
CORADD: Correlation Aware Database Designer for
Materialized Views and Indexes

Hideaki Kimura George Huo Alexander Rasin Samuel Madden Stanley B. Zdonik
Brown University Google, Inc. Brown University MIT CSAIL Brown University

hkimura@cs.brown.edu ghuo@google.com alexr@cs.brown.edu srmadden@mit.edu sbz@cs.brown.edu

ABSTRACT
We describe an automatic database design tool that exploits corre-
lations between attributes when recommending materialized views
(MVs) and indexes. Although there is a substantial body of
related work exploring how to select an appropriate set of MVs
and indexes for a given workload, none of this work has explored
the effect of correlated attributes (e.g., attributes encoding related
geographic information) on designs. Our tool identifies a set of
MVs and secondary indexes such that correlations between the
clustered attributes of the MVs and the secondary indexes are
enhanced, which can dramatically improve query performance.
It uses a form of Integer Linear Programming (ILP) called ILP
Feedback to pick the best set of MVs and indexes for given
database size constraints. We compare our tool with a state-of-
the-art commercial database designer on two workloads, APB-1
and SSB (Star Schema Benchmark—similar to TPC-H). Our results
show that a correlation-aware database designer can improve query
performance up to 6 times within the same space budget when
compared to a commercial database designer.

1. INTRODUCTION
Correlations are extremely common in the attributes of real-

world relational datasets. One reason for this is that databases tend
to use many attributes to encode related information; for example,
area codes, zip codes, cities, states, longitudes, and latitudes all
encode spatial data, using slightly different representations, and
these attributes are highly correlated (e.g., a given city name usually
occurs in only one or two states.) Similar cases occur in many
applications; for example, in a retail database, there might be
products (e.g., cars) with manufacturers and models. In the case
of cars, a given model is likely made by only one manufacturer
(e.g., Ford Escape) for a particular set of years (2000–2009) in a
particular set of countries (US), yet these are represented by four
different attributes in the database. Correlations also occur due
to natural relationships between data; for example, in a weather
database, high humidity and high temperatures are correlated, and
sunny days are also correlated with hot days. Many other examples
are described in recent related work [3, 7, 11].

Previous work has shown that the presence of correlations
between different attributes in a relation can have a significant
impact on query performance [7, 11]. If clustered index keys are
well-correlated with secondary index keys, looking up values on
the secondary index may be an order of magnitude faster than the
uncorrelated case. As a simple example, consider the correlation
between city names and state names in a table People (name, city,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

state, zipcode, salary) with millions of tuples. Suppose we
have a secondary index on city names and our query determines
the average salary in “Cambridge,” a city in both Massachusetts
and in Maine. If the table is clustered by state, which is strongly
correlated with city name, then the entries of the secondary index
will only point to a small fraction of the pages in the heap file (those
that correspond to Massachusetts or Maine.) In the absence of
correlations, however, the Cantabrigians will be spread throughout
the heap file, and our query will require reading many more pages
(of course, techniques like bitmap scans, indexes with included
columns and materialized views can also be used to improve
performance of such queries.) Thus, even if we run the same query
on the same secondary index in the two cases, query performance
can be an order of magnitude faster with a correlated clustered
index. We note that such effects are most significant in OLAP (data-
warehouse) applications where queries may scan large ranges, in
contrast to OLTP databases that tend to perform lookups of single-
records by primary keys.

Moreover, such correlations can be compactly represented if
attributes are strongly correlated [3, 11]. For example, in [11],
we show that by storing only co-occurring distinct values of the
clustered and secondary index keys, the secondary index can be
dramatically smaller than conventional dense B+Trees, which store
one entry per tuple rather than one tuple per distinct value.

This means that, by selecting clustered indexes that are well-
correlated with predicated attributes, we can reduce the size and
improve the performance of secondary indexes built over those
attributes. In many cases, these correlations make secondary index
plans a better choice than sequential scans.

Although previous work has shown the benefit of correlations
on secondary index performance, it has not shown how to au-
tomatically select the best indexes for a given workload in the
presence of correlations. Conversely, previous work on automated
database design has not looked at accounting for correlations.
Hence, in this work, we introduce a new database design tool
named CORADD (CORrelation Aware Database Designer) that
is able to take into account attribute correlations. CORADD
first discovers correlations among attributes and then uses this
information to enumerate candidate materialized views (MVs) and
clustered indexes over them, selecting a set of candidates that offer
good query performance in the presence of correlations. To select
an optimal set of MVs within a given space budget, CORADD
chooses amongst the candidates using an optimized integer lin-
ear programming (ILP) technique called ILP Feedback. Finally,
it builds compressed secondary indexes on the MVs that take
advantage of the strong correlations, offering good performance
especially over warehouse-style workloads that can benefit from
such indexes. In summary, our contributions include:
• An MV candidate generation method based on query group-

ing, which identifies groups of queries that benefit from the
same MV as a result of correlations;
• Techniques to identify the best clustered attributes for candi-

date MVs to maximize the benefit from correlations;
• An MV candidate selection method based on integer linear

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/9342146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

programming and ILP Feedback;
• An implementation and evaluation of CORADD on two data-

warehouse benchmarks (SSB [15] and APB-1 [14]), showing
that CORADD obtains up to a factor of 6 performance
improvement in comparison to a leading commercial product
that does not consider correlations.

The rest of the paper is organized as follows. Section 2
summarizes related work on correlations and automatic database
designtools. Section 3 describes the architecture of CORADD.
Section 4 describes methods to generate candidate MV designs
that exploit correlations. Section 5 describes our ILP formulation
to pick candidate objects within a given space budget. Section 6
describes the ILP Feedback method to adaptively adjust candidate
generation. Section 7 experimentally compares CORADD with a
commercial database designer. Finally, Section 8 concludes.

2. BACKGROUND AND RELATED WORK
Automatically creating a set of database objects to improve

query performance is a well-studied problem in the physical database
design literature [1, 5, 16]. Most related work takes a query
workload as input, enumerates candidate database objects that
potentially speed up queries, evaluates the query performance of
the objects and then selects objects to materialize.

Most previous work takes a space budget constraint as input to
restrict the size of the materialized database objects for two reasons.
First, storage is a limited resource. Second, and more importantly,
the size of the database is directly linked to its maintenance costs.
The cost of inserts or updates rapidly grows as the size of the
database grows because additional database objects cause more
dirty pages to enter the buffer pool, leading to more evictions
and subsequent page writes to disk (Appendix A-3 reproduces an
experiment from [11] that demonstrates this effect).

2.1 Exploiting Correlations
Many previous researchers have noted that it is important for

query processors to be able to take into account correlations [3, 7,
9, 11]. Chen et al. [7] observed that the performance of secondary
indexes in data warehousing applications is substantially affected
by correlations with clustered indexes. Their Adjointed Dimension
Column Clustering aims to improve the performance of queries in
a star schema by physically concatenating the values of commonly
queried dimension columns that have restrictions into a new fact
table, and then creates a clustered index on that concatenation.
They report a 10 times or more speed-up when an appropriate
clustered index is selected. In [11], we developed an analytic query
cost model that exploits correlations based on a similar observation,
which we use to estimate query costs in this paper. Details of the
cost model are in [11]. We reproduce the details of the model in
Section A-2 for the readers’ convenience; in short, the cost of a
range scan via a secondary index is proportional to the number
of distinct values of the clustered index to be scanned. When the
secondary index is well-correlated with the clustered index, this
number will be small and cost will be low; when it is uncorrelated,
this value will be large and cost will be high (close to a sequential
scan.) We will refer to this as our cost model in the rest of the paper.

BHUNT [3], CORDS [9], and our previous work [11] discover
and exploit correlations in databases. All three use random
sampling to find correlations and find many usable correlations
across a range of real and synthetic data sets. BHUNT represents
discovered correlations as bumps and exception tables and uses
these to rewrite queries. Microsoft SQLServer’s datetime correla-
tion optimization 1 also stores correlations and uses them to rewrite
1http://msdn.microsoft.com/en-us/library/
ms177416(SQL.90).aspx

queries involving dates. In [11], we developed Correlation Maps
(CMs) that use a similar but more general approach; CMs are a type
of secondary index that store the clustered index values with which
each value of a secondary attribute co-occurs. Then, lookups on the
secondary attribute can be performed by scanning the co-occurring
clustered attribute values. CMs are thus very compact, as they are
a distinct value to distinct value mapping, and can be quite efficient
for range queries if the secondary attributes are correlated with a
clustered attribute, co-occurring with only a few values.

All of these techniques show that properly clustered primary
indexes can improve secondary index performance, but none auto-
matically select the best combination of clustered and unclustered
designs to maximize query performance. Previous work [3, 7, 9]
does not describe how to search for beneficial correlations, and
ours [11] only shows how to select beneficial CMs given a clus-
tering (i.e., it does not search for a beneficial clustering.)

2.2 Candidate Selection
Given a set of candidate database objects (MVs and indexes), a

database designer must choose a set of objects to materialize with
the goal of maximizing overall query performance within the space
budget. Previous work proposed two different types of selection
algorithms: heuristic and optimal. Heuristic algorithms [1, 5]
(e.g., Greedy(m,k) [5]) often choose a suboptimal set of MVs by
making greedy decisions. On the other hand, optimal algorithms
like integer linear programming (ILP) [16] choose an optimal
set in potentially exponential time by exploiting combinatorial
optimization techniques. We take the latter approach, further
improving the ILP approach from [16] in three ways. First, we
improve the ILP structure to account for clustered indexes, of
which there is only one per table or MV. Next, we propose to use
and evaluate a new ILP-related optimization, ILP Feedback (see
Section 6). Lastly, we formulate the design problem so that we do
not need to relax integer variables to linear variables, which reduces
the error of our approach in comparison to [16].

3. SYSTEM OVERVIEW
We now describe the design of CORADD, beginning with a

system overview. The goal of CORADD is to produce a database
design within a given space budget that executes a query workload
as quickly as possible – the same goal as previous work [1, 16] –
except that we seek a correlation-aware design, The architecture
of CORADD is shown in Figure 1. In a nutshell, our design
strategy is to choose MVs whose clustered index is well-correlated
with attributes predicated in a workload when our cost model
identifies cases where such MVs perform significantly better than
uncorrelated counterparts.

First, a database workload, expressed as a list of queries that
we expect to be executed by the system, is fed into the MV
Candidate Generator (Section 4), which produces a set of MVs. In
CORADD, an MV design consists of a query group and a clustered
index. The query group determines queries the MV can serve and
attributes the MV contains. The MV Candidate Generator first
selects query groups based on the similarity of their predicates and
target attributes, taking into account correlations between those
attributes. These query groups are the basis for candidate MV
designs, but they do not have clustered indexes at this point. Then,
the module produces clustered index designs for the MVs that will
take advantage of correlations.

Next, the ILP Solver (Section 5) selects a subset of the candidate
MVs that fit in a given space budget and maximize the performance
of the system. As described in Section 2, a space budget is also used
as a proxy for update cost, allowing CORADD to maximize read
query performance subject to constraints on update performance

ILP Solver

ILP Feedback

Workload

Find
Query Group

Choose
Clustered Index

MVs+CMs

Statistics

Correlation
Aware

Cost Model

CM Designer

MV Candidate
Generator

Detailed
in [10]

CM

CM

MV Clustered
Index

Heap

Figure 1: CORADD architecture overview
or space. We formulate the problem as an integer linear program
(ILP), and use an ILP solver to find an optimal solution.

Third, ILP Feedback (Section 6) sends hints back to the MV
Candidate Generator to improve both query grouping and clustered
index design. This module is inspired by the combinatorial
optimization technique called Column Generation (CG) [13] and
provides an efficient way to explore the design space without con-
sidering an exponential number of candidate designs. Specifically,
the feedback module iteratively selects additional candidate MVs
derived from the previous ILP solution and re-solves the ILP to
further improve the quality of MV designs.

Finally, the CM Designer we developed in [11] builds CMs
on the MVs that are able to exploit correlations between the
clustered key and secondary attributes in the MV. Since a CM
serves as a secondary index, the output of this stage is a complete
database design that is able to answer queries over both clustered
and secondary attributes efficiently. For the readers’ convenience,
a summary of the operation of the CM Designer is reproduced
in the Appendix. Although we have chosen to describe our
approach in terms of CMs, CORADD can also work with other
correlation-aware secondary index structures like BHUNT [3] and
SQLServer’s date correlation feature.

4. MV CANDIDATE GENERATOR
The MV Candidate Generator produces an initial set of pre-

joined MV candidates, later used by the ILP Solver. Since the
number of possible MVs is exponential, the goal of this module
is to pick a reasonable number of beneficial MVs for each query.
We then use an ILP solver (see Section 5) to select a subset of these
possible MVs that will perform best on the entire query workload.

As discussed in Section 2, secondary indexes that are more
strongly correlated with the clustered index will perform better. In
generating a database design, we would like to choose MVs with
correlated clustered and secondary indexes because such MVs will
be able to efficiently answer range queries or large aggregates over
either the clustered or secondary attributes. Without correlations,
secondary indexes are likely to be of little use for such queries.
As an added benefit, correlations can reduce the size of secondary
indexes, as described in Section 2.1.

A naive approach would be to choose an MV for each query (a
dedicated MV) which has a clustered index on exactly the attributes
predicated in the query. Such an MV could be used to answer the
query directly. However, this approach provides no sharing of MVs
across groups of queries, which is important when space is limited.
The alternative, which we explore in this paper, is to choose shared
MVs that use secondary indexes to cover several queries that have
predicates on the same unclustered attributes. We also compare to

Table 1: Selectivity vector of SSB
year yearmonth weeknum discount quantity

Q1.1 0.15 1 1 0.27 0.48
Q1.2 1 0.013 1 0.27 0.20
Q1.3 0.15 1 0.02 0.27 0.20

Strength (yearmonth→ year)=1
Strength (year→ yearmonth)=0.14
Strength (weeknum→ yearmonth)=0.12
Strength (yearmonth→ year,weeknum)=0.19

Table 2: Selectivity vector after propagation
year yearmonth weeknum year,weeknum

Q1.1 0.15 0.15 (= 0.15
1) 1 0.15

Q1.2 0.15 (= 0.013
0.14) 0.013 0.11 (= 0.013

0.12) 0.0162
Q1.3 0.15 0.015 (= 0.0028

0.19) 0.02 0.0028

the naive approach with our approach in the experimental section.
The key to exploiting correlations between clustered and sec-

ondary indexes in a shared MV is to choose a clustered index that
is well-correlated with predicates in the queries served by the MV.
Given such a clustered index, secondary indexes are chosen by the
CM Designer [11] which (at a high level) takes one query at a time,
applies our cost model to every combination of attributes predicated
in the query and chooses the fastest combination of CMs to create
within some space budget for the query.

Because CMs are faster and smaller when they are correlated
with the clustered index, the CM Designer naturally selects the
most desirable CMs as long as CORADD can produce a clustered
index that is well-correlated with the predicates in a query group.

To find such clustered indexes, CORADD employs a two-step
process. First, it selects query groups that will form MV candidates
by grouping queries with similar predicates and target attributes.
Next, it produces clustered index designs for each MV candidate
based on expected query runtimes using a correlation-aware cost
model. It also produces clustered index designs for fact tables,
considering them in the same way as MV candidate objects.

4.1 Finding Query Groups
We group queries based on the similarity of their predicates

and target attributes. Because each MV can have only one
clustered index, an MV should serve a group of queries that use
similar predicates in order to maximize the correlation between the
attributes projected in the MV. We measure the similarity of queries
based on a selectivity vector.

4.1.1 Selectivity Vector
For a query Q, the selectivity vector of Q represents the selectiv-

ities of each attribute with respect to that query. Consider queries
Q1.1, Q1.2, and Q1.3 in the Star Schema Benchmark [15] (SSB),
a TPC-H like data warehousing workload, with the following pred-
icates that determine the selectivity vectors as shown in Table 1.
For example, the selectivity value of 0.15 in the cell (Q1.1, year)
indicates that Query 1.1 includes a predicate over year that selects
out 15% of the tuples in the table. The vectors are constructed from
histograms we build by scanning the database.

Q1.1: year=1993 & 1≤discount≤3 & quantity<25
Q1.2: yearmonth=199401 & 4≤discount≤6 & 26≤quantity≤35
Q1.3: year=1994 & weeknum=6 &

5≤discount≤7 & 26≤quantity≤35
Note that the vectors do not capture correlations between at-

tributes. For example, Q1.2 has a predicate yearmonth=199401,
which implies year=1994; thus, Q1.2 actually has the same
selectivity on year as Q1.3. To adjust for this problem, we devised
a technique we call Selectivity Propagation, which is applied to the
vectors based on statistics about the correlation between attributes.
We adopt the same measure of correlation strength as CORDS [9],
namely, for two attributes C1 and C2, with |C1| distinct values of C1

and |C1C2| distinct joint values of C1 and C2, strength(C1 → C2) =

1 Q1.1

150MB

1 Q1.2

160MB

2 Q3.4

290MB

Benefit
Queries Covered

Size

2 Q1.1, Q1.2

170MB

3 Q1.2, Q3.4

400MB

Figure 2: Overlapping target attributes and MV size
|C1 |
|C1C2 |

where a larger value (closer to 1) indicates a stronger
correlation. To measure the strength, we use Gibbons’ Distinct
Sampling [8] to estimate the number of distinct values of each
attribute and Adaptive Estimation (AE) [4] for composite attributes,
as in CORDS [9] and our previous work [11] (see Appendix for the
details of cardinality estimation). Using these values, we propagate
selectivities by calculating, for a relation with a column set C:

selectivity(Ci) = min
j

(
selectivity(C j)

strength(Ci → C j)

)
For each query, we repeatedly and transitively apply this formula

to all attributes until no attributes change their selectivity.
Table 2 shows the vectors for SSB after propagation. Here,
yearmonth perfectly determines year, so it has the same selec-
tivity as year in Q1.1. On the other hand, year in Q1.2 does not
determine yearmonth perfectly (but with a strength 0.14). Thus,
the selectivity of year falls with the inverse of the strength. Put
another way, year does not perfectly determine yearmonth, as
each year co-occurs with 12 yearmonth values. Each year value
co-occurs with more distinct values of yearmonth. CORADD
also checks the selectivity of multi-attribute composites when the
determined key is multi-attribute (i.e. year, weeknum in Q1.3).

4.1.2 Grouping by k-means
Our next step is to produce groups of queries that are similar,

based on their selectivity vectors. To do this, we use Lloyd’s k-
means [12] to group queries. k-means is a randomized grouping
algorithm that finds k groups of vectors, such that items are placed
into the group with the nearest mean. In our case, the distance

function we use is [v1, v2] =
√∑

ai∈A (v1[ai] − v2[ai])2 where A is
the set of all attributes and vi is the selectivity vector of query i. We
also used k-means++ initialization [2] to significantly reduce the
possibility of finding a sub-optimal grouping at a slight additional
cost. After grouping, each query group forms an MV candidate that
contains all of the attributes used in the queries in the group. These
k most similar groups are fed into the next phase, which computes
the best clustering for each group (see Section 4.2).

CORADD considers queries on different fact tables separately.
Hence, the candidate generator runs k-means for each fact table
with every possible k-value from 1 to the number of workload
queries over that fact table. This method assumes each query
accesses only one fact table. When a query accesses two fact tables,
we model it as two independent queries, discarding join predicates
for our selectivity computation.

We studied several other distance metrics and query grouping
approaches with different vectors (e.g., inverse of selectivity) but
found that the above method gave the best designs. We also
note that, because query groups are adaptively adjusted via ILP
feedback (see Section 6) it is not essential for our grouping method
to produce optimal groups.

4.1.3 Target Attributes and Weight
As described so far, our grouping method only takes into account

predicate selectivities. It is also important to consider which target
attributes (i.e., attributes in the SELECT list, GROUP BY, etc)
an MV must include in order to answer queries. Consider the

following queries from SSB [15]; they have similar selectivity
vectors because they directly or indirectly predicate on year.
However, Q1.2 and Q3.4 have very different sets of target attributes
while Q1.1 and Q1.2 have nearly the same set.

Q1.1: SELECT SUM (price*discount)
WHERE year=1993 & 1≤discount≤3 & quantity<25

Q1.2: SELECT SUM (price*discount) WHERE yearmonth=
199401 & 4≤discount≤6 & 26≤quantity≤35

Q3.4: SELECT c city, s city, year, sum(revenue)
WHERE yearmonthstr = ‘Dec1997’
& c city IN (‘UK1’, ‘UK5’) & s city IN (‘UK1’, ‘UK5’)

Now, suppose we have the MV candidates with the sizes and
hypothetical benefits shown in Figure 2. An MV candidate cover-
ing both Q1.1 and Q1.2 is not much larger than the MVs covering
each query individually because the queries’ target attributes nearly
overlap, while an MV candidate covering both Q1.2 and Q3.4
becomes much larger than MVs covering the individual queries.
Although the latter MV may speed up the two queries, it is unlikely
to be a good choice when the space budget is tight.

To capture this intuition, our candidate generator extends the
selectivity vectors by appending an element for each attribute that
is set to 0 when the attribute is not used in the query and to
bytesize(Attr) × α when it is used. Here, bytesize(Attr) is the size
to store one element of Attr (e.g., 4 bytes for an integer attribute)
and α is a weight parameter that specifies the importance of overlap
and thus MV size. Candidates enumerated with lower α values are
more likely to be useful when the space budget is large; those with
higher αwill be useful when the space budget is tight. When we run
k-means, we calculate distances between these extended selectivity
vectors, utilizing several α values ranging from 0 to 0.5. We set the
upper bound to 0.5 because we empirically observed that α larger
than 0.5 gave the same designs as α = 0.5 in almost all cases. The
final set of candidate designs is the union of the MVs produced by
all runs of k-means; hence, it is not important to find α precisely.

4.2 Choosing a Clustered Index
The next step is to design a clustered index for each of the query

groups produced by k-means. The groups produced in the previous
steps consist of similar queries that are likely to have a beneficial
clustered index, but k-means provides no information regarding
what attributes should form the clustered index key. By pairing
clustered indexes with query groups that maximize the performance
of the related queries, this step produces a set of MV candidates.

At this point, our goal is not to select the single best design
for an MV (this is the job of the ILP described in Section 5),
but to enumerate a number (t) of possible designs that may work
well for the queries. By choosing t possible clusterings for each
MV, we provide a parameterized way for our ILP solver to request
additional candidates from which it searches for an optimal design.
This is important because it does not require us to fix t a priori;
instead, our ILP feedback method interactively explores the design
space, running our clustered index designer with different t values.

Figure 3 illustrates the operation of our clustered index designer.
For an MV of only one query, we can produce an optimal design by
selecting the clustered index that includes the attributes predicated
by the query in order of predicate type (equality, range, IN) and
then in selectivity order. We prefer predicates that are less likely
to fragment the access pattern on the clustered key (an equality
identifies one range of tuples while an IN clause may point to many
non-contiguous ranges). We call such candidates dedicated MVs
and observe that they exhibit the fastest performance for the query.
For example, a dedicated MV for Q1.2 is clustered on (yearmonth,
discount, quantity).

For an MV with more than one query, we split the query group

Split

Recurse

Merge

Prune

output

Sub Group 1 Sub Group 2

Figure 3: Merging method overview

year disc quan
Index 1(year,disc,quan)

year ccity scity
Index 2(year,ccity,scity)

year disc quan ccity scity year ccity scity disc quan
Concatenated Merging:

year disc quanccity scity year ccity scitydisc quan
Interleaved Merging:

year disc quanccity scity year ccity scitydisc quan

Figure 4: Merging via concatenation vs. interleaving

into single-query MVs and merge the dedicated clustered indexes,
retaining the t clusterings with the best expected runtimes (accord-
ing to our cost model). This merging approach is similar to [6],
but differs in that we explore both concatenation and interleaving
of attributes when merging two clustered indexes as illustrated in
Figure 4 while [6] considers only concatenation. Although the
approach in [6] is fast, the queries that benefit from correlations
with a secondary index usually see no benefit from a concatenated
clustered index key. This is because additional clustered attributes
become very fragmented, such that queries over them must seek to
many different places on disk. We omit experimental details due to
space, but we observed designs that were up to 90% slower when
using two-way merging compared to interleaved merging.

Additionally, we reduce the overhead of merging by dropping at-
tributes when the number of distinct values in the leading attributes
becomes too large to make additional attributes useful. In practice,
this limits the number of attributes in the clustered index to 7 or 8.
Furthermore, order-preserving interleaving limits the search space
to 2|Attr| index designs, rather than all |Attr|! possible permutations.

The final output of this module is t clustered indexes for each
MV. We start from a small t value on all MVs; later, ILP feedback
specifies larger t values to recluster specified MVs, spending more
time to consider more clustered index designs for the MVs.

The enumerated MV candidates are then evaluated by the corre-
lation aware cost model and selected within a given space budget
by ILP Solver described in Section 5.

4.3 Foreign Key Clustering
In addition to selecting the appropriate clustering for MVs, it is

also important to select the appropriate clustering for base tables
in some applications, such as the fact table in data warehouse
applications (in general, this technique applies to any table with
foreign key relationships to other tables.) In many applications,
clustering by unique primary keys (PKs) is not likely to be effective
because queries are unlikely to be predicated by the PK and the PK
is unlikely to be correlated with other attributes. To speed up such
queries, it is actually better to cluster the fact table on predicated
attributes or foreign-key attributes [10].

To illustrate this idea, consider the following query in SSB.
Q1.2: SELECT SUM (price*discount)

FROM lineorder, date WHERE date.key=lineorder.orderdate &
date.yearmonth=199401 & 4≤discount≤6 & 26≤quantity≤35

One possible design builds a clustered index on discount
or quantity. However, these predicates are not terribly selec-
tive nor used by many queries. Another design is to cluster
on the foreign key orderdate, which is the join-key on the

Table 3: Symbols and decision variables
M Set of MV candidates (including re-clustering designs).
Q Set of workload queries. F Set of fact tables.
R f Set of re-clustering designs for fact table f ∈ F. R f ⊂ M.
m An MV candidate. m = 1, 2, .., |M|. q A query. q = 1, 2, .., |Q|.
S Space budget. sm Size of MV m.

tq,m Estimated runtime of query q on MV m.
pq,r r-th fastest MV for query q. (r1 ≤ r2 ⇔ tq,pq,r1

≤ tq,pq,r2
).

tq,m and pq,r are calculated by applying the cost model to all MVs.
xq,m Whether query q is penalized for not having MV m. 0 ≤ xq,m ≤ 1
ym Whether MV m is chosen.

dimension date and is indirectly determined by the predicate
date.yearmonth=199401. This clustered index applies to the
selective predicate and also benefits other queries. To utilize such
beneficial clusterings, CORADD considers correlations between
foreign keys and attributes in dimension tables. We then evaluate
the benefit of re-clustering each fact table on each foreign key at-
tribute by applying the correlation-aware cost model. We treat each
clustered index design as an MV candidate, implicitly assuming
that its attribute set is all attributes in the fact table and the query
group is the set of all queries that access the fact table.

Since it is necessary to maintain PK consistency, the fact table
requires an additional secondary index over the PK if we re-cluster
the table on a different attribute. CORADD accounts for the size of
the secondary index as the space consumption of the re-clustered
design. While designs based on a new clustered index may not be
as fast as a dedicated MV, such designs often speed up queries using
much less additional space and provide a substantial improvement
in a tight space budget.

The ILP Solver described next treats fact table candidates in the
same way as MV candidates, except that it materializes at most one
clustered index from the candidates for each fact table.

5. CANDIDATE SELECTION VIA ILP
In this section, we describe and evaluate our search method to

select database objects to materialize from the candidate objects
enumerated by the MV Candidate Generator described in the
previous section within a given space budget.

5.1 ILP Formulation
We formulate the database design problem as an ILP using the

symbols and variables listed in Table 3. The ILP that chooses the
optimal design from a given set of candidate objects is:

Objective : min
∑

q

tq,pq,1 +
∑

r=2...|M|

xq,pq,r (tq,pq,r − tq,pq,r−1)

Subject to:

(1) ym ∈ {0, 1} (2) 1 −
r−1∑
k=1

ypq,k ≤ xq,pq,r ≤ 1

(3)
∑

m

smym ≤ S (4) ∀ f ∈ F :
∑
m∈R f

ym ≤ 1

The ILP is a minimization problem for the objective function that
sums the total runtimes of all queries. For a query q, its expected
runtime is the sum of the runtime with the fastest MV for q (tq,pq,1)
plus any penalties. A penalty is a slow-down due to not choosing a
faster MV for the query, represented by the variable xq,m. Condition
(1) ensures that the solution is boolean (every MV is either included
or is not). Condition (2) determines the penalties for each query by
constraining xq,m with ym. Because this is a minimization problem
and tq,pq,r − tq,pq,r−1 is always positive (as the expected runtimes are
ordered by r), xq,m will be 0 if m or any faster MV for q is chosen,
otherwise it will be 1. For example, xq,m is 0 for all m when ypq,1 = 1
(the fastest MV for query q is chosen). When ypq,2 = 1 and ypq,1 = 0,
xq,pq,1 is 1 and all the other xq,m are 0, thus penalizing the objective
function by the difference in runtime, tq,pq,2 − tq,pq,1 . Condition (3)
ensures that the database size fits in the space budget. Condition
(4) ensures that each fact table has at most one clustered index.

We solve the ILP formulated above using a commercial LP

 4

 6

 8

 10

 12

 14

 16

 18

 20

 6 8 10 12 14 16 18

E
xp

ec
te

d
T

ot
al

 R
un

tim
e

[s
ec

]

Space Budget [GB]

Greedy(m,k)
ILP

Figure 5: Optimal versus greedy.

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14 16 18 20

IL
P

 S
ol

ve
r

R
un

tim
e

[s
ec

]

#MV Candidates [thousands]

Figure 6: LP solver runtime.

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

2 4 6 8 10 12

T
ot

al
 R

un
tim

e
[/O

pt
im

al
]

Space Budget [GB]

ILP
ILP Feedback

Figure 7: ILP feedback improvement.

solver. The resulting variable assignment indicates MVs to ma-
terialize (ym = 1) and we determine the MV to use for each query
by comparing the expected runtime of the chosen MVs. We count
the size of CMs separately, as described in Section 5.4.

5.2 Comparison with a Heuristic Algorithm
To understand the strength of our optimal solution, we compared

our ILP solution against Greedy (m,k) [1, 5], a heuristic algorithm
used in Microsoft SQL Server that starts by picking m candidates
with the best runtime using exhaustive search and then greedily
choosing other candidates until it reaches the space limit or k
candidates. As [5] recommends, we used the parameter value
m = 2 (we observed that m = 3 took too long to finish). The
dataset and query sets are from SSB.

As Figure 5 shows, the ILP solution is 20-40% better than
Greedy (m,k) for most space budgets. This is because Greedy (m,k)
was unable to choose a good set of candidates in its greedy phase.
On the other hand, Greedy (m,k) chooses optimal sets in tight space
budgets (0-4GB) where the optimal solutions contain only one or
two MVs and the exhaustive phase is sufficient.

5.3 Shrinking the ILP
To quickly solve the ILP, CORADD reduces the number of MVs

by removing dominated MVs which have larger sizes and slower
runtimes than some other MV for every query that it covers.

For example, MV2 in Table 4 MV1 MV2 MV3 . . .
Q1 1 sec 5 sec 5 sec . . .
Q2 N/A N/A 5 sec . . .
Q3 1 sec 2 sec 5 sec . . .
Size 1 GB 2 GB 3 GB . . .

Table 4: MV1 dominates
MV2, but not MV3.

has a slower runtime than MV1
for every query that can use it
(Q1 and Q3), yet MV2 is also
larger than MV1. This means
MV2 will never be chosen be-
cause MV1 always performs bet-
ter. As for MV3, it is larger than
MV1 and has worse performance on queries Q1 and Q3, but it is not
dominated by MV1 because it can answer Q2 while MV1 cannot.

For the SSB query set with 13 queries, CORADD enumerates
1,600 MV candidates. After removing dominated candidates, the
number of candidates decreases to 160, which leads to an ILP
formulation with 2,080 variables and 2,240 constraints. Solving
an ILP of this size takes less than one second.

To see how many MV candidates we can solve for in a reasonable
amount of time, we formulated the same workload with a varying
numbers of candidates. As Figure 6 shows, our ILP solver produces
an optimal solution within several minutes for up to 20,000 MV
candidates. Given that 13 SSB queries produced only 160 MV
candidates, CORADD can solve a workload that is substantially
more complex than SSB as shown in Section 7.

Finally, to account for the possibility that each query appears
several times in a workload, CORADD can multiply the estimated
query cost by the query frequency when the workload is com-
pressed to include frequencies of each query.

5.4 Comparison to other ILP-based designers
Papado et al [16] present an ILP-based database design formu-

lation that has some similarity to our approach. However, our ILP
formulation allows us to avoid relaxing integer variables to linear
variables, which [16] relies on.

Because compressed secondary indexes are significantly smaller
than B+Trees, CORADD can simply set aside some small amount
of space (i.e. 1 MB*|Q|) for secondary indexes and then enumerate
and select a set of MVs independently of its choice of secondary
indexes on them (as in MVFIRST [1]). This gives us more flexibility
in the presence of good correlations. As for [16], they must
consider the interaction between different indexes; therefore their
decision variables represent sets of indexes, which can be expo-
nential in number. For this reason, [16] relaxes variables, leading
to potentially arbitrary errors. For example, in one experiment,
Papado et al converted the relaxed solution to a feasible integer
solution by removing one of the indexes, resulting in a 32%
lower benefit than the ILP solution. In contrast, our approach
substantially reduces the complexity of the problem and arrives at
an optimal solution without relaxation.

6. ILP FEEDBACK
So far, we have described how to choose an optimal set of

database objects from among the candidates enumerated by the
MV Candidate Generator. In general, however, the final design that
we propose may not be the best possible database design, because
we prune the set of candidates that we supply to the ILP. In this
section, we describe our iterative ILP feedback method to improve
candidate enumeration. To the best of our knowledge, no prior
work has used a similar technique in physical database design.

Our ILP may not produce the best possible design due to two
heuristics in our candidate enumeration approach – query grouping
by k-means, and our selection of clustered indexes by merging.
Simply adding more query groups or increasing the value of t in
the clustered index designer produces many (potentially 2|Q|) more
candidates, causing the ILP solver to run much longer. We tackle
this problem using a new method inspired by the combinatorial
optimization technique known as delayed column generation, or
simply column generation (CG) [13].

6.1 Methodology
Imagine a comprehensive ILP formulation with all possible MV

candidates constructed out of 2|Q| − 1 query groupings and 2|Attr| − 1
possible clustered indexes on each of them. This huge ILP would
give the globally optimal solution, but it is impractical to solve
this ILP directly due to its size. Instead, CORADD uses the
MV candidate generator described in Section 4 which generates
a limited number of initial query groupings and clustered indexes.

To explore a larger part of the search space than this initial
design, we employ two feedback heuristics to generate new can-
didates from a previous ILP solution. ILP Feedback iteratively
creates new MV candidates based on the previous ILP design and
re-solves the ILP until the feedback introduces no new candidates
or reaches a time limit set by the user.

The first source of feedback is to expand query groups used in
the ILP solution. If the previous solution selects an MV candidate

Query
Group

Clustering

MV Size

(Budget=200MB)

Figure 8: ILP feedback
m, expanding m’s query group involves adding a new query
(by including that query’s columns in the MV). We consider an
expansion with every query not in the query group as long as it does
not exceed the overall space budget. This feedback is particularly
helpful in tight space budgets, where missing a good query group
that could cover more queries is a major cause of suboptimal
designs. Additionally, when m is used in the previous solution but is
not chosen to serve some query that it covers (because another MV
candidate is faster for that query), we also shrink the query group
in the hope of reducing the space consumption of m. For example,
in Figure 8, the initial ILP solution chooses an MV candidate for
the query group (Q1.1, Q1.2) with a clustered index on (year,
quantity). As this leaves 30 MB of unused space budget, we
add an expanded query group (Q1.1, Q1.2, Q1.3) which does not
put the overall design over-budget. If this new candidate is chosen
in the next ILP iteration, it will speed up Q1.3.

The second source of feedback is to recluster query groups used
in the ILP solution. The size of an MV is nearly independent of
its choice of clustered index because the B+Tree size is dominated
by the number of the leaf nodes. So, when an MV candidate m is
chosen in the ILP solution, a better clustered index on m might
speed up the queries without violating the space limit. To this
end, we invoke the clustered index designer with an increased t-
value in hopes of finding a better clustered index. The intuition
is that running with an increased t value for a few MVs will still
be reasonably fast. This feedback may improve the ILP solution,
especially for large space budgets, where missing a good clustered
index is a major cause of suboptimal designs because nearly all
queries are already covered by some MV. For example, in the
case above, we re-run the clustered index designer for this MV
with the increased t and add the resulting MV candidates to the
ILP formulation. Some of these new candidates may have faster
clustered indexes for Q1.1 and Q1.2.

6.2 ILP Feedback Performance
To verify the improvements resulting from ILP feedback, we

compared the feedback-based solution, the original ILP solution,
and the OPT solution for SSB. OPT is the solution generated by
running ILP on all possible MV candidates and query groupings.
We obtained it as a baseline reference by running a simple brute
force enumeration on 4 servers for a week. Note that it was possible
to obtain OPT because SSB only has 13 queries (213 − 1 = 8191
possible groups); for larger problems this would be intractable.

Figure 7 compares the original ILP solution and the ILP feed-
back solution, plotting the expected slowdown with respect to
OPT . Employing ILP feedback improves the ILP solution by
about 10%. More importantly, the solution with feedback actually
achieves OPT in many space budgets. Note that the original ILP
solution could incur more than 10% slowdown if SSB had more
attributes with more complicated correlations.

As for the performance of ILP feedback, it took the SSB
workload 2 iterations to converge and the approach added only
700 MV candidates to the 1,600 original candidates in the ILP,
adding 10 minutes to 17 minutes total designer runtime. Therefore,

we conclude that ILP feedback achieves nearly optimal designs
without enumerating an excessive number of MV candidates.

7. EXPERIMENTAL RESULTS
In this section, we study the performance of designs that

CORADD produces for a few datasets and workloads, comparing
them to a commercial database designer.

We ran our designs on a popular commercial DBMS running
on Microsoft Windows 2003 Server Enterprise x64 Edition. The
test machine had a 2.4 GHz Quad-core CPU, 4 GB RAM and
10k RPM SATA hard disk. To create CMs in the commercial
database, we introduced additional predicates that indicated the
values of the clustered attributes to be scanned when a predicate
on an unclustered attribute for which an available CM was used
(see [11] and Appendix A-1.3 for the details of this technique.)

We compared CORADD against the DBMS’s own designer,
which is a widely used automatic database designer based on state-
of-the-art database design techniques (e.g., [1, 5].)

To conduct comparisons, we loaded datasets described in the
following section into the DBMS, ran both CORADD and the
commercial designer with the query workload, and tested each
design on the DBMS. We discarded all cached pages kept by the
DBMS and from the underlying OS before running each query.

7.1 Dataset and Workload
The first dataset we used is APB-1 [14], which simulates an

OLAP business situation. The data scale is 2% density on 10
channels (45M tuples, 2.5 GB). We gave the designers 31 template
queries as the workload along with the benchmark’s query distribu-
tion specification. Though CORADD assumes a star schema, some
queries in the workload access two fact tables at the same time. In
such cases, we split them into two independent queries.

The second dataset we used is SSB [15], which has the same
data as TPC-H with a star schema workload with 13 queries. The
data size we used is Scale 4 (24M tuples, 2 GB). For experiments
in this section, we augmented the query workload to be 4 times
larger. The 52 queries are based on the original 13 queries but
with varied target attributes, predicates, GROUP-BY, ORDER-BY
and aggregate values. This workload is designed to verify that our
designer works even for larger and more complex query workloads.

7.2 Results
Experiment 1: In the first experiment, we ran designs produced by
CORADD and the commercial designer on APB-1. Figure 9 shows
the total expected runtime of both designs for each space budget
(determined by the cost model) as well as the total real runtime.

The expected runtime of CORADD (CORADD-Model) matched
the real runtime (CORADD) very well and, as a consequence, it
almost monotonically improves with increased space budgets. Both
expected and real runtimes rapidly improved at the 500 MB point
where the fact tables are re-clustered to cover queries, and 1 GB to
8 GB points where MVs start to cover queries. After 8 GB where
all queries are already covered by MVs, the runtime gradually
improves by replacing large MVs with many small MVs that have
more correlated clustered indexes. Also at that point, CORADD
stops re-clustering the fact table (saving an additional secondary
index on the primary key), spending the budget on MVs instead.

Compared with the designs produced by the commercial de-
signer (Commercial), our designs are 1.5–3 times faster in tight
space budgets (0–8 GB) and 5–6 times faster in larger space bud-
gets (8–22 GB). The commercial designer’s cost model estimates
the runtime of its designs to be much faster than reality (shown by
Commercial Cost Model). The error is up to 6 times and worse
in larger space budgets where the designer produces more MVs and
indexes.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

T
ot

al
 R

un
tim

e
of

 3
1

Q
ue

rie
s

[m
in

]

Space Budget [GB]

CORADD
CORADD-Model

Commercial
Commercial Cost Model

Figure 9: Comparison on APB-1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 4950 12818 21378 34065

Q
ue

ry
 C

os
t [

s]

Number of Fragments (Fewer Fragments = More Correlation)

Real Runtime
Commercial Cost Model

Figure 10: Errors in cost model.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18

T
ot

al
 R

un
tim

e
of

 5
2

Q
ue

rie
s

[m
in

]

Space Budget [GB]

CORADD
Naive

Commercial

Figure 11: Comparison on augmented SSB.

To see where the error comes from, we ran a simple query
using a secondary B+Tree index on SSB Scale 20 lineorder table.
We varied the strength of correlation between the clustered and
the secondary index by choosing different clustered keys. Here,
fewer fragments indicate the correlation is stronger (see Section A-
2.2 for more detail). As Figure 10 shows, the commercial cost
model predicts the same query cost for all clustered index settings,
ignoring the effect of correlations. This results in a huge error
because the actual runtime varies by a factor of 25 depending on
the degree of correlation.

Due to its lack of awareness of correlations, the commercial
designer tends to produce clustered indexes that are not well-
correlated with the predicated attributes in the workload queries,
causing many more random seeks than the designer expects.
CORADD produces MVs that are correlated with predicated at-
tributes and hence our designs tend to minimize seeks. Also, our
cost model accurately predicts the runtime of our designs.

Experiment 2: This experiment is on the augmented (52 queries)
SSB. We again ran CORADD and the commercial designer to
compare runtimes of the results. This time, we also ran designs
produced by a much simpler approach (Naive) than CORADD but
with our correlation-aware cost model. Naive produces only re-
clusterings of fact tables and dedicated MVs for each query without
query grouping and picks as many candidates as possible. Although
this approach is simple, it loses an opportunity to share an MV
between multiple queries, which CORADD captures via its query
grouping and merging candidate generation methods.

As shown in Figure 11, our designs are again 1.5–2 times better
in tight space budgets (0–4 GB) and 4–5 times better in larger space
budgets (4–18 GB). Even designs produced by Naive approach are
faster than the commercial designer’s in tight space budgets (< 3
GB) because it picks a good clustered index on the fact table, and
in larger budgets (> 10 GB) because our cost model accurately
predicts that making more MVs with correlated clustering indexes
will improve the query performance. However, the improvement by
adding MVs is much more gradual than in designs of CORADD.
This is because Naive uses only dedicated MVs, and a much
larger space budget is required to achieve the same performance
as designs with MVs shared by many queries via compact CMs.

Finally, we note that the total runtime of CORADD to produce
all the designs plotted in Figure 11 was 7.5 hours (22 minutes for
statistics collection, an hour for candidate generation, 6 hours for
3 ILP feedback iterations) while the commercial designer took 4
hours. Although CORADD took longer, the runtime is comparable
and the resulting performance is substantially better.

8. CONCLUSIONS
In this paper, we showed how to exploit correlations in database

attributes to improve query performance with a given space budget.
CORADD produces MVs based on the similarity between queries
and designs clustered indexes on them using a recursive merg-
ing method. This approach finds correlations between clustered
and secondary indexes, enabling fast query processing and also

compact secondary indexes via a compression technique based on
correlations. We introduced our ILP formulation and ILP Feedback
method inspired by the Column Generation algorithm to efficiently
determine a set of MVs to materialize under given space budget.

We evaluated CORADD on the SSB and the APB-1 benchmarks.
The experimental result demonstrated that a correlation-aware
database designer with compressed secondary indexes can achieve
up to 6 times faster query performance than a state-of-the-art
commercial database designer with the same space budget.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated

selection of materialized views and indexes in SQL
databases. In VLDB 2000.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages
of careful seeding. In SODA 2007.

[3] P. Brown and P. Haas. BHUNT: Automatic discovery of
fuzzy algebraic constraints in relational data. In VLDB 2003.

[4] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya.
Towards estimation error guarantees for distinct values. In
PODS 2000.

[5] S. Chaudhuri and V. Narasayya. An efficient cost-driven
index selection tool for Microsoft SQL Server. In VLDB
1997.

[6] S. Chaudhuri and V. Narasayya. Index merging. In ICDE
1999.

[7] X. Chen, P. O’Neil, and E. O’Neil. Adjoined dimension
column clustering to improve data warehouse query
performance. In ICDE 2008.

[8] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. In VLDB 2001.

[9] I. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.
CORDS: automatic discovery of correlations and soft
functional dependencies. In SIGMOD 2004.

[10] N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer, V. Markl,
F. Ramsak, R. Fenk, K. Elhardt, and R. Bayer. Processing
star queries on hierarchically-clustered fact tables. In VLDB
2002.

[11] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
Correlation Maps: A compressed access method for
exploiting soft functional dependencies. In VLDB 2009.

[12] S. Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137, 1982.

[13] M. Lubbecke and J. Desrosiers. Selected topics in column
generation. Operations Research, 53(6):1007–1023, 2005.

[14] OLAP-Council. APB-1 OLAP Benchmark Release II, 1998.
[15] P. O’Neil, E. O’Neil, and X. Chen. The star schema

benchmark (SSB). Technical report, Department of
Computer Science, University of Massachusetts at Boston,
2007.

[16] S. Papadomanolakis and A. Ailamaki. An integer linear
programming approach to database design. In ICDE 2007.

APPENDIX
A-1. CORRELATION MAPS

In this section, we describe the correlation map (CM) structure
developed in our prior work. This background material is a
summary of the discussion in Section 5 and 6 of [11]; we refer
the reader to that paper for a more detailed description.

A CM is a compressed secondary index that utilizes correlations
between the indexed and clustered attributes. A CM is just a key-
value mapping from each unclustered attribute value to the set of
co-occurring clustered attribute values. The use of CMs in query
processing is also straightforward. Figure 12 illustrates an example
CM and how it guides the query executor. Here, the secondary
B+Tree index on city is a dense structure, containing an entry
for every tuple appearing with each city. In order to satisfy the
“Boston” or “Springfield” predicate using a standard B+Tree, the
query engine uses the index to look up all corresponding rowids.

Heap File
clustered on State

Unclustered B+Tree
on City

Toledo 10
9Springfield

Manchester

6

4

3

RID

Boston

Jackson
Manchester

2

1

Springfield

Boston

7

City

5

8

Boston

Boston

Correlation Map
on City

City State

SELECT AVG(salary)
FROM people
WHERE city = 'Boston'
OR city = 'Springfield'

10 OH Toledo $70K
$95K9 SpringfieldOH
$60K8 ManchesterNH

MA

$40K7

State
BostonMA

$110K

City

Manchester

2

4

Boston

$25K1

$80K

NH
6

Jackson

Springfield $90K

MS

MA

RID

NH Boston

$50K
$45KBoston3

Salary

5
MN{MS}Jackson

{OH}Toledo
{MA,OH}Springfield
{MN,NH}Manchester

{MA}Cambridge
{MA,NH}Boston

Scan
MA,NH,

OH

Lookup individual
tuples that match

(sorting RIDs)
first)

Figure 12: Diagram illustrating an example CM and its use in
a query plan, compared to a conventional B+Tree. Reproduced
from Figure 4 of [11].

The equivalent CM in this example contains only the unique
(city, state) pairs. In order to satisfy the same predicate
using a CM, the query engine looks up all possible state values
corresponding to “Boston” or “Springfield.” The resulting values
(“MA”, “NH”, “OH”) correspond to 3 sequential ranges of rowids
in the table. These are then scanned and filtered on the original
city predicate. Notice that the CM scans a superset of the records
accessed by the B+Tree, but it contains fewer entries. So, its
maintenance costs are low (important for the reasons discussed in
Section 2) and it can lead to lower access costs if it remains in
memory due to its small size.

A-1.1 Bucketing
CMs further reduce their size via bucketing, compressing ranges

of the unclustered or clustered attribute together into a single value.
For example, suppose for each city we also store the median income
and percentage of workers who are doctors; we build a CM on
the attribute income with a clustered index on %-doctors (these
attributes are clearly correlated, assuming doctors are wealthy).
Given the unbucketed mapping on the left in the example below,
we can bucket it into the $10, 000 or 10% intervals shown on the
right via truncation:

{$66, 550} → {18.3%}

{$73, 420} → {20.1%}

{$76, 950} → {25.5%}

{$85, 200} → {30.3%}

{$89, 900} → {33.8%}

{$60, 000 − $70, 000} → {10% − 20%}

{$70, 000 − $80, 000} → {20% − 30%}

{$80, 000 − $90, 000} → {30% − 40%}

This technique keeps CMs small, although now each CM at-
tribute value maps to a larger range of clustered index values which
increases the number of pages scanned for each CM lookup.

A-1.2 CM Designer
In [11], we also developed a CM Designer that identifies good

attributes on which to build CMs and searches for optimal CM
bucketings, finding a balance in the trade-off between index size
and false positives. In this section, we briefly present our CM
Designer. Though CMs are usually small for correlated attributes, it
is important for the CM Designer to consider bucketing them when
either attribute is many-valued.

We look at two cases: bucketing the clustered column and
bucketing the unclustered column (the “key” of the CM).

To bucket clustered columns, the CM Designer adds a new
column to the relation that represents the “bucket ID.” All of the
tuples with the same clustered attribute value will have the same
bucket ID, and some consecutive clustered attribute values will
also have the same bucket ID. The CM then records mappings
from unclustered values to bucket IDs, rather than to values of the
clustered attribute.

Wider buckets for clustered columns cause CM-based queries to
read a larger sequential range of the clustered column (by intro-
ducing false positives), increasing sequential I/O reads. However,
such bucketing does not increase the number of expensive disk
seeks. Thus the CM Designer is not sensitive about the width of
the clustered column bucketing and uses a reasonable fixed-width
scheme (e.g., 20 pages per bucket ID).

Bucketing unclustered attributes has a larger effect on perfor-
mance because merging two consecutive values in the unclustered
domain will potentially increase the amount of random I/O the
system must perform (it will have to look up additional, possibly
non-consecutive values in the clustered attribute). Therefore, the
CM Designer considers several possible bucketing schemes for
each candidate attribute by building equi-width histograms for
different bucket widths from random data samples. The CM
Designer then exhaustively tries all possible composite index keys
and bucketings of attributes for a given query to estimate the size
and performance of the CM, selecting the fastest design within a
given space limit (1MB per CM in this paper).

A-1.3 Using CMs
We employ a query rewriting approach to use CMs where we

introduce predicates (based on CMs) to exploit correlations in our
queries (as in [11] and [3]). If we build a CM on an attribute a, with
a clustered attribute c, and a query includes a predicate selecting a
set of values va ∈ a, then we perform a lookup on the CM to find all
values of vc ∈ c that co-occur with va, and add the predicate c IN
vc to the query. For example, suppose in SSB that c is orderdate
and a is commitdate, and we are running the query:

SELECT AVG(price * discount) FROM lineorder
WHERE commitdate=950101

If commitdate value 19950101 co-ocurs with orderdates
19941229, 19941230, and 19941231, we rewrite the query as:

SELECT AVG(price * discount) FROM lineorder
WHERE commitdate=19950101 AND
orderdate IN {19941229, 19941230, 19941231}

Note that query rewriting is just one possible way of forcing
the DBMS to utilize clustered indexes. It could be implemented
internally in the DBMS thereby obviating the need for query rewrit-
ing and further improving the performance of our designs. We
employed the rewriting approach to avoid modifying the DBMS.
Section 7.1 of [11] provides more details about the CM system.

A-2. CORRELATION AWARE COST
MODEL

In this section, we review the correlation-aware cost model we
developed in [11] which predicts query performance based on
correlations between clustered attributes and predicated attributes
indexed by secondary indexes. Because the cost model embraces
data correlations, it is substantially more accurate than existing
cost models in the presence of strongly correlated attributes. We
describe the intuition behind the model in Section A-2.1 and the
formal definition in Section A-2.2.

A-2.1 Concepts
Consider the following SSB query on lineorder; suppose that

we have a secondary B+Tree index on commitdate.
SELECT AVG(price * discount) FROM lineorder
WHERE commitdate=19950101

Typically, a DBMS processes this query using a sorted in-
dex scan which sorts Row IDs (or clustered attribute values in
some DBMSs) retrieved from the secondary index and performs
a single sequential sweep to access the heap file. In such an
access pattern, the I/O cost is highly dependent on how matching
tuples scatter in the heap file. For this query, if the clustered
attribute is highly correlated with commitdate, then the tuples with
commitdate=19950101 will likely be located in only a few small,
contiguous regions of the heap file and the secondary index scan
will be much cheaper than a full table scan; on the other hand, if
there are no correlations, these tuples will be spread throughout the
table, and the secondary scan will cost about the same as the full
table scan.

To illustrate this, in Figure 13 we visualize the distribution of
page accesses when performing lookups on the secondary index.
This background material is a summary of the discussion in Section
3 of [11], and we refer the reader to that paper for more detail.

Page 0 . . . n
orderdate
orderkey

Figure 13: Access patterns in lineorder for a secondary index
lookup on commitdate with different clustered attributes.

The figure shows the layout of the lineorder table as a hori-
zontal array of pages numbered 1 . . . n. Each black mark indicates
a tuple in the table that is read during lookups of three distinct
values of commitdate. The two rows represent the cases when
the table is clustered on orderdate (top) and orderkey (bottom).
The orderdate and commitdate are highly correlated as most
products are committed to ship at most a few days after they are
ordered, whereas commitdate and orderkey have no correlation.

As the figure shows, the sorted index scan only performs three
large seeks to reach long sequential groups of pages when the table
is clustered on orderdate, while it has to touch almost all areas
for orderkey. The effect of this difference on query runtime is
striking. We ran the query with both clustering schemes on SSB
lineorder Scale 20. The uncorrelated case took 150 seconds
while the correlated case finished in 6 seconds even though exactly
the same operations were performed on the secondary index.

As the result shows, data correlations play a significant role in
query runtime. In the next section, we describe the model we have
developed to account for these costs.

A-2.2 Cost Model
Our correlation-aware cost model is defined in terms of the

statistics shown in Table 5, which are collected for each relation.
As in [11], we assume that every operation is disk-bound.

cost = cost read + cost seek

cost read = fullscancost × selectivity

cost seek = seek cost × fragments × btree height

The query cost consists of sequential read cost (cost read) and
random seek cost (cost seek). cost seek is determined by the
number of fragments the query must visit during a sorted index
scan, while cost read is determined by the selectivity, the fraction
of the table the query must touch.

Table 5: Statistics used in cost model.
btree height Height of a clustered B+Tree path, root to leaf.
fragments The number of contiguous page groups a query will access.
selectivity The fraction of the table a query will access. 0 to 1.

fullscancost Time to fully scan the table in the DBMS.
Obtained by simply querying the table.

seek cost Time to seek to a random disk page and read it.
Typical value: 5.5 ms

A DBMS typically reads several sequential pages together at
once, even when it needs only a few tuples in that range (because
disk seeks are much more expensive than sequential reads). There-
fore, our model considers two tuples placed at nearby positions in
the heap file to be one fragment.

Before we can use our cost model, we scan existing tables and
calculate the following statistics as described in [11]:

1. Cardinality of each attribute.
2. Statistics about the strength of functional dependencies.
3. Selectivities of predicates in workload queries.
4. Table synopses consisting of random samples.

Additionally, we run the Adaptive Estimator (AE) [4] over random
samples on the fly to estimate fragments and selectivity for a given
MV design and query. These statistics and random samples can be
efficiently maintained under updates by the algorithm Gibbons [8]
described. Therefore, the main cost to have these statistics is the
database scan, which runs only once at startup.

A-3. DATABASE SIZE AND MAINTENANCE
COST

In this section, we demonstrate how the size of the database is
directly linked to its maintenance costs. To illustrate this, we ran an
experiment where we inserted 500k tuples into the SSB lineorder
table while varying the total size of additional database objects
(e.g., MVs) in the system (see Section 7 for our experimental
setup). The results are shown in Figure 14; as the size of the
materialized MVs grows, the cost of 500k insertions grows rapidly.
With 3 GB worth of additional MVs, the time to perform the
insertions is 67 times slower than with 1 GB of additional MVs.
The reason why maintenance performance deteriorates given more
objects is that additional objects cause more dirty pages to enter
the buffer pool for the same number of INSERTs, leading to more
evictions and subsequent page writes to disk. The lineorder table
has 2 GB of data while the machine has 4 GB RAM; creating 3 GB
of MVs leads to significantly more page writes than 1 GB of MVs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.5 1 1.5 2 2.5 3 3.5

E
la

ps
ed

 [h
ou

r]

Size of Additional Objects [GB]

Figure 14: Cost of 500k insertions.

In Experiment 3 of [11], we observed similar deterioration
in update performance as we added more B+Tree indexes while
adding more CMs had almost no effects because of their small
sizes.

Therefore, despite the decreasing price per gigabyte of storage,
space budgets remain an important parameter of database design
tools so that data warehousing workloads can be completed within
available time limits (e.g., 100k insertions between 12 am and 3
am).

A-4. PROOF SKETCH OF TERMINATION
OF SELECTIVITY PROPAGATION

In this section, we give a sketch of proof that Selectivity Propa-
gation described in Section 4.1 always terminates in finite time.

Let a step be the process of calculating propagated selectivities
for all attributes and updating the selectivity vector. At each step,
each attribute can be updated by a single parent which gives the
minimum selectivity after propagation. The parent could have been
updated by its parent (grand parent), but there can not be any cycle
in the update path because the strength of functional dependency
is always less than one. Thus, the maximum length of an update
path is |A| where A is the set of all attributes. Therefore, selectivity
propagation terminates at most after |A| steps and each step takes
O(|A|2), resulting in O(|A|3) computation cost.

The proof becomes more complex and runtime becomes larger
when considering composite functional dependencies (i.e., AB →
C) but the main concept above stays the same.

Acknowledgments
We would like to thank Meinolf Sellmann for his help in integrating
combinatorial optimizations into CORADD. Samuel Madden was
supported by NSF grant IIS-0704424 as well as a grant from SAP
Corporation. Hideaki Kimura, Alexander Rasin and Stan Zdonik
were supported in part by the NSF, under the grants IIS-0905553
and IIS-0916691.

