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ABSTRACT

This paper presents and experimentally evaluates a new algorithm

for efficient one-hop link-state routing in full-mesh networks. Prior

techniques for this setting scale poorly, as each node incurs quadratic

(n2) communication overhead to broadcast its link state to all other

nodes. In contrast, in our algorithm each node exchanges routing

state with only a small subset of overlay nodes determined by using

a quorum system. Using a two round protocol, each node can find

an optimal one-hop path to any other node using only n1.5 per-

node communication. Our algorithm can also be used to find the

optimal shortest path of arbitrary length using only n1.5 logn per-

node communication. The algorithm is designed to be resilient to

both node and link failures.

We apply this algorithm to a Resilient Overlay Network (RON)

system, and evaluate the results using a large-scale, globally dis-

tributed set of Internet hosts. The reduced communication overhead

from using our improved full-mesh algorithm allows the creation of

all-pairs routing overlays that scale to hundreds of nodes, without

reducing the system’s ability to rapidly find optimal routes.

Categories and Subject Descriptors

C.2.2 [Communication/Networking and Information Technol-

ogy]: Network Protocols—Routing protocols; D.4.7 [Operating

Systems]: Organization and Design—Distributed Systems;

D.4.5 [Operating Systems]: Reliability—Fault-tolerance; D.4.8

[Operating Systems]: Performance—Measurements

General Terms

Algorithms, Performance, Experimentation, Measurement, Theory

Keywords

Networks, Availability, Overlay Networks, RON, Routing, Scalabil-

ity, Distributed Shortest Path

1. INTRODUCTION

A number of modern systems rely on the ability to find one-hop

paths in full mesh networks, ranging from overlay networks (e.g.,
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RON [3]) to peer-to-peer systems that find one-hop “reputation paths”

between two nodes to create incentives to share data [17]. Full-mesh

link-state routing is challenging at scale, however, because conven-

tional approaches send a full copy of their link-state table to every

other node in the system. At the same time, the size of the link-state

table grows linearly with the number of nodes. As a result, route

computation requires O(n2) per-node communication, where n is

the number of nodes in the overlay. Because of this difficulty, such

systems either scale poorly (e.g., Resilient Overlay Networks are

commonly perceived to scale only to 50 or so nodes [3]), relax their

requirements for optimal paths [7, 9, 11, 16], or centralize commu-

nication and route computation at a handful of highly-provisioned

nodes [17].

In a typical full-mesh routing system, each node both probes

every other node (measurement) and sends its link-state routing

table to every other node (route computation). While there has been

significant progress in recent years towards adaptive measurement

schemes, distributed routing algorithms remain a significant obstacle

to scaling.

In this paper, we seek to lower this barrier by presenting a new al-

gorithm for one-hop link-state routing in full-mesh networks. While

prior attempts at scaling overlay routing either reduced the fidelity

of routing or removed from consideration particular inter-node links,

the algorithm we present here provides the provably optimal one-hop

path on the full mesh using only 4
√

n messages of size O(n), for a

total of O(n1.5) per-node communication. Our algorithm can also

be used to find the optimal shortest path of arbitrary length using

only O(n1.5 logn) per-node communication. Through this increased

scalability, we seek to further the goal of efficient full-mesh routing

on hundreds of nodes. Among other applications, such routing could

make overlay networks amenable to use in modern peer-to-peer

networks, Voice-over-IP platforms such as Skype that route in a

peer-to-peer manner, or as control planes for distributed platforms

such as PlanetLab.

Our system operates by a simple mechanism: each node measures

its links to all other nodes. Next, each node transmits its full link

state to a subset of other nodes. The routing mechanism ensures

that for every pair of nodes in the network, there exists at least one

node that has received a full copy of the link state table for both

members of the pair. As a result, this “rendezvous” node can tell

both nodes what their best path is to the other. The key, of course, is

constructing a routing graph that provides this property; we do so

using a novel algorithm inspired by quorum systems [4, 14], which

we present in more detail in Section 3.

We evaluate the effectiveness of the algorithm by applying it to a

Resilient Overlay Network [3], where we substitute the new routing

algorithm for the original routing algorithm, which had each node

transmit its full link state to all other nodes.1 We use a simplified

1Code for our algorithm and its evaluation may be downloaded
from: http://projects.csail.mit.edu/overlayrouting/
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version of RON where we have eliminated several redundant features

in the routing announcements to further increase scalability.

In practical terms, our improved algorithm can increase the ca-

pacity of a RON several-fold. For example, a RON with 56Kbps of

probing and routing traffic with 30-second failover would be able

to support nearly twice as many nodes (from 165 to 300); viewed

another way, using our techniques, an overlay running at each of

the 416 PlanetLab sites would consume 86Kbps for both incoming

and outgoing probing and routing traffic; using prior systems, such

a network would exceed the capacity of many residential links, con-

suming 307Kbps. Importantly, our algorithm allows these overlays

to scale with no reduction in fidelity.

The rest of the paper is organized as follows: Section 3 describes

the routing algorithm, and Section 4 extends the basic routing algo-

rithm to deal with link and node failures. In Section 5, we describe

the design and implementation details of our system. In Section 6

we evaluate our system for scalability, resilience to failures, and

routing effectiveness. Finally, in Appendix A we show that under

some reasonable assumptions our algorithm is optimal, i.e. that no

other algorithm can find optimal one-hop routes with less per-node

communication.

2. RELATED WORK

Overlay networks and one-hop routing. The major target of our

work is increased scalability of routing overlay networks. Overlays

are attractive because deploying them requires only the cooperation

of the end hosts involved. Existing systems have shown that such

overlays can improve availability by between two and ten times [3,

11, 18], and on paths with unusually high latency can improve delay

by hundreds of milliseconds.

Despite these potential benefits, routing overlays are as yet only

used in limited contexts, such as inside some distributed storage

products and in route optimization products such as Akamai’s

SureRoute [2]. We hypothesize that one barrier to the wider use of

routing overlays are their perceived scalability limits. One of the

main goals of our work is to make possible the creation of routing

overlays with thousands of nodes.

For example, a Voice-over-IP (VoIP) company like Skype could

provision thousands of computers near the edges of the Internet that

frequently probe each other and execute our routing algorithm, main-

taining a list of optimal one-hop routes between any two locations. If

the direct Internet route between two Skype users has unacceptable

latency, the users could ask their nearest overlay nodes for the best

one-hop route from themselves to their destination. Previous work

has shown that point-to-point latencies remain roughly constant over

short intervals of time [20]. Thus, we can imagine that measurement

and route computation in this overlay could be done every 5 min-

utes, with more frequent updates done when changes are discovered

through passive measurement.

Scaling by path pruning. An alternate approach to reducing the

cost of routing and probing in routing overlays is to reduce the

number of paths that must be considered. While this could require

more hops and may miss some useful paths, in practice it seems

to be effective. This approach is enticingly complementary to the

one we present in this paper; the two might be combined to create

overlays that scale to even larger numbers of nodes.

Nakao et al.’s routing “Underlay” provides overlay programs with

topological information from sources such as BGP [15]. Using

information derived from the physical topology can assist in pruning

 0

 0.2

 0.4

 0.6

 0.8

 1

 200  300  400  500  600  700  800  900  1000

F
ra

c
ti
o
n
 o

f 
p
a
th

s
 w

it
h
 R

T
T

 <
=

Latency (ms)

Point-to-Point Latencies
Excluding Top 50% of 1-Hops
Excluding Top 3% of 1-Hops

Best 1-Hop Paths

Figure 1: Comparison of RTT for pairs of PlanetLab hosts

whose point-to-point latencies were larger than 400 ms (high-

latency paths). For the “excluding top n%” graphs, we removed

the top n% of one-hop alternatives for each high-latency path

from consideration, then used the best remaining one-hop.

the paths that the overlay considers. The authors found that this

reduces routing overhead by a factor of two [16]. A similar approach

is taken by Fei et al., who use BGP routing information to efficiently

select AS-disjoint paths between nodes [9].

Cui, Stoica, and Katz propose using a model of correlated link fail-

ures to select failure-disjoint backup paths in overlay networks [7].

If these correlations are known a priori, this technique can effi-

ciently select a diverse set of paths. Applying it in practice requires

mechanisms for estimating joint failure probabilities using either

topological knowledge or periodic active measurements.

Random intermediate selection is used in SOSR [11] to find a

working path to a destination server. This work shows that picking

from four randomly chosen intermediaries is enough to find paths

that optimize one specific metric: availability. Our goal in this

work is to scalably find optimal one-hop (or multi-hop) routes for

arbitrary metrics in a full mesh network. A natural question to ask,

therefore, is: Can random intermediate selection (perhaps with many

intermediates) discover these routes?

To explore this question, we perform a measurement study on

PlanetLab of the total path latency for direct and single-hop indirect

paths. Figure 1 shows the average latency (over 10 pings in a 15

minute interval) between node pairs on PlanetLab on November

23, 2005 (data from [19]). This graph excludes paths for which

all pings were lost. The figure shows the improvement in latency

given by the best one-hop paths for the 2656 direct Internet paths

whose point-to-point latencies were larger than 400 ms, between

359 PlanetLab hosts. In some cases, the improvement is substantial.

For this overlay, longer routes (e.g. two- or three-hops) would not

result in better overall latencies.

How many random nodes would a scalable overlay need to contact

to find a low latency route? Figure 1 shows that for most host pairs,

the bottom 50% of potential 1-hops (sorted by total latency) does

not contain a single low latency route—and even considering the

bottom 97% of one-hop intermediates still miss many of the latency

improvements (only 30% of the paths would have lower than a 400

ms latency, compared to at least 45% of the paths when using the

best 1-hop). In other words, 97% of the time, a randomly chosen

intermediary will not significantly improve latency. From this data,



we conclude that, while random intermediary selection is effective

for availability, it works poorly for other metrics such as latency

where the best path must be selected more carefully.

Similar observations have also been made by Lumezanu et al. [13],

who suggest using the errors made by network coordinates to locate

potential low-latency detours in overlay networks.

Quorum systems are used in distributed systems to allow data

replication while ensuring consistency among nodes. The grid quo-

rum [4] provides a deterministic construction in which every node

communicates with the same number of replicas. Quorum systems

have been recently used for search and routing in peer-to-peer net-

works [1, 10]. These works are concerned with object look-up and

routing in sparse overlays, and measure latency with respect to the

latency of the direct Internet route between two nodes. Another

similar case is the use of quorum systems to track node location in

wireless networks [8, 12]. Our work differs from these in that, for

us, the quorum is used to compute the actual route to the destination.

To our knowledge, our work is the first to apply quorum systems to

the problem of route computation. Also, we show in Appendix A

that the construction provided by the quorum system is optimal for

this problem.

3. ROUTING ALGORITHM

The goal of our routing algorithm is to find the optimal one-hop

route for all pairs of nodes in the network with as little per-node

communication as possible. The standard technique of broadcasting

each nodes’ link state to all other nodes, which consumes n2 com-

munication bandwidth per node, actually provides more information

than necessary: Not only can a node calculate the best one-hop path

from itself to each destination, it can also calculate the optimal path

from any other node to all nodes.

One possible low-communication approach would be for each

node to transmit its link state to one central rendezvous node, which

then computes all of the optimal one-hop paths and returns routing

tables to each node. This would reduce the total communication to

n2. However, because all communication must go through a single

rendezvous, it does not reduce the communication work for this

one node. Such a centralized solution is a bottleneck that impairs

scalability and makes the overlay vulnerable to an unlucky network

failure, or a malicious attack, breaking all routing.

Our strategy is to distribute this rendezvous work, so that every

node acts as a rendezvous for a small number of other nodes. After

receiving the link state of some of the nodes, each node has a partial

view of the network. It can then use this partial view to compute best

one-hop routes using the links it received, returning to the senders

potentially good one-hop routes to other nodes. Key to this algorithm

is showing that this strategy, when applied carefully, is guaranteed

to find the optimal one-hop routes for all nodes.

We assume for this discussion that all links are bidirectional

with identical cost.2 Each node i is assigned a set of rendezvous

servers Ri. These sets must be constructed such that every pair of

nodes shares at least one rendezvous server; that is, for every pair

of nodes i and j, Ri ∩R j is non-empty. One way to construct such

sets is to use a grid quorum, shown in Figure 2 for n = 9 nodes. A

grid of size
√

n×√
n is filled in with the numbers 1, . . . ,n in any

order. If node i is placed in position (xi,yi), Ri consists of all the

nodes in row xi and column yi. If node j is at (x j,y j), then Ri ∩R j

2In the case of asymmetric link costs, the link state transmitted
in round one would include both costs.

Figure 2: Grid quorum for n = 9 nodes. Every pair of nodes in

the grid has at least two rendezvous servers in common.
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(b) Round 2

Figure 3: The two rounds of the routing algorithm as observed

by node 9. Figure (a) illustrates round 1, where node 9 sends

its rendezvous servers its complete link state table. In round

2, node 9 receives routing recommendations from each of its

rendezvous servers. Figure (b) shows the one-hop recommenda-

tions received from node 3.

contains the nodes in positions (xi,y j) and (x j,yi). This construction

provides two important properties: first, every node pair shares a

rendezvous server, because every column and row intersect.3 Second,

the rendezvous load is evenly distributed among the nodes in the

network. Nodes for which node i acts as a rendezvous server are

called its rendezvous clients, and are denoted by Ci. Note that in the

grid quorum construction, Ri is the same as Ci. This symmetry is

unnecessary, however, and the routing algorithm could be applied

with other quorum constructions that do not have it.

Our algorithm operates in two rounds. In the first round, node

n sends its link state table to all of its rendezvous servers Rn. In

the second round, node n (now a rendezvous server) computes,

for every pair of its rendezvous clients i, j ∈ Cn, the best one-hop

route 〈i,h, j〉, where h ranges over all nodes in the overlay. This

computation can be performed by n because it knows the full link

state table for both i and j, so it can compute their best intersection.

3Every node pair actually intersects twice. We will later describe
how this provides additional redundancy



Finally, node n sends one-hop recommendations to its rendezvous

clients Cn, simultaneously receiving one-hop recommendations from

its rendezvous servers Rn.

Figure 3 shows an example of this two round table exchange. In

the first round, node 9 sends its link state to its rendezvous servers

(3, 6, 8 and 7). In the second round, node 9 receives from each of its

rendezvous servers, r, the best path to r’s rendezvous clients. Fig-

ure 3(b) shows one such exchange in round two, from node 3 to node

9. Note that node 3 would simultaneously send recommendations to

its other rendezvous clients.

We now show that our construction of the rendezvous server

sets using the grid quorum results in every node knowing the best

one-hop path to every other node in the overlay:

Theorem 1. This algorithm finds all optimal one-hop routes, with

each node sending and receiving at most 4
√

n total messages and

θ(n
√

n) bits.

Proof. The communication follows from the two-round protocol

and our construction of Ri. In the first round, a node sends its link-

state to its 2(
√

n− 1) rendezvous servers. In the second round, a

node sends routing recommendations to its 2(
√

n−1) rendezvous

clients. Let k be some node in Ri ∩R j, which by construction is

non-empty. Since k receives both i and j’s link state, it can compute

the optimal one-hop path from i to j. Node k will send this one-hop

recommendation to i and j at the end of the second round.

Furthermore, this scheme performs as well as any algorithm that

operates by comparing all of the possible one-hop paths.4 The proof

in Appendix A shows that the minimum per-node communication

required to solve the optimal one-hop problem is equal to the per-

node communication required by our scheme.

Non perfect-square grids. The number of nodes in the overlay

may not be a perfect square, resulting in empty spaces in the last

two rows. If the entire last row would be empty, we instead form

a grid of size
√

n× (
√

n−1).5 However, the last row may still be

incomplete, containing only k nodes. If this is the case, some node

pairs may not have two rendezvous servers in common, because

there will be a “blank space” in the grid. Note that the naive solution

to this problem, duplicating nodes 1 and 2 into the blank spaces,

would double the amount of routing traffic for those few nodes.

To cope with this case, we instead build on the observation that all

of the nodes in columns k+1 and beyond have one fewer rendezvous

client than the nodes in the first k columns, because the last entries

in their column are blank. As a result, we can assign these nodes

as additional rendezvous servers for other nodes. If the last column

of the grid is column c (where c =
√

n or
√

n− 1), we give the

node at (
√

n,1) the nodes at (1,k +1) through (1,c) as additional

rendezvous servers, the node (
√

n,2) the remaining nodes in row 2,

and so on:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18

4A topology-aware technique, such as those we discuss in Sec-
tion 2, might perform better because it need not examine all paths.

5More formally, let a =
√

n−⌊√n⌋. If a < .5, we form a grid of

size ⌈√n⌉×⌊√n⌋, otherwise, we form a grid of size ⌈√n⌉×⌈√n⌉.

More precisely, we assign a node at position (
√

n, i) all nodes (i, j)
for k+1 ≤ j ≤ c. These rendezvous assignments are symmetric: we

also assign the upper right nodes to one node from the bottom row.

With this construction, every node once again has a rendezvous

server in every row and in every column. Clearly, every pair of nodes

in the first
√

n−1 rows and every pair of nodes in the first k columns

have at least two rendezvous servers in common. A node in the last

row, grid position (
√

n, i) and any other node in grid position (a,b)
for b > k will have the rendezvous servers in positions (i,b) and

(a, i) in common. It is also easily seen that all nodes have at most

2
√

n rendezvous clients (and servers).

Multi-hop routes. Our algorithm may also be applied to find

optimal multiple-hop routes of length l. As applied to overlays,

while research has suggested that one-hop paths are sufficient for

latency reduction and reliability, certain ISP policy constraints may

force nodes to take two-hop paths in order to route around failures.

For example, an overlay route from a commercial node might first

hop to an Internet2-connected node, traverse the Internet2, then

emerge to go to a second commercial destination. Such a route could

enable these commercial destinations to circumvent a full Internet

partition, though its use may contravene network policy.

We find the optimal routes of length ≤ l by repeating the algorithm

log l times. At iteration t, in round one, each node announces a

modified link state where, for each destination, it gives the cost

of the best path of length ≤ 2t−1 to that destination (found in the

previous iteration). For t = 1 this corresponds to the usual link state

table. The best one hop from i to j chooses among all paths i ∼ k ∼ j.

However, since the modified cost for i ∼ k is that of the shortest path

of length ≤ 2t−1 from i to k (and analogously for k ∼ j), this now

gives us the cost of the shortest path of length ≤ 2t .

Although this will succeed in finding the cost of the optimal route,

discovering the actual paths would require additional communication.

Luckily, for routing purposes, all we need to know is what node

to forward a packet to. To recover this, we modify the link states

sent in the first round to also include the identity of the second node

along the best path found so far to each destination.

Let Sect
i j denote the identity of the second node along the best

path of length ≤ 2t−1 from i to j. For example, for t = 1 we have

that Sec1
i j = j. For t = 2, Sec2

i j is either j (if the direct route is best)

or the optimal one-hop from i to j. Suppose in iteration t we find

that node k is the best one-hop for the path from i to j. Then, in the

second round, the routing recommendation returned to i for j will

be the node Sect
ik and the total cost of the path i ∼ k ∼ j. In the first

round of the next iteration we will have that Sect+1
i j = Sect

ik.

Notably, this technique can provide all-pairs shortest paths using

only θ(n
√

n logn) per-node communication, which is an asymptotic

improvement on the earlier best known algorithm, θ(n2). As one

consequence, with just twice the communication this algorithm can

find optimal 3-hop routes, which we suspect is long enough for most

applications of overlay routing.

4. LINK AND NODE FAILURES

Our routing algorithm is vulnerable to additional failure modes

because it relies on rendezvous nodes that are almost always not on

the optimal path in order to find the optimal path. In this section,

we describe mechanisms that ensure that our system continues to

perform well in the face of these failures.

The system provides resilience to failures via three mechanisms.

First, it uses redundant rendezvous nodes, so that no single failure



will impair route computation at all. Second, it can quickly recruit

additional rendezvous nodes via a failover mechanism. Third, it can

take advantage of redundant reachability information that it receives

from the nodes in its rendezvous set.

Failure modes: To precisely explain the failover mechanisms,

we first describe the failure modes that we consider. Two nodes i and

j experience a rendezvous failure if either node cannot communicate

with a rendezvous server k that should connect them. Node i observes

a proximal rendezvous failure if it cannot reach node k, and a remote

rendezvous failure if node k and node j are unable to communicate.

Recall that rendezvous node sets consist of all nodes in node

i’s row and column.6 The rendezvous node sets of any two nodes

intersect in at least two locations (i’s row and j’s column, and j’s row

and i’s column). As a result, two nodes are only unable to find the

optimal route to each other if they experience a double rendezvous

failure.

4.1 Rapid rendezvous failover

In the event that all rendezvous nodes used for a destination node

fail, the node observing the failure will quickly select new “failover”

rendezvous servers. These failures could have been either proximal

or remote failures. When node i detects a rendezvous failure to node

j, it selects a node from among the (reachable) nodes in j’s row and

column to serve as a failover rendezvous f .

The failover rendezvous f is selected uniformly at random from

this set of 2
√

n candidates so that, in the event of concurrent failovers,

the failover load is evenly distributed. Once f is chosen, i includes f

in its rendezvous server set and subsequently sends its link state to f ,

who will then consider i to be a new rendezvous client. f responds

with the best one-hop routing recommendations between i and all

other nodes in f ’s row and column. i determines whether f can

reach j by looking at the one-hop routing recommendations from f .

If j cannot be reached via f , i retries with another candidate. The

probability that all 2
√

n candidates are failed with respect to j is low

under any constant probability of failure, so i can always expect to

find a failover rendezvous from this row-column set.

If a failover rendezvous fails, then the failover process restarts.

i continually monitors its link state and reverts to its original ren-

dezvous nodes when they become available again. j employs the

same failover mechanism for its rendezvous nodes to i.

Nodes can detect proximal failures directly since they are already

monitoring their links to every other node. They detect remote

failures between a rendezvous k and a remote node j by observing

that k stopped recommending any route to node j, which it will only

do if k stops receiving link-state updates from j. In the worst case,

remote failure detection could take one routing interval to detect and

initiate recovery from. To understand better the failover times using

our algorithm, we explore three failure scenarios in which node Src

is seeking the best hop node C to a destination Dst, using rendezvous

servers Ri:

Scenario 1: Direct and best hop failure: ≤ 2r seconds. In

Figure 4(a), the links Src − Dst and Src −C fail. As shown in

Figure 5, Src notifies its rendezvous servers R1 and R2 of the failures

after one routing period r, so at most 2r seconds after detecting the

failures, it will receive the new best hop recommendation for Src to

Dst.

Scenario 2: Proximal rendezvous + direct failures: ≤ 2r sec-

onds. In Figure 4(b), Src has proximal rendezvous failures to both

6For clarity, we will assume for the rest of the paper that the
number of nodes is a perfect square.
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Figure 4: Three possible failure scenarios (described in Section

4.1). R1 and R2 are rendezvous servers for both Src and Dst.

R3 is initially a rendezvous server only for Dst, but is a failover

option for Src. Likewise, R4 is initially a rendezvous server only

for Src, but is a failover option for Dst. C denotes the best one-

hop route between Src and Dst.
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Figure 5: Failure recovery for scenario shown in Figure 4(a).
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Figure 6: Failure recovery for scenario shown in Figure 4(b).
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Figure 7: Shown here, for comparison, is the typical failure

recovery used in full-mesh link state routing (e.g., RON).

of its rendezvous nodes R1 and R2 and experiences a link failure

to Dst. Figure 6 shows the timing diagram explaining the phases

of the routing protocol as Src performs a rendezvous failover, and

recovers from the failures to regain the best hop information to Dst.

Once the probes between Src and R1 (also R2) fail and a link failure

is detected in time interval 1, Src immediately selects another of

Dst’s existing rendezvous nodes, R3. Src sends R3 its link state

information in or before time interval 3, and receives the best hop to

Dst from R3 in time interval 4. R3 can make this decision for Src

because it is already receiving the link state tables from Dst. Thus it

takes Src at most 2r seconds to find the best hop after detecting the

failures. This timing diagram also illustrates, by swapping Src with

Dst, the setting of two remote (rather than proximal) rendezvous

failures. Since R3 sends both Src and Dst the best hop info, both

nodes discover the new path simultaneously.

Scenario 3: Proximal and remote rendezvous + direct fail-

ures: ≤ 3r seconds. In Figure 4(c), Src experiences a proximal

rendezvous failure to R1, a remote rendezvous failure to R2, and a

direct link failure to Dst. In this case Src must wait up to r additional

seconds to detect the remote rendezvous failure and select a failover

rendezvous server R3. In total, Src will find the best hop to Dst at

most 3r seconds after detecting the initial failure.

Comparison to n2 link-state failover. Finally, Figure 7 shows the

recovery timing for ordinary full-mesh link-state routing. Such a

system (e.g., a RON overlay) recovers within one probing + one

routing interval. In most failures cases (the major exception being

scenario 3), quorum routing recovers within one probing + two

routing intervals. To compensate for this difference, in our evaluation

we set the routing interval for the quorum system to half that of the

normal link-state algorithm.7 As we show in the next two sections,

for the majority of failures, an overlay using our algorithm recovers

as quickly or faster than the original overlay would, while still

consuming far less bandwidth.

The total recovery time could be much larger if there are additional

link failures (e.g., if Dst cannot communicate with the node in its

row/column that Src chooses as a failover rendezvous node, and vice-

versa). It is possible to give a slightly different failover algorithm

that can correct this problem at the expense of an additional routing

interval.8 However, in practice, double (and worse) proximal failures

are rare enough that this additional time does not appear to increase

the system’s time to find a working path (Section 6).

If node Dst has failed, all nodes in the overlay will start failing

over to nodes in Dst’s row or column, until they each have exhausted

the possible rendezvous failover nodes for Dst. To avoid this, after

the initial failover, each node ensures that node Dst is alive before

failing over to a new rendezvous server. For example, Src will check

if any of its rendezvous clients’ link-state tables show that Dst is

reachable. If no client can reach Dst, then Src assumes that Dst has

failed and does not attempt further rendezvous node failover for Dst.

4.2 Redundant link-state information

The third source of robustness is that each node knows the full

link-state tables of its 2
√

n neighbors. As a result, a node whose

7Since the second round messages are roughly
√

n times smaller
than the first round messages, we could reduce the recovery time
further by sending more frequent recommendation messages.

8After the first round, Src knows the link state of rendezvous
clients for which it did not have a link failure. It would then use
these as temporary 1-hops to send link state to and receive recom-
mendations from rendezvous servers for which it had a failed link.



rendezvous servers have both failed can still directly evaluate the

costs of one-hop routes from itself through any of the other 2
√

n−2

neighbors to this destination. While there are fewer indirect paths

in this set than in the n−1 potential indirect paths examined by the

rendezvous nodes, prior work on Internet overlays [11] suggests that

being able to pick from as few as four intermediaries can significantly

improve availability.

5. DESIGN: IMPROVED RON ROUTING

To evaluate the effectiveness of our new approach for full-mesh

routing, we implemented a stand-alone version of the probing and

routing mechanisms from RON [3], using both the original link-state

algorithm and our quorum routing algorithm. Our goal with this

implementation is to understand whether the algorithm is practically

implementable in a real overlay system, what implementation details

it necessitates, and to understand whether its use reduces the effec-

tiveness of the overlay in the face of real Internet communication

failures, compared to conventional link-state routing.

Our simplified implementation allows nodes to join and leave the

overlay, provides link-state monitoring of latency and loss rates, and

measures the quality of paths between the nodes as in the original

RON system For simplicity, it omits the application interface, raw

packet capture, and policy mechanisms present in the original RON

system.

We first describe the three major components in our design:

• The membership service ensures that nodes in the overlay

know the other participating nodes and have a consistent mem-

bership view.

• Link monitoring monitors the latency, loss, and availability of

the virtual links between nodes, allowing the overlay to react

to failures and find a new path.

• The router implements the two-round quorum routing algo-

rithm that allows nodes to find optimal one-hop paths.

We conclude this section by examining the pertinent features of

our Java-based implementation, which we subsequently evaluate

both in emulation and in a PlanetLab-based deployment.

Membership Service: The membership service (MS) maintains

a record of the participating nodes in the overlay. The correctness

and efficiency of our routing computations depends on the quorum

computation: if each node has a consistent view of the membership

state, then it can independently construct the grid for quorum com-

putation. We follow the original RON system design of having a

long lifetime for membership timeouts (30 minutes), with transient

failures handled instead by the overlay failover mechanisms.

Because the focus of this paper is to evaluate the effectiveness

of the overlay routing, we use a simple centralized membership

service, running on a coordinator node, instead of implementing a

more robust distributed membership protocol or consensus protocol

(e.g., [6]). This simplification requires that all nodes communicate

with the MS node when a new node joins or an existing node leaves

the system, but imposes no such constraints during the steady-state

operation of the overlay.

On receiving a membership update, nodes restructure their inter-

nal grid representation, traversing the grid in row-major order and

populating the grid from a sorted list of member IDs. Thus all nodes

with the same membership view have consistent grid structures.

Link Monitoring: Link monitoring occurs as in RON. Nodes

ping each other to monitor latency and liveness and mark nodes as

failed after 5 consecutive failed probes. We implement RON’s rapid

failure detection technique of temporarily increasing the probing

rate after a first probe loss. As a result, our implementation detects

failures within 1 probing period. Each node records in its link-state

table L an exponentially weighted moving average of the latency to

every other node.

Table Exchange: Nodes exchange link-state routing tables much

as they do in RON, but using a considerably more compact represen-

tation.9

Each node maintains a partial n×n link state table of the estimated

latency and liveness Li, j between nodes i and j. It measures its own

neighbors as described above, and the other rows in the matrix are

updated based on the link states received during table exchanges.

Nodes perform a table exchange with their neighbors. When there

are no failures, this corresponds to all nodes in the current node’s row

and column. (In the naive routing scheme, all nodes are neighbors.)

The link-state tables are compactly exchanged using two bytes for

latency (in milliseconds) and one byte for liveness and loss. With n

nodes in the overlay, this array requires at most 3 ·n bytes (for the

outgoing message).

After receiving the link states of its rendezvous clients, node i

replies to each of its clients j with best hop recommendations. This

message contains recommendations for the best one-hop paths from

j to each of i’s (2 ·√n) other clients. Each node ID is a 2-byte integer

and we must give both the destination node ID and the one-hop node

ID, so a recommendation message is 4 · (2 ·√n) bytes in size.

5.1 Implementation

To evaluate the performance of the routing algorithm in both emu-

lation and on the Internet, we built a prototype implementation of

our routing algorithm as a stand-alone Java application. The 4000-

line implementation uses Java’s standard NIO facilities in a simple,

event-driven architecture. To compare against the original routing

algorithm in RON, our implementation can operate in a mode that

uses RON’s default all-pairs link-state routing algorithm. We refer

the reader to [3] for details on the operation of RON.

For both the simulation and experimental deployments, we con-

figured the parameters to include a probe period of 30 seconds, with

a 5-probe timeout. We use a 30 second routing interval for RON

and a 15 second routing interval for our new routing algorithm. We

use half the routing interval because, in the absence of rendezvous

failures, our algorithm takes two routing intervals to find optimal

one-hop routes using current probing data.

Configuration parameter Full-mesh

(RON)

Quorum Sys-

tem

routing interval (r) 30s 15s

probing interval (p) 30s 30s

#probes for failure 5 5

Note that while deployments may choose different timescales for

routing and probing to react more quickly to failures or to reduce

overhead, the bandwidth required scales linearly with probing and

update frequency. As a result, the relative cost of full link-state

exchange and our algorithm remains the same regardless of the

actual frequency used.

9While this is, in many ways, “merely” an implementation de-
tail, the verbosity of the original system’s link-state representation
resulted in routing messages being about twice as large as necessary.
This difference becomes more important when trying to use our
improved algorithm to scale such a system to hundreds of nodes.



6. EVALUATION

The goal of our evaluation is twofold. First, we evaluate the actual

bandwidth consumed by the quorum routing algorithm, both under

normal operation and in the presence of failures, to confirm that the

system scales as expected. Second, we evaluate the availability and

latency optimization achieved by the algorithm, in comparison to the

normal Internet paths and to a conventional full-mesh overlay routing

system, to show that the system meets or exceeds the performance of

earlier systems despite its greatly reduced bandwidth requirements.

We perform this evaluation using a real-world deployment on

PlanetLab, performed on March 29, 2008, and using an in-system

emulation. Our deployment consisted of 140 geographically dis-

tributed PlanetLab nodes, chosen from among PlanetLab’s least-

loaded nodes. We allowed the system to run for 136 minutes, with

every node in the overlay performing probing and routing. While

this overlay size is smaller than our goal of running the algorithm

on all PlanetLab nodes, the remainder were too unstable for mea-

surement. The 140 nodes we did measure still provides ample room

for optimization—saving a factor of 1
4

√
140 could still reduce band-

width to one third of what the naive approach would require.10

Moreover, the savings would continue to grow with more nodes.

In particular, we expect that one of the most effective applica-

tions of our routing algorithm will be to the Skype scenario that we

outlined in Section 2. In that scenario, because we would be more

interested in optimizing latency on average rather than recovering

from Internet failures, we could afford to do much less frequent

measurement and route computations. On an overlay with 10,000

nodes our algorithm, modified appropriately, would give a 50-fold

reduction in per-node communication.

Network environment characterization We first seek to under-

stand whether and how the PlanetLab environment will stress our

algorithm—in particular, whether it has sufficient concurrent failures

to stress the rapid rendezvous failover mechanism and whether it

affords sufficient opportunities for availability optimization. We

believe this to be the case.

Figure 8 shows the distribution of the number of concurrent link

failures per node. For each source, we average, over all measure-

ment intervals, the number of destinations that were unreachable

via the direct Internet path for five consecutive probes. Almost all

nodes had, on average, fewer than 40 concurrent link failures. Most

nodes had relatively good connectivity, and a few nodes had very

bad connectivity. Since the nodes with bad connectivity are also

rendezvous servers, the nodes in their rows and columns may have to

find failover rendezvous servers. The next section shows that these

failovers did not substantially increase our algorithm’s bandwidth

consumption. In Section 6.2, we show that despite these connectivity

problems, our algorithm is nearly always able to quickly find the

optimal one-hop routes in the overlay.

6.1 Overhead: bandwidth comparison

Scaling in the absence of failures. We first observe the average

per-node bandwidth required to operate in steady state as the number

of nodes increases. We perform this measurement using emulation.

To maximize the fidelity of our emulation results, the emulation

uses the same implementation as the one deployed on the Internet.

The emulated nodes run on one physical machine. Each run lasts

10The factor of 1
4 arises from (a) using a routing interval that is

half as large, and (b) sending messages to 2
√

n nodes in each round.
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Figure 10: CDF of the per-node routing traffic (incoming and

outgoing) on the PlanetLab deployment.

five minutes; we determine the bandwidth as the average bandwidth

used after all nodes have joined the network. Figure 9 shows the

scalability improvement of our routing algorithm over the naive

routing algorithm in emulation, without any node or link failures.

With the reported routing and probing intervals, the theoretical

bandwidth of total probing traffic (incoming and outgoing) for RON,

with or without our new routing algorithm, is 49.1n bps. The the-

oretical bandwidth of total routing traffic for RON (incoming and

outgoing) is

1.6n2 +24.5n bps,

and for our new routing algorithm is

6.4n
√

n+17.1n+196.3
√

n bps.

The theoretical scaling numbers match closely with the in-system

emulation results. For example, the routing traffic (incoming and out-

going) for 140 nodes would be 34.8 Kbps for the link-state algorithm,

and 15.3 Kbps using ours.

Scaling in the real world. We next examined the bandwidth used

in the deployment on 140 PlanetLab nodes. We examine both the

average and maximum bandwidth used by any node, since the max-

imum bandwidth would represent a critical barrier to scalability if

it ever exceeded a node’s capacity. Figure 10 shows the CDF of

the amount of bandwidth required by each node in the system. The

maximum bandwidth is calculated using 1-minute intervals over the

136 minute deployment.

The average bandwidth required by our routing algorithm on

PlanetLab is slightly less than that that consumed in emulation and

in theory. In particular, for 140 nodes on PlanetLab the routing

overhead is 13.5Kbps while the theoretical routing bandwidth is

15.3 Kbps. This occurs because some of the routing packets are

lost, but do not need to be re-transmitted because of the system’s

redundancy. While a few nodes used more bandwidth at some point

during the run, the maximum increase was under 30%. The extra

bandwidth was consumed primarily by nodes finding additional

failover rendezvous servers during severe network failures. Despite

some quite serious failures experienced on PlanetLab during this

time, no node in the overlay used more than 17 Kbps during any

1-minute interval, and the average remained under 13 Kbps.

Employing our algorithm for overlay routing reduced substan-

tially the bandwidth required for routing. The failover mechanisms

and quorum construction properly spread the load of being a ren-

dezvous server across the nodes in the network, ensuring that no

node ever had to handle greatly in excess of its expected load.
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Figure 11: The number of destinations (x-axis) for which a

node (y-axis) experiences failures to both of the destination’s

default rendezvous nodes, calculated at 1-minute intervals.

6.2 Effectiveness

While our routing algorithm will eventually find the optimal one-hop

route for all destinations, communication failures between nodes

and their rendezvous servers could result in added delay while these

nodes attempt to find failover rendezvous servers (see Section 4).

In this section, we investigate how these issues affect the overall

reliability and usefulness of the overlay, finding that the impact is

minimal: even a node with very poor connectivity receives rout-

ing recommendations for every other node in under 25 seconds on

average.

6.2.1 Rendezvous node failures

The system will find the optimal route to a destination node within

one probing and routing interval unless it experiences failures to both

of the default rendezvous servers for that destination. A concurrent

double failure requires the server to find a new rendezvous node

for the destination using the mechanisms described in Section 4.

Figure 11 shows that the median node in the deployment experiences

almost no double failures, and that 98% of the nodes have fewer

than 10 concurrent double failures on average.

We conclude that the redundancy provided by having two default

rendezvous servers for each destination suffices to find the optimal

route to the vast majority of the destinations in each routing interval,

even in the presence of node and link failures. In the next section

we investigate the exceptions to this, looking at the effectiveness of

the failover mechanisms.

6.2.2 Optimal routes and update freshness

We next measured, at 30 second intervals, the amount of time since

a node received the last recommendation to each destination in

the overlay. (In other words, how long the system takes to find

the optimal path to any destination.) Figure 12 shows that nodes

typically receive an update for each destination every 8 seconds.

This wait is shorter than might be expected because, in the absence

of failures, nodes receive recommendations from two rendezvous

nodes, and the reports from those nodes are not synchronized. As a

result, the recommendations arrive uniformly distributed in the 15

second routing interval. In addition, for destinations in the same row

(column), nodes receive routing recommendations from all
√

n−1
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Figure 13: Route freshness (x-axis, shown on log scale) to all

destinations (y-axis) from a node with good connectivity. This

node had an average of only 5.2 concurrent link failures (max:

16).
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Figure 14: Route freshness (x-axis, shown on log scale) to all

destinations (y-axis) from a node with bad connectivity. This

node had an average of 44 concurrent link failures (max: 123).

nodes (including the destination) in that row (column), resulting in

≤ 4 second freshness for these destinations.

In our implementation, when a rendezvous server sends recom-

mendations to its clients, it uses any measurements sent to it within

the last 3 routing intervals, or 3 · r = 45 seconds. We do this to

provide extra redundancy in case of dropped link-state messages

from some of the rendezvous clients.11 As a result, the information

on which these routes are based, at the time the recommendation is

received, is at most p+3 · r = 75 seconds old.

Because of these factors, freshness using our algorithm is high.

97% of the time, a “typical” (median) path’s freshness is under 12

seconds. The median path experienced a worst-case freshness of

only 30 seconds over the duration of the measurements. This worst

case occurred despite the particularly high load and latency that

PlanetLab was experiencing during the experiment.

To explore these results in more detail, we examine the behavior of

two specific nodes: one “well-connected” node that had an average

of only 5.2 concurrent failures, and one “poorly connected” node

that experienced 44 concurrent link failures on average. From this

observation, we hope to understand what effect, if any, the rare

instances of staleness would have on the system’s performance.

Figure 13 shows the distribution of update freshness (in log scale)

for the well-connected node. Figure 14 shows the same distribution

for the poorly connected node.

A node with good connectivity receives routing recommendations

for every destination, on average, every 8 seconds (Figure 13). The

97% line shows that for nearly all destinations, over 97% of the time

(in 30 second intervals), this node received a recommendation within

30 seconds.

Even a poorly connected node will, 97% of the time, receive

updates for nearly all destinations within one minute (Figure 14).

Note that some amount of staleness is not unique to the quorum

algorithm: A full-mesh link state algorithm such as used in RON is

also susceptible to link failures or packet loss that reduces routing

freshness. Both systems’ performance could likely be improved by

making link-state announcements reliable, at the cost of additional

complexity and some bandwidth.

Evaluation summary. The grid quorum based routing algorithm

effectively and rapidly finds optimal one-hop overlay routes (Fig-

ures 12–14) even in the presence of numerous link failures and high

packet loss (Figure 8). It achieves this effectiveness while scaling far

better than prior overlay routing systems (Figure 9). We therefore

conclude that both the quorum system and the failover mechanisms

are effective both in theory and practice in the Internet environment

represented by PlanetLab.

7. CONCLUSION

In this paper, we explored a novel algorithm for one-hop full-mesh

routing based on grid quorum systems. Our algorithm informs all

nodes in the system of their optimal one-hop route to every other

node using only θ(n
√

n) communication instead of the θ(n2) com-

munication required by previous systems. We presented solutions

to the practical problems of efficiently handling non-square num-

bers of overlay participants and coping with communication failures.

Applying this algorithm to an existing overlay network application,

we found through simulation and deployment on PlanetLab that

the theoretical scaling results hold in practice: A Resilient Overlay

11If we had also included timestamps, we could later choose the
most up-to-date best hop recommendation.



Network (RON) required less than half the bandwidth to run on

140 nodes using our algorithm (15Kbps) than the earlier full-mesh

variant (35Kbps). Despite the many failures encountered during our

deployment tests, the algorithm rapidly and efficiently determined

optimal routes for the overlay nodes.

We believe that the algorithm presented in this work offers an

exciting step in scaling full-mesh networks and overlays, as well as

possible generalizations to settings such as dense multi-hop wireless

networks, social networks, and potentially even networks such as

multiprocessors. Our results provide a path for future work in ap-

plying overlay systems to new classes of applications that are either

too large for prior techniques or could not afford their overhead. In

addition, this work remains open to further algorithmic refinement

in a number of directions.

Challenges for larger overlays: While these systems have

mostly aimed at smaller, trusted confederations of nodes (e.g., nodes

in VPNs, special-purpose overlay nodes, or collaborative applica-

tions), our results show a way to scale these overlays to new classes

of applications. For instance, our prototype can already support

the number of nodes found in many peer-to-peer scenarios (e.g., a

few hundred nodes in a BitTorrent swarm [5]). Such an extension,

however, would also invite a number of new research challenges.

For instance, earlier overlays dealt with many difficult security is-

sues by assuming that nodes were mutually trusting. While such an

assumption is reasonable in the case of a ten-party video conference,

it certainly does not hold in a 300 party peer-to-peer swarm. Future

work must address the question of how these networks can resist

attacks against the routing mechanisms (e.g., malicious rendezvous

nodes) and the data plane.

Integration with other scaling techniques. As we noted, there

are several other techniques that researchers have proposed to im-

prove the scalability of routing overlays. An attractive area of future

study is how well these and our techniques can be combined, perhaps

to create near-optimal routing overlays that scale to thousands or

tens of thousands of nodes.

Appendix

A. IS IT POSSIBLE TO DO BETTER?

We wish to give a lower bound on the amount of per-node communi-

cation required to find the optimal one-hop route between all pairs

of nodes in a dense overlay. Our result applies to any algorithm that

finds optimal routes by doing direct comparisons of every alternative

1-hop path between two nodes. Both our routing algorithm and

RON’s are in this class of algorithms.

Each pair of alternative one-hop paths corresponds to a diamond

in the overlay graph. Our technique for showing this bound uses a

counting argument for the maximum number of such comparisons a

node can make when receiving some edge weights. We begin with a

definition and two lemmas.

Definition 1. A diamond, denoted a− b− c− d, is an undirected

graph with edges (a,b), (b,c), (c,d), and (d,a).

Lemma 2. There are 3
(

n
4

)

unique diamonds in the complete graph.

Proof. Every choice of four nodes {a,b,c,d} gives three possible

diamonds, a− b− c− d (square), a− b− d − c (hourglass), and

a− c−b−d (bow tie).

Lemma 3. Every set of e edges forms at most e2 diamonds.

Proof. By induction on the number of edges. In the base case, e = 4

can form at most 1 diamond.

By the inductive hypothesis, any e edges form at most e2 dia-

monds. Now we show that the e + 1st edge, (a,b), can be part of

at most 2e new diamonds involving itself and any of the earlier e

edges. Any two edges on four distinct nodes can be part of exactly

two diamonds. For each of the earlier e edges, if the earlier edge is

of the form (c,d), with no nodes in common, then it can contribute

at most two new diamonds. If the edge is of the form (c,a), with

one node in common, then it will only form a new diamond if there

are edges (c,d) and (d,b) among the earlier e. Thus, we charge this

new diamond to edge (c,d), and have already bounded the number

of such in the earlier part of our argument. We conclude that with

e+1 edges there can be at most e2 +2e ≤ (e+1)2 diamonds.

Theorem 4. Any algorithm that requires that each diamond’s edge

weights be found at some node has Ω(n
√

n) per-node communica-

tion.

Proof. Suppose every node receives the weights of e edges. In total,

all nodes together would only be able to compare ne2 diamonds, by

Lemma 3. Since there are Θ(n4) diamonds (Lemma 2), e needs be

Ω(n
√

n).

It is an open question whether the lower bound holds for all al-

gorithms: perhaps algebraic techniques, such as those used for fast

matrix multiplication, could result in reduced communication. Re-

gardless, this result tells us that, to improve upon the algorithm given

in this paper, vastly different techniques, or additional assumptions,

would be required.
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