
Space-optimal Heavy Hitters with Strong Error Bounds

Radu Berinde
MIT

texel@mit.edu

Graham Cormode
AT&T Labs–Research

graham@research.att.com

Piotr Indyk∗

MIT
indyk@mit.edu

Martin J. Strauss†

University of Michigan
martinjs@umich.edu

ABSTRACT
The problem of finding heavy hitters and approximating the fre-
quencies of items is at the heart of many problems in data stream
analysis. It has been observed that several proposed solutions to
this problem can outperform their worst-case guarantees on real
data. This leads to the question of whether some stronger bounds
can be guaranteed. We answer this in the positive by showing that
a class of “counter-based algorithms” (including the popular and
very space-efficient FREQUENT and SPACESAVING algorithms)
provide much stronger approximation guarantees than previously
known. Specifically, we show that errors in the approximation
of individual elements do not depend on the frequencies of the
most frequent elements, but only on the frequency of the remaining
“tail.” This shows that counter-based methods are the most space-
efficient (in fact, space-optimal) algorithms having this strong error
bound.

This tail guarantee allows these algorithms to solve the “sparse
recovery” problem. Here, the goal is to recover a faithful represen-
tation of the vector of frequencies, f . We prove that using space
O(k), the algorithms construct an approximation f∗ to the fre-
quency vector f so that the L1 error ‖f − f∗‖1 is close to the
best possible error minf ′ ‖f ′ − f‖1, where f ′ ranges over all vec-
tors with at most k non-zero entries. This improves the previously
best known space bound of about O(k log n) for streams without
element deletions (where n is the size of the domain from which
stream elements are drawn). Other consequences of the tail guar-
antees are results for skewed (Zipfian) data, and guarantees for ac-
curacy of merging multiple summarized streams.

∗Supported in part by David and Lucille Packard Fellowship and
by MADALGO (Center for Massive Data Algorithmics, funded by
the Danish National Research Association) and by NSF grant CCF-
0728645.
†Supported by NSF CAREER award CCF 0743372 and
DARPA/ONR N66001-08-1-2065

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-553-6 /09/06 ...$5.00.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; C.2.3 [Computer-Communication Networks]: Network Op-
erations—Network monitoring; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
frequency estimation, heavy hitters, streaming algorithms

1. INTRODUCTION
Data stream algorithms have become an indispensable tool for

analyzing massive data sets [21, 27]. Such algorithms aim to pro-
cess huge streams of updates in a single pass and store a compact
summary from which properties of the input can be discovered,
with strong guarantees on the quality of the result. This approach
has found many applications, in large scale data processing and
data warehousing [19, 4, 16, 18], as well as in other areas, such as
network measurements [1, 11, 13, 15], sensor networks [5, 29] and
compressed sensing [17, 7].

Finding the “heavy hitters” is one of the quintessential problems
in data stream algorithms. Given a stream of items (possibly with
weights attached), find those items with the greatest total weight.
This is an intuitive problem, that applies to many natural questions:
given a stream of search engine queries, which are the most fre-
quently occurring terms? Given a stream of supermarket transac-
tions and prices, which items have the highest total dollar sales?
Further, this simple question turns out to be a core subproblem of
many more complex computations over data streams, such as esti-
mating the entropy [8], and clustering geometric data [20]. There-
fore, it is of high importance to design efficient algorithms for this
problem, and understand the performance of existing ones.

The problem can be formalized into one of estimating item fre-
quencies. In this problem we are given a stream of N elements
from some universe; the goal is to compute, for each universe ele-
ment i, an estimator f̂i that approximates fi, the number of times
the element i occurs in the data stream (or the sum of associated
weights in a weighted version). Such estimators provide a succinct
representation of the data stream, with a controllable trade-off be-
tween description size and approximation error.

An algorithm for frequency estimation is characterized by two
related parameters: the space1 and the bounds on the error in es-

1We measure space in memory words, each consisting of a loga-
rithmic number of bits.

157

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/9342069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithm Type Space Error bound
FREQUENT [13, 26, 23] Counter O(1/ε) |fi − f̂i| ≤ εF1

FREQUENT [6] Counter O(1/ε) |fi − f̂i| ≤ εF
res(1)
1

LOSSYCOUNTING [24] Counter O(1/ε log(εF1)) |fi − f̂i| ≤ εF1

SPACESAVING [25] Counter O(1/ε) |fi − f̂i| ≤ εF1

Count-Min [12] Sketch O((k/ε) · log n) |fi − f̂i| ≤ ε/k · F res(k)
1

Count-Sketch [9] Sketch O((k/ε) · log n) (fi − f̂i)
2 ≤ ε/k · F res(k)

2

This paper Counter O(k/ε) |fi − f̂i| ≤ ε/k · F res(k)
1

Table 1: Previously known bounds of frequency estimation algorithms.
F1 is the sum of all frequencies; F

res(k)
1 is the sum of all but the top k frequencies; F

res(k)
2 is the sum of the squares of all but the top k

frequencies; n is the size of the domain from which the stream elements are drawn.

timating the fis. The error bounds are typically of the “additive”
form, namely we have |fi − f̂i| ≤ εB, for a B (as in “bound”)
that is a function of the stream. The bound B is equal either to the
size of the whole stream (equivalently, to the quantity F1, where
Fp =

P
i(fi)

p), or to the size of the residual tail of the stream,

given by F
res(k)
1 , the sum of the frequencies of all elements other

than the k most frequent ones (heavy hitters). The residual guaran-
tee is more desirable, since it is always at least as good as the F1

bound. More strongly, since streams from real applications often
obey a very skewed frequency distribution, with the heavy hitters
constituting the bulk of the stream, a residual guarantee is asymp-
totically better. In particular, in the extreme case when there are
only k distinct elements present in the stream, the residual error
bound is zero, i.e. the frequency estimation is exact.

Algorithms for this problem have fallen into two main classes:
(deterministic) “counter” algorithms and (randomized) “sketch” al-
gorithms. Table 1 summarizes the space and error bounds of some
of the main examples of such algorithms. As is evident from the
table, the bounds for the counter and sketching algorithms are in-
comparable: counter algorithms use less space, but have worse er-
ror guarantees than sketching algorithms. In practice, however, the
actual performance of counter-based algorithms has been observed
to be appreciably better than of the sketch-based ones, given the
same amount of space [10]. The reason for this disparity has not
previously been well understood or explained. This has led users
to apply very conservative bounds in order to provide the desired
guarantees; it has also pushed users towards sketch algorithms in
favor of counter algorithms since the latter are not perceived to of-
fer the same types of guarantee as the former.

Our Contributions. In this paper we show that the good empirical
performance of counter-based algorithms is not an accident: they
actually do satisfy a much stronger error bound than previously
thought. Specifically:

• We identify a general class of Heavy-Tolerant Counter algo-
rithms (HTC), that contains the most popular FREQUENT

and SPACESAVING algorithms. The class captures the es-
sential properties of the algorithms and abstracts away from
the specific mechanics of the procedures.

• We show that any HTC algorithm that has an εF1 error guar-
antee in fact satisfies the stronger residual guarantee.

We conclude that FREQUENT and SPACESAVING offer the
residual bound on error, while using less space than sketching algo-
rithms. Moreover, counter algorithms have small constants of pro-
portionality hidden in their asymptotic cost compared to the much
larger logarithmic factors of sketch algorithms, making these space

savings very considerable in practice. We also establish through
a lower bound that the space usage of these algorithms is within
a small constant factor of the space required by any counter algo-
rithm that offers the residual bound on error.

The new bounds have several consequences beyond the immedi-
ate practical ramifications. First, we show that they provide bet-
ter bounds for the sparse recovery problem, a streaming analog
of Compressed Sensing [14, 7, 17, 28]. This problem is to find
the best representation f∗ of the frequency distribution, so that f∗

has only k non-zero entries. Such a representation captures exact
stream statistics for all but ‖f − f∗‖1 stream elements. We show
that using a counter algorithm to produce the k largest estimated
frequencies f̂i yields a good solution to this problem. Formally, let
S be the set of the k largest entries in f̂ , generated by a counter al-
gorithm with O(k/ε) counters. Let f∗ be an n-dimensional vector
such that f∗

i is equal to f̂i if i ∈ S and f∗
i = 0 otherwise. Then we

show that under the Lp norm, for any p ≥ 1, we have

‖f − f∗‖p ≤ εF
res(k)
1

k1−1/p
+ (F res(k)

p)1/p

This is the best known result for this problem in a streaming
setting; note that the error is always at least (F

res(k)
p)1/p. The best

known sketching algorithms achieve this bound using Ω(k log n
k
)

space (see [2, 3, 22]); in contrast, our approach yields a space bound
of O(k). By extracting all m approximated values from a counter
algorithm (as opposed to just top k), we are able to show another
result. Specifically, by modifying the algorithms to ensure that they
always provide an underestimate of the frequencies, we show that
the resulting reconstruction has Lp error (1+ε)(ε/k)1−1/pF

res(k)
1

for any p ≥ 1.
As noted above, many common frequency distributions are nat-

urally skewed. We show that if the frequencies follow a Zipfian
distribution with parameter α > 1, then the same tail guarantee
follows using only O(ε−1/α) space. Lastly, we also discuss exten-
sions to the cases when streams can include arbitrary weights for
each occurrence of an item; and when multiple streams are sum-
marized and need to be merged together into a single summary. We
show how the algorithms considered can be generalized to handle
both of these situations.

1.1 Related Work
There is a large body of algorithms proposed in the literature

for heavy hitters problems and their variants; see [10] for a survey.
Most of them can be classified as either counter-based or sketch-
based. The first counter algorithm is due to Misra and Gries [26],
which we refer to as FREQUENT. Several subsequent works dis-
cussed efficient implementation and improved guarantees for this

158

algorithm [13, 6]. In particular, Bose et al. showed that it offers
an F

res(1)
1 guarantee [6]. Our main result is to improve this to

F
res(k)
1 , for a broader class of algorithms.
A second counter algorithm is the LOSSYCOUNTING algorithm

of Manku and Motwani. This has been shown to require O(1/ε)
counters over randomly ordered streams to give an εF1 guaran-
tee, but there are adversarial order streams for which it requires
O(1/ε log εn) [24]. Our results hold over all possible stream or-
derings.

The most recent counter solution is the SPACESAVING algo-
rithm due to Metwally et al. [25]. The algorithm is shown to offer
an F1 guarantee, and also analyzed in the presence of data with
Zipfian frequency distribution. Here, we show an F

res(k)
1 bound,

and demonstrate similar bounds for Zipfian data for a larger class
of counter algorithms.

Sketch algorithms are based on linear projections of the frequency
vector onto a smaller sketch vector, using compact hash functions
to define the projection. Guarantees in terms of F

res(k)
1 or F

res(k)
2

follow by arguing that the items with the k largest frequencies are
unlikely to (always) collide under the random choice of the hash
functions, and so these items can effectively be “removed” from
consideration. Because of this random element, sketches are an-
alyzed probabilistically, and have a probability of failure that is
bounded by 1/nc for a constant c (n is the size of the domain
from which the stream elements are drawn). The Count-Sketch
requires O((k/ε) log n) counters to give guarantees on the sum of
squared errors in terms of F

res(k)
2 [9]; the Count-Min sketch uses

O((k/ε) log n) counters to give guarantees on the absolute error
in terms of F

res(k)
1 [12]. These two guarantees are incomparable

in general, varying based on the distribution of frequencies. A key
distinction of sketch algorithms is that they allow both positive and
negative updates (where negative updates can correspond to dele-
tions, in a transactional setting, or simply arbitrary signal values,
in a signal processing environment). This, along with the fact that
they are linear transforms, means that they can be used to solve
problems such as designing measurements for compressed sensing
systems [17, 7]. So, although our results show that counter algo-
rithms are strictly preferable to sketches when both are applicable,
there are problems that are solved by sketches that cannot be solved
using counter algorithms.

We summarize the main properties of these algorithms, along
with the correspond results based on our analysis, in Table 1.

2. PRELIMINARIES
We introduce the notation used throughout this paper. The al-

gorithms maintain at most m counters which correspond to a “fre-
quent” set of elements occurring in the input stream. The input
stream contains elements, which we assume to be integers between
1 and n. We denote a stream of size N by u1, u2, . . . uN . We use
ux...y as a shorthand for the partial stream ux, ux+1, . . . , uy.

We denote frequencies of elements by an n-dimensional vec-
tor f . For ease of notation, we assume without loss of generality
that elements are indexed in order of decreasing frequency, so that
f1 ≥ f2 ≥ . . . ≥ fn. When the stream is not understood from con-
text, we specify it explicitly, e.g. f(ux...y) is the frequency vector
for the partial stream ux...y. We denote the sum of the frequencies
by F1; we denote the sum of frequencies except the largest ones by
F

res(k)
1 , and we generalize the definition to sums of powers of the

frequencies:

F res(k)
p =

nX
i=k+1

fp
i , Fp = F res(0)

p

The algorithms considered in this paper can be thought of as ad-
hering to the following form. The state of an algorithm is repre-
sented by an n-dimensional vector of counters c. The vector c has
at most m non-zero elements. We denote the “frequent” set by
T = {i | ci �= 0}, since only this set needs to be explicitly stored.
The counter value of an element is an approximation for its fre-
quency; the error vector of the approximation is denoted by δ, with
δi = |fi − ci|.

We demonstrate our results with reference to two known counter
algorithms: FREQUENT and SPACESAVING. Although similar,
the two algorithms differ in the analysis and their behavior in prac-
tice. Both maintain their frequent set T , and process a stream of
updates. Given a new item i in the stream which is stored in T ,
both simply increase the corresponding counter ci; or, if i /∈ T
and |T | < m, then i is stored with a count of 1. The algorithms
differ when an unstored item is seen and |T | = m: FREQUENT

decrements all stored counters by 1, and (implicitly) throws out
any counters with zero count; SPACESAVING finds an item j with
smallest non-zero count cj and assigns ci ← cj + 1, followed by
cj ← 0, so in effect i replaces j in T . Pseudocode for these algo-
rithms is presented in Figure 1

These algorithms are known to provide a “heavy hitter” guaran-
tee on the approximation errors of the counters:

Definition 1. An m-counter algorithm provides a heavy hitter
guarantee with constant A > 0 if, for any stream,

δi ≤
—
A

F1

m

�
∀i

More precisely, they both provide this guarantee with constant
A = 1. Our result is that they also satisfy the following stronger
guarantee:

Definition 2. An m-counter algorithm provides a k-tail guaran-
tee with constants (A, B), with A, B > 0 if for any stream

δi ≤
$
A

F
res(k)
1

m−Bk

%
∀i

Note that the heavy hitter guarantee is equivalent to the 0-tail
guarantee. Our general proof (which can be applied to a broad
class of algorithms) yields a k-tail guarantee with constants A = 1,
B = 2 for both algorithms (for any k ≤ m/2). However, by
considering particular features of FREQUENT and SPACESAVING,
we prove a k-tail guarantee with constants A = B = 1 for any
k < m following appropriate analysis (see appendices B, C).

The lower bound proved in appendix A establishes that any counter

algorithm that provides an error bound of
F

res(k)
1
m−k

must use at least
(m− k)/2 counters; thus the number of counters FREQUENT and
SPACESAVING use is within a small factor (3 for k ≤ m/3) of the
optimal.

3. RESIDUAL ERROR BOUND
In this section we state and prove our main result on the error

bound for a class of heavy-tolerant counter algorithms. We begin
by formally defining this class.

Definition 3. A value i is x-prefix guaranteed for the stream
u1...s if after the first x < s elements of the stream have been pro-
cessed, i will stay in T even if some elements are removed from the
remaining stream (including occurrences of i). Formally, the value
i is x-prefix guaranteed if 0 ≤ x < s and ci(u1...xv1...t) > 0 for
all subsequences v1...t of u(x+1)...s, 0 ≤ t ≤ s− x.

159

Algorithm 1: FREQUENT(m)

T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else forall j ∈ T do
cj ← cj − 1;
if cj = 0 then

T ← T\{j};

Algorithm 2: SPACESAVING(m)

T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else
j ← arg minj∈T cj ;
ci ← cj + 1;
T ← T ∪ {i}\{j};

Figure 1: Pseudocode for FREQUENT and SPACESAVING algorithms

Note that if i is x-prefix guaranteed, then i is also y-prefix guar-
anteed for all y > x.

Definition 4. A counter algorithm is heavy-tolerant if extra oc-
currences of guaranteed elements do not increase the estimation
error. Formally, an algorithm is heavy-tolerant if for any stream
u1...s, given any x, 1 ≤ x < s, for which element i = ux is
(x−1)-prefix guaranteed, it holds that

δj(u1...s) ≤ δj(u1...(x−1)u(x+1)...s) ∀j

THEOREM 1. Algorithms FREQUENT and SPACESAVING are
heavy-tolerant.

THEOREM 2. If a heavy-tolerant algorithm provides a heavy
hitter guarantee with constant A, it also provides a k-tail guarantee
with constants (A, 2A), for any k, 1 ≤ k < m/2A.

3.1 Proof of Heavy Tolerance
Intuitively, this is true because occurrences of an element already

in the frequent set only affect the counter value of that element; and,
as long as the element never leaves the frequent set, the value of its
counter does not affect the algorithm’s other choices.

PROOF OF THEOREM 1. Denote v1...t = u(x+1)...(x+t), with
t ≤ s− x. We prove by induction on t that for both algorithms

c(u1...xv1...t) = c(u1...(x−1)v1...t) + ei

where ei is the i-th row of In, the n×n identity matrix; this implies
that

δ(u1...xv1...t) = δ(u1...(x−1)v1...t)

Base case at t = 0: By the hypothesis: ci(u1...(x−1)) �= 0, hence
when element ux = i arrives after processing u1...x, both FRE-
QUENT and SPACESAVING just increase i’s counter:

c(u1...x) = c(u1...(x−1)) + ei

Induction step for t > 0: We are given that

c(u1...xv1...(x−1)) = c(u1...(x−1)v1...(t−1)) + ei

Note that since i is (x−1)-prefix guaranteed, these vectors have
the same support.
Case 1: cvt(u1...xv1...(t−1)) > 0. Hence
cvt(u1...(x−1)v1...(t−1)) > 0. For both streams, vt’s counter just
gets incremented and thus

c(u1...xv1...t) = c(u1...xv1...(t−1)) + evt

= c(u1...(x−1)v1...(t−1)) + evt + ei

= c(u1...(x−1)v1...t) + ei

Case 2: cvt(u1...xv1...(t−1)) = 0. Note that vt �= i since i is x-
prefix guaranteed and cvt(u1...(x−1)v1...(t−1)) = 0. By the induc-
tion hypothesis, both counter vectors have the same support (set of
non-zero entries). If the support is less than m, then the algorithm
adds evk to the counters, and the analysis follows Case 1 above.
Otherwise, the two algorithms differ:

• FREQUENT algorithm: In this case all non-zero counters will
be decremented. Since both counter vectors have the same
support, they will be decremented by the same m-sparse bi-
nary vector γ = χ(T) =

P
j:cj �=0 ej .

• SPACESAVING algorithm: The minimum non-zero
counter is set to zero. To avoid ambiguity, we specify that
SPACESAVING will pick the counter cj with the smallest
identifier j if there are multiple counters with equal small-
est non-zero value. Let

j = argmin
j∈T (u1...xv1...(t−1))

cj(u1...xv1...(t−1))

and

j′ = argmin
j′∈T (u1...(x−1)v1...(t−1))

cj′(u1...(x−1)v1...(t−1))

Since i is x-prefix guaranteed, its counter can never become
zero, hence j �= i, j′ �= i. Since

ci′(u1...xv1...(t−1)) = ci′(u1...(x−1)v1...(t−1))

for all i′ �= i, it follows that j = j′ and

cj(u1...xv1...(t−1)) = cj′(u1...(x−1)v1...(t−1)) = M.

Hence both streams result in updating the counters by sub-
tracting the same difference vector γ = Mej − (M + 1)evt

So each algorithm computes some difference vector γ irrespec-
tive of which stream it is applied to, and updates the counters:

c(u1...xv1...t) = c(u1...xv1...(t−1))− γ

= c(u1...(x−1)v1...(t−1)) + ei − γ

= c(u1...(x−1)v1...t) + ei

160

3.2 Proof of k-tail guarantee
Let Remove(u1...s, i) be the subsequence of u1...s with all oc-

currences of value i removed, i.e.

Remove(u1...s, i) =

8<
:

empty sequence if s = 0
(u1,Remove(u2...s, i)) if u1 �= i

Remove(u2...s, i) if u1 = i

LEMMA 3. If i is x-prefix guaranteed and the algorithm is heavy-
tolerant, then

δj(u1...s) ≤ δj(u1...xv1...t) ∀j
where v1...t = Remove(u(x+1)...s, i), with 0 ≤ t ≤ s− x.

PROOF. Let x1, x2, . . . , xq be the positions of occurrences of
i in u(x+1)...s, with x < x1 < x2 < . . . < xq. We apply the
heavy-tolerant definition for each occurrence; for all j:

δj(u1...s) ≤ δj(u1...(x1−1)u(x1+1)...s)

≤ δj(u1...(x1−1)u(x1+1)...(x2−1)u(x2+1)...s)

≤ . . .

≤ δj(u1...xv1...t)

Note in particular that δi(u1...p), the error in estimating the fre-
quency of i in the original stream, is identical to δi(u1...xv1...q), the
error of i on the derived stream, since i is x-prefix guaranteed.

Definition 5. An error bound for an algorithm is a function Δ :
N

n → R
+ such that for any stream u1...s

δi(u1...s) ≤ �Δ(f(u1...s)) ∀i
In addition, Δ must be “increasing” in the sense that for any two
frequency vectors f ′ and f ′′ such that f ′

i ≤ f ′′
i for all i, it holds

that Δ(f ′) ≤ Δ(f ′′).

LEMMA 4. Let Δ be an error bound for a heavy-tolerant algo-
rithm that provides a heavy hitter guarantee with constant A. Then
the following function is also an error bound for the algorithm, for
any k, 1 ≤ k < m/A:

Δ′(f) = A
kΔ(f) + k + F

res(k)
1

m

PROOF. Let u1...s be any stream. Let
D = 1 + �Δ(f(u1...s)). We assume without loss of generality
that the elements are indexed in order of increasing frequency.

Let k′ = max {i | 1 ≤ i ≤ k and fi(u1...s) > D}.
For each i ≤ k′ let xi be the position of the D-th occurrence of

i in the stream. We claim that any i ≤ k′ is xi-prefix guaranteed:
let v1...t be any subsequence of u(xi+1)...s; it holds for all j that

δj(u1...xiv1...t) ≤ �Δ(f(u1...xiv1...t)) < D

and so cj(u1...xiv1...t) ≥ fj(u1...xiv1...t)− δj(u1...xiv1...t)

> D −D = 0.

Let i1, i2, . . . ik′ be the permutation of 1 . . . k′ so that xi1 >
xi2 > . . . > xik′ . We can apply Lemma 3 for i1 which is xi1 -
prefix guaranteed; for all j

δj(u1...s) ≤ δj(u1...xi1
v1...sv)

where v1...sv = Remove(u(xi1+1)...s, i1).
Since x2 < x1, i2 is x2-prefix guaranteed for the new stream

u1...xi1
v1...sv and we apply Lemma 3 again:

δj(u1...s) ≤ δj(u1...xi1
v1...sv) ≤ δj(u1...xi2

w1...sw) ∀j

where w1...sw = Remove(u(xi2+1)...xi1
v1...sv , i2). Since the

xij values are decreasing, we can continue this argument for i =
3, 4, . . . , k′. We obtain the following inequality for the final stream
z1...sz

δj(u1...s) ≤ δj(z1...sz) ∀j
where z1...sz is the stream u1...s with all “extra” occurrences of
elements 1 to k′ removed (“extra” means after the first D occur-
rences). Thus

‖f(z1...sz)‖1 = k′D +

nX
i=k′+1

fi(u1...s)

Either k′ = k, or k′ < k and fi(u1...s) ≤ D for all k′ < i ≤ k; in
both cases we can replace k′ with k:

‖f(z1...sz)‖1 ≤ kD +
nX

i=k+1

fi(u1...s)

We now apply the heavy hitter guarantee for this stream; for all
j:

δj(u1...s) ≤ δj(z1...sz)

≤
—
A

kD +
Pn

i=k+1 fi(u1...s)

m

�

≤
$
A

kΔ(u1...s) + k + F
res(k)
1

m

%

We can now prove theorem 2.
PROOF OF THEOREM 2. We start with the initial error bound

given by the heavy hitter guarantee Δ(f) = A ‖f‖1
m

and apply
Lemma 4 to obtain another error bound Δ′. We can continue it-
eratively applying Lemma 4 in this way. Either we will eventually
obtain a new bound which is worse than the previous one, in which
case this process halts with the previous error bound; or else we can
analyze the error bound obtained in the limit (in the spirit of [6]).
In both cases, the following holds for the best error bound Δ:

Δ(f) ≤ A
kΔ(f) + k + F

res(k)
1

m

and so Δ(f) ≤ A
k + F

res(k)
1

m−Ak
.

We have shown that for any stream u1...p,

δi(u1...p) ≤
$
A

k + F
res(k)
1

m−Ak

%
∀i

We show that this implies the guarantee

δi(u1...p) ≤
$
A

F
res(k)
1

m− 2Ak

%
∀i

Case 1: AF
res(k)
1 < m− 2Ak. In this case both guarantees are

identical: all errors are 0.
Case 2: AF

res(k)
1 ≥ m− 2Ak:

A2kF
res(k)
1 ≥ Ak(m− 2Ak)

A(m−Ak)F
res(k)
1 ≥ A(m− 2Ak)

“
k + F

res(k)
1

”

A
F

res(k)
1

m− 2Ak
≥ A

k + F
res(k)
1

m−Ak

161

4. SPARSE RECOVERIES
The k-sparse recovery problem is to find a representation f ′ so

that f ′ has only k non-zero entries (“k-sparse”), and the Lp norm
‖f − f ′‖p = (

Pn
i=1 |fi − f ′

i |p)1/p is minimized. A natural ap-
proach is to build f ′ from the heavy hitters of f , and indeed we
show that this method gives strong guarantees for frequencies from
heavy tolerant counter algorithms.

4.1 k-sparse recovery
To get a k-sparse recovery, we run counter algorithm that pro-

vides a k-tail guarantee with m counters and create f ′ using the k
largest counters. These are not necessarily the k most frequent el-
ements (with indices 1 to k in our notation), but we show that they
must be “close enough”.

THEOREM 5. If we run a counter algorithm which provides
a k-tail guarantee with constants (A, B) using m = k(3A

ε
+ B)

counters and retain the top k counter values into the k-sparse vec-
tor f ′, then for any p ≥ 1 :

‖f − f ′‖p ≤ εF
res(k)
1

k1−1/p
+ (F res(k)

p)1/p

PROOF. Let K = {1, . . . , k} be the set of the k most frequent
elements. Let S be the set of elements with the k largest counters.
Let R = {1, . . . , n} \ (S ∪ K) be the set of all other remaining
elements. Let k′ = |K \ S| = |S \K|.

Let x1 . . . xk′ be the k′ elements in S \ K, with cx1 ≥ cx2 ≥
. . . ≥ cxk′ . Let y1 . . . yk′ be the k′ elements in K \ S, with cy1 ≥
cy2 ≥ . . . ≥ cyk′ . Notice that cxi ≥ cyi for any i: cyi is the ith

largest counter in K \ S, whereas cxi is the ith largest counter in
(K ∪S) \ (S ∩K), a superset of K \S. Let Δ be an upper bound
on the counter errors δ. Then for any i

fyi −Δ ≤ cyi ≤ cxi ≤ fxi + Δ (1)

Hence fyi ≤ fxi + 2Δ. Let f ′ be the recovered frequency vector
(f ′

xi
= cxi and zero everywhere else). For any p ≥ 1, and using

the triangle inequality ‖a + b‖p ≤ ‖a‖p + ‖b‖p on the vector fi

restricted to i ∈ R ∪ S and the vector equal to the constant 2Δ
restricted to i ∈ S \K:

‖f − f ′‖p =

0
@X

i∈S

(ci − fi)
p +

X
i∈R∪K\S

(fi)
p

1
A

1/p

≤
0
@ kX

i=1

Δp +
X

i∈K\S

(fi)
p +

X
i∈R

(fi)
p

1
A

1/p

≤ k1/pΔ +

0
@ k′X

i=1

(fyi)
p +

X
i∈R

(fi)
p

1
A

1/p

≤ k1/pΔ +

0
@ k′X

i=1

(fxi +2Δ)p +
X
i∈R

(fi)
p

1
A

1/p

≤ 3k1/pΔ +

0
@ X

i∈R∪S\K

(fi)
p

1
A

1/p

≤ 3k1/pΔ + (F res(k)
p)1/p

If an algorithm has the tail guarantee with constants (A, B), by
using m = k(3A

ε
+ B) counters we get

‖f − f ′‖p ≤ εF
res(k)
1

k1−1/p
+ (F res(k)

p)1/p (2)

Note that (F
res(k)
p)1/p is the smallest possible Lp error of any

k-sparse recovery of f . Also, if the algorithm provides one-sided
error on the estimated frequencies (as is the case for FREQUENT

and SPACESAVING), it is sufficient to use m = k(2A
ε

+ B) coun-
ters, since now fyi ≤ fxi + Δ.

Estimating F
res(k)
1 . Since our algorithms give guarantees in terms

of F
res(k)
1 , a natural question is to estimate the value of this quan-

tity.

THEOREM 6. If we run a counter algorithm which provides a
k-tail guarantee with constants (A, B) using (Bk + Ak

ε
) counters

and retain the largest k counter values as the k-sparse vector f ′,
then:

F
res(k)
1 (1− ε) ≤ F1 − ‖f ′‖1 ≤ F

res(k)
1 (1 + ε)

PROOF. To show this result, we rely on the definitions and prop-
erties of sets S and K from the proof of Theorem 5. By construc-
tion of sets S and K, fxi ≤ fyi for any i. Using equation (1) it
follows that

fyi −Δ ≤ cxi ≤ fyi + Δ

So the norm of f ′ must be close to the norm of the best k-sparse
representative of f , i.e. (F1−F

res(k)
1). Summing over each of the

k counters yields

F1 − F
res(k)
1 − kΔ ≤ ‖f ′‖1 ≤ F1 − F

res(k)
1 + kΔ

F
res(k)
1 − kΔ ≤ F1 − ‖f ′‖1 ≤ F

res(k)
1 + kΔ

The result follows when setting m = k(Ak
ε

+ B)) so the upper

bound ensures Δ ≤ ε
k
F

res(k)
1 .

4.2 m-sparse recovery
When the counter algorithm uses m counters, it stores approxi-

mate values for m elements. It seems intuitive that by using all m
of these counter values, the recovery should be even better. This
turns out not to be true in general. Instead, we show that it is pos-
sible to derive a better result given an algorithm which always un-
derestimates the frequencies (ci ≤ fi). For example, this is true in
the case of FREQUENT.

As described so far, SPACESAVING always overestimates, but
can be modified to underestimate the frequencies. In particular,
the algorithm has the property that error is bounded by the small-
est counter value, i.e. Δ = min{cj |cj �= 0}. So setting c′i =
max{0, ci −Δ} ensures that c′i ≤ fi. Because fi + Δ ≥ ci ≥ fi,
fi − c′i ≤ Δ and thus c′ satisfies the same k-tail bounds with
A = B = 1 (as per appendix C). Note that in practice, slightly im-
proved per-item guarantees follow by storing εi for each non-zero
counter ci as the value of Δ when i last entered the frequent set,
and using ci − εi as the estimated value (as described in [25]).

THEOREM 7. If we run an underestimating counter algorithm
which provides a k-tail guarantee with constants (A,B) using
(Bk + Ak

ε
) counters and retain the counter values into the m-

sparse vector f ′, then for any p ≥ 1:

‖f − f ′‖p ≤ (1 + ε)
“ ε

k

”1−1/p

F
res(k)
1

162

PROOF. Set m = k(A
ε

+ B) in Definition 2 to obtain

‖f − f ′‖p =

kX

i=1

(fi − ci)
p +

nX
i=k+1

(fi − ci)
p

!1/p

≤
„

k
εp

kp
(F

res(k)
1)p+

+
nX

i=k+1

(fi − ci)
εp−1

kp−1
(F

res(k)
1)p−1

!1/p

≤
„

εp

kp−1
(F

res(k)
1)p +

εp−1

kp−1
(F

res(k)
1)p

«1/p

≤ (1 + ε)
“ ε

k

”1−1/p

F
res(k)
1

5. ZIPFIAN DISTRIBUTIONS
Realistic data can often be approximated with a Zipfian [30] dis-

tribution; a stream of length F1 = N , with n distinct elements,
distributed (exactly) according to the Zipfian distribution with pa-
rameter α has frequencies

fi = N
1

iαζ(α)
where ζ(α) =

nX
i=1

1

iα

The value ζ(α) converges to a small constant when α > 1. Al-
though data rarely obeys this distribution exactly, our first result
requires only that the “tail” of the distribution can be bounded by
a (small constant multiple of) a Zipfian distribution. Note that this
requires that the frequencies follow this distribution, but the order
of items in the stream can be arbitrary.

THEOREM 8. Given Zipfian data with parameter α ≥ 1, if a
counter algorithm that provides a k-tail guarantee with constants

(A, B) for k =
`

1
ε

´1/α
is used with m = (A + B)

`
1
ε

´1/α
coun-

ters, the counter errors are at most εF1.

PROOF. The k-tail guarantee with constants (A, B) means

Δ = A
F

res(k)
1

m−Bk
≤ A

N

ζ(α)

Pn
i=k+1 i−α

m−Bk

Then

nX
i=k+1

1

iα
≤
Z n

k

1

xα
dx =

1

kα−1

Z n/k

1

1

xα
dx ≤ ζ(α)

kα−1

Δ ≤ A
ζ(α)

kα−1

N

ζ(α)(m−Bk)
=

N

kα
A

k

m−Bk

by setting k =
`

1
ε

´1/α
, m = (A + B)k,

Δ ≤ N

kα
= εN

A similar result is proved for SPACESAVING in [25] under the
stronger assumption that the frequencies are exactly as defined by
the Zipfian distribution.

5.1 Top-k
In this section we analyze the algorithms in the context of the

problem of finding top k elements, when the input is Zipf dis-
tributed.

THEOREM 9. Assuming Zipfian data with parameter α > 1,
a counter algorithm that provides a k′-tail guarantee for k′ =

Θ
“
k
`

k
α

´1/α
”

can retrieve the top k elements in correct order

using O
“
k
`

k
α

´1/α
”

counters. For Zipfian data with parameter

α = 1, an algorithm with k′-tail guarantee for k′ = Θ(k2 lnn)
can retrieve the top k elements in correct order using O(k2 lnn)
counters.

PROOF. To get the top k elements in the correct order we need

Δ <
fk − fk+1

2

fk − fk+1 =
N

ζ(α)

„
1

kα
− 1

(k + 1)α

«

=
N

ζ(α)

(k + 1)α − kα

(k + 1)αkα

<
N

ζ(α)

αkα−1

(k + 1)αkα
=

N

ζ(α)

α

(k + 1)αk

Thus we need error rate

ε =
α

2ζ(α)(k + 1)αk
=

j
Θ(α/k1+α) for α > 1
Θ(1/(k2 ln n)) for α = 1

The result then follows from Theorem 8.

6. EXTENSIONS

6.1 Real-Valued Update Streams
So far, we have considered a model of streams where each stream

token indicates an arrival of an item with (implicit) unit weight.
More generally, streams often include a weight for each arrival: a
size in bytes or round-trip time in seconds for Internet packets; a
unit price for transactional data, and so on. When these weights are
large, or not necessarily integral, it is still desirable to solve heavy
hitters and related problems on such streams.

In this section, we make the observation that the two counter
algorithms FREQUENT and SPACESAVING naturally extend to
streams in which each update includes a positive real valued weight
to apply to the given item. That is, the stream consists of tuples ui,
Each ui is a tuple (ai, bi) representing bi occurrences of element
ai where bi ∈ R

+ is a positive real value.
We outline how to extend the two algorithms to correctly process

such streams. For SPACESAVING, observe that when processing
each new item ai, the algorithm identifies a counter corresponding
to ai and increments it by 1. We simply change this to incrementing
the appropriate counter by bi to generate an algorithm we denote
SPACESAVINGR. It is straightforward to modify the analysis of
[25] to demonstrate that SPACESAVINGR achieves the basic Heavy
Hitters guarantee (Definition 1). This generalizes SPACESAVING,
since when every bi is 1, then the two algorithms behave identically.

Defining FREQUENTR is a little more complex. If the new item
ai ∈ T , then we can simply increases ai’s counter by bi; and if
there are fewer than m − 1 counters then one can be allocated to
ai and set to bi. But if ai is not stored, then the next step de-
pends on the size of cmin, the smallest counter value stored in T .

163

If bi ≤ cmin, then all stored counters are reduced by bi. Other-
wise, all counters are reduced by cmin, and some counter with zero
count (there must be at least one now) is assigned to ai and given
count bi− cmin. Following this, items with zero count are removed
from T . Then FREQUENTR achieves the basic Heavy Hitter guar-
antee by observing that every subtraction of counter values for a
given item coincides with the same subtraction to m−1 others, and
all counter increments correspond to some bi of a particular item.
Therefore, the error in the count of any item is at most F1/m.

We comment that a similar analysis to that provided in Section 3
applies, to demonstrate that these new counter algorithms give a
tail guarantee. The main technical challenge is generalizing the
definitions of x-prefix guaranteed and heavy tolerant algorithms in
the presence of arbitrary real updates. We omit the detailed analysis
from this presentation, and instead we state in summary:

THEOREM 10. FREQUENTR and SPACESAVINGR both pro-
vide k-tail guarantees with A = B = 1 over real-valued non-
negative update streams.

6.2 Merging Multiple Summaries
A consequence of sparse recovery is the fact that multiple sum-

maries of separate streams can be merged together to create a sum-
mary of the union of the streams. More formally, consider 	 streams,
defining frequency distributions f (1) . . . f (�) respectively. Given a
summary of each stream produced by (the same) algorithm with
m counters, the aim is to construct an accurate summary of f =P�

j=1 f (j).

THEOREM 11. Given summaries of each f (j) produced by a
counter algorithm that provides a k-tail guarantee with constants
(A, B), a summary of f can be obtained with a k-tail guarantee
with constants (3A, B + A).

PROOF. We construct a summary by first building a k-sparse
vector f ′(j) from the summary of f (j), with the guarantee of equa-
tion (2). By generating a stream corresponding to this vector for
each stream, and feeding this into the counter algorithm, we obtain
a summary of the distribution f ′ =

P�
j=1 f ′(j). Now observe that

from this we have an estimated frequency for any item i as ci so
that

|ci − fi| ≤ Δ = Δf ′ +
�X

j=1

Δj

where each Δj is the error from summarizing f (j) by f ′(j), while
Δf ′ is the error from summarizing f ′. For the analysis, we require
the following bound:

LEMMA 12. For any n-dimensional vectors x and y,

|F res(k)
1 (x)− F

res(k)
1 (y)| ≤ ‖x− y‖1

PROOF. Let X denote the set of k largest entries of x, and Y the
set of k largest entries of y. Let π(i) determine any bijection from
i ∈ Y \X to π(i) ∈ X\Y . Then

F
res(k)
1 (x)− F

res(k)
1 (y) =

X
i�∈X

xi −
X
i�∈Y

yi

≤
X

i∈Y \X

xπ(i) −
X

i∈X\Y

yi +
X

i�∈(X∪Y)

|xi − yi|

=
X
i�∈Y

|xi − yi| ≤
X

i

|xi − yi| ≤ ‖x− y‖1

Interchanging the roles of x and y gives the final result.

This lets us place an upper bound on the first component of the
error:

Δf ′ ≤ A

m−Bk
F

res(k)
1 (f ′)

≤ A

m−Bk
(F

res(k)
1 (f) + ‖f − f ′‖1)

where, by the triangle inequality and the proof of Theorem 5,

‖f − f ′‖1 ≤
�X

j=1

‖f (j) − f ′(j)‖1

≤
�X

j=1

(3kΔj + F
res(k)
1 (f (j)))

Since Δj ≤ AF
res(k)
1 (f (j))/(m−Bk), the total error obeys

Δ ≤ A

m−Bk

F

res(k)
1 (f) +

�X
j=1

(3kΔj + 2F
res(k)
1 (f (j))

!

We observe that
�X

j=1

F
res(k)
1 (f (j)) ≤ F

res(k)
1

�X

j=1

f (j)

!
= F

res(k)
1 (f)

since
P�

j=1 F
res(k)
1 (f (j)) ≤ P�

j=1

P
i�∈T f (j) for any T such

that |T | = k. So

Δ ≤ A

m−Bk

„
3F

res(k)
1 (f) + 3k

A

m −Bk
(F

res(k)
1 (f))

«

=
3A

m−Bk

„
1 +

Ak

m−Bk

«
F

res(k)
1 (f))

This can be analyzed as follows:

(m−Bk)2 − (Ak)2 ≤(m−Bk)2

(m−Bk + Ak)(m−Bk −Ak) ≤(m−Bk)2

1 +
Ak

m−Bk
≤ (m−Bk)

m− (A + B)k

3A

m−Bk

„
1 +

Ak

m−Bk

«
≤ 3A

m− (A + B)k

Hence, we have a (3A, A + B) guarantee for the k-tail estima-
tion.

In particular, since the two counter algorithms analyzed have k
tail guarantees with constants (1, 1), their summaries can be merged
in this way to obtain k tail summaries with constants (3, 2). Equiv-
alently, this means to obtain a desired error Δ, we need to pick the
number of counters m to be at most a constant factor (three) times
larger to give the same bound on merging multiple summaries as
for a single summary.

7. REFERENCES
[1] A. Arasu, S. Babu, and J. Widom. Cql: A language for

continuous queries over streams and relations. Proceedings
of the 9th DBPL International Confenrence on Data Base
and Programming Languages, pages 1–11, 2003.

[2] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss.
Combining geometry and combinatorics: a unified approach
to sparse signal recovery. Allerton, 2008.

[3] R. Berinde, P. Indyk, and M. Ruzic. Practical near-optimal
sparse recovery in the l1 norm. Allerton, 2008.

164

[4] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. Proceedings of 1999 ACM
SIGMOD, pages 359–370, 1999.

[5] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. Proceedings of the 2nd IEEE MDM
International Conference on Mobile Data Management,
pages 3–14, 2001.

[6] P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds for
frequency estimation of packet streams. Proceedings of the
10th International Colloquium on Structural Information
and Communication Complexity, pages 33–42, 2003.

[7] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery
from incomplete and inaccurate measurements.
Communications on Pure and Applied Mathematics,
59(8):1208–1223, 2006.

[8] A. Chakrabarti, G. Cormode, and A. McGregor. A
near-optimal algorithm for computing the entropy of a
stream. In SODA, 2007.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. Proceedings of the 29th
ICALP International Colloqium on Automata, Languages
and Programming, pages 693–703, 2002.

[10] G. Cormode and M. Hadjieleftheriou. Finding frequent items
in data streams. PVLDB, 1(2):1530–1541, 2008.

[11] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Finding hierarchical heavy hitters in data streams.
Proceedings of the 29th ACM VLDB International
Conference on Very Large Data Bases, pages 464–475, 2003.

[12] G. Cormode and S. Muthukrishnan. Improved data stream
summaries: The count-min sketch and its applications.
FSTTCS, 2004.

[13] E. Demaine, A. L. Ortiz, and J. Munro. Frequency estimation
of internet packet streams with limited space. Proceedings of
the 10th ESA Annual European Symposium on Algorithms,
pages 348–360, 2002.

[14] D. L. Donoho. Compressed sensing. Unpublished
manuscript, Oct. 2004.

[15] C. Estan and G. Verghese. New directions in traffic
measurement and accounting. ACM SIGCOMM Internet
Measurement Workshop, 2001.

[16] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,
and J. Ullman. Computing iceberg queries efficiently.
Proceedings of the 24th ACM VLDB International
Conference on Very Large Data Bases, pages 299–310, 1998.

[17] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin.
One sketch for all: fast algorithms for compressed sensing.
In ACM STOC 2007, pages 237–246, 2007.

[18] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation
of iceberg cubes with complex measures. Proceedings of
2001 ACM SIGMOD, pages 1–12, 2001.

[19] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Tóth.
Space complexity of hierarchical heavy hitters in
multi-dimensional streams. Proceedings of the 24th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 338–347, 2005.

[20] P. Indyk. Algorithms for dynamic geometric problems over
data streams. In STOC, 2004.

[21] P. Indyk. Sketching, streaming and sublinear-space
algorithms. Graduate course notes, available at
http://stellar.mit.edu/S/course/6/fa07/6.895/,
2007.

[22] P. Indyk and M. Ruzic. Near-optimal sparse recovery in the
l1 norm. FOCS, 2008.

[23] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags.
ACM Transactions on Database Systems (TODS),
28(1):51–55, 2003.

[24] G. Manku and R. Motwani. Approximate frequency counts
over data streams. In VLDB, pages 346–357, 2002.

[25] A. Metwally, D. Agrawal, and A. Abbabi. Efficient
computation of frequent and top-k elements in data streams.
International Conference on Database Theory, pages
398–412, 2005.

[26] J. Misra and D. Gries. Finding repeated elements. Science of
Computer Programming, 2:142–152, 1982.

[27] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science, 2005.

[28] Compressed sensing resources. Available at
http://www.dsp.ece.rice.edu/cs/, 2006. Rice DSP
Group.

[29] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.
Medians and beyond: new aggregation techniques for sensor
networks. Proceedings of the 2nd International Conference
on Embedded Network Sensor Systems, pages 239–249,
2004.

[30] G. Zipf. Human Behavior and The Principle of Least Effort.
Addison-Wesley, 1949.

APPENDIX

A. LOWER BOUND

THEOREM 13. For any deterministic counter algorithm with m
counters, for any k, 1 ≤ k ≤ m, there exists some stream in which

the estimation error of an element is at least
F

res(k)
1
2m

PROOF. The proof is similar to that of Theorem 2 in [6]. For
some integer X, consider two streams A and B. The streams share
the same prefix of size X(m + k), where elements a1 . . . am+k

occur X times each. After the counter algorithm runs on this first
part of each stream, only m elements can have non-zero counters.
Assume without loss of generality that the other k elements are
a1 . . . ak.

Then stream A continues with elements a1 . . . ak, while stream
B continues with k other elements z1 . . . zk distinct from
a1 . . . am+k. Both streams thus have total size X(m + k) + k.

For both streams, after processing the prefix of size X(m + k),
the algorithm has no record of any of the elements in the remaining
parts of either of the streams. So the two remaining parts look
identical to the algorithm and will yield the same estimates. Thus,
for 1 ≤ i ≤ k, cai(A) = czi(B). But fai(A) = X + 1 while
fzi(B) = 1. The counter error for one of the two streams must
be at least X/2. Note that F

res(k)
1 (A) = Xm and F

res(k)
1 (B) =

Xm + k; then the error is at least

X

2
≥ F

res(k)
1

2m + 2k/X

As X →∞, this approaches our desired bound.

Thus an algorithm that provides an error bound of
F

res(k)
1
m−k

must
use at least (m− k)/2 counters.

165

B. TAIL GUARANTEE WITH CONSTANTS
A = B = 1 FOR FREQUENT

We can interpret the FREQUENT algorithm in the following way:
each element in the stream results in incrementing one counter; in
addition, some number of elements (call this number d) also result
in decrementing m + 1 counters (we can think of the d elements
incrementing and later decrementing their own counter). The sum
of the counters at the end of the algorithm is ‖c‖1. We have

‖c‖1 = ‖f‖1 − d(m + 1)

Since there were d decrement operations, and each operation de-
creases any given counter by at most one, it holds that the final
counter value for any element is at least fi − d. We restrict our
attention to the k most frequent elements. Then

‖c‖1 = ‖f‖1 − d(m + 1) ≥
kX

i=1

(fi − d)

‖f‖1 − d(m + 1) ≥ −dk +

kX
i=1

fi

nX
i=k+1

fi ≥ d(m + 1− k)

d ≤ F
res(k)
1

m + 1− k

Since the error in any counter is at most d, this implies the k-tail
guarantee with A = B = 1.

C. TAIL GUARANTEE WITH CONSTANTS
A = B = 1 FOR SPACESAVING

The tail guarantee follows almost immediately from the follow-
ing claims proven in [25]:

LEMMA 3 IN [25]: If the minimum non-zero counter value is Δ,
then δi ≤ Δ for all i.

THEOREM 2 IN [25]: Whether or not element i (i.e. i-th most
frequent element) corresponds to the i-th largest counter, the value
of this counter is at least fi, the frequency of i.

If we restrict our attention to the k largest counters, the sum of
their values is at least

Pk
i=1 fi. Since in this algorithm the sum of

the counters is always equal to the length of the stream, it follows
that:

Δ ≤ ‖f‖1 −
Pk

i=1 fi

m− k

thus by Lemma 3

δi ≤ F
res(k)
1

m− k
∀i

which is the k-tail guarantee with constants A = B = 1.

166

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

