
On the Power of Adaptivity in Sparse Recovery

Piotr Indyk Eric Price David P. Woodruff

August 18, 2011

Abstract

The goal of (stable) sparse recovery is to recover a k-sparse approximation x∗ of a vector x from
linear measurements of x. Specifically, the goal is to recover x∗ such that

‖x− x∗‖p ≤ C min
k-sparse x′

‖x− x′‖q

for some constant C and norm parameters p and q. It is known that, for p = q = 1 or p = q = 2, this
task can be accomplished usingm = O(k log(n/k)) non-adaptive measurements [3] and that this bound
is tight [9, 12, 28].

In this paper we show that if one is allowed to perform measurements that are adaptive , then the
number of measurements can be considerably reduced. Specifically, for C = 1 + ε and p = q = 2 we
show

• A scheme with m = O(1
εk log log(nε/k)) measurements that uses O(log∗ k · log log(nε/k))

rounds. This is a significant improvement over the best possible non-adaptive bound.

• A scheme with m = O(1
εk log(k/ε) + k log(n/k)) measurements that uses two rounds. This

improves over the best possible non-adaptive bound.

To the best of our knowledge, these are the first results of this type.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9342072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In recent years, a new “linear” approach for obtaining a succinct approximate representation of n-dimensional
vectors (or signals) has been discovered. For any signal x, the representation is equal to Ax, where A is an
m× n matrix, or possibly a random variable chosen from some distribution over such matrices. The vector
Ax is often referred to as the measurement vector or linear sketch of x. Although m is typically much
smaller than n, the sketch Ax often contains plenty of useful information about the signal x.

A particularly useful and well-studied problem is that of stable sparse recovery. We say that a vector
x′ is k-sparse if it has at most k non-zero coordinates. The sparse recovery problem is typically defined
as follows: for some norm parameters p and q and an approximation factor C > 0, given Ax, recover an
“approximation” vector x∗ such that

‖x− x∗‖p ≤ C min
k-sparse x′

∥∥x− x′∥∥
q

(1)

(this inequality is often referred to as `p/`q guarantee). If the matrix A is random, then Equation (1) should
hold for each x with some probability (say, 2/3). Sparse recovery has a tremendous number of applications
in areas such as compressive sensing of signals [3, 10], genetic data acquisition and analysis [29, 2] and data
stream algorithms1 [27, 21]; the latter includes applications to network monitoring and data analysis.

It is known [3] that there exist matrices A and associated recovery algorithms that produce approxima-
tions x∗ satisfying Equation (1) with p = q = 1, constant approximation factor C, and sketch length

m = O(k log(n/k)) (2)

A similar bound, albeit using random matrices A, was later obtained for p = q = 2 [16] (building on [5, 6,
7]). Specifically, for C = 1 + ε, they provide a distribution over matrices A with

m = O(
1
ε
k log(n/k)) (3)

rows, together with an associated recovery algorithm.
It is also known that the bound in Equation (2) is asymptotically optimal for some constant C and

p = q = 1, see [9] and [12] (building on [13, 17, 24]). The bound of [9] also extends to the randomized case
and p = q = 2. For C = 1 + ε, a lower bound of m = Ω(1

εk log(n/k)) was recently shown [28] for the
randomized case and p = q = 2, improving upon the earlier work of [9] and showing the dependence on ε is
optimal. The necessity of the “extra” logarithmic factor multiplying k is quite unfortunate: the sketch length
determines the “compression rate”, and for large n any logarithmic factor can worsen that rate tenfold.

In this paper we show that this extra factor can be greatly reduced if we allow the measurement process
to be adaptive. In the adaptive case, the measurements are chosen in rounds, and the choice of the mea-
surements in each round depends on the outcome of the measurements in the previous rounds. The adaptive
measurement model has received a fair amount of attention in the recent years [22, 4, 20, 19, 25, 1], see
also [8]. In particular [19] showed that adaptivity helps reducing the approximation error in the presence
of random noise. However, no asymptotic improvement to the number of measurements needed for sparse
recovery (as in Equation (1)) was previously known.

Results In this paper we show that adaptivity can lead to very significant improvements in the number
of measurements over the bounds in Equations (2) and (3). We consider randomized sparse recovery with
`2/`2 guarantee, and show two results:

1In streaming applications, a data stream is modeled as a sequence of linear operations on an (implicit) vector x. Example
operations include increments or decrements of x’s coordinates. Since such operations can be directly performed on the linear
sketch Ax, one can maintain the sketch using only O(m) words.

1

1. A scheme withm = O(1
εk log log(nε/k)) measurements and an approximation factor C = 1+ε. For

low values of k this provides an exponential improvement over the best possible non-adaptive bound.
The scheme uses O(log∗ k · log log(nε/k)) rounds.

2. A scheme with m = O(1
εk log(k/ε) + k log(n/k)) and an approximation factor C = 1 + ε. For

low values of k and ε this offers a significant improvement over the best possible non-adaptive bound,
since the dependence on n and ε is “split” between two terms. The scheme uses only two rounds.

Implications Our new bounds lead to potentially significant improvements to efficiency of sparse recovery
schemes in a number of application domains. Naturally, not all applications support adaptive measurements.
For example, network monitoring requires the measurements to be performed simultaneously, since we
cannot ask the network to “re-run” the packets all over again. However, a surprising number of applications
are capable of supporting adaptivity. For example:

• Streaming algorithms for data analysis: since each measurement round can be implemented by one
pass over the data, adaptive schemes simply correspond to multiple-pass streaming algorithms (see
[26] for some examples of such algorithms).

• Compressed sensing of signals: several architectures for compressive sensing, e.g., the single-pixel
camera of [11], already perform the measurements in a sequential manner. In such cases the measure-
ments can be made adaptive2. Other architectures supporting adaptivity are under development [8].

• Genetic data analysis and acqusition: as above.

Therefore, it seems likely that the results in this paper will be applicable in a wide variety of scenarios.

Techniques On a high-level, both of our schemes follow the same two-step process. First, we reduce the
problem of finding the best k-sparse approximation to the problem of finding the best 1-sparse approximation
(using relatively standard techniques). This is followed by solving the latter (simpler) problem.

The first scheme starts by “isolating” most of of the large coefficients by randomly sampling ≈ ε/k
fraction of the coordinates; this mostly follows the approach of [16] (cf. [15]). The crux of the algorithm
is in the identification of the isolated coefficients. Note that in order to accomplish this using O(log log n)
measurements (as opposed to O(log n) achieved by the “standard” binary search algorithm) we need to
“extract” significantly more than one bit of information per measurements. To achieve this, we proceed as
follows. First, observe that if the given vector (say, z) is exactly 1-sparse, then one can extract the position of
the non-zero entry (say zj) from two measurements a(z) =

∑
i zi, and b(z) =

∑
i izi, since b(z)/a(z) = j.

A similar algorithm works even if z contains some “very small” non-zero entries: we just round b(z)/a(z) to
the nearest integer. This algorithm is a special case of a general algorithm that achieves O(log n/ logSNR)
measurements to identify a single coordinate xj among n coordinates, where SNR = x2

j/‖x[n]\j‖2 (SNR
stands for signal-to-noise ratio). This is optimal as a function of n and the SNR [9].

A natural approach would then be to partition [n] into two sets {1, . . . , n/2} and {n/2 + 1, . . . n}, find
the heavier of the two sets, and recurse. This would take O(log n) rounds. The key observation is that
not only do we recurse on a smaller-sized set of coordinates, but the SNR has also increased since x2

j has
remained the same but the squared norm of the tail has dropped by a constant factor. Therefore in the
next round we can afford to partition our set into more than two sets, since as long as we keep the ratio of

2We note that, in any realistic sensing system, minimizing the number of measurements is only one of several considerations.
Other factors include: minimizing the computation time, minimizing the amount of communication needed to transfer the mea-
surement matrices to the sensor, satisfying constraints on the measurement matrix imposed by the hardware etc. A detailed cost
analysis covering all of these factors is architecture-specific, and beyond the scope of this paper.

2

log(# of sets) and logSNR constant, we only need O(1) measurements per round. This ultimately leads
to a scheme that finishes after O(log log n) rounds.

In the second scheme, we start by hashing the coordinates into a universe of size polynomial in k and
1/ε, in a way that approximately preserves the top coefficients without introducing spurious ones, and in
such a way that the mass of the tail of the vector does not increase significantly by hashing. This idea is
inspired by techniques in the data stream literature for estimating moments [23, 30] (cf. [5, 7, 14]). Here,
though, we need stronger error bounds. This enables us to identify the positions of those coefficients (in the
hashed space) using only O(1

εk log(k/ε)) measurements. Once this is done, for each large coefficient i in
the hash space, we identify the actual large coefficient in the preimage of i. This can be achieved using the
number of measurements that does not depend on ε.

2 Preliminaries

We start from a few definitions. Let x be an n-dimensional vector.

Definition 2.1. Define
Hk(x) = arg max

S∈[n]
|S|=k

‖xS‖2

to be the largest k coefficients in x.

Definition 2.2. For any vector x, we define the “heavy hitters” to be those elements that are both (i) in the
top k and (ii) large relative to the mass outside the top k. We define

Hk,ε(x) = {j ∈ Hk(x) | x2
j ≥ ε

∥∥∥xHk(x)∥∥∥2

2
}

Definition 2.3. Define the error

Err2(x, k) =
∥∥∥xHk(x)∥∥∥2

2

For the sake of clarity, the analysis of the algorithm in section 4 assumes that the entries of x are sorted
by the absolute value (i.e., we have |x1| ≥ |x2| ≥ . . . ≥ |xn|). In this case, the set Hk(x) is equal to [k];
this allows us to simplify the notation and avoid double subscripts. The algorithms themselves are invariant
under the permutation of the coordinates of x.

Running times of the recovery algorithms In the non-adaptive model, the running time of the recovery
algorithm is well-defined: it is the number of operations performed by a procedure that takes Ax as its
input and produces an approximation x∗ to x. The time needed to generate the measurement vectors A, or
to encode the vector x using A, is not included. In the adaptive case, the distinction between the matrix
generation, encoding and recovery procedures does not exist, since new measurements are generated based
on the values of the prior ones. Moreover, the running time of the measurement generation procedure heavily
depends on the representation of the matrix. If we suppose that we may output the matrix in sparse form
and receive encodings in time bounded by the number of non-zero entries in the matrix, our algorithms run
in n logO(1) n time.

3 Full adaptivity

This section shows how to perform k-sparse recovery with O(k log log(n/k)) measurements. The core
of our algorithm is a method for performing 1-sparse recovery with O(log log n) measurements. We then
extend this to k-sparse recovery via repeated subsampling.

3

3.1 1-sparse recovery

This section discusses recovery of 1-sparse vectors with O(log log n) adaptive measurements. First, in
Lemma 3.1 we show that if the heavy hitter xj is Ω(n) times larger than the `2 error (xj is “Ω(n)-heavy”),
we can find it with two non-adaptive measurements. This corresponds to non-adaptive 1-sparse recovery
with approximation factor C = Θ(n); achieving this with O(1) measurements is unsurprising, because the
lower bound [9] is Ω(log1+C n).

Lemma 3.1 is not directly very useful, since xj is unlikely to be that large. However, if xj is D times
larger than everything else, we can partition the coordinates of x into D random blocks of size N/D and
perform dimensionality reduction on each block. The result will in expectation be a vector of size D where
the block containing j is D times larger than anything else. The first lemma applies, so we can recover the
block containing j, which has a 1/

√
D fraction of the `2 noise. Lemma 3.2 gives this result.

We then have that with two non-adaptive measurements of a D-heavy hitter we can restrict to a subset
where it is an Ω(D3/2)-heavy hitter. Iterating log logn times gives the result, as shown in Lemma 3.3.

Lemma 3.1. Suppose there exists a j with |xj | ≥ C n√
δ

∥∥x[n]\{j}
∥∥

2
for some constant C. Then two non-

adaptive measurements suffice to recover j with probability 1− δ.

Proof. Let s : [n] → {±1} be chosen from a 2-wise independent hash family. Perform the measurements
a(x) =

∑
s(i)xi and b(x) =

∑
(n+ i)s(i)xi. For recovery, output the closest integer to b/a− n.

Let z = x[n]\{j}. Then E[a(z)2] = ‖z‖22 and E[b(z)2] ≤ 4n2 ‖z‖22. Hence with probability at least
1− 2δ, we have both

|a(z)| ≤
√

1/δ ‖z‖2
|b(z)| ≤ 2n

√
1/δ ‖z‖2

Thus

b(x)
a(x)

=
s(j)(n+ j)xj + b(z)

s(j)xj + a(z)∣∣∣∣ b(x)
a(x)

− (n+ j)
∣∣∣∣ =
∣∣∣∣b(z)− (n+ j)a(z)

s(j)xj + a(z)

∣∣∣∣
≤|b(z)|+ (n+ j) |a(z)|

||xj | − |a(z)||

≤
4n
√

1/δ ‖z‖2
||xj | − |a(z)||

Suppose |xj | > (8n+ 1)
√

1/δ ‖z‖2. Then∣∣∣∣ b(x)
a(x)

− (n+ j)
∣∣∣∣ <4n

√
1/δ ‖z‖2

8n
√

1/δ ‖z‖2
=1/2

so ı̂ = j.

Lemma 3.2. Suppose there exists a j with |xj | ≥ C B2

δ2

∥∥x[n]\{j}
∥∥

2
for some constant C and parameters B

and δ. Then with two non-adaptive measurements, with probability 1 − δ we can find a set S ⊂ [n] such
that j ∈ S and

∥∥xS\{j}∥∥2
≤
∥∥x[n]\{j}

∥∥
2
/B and |S| ≤ 1 + n/B2.

4

Proof. Let D = B2/δ, and let h : [n] → [D] and s : [n] → {±1} be chosen from pairwise independent
hash families. Then define Sp = {i ∈ [n] | h(i) = p}. Define the matrix A ∈ RD×n by Ah(i),i = s(i) and
Ap,i = 0 elsewhere. Then

(Az)p =
∑
i∈Sp

s(i)zi.

Let p∗ = h(j) and y = x[n]\{j}. We have that

E[|Sp∗ |] =1 + (n− 1)/D

E[(Ay)2p∗] = E[
∥∥∥ySp∗∥∥∥2

2
] = ‖y‖22 /D

E[‖Ay‖22] = ‖y‖22
Hence by Chebyshev’s inequality, with probability at least 1− 4δ all of the following hold:

|Sp∗ | ≤1 + (n− 1)/(Dδ) ≤ 1 + n/B2 (4)∥∥∥ySp∗∥∥∥
2
≤‖y‖2 /

√
Dδ (5)

|(Ay)p∗ | ≤ ‖y‖2 /
√
Dδ (6)

‖Ay‖2 ≤‖y‖2 /
√
δ. (7)

The combination of (6) and (7) imply

|(Ax)p∗ | ≥ |xj | − |(Ay)p∗ | ≥ (CD/δ − 1/
√
Dδ) ‖y‖2

≥(CD/δ − 1/
√
Dδ)
√
δ ‖Ay‖2 ≥

CD

2
√
δ
‖Ay‖2

and hence
|(Ax)p∗ | ≥

CD

2
√
δ

∥∥(Ax)[D]\p∗
∥∥

2
.

As long as C/2 is larger than the constant in Lemma 3.1, this means two non-adaptive measurements suffice
to recover p∗ with probability 1− δ. We then output the set Sp∗ , which by (5) has∥∥∥xSp∗\{j}∥∥∥2

=
∥∥∥ySp∗∥∥∥

2
≤ ‖y‖2 /

√
Dδ

=
∥∥x[n]\{j}

∥∥
2
/
√
Dδ =

∥∥x[n]\{j}
∥∥

2
/B

as desired. The overall failure probability is 1− 5δ; rescaling δ and C gives the result.

Lemma 3.3. Suppose there exists a j with |xj | ≥ C
∥∥x[n]\{j}

∥∥
2

for some constant C. Then O(log log n)
adaptive measurements suffice to recover j with probability 1/2.

Proof. LetC ′ be the constant from Lemma 3.2. DefineB0 = 2 andBi = B
3/2
i−1 for i ≥ 1. Define δi = 2−i/4

for i ≥ 0. Suppose C ≥ 16C ′B2
0/δ

2
0 .

Define r = O(log log n) soBr ≥ n. Starting with S0 = [n], our algorithm iteratively applies Lemma 3.2
with parameters B = 4Bi and δ = δi to xSi to identify a set Si+1 ⊂ Si with j ∈ Si+1, ending when i = r.

We prove by induction that Lemma 3.2 applies at the ith iteration. We chose C to match the base case.
For the inductive step, suppose

∥∥xSi\{j}∥∥2
≤ |xj | /(C ′16B

2
i

δ2i
). Then by Lemma 3.2,

∥∥xSi+1\{j}
∥∥

2
≤ |xj | /(C ′64

B3
i

δ2i
) = |xj | /(C ′16

B2
i+1

δ2i+1

)

5

procedure NONADAPTIVESHRINK(x, D) . Find smaller set S containing heavy coordinate xj
For i ∈ [n], s1(i)← {±1}, h(i)← [D]
For i ∈ [D], s2(i)← {±1}
a←

∑
s1(i)s2(h(i))xi . Observation

b←
∑
s1(i)s2(h(i))xi(D + h(i)) . Observation

p∗ ← ROUND(b/a−D).
return {j∗ | h(j∗) = p∗}.

end procedure
procedure ADAPTIVEONESPARSEREC(x) . Recover heavy coordinate xj

S ← [n]
B ← 2, δ ← 1/4
while |S| > 1 do

S ← NONADAPTIVESHRINK(xS , 4B2/δ)
B ← B3/2, δ ← δ/2.

end while
return S[0]

end procedure
Algorithm 3.1: Adaptive 1-sparse recovery

so the lemma applies in the next iteration as well, as desired.
After r iterations, we have Sr ≤ 1 + n/B2

r < 2, so we have uniquely identified j ∈ Sr. The probability
that any iteration fails is at most

∑
δi < 2δ0 = 1/2.

3.2 k-sparse recovery

Given a 1-sparse recovery algorithm using m measurements, one can use subsampling to build a k-sparse
recovery algorithm using O(km) measurements and achieving constant success probability. Our method
for doing so is quite similar to one used in [16]. The main difference is that, in order to identify one
large coefficient among a subset of coordinates, we use the adaptive algorithm from the previous section as
opposed to error-correcting codes.

For intuition, straightforward subsampling at rate 1/k will, with constant probability, recover (say) 90%
of the heavy hitters usingO(km) measurements. This reduces the problem to k/10-sparse recovery: we can
subsample at rate 10/k and recover 90% of the remainder with O(km/10) measurements, and repeat log k
times. The number of measurements decreases geometrically, for O(km) total measurements. Naively
doing this would multiply the failure probability and the approximation error by log k; however, we can
make the number of measurements decay less quickly than the sparsity. This allows the failure probability
and approximation ratios to also decay exponentially so their total remains constant.

To determine the number of rounds, note that the initial set of O(km) measurements can be done in
parallel for each subsampling, so only O(m) rounds are necessary to get the first 90% of heavy hitters.
Repeating log k times would require O(m log k) rounds. However, we can actually make the sparsity in
subsequent iterations decay super-exponentially, in fact as a power tower. This give O(m log∗ k) rounds.

Theorem 3.4. There exists an adaptive (1+ε)-approximate k-sparse recovery scheme withO(1
εk log 1

δ log log(nε/k))
measurements and success probability 1− δ. It uses O(log∗ k log log(nε)) rounds.

To prove this, we start from the following lemma:

Lemma 3.5. We can perform O(log log(n/k)) adaptive measurements and recover an ı̂ such that, for any
j ∈ Hk,1/k(x) we have Pr[̂ı = j] = Ω(1/k).

6

Proof. Let S = Hk(x). Let T ⊂ [n] contain each element independently with probability p = 1/(4C2k),
where C is the constant in Lemma 3.3. Let j ∈ Hk,1/k(x). Then we have

E[
∥∥xT\S∥∥2

2
] = p

∥∥xS∥∥2

2

so ∥∥xT\S∥∥2
≤
√

4p
∥∥xS∥∥2

=
1

C
√
k

∥∥xS∥∥2
≤ |xj | /C

with probability at least 3/4. Furthermore we have E[|T \ S|] < pn so |T \ S| < n/k with probability at
least 1− 1/(4C2) > 3/4. By the union bound, both these events occur with probability at least 1/2.

Independently of this, we have

Pr[T ∩ S = {j}] = p(1− p)k−1 > p/e

so all these events hold with probability at least p/(2e). Assuming this,∥∥xT\{j}∥∥2
≤ |xj | /C

and |T | ≤ 1 +n/k. But then Lemma 3.3 applies, and O(log log |T |) = O(log log(n/k)) measurements can
recover j from a sketch of xT with probability 1/2. This is independent of the previous probability, for a
total success chance of p/(4e) = Ω(1/k).

Lemma 3.6. With O(1
εk log 1

fδ log log(nε/k)) adaptive measurements, we can recover T with |T | ≤ k and

Err2(xT , fk) ≤ (1 + ε) Err2(x, k)

with probability at least 1− δ. The number of rounds required is O(log log(nε/k)).

Proof. Repeat Lemma 3.5m = O(1
εk log 1

fδ) times in parallel with parameters n and k/ε to get coordinates
T ′ = {t1, t2, . . . , tm}. For each j ∈ Hk,ε/k(x) ⊆ Hk/ε,ε/k(x) and i ∈ [m], the lemma implies Pr[j = ti] ≥
ε/(Ck) for some constant C. Then Pr[j /∈ T ′] ≤ (1 − ε/(Ck))m ≤ e−εm/(Ck) ≤ fδ for appropriate m.
Thus

E[
∣∣Hk,ε/k(x) \ T ′

∣∣] ≤ fδ ∣∣Hk,ε/k(x)
∣∣ ≤fδk

Pr
[∣∣Hk,ε/k(x) \ T ′

∣∣ ≥ fk] ≤δ.
Now, observe xT ′ directly and set T ⊆ T ′ to be the locations of the largest k values. Then, since

Hk,ε/k(x) ⊆ Hk(x),
∣∣Hk,ε/k(x) \ T

∣∣ =
∣∣Hk,ε/k(x) \ T ′

∣∣ ≤ fk with probability at least 1− δ.
Suppose this occurs, and let y = xT . Then

Err2(y, fk) = min
|S|≤fk

∥∥yS∥∥2

2

≤
∥∥∥yHk,ε/k(x)\T∥∥∥2

2

=
∥∥∥xHk,ε/k(x)∥∥∥2

2

=
∥∥∥xHk(x)∥∥∥2

2
+
∥∥∥xHk(x)\Hk,ε/k(x)∥∥∥2

2

≤
∥∥∥xHk(x)∥∥∥2

2
+ k

∥∥∥xHk(x)\Hk,ε/k(x)∥∥∥2

∞

≤(1 + ε)
∥∥∥xHk(x)∥∥∥2

2

=(1 + ε) Err2(x, k)

as desired.

7

procedure ADAPTIVEKSPARSEREC(x, k, ε, δ) . Recover approximation x̂ of x
R0 ← [n]
δ0 ← δ/2, ε0 ← ε/e, f0 ← 1/32, k0 ← k.
J ← {}
for i← 0, . . . , O(log∗ k) do . While ki ≥ 1

for t← 0, . . . ,Θ(1
εi
ki log 1

δi
) do

St ← SUBSAMPLE(Ri,Θ(εi/ki))
J.add(ADAPTIVEONESPARSEREC(xSt))

end for
Ri+1 ← [n] \ J
δi+1 ← δi/8
εi+1 ← εi/2
fi+1 ← 1/21/(4i+1fi)

ki+1 ← kifi
end for
x̂← xJ . Direct observation
return x̂

end procedure
Algorithm 3.2: Adaptive k-sparse recovery

Theorem 3.7. We can perform O(1
εk log 1

δ log log(nε/k)) adaptive measurements and recover a set T of
size at most 2k with ∥∥xT∥∥2

≤ (1 + ε)
∥∥∥xHk(x)∥∥∥2

.

with probability 1− δ. The number of rounds required is O(log∗ k log log(nε)).

Proof. Define δi = δ
2·2i and εi = ε

e·2i . Let f0 = 1/32 and fi = 2−1/(4ifi−1) for i > 0, and define
ki = k

∏
j<i fj . Let R0 = [n].

Let r = O(log∗ k) such that fr−1 < 1/k. This is possible since αi = 1/(4i+1fi) satisfies the recurrence
α0 = 8 and αi = 2αi−1−2i−2 > 2αi−1/2. Thus αr−1 > k for r = O(log∗ k) and then fr−1 < 1/αr−1 <
1/k.

For each round i = 0, . . . , r − 1, the algorithm runs Lemma 3.6 on xRi with parameters εi, ki, fi, and
δi to get Ti. It sets Ri+1 = Ri \ Ti and repeats. At the end, it outputs T = ∪Ti.

The total number of measurements is

O(
∑ 1

εi
ki log

1
fiδi

log log(nεi/ki))

≤O(
∑ 2i(ki/k) log(1/fi)

ε
k(i+ log

1
δ

)

· log(log(k/ki) + log(nε/k)))

≤O(
1
ε
k log

1
δ

log log(nε/k)

·
∑

2i(ki/k) log(1/fi)(i+ 1) log log(k/ki))

using the very crude bounds i + log(1/δ) ≤ (i + 1) log(1/δ) and log(a + b) ≤ 2 log a log b for a, b ≥ e.

8

But then ∑
2i(ki/k) log(1/fi)(i+ 1) log log(k/ki)

≤
∑

2i(i+ 1)fi log(1/fi) log log(1/fi)

≤
∑

2i(i+ 1)O(
√
fi)

=O(1)

since fi < O(1/16i), giving O(1
εk log 1

δ log log(nε/k) total measurements. The probability that any of
the iterations fail is at most

∑
δi < δ. The result has size |T | ≤

∑
ki ≤ 2k. All that remains is the

approximation ratio
∥∥xT∥∥2

= ‖xRr‖2.
For each i, we have

Err2(xRi+1 , ki+1) = Err2(xRi\Ti , fiki)

≤(1 + εi) Err2(xRi , ki).

Furthermore, kr < kfr−1 < 1. Hence

‖xRr‖
2
2 = Err2(xRr , kr) ≤

(
r−1∏
i=0

(1 + εi)

)
Err2(xR0 , k0)

=

(
r−1∏
i=0

(1 + εi)

)
Err2(x, k)

But
∏r−1
i=0 (1 + εi) < e

P
εi < e, so

r−1∏
i=0

(1 + εi) < 1 +
∑

eεi ≤ 1 + 2ε

and hence ∥∥xT∥∥2
= ‖xRr‖2 ≤ (1 + ε)

∥∥∥xHk(x)∥∥∥2

as desired.

Once we find the support T , we can observe xT directly with O(k) measurements to get a (1 + ε)-
approximate k-sparse recovery scheme, proving Theorem 3.4

4 Two-round adaptivity

The algorithms in this section are invariant under permutation. Therefore, for simplicity of notation, the
analysis assumes our vectors x is sorted: |x1| ≥ . . . ≥ |xn| = 0.

We are given a 1-round k-sparse recovery algorithm for n-dimensional vectors x using m(k, ε, n, δ)
measurements with the guarantee that its output x̂ satisfies ‖x̂ − x‖p ≤ (1 + ε) · ‖x

[k]
‖p for a p ∈ {1, 2}

with probability at least 1− δ. Moreover, suppose its output x̂ has support on a set of size s(k, ε, n, δ). We
show the following black box two-round transformation.

Theorem 4.1. Assume s(k, ε, n, δ) = O(k). Then there is a 2-round sparse recovery algorithm for n-
dimensional vectors x, which, in the first round uses m(k, ε/5,poly(k/ε), 1/100) measurements and in the
second uses O(k ·m(1, 1, n,Θ(1/k))) measurements. It succeeds with constant probability.

9

Corollary 4.2. For p = 2, there is a 2-round sparse recovery algorithm for n-dimensional vectors x such
that the total number of measurements is O(1

εk log(k/ε) + k log(n/k)).

Proof of Corollary 4.2. In the first round it suffices to use CountSketch with s(k, ε, n, 1/100) = 2k, which
holds for any ε > 0 [28]. We also have that m(k, ε/5,poly(k/ε), 1/100) = O(1

εk log(k/ε)). Using [5, 7,
14], in the second round we can set m(1, 1, n,Θ(1/k)) = O(log n). The bound follows by observing that
1
εk log(k/ε) + k log(n) = O(1

εk log(k/ε) + k log(n/k)).

Proof of Theorem 4.1. In the first round we perform a dimensionality reduction of the n-dimensional input
vector x to a poly(k/ε)-dimensional input vector y. We then apply the black box sparse recovery algorithm
on the reduced vector y, obtaining a list of s(k, ε/5, poly(k/ε), 1/100) coordinates, and show for each
coordinate in the list, if we choose the largest preimage for it in x, then this list of coordinates can be used
to provide a 1 + ε approximation for x. In the second round we then identify which heavy coordinates in
x map to those found in the first round, for which it suffices to invoke the black box algorithm with only a
constant approximation. We place the estimated values of the heavy coordinates obtained in the first pass in
the locations of the heavy coordinates obtained in the second pass.

Let N = poly(k/ε) be determined below. Let h : [n]→ [N] and σ : [n]→ {−1, 1} be Θ(logN)-wise
independent random functions. Define the vector y by yi =

∑
j | h(j)=i σ(j)xj . Let Y (i) be the vector x

restricted to coordinates j ∈ [n] for which h(j) = i. Because the algorithm is invariant under permutation
of coordinates of y, we may assume for simplicity of notation that y is sorted: |y1| ≥ . . . ≥ |yN | = 0.

We note that such a dimensionality reduction is often used in the streaming literature. For example,
the sketch of [30] for `2-norm estimation utilizes such a mapping. A “multishot” version (that uses several
functions h) has been used before in the context of sparse recovery [5, 7] (see [14] for an overview). Here,
however, we need to analyze a “single-shot” version.

Let p ∈ {1, 2}, and consider sparse recovery with the `p/`p guarantee. We can assume that ‖x‖p = 1.
We need two facts concerning concentration of measure.

Fact 4.3. (see, e.g., Lemma 2 of [23]) Let X1, . . . , Xn be such that Xi has expectation µi and variance v2
i ,

and Xi ≤ K almost surely. Then if the Xi are `-wise independent for an even integer ` ≥ 2,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ λ
]
≤ 2O(`)

((
v
√
`/λ
)`

+ (K`/λ)`
)

where µ =
∑

i µi and v2 =
∑

i v
2
i .

Fact 4.4. (Khintchine inequality) ([18]) For t ≥ 2, a vector z and a t-wise independent random sign vector
σ of the same number of dimensions, E[|〈z, σ〉|t] ≤ ‖z‖t2(

√
t)t.

We start with a probabilistic lemma. LetZ(j) denote the vector Y (j) with the coordinatem(j) of largest
magnitude removed.

Lemma 4.5. Let r = O
(
‖x

[k]
‖p · logN

N1/6

)
and N be sufficiently large. Then with probability ≥ 99/100,

1. ∀j ∈ [N], ‖Z(j)‖p ≤ r.

2. ∀i ∈ [N1/3], |σ(i) · yh(i) − xi| ≤ r,

3. ‖y
[k]
‖p ≤ (1 +O(1/

√
N)) · ‖x

[k]
‖p +O(kr),

4. ∀j ∈ [N], if h−1(j) ∩ [N1/3] = ∅, then |yj | ≤ r,

5. ∀j ∈ [N], ‖Y (j)‖0 = O(n/N + logN).

10

Proof. We start by defining events E , F and G that will be helpful in the analysis, and showing that all of
them are satisfied simultaneously with constant probability.

Event E: Let E be the event that h(1), h(2), . . . , h(N1/3) are distinct. Then Prh[E] ≥ 1− 1/N1/3.

Event F: Fix i ∈ [N]. Let Z ′ denote the vector Y (h(i)) with the coordinate i removed. Applying Fact 4.4
with t = Θ(logN),

Pr
σ

[|σ(i)yh(i) − xi| ≥ 2
√
t · ‖Z(h(i))‖2]

≤ Pr
σ

[|σ(i)yh(i) − xi| ≥ 2
√
t ·
∥∥Z ′∥∥

2
]

≤ Pr
σ

[|σ(i)yh(i) − xi|t ≥ 2t(
√
t)t · ‖Z ′‖t2]

≤ Pr
σ

[|σ(i)yh(i) − xi|t ≥ 2t E[
∣∣〈σ, Z ′〉∣∣t]]

= Pr
σ

[|σ(i)yh(i) − xi|t ≥ 2t E[|σ(i)yh(i) − xi|t] ≤ 1/N4/3.

Let F be the event that for all i ∈ [N], |σ(i)yh(i) − xi| ≤ 2
√
t · ‖Z(h(i))‖2, so Prσ[F] ≥ 1− 1/N .

Event G: Fix j ∈ [N] and for each i ∈ {N1/3 + 1, . . . , n}, let Xi = |xi|p1h(i)=j (i.e., Xi = |xi|p if
h(i) = j). We apply Lemma 4.3 to the Xi. In the notation of that lemma, µi = |xi|p/N and v2

i ≤ |xi|2p/N ,
and so µ = ‖x

[N1/3]
‖pp/N and v2 ≤ ‖x

[N1/3]
‖2p2p/N . Also, K = |xN1/3+1|p. Function h is Θ(logN)-wise

independent, so by Fact 4.3,

Pr

[∣∣∣∣∣∑
i

Xi −
‖x

[N1/3]
‖pp

N

∣∣∣∣∣ ≥ λ
]

≤2O(`)

((
‖x

[N1/3]
‖p2p
√
`/(λ
√
N)
)`

+
(
|xN1/3+1|

p`/λ
)`)

for any λ > 0 and an ` = Θ(logN). For ` large enough, there is a

λ = Θ(‖x
[N1/3]

‖p2p
√

(logN)/N + |xN1/3+1|
p · logN)

for which this probability is≤ N−2. Let G be the event that for all j ∈ [N], ‖Z(j)‖pp ≤ C
(‖x

[N1/3]
‖pp

N + λ

)
for some universal constant C > 0. Then Pr[G | E] ≥ 1− 1/N .

By a union bound, Pr[E ∧ F ∧ G] ≥ 999/1000 for N sufficiently large.
We know proceed to proving the five conditions in the lemma statement. In the analysis we assume that

the event E ∧ F ∧ G holds (i.e., we condition on that event).

First Condition: This condition follows from the occurrence of G, and using that ‖x
[N1/3]

‖2p ≤ ‖x[N1/3]
‖p,

and ‖x
[N1/3]

‖p ≤ ‖x[k]
‖p, as well as (N1/3 − k + 1)|xN1/3+1|p ≤ ‖x[k]

‖pp. One just needs to make these
substitutions into the variable λ defining G and show the value r serves as an upper bound (in fact, there is
a lot of room to spare, e.g., r/ logN is also an upper bound).

Second Condition: This condition follows from the joint occurrence of E , F , and G.

11

Third Condition: For the third condition, let y′ denote the restriction of y to coordinates in the set
[N] \ {h(1), h(2), ..., h(k)}. For p = 1 and for any choice of h and σ, ‖y′‖1 ≤ ‖x[k]

‖1. For p = 2,
the vector y is the sketch of [30] for `2-estimation. By their analysis, with probability ≥ 999/1000,
‖y′‖22 ≤ (1 + O(1/

√
N))‖x′‖22, where x′ is the vector whose support is [n] \ ∪ki=1h

−1(i) ⊆ [n] \ [k].
We assume this occurs and add 1/1000 to our error probability. Hence, ‖y′‖22 ≤ (1 +O(1/

√
N))‖x

[k]
‖22.

We relate ‖y′‖pp to ‖y
[k]
‖pp. Consider any j = h(i) for an i ∈ [k] for which j is not among the top k

coordinates of y. Call such a j lost. By the first condition of the lemma, |σ(i)yj − xi| ≤ r. Since j is
not among the top k coordinates of y, there is a coordinate j′ among the top k coordinates of y for which
j′ /∈ h([k]) and |yj′ | ≥ |yj | ≥ |xi| − r. We call such a j′ a substitute. We can bijectively map substitutes to
lost coordinates. It follows that ‖y

[k]
‖pp ≤ ‖y′‖pp +O(kr) ≤ (1 +O(1/

√
N))‖x

[k]
‖pp +O(kr).

Fourth Condition: This follows from the joint occurrence of E ,F , and G, and using that |xm(j)|p ≤
‖x

[k]
‖pp/(N1/3 − k + 1) since m(j) /∈ [N1/3].

Fifth Condition: For the fifth condition, fix j ∈ [N]. We apply Fact 4.3 where the Xi are indicator
variables for the event h(i) = j. Then E[Xi] = 1/N and Var[Xi] < 1/N . In the notation of Fact 4.3,
µ = n/N , v2 < n/N , and K = 1. Setting ` = Θ(logN) and λ = Θ(logN +

√
(n logN)/N), we have

by a union bound that for all j ∈ [N], ‖Y (j)‖0 ≤ n
N + Θ(logN +

√
(n logN)/N) = O(n/N + logN),

with probability at least 1− 1/N .

By a union bound, all events jointly occur with probability at least 99/100, which completes the proof.

EventH: LetH be the event that the algorithm returns a vector ŷ with ‖ŷ − y‖p ≤ (1 + ε/5)‖y
[k]
‖p. Then

Pr[H] ≥ 99/100. Let S be the support of ŷ, so |S| = s(k, ε/5, N, 1/100). We condition onH.

In the second round we run the algorithm on Y (j) for each j ∈ S, each using m(1, 1, ‖Y (j)‖0,Θ(1/k)))-
measurements. Using the fifth condition of Lemma 4.5, we have that ‖Y (j)‖0 = O(εn/k + log(k)/ε) for
N = poly(k/ε) sufficiently large.

For each invocation on a vector Y (j) corresponding to a j ∈ S, the algorithm takes the largest (in
magnitude) coordinate HH(j) in the output vector, breaking ties arbitrarily. We output the vector x̂ with
support equal to T = {HH(j) | j ∈ S}. We assign the value σ(xj)ŷj to HH(j). We have

‖x− x̂‖pp =‖(x− x̂)T ‖pp + ‖(x− x̂)[n]\T ‖pp
=‖(x− x̂)T ‖pp + ‖x[n]\T ‖pp. (8)

The rest of the analysis is devoted to bounding the RHS of equation 8.

Lemma 4.6. For N = poly(k/ε) sufficiently large, conditioned on the events of Lemma 4.5 andH,

‖x[n]\T ‖pp ≤ (1 + ε/3)‖x
[k]
‖pp.

Proof. If [k] \ T = ∅, the lemma follows by definition. Otherwise, if i ∈ ([k] \ T), then i ∈ [k], and so
by the second condition of Lemma 4.5, |xi| ≤ |yh(i)|+ r. We also use the third condition of Lemma 4.5 to

12

obtain ‖y
[k]
‖p ≤ (1 +O(1/

√
N)) · ‖x

[k]
‖p +O(kr). By the triangle inequality,

 ∑
i∈[k]\T

|xi|p
1/p

≤ k1/pr +

 ∑
i ∈ [k]\T

|yh(i)|p
1/p

≤k1/pr +

 ∑
i ∈ [N]\S

|yi|p
1/p

≤k1/pr + (1 + ε/5) · ‖y
[k]
‖p.

The lemma follows using that r = O(‖x
[k]
‖2 · (logN)/N1/6) and N = poly(k/ε) is sufficiently large.

We bound ‖(x− x̂)T ‖pp using Lemma 4.5, |S| ≤ poly(k/ε), and that N = poly(k/ε) is sufficiently large.

‖(x− x̂)T ‖p

≤

∑
j∈S
|xHH(j) − σ(HH(j)) · ŷj |p

1/p

≤

∑
j∈S

(|yj − ŷj |+ |σ(HH(j)) · xHH(j) − yj |)p
1/p

≤

∑
j∈S
|yj − ŷj |p

1/p

+

∑
j∈S
|σ(HH(j)) · xHH(j) − yj |p

1/p

≤(1 + ε/5)‖y
[k]
‖p

+

∑
j∈S
|σ(HH(j)) · xHH(j) − yj |p

1/p

≤(1 + ε/5)(1 +O(1/
√
N))‖x

[k]
‖p +O(kr)

+

∑
j∈S
|σ(HH((j)) · xHH(j) − yj |p

1/p

≤(1 + ε/4)‖x
[k]
‖p

+

∑
j∈S
|σ(HH(j)) · xHH(j) − yj |p

1/p

Event I: We condition on the event I that all second round invocations succeed. Note that Pr[I] ≥ 99/100.

We need the following lemma concerning 1-sparse recovery algorithms.

13

Lemma 4.7. Let w be a vector of real numbers. Suppose |w1|p > 9
10 · ‖w‖

p
p. Then for any vector ŵ for

which ‖w − ŵ‖pp ≤ 2 · ‖w
[1]
‖pp, we have |ŵ1|p > 3

5 · ‖w‖
p
p. Moreover, for all j > 1, |ŵj |p < 3

5 · ‖w‖
p
p.

Proof. ‖w − ŵ‖pp ≥ |w1 − ŵ1|p, so if |ŵ1|p < 3
5 · ‖w‖

p
p, then ‖w − ŵ‖pp >

(
9
10 −

3
5

)
‖w‖pp = 3

10 · ‖w‖
p
p.

On the other hand, ‖w
[1]
‖pp < 1

10 · ‖w‖
p
p. This contradicts that ‖w − ŵ‖pp ≤ 2 · ‖w

[1]
‖pp. For the second

part, for j > 1 we have |wj |p < 1
10 · ‖w‖

p
p. Now, ‖w − ŵ‖pp ≥ |wj − ŵj |p, so if |ŵj |p ≥ 3

5 · ‖w‖
p
p,

then ‖w − ŵ‖pp >
(

3
5 −

1
10

)
‖w‖pp = 1

2 · ‖w‖
p
p. But since ‖w

[1]
‖pp < 1

10 · ‖w‖
p
p, this contradicts that

‖w − ŵ‖pp ≤ 2 · ‖w
[1]
‖pp.

It remains to bound
∑

j∈S |σ(HH(j)) ·xHH(j)−yj |p. We show for every j ∈ S, |σ(HH(j)) ·xHH(j)−
yj |p is small.

Recall that m(j) is the coordinate of Y (j) with the largest magnitude. There are two cases.

Case 1: m(j) /∈ [N1/3]. In this case observe that HH(j) /∈ [N1/3] either, and h−1(j) ∩ [N1/3] = ∅.
It follows by the fourth condition of Lemma 4.5 that |yj | ≤ r. Notice that |xHH(j)|p ≤ |xm(j)|p ≤

‖x
[k]
‖pp

N1/3−k .

Bounding |σ(HH(j)) · xHH(j) − yj | by |xHH(j)| + |yj |, it follows for N = poly(k/ε) large enough that
|σ(HH(j)) · xHH(j) − yj |p ≤ ε/4 · ‖x[k]

‖p/|S|).

Case 2: m(j) ∈ [N1/3]. If HH(j) = m(j), then |σ(HH(j)) · xHH(j) − yj | ≤ r by the second con-
dition of Lemma 4.5, and therefore

|σ(HH(j)) · xHH(j) − yj |p ≤ rp ≤ ε/4 · ‖x[k]
‖p/|S|

for N = poly(k/ε) large enough.
Otherwise, HH(j) 6= m(j). From condition 2 of Lemma 4.5 and m(j) ∈ [N1/3], it follows that

|σ(HH(j)))xHH(j) − yj |
≤|σ(HH(j))xHH(j) − σ(m(j))xm(j)|+ |σ(m(j))xm(j) − yj |
≤|xHH(j)|+ |xm(j)|+ r

Notice that |xHH(j)| + |xm(j)| ≤ 2|xm(j)| since m(j) is the coordinate of largest magnitude. Now, condi-
tioned on I, Lemma 4.7 implies that |xm(j)|p ≤ 9

10 · ‖Y (j)‖pp, or equivalently, |xm(j)| ≤ 101/p · ‖Z(j)‖p.
Finally, by the first condition of Lemma 4.5, we have ‖Z(j)‖p = O(r), and so |σ(HH(j))xHH(j)− yj |p =
O(rp), which as argued above, is small enough for N = poly(k/ε) sufficiently large.

The proof of our theorem follows by a union bound over the events that we defined.

Acknowledgements

This material is based upon work supported by the Space and Naval Warfare Systems Center Pacific under
Contract No. N66001-11-C-4092, David and Lucille Packard Fellowship, MADALGO (Center for Massive
Data Algorithmics, funded by the Danish National Research Association) and NSF grant CCF-1012042. E.
Price is supported in part by an NSF Graduate Research Fellowship.

14

References

[1] A. Aldroubi, H. Wang, and K. Zarringhalam, “Sequential adaptive compressed sampling via huffman
codes,” Preprint, 2008.

[2] A. Bruex, A. Gilbert, R. Kainkaryam, J. Schiefelbein, and P. Woolf, “Poolmc: Smart pooling of mRNA
samples in microarray experiments,” BMC Bioinformatics, 2010.

[3] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate mea-
surements,” Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1208–1223, 2006.

[4] R. Castro, J. Haupt, R. Nowak, and G. Raz, “Finding needles in noisy haystacks,” Proc. IEEE Conf.
Acoustics, Speech, and Signal Proc., p. 51335136, 2008.

[5] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data streams,” ICALP, 2002.

[6] G. Cormode and S. Muthukrishnan, “Improved data stream summaries: The count-min sketch and its
applications,” LATIN, 2004.

[7] ——, “Combinatorial algorithms for Compressed Sensing,” in Proc. 40th Ann. Conf. Information Sci-
ences and Systems, Princeton, Mar. 2006.

[8] Defense Sciences Office, “Knowledge enhanced compressive measurement,” Broad Agency Announce-
ment, vol. DARPA-BAA-10-38, 2010.

[9] K. Do Ba, P. Indyk, E. Price, and D. Woodruff, “Lower bounds for sparse recovery,” SODA, 2010.

[10] D. L. Donoho, “Compressed Sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289–1306, Apr.
2006.

[11] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imag-
ing via compressive sampling,” IEEE Signal Processing Magazine, 2008.

[12] S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich, “The gelfand widths of lp-balls for 0 < p ≤ 1,” J.
Complexity, 2010.

[13] A. Y. Garnaev and E. D. Gluskin, “On widths of the euclidean ball,” Sov. Math., Dokl., p. 200204,
1984.

[14] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,” Proceedings of IEEE, 2010.

[15] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss, “Fast, small-space
algorithms for approximate histogram maintenance,” in ACM Symposium on Theoretical Computer
Science, 2002.

[16] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss, “Approximate sparse recovery: optimizing time and
measurements,” in STOC, 2010, pp. 475–484.

[17] E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets,” Math. USSR-Sb.,
vol. 48, p. 173182, 1984.

[18] U. Haagerup, “The best constants in the Khintchine inequality,” Studia Math., vol. 70, no. 3, pp. 231–
283, 1982.

15

[19] J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, “Compressive distilled sensing,” Asilomar, 2009.

[20] J. Haupt, R. Castro, and R. Nowak, “Adaptive sensing for sparse signal recovery,” Proc. IEEE 13th
Digital Sig. Proc./5th Sig. Proc. Education Workshop, p. 702707, 2009.

[21] P. Indyk, “Sketching, streaming and sublinear-space algorithms,” Graduate course notes, available at
http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[22] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Processing, vol.
56(6), p. 23462356, 2008.

[23] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff, “Fast moment estimation in data streams in
optimal space,” CoRR, vol. abs/1007.4191, 2010.

[24] B. S. Kashin, “Diameters of some finite-dimensional sets and classes of smooth functions.” Math.
USSR, Izv.,, vol. 11, p. 317333, 1977.

[25] D. M. Malioutov, S. Sanghavi, and A. S. Willsky, “Compressed sensing with sequential observations,”
ICASSP, 2008.

[26] A. McGregor, “Graph mining on streams,” Encyclopedia of Database Systems, p. 12711275, 2009.

[27] S. Muthukrishnan, “Data streams: Algorithms and applications),” Foundations and Trends in Theoret-
ical Computer Science, 2005.

[28] E. Price and D. Woodruff, “(1+eps)-approximate sparse recovery,” FOCS, 2011.

[29] N. Shental, A. Amir, and O. Zuk, “Identification of rare alleles and their carriers using compressed
se(que)nsing,” Nucleic Acids Research, vol. 38(19), pp. 1–22, 2010.

[30] M. Thorup and Y. Zhang, “Tabulation based 4-universal hashing with applications to second mo-
ment estimation,” in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2004, pp. 615–624.

16

