
A Lightweight Code Analysis and its Role in Evaluation of
a Dependability Case

Joseph P. Near, Aleksandar Milicevic, Eunsuk Kang, Daniel Jackson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{jnear, aleks, eskang, dnj}@csail.mit.edu

ABSTRACT
A dependability case is an explicit, end-to-end argument,
based on concrete evidence, that a system satisfies a crit-
ical property. We report on a case study constructing a
dependability case for the control software of a medical de-
vice. The key novelty of our approach is a lightweight code
analysis that generates a list of side conditions that corre-
spond to assumptions to be discharged about the code and
the environment in which it executes. This represents an
unconventional trade-off between, at one extreme, more am-
bitious analyses that attempt to discharge all conditions au-
tomatically (but which cannot even in principle handle envi-
ronmental assumptions), and at the other, flow- or context-
insensitive analyses that require more user involvement. The
results of the analysis suggested a variety of ways in which
the dependability of the system might be improved.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Design—Methodologies

General Terms
Software dependability, safety, reliability

Keywords
Dependability case, problem frames, property-part diagram,
code analysis, side conditions

1. INTRODUCTION
The construction of a dependability case—an explicit ar-

gument that a system satisfies a critical property—is in-
creasingly being advocated not only for assurance (that is,
establishing the dependability of a system) [6, 16, 18], but
also as an integral part of development [9], by making design
and implementation decisions that simplify and strengthen
the case and thus improving the dependability of the deliv-
ered system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11 May 21-28, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM ACM 978-1-4503-0445-0/11/05 ...$10.00.

This paper reports on applying this idea to a medical
system—the control software for a proton therapy machine—
focusing in particular on the use of a lightweight static analy-
sis. The starting point is the articulation of a safety-critical
property of the system; namely, that when the treatment
door is inadvertently opened in the middle of a treatment,
the system should terminate the delivery of the radiation by
inserting a physical beam stop. We constructed a depend-
ability case for the property from the system level down to
the code. A static analysis, developed specially for the pur-
pose of this study, was applied to the code, which generated
a list of side conditions that represented obligations to be
discharged – some about the physical peripherals, and some
about the computer infrastructure. The side conditions were
classified into those that were more or less reasonable—that
is, more or less likely to hold—and based on this classi-
fication, some design and implementation alterations were
proposed that might strengthen the dependability case.

The contributions of the paper include:

• A concrete illustration of an approach to construct-
ing a dependability case that we have outlined in ear-
lier papers [14, 15] involving: (1) identification of par-
tial but critical properties of the problem domain, (2)
construction of a property-part diagram [10] showing
the relationship between component specifications and
system-level requirements, and (3) checking of the code
against the component specifications.

• A lightweight code analysis based on symbolic execu-
tion that (1) incorporates user-provided specifications
so that, in particular, calls to a middleware API can be
interpreted appropriately, (2) discharges control flow
conditions automatically using symbolic state informa-
tion, but delegates to the user the harder problem of
discharging conditions that are related to the state of
external peripherals, and (3) presents the results to the
user for evaluation in a form that aids navigation and
review.

• A strategy for improving the dependability of the sys-
tem by generating a list of side conditions that corre-
spond to environmental assumptions, reviewing them
manually, and then adjusting the design and imple-
mentation to eliminate the less desirable assumptions.

The paper is organized as follows. We begin by outlin-
ing the context of the case study: the basic structure of the
installation and the software, and the existing safety mecha-
nisms (including a redundant hardware layer) that mitigate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9342075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

potential safety problems (Section 2). We discuss the critical
property considered, and show how property-part diagrams
were constructed for them (Section 3). We then describe the
code analysis that we performed (Section 4), and the results
of the analysis (Section 5): the list of conditions that were
generated, and how they were evaluated. We discuss the
recommendations that were made to the developer of the
system to improve the safety of the system, and lessons that
we learned from the case study (Section 6). We conclude
with a discussion of related work (Section 7).

2. OVERVIEW OF THE SYSTEM
The Burr Proton Therapy Center (BPTC) at the Mas-

sachusetts General Hospital is one of only a handful of places
in the world offering radiation therapy with protons. In
contrast to gamma ray and electron therapy, proton ther-
apy offers more precise targeting and therefore less collat-
eral damage, making it safer and more effective for a variety
of conditions, in particular tumors of the eye, brain tumors,
and tumors in small children.

Like most other software-controlled medical devices, the
proton therapy system at the BPTC is complex. There are
three treatment rooms, each containing a robotic position-
ing couch on which the patient lies, a gantry allowing coarse
aiming of the proton beam, and a nozzle for fine control over
the beam. The beam from the cyclotron is multiplexed be-
tween the rooms, and guided to the nozzles by a system of
electromagnets. In the basic treatment scenario, the thera-
pist calls up the prescription from a database, positions the
patient and the gantry, and submits a beam request. Tech-
nicians in the master control room oversee the cyclotron and
system settings, and grant requests by allocating the beam.

Since 2003, the Software Design Group at MIT has collab-
orated with the development team at the BPTC, led by the
center’s director Dr. Jay Flanz, on a project exploring new
ways to structure and analyze software to ensure safety while
retaining flexibility to extend functionality. The BPTC team
is currently working on a major enhancement of the system
that will allow “pencil beam scanning”, in which a fine beam
scans the tumor, in contrast to the current approach, which
uses a more diffuse beam whose outline is contained by cus-
tom collimators that are inserted in the nozzle aperture.

The BPTC system incorporates a number of safety mech-
anisms. The beam emerges from the nozzle and passes
through an ionization chamber allowing a redundant dose
check before arriving at the patient. A completely separate
hardware system based on programmable logic arrays and
independent hardware relays checks for a variety of critical
conditions, and in particular can shut off the beam if the
preset overdose is reached or exceeded.

In addition, the system contains various safety features
to mitigate the risk of inadvertent radiation exposure not
only to patients, but also to employees of the hospital (i.e.
therapists and physicians). For this case study, we chose
the critical property of one particular safety feature, and
constructed a dependability case to argue that the system
satisfies the property:

Door safety property: When the treatment door is opened
in the middle of a treatment session, the system inserts
the beam stop to terminate the treatment.

In a previous study, we had investigated a similar property
using an ad hoc approach, based on a mostly manual re-

view of the code [22]. In this study, we analyzed the door
safety property using the framework we have recently devel-
oped [14, 15] and using a new code analysis tool built for
this purpose.

3. DEPENDABILITY CASE
A dependability case is an explicit, end-to-end argument

that a system satisfies a critical property. It is explicit, in
that it provides concrete evidence that the system estab-
lishes the property, and end-to-end, that its claim about de-
pendability spans the system both horizontally (in terms of
real-world phenomena of interest, from input to output) and
vertically (from the design level down to the code). These
two characteristics contrast with the conventional process-
based approach to dependability, which typically mandates
a particular regimen of documentation, testing (and perhaps
even formal verification), and does not require concrete ev-
idence that these efforts ensure dependability.

3.1 Overview of Construction
In our approach, the construction of a dependability case

involves the following steps:

1. Identifying critical system-level properties: A
large, complex system usually has a long list of require-
ments, some of which are more critical to dependabil-
ity than others. The first task in constructing a case
involves prioritizing the requirements and identifying
the most critical ones.

2. Articulating the system structure: Having iden-
tified a critical property, the parts of the system and
their interactions are described using a problem dia-
gram from Jackson’s problem frames approach [13]. A
hallmark of this approach is the distinction between
parts that are components of the machine to be built
(e.g., modules of the software) and parts that are do-
mains in the environment (e.g., physical peripherals
or human operators). This distinction is essential to a
dependability case, since the critical requirements that
are of interest are stated in terms of phenomena in the
real world, which are often not observable at the in-
terface of the machine. For example, the requirement
that the door opening causes the beam stop to be in-
serted concerns the domains in which the door and the
beam stop are situated; how the software behaves at
its interface with these domains will, of course, turn
out to be vital, but is not relevant at the requirements
level.

3. Assigning properties to parts: The critical re-
quirement is decomposed into properties on individual
parts of the system. A property on a software com-
ponent is the specification that the software must be
implemented to fulfill; a property on an environmental
domain is an assumption about how the domain be-
haves. We use a property-part diagram [10] to express
dependencies between properties and parts. The dia-
gram illustrates how different parts of the system, each
satisfying its own property, together establish the high-
level requirement. The resulting dependency struc-
ture in the property-part diagram corresponds to the
design-level argument in the dependability case.

RTWorks

RPC Server

Door Beam Stop

door open =>
beam stop
inserted

Safety
Control Unit

Beam
Control Unit

Treatment
Control Unit

Beam
Manager

Treatment
Manager

System
Manager

door event beam stop event

door signal beam stop signal

RT msgs

RT msgs

RPC msgs

RPC
msgs

RPC
msgs

DataDaq

TCP/IP msgs

Figure 1: Problem diagram for the door safety prop-
erty. A box represents a system part, and the la-
bel on an edge between two boxes a shared phe-
nomenon through which they interact. Related
parts are grouped inside a dotted box. The require-
ment (the circle) is expressed in terms of phenom-
ena on two environmental domains, the door and
the beam stop.

4. Analyzing the design-level case: The property-
part diagram is analyzed to ensure that the decompo-
sition from the previous step is correct: namely that
the combination of the properties on the individual
parts together satisfy the system requirement. The
analysis may help reveal a missing domain assumption
or a weak specification.

5. Checking each individual part: Finally, after hav-
ing established the dependability case at the design-
level, the implementation of each software component
is checked to ensure that it conforms to its specifica-
tion. Discharging a domain assumption involves con-
sulting a domain expert to ensure that the assumption
is a reasonable characterization of the domain’s behav-
ior.

3.2 Building a Case for the Door Safety
We demonstrate our approach by describing the construc-

tion of a dependability case for the door safety property in
the BPTC system. Our goal is to build a case to argue
that when the door is opened during treatment, the system
inserts the beam stop to immediately halt the delivery of
radiation.

The problem diagram in Figure 1 illustrates the struc-
ture of the BPTC system, which consists of: (1) physi-
cal equipment, such as the treatment door and the beam

stop, (2) low-level control units, which interact with hard-
ware sensors and actuators to control the physical equip-
ment, (3) high-level managers, which direct the control units
to carry out the treatment, and (4) intermediate communi-
cation mechanisms, including standard TCP/IP and RPC
protocols, as well as an off-the-shelf messaging library called
RTworks [25]. The software components run on commodity
UNIX workstations on a local area network. The software
consists of around 250,000 lines of C code, distributed across
several hundred source files.

The system parts interact with each other by sharing phe-
nomena, which include, for example, signals generated by a
physical device and sensed by a control unit, and RTworks
and RPC messages sent over the network. In the diagram,
these phenomena appear as labels on the edges between the
parts; the arrow on an edge shows the direction in which
information associated with a phenomenon flows from one
part to another.

In a typical scenario, the parts of the BPTC system com-
municate with each other in the following manner. A control
unit, initiated by a hardware signal, sends a TCP/IP mes-
sage to an intermediate component called DataDaq. DataDaq
then relays the message to a manager that is responsible
for handling the event through RTworks. The manager pro-
cesses the message and prepares an appropriate response, by
delegating the task to another manager through RTworks,
or by sending an RPC message directly to a control unit.

An important aspect of the problem diagram is that it
states the door safety property only in terms of phenom-
ena that occur in the environment—namely, the events of
the door opening and the beam stop being inserted. It does
not mention anything about phenomena inside the software
components (i.e. the control units, DataDaq, or the man-
agers). Thus, our next task involves using the problem dia-
gram as a starting point to derive domain assumptions and
specifications that are sufficient to establish the property,
and assign them to the corresponding parts.

The problem diagram is elaborated into a property-part
diagram (Figure 2) that shows how the requirement is de-
composed into properties on the individual parts of the sys-
tem. In this case, all the properties take a simple form—that
one event leads to another—and are stated informally. An
edge in the property-part diagram shows how one property
is discharged either by a combination of other properties, or
by a component of the system.

For example, the property on DataDaq states that “when
it receives a message from the Safety Control Unit, indi-
cating that the door has been opened, DataDaq notifies
the Treatment Manager by invoking the function rtdaqin-
DoorOpen”; this is a partial specification that must be ful-
filled by the implementation of DataDaq for the door safety
property to hold. When the Treatment Manager is notified
of the door opening, it instructs the Beam Control Unit to
insert the beam stop, eventually by invoking the function
bsInsert; this property is shown in the diagram as being ful-
filled together by the two managers. Since DataDaq uses
RTworks to communicate to the managers, the specification
of DataDaq depends on the correct behavior of RTworks
in handling requests to create and send messages. Hence,
there is an edge from the property of DataDaq to that of
RTworks. Similarly, the managers rely on RTworks and the
RPC server for communication to fulfill their responsibility.

RTWorks RPC Server

Door Beam Stop

door open =>
beam stop
inserted

Safety
Control Unit

Beam
Control Unit

Treatment
Control Unit

Beam
Manager

Treatment
Manager

System
Manager

DataDaq

door open =>
door signal

door signal =>
door open msg

door open msg =>
rtdaqinDoorOpen rtdaqinDoorOpen =>

bsInsert

Create & deliver
messages

Create & deliver
messages

bsInsert =>
beam stop signal

beam stop signal =>
beam stop inserted

Figure 2: Property-part diagram for the door safety property. A box represents a part, and a circle represents
a property. An edge originating from a circle shows a dependency of the denoted property on a part, or
another property. An edge between two boxes shows interaction between the parts (for simplification, we
omit the labels that represent shared phenomena.).

The door safety property depends not only on the speci-
fications of software, but also on assumptions on the envi-
ronment. When the treatment door is opened, we expect
the door sensor to generate a signal to be sent to the Safety
Control Unit. If the sensor fails to do so for some reason
(e.g. a power failure), then the system will not insert the
beam stop, regardless of how the rest of the system behaves.
Thus, stating these domain assumptions is crucial to achiev-
ing dependability.

The dependency structure in the property-part diagram
corresponds to the argument that the system establishes
the door safety property. If the software components satisfy
their specifications, and the domains behave as expected,
then the system should insert the beam stop when the door
is opened. The properties on the individual parts corre-
spond to the premises of the argument; these premises must
be shown to hold by analyzing the implementation or dis-
charging the domain assumptions. The argument, together
with evidence for discharging its premises, forms the depend-
ability case for the door safety property. In Section 4, we
describe the code analysis that we performed to produce ev-
idence that the implementation of the Treatment and Beam
Managers conform to their specifications.

If properties and parts are specified formally, an argument
can be mechanically checked for validity; that is, the combi-
nation of the specifications and domain assumptions indeed
establish a critical property. We modeled the BPTC system
in the Alloy modeling language [8], and analyzed the argu-
ment for the door safety property using the Alloy Analyzer,
a SAT-based analysis tool. Due to limited space, we do not
describe the model in this paper; however, the complete Al-

loy model is available on http://people.csail.mit.edu/

eskang/mgh-model.

4. CODE ANALYSIS
As noted above, in this particular case, the properties as-

serted of the software components in the property-part dia-
gram all take a particular form: that the occurrence of one
event leads to another. In the code, these properties trans-
late into a relationship in the call graph: that calling one
function inevitably leads to calling another. The property
on the managers that support the door safety property, for
example, is rtdaqinDoorOpen => bsInsert; rtdaqinDoorOpen
is a function in the implementation of the Treatment Man-
ager, and bsInsert is a function in the Beam Control Unit.
Having formulated the desired properties of the software this
way, a lightweight analysis is used to show that a call to rt-
daqinDoorOpen really does cause the call to bsInsert.

The analysis takes a component and its partial specifi-
cation, and produces a set of side conditions that, if true,
imply that the component satisfies its specification. If the
analysis produces no side conditions, then the analysis has
proved the component correct with respect to the specifi-
cation. More often, however, the analysis fails to discharge
all of the side conditions, and leaves some for the user to
manually discharge.

The analysis scales to large codebases for two reasons.
First, it examines only a single component at a time—an
approach that is made possible by the practice of decom-
posing requirements into partial specifications on individual
parts. Second, the analysis is designed to give up quickly. As
the analysis navigates the path from origin to destination,

Figure 3: Snapshot of the prototype tool displaying a list of side conditions to reach bsInsert.

it attempts to evaluate conditional expressions using sym-
bolic state, but the set of conditions that can be evaluated
without user input is small. To mitigate this, the analysis
prompts the user for more information (for example when a
procedure whose code is missing is called), and if it cannot
evaluate a condition at all, adds it to the list of generated
side conditions to be reported to the user and discharged by
other means.

This lightweight style of code analysis is intended to sup-
port a feedback loop between the design and implementa-
tion steps. A side condition represents a proof obligation,
but it also gives the user information about how the design
of the system can be improved, since a side condition that
is too difficult for the analysis to handle often points to po-
tential design flaws, such as tight coupling and unnecessary
dependencies. After examining the set of side conditions the
analysis generates, the user may choose to redesign the sys-
tem to eliminate the most problematic of these conditions,
update the implementation, and rerun the analysis.

A screenshot of our tool appears in Figure 3. The left-
hand pane contains the tree of function calls leading from the
premise to the conclusion of the desired property, the top-
right-hand pane allows the user to browse the code, and the
bottom-right-hand pane contains a summary of the symbolic
environment used in the analysis and the side conditions the
analyzer has discovered.

4.1 Strategy and Implementation
To check whether components in the BPTC system prop-

agate events as they should, we implemented a lightweight,
flow-sensitive, context-sensitive, static analysis. Only a sin-
gle path need be followed, since—in this particular system—
all branches away from the normal path represent erroneous
behavior. This makes the analysis very lightweight, since it
avoids the path-explosion problem entirely. It is still nec-
essary, however, to ensure that this normal path is indeed
followed, and that requires evaluating the conditions along
the way.

The evaluation of conditions is based on abstract state
computed by the analysis. The state obtained by the sym-
bolic evaluation alone is not, however, sufficient to evaluate

all conditions. In addition, the analysis needs domain knowl-
edge that constrains the initial state, indicates what values
are returned by calls to missing code, and gives the source
and destinations of messages (which are determined, in the
implementation, by a publish-subscribe subsystem that reg-
isters event types with handlers using initialization files in
a special language). This domain knowledge is encoded in
tables provided by the user. These tables were constructed
from the specification documents of the system, and using
the domain knowledge of the developers.

4.2 Analysis Algorithm
The pseudocode describing the analysis is outlined in Fig-

ure 4. For each statement in the code’s control flow graph,
the top-level analysis function Analyze applies the function
AnalyzeStmt with the current symbolic environment env.
The algorithm has global access to the entire codebase through
the data structure code, which maps each function to a list
of statements. It also has access to domain knowledge, which
contains the set of user-provided information about the sym-
bolic state.

The analysis proceeds as follows. When the statement to
be analyzed is a variable assignment, we simply assign the
symbolic value of the right-hand-side expression to the envi-
ronment (line 12). If the statement is a conditional, we first
attempt to determine whether or not the condition can be
resolved to a constant (lines 15-16). If not, then we check
the two branches to see if any one of them will immediately
return an error. If so, we add the condition that would
lead to the non-erroneous branch as a side condition (us-
ing the helper function GenerateSideCondition), and analyze
that branch (lines 22-27). If we cannot immediately deter-
mine which branch to proceed into, then we pause the anal-
ysis, and ask the user for more domain knowledge to resolve
the condition (line 30). Once the symbolic environment has
been updated with a new piece of domain knowledge, we
re-analyze the statement.

If the statement is a function call, and the code for the
function is available, then we simply analyze the body of
the code (line 35). If not, then we first check whether the
information about the function call already exists in the cur-

1 /∗ Input: a list of statements to be analyzed, and
2 symbolic environment ∗/
3 Analyze(stmts, env):
4 for each stmt in stmts:
5 AnalyzeStmt(stmt, env)
6
7 /∗ Input: statement to be analyzed, and
8 symbolic environment ∗/
9 AnalyzeStmt(stmt, env):

10 if stmt = ‘‘v := e’’ then
11 /∗ variable assignment ∗/
12 env(v) := eval(AnalyzeStmt(e), env)
13 else if stmt = ‘‘if(cond) then b1 else b2’’ then
14 /∗ conditional ∗/
15 AnalyzeStmt(cond)
16 switch eval(cond, env)
17 case TRUE:
18 Analyze(b1, env)
19 case FALSE:
20 Analyze(b2, env)
21 case SYMBOLIC:
22 if b1 is ‘‘error block’’ then
23 GenerateSideCondition(!cond)
24 Analyze(b2, env)
25 else if b2 is ‘‘error block’’ then
26 GenerateSideCondition(cond)
27 Analyze(b1, env)
28 else
29 /∗ can’t proceed; ask user ∗/
30 Pause()
31 else if stmt = ‘‘f(a, b, ...)’’ then
32 /∗ function call ∗/
33 if f in code then
34 /∗ code for f available; analyze it ∗/
35 Analyze(code[f(a, b, ...)], env)
36 else if ‘‘f(a, b, ...)’’ in domain knowledge then
37 /∗ return value of f is known; update environment

∗/
38 Update(env, domain knowledge[f(a, b, ...)])
39 GenerateSideCondition(‘‘f(a,b,..) does not crash’’)
40 else
41 /∗ can’t proceed; ask user ∗/
42 Pause()

Figure 4: Pseudocode for the analysis algorithm.

rent set of domain knowledge. If so, we update the symbolic
environment accordingly, and generate a side condition that
says that the function must not crash, since this would lead
to an undesirable consequence of the program never reach-
ing its goal (lines 38-9). Finally, if no information is known
about the missing function, we prompt the user for domain
knowledge (line 42).

If the analysis completes successfully but does not reach
its goal (in our case, bsInsert, the procedure that inserts the
beam stop), then this implies either that the implementation
of the system is incorrect (i.e. does not conform to the
specification), or that the domain knowledge provided by
the user is insufficient.

In general, the analysis prompts the user for precisely the
domain knowledge it needs. It is designed to be an inter-
active process between the user and the analyzer; when the
analysis fails, the user inspects the reason for failure and

1 STATIC BOOLEAN rtdaqinDoorOpen(RTVAR ID id,
2 TRMGR STATE state) {
3
4 BOOLEAN doorOpen, areaNotSecured,
5 keyInServiceMode, tcrKeySwitch;
6 if (state==TRMGR INITIALIZATION) {
7 return TRUE;
8 }
9 if (!rtvarGetBoolRTValue(id, &doorOpen)) {

10 TRACE ERROR MSG();
11 return FALSE;
12 }
13
14 if (doorOpen) {
15 if (!eventsSafetyEvent(TRMGR DOOR IS OPEN)) {
16 TRACE ERROR MSG();
17 return FALSE;
18 }
19 if ((state==TRMGR IRRADIATING) ||
20 (state==TRMGR MANAGING INTERRUPTION)) {
21 if (!eventsInterruption(TRMGR DOOR IS OPEN)){
22 TRACE ERROR MSG();
23 return FALSE;
24 }
25 }
26 } else {
27 ...
28 }
29 return TRUE; }

Figure 5: Example C code from the Treatment Man-
ager software.

adds domain knowledge to avoid that problem. In prac-
tice, this design leads to specific questions to be posed to
domain experts. Domain knowledge therefore involves no
guesswork—if the domain expert can answer the question,
then the correct domain knowledge has been obtained.

4.3 Example
As an example of our analysis, consider the code snippet

in Figure 5: the first part of rtdaqinDoorOpen. The analysis
proceeds as follows:

1. The first conditional (line 6) is encountered, and the
analysis is unable to determine which branch to follow.
The user must provide domain knowledge stating that
state != TRMGR INITIALIZATION.

2. The second conditional (line 9) is encountered, and
the analysis determines that the false branch must be
chosen in order to avoid an error. It emits the side con-
dition rtvarGetBoolRTValue(id, &doorOpen)= TRUE.

3. The third conditional (line 14) is encountered, and the
analysis is unable to determine which branch to fol-
low. The user must add domain knowledge stating that
rtvarGetBoolRTValue(id, &doorOpen) sets doorOpen to
TRUE.

4. The fourth conditional (line 15) is encountered, and
the analysis examines the eventsSafetyEvent function
and determines that it returns TRUE.

5. The fifth conditional (lines 19-20) is encountered, and
the analysis is unable to determine which branch to fol-
low. The user must add domain knowledge that state
= TRMGR IRRADIATING (in other words that the sys-
tem is in the irradiating state).

6. The sixth conditional (line 21) is encountered, and the
analysis finds the call to eventsInterruption. The analy-
sis generates the side condition that eventsInterruption(
TRMGR DOOR IS OPEN) returns TRUE (that is, that
the treatment room door is indeed open).

When the analysis is complete, then, the user has provided
the following domain knowledge:

• state != TRMGR INITIALIZATION (the treatment man-
ager is not in the state corresponding to initialization).

• rtvarGetBoolRTValue(id, &doorOpen) sets doorOpen to
TRUE (that the door is open).

• state = TRMGR IRRADIATING (the treatment manager
is in the irradiating state).

and must manually discharge the following side conditions:

• rtvarGetBoolRTValue(id, &doorOpen)= TRUE (that the
library call for determining whether the door is open
completes successfully).

• eventsInterruption(TRMGR DOOR IS OPEN)= TRUE.

4.4 Analysis Effort
Since our analysis involves interactions with the user to

gather domain knowledge, we did not measure the elapsed
time for the analysis. After all of the domain knowledge has
been provided by the user, the analysis took 45 seconds to
generate all of the side conditions on an Intel Dual Core CPU
(2.93 GHz) running Ubuntu. Even though the entire BPTC
system consists of 250,000 lines of code across hundreds of
C files, once the number of paths have been narrowed down
to the single critical path using the domain knowledge, the
analysis had to explore only 1026 lines of code across 17
source files.

We consulted one of the developers of the BPTC system,
who provided us with the necessary knowledge about the
system state at the time when rtdaqinDoorOpen is called, and
the expected behavior of the function calls in the managers.
The number of pieces of domain knowledge required for this
analysis were relatively small (12), and mainly involved the
API calls to RTworks and the RPC server. This illustrates
the appealing feature of our analysis; by utilizing knowledge
of a human expert to discharge side conditions, we were
able to avoid analyzing large portions of the codebase (if
available) that would have normally been tackled by a more
conventional analysis.

The BPTC system is large enough that manual inspection
of the code—or even the code of a single component—would
be nearly impossible. Our lightweight analysis allows the
inspector to direct his or her attention to the lines of code
that are relevant to the property being investigated, making
manual inspection tractable, even for very large pieces of
software.

(1) Event Logging
evtRepReportEvent()= TRUE
evtRepForwardEvent()= TRUE
evtRepSendMessage()= TRUE
hciLoggerLog()= TRUE

(2) System Calls
sprintf(strBuffer, ”%s %s”, hostName, deviceName)
strncpy(shortTextEvent, newPartTextEvent, 120)
strlen(newPartTextEvent)
fprintf(hciLogFile, s)
strcat(infoMsg, ”TR 1.”)
(all calls must not cause a segmentation fault)

(3) Message Building
ACT INHIBIT BEAM >= ACT FIRST ACTION
ACT INHIBIT BEAM <= ACT LAST ACTION
TipcMsgAppendInt4(beamActionMsg,

ACT INHIBIT BEAM)= TRUE
TipcMsgAppendInt2(beamActionMsg, 1)= TRUE
TipcMsgAppendInt2(beamActionMsg,

DOUBLE SCATTERING MODE)= TRUE
TipcMsgAppendStr(beamActionMsg, ””)= TRUE

(4) Global State & External Domains
rtvarGetBoolRTValue(RTVAR DOOR CLOSED,

&doorOpen)= TRUE
trmgrGetCurrentTRMgr = current treatment manager
trmgrGetRoomId = current room ID
trmgrGetBeamDeliveryTechnique()=

DOUBLE SCATTERING MODE
bmToolGetBeamAllocation()= TRUE
bmStateIsRequestValid()= TRUE

Figure 6: Side conditions for the door safety prop-
erty, categorized in terms of their characteristics.

5. RESULTS
Figure 6 shows the results of the analysis, as a list of 20

side conditions, sorted by our determination of their type.
First, we found that the safety-critical code we analyzed

depends on less critical components that perform logging
(Figure 6 (1)). The three evtRep functions report events
to the logging facilities, while the hciLoggerLog sends events
to the HCI manager to display them to the user. Both of
these logging components depend on system calls for format-
ting strings and writing them to files on disk (Figure 6 (2)).
Operations like strcat, sprintf, and strncpy can cause segmen-
tation faults; fprintf can fail if the filesystem is full. Either
situation might cause the beam stop not to be inserted.

Second, the process for building and invoking an RPC
call takes several steps, and all must complete successfully
for the beam stop to be inserted (Figure 6 (3)). The first two
side conditions in this section represent properties of mes-
sage types that can easily be verified manually; the others,
however, rely on the proprietary Smart Sockets implemen-
tation of the RPC server.

Finally, we discovered many side conditions related to the
use of global state (Figure 6 (4)). The rtvarGetBoolRTValue
function, for example, looks up the value of a global variable;
the trmgrGetCurrentTRMgr function inspects the global state
to obtain a pointer to the current Treatment Manager. It is
difficult to build confidence in code that depends on global
state because less critical code could modify that state at any

time. If the global state is not in the expected configuration,
the safety-critical code may not function correctly. This
dependence means that all code with access to the global
state must be treated as safety-critical, and analyzed as such;
this task was outside the scope of our case study.

6. DISCUSSION

6.1 Recommendations
We found no evidence of bugs in the implementation.

Moreover, a more sophisticated analysis might have been
able to discharge some of the side conditions reported (but
still excluding the side conditions that reflect properties of
the environment).

In our view, however, we treat the undischarged side-
conditions as suggestions for how the system might be im-
proved so that its safety is more evident. In this section,
we review these suggestions. Some are easily implementable
with few changes to the existing codebase; others would re-
quire more significant redesign of the system. (It should be
noted that the software is backed by a redundant hardware
safety system, so the software is not a single point of failure.)

First, some of the side conditions can be eliminated by re-
placing them with ones that can be more easily discharged,
or by reordering parts of the implementation. For example,
string manipulation might be done using a safe string library
[19] instead of standard C functions; this would eliminate
the side conditions on system calls. Error logging might be
done after instead of before the beam stop is inserted, elim-
inating the side conditions related to logging. Both of these
examples involve relatively straightforward refactoring, and
would strengthen the dependability case.

Other side conditions point to larger issues in the design
of the system, and may suggest changes at the architec-
tural level. Highly critical functionality (e.g., the response
to the door opening) depends on generic components (e.g.,
RTworks) that serves multiple areas of functionality, some
of which are of lower priority (e.g., patient positioning). A
better approach might be to construct a separate, reliable
communication pathway reserved for emergency functions
(such as the beam stop insertion), thereby eliminating the
dependency on RTworks.

6.2 Lessons Learned
Theorem provers and static analyzers are designed to prove

that a system satisfies a property—they do not leave behind
side conditions for the user to discharge. In our experi-
ence with the BPTC system, producing a complete proof
would be very difficult, because the set of components in-
volved in producing the proof is large, and includes compo-
nents for which neither code not precise specifications are
available. By introducing a human element into the anal-
ysis effort, and by dealing with difficult proof obligations
by eliminating them from the critical path rather than by
proving them correct, we are able to balance investment in
analysis and design, and obtain some degree of confidence
from more lightweight analyses.

The way a system is structured and coded has a big in-
fluence on how effective such a lightweight analysis can be
(as noted by Griswold [7]). In this study, the systematic
structure of the BPTC system was a great help:

• Because of the pervasive use of events (rather than, for
example, communication through global variables), it
was easy to formulate properties in terms of simple
control flow. Many of the specifications in the BPTC
system had the form “if event A happens, then event B
should happen.” This makes the analysis easier to im-
plement; with some domain knowledge about which
functions send and receive events, the analysis can
check code against such a specification without the use
of a constraint solver. Even specifications that do not
naturally take this form can often be recast in terms
of the events that cause the desired outcome.

• Because event causality is transitive, there is a natural
modularity that the analysis exploits; for each module,
the analysis connects an originating event to a target
event.

• Consistent coding conventions can be exploited in the
analysis. The BPTC code, for example, uses the con-
vention that each function call returns TRUE for suc-
cess, and FALSE for failure. The programmers also
used a standard set of functions to indicate error con-
ditions. These conventions can be encoded as domain
knowledge, and can be used by the analysis to im-
prove both scalability and precision. For example, by
expecting most functions to return TRUE, our analysis
is able to emit more specific side conditions for missing
functions.

6.3 Limitations
Some analyses are difficult to perform using our lightweight

engine. Our analysis cannot handle extensive global state,
dynamic allocation or concurrency, and does not address
timing constraints. Additionally, the soundness of our anal-
ysis is dependent upon the accuracy of the domain knowl-
edge the user provides about environmental domains. The
analysis offers no guidance in discharging the domain knowl-
edge; instead, it relies on the user to consult with a domain
expert—for example, a physicist who understands the ex-
pected behavior of the proton beam, or a technician with
the knowledge of the beam stop mechanics.

Our analysis by itself does not provide sufficient evidence
to support a dependability case. To further strengthen the
case, it should be combined with other techniques, includ-
ing extensive unit and integration testing, historical data on
the reliability of framework components, more sophisticated
and complete analysis of critical components, and evaluation
by domain experts of domain assumptions. Unifying results
from different kinds of analyses to demonstrate dependabil-
ity remains a challenging research problem [4].

7. RELATED WORK
Dependability Cases Traditional approaches to eval-

uating dependability of software systems in industry are
process-based. In these approaches, a system is considered
suitable for certification by a government agency if its devel-
opment adheres to one or more standards, such as Common
Criteria [2] or IEC 61508 [23]. The main criticism of process-
based approaches is the lack of an evident link between the
extent of the quality assurance activities that are mandated
by the standards and the level of dependability that is in-
ferred [11].

In response, a number of case-based approaches to soft-
ware dependability have been developed. The common goal
behind these approaches is to provide an argument that di-
rectly links the developer’s claims about the dependability
of the system to concrete evidence (e.g. testing reports, for-
mal proofs, etc.) that support them. Our approach belongs
to this group.

Kelly introduced the Goal-Structuring Notation (GSN) as
a way to represent a safety case—an argument that the sys-
tem satisfies its safety properties [16]. Assurance based de-
velopment (ABD) [6] is a methodology that integrates an as-
surance case with the development of a dependable system1.
In this approach, based on the GSN, the top system-level
requirements are decomposed into smaller subgoals, which
are discharged using various strategies. Lutz and Patterson-
Hine [17] proposed an approach to building an argument
to support the system’s ability to detect and handle safety-
related contingencies. Like ABD, the structure of their ar-
gument is based on the GSN, but they discharge subgoals
using analysis of fault models.

In both of these approaches, the premises of an argument
(sub-properties that together imply the system-level prop-
erty) are linked to the methods by which they are discharged;
these methods may include testing, inspection, or formal
methods. In contrast, the property-part diagram connects
the premises (the specifications and domain assumptions) to
the parts that are responsible for fulfilling them. In other
words, whereas these approaches tend to focus on the struc-
ture of the development process for evidence of dependabil-
ity, we instead focus on the structure of the product.

Code Analysis There is a rich body of work in the liter-
ature on techniques for checking code conformance against
specifications. Many of them deal with checking behavioral
specifications or heap invariants [1, 3, 5, 12, 26]. Our ap-
proach is much more lightweight in nature: (1) it does not
attempt to discharge the side conditions itself, and (2) it
relies on the user’s domain knowledge to prune the search
space down to a single critical path.

In this respect, our work is similar to Murphy, Notkin,
and Sullivan’s reflexion model [20]. The user of the reflex-
ion model tool provides a mapping between portions of the
source code and their counterparts in the high-level system
model, similar to the way in which our approach relies on
the user’s domain knowledge. The reflexion model is con-
cerned with system-wide structural conformance of the code
against the design, while our analysis is applied to ensure a
behavioral property at the individual component level.

1We prefer the more general term “dependability case”
over the more common terms “safety case”, which seems
to exclude systems that are mission-critical but not safety-
critical, and “assurance case”, which de-emphasizes the role
of cases in design.

Giving special treatment to events, and informing the
analysis of those events through specifications, is not a new
idea, and is part of the framework by Popescu, Garcia, and
Medvidovic [21]. By extending the idea of domain knowl-
edge to function specifications, we can also analyze functions
for which we have no implementation. Snelting and his col-
leagues describe an analysis technique to extract a set of
conditions that need to hold for a path to be taken between
two locations in a program (called path conditions), and use
a constraint solver to find an input value that could lead to
safety violation [24]. Although our side conditions are simi-
lar to theirs in nature, it would be difficult to generate many
of the conditions that arise in the BPTC system automat-
ically using their technique (for example, a condition on a
function for which the source code is not available, such as
RTworks).

8. CONCLUSION
Most published efforts to establish the safety of critical

systems have taken the system as a given, and have focused
on the question of what analysis is sufficient to discharge all
proof obligations. In our approach, we seek a balance be-
tween analysis and design, trying to reduce the critical path
that is responsible for fulfilling critical properties, so that a
simpler analysis can be used to establish them. The anal-
ysis we developed for this case study supports this balance
by generating side conditions that are either discharged by
manual analysis, or eliminated by refactoring. In applying
this analysis to the therapy system, we found that the set
of side conditions generated was reassuringly small, but still
gave useful insights into how the system might be improved.

9. ACKNOWLEDGMENTS
We are grateful to Dr. Jay Flanz and Nghia Van Ho at

Massachusetts General Hospital for their helpful explana-
tions of the BPTC system. This research was supported
by the Northrop Grumman Cybersecurity Research Con-
sortium under the Secure and Dependable Systems by De-
sign project, and by the National Science Foundation under
grants 0541183 (Deep and Scalable Analysis of Software) and
0707612 (CRI: CRD – Development of Alloy Tools, Technol-
ogy and Materials).

10. REFERENCES
[1] M. Barnett, R. DeLine, M. Fähndrich, B. J. 0002,

K. R. M. Leino, W. Schulte, and H. Venter. The
spec# programming system: Challenges and
directions. In VSTTE, pages 144–152, 2005.

[2] Common Criteria Portal. Common Criteria
Documents, August 2010.
http://www.commoncriteriaportal.org/thecc.html.

[3] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Pasareanu, Robby, and H. Zheng. Bandera:
extracting finite-state models from java source code.
In ICSE, pages 439–448, 2000.

[4] M. B. Dwyer and S. G. Elbaum. Unifying verification
and validation techniques: relating behavior and
properties through partial evidence. In FoSER
Workshop, co-located with FSE, pages 93–98, 2010.

[5] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for java. In PLDI, pages 234–245, 2002.

[6] P. J. Graydon, J. C. Knight, and E. A. Strunk.
Assurance based development of critical systems. In
DSN, pages 347–357, 2007.

[7] W. Griswold. Coping with crosscutting software
changes using information transparency. Metalevel
Architectures and Separation of Crosscutting
Concerns, pages 250–265, 2001.

[8] D. Jackson. Software Abstractions: Logic, language,
and analysis. MIT Press, 2006.

[9] D. Jackson. A direct path to dependable software.
Commun. ACM, 52(4):78–88, 2009.

[10] D. Jackson and E. Kang. Property-part diagrams: A
dependence notation for software systems. In ICSE
’09 Workshop: A Tribute to Michael Jackson, 2009.

[11] D. Jackson, M. Thomas, and L. Millett. Software for
dependable systems: sufficient evidence? National
Academies Press, 2007.

[12] D. Jackson and M. Vaziri. Finding bugs with a
constraint solver. In ISSTA, pages 14–25, 2000.

[13] M. Jackson. Problem Frames: Analyzing and
Structuring Software Development Problems.
Addison-Wesley, 2000.

[14] E. Kang. A framework for dependability analysis of
software systems with trusted bases. Master’s thesis,
Massachusetts Institute of Technology, 2010.

[15] E. Kang and D. Jackson. Dependability arguments
with trusted bases. In RE, pages 262–271, 2010.

[16] T. Kelly and R. Weaver. The Goal Structuring
Notation–A Safety Argument Notation. In Workshop
on Assurance Cases, co-located with DSN, 2004.

[17] R. R. Lutz and A. Patterson-Hine. Using fault
modeling in safety cases. In ISSRE, pages 271–276,
2008.

[18] T. S. E. Maibaum and A. Wassyng. A product-focused
approach to software certification. IEEE Computer,
41(2):91–93, 2008.

[19] M. Messier and J. Viega. Safe c string library, January
2005. http://www.zork.org/safestr.

[20] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. In FSE, pages 18–28, 1995.

[21] D. Popescu, J. Garcia, and N. Medvidovic. Enabling
more precise dependency analysis in event-based
systems. In ICPC, pages 305–306. IEEE Computer
Society, 2009.

[22] A. Rae, D. Jackson, P. Ramanan, J. Flanz, and
D. Leyman. Critical feature analysis of a radiotherapy
machine. In SAFECOMP, pages 221–234, 2003.

[23] D. Smith and K. Simpson. Safety Critical Systems
Handbook: A Straightforward Guide to Functional
Safety, IEC 61508 and Related Standards.
Butterworth-Heinemann, 2010.

[24] G. Snelting, T. Robschink, and J. Krinke. Efficient
path conditions in dependence graphs for software
safety analysis. ACM Trans. Softw. Eng. Methodol.,
15(4):410–457, 2006.

[25] TIBCO (acquired Talarian in 2002). SmartSockets,
August 2010. http://www.tibco.com/products/soa/
messaging/smartsockets.

[26] W. Visser, K. Havelund, G. P. Brat, and S. Park.
Model checking programs. In ASE, pages 3–12, 2000.

