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Proposal Summary—Nowadays, since more and more battery-
operated devices are involved in applications with continuous
sensing, development of an efficient sampling mechanisms is
an important issue for these applications. In this paper, we
investigate power efficiency aspects of a recently proposed adap-
tive nonuniform sampling. This sampling scheme minimizes the
energy consumption of the sampling process, which is approxi-
mately proportional to sampling rate. The main characteristics
of our method are that, first, sampling times do not need to
be transmitted, since the receiver can compute them by using a
function of previously taken samples, and second, only innovative
samples are taken from the signal of interest, reducing the
sampling rate and therefore the energy consumption. We call this
scheme Time-Stampless Adaptive Nonuniform Sampling (TANS).
TANS can be used in several scenarios, showing promising
results in terms of energy savings, and can potentially enable
the development of new applications that require continuous
signals sensing, such as applications related to health monitoring,
location tracking and entertainment.

I. INTRODUCTION

In the next few years, the development of a new era is
expected to be launched where mobile phones, sensors and
other lightweight and battery-operated devices will be involved
in human’s everyday life, affecting their choices as well as
their emotions. These devices have already started to become
more and more intelligent, equipped with extraordinary fea-
tures. They are actually considered to be able to continuously
interact with the human’s surrounding environment, enabling
the development of new applications in health monitoring,
social networking, entertainment and several other domains,
enhancing human’s quality of life.

However, since the majority of these devices are resource-
constrained with strict power budgets, powered by small bat-
teries or even by energy scavenging, reducing their power con-
sumption would be extremely beneficial for their battery life-
time. Proposed applications use these devices to continuously
take measurements of different quantities such as voice, ac-
celeration, light or voltage levels. Then, after processing these
quantities and extracting required features, they communicate
with humans or other devices. A main concern in all of these
applications is the high power consumption of continuously
sampling, processing and transmitting information. In this
work, we propose a general scheme for efficiently sampling
signals in an adaptive way, based on a recently proposed
sampling framework [1]. This sampling scheme minimizes
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the required sampling rate and therefore the energy consumed
during the sampling process, which can be a significant part
of the system’s energy consumption in many applications [2].

For band-limited deterministic signals, this problem is well-
studied. For example, the Nyquist sampling theorem proposes
an appropriate uniform sampling setup which leads to a
reconstruction with zero error. There are some level-crossing
based nonuniform sampling scheme with iterative decoders
(as examples, see [3] and [4]). Reference [5] proposes two
adaptive sampling schemes for band-limited deterministic sig-
nals. These schemes are based on some definitions of local
bandwidth by using linear time-varying low pass filters [6],
and time-warping of bandlimited signals [7].

Although the Nyquist sampling theorem proposes an appro-
priate uniform sampling setup for band-limited deterministic
signals, some taken samples may be redundant because the
maximum bandwidth of the signal may not be a good measure
of signal variations at different times. An ideal approach would
be to take samples only when they are innovative for the
considered application. This leads to an adaptive nonuniform
sampling scheme.

There are two difficulties in a traditional nonuniform
sampling scheme: first, determining the next sampling time
step at each time (i.e., rate control), and second, storing or
transmitting these sampling times, since they are required
in the reconstruction process. Here, we use a framework
proposed in [1] to deal with these problems. This new adaptive
nonuniform sampling framework has two key characteristics:
first, it takes samples only when they are innovative for the
considered application and consequently reduces the number
of required measurements. Second, unlike traditional nonuni-
form sampling procedures, sampling times do not need to
be transmitted since the receiver can recover them in our
framework, which in turn saves transmission rate and power.
We call our scheme Time-Stampless Adaptive Nonuniform
Sampling (TANS). TANS can be used in several applications.

Th rest of the paper is organized as follows. In section II,
we revisit TANS framework of reference [1] and compare its
energy efficiency aspects with other related schemes. In section
III, we show that, TANS can be used widely in modern systems
providing significant rate and power benefits. Specially, we
consider applications of TANS on health monitoring and
perform a case-study analysis on its energy consumption for
sampling ECG signals. We conclude the paper in Section IV
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Fig. 1. TANS setup

II. PROPOSED FRAMEWORK AND RELATED WORK

Taking samples from a signal satisfying some requirements
on the sampling rate and the reconstruction error is one of
the main problems in various applications. Having redundant
samples costs extra power consumption in the sampling pro-
cedure and also in afterward processes. For example, if these
samples are needed to be transmitted somewhere else, having
lots of samples results in higher transmission energy or in
extra energy spent for compressing these samples. Hence, a
smart sampling scheme should take samples as needed for the
considered application (i.e., innovative samples). This leads to
an adaptive sampling scheme which inherently is nonuniform.

Some nonuniform adaptive sampling schemes have been
proposed in the literature. For instance, a nonuniform sampling
scheme based on level-crossings with iterative decoding is
considered in [3], while reference [4] presents an approach
based on level crossings with a filtering technique, which
adapts the sampling rate and filter order by analyzing the
input signal variations online. Also, two adaptive sampling
schemes for band-limited deterministic signals are proposed
in [5]. These schemes are using some definitions of local
bandwidth, based on linear time-varying low pass filters [6],
and time-warping of band-limited signals [7].

There are two issues about these nonuniform sampling
schemes which make them difficult to be applied in practical
applications: first, they are designed for specific signal models
(i.e., they are not generic), and second, sampling times are
needed to be kept or transmitted in order to be used in
the reconstruction process. In this work, we develop a new
framework for adaptive nonuniform sampling which solves
these two issues. The key idea of this framework is that,
time intervals between samples can be computed by using
a function of previously taken samples. Therefore, keeping
sampling times (time-stamps), except initialization times, is
not necessary. The aim of this sampling framework is to
have a balance between the reconstruction distortion and the
average sampling rate. We call the function by which sampling
time intervals can be computed sampling function and we
refer to this sampling framework as Time-Stampless Adaptive
Nonuniform Sampling (TANS).

This sampling structure can be applied appropriately on
different signal models such as deterministic or stochastic,
and continuous or discrete signals, and for each, a different
sampling function can be derived. However, in this proposal,
we explain the framework for continuous signals. To explain

 

Fig. 2. (a) Block diagram of the proposed nonuniform sampling framework.
The control logic implements the sampling function and determines sampling
times. (b) A traditional Nonuniform sampling scheme. (c) A traditional
uniform sampling scheme.

this sampling framework, we borrow some definitions and
notations from reference [1].

Consider a continuous signal X(t). Suppose the ith sample
is taken at time ti. Define Ti , ti+1− ti and ∆i , X(ti+1)−
X(ti). Then, we take the (i+1)th sample after a time interval
of length Ti = f(

∪i−1
j=i−m+1{Tj ,∆j}). f(.) is the sampling

function. Since the next sampling time step is a function of m
most recently taken samples, we say the order of the sampling
function f(.) is m (Figure 1 and 2). The sampling function
has to be known on both sampling and reconstruction sides.

This sampling structure is nonuniform except in trivial cases
when the sampling function is a constant-valued function.
However, the key characteristic of our approach is that, unlike
traditional nonuniform sampling procedures, keeping sampling
times (time-stamps) is not necessary in our framework, be-
cause, these times can be recovered by using the sampling
function and previously taken samples. In the above example,
we have ti+1 = ti + f(

∪i−1
j=i−m+1{Tj ,∆j}). Note that, first

m sampling times should be kept to initialize the process.
However, its rate effect is negligible when the number of
samples increases.

In the above case, TANS is causal because the next sampling
time depends on samples taken before that time. In general, it
can be designed to be non-causal. TANS is an adaptive process
which learns from the signal through the taken samples,
because the sampling function depends on local characteristics
of the signal. Finding an appropriate sampling function of
TANS is at the heart of our schemes and depends on different
considered applications with various sampling requirements
such as the sampling rate, the distortion requirement, the
computational complexity etc.



One may note that, for a discrete stochastic signal, one
naive scheme is to take samples uniformly at a fixed high
rate using an ADC, and then, use source coding to compress
these samples approximately to their entropy rate before
transmission, as shown in Fig. 2-c. While this technique is
theoretically optimal, it has some inefficiencies in practice in
terms of the extra sampling and processing power, compared to
a scheme which takes samples when they are innovative, since
the power consumed during the sampling process depends
linearly on the sampling frequency. Moreover, to have an
appropriate performance, long blocks of samples are needed to
be able to use source coding efficiently, especially if statistical
properties of the signal vary slowly in time. This block-based
approach may lead to a large delay on the reconstruction side.
Instead, our proposed scheme can be viewed as a real-time
delay-free compression scheme. It adaptively compresses the
signal by using its local properties causally and hence, reduces
the power consumption.

III. APPLICATIONS OF TANS

Sensing is a process performed in any system interacting
with the real world and one of the main power consumption
contributors of low power devices. For this reason, we believe
that our framework can be applied to a wide variety of different
systems, enabling the development of new applications in
the future. In the next paragraphs, we illustrate our proposed
framework in only two cases, however, TANS can also be used
in several other scenarios.

A. Sensing in Health Monitoring

Several research projects refer to continuous health moni-
toring by using either custom sensors or platforms based on
commercial mobile phones, recording ECG signals and other
human’s vital information. The current approach for the design
of these systems is to continuously sample the considered
signals, at a rate greater than or equal to the maximum rate
of happening an event of interest. However, in our proposed
approach, the sampling rate is adapted by using previously
taken samples as described in Section II. We also do not need
to keep sampling times. Hence, our scheme can achieve a
lower power consumption in the sensing process.

For example, a generic sampling function can be designed
by bounding the derivative of the signal by the integral of
its Fourier transform and then using the Cauchy-Schwarz
inequality as follows: Ti = (pc

1
w(ti)2

)1/3, where p is the
signal power, c is a sampling parameter and w(ti) is an
approximation of the derivative of the signal at time ti (i.e.,
w(ti) = |∆i−1

Ti−1
|). Note that, the higher the derivative at time

ti, the higher the signal variations at this time, and the smaller
the sampling step size. Note that, this sampling function is not
designed specifically for ECG signals. In our early simulations
on ECG signals, we use the following sampling function:

Ti =

 Ti−1 + c1 w(ti) < th1 and Ti > Tmin

Ti−1 th1 ≤ w(ti) < th2

Ti−1 − c2 w(ti) ≥ th2 and Ti < Tmax
(1)

 

Fig. 3. Reconstructed signals using: (a) Uniform sampling with a sampling
rate of 1000 samples/sec, (b) Uniform sampling with a sampling rate of 100
samples/sec, and (c) ETANS sampling with an average sampling rate of 100
samples/sec.

Here, w(ti) is a measure of local bandwidth which is
determined by using characteristics of ECG signals. c1, c2,
Tmin and Tmax are sampling parameters where by using
them the reconstruction error and the average sampling rate
can be adjusted. Our simulation results with real ECG signals
[8] indicate advantages of our proposed approach, reducing
by approximately an order of magnitude the sampling rate
compared to uniform sampling.

Figure 3-a shows the reconstructed signal by using uniform
sampling with a sampling rate of 1000 samples/sec. Figure 3-b
shows a similar figure for a uniform sampling scheme with a
sampling rate of 100 samples/sec. Finally, Figure 3-c illustrates
the reconstructed signal by using TANS with an average
sampling rate of 100 samples/sec. Comparing reconstruction
errors show that, our approach provides a better reconstructed
signal given the same sampling rate (Figures 3-(b) and (c)).

Table III-B shows a case-study analysis of energy consump-
tion of three schemes (uniform sampling, compressive sensing
[9] and TANS) for ECG signal sampling. As demonstrated in
this table, TANS is more power efficient than other schemes.

B. Sensing in Smartphones

Our framework can also be applied to the majority of
applications that involve the interaction of smartphones with
the human surrounding environment to facilitate his life.
For instance, the use of smartphones, equipped with several
sensors has been proposed for traffic monitoring [10], sound
sensing [11], location tracking [12] and many other scenar-
ios. Although most of these proposed ideas seem promising
applications in the future, the strict power constraints of
portable devices are a main obstacle in their realizations.



TABLE I
A CASE-STUDY ENERGY ANALYSIS FOR PROCESSING A 10-SEC EKG

SIGNAL

Uniform Sampling Compressive Sensing TANS
ADC [13] 16 uJ 16 uJ 1.6 uJ

Compression 1.7 mJ [14] 19 uJ [9] 0
Extra Logic 0 0 ≈ 5 uJ

Total 1.71 mJ 35 uJ 6.6 uJ

We believe that, our framework can be an efficient solution
in applications requiring continuous sampling and interaction
with the real world, since, as reported in [2], sensors in a
modern smartphone can consume approximately up to 60%
of the overall power consumption when the phone is in sleep
mode.

IV. CONCLUSIONS

In this paper, we investigated power efficiency aspects of a
recently introduced sampling framework called TANS (Time-
Stampless Adaptive Nonuniform Sampling). This framework
minimizes the required sampling rate and therefore energy
consumption of the sampling process. In this framework,
time intervals between samples can be computed by using
a function of previously taken samples, called a sampling
function. Hence, though it is a nonuniform sampling scheme,
we do not need to keep sampling times. TANS has two
key characteristics: first, it takes samples only when they are
innovative for the considered application and consequently
reduces the number of required measurements. Second, unlike
traditional nonuniform sampling procedures, sampling times
do not need to be kept or transmitted since the receiver can
recover them by using the sampling function and previously
taken samples, which in turn saves some transmission rate
and power. TANS can be used in several applications. Here,
we showed that, this framework can be used widely in modern
systems such as health monitoring providing significant energy
benefits.
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