements.
1. Minimizing All Active Windows

1: while find():
2: click(find.region)

This script minimizes all active windows by calling find
repeatedly in a while loop (1) and calling click on each
minimize button found (2), until no more can be found.

Figure 8: The user can adjust the similarity threshold
and preview the results. Here, the threshold (0.25) is
too low, resulting in many false positives.

2. Deleting Documents of Multiple Types

1: def recycleAll(x):
2: for region in find(x).anySize().regions:

3: dragDrop(region,)

4: patterns = [, ,]
5. for x in patterns:
6: recycleAll(x)

This script deletes all visible Office files (Words, Excel,
PowerPoint) by moving them to the recycle bin. First, it
defines a function recycleAll() to find all icons matching
the pattern of a given file type and move them to the re-
cycle bin (1-3). Since icons may appear in various sizes
depending on the view setting, anySize is used to find
icons of other sizes (2). A for loop iterates through all
matching regions and calls dragDrop to move each match
to the recycle bin (3). Next, an array is created to hold the
patterns of the three Office file types (4) and recycleAll() is
called on each pattern (5-6) to delete the files. This exam-
ple demonstrates ability to define reusable
functions, treat visual patterns as variables, perform fuzzy
matching (anySize), and interact with built-in types (array).
3. Tracking Bus Movement

1: street_corner = find()

2: while not street_corner.inside().find().similar(0.7):
3: sleep(60)

This script tracks bus movement in the context of a GPS-
based bus tracking application. Suppose a user wishes to be
notified when a bus is just around the corner so that the
user can head out and catch the bus. First, the script identi-
fies the region corresponding to the street corner (1). Then,
it enters a while loop and tries to find the bus marker inside
the region every 60 seconds (2-3). Notice that about 30% of
the marker is occupied by the background that may change
as the maker moves. Thus, the similar pattern modifier is
used to look for a target 70% similar to the given pattern.
Once such target is found, a popup will be shown to notify
the user the bus is arriving (4). This example demonstrates

with everyday tasks.

4. Navigating a Map

1: while find() and
 not find.regions.nearby().find Houston
2: target = find.region
3: dragDrop(target, [target.x - 100, target.y])

This script automatically navigates east to Houston follow-
ing Interstate 10 on the map (by dragging the map to the
left). A while loop repeatedly looks for the Interstate 10
symbol and checks if a string Houston appears nearby (1).
Each time the string is not found, the position 100 pixels to
the left of the Interstate 10 symbol is calculated and the
map is dragged to that position (3), which in effect moves
the map to the east. This movement continues until the In-
terstate 10 can no longer be found or Houston is reached.
5. Responding to Message Boxes Automatically

1: d = VisualDict({ : })

. . .

100: d[]=

101: import win32gui
102: while true:
103: w = win32gui.getActiveWindow()
104: img = getScreenshot(w)
105: if img in d:
106: button = d[img]
107: click(Region(w).inside().find(button))

This script generates automatic responses to a predefined
set of message boxes. A screenshot of each message box is
stored in a visual dictionary d as a key and the image of the
button to automatically press is stored as a value. A large
number of message boxes and desired responses are de-
fined in this way (1-100). Suppose the win32gui library is
imported (101) to provide the function getActiveWin-
dow(), which is called periodically (102) to obtain the han-
dle to the active window (103). Then, we take a screenshot
by calling getScreenshot() (104) and check if it is a key of
d (105). If so, this window must be one of the message
boxes specified earlier. To generate an automatic response,
the relevant button image is extracted from d (106) and the
region inside the active window matching the button image
is found and clicked (107). This example shows Sikuli
Script can interact with any Python library to accomplish
tasks neither can do it alone. Also, using a VisualDict, it is
possible to handle a large number of patterns efficiently.

6. Monitoring a Baby

1: while find().similar(0.7):
2: sleep(60)

This script demonstrates how visual scripting can go
beyond the realm of desktop to interact with the physical
world. The purpose of this script is to monitor for baby
rollover through a webcam that streams video to the screen.

By periodically checking if the marker is present (1- 2), the
script can detect baby rollover when the marker is absent
and issue notification (3).
INTEGRATION WITH OTHER SYSTEMS
The visual approach to search and automation can poten-
tially impact a broad range of interactive systems. In this
section we present two such systems that can be enhanced
by our image-based interactive techniques.
Creating Stencils-based Tutorials
The Stencils system described in [8] is a tutorial presenta-
tion technique that seeks to
correct interface components by displaying translucent co-
lored stencils with holes. This technique has been shown to
enable users to complete tutorials faster. However, to adopt
this technique, an application must implement certain sys-
tem-specific functionality (i.e., a Java interface), which

Our screenshot annotation tool can potentially broaden the
applicability of Stencils to other applications by linking
tutorials to their screenshots without any modification to
the source code. For example, Figure 9 shows a tutorial we
created following the Stencils design guideline that in-
structs users how to add new contacts for Skype, based on
an actual tutorial in the official documentation.
Automating Minimal Graphical Help
The Graphstract system described in [7] is a graphical help
presentation technique based on abstracted screenshots.
Instead of showing the screenshot of the whole interactive
window to illustrate a step in a sequential task, Graphstract
automatically extracts and displays the screenshot of only
the region around the relevant UI element in the window.
Graphstract can record and replay user interactions across
applications based on low-level input. However, as men-
tioned in [7], the fidelity of the replay depends on the abso-
lute locations of the GUI elements and may break if the
windows containing those elements are moved.
Sikuli Script can help overcome this drawback since it
identifies GUI elements by appearances rather than abso-
lute position. Figure 10 shows the first 3 of a 12-step
Graphstract tutorial in [7] illustrating how to move an im-

age from Photoshop to Word. Converting this tutorial to a
Sikuli script is straightforward since the screenshots of re-
levant GUI elements are already in the tutorial and can be
used directly as search patterns for Action commands.
RELATED WORK
Help systems: Graphical illustrations such as screenshots
are helpful for teaching users about a software application.
Technical writers have long used specialized tools such as
RoboHelp to produce documentation with captured screen
images of applications. Harrison [5] found that users
learned more quickly following tutorials illustrated by
screenshots than reading textual-only tutorials. However,
Knabe [9] found that users often find it difficult to locate
the interface components pictured in the tutorials. Several
attempts have been made to address this difficulty. Berg-
man et al [2] proposed the follow-me documentation wizard
that steps a user through a script representation of a proce-
dure by highlighting portions of the text as well application
UI elements. These help systems are image-oriented and
can be enhanced by searching screen patterns.

Creating graphically illustrated documentation can be time
consuming and expensive. Several attempts have been
made to automate this task. For example, Sukaviriya &
Foley [19] proposed a framework called Cartoonists for
generating animated help as a sequence of user actions
needed to perform the task by demonstrating these actions
first. Moriyon et al [14] proposed a technique to generate
hypertext help messages from a user interface design mod-
el. Furthermore, Pangoli & Paternó [15] demonstrated how
to generate task-oriented help from user interface specifica-
tion. However, these generators assume the knowledge of
the user interface design model, which requires expert de-
signers. In contrast, our screenshot annotation tool requires
no such expertise and can potentially allow crowd sourcing.

Image-based interaction: The idea of supporting interac-
tions by analyzing the visual patterns rendered on the

Figure 9: A Stencils-based tutorial [8] generated
by the Sikuli search and annotation tool.

(a)

(b)
click() ; click() ; click()

Figure 10: Converting a Graphstract [7] (a) to a
Sikuli script (b).

screen was examined Potter [16] was the
first to explore this idea and referred to it as direct pixel
access and championed its potential for supporting applica-
tion-independent end-user programming. His Triggers sys-
tem supported novel visual tasks such as graphical search-
and-replace and simulated floating menus. While Triggers
can be configured through an interactive dialog to perform
some basic tasks similar to the Sikuli Script examples pre-
sented earlier (i.e., 1,3,4), it is not a full scripting language
and does not support fuzzy matching. Zettlemoyer & St.
Amant [20] described VisMap and VisScript. The former
inferred high-level, structured representations of interface
objects from their appearances and generated mouse and
keyboard gestures to manipulate these objects. The later
provided a basic set of scripting commands (mouse-move,
single-click, double-click and move-mouse-to-text) based on
the output of VisMap, but was not integrated with a full-
feature scripting language. Furthermore, St. Amant et al [1]
explored several possibilities of programming-by-example
through visual generalization by observing user behaviors
and inferring general patterns based on the visual properties
and relationships of user interface objects. While these ear-
ly pioneering works shed light on the potential of image-
based interaction, they led to almost no follow-up work,
mostly because the practicality was limited by the hardware
and computer vision algorithms of the time. However, fast-
er hardware and recent advances in vision algorithms par-
ticularly those based on invariant local features have now
presented us with an opportunity to reexamine this idea and
develop practical image-based interactive applications.

CONCLUSION AND FUTURE WORK
This paper presented a visual approach to search and auto-
mation and demonstrated its various benefits and capabili-
ties. We conclude by mentioning two limitations of the
approach and offering possible solutions for future work.
Theme variations: Many users prefer a personalized ap-
pearance theme with different colors, fonts, and desktop
backgrounds, which may pose challenges to a screenshot
search engine. Possible solutions would be to tinker with
the image-matching algorithm to make it robust to theme
variation or to provide a utility to temporarily switch to the
default theme whenever users wish to search for screen-
shots. UI automation is less affected by theme variations
when users write scripts to run on their own machines.
However, sharing scripts across different themes may be
difficult. Possible solutions would be to derive a conversion
function to map patterns between themes or to require users
to normalize the execution environment by switching to the
default theme when writing sharable scripts.
Visibility constraints: Currently, Sikuli Script operates
only in the visible screen space and thus is not applicable to
invisible GUI elements, such as those hidden underneath
other windows, in another tab, or scrolled out of view. One
solution would be to automate scrolling or tab switching
actions to bring the GUI elements into view to interact with
it visually. Another solution would resort to platform- or

application-specific techniques to obtain the full contents of
windows and scrolling panes, regardless of their visibility.
REFERENCES
1. St. Amant, R., H. Lieberman, R. Potter, and L. Zettlemoyer.

Programming by example: visual generalization in program-
ming by example. Commun. ACM 43(3), 107 114, 2003.

2. Bergman, L., V. Castelli, T. Lau, and D. Oblinger. DocWi-
zards: a system for authoring follow-me documentation wi-
zards. Proc. , 191 200, 2005.

3. Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C. Miller.
Automation and customization of rendered web pages. Proc.

163 172, 2005.
4. Forsyth, D. and Ponce, J., Computer Vision: A Modern Ap-

proach, Prentice Hall, USA, 2002.
5. Harrison, S. M. A comparison of still, animated, or nonillu-

strated on-line help with written or spoken instructions in a
graphical user interface. Proc. 82 89, 1995.

6. Hoffmann, R., J. Fogarty, and D. S. Weld. Assieme: finding
and leveraging implicit references in a web search interface
for programmers. Proc. 13 22, 2007.

7. Huang, J. and M. B. Twidale. Graphstract: minimal graphical
help for computers. Proc. 203 212, 2007.

8. Kelleher, C. and R. Pausch. Stencils-based tutorials: design
and evaluation. Proc. 541 550, 2005.

9. Knabe, K. Apple guide: a case study in user-aided design of
online help. Proc. 286 287, 1995.

10. Leshed, G., E. M. Haber, T. Matthews, and T. Lau. CoScrip-
ter: automating & sharing how-to knowledge in the enterprise.
Proc. , 1719 1728, 2008.

11. Lowe, D. G. Object recognition from local scale-invariant
features. Proc. International Conference on Computer Vision,
1150 1157, 1999.

12. Matas, J., O. Chum, U. Martin, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. Proc.

, 2002.
13. Mikolajczyk, K., B. Leibe, and B. Schiele. Multiple object

class detection with a generative model. Proc. Computer Vi-
26-36, 2006.

14. Moriyon, R., P. Szekely, and R. Neches. Automatic generation
of help from interface design models. Proc. 225 231,
1994.

15. Pangoli, S. and F. Paternó. Automatic generation of task-
oriented help. Proc. 181 187, 1995.

16. Potter, R. L. Pixel data access: interprocess communication in
the user interface for end-user programming and graphical
macros. Ph. D. thesis, College Park, MD, USA, 1999.

17. Prabaker, M., L. Bergman, and V. Castelli. An evaluation of
using programming by demonstration and guided walkthrough
techniques for authoring and utilizing documentation. Proc.

241 250, 2006.
18. Sivic, J. and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. Proc. International
Conference on Computer Vision, 2003.

19. Sukaviriya, P. and J. D. Foley. Coupling a UI framework with
automatic generation of context-sensitive animated help. Proc.

152 166, 1990.
20. Zettlemoyer, L. S. and St. Amant, R. A visual medium for

programmatic control of interactive applications. Proc. CHI
199 206, 1999.

