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Distributed Scalar Quantization for Computing:
High-Resolution Analysis and Extensions
Vinith Misra, Vivek K Goyal,Senior Member, IEEE, and Lav R. Varshney,Member, IEEE

Abstract

Communication of quantized information is frequently followed by a computation. We consider situations ofdistributed
functional scalar quantization: distributed scalar quantization of (possibly correlated) sources followed by centralized computation
of a function. Under smoothness conditions on the sources and function, companding scalar quantizer designs are developed to
minimize mean-squared error (MSE) of the computed functionas the quantizer resolution is allowed to grow. Striking improvements
over quantizers designed without consideration of the function are possible and are larger in the entropy-constrainedsetting than in
the fixed-rate setting. As extensions to the basic analysis,we characterize a large class of functions for which regularquantization
suffices, consider certain functions for which asymptotic optimality is achieved without arbitrarily fine quantization, and allow
limited collaboration between source encoders. In the entropy-constrained setting, a single bit per sample communicated between
encoders can have an arbitrarily-large effect on functional distortion. In contrast, such communication has very little effect in the
fixed-rate setting.

Index Terms

Asymptotic quantization theory, distributed source coding, optimal point density function, rate-distortion theory

I. I NTRODUCTION

CONSIDER a collection ofn spatially-separated sensors, each measuring a scalarXj , j = 1, 2, . . . , n. As shown in
Fig. 1, the measurements are encoded and communicated over rate-limited links to a sink node without any interaction

between the sensors. The sink node computes an estimate of the functiong(Xn
1 ) = g(X1, X2, . . . , Xn) from the received

data. This may be interpreted as a special case of thedistributed source codingproblem in which distortion is measured as the
mean-squared error of the function estimate. We refer to this special case asdistributed functional source codingto emphasize
that it is the functiong(Xn

1 ) and not the source vectorXn
1 that is being reconstructed. Similarly, we will refer to approximate

representation ofXn
1 under mean-squared error distortion asordinary source coding. Restricting to scalar quantization, this

distributed functional scalar quantization(DFSQ) problem is the central subject of this paper. Compared to ordinary source
coding, DFSQ can provide performance improvements in addition to any that are rooted in statistical dependence of theXjs;
for clarity, most examples presented here are for cases withindependentXjs.

A. Summary of Main Contributions

The primary aim of this paper is to develop a high resolution approach to the analysis of DFSQ. To this end, we consider for
each source variableXj a sequence of companding quantizers{Qj

K} of increasing resolutionK. Under fairly loose smoothness
requirements on the functiong(xn

1 ) and the source probability density function (pdf)f(xn
1 ), high-resolution analysis yields

a choice for{(Q1
K , . . . , Qn

K)}∞K=1 that outperforms any other choice of companding quantizer sequences at sufficiently high
resolution. This analysis also gives an approximation for the resulting distortion-rate function that has relative error which
vanishes asK → ∞.

There are situations in which designing quantizers to minimize the MSE of the function estimate is no different than designing
them for low MSEsE[(Xj − X̂j)

2], j = 1, 2, . . . , n. Our analysis will show, for example, that there is little advantage from
accounting forg wheng is linear. However, there are also cases in which the improvement is very large for large values ofn;
examples in Section V feature distortion improvement over ordinary source coding by a factor that is polynomial inn in the
fixed-rate case and exponential inn in the variable-rate case.

In addition to developing a basic theory in which there are nointeractions between quantizers and certain limitations on
g simplify our analysis, we consider several extensions. First, we permit nonregular quantizers and demonstrate that ifthe
function g(xn

1 ) satisfies a looseequivalence-freecondition then optimal quantizers are regular at sufficiently high rate. Next,
we explore a situation in which the high-resolution analysis breaks down because there is an interval where the marginal
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Fig. 1. Distributed functional source coding.

densityfXj
is positive but the optimal companding quantizer sequence for Xj is not arbitrarily fine. This prompts the concept

of a don’t care interval, a mixture of low- and high-resolution, and connections with [1]. Finally, we allow rate-constrained
information communicated from encoder 2 to encoder 1 to affect the encoding ofX1. We call thischatting and bound its
effect on the distortionD. In the fixed-rate setting, the reduction in distortion can be no more than ifR1 were increased by
the same rate; in the variable-rate setting, the reduction in distortion can be arbitrarily large.

For ordinary quantization problems, high-resolution analysis is not interesting for a discrete source because the distortion
reaches zero at some finite resolution. Indeed, as in most works using high-resolution analysis, we assume that the source
random variables are jointly continuous, i.e., that a jointprobability density function forXn

1 exists. Similarly, high-resolution
analysis of DFSQ may be uninteresting wheng(Xn

1 ) is discrete because zero functional distortion may be achieved at some
finite resolution. We do not explicitly requireg(Xn

1 ) to be a continuous random variable, but the continuity ofg that we do
require eliminates many situations in which zero functional distortion may be achieved at some finite resolution.

B. Related Work

DFSQ has strong connections to several problems that have been studied in prior work on quantization and distributed source
coding. We provide a brief summary of some of these connections here. This paper is restricted to high-resolution analysis of
companding scalar quantizers for real-valued sources. Contrarily, some related works deal with lossless source coding or lossy
vector quantization, often in the (Shannon-theoretic) limit of large block length, at any rate.

Consider the situation depicted in Fig. 1 withn = 2. In general,X1 andX2 are memoryless, stationary random processes
andg is a function of the two. Several topics arise by consideringspecial cases of this formulation.

Wheng is the identity function, the goal is to reconstruct the source variables themselves; often the correlation betweenX1

andX2 is of primary interest. Slepian and Wolf solve this problem in the infinite blocklength regime for lossless representation
of sources drawn from a discrete alphabet [2]. The lossy problem for sources from a discrete alphabet, restricted to scalar
quantization followed by block entropy coding, is considered in [3].

In the setting with lossy representation of continuous sources, one might consider applying Slepian–Wolf coding to the
output of local quantizers for each of the sources. This approach, with vector quantization performed on blocks of each of
the sources, is optimal at all rates for jointly Gaussian sources and MSE distortion [4]. This approach is also optimal inthe
asymptotic regime of both large block length and high resolution [5]. The general lossy multiterminal source coding problem
for large block length but finite rates, whether for discreteor continuous alphabet sources, is open.

While this paper restricts to scalar quantization of the sources, the use of Slepian–Wolf coding on the output of these quantizers
is considered (Sec. IV-D). Note that since the identity function has a vector output, our DFSQ formulation technically does
not permit this choice ofg, but that only minor modification of the proofs are required to permit vector-valued functions.

If g(X1, X2) = X1 andR2 is unconstrained, thenX2 can be viewed as receiver side information available at the decoder.
The trade-off betweenR1 and distortion (ofX1 alone) in the large block length regime is given by the Wyner-Ziv rate-distortion
function [6], [7]. Rebollo-Monederoet al. examined this scenario at high resolution but any block length, and showed that
providing receiver side information to the encoder yields no improvement in performance [8], cf. [9]. Under suitable constraints
on the distortion metric, one may also viewX2 as receiver side information that determines the distortion measure onX1,
drawing a connection to [10] and to work on non-MSE distortion functions [11].

For generalg and unconstrainedR2, the lossy problem has been studied by Yamamoto [12] and later by Fenget al. [13],
who provide an assortment of rate-loss bounds on performance in the large block length setting. The lossless setting hasbeen
explored by Orlitsky and Roche [14].

In the large block length regime for lossless coding, Han andKobayashi [15] studied the classification of functions according
to whether the rate region is the same as that for the identityfunction (i.e., the same as the Slepian–Wolf rate region). Their
results are conclusive whenn = 2 and the source alphabets are finite. This distributed version of the problem for generalg,
minimizing the sum-rateR1 +R2, was later investigated by Doshiet al. [16].
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Let Y = g(X1, X2). ThenY may be interpreted as aremote sourcethat is observed only throughX1 andX2, leading to
a remote source multiterminal source coding problem [17]. Alternatively,{Y = X0, X1, X2}, can be thought of as a source
triple and the problem in Fig. 1 as a two-help-one problem with R0 = 0 [18].

Most of the above examples involve block coding ofX1 andX2, and results are obtained by allowing the block length to
grow arbitrarily large. While the variable-length DFSQ analysis does utilize block entropy coding and Slepian–Wolf coding,
X1 andX2 must first pass through scalar quantizers. Even though the samples ofX1 andX2 are i.i.d., there would still be
geometric benefits to using vector quantization over blocksof samples; this is left to future work.

Quantization with a functional motive bears strong resemblance to the idea of “task-oriented quantization.” There hasbeen
considerable work in this direction for detection, classification, and estimation, including high-rate analysis [19]–[21]. The use
of a function at the decoder can be seen as inducing a non-MSE distortion measure on the source data. In this sense, a thread
may be drawn to perceptual source coding [22], where a non-MSE distortion reflects human sensitivity to audio or video.

Under appropriate constraints on the functiong, one may consider it as having introduced alocally quadraticdistortion
measure on the sourceXn

1 . In [23], Linderet al.consider quantization via companding functions for locally quadratic distortion
measures. We say more about connections to this work in Section IV-E.

Interesting related problems have also arisen without a requirement of distributed coding. Rather than having a singlefunction
g, one may consider a set of functions{ga}a∈A and define

Dg = E
[
d(gα(X

n
1 ), gα(X̂

n
1 ))

]
,

whereα is a random variable taking values in index setA. One may consider this a special case of the Wyner-Ziv problem
with α as decoder side information and a functional distortion measure. In such a setting, fixed- and variable-rate quantization
to minimize MSE was studied by Bucklew in the high-rate regime [24]. Note that if the function were known deterministically
to the encoder, one could do no better than to simply compute the function and encode the result.

C. Structure of Paper

We start in Section II by reviewing the high-resolution approximation techniques used in our analysis. In Section III we
obtain optimal fixed- and variable-rate functional quantizers for then = 1 case; while not important in practice, this case
illustrates the role of monotonicity and smoothness ofg. Generalizations to arbitraryn, under similar restrictions ong(·), are
given in Section IV. Some notable examples in Section V are those that show dramatic scaling of distortion with respect ton.
Some arguments in Sections II and III are meant only to build intuition; the technical results of those sections are rigorously
justified as special cases of statements in Section IV.

The second half of the paper extends the basic theory of Section IV. Section VI addresses the use of non-regular companding
quantizers and shows that a weakequivalence-freecondition guarantees regularity of the optimal compandingquantizer
sequence. In the process we develop the notion of high-resolution non-regular quantization. In Section VII, we consider certain
conditions that cause the high-resolution approach to leadto an optimal quantizer forXj that does not have high resolution
over the entire support offXj

. A modified analysis and design procedure yields a “rate amplification” in the variable-rate
case. Limited communication between encoders, or chatting, is studied in Section VIII, and concluding comments appearin
Section IX.

II. U NIVARIATE ORDINARY QUANTIZATION

To introduce both notation and techniques, the high-resolution analysis of scalar quantizers under MSE distortion is reviewed
in this section.

A. Definitions

A K-level quantizer on[0, 1] is a functionQK : [0, 1] → [0, 1] with a range consisting ofK points. The expected distortion of
QK applied to random variableX taking values in[0, 1] is given byD(QK) = E [d(X,Q(X))], whered : [0, 1]×[0, 1]→ [0,∞)
is an appropriately chosen distortion function. Squared-error distortiond(x, y) = (x− y)2 is both a frequent and analytically-
tractable choice. Infixed-rate(or codebook-constrained) quantization, the rate is defined as the logarithm of the number of
levels,R = logK, where all logarithms have base 2. Invariable-rate(or entropy-constrained) quantization, the rate is defined
as the entropy of the quantizer output,R = H(QK(X)). An optimal fixed-rate or variable-rate quantizer minimizes distortion
subject to a constraint on the applicable rate.

A value in the range ofQK is called aquantizer pointor reconstruction point, and the inverse image underQK of a
quantizer point is called acell or partition region. If each cell is an interval and the associated reconstruction point lies within
the interval, the quantizer is calledregular. For a distortion function that increases with the difference of its arguments (e.g.
squared-error distortion), the optimal fixed-rate quantizer is regular. If the distortion function is also convex in the difference of
its arguments and the source distribution is non-atomic, the optimal variable-rate quantizer is regular as well [25, Sect. 6.2] [26].
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A companderfunctionw : [0, 1] → [0, 1] is continuous, increasing, differentiable almost everywhere, and invertible on[0, 1].
Furthermore,w(0) = 0 andw(1) = 1. TheK-level uniform quantizer on[0, 1] is defined as

QU
K(x) =

{
2i−1
2K , for x ∈

(
i−1
K , i

K

]
, i = 1, 2, . . . , K;

1
2K , for x = 0.

For squared-error distortion and more generally, optimal quantizers satisfy a stronger condition than regularity:

x < y implies QK(x) ≤ QK(y).

They can thus be realized in companding form:

QK(x) = w−1(QU
K(w(x))).

A quantizer that has a companding form may equivalently be defined by itspoint density functionλ(x):

λ(x) = w′(x),

which always satisfies
∫ 1

0
λ(x) dx = w(1)−w(0) = 1− 0 = 1 by the fundamental theorem of calculus. For smallδ and large

resolutionK, one may observe thatδ λ(x) approximates the fraction of quantizer points in an interval of length δ aroundx.
Because of this intuitive relationship to quantizer structure, we will use the point density description instead of thecompander
description whenever possible, withQλ

K(x) denoting a quantizer of resolutionK and point density functionλ. A companding
quantizer sequence{Qλ

K}∞K=1 refers to a sequence of quantizers generated with the same point densityλ and indexed by
resolutionK. Our interest will be in optimizing these quantizer sequences.

Thedistortion-resolution functiond(K;λ) for a companding quantizer sequence{Qλ
K} indexes the distortion of the sequence

by the resolutionK:
d(K;λ) = E

[∣∣X −QK
λ (X)

∣∣2
]

.

The fixed-rateresolution-ratefunctionKfr(R;λ) = ⌊2R⌋ is the largest resolution that satisfies a fixed-rate constraint. Similarly,
the variable-rate resolution-rate functionKvr(R;λ) is the largest resolution that satisfies a variable-rate constraint. Specifically,
Kvr(R;λ) is the largest resolution such that the entropy of the quantized outputH(Qλ

Kvr
(X)) is less than the rate constraint

R:
K(λ;R) = max

H(Qλ
K
(X))≤R

K.

The quality of a quantizer sequence{Qλ
K} is measured by its distortion-rate function. The fixed-ratedistortion-rate function

measures the distortion of the highest-resolution elementof the sequence that satisfies the fixed-rate constraint:Dfr(R;λ) =
d(Kfr(R;λ), λ). Similarly, the variable-rate distortion-rate function measures the distortion of the highest-resolution element
of the sequence that satisfies the variable-rate constraint: Dvr(R;λ) = d(Kvr(R;λ), λ).

Under a fixed-rate constraint, we say that a companding quantizer sequence{Qλ∗

K } is asymptotically betterthan another
{Qλ

K} if

lim sup
R→∞

Dfr(R;λ∗)

Dfr(R;λ)
≤ 1.

Essentially, we compare the best rate-R quantizers from each sequence. If{Qλ∗

K } is asymptotically better than all other quantizer
sequences, we say{Qλ∗

K } andλ∗ are asymptoticallyfixed-rate optimal.
Analogously, an asymptoticallyvariable-rate optimalquantizer sequence{Qλ∗

K } is asymptotically better than any other
{Qλ

K}:

lim sup
R→∞

Dvr(R;λ∗)

Dvr(R;λ)
≤ 1.

Note that while we only consider optimality among the set of regular companding quantizer sequences, Linder [27] provided
conditions for a source probability distribution functionunder which a companding quantizer sequence can be optimal in a
more general sense.

B. Problem Statement

A sequence of quantizers is to be applied to a sourceX with pdf fX supported on the interval[0, 1]. The distortion of the
quantizers is measured by squared error. For any fixed- or variable-rate constraint, the optimal quantizer can be realized in
companding form, so we seek an asymptotically optimal companding function.

For high-resolution techniques to be valid, both the companding function and the source pdf must satisfy certain smoothness
requirements. We assume the source satisfies conditions UO1and UO2, and we optimize only among companding functions
that satisfy UO3 and UO4:

UO1. The source pdff is bounded and supported on the interval[0, 1].
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UO2. The first derivative of the source pdff ′ is defined and bounded on all but a finite number of points in[0, 1].
UO3. We optimize among companding functions that are differentiable.
UO4. The integral

∫ 1

0 f(x)w′(x)−2 dx is finite.

C. Solution via High-Resolution Analysis

The quantities of fundamental interest in the analysis of companding quantizer sequences are the fixed- and variable-
rate distortion-rate functionsDfr(R;λ) andDvr(R;λ), which describe the distortion of fixed- and variable-rate companding
quantizers with rateR and point densityλ. High resolution analysis consists of several approximations that allow one to derive
asymptotically accurate versions of bothDHR

fr (R;λ) andDHR
vr (R;λ). Specifically, under appropriate restrictions on the source

pdf we will show that

lim
R→∞

DHR
fr (R;λ)

Dfr(R;λ)
= lim

R→∞

DHR
vr (R;λ)

Dvr(R;λ)
= 1. (1)

In Sec. II-C1, the approximate distortion-resolution function dHR(K;λ) is derived. Then, in Sec. II-C2, the approximate
resolution-rate functionKHR(R;λ) is obtained for both fixed- and variable-rate constraints. Finally, in Sec. II-C3 these two
quantities yield the approximate distortion-rate functionsDHR

fr (R;λ) andDHR
vr (R;λ). The derivation we provide is left informal

and is not intended to prove that assumptions UO1–UO4 yield (1); this follows either from Linder [27] or as a special case
of Theorem 6 in Sec. III. For further technical details and references to original sources, see [28]. Finally, in Sec. II-C4, the
approximate distortion-rate functions are optimized through choice of point density (companding function). The sequences of
companding quantizers yielded by this optimization are shown to be asymptotically fixed- or variable-rate optimal.

1) The Distortion-Resolution Function:As previously defined,d(K;λ) is the distortion of the companding quantizer with
resolutionK. We now define an approximationdHR(K;λ), known as the approximate distortion-resolution function. For
rigorous proof that

lim
K→∞

dHR(K;λ)/d(K;λ) = 1, (2)

we refer to the main result of Linder [27], or to Theorem 9 withg(x) = x.
Let X be a random variable with pdffX(x), let Qλ

K be aK-point companding quantizer, and supposeλ and f satisfy
assumptions UO1–UO4. Let{βi}i∈I = Qλ

K([0, 1]) be the reconstruction points, and letSi =
(
Qλ

K

)−1
(βi), i ∈ I, be the

corresponding partition regions.
The distortion of the quantizer is

d(K;λ) = E
[
(X − X̂)2

]

=
∑

i∈I

E
[
(X − βi)

2 | X ∈ Si

]
P (X ∈ Si) (3)

by the law of total expectation. The initial aim of high-resolution theory is to express this distortion as an integral involving
fX . To that end, we make the following approximations about thesource and quantizer:

HR1. fX may be approximated as constant on eachSi.
HR2. The size of the cell containingx is approximated with the help of the point density function:

x ∈ Si ⇒ length(Si) ∼ (Kλ(x))−1, (4)

where∼ means that the ratio of the two quantities goes to 1 with increasing resolutionK. This is the meaning of “∼”
for the remainder of the paper.

The first approximation follows from the smoothness offX (assumptions UO1 and UO2), while the second follows from the
smoothness ofw(x) (assumption UO3).

Now we can approximate each non-boundary term in (3). By HR1,βi should be approximately at the center ofSi, and the
length ofSi then makes the conditional expectation approximately1

12 (Kλ(βi))
−2. Invoking Assumption HR1 again, theith

term in the sum is
∫
x∈Si

1
12 (Kλ(βi))

−2fX(x) dx. Finally,

d(K;λ) ∼
∫ 1

0

(Kλ(x))−2

12
fX(x) dx =

1

12K2
E
[
λ−2(X)

]
(5)

= dHR(K;λ).
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2) The Resolution-Rate Function:For a fixed-rate quantizer, the resolution-rate relationship is given simply byKfr(R;λ) =
⌊2R⌋, and it is approximated with vanishing relative error byKHR

fr (R;λ) = 2R. The variable-rate resolution-rate function is
more difficult to approximate.

As long as the quantization is fine (λ(x) > 0) wherever the density is positive, we can approximate the output entropy of a
quantizer using the point density. Definingp(x) asP (X ∈ Si) for x ∈ Si, and lettingh(X) denote the differential entropy of
X ,

H(Qλ
K(X)) = −

∑

i∈I

P (X ∈ Si) logP (X ∈ Si)

(a)
= −

∫ 1

0

fX(x) log p(x) dx

(b)∼ −
∫ 1

0

fX(x) log(fX(x)/(Kλ(x))) dx

= −
∫ 1

0

fX(x) log fX(x) dx

+

∫ 1

0

fX(x) log(Kλ(x)) dx

= h(X) + logK + E [logλ(X)] , (6)

where (a) follows from the definition ofp(x); and (b) involves approximating the source pdf as constant in each cell and (4).
A generalized version of this approximation is proven rigorously in [23]. We state it here as a lemma.
Lemma 1:Suppose the sourceX has a density over[0, 1] and a finite differential entropyh(X). Then if E [logλ(X)] is

finite,

lim
R→∞

[
H(Qλ

K(R;λ)(X))− logK(R;λ)
]
= h(X) + E [logλ(X)] .

Proof: Follows as a special case of Proposition 2 in [23].
With the insight of this approximation, we define:
Definition 1: The variable-rate approximate resolution-rate functionKHR

vr (R;λ) is given by

logKHR
vr (R;λ) = R− h(X)− E [logλ(X)] .

Lemma 2:The error between the log of the variable-rate approximate resolution-rate functionlogKHR
vr (R;λ) and the log

of the actual resolution-rate functionKvr(R;λ) goes to zero, i.e.

lim
R→∞

logKHR
vr (R;λ)− logKvr(R;λ) = 0.

Proof: The error of the approximationKHR
vr may be written as

logKvr(R;λ)− logKHR
vr (R;λ) = ǫR +H(Qλ

Kvr(R;λ)(X))−R,

whereǫR goes to zero by Lemma 1. Furthermore, by definitionKvr(R;λ) has been chosen to be the largest resolution such
thatH(Qλ

Kvr(R;λ)(X)) ≤ R. We then have that

R−H(Qλ
Kvr(R;λ)(X)) < H(Qλ

Kvr(R;λ)+1(X))−H(Qλ
Kvr(R;λ)(X)),

i.e. the second term in the rate approximation error is bounded by the increment in entropy from an increment in resolution.
By Lemma 1 once again, the increment in entropy may be boundedas

H(Qλ
Kvr(R;λ)+1(X))−H(Qλ

Kvr(R;λ)(X))

= h(X) + log(Kvr(R;λ) + 1) + E [logλ(X)]− h(X)− logKvr(R;λ)− E [logλ(X)] + δ(R)

= log(Kvr(R;λ) + 1)− logKvr(R;λ) + δ(R)

= log
Kvr(R;λ) + 1

Kvr(R;λ)
+ δ(R),

whereδ(R) goes to zero. SinceKvr(R;λ) diverges to infinity withR, this error goes to zero.
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3) The Distortion-Rate Functions:The high-resolution distortion-rate function can be obtained by combining the distortion-
resolution and resolution-rate functions. For fixed-rate,

DHR
fr (R) =

1

12
E
[
λ−2(X)

]
2−2R, (7a)

whereas for variable-rate
DHR

vr (R) =
1

12
E
[
λ−2(X)

]
2−2(R−h(X)−E[log λ(X)]). (7b)

Asymptotic validity in the sense of (1) follows in the fixed-rate case from (2) and from the fact that
(
Kfr(R;λ)/KHR

fr (R;λ)
)2

goes to 1. In the variable-rate case, we may bound the error from use ofKHR(R;λ) in place ofK(R;λ) as a multiplying
factor of 22|K

HR(R;λ)−K(R;λ)|, which by Lemma 2 goes to 1.
4) Asymptotically-Optimal Companding Quantizer Sequences: We seek asymptotically-optimal companding quantizer se-

quences for both fixed-rate and variable-rate constraints.By the following lemma, this reduces to minimizing the high-resolution
distortion-rate functions of (7a) and (7b).

Lemma 3:Supposeλ∗
fr andλ∗

vr minimize DHR
fr (R;λ) andDHR

vr (R;λ) respectively. Then the quantizer sequences{Qλ∗
fr

K }
and{Qλ∗

vr

K } are asymptotically fixed- and variable-rate optimal.
Proof: As the proof is virtually identical for fixed- and variable-rate cases, we only provide it for the variable-rate case.

Let {Qλ
K} be any companding quantizer sequence. We are interested in proving that

lim sup
R→∞

Dvr(R;λ∗
vr)

Dvr(R;λ)
≤ 1.

The supremum limit on the left may be factored:

lim sup
R→∞

Dvr(R;λ∗
vr)

Dvr(R;λ)
= lim sup

R→∞

Dvr(R;λ∗
vr)

DHR
vr (R;λ∗

vr)

DHR
vr (R;λ∗

vr)

DHR
vr (R;λ)

DHR
vr (R;λ)

Dvr(R;λ)
(a)

≤ lim sup
R→∞

Dvr(R;λ∗
vr)

DHR
vr (R;λ∗

vr)
lim sup
R→∞

DHR
vr (R;λ∗

vr)

DHR
vr (R;λ)

lim sup
R→∞

DHR
vr (R;λ)

Dvr(R;λ)

because the supremum limit of a product of positive sequences is upper-bounded by the product of their individual supremum
limits. We can now bound each of these factors.

We have, by optimality ofλ∗
vr, thatDHR

vr (R;λ) ≥ DHR
vr (R;λ∗

vr) for anyR and therefore that

lim sup
R→∞

DHR
vr (R;λ∗

vr)

DHR
vr (R;λ)

≤ 1.

Furthermore, by (1), we have that

lim
R→∞

Dvr(R;λ∗
vr)

DHR
vr (R;λ∗

vr)
= lim

R→∞

DHR
vr (R;λ)

Dvr(R;λ
= 1.

This proves the lemma.
Now we optimize the distortion-rate expressions. Because analogous optimizations appear in Sections III and IV, we explicitly

derive both the optimizing point densities and the resulting distortion-rate functions. Our approach follows [29].
In the fixed-rate case, the problem is to minimize (7a) for a given value ofR. This minimization may be performed with

the help of Hölder’s inequality:

DHR
fr (R;λ) =

1

12
2−2R

∫ 1

0

fX(x)λ−2(x)dx

=
1

12
2−2R

∫ 1

0

fX(x)λ−2(x)dx

(∫ 1

0

λ(x)dx

)2

≥ 1

12
2−2R

∫ 1

0

(
fX(x)λ−2(x)

)1/3
(λ(x))2/3 dx

=
1

12
2−2R

(∫ 1

0

f
1/3
X (x)

)3

,

with equality only if λ(x) ∝ f
1/3
X (x). Thus,DHR

fr is minimized by

λ(x) = f
1/3
X (x)/

(∫ 1

0 f
1/3
X (t) dt

)
. (8)

The resulting minimal distortion is

DHR
fr (R) =

1

12
2−2R

(∫ 1

0

f
1/3
X (x) dx

)3

=
1

12
‖fX‖1/32−2R, (9)
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where we have introduced a notation for theL1/3 quasinorm.
For the variable-rate optimization, we use Jensen’s inequality rather than Hölder’s inequality:

DHR
vr (R;λ) =

1

12
2−2(R−h(X))E

[
λ−2(X)

]
22E[log λ(X)]

(a)

≥ 1

12
2−2(R−h(X))E

[
λ−2(X)

]
22 log E[λ(X)]

= DHR
vr (R),

where (a) follows from the convexity of− log(·). This lower bound is achieved whenλ(X) is a constant. Thusλ(x) = 1 is
asymptotically optimal, i.e., the quantizer should be uniform.

Note that both variable- and fixed-rate quantization haveΘ(2−2R), or −6 dB/bit, dependence of distortion on rate. This
is a common feature of ordinary quantizers with MSE distortion, but we demonstrate in Section VII that certain functional
scenarios can cause distortion to fall even faster with the rate.

5) Optimal Bit Allocation: As a final preparatory digression, we state the solution to a typical resource allocation problem
that arises several times in Section IV.

Lemma 4:SupposeD =
∑n

j=1 cj2
−2Rj for some positive constants{cj}nj=1. Then the minimum ofD over the choice of

{Rj}nj=1 subject to the constraint
∑n

j=1 Rj ≤ nR is attained with

Rj = R+
1

2
log

cj(∏n
j=1 cj

)1/n
, j = 1, 2, . . . , n,

resulting in

D = n
(∏n

j=1 cj

)1/n

2−2R.

Proof: The result can be shown using the inequality for arithmetic and geometric means. It appeared first in the context
of bit allocation in [30]; a full proof appears in [25, Sect. 8.3].

The lemma does not restrict theRjs to be nonnegative or to be integers. Such restrictions are discussed in [31].

III. U NIVARIATE FUNCTIONAL QUANTIZATION

Let X be a random variable with pdffX(x) defined over[0, 1], and letg : [0, 1] → R be the function of interest. A sequence
of companding quantizers{Qλ

K} is applied to the sourceX , and an estimatêg(Qλ
K(X)) is formed at the decoder, where

ĝ is the estimator function. Functional distortion is measured by squared errorD = E[(g(X)− ĝ(Qλ
K(X)))2]. We seek an

asymptotically-optimal estimator̂g and companding functionw that satisfy certain constraints.
Since we seek to answer this design question with high-resolution techniques, the functiong and the sourceX must be

restricted in a manner similar to conditions UO1–4 in Section II-B. For the moment we err on the side of being too strict.
Sections VI and VII will significantly loosen these requirements.

UF1. g is monotonic.
UF2. g is Lipschitz continuous on[0, 1], and the first- and second- derivatives ofg are defined except possibly on a set of

zero Jordan measure.
UF3. The source pdff is continuous, bounded, and supported on the interval[0, 1].
UF4. We optimize among companding functionsw that are piecewise differentiable (and therefore a point density description

λ is appropriate).
UF5. The integral

∫ 1

0 f(x)g′(x)2λ(x)−2 dx is defined and finite.

Throughout this paper, we assume thatĝ(t) = E [g(X) | X ∈ Si] for all t ∈ Si. This achieves the minimum possible
functional distortionE

[
var

(
g(X) | Qλ

K(X)
)]

.

A. Sufficiency of Regular Quantizers

The following lemma relates monotonicity to regularity of optimal quantizers, thus justifying the optimization among
companding quantizers:

Lemma 5: If g is monotonic, there exists an optimal functional quantizerof X that is regular.
Proof: The optimal functional quantizer in one dimension is induced by the optimal ordinary quantizer for the variable

Y = g(X). That is, one may compute the functiong(X) and quantize it directly. Since the optimal ordinary quantizer for a
real-valued source is regular, the optimal quantizer forY , denoted byQY (y) and having points{ŷi}i∈I , is regular.
QY (y) may be implemented by a quantizer forX with cells given byg−1(Q−1

Y (ŷi)). We know thatQ−1
Y (ŷi) is an interval

sinceQY is regular. Also, sinceg is monotonic, the inverse mapg−1 applied to any interval in the range ofg gives an interval.
Thusg−1(Q−1

Y (ŷi)) is an interval, which demonstrates that there exists a regular quantizer inX that is optimal.
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B. The Distortion-Resolution Function

Assumption UF2 is introduced so that a piecewise linear approximation ofg suffices in estimating the functional distortion
of the quantizer. More specifically, recalling the notation{βi}i∈I for the quantizer points and{Si}i∈I for the partition,

gPL(x) = g(βi) + g′(βi)(x− βi), for x ∈ Si, i ∈ I

may be interpreted as an approximation ofg that leads to the high-resolution approximate distortion-resolution function.
The use ofgPL prompts us to give a name to the magnitude of the derivative ofg. The distortion is then expressed using

this function.
Definition 2: The univariate functional sensitivity profileof g is defined asγ(x) = |g′(x)|.
Theorem 6:Suppose a sourceX ∈ [0, 1] is quantized by a sequence of companding quantizers{Qλ

K} with point densityλ(x)
and increasing resolutionK. Further suppose that the source, quantizer, and functiong : [0, 1] → R satisfy Assumptions UF1–
5. Then the high-resolution distortion-resolution function is anasymptotically accurateapproximation of the true distortion-
resolution function:

d(K;λ) = E
[
var

(
g(X) | QK

λ (X)
)]

∼ 1

12K2
E
[
(γ(X)/λ(X))

2
]
= dHR(K;λ). (10)

Proof: Follows as a special case of Theorem 9.

C. The Resolution-Rate Functions

The relationship between resolution and rate in the functional context is unchanged from the ordinary context. For a fixed-rate
constraint, the resolution-rate function is given byKfr(R;λ) = ⌊2R⌋ and is approximated at high-resolution byKHR

fr (R;λ) =
2R. For a variable-rate constraint, the resolution-rate function is given by the highest resolution such that the entropyof the
quantized output is less than the rate constraint. This is approximated as before bylogKHR

vr (R;λ) = R−h(X)−E [logλ(X)].
Both of these approximations continue to be asymptoticallyaccurate, regardless of the distortion measure in use.

D. The Distortion-Rate Functions

By combining the distortion-rate function with the resolution-rate function, the high-resolution distortion-rate function can
be obtained. For fixed-rate,

DHR
fr (R;λ) =

1

12
E
[
(γ(X)/λ(X))2

]
2−2R, (11a)

whereas for variable-rate,

DHR
vr (R;λ) =

1

12
E
[
(γ(X)/λ(X))2

]
2−2(R−h(X)−E[log λ(X)]). (11b)

The asymptotic validity of these two expressions, as in (1),holds as it did in the ordinary case. For the fixed-rate expression,
this follows from Theorem 6 and the fact that⌊2R⌋2−R approaches 1. For the variable-rate expression, the error from use of
KHR(R;λ) in the distortion-rate expression instead ofK(R;λ) can be bounded as a multiplying factor of22|K

HR(R;λ)−K(R;λ)|,
which by Lemma 2 goes to 1.

E. Asymptotically-Optimal Companding Quantizer Sequences

We seek asymptotically-optimal companding quantizer sequences for fixed- and variable-rate constraints under a functional
distortion measure. The lemma below demonstrates that it suffices to optimize the high-rate distortion-rate functionsDHR

fr and
DHR

vr .
Lemma 7:Supposeλ∗

fr andλ∗
vr minimize DHR

fr (R;λ) andDHR
vr (R;λ) respectively. Then the quantizer sequences{Qλ∗

fr

K }
and{Qλ∗

vr

K } are asymptotically fixed- and variable-rate optimal.
Proof: The proof is virtually identical to that of Lemma 3.

The distortion expression (10) bears strong resemblance to(5), but with the probability densityfX(x) replaced with a
weighted densityγ2(x)fX(x). Unlike the densityfX(x), the weighted densityγ2(x)fX(x) need not integrate to one. Optimal
point densities and the resulting distortions now follow easily.

For fixed-rate coding, we are attempting to minimize the distortion (10) for a given value ofK. Following the arguments
in Section II-C4, the optimal point density is proportionalto the cube root of the weighted density:

λ∗
fr(x) =

(
γ2(x)fX(x)

)1/3
∫ 1

0 (γ2(t)fX(t))
1/3

dt
. (12)

The admissibility of this point density (assumption UF5) requires positivity ofλ(x) everywherefX is positive. This excludes
the possibility thatγ(x) = 0 for an intervalx ∈ (a, b) such thatP (X ∈ (a, b)) > 0 because in this case the quantization is
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λord

λfr

λvr

0 1

Fig. 2. Quantizer points illustrating the point densities derived in Example 1 at rateR = 4.

not fine forX ∈ (a, b). We revisit this restriction in Section VII. By evaluating (11a) with point density (12), the resulting
distortion is

DHR
fr (R) = DHR

fr (R;λ∗
fr) =

1

12

∥∥γ2fX
∥∥
1/3

2−2R. (13)

For variable-rate coding, a derivation very similar to thatof ordinary variable-rate quantization may be performed. This
yields an optimal point density that is proportional to the functional sensitivity profile:

λ∗
vr(x) =

γ(x)
∫ 1

0 γ(t) dt
. (14)

The restriction forλ to be positive whereverfX is positive takes the same form as above (assumption UF5). The resulting
distortion is

DHR
vr (R) = DHR

vr (R;λ∗
vr) =

1

12
22h(X)+2E[log γ(X)] 2−2R. (15)

The example below shows that even for univariate functions,there are benefits from functional quantization. It also illustrates
the difference between the fixed- and variable-rate cases. While quantizingX instead ofg(X) seems naı̈ve, as we move to
the distributed multivariate case it will not be possible tocompute the function before quantization.

Example 1:SupposeX is uniformly distributed over[0, 1] and g(x) = x2. For both fixed- and variable-rate, the optimal
ordinary quantizer is uniform, i.e.,λord = 1. With γ(x) = 2x, evaluating (11a) givesDHR

fr (R;λord) = DHR
vr (R;λord) =

1
92

−2R ≈ 0.111 · 2−2R.
The optimal point density for fixed-rate functional quantization isλ∗

fr(x) =
5
3x

2/3 and yields distortion

DHR
fr (R) =

1

12
‖(2x)2‖1/3 · 2−2R =

9

125
2−2R ≈ 0.072 · 2−2R.

The optimal point density for variable-rate functional quantization is λ∗
vr(x) = 2x. With h(X) = 0 and E [log γ(X)] =

1− 1/(ln 2), the resulting distortion is

DHR
vr (R) =

1

12
· 4e−2 · 2−2R ≈ 0.045 · 2−2R.

Quantizers designed with the three derived optimal point densities are illustrated in Fig. 2 for rateR = 4. The functionally-
optimized quantizers put more points at higher values ofx, where the function varies more quickly. In addition, the variable-rate
quantizer is allowed more points (K = 21) while meeting the rate constraint.

The interested reader can verify thatDHR
fr (R) andDHR

vr (R) exactly match the performance obtained by designing optimal
quantizers forY = X2. �

In the second example, we use a nonuniform source pdf with thesame nonlinear functiong to illustrate various quantities.

Example 2:SupposeX has the pdffX(x) = 3x2 over [0, 1] andg(x) = x2. We illustrate a codebook-constrained quantizer
with rateR = 2 designed with the high-resolution analysis.

By evaluating (12), the asymptotically-optimal point density for fixed-rate functional quantization isλ∗
fr(x) = 7

3x
4/3.

Integrating the point density gives the corresponding compander functionw∗
fr(x) = x7/3. As shown in the top panel of

Fig. 3, the points are given by
βi = w∗

fr
−1((2i− 1)/8), i = 1, 2, 3, 4,

and the cell boundaries are given byw∗
fr
−1({0, 1/4, 1/2, 3/4, 1}). The middle panel showsfX and an approximation̂fX that

is constant on each cell of the quantizer. The bottom panel shows g and the approximationgPL, which is linear on each cell
of the quantizer and tangent tog at each point. �

Referring to Fig. 3 for examples, the high-resolution distortion-resolution functiondHR(K;λ) can be thought of as a
computation of the MSE ofgPL when the source with piecewise constant pdff̂X is quantized with companding quantizer
employing companderw∗

fr. In this casêg, the optimal function estimate, is given by evaluatinggPL at the center of the cell
containing the source variable. Informally, as resolutionK increases,̂fX → f , gPL → g, and the centers of the cells approach
the corresponding quantizer points. These intuitions extend to multivariate functions as well, but our formal justifications in
Section IV use techniques that do not explicitly form approximationsf̂X or gPL.



11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.5

0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

w
∗ f
r

f
X

g

Fig. 3. Illustrations for Example 2. Top panel: points and cell boundaries of the quantizer are determined by the companding functionw∗

fr
. Middle panel:

source pdffX and its piecewise constant approximation. Bottom panel: function g and its piecewise linear approximation.

F. Discontinuous Functions

Our main result on univariate functional quantization, Theorem 6, assumes the continuity ofg. One can effectively sidestep
this assumption, but doing so requires the quantizer to be described more precisely than by a point density function alone.

For simplicity, assumefX is strictly positive on[0, 1]. Suppose we were to allowg to have a point of discontinuityx0 ∈ (0, 1)
with

c0 = lim
δ→0

|g(x0 + δ)− g(x0 − δ)| > 0.

The difficulty that arises is that ifx0 is an interior point of a partition cellSi, this cell produces a component of the functional
distortion proportional toc20P (X ∈ Si). Sincec20P (X ∈ Si) = Θ(K−1), it is not negligible in comparison to the (best case)
Θ(K−2) functional distortion. Thus having a point of discontinuity of g in the interior of a partition cell disrupts the asymptotic
distortion calculation (10).

The representation of quantizers by number of levelsK and point density functionλ cannot prevent a point of discontinuity
from falling in the interior of a partition cell. However, ifwe augment the description of the quantizer with specified partition
boundaries, we can still obtain the distortion estimate (10).

Corollary 8: Suppose a companding quantizer sequence for a sourceX ∈ [0, 1] is described by point density functionλ(x).
Further suppose that the source, quantizer, and functiong : [0, 1] → R satisfy Assumptions UF1–5 with the exception of
discontinuities atM points{xm}Mm=1. Then a quantizer sequence obtained by adding partition cell boundaries at{xm}Mm=1

will have distortion

dg = E
[
(g(X)− g(X̂))2

]
∼ 1

12K2
E
[
(γ(X)/λ(X))

2
]

.

Proof: This follows from Theorem 6 applied separately to each of thesubintervals whereg is continuous.
In the sequel, we will not consider discontinuous functions. The multivariate extension of Corollary 8 requires pointsof

discontinuity to be in the Cartesian product of finite sets ofdiscontinuity for each variable. Such separable sets of points of
discontinuity are not general and can be handled rather intuitively.

IV. M ULTIVARIATE FUNCTIONAL QUANTIZATION

With Section III as a warm-up, we may now establish the central results of distributed functional quantization.
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A. Definitions

An n-dimensionaldistributed companding quantizerQw

K
is specified byn companding functionsw = (w1, w2, . . . , wn) and

an n-vector of resolutionsK = (K1,K2, . . . ,Kn). When applied to ann-tuple xn
1 ∈ [0, 1]n, Qw

K
quantizes each component

xj of xn
1 separately with companderwj and resolutionKj :

Qw

K(xn
1 ) =

(
Qw1

K1
(x1), Q

w2

K2
(x2), . . . , Q

wn

Kn
(xn)

)
.

A distributed companding quantizer may equivalently be specified byn point density functionsλ = (λ1, λ2, . . . , λn), in which
case it is denoted byQλ

K
.

An estimation function̂g : [0, 1]n → R estimates the value ofg(Xn
1 ) from the quantized representationQλ

K
(Xn

1 ). The
distortion of a distributed quantizer paired with an estimator ĝ is given by the distortion-resolution function

dĝ(K;λ) = E[|g(Xn
1 )− ĝ(Qλ

K(Xn
1 ))|2].

In this paper, use of the optimal estimator

ĝ(xn
1 ) = E[g(Xn

1 ) | Qλ

K
(Xn

1 ) = Qλ

K
(xn

1 )]

will be indicated by omitting the subscript:d(K;λ).
The rate R of a distributed quantizer takes on three different meanings. A fixed-rateconstraint limits the total resolution

K =
∏n

j=1 Kj ≤ 2R, and we assume that thejth quantizer communicates to the decoder with rateRj = logKj. A variable-

rate (marginal entropy) constraint limits the sum of the marginal entropies
∑n

j=1 H(Q
λj

Kj
(Xj)) ≤ R, and we assume that the

jth quantizer utilizes entropy-coding to the decoder to attain rateRj = H(Q
λj

Kj
(Xj)). A Slepian–Wolf(joint entropy) constraint

limits the joint entropyH(Qλ

K(Xn
1 )) ≤ R, and we assume that thejth quantizer utilizes Slepian-Wolf coding to the decoder

to attain rateRj = H(Q
λj

Kj
(Xj) | Qλj−1

Kj−1(Xj−1)), whereQλj−1

Kj−1(Xj−1) is used to represent(Qλ1

K1
(X1), . . . , Q

λj−1

Kj−1
(Xj−1)).

Note that the choice of this particular point on the Slepian-Wolf rate boundary is arbitrary. The resulting performanceis
measured by the distortion-rate functions

Dfr(R;λ) = min
K:

∏
n
j=1

Kj≤2R
d(K;λ),

Dvr(R;λ) = min
K:

∑
n
j=1

H(Q
λj

Kj
(Xj))≤R

d(K;λ),

and
Dsw(R;λ) = min

K:
∑

n
j=1

H(Q
λj

Kj
(Xj)|Qλj−1

Kj−1
(Xj−1))≤R

d(K;λ).

A quantizer point densityλ∗ is asymptotically betterthan anotherλ under a fixed-rate, variable-rate, or Slepian–Wolf
constraint if the ratio of the distortion-rate functions isat most one:

lim
R→∞

Dfr(R;λ∗)

Dfr(R;λ)
≤ 1, (16a)

lim
R→∞

Dvr(R;λ∗)

Dvr(R;λ)
≤ 1, or (16b)

lim
R→∞

Dsw(R;λ∗)

Dsw(R;λ)
≤ 1. (16c)

If λ is asymptotically better than any other distributed quantizer sequence, it isasymptotically optimal.

B. Problem Statement

Let Xn
1 be a random vector with joint pdffXn

1
(xn

1 ) defined over[0, 1]n, and letg : [0, 1]n → R be the function of interest.

A distributed companding quantizer{Qλ

K
} is applied toXn

1 . Equivalently, a companding quantizerQλj

Kj
is applied to each

component of the sourceXj . The decoder then forms an estimateĝ(Qλ

K
(Xn

1 )), whereĝ(Qλ

K
(Xn

1 )) = E[g(Xn
1 ) | Qλ

K(Xn
1 )]

is the optimal estimation function. Distortion is measuredby squared error in the functionD = E[(g(Xn
1 )− ĝ(Qλ

K(Xn
1 )))

2],
which for the optimal estimator reduces toD = E

[
var

(
g(Xn

1 ) | Qλ

K(Xn
1 )

)]
. Fig. 1 depicts this scenario, withRj = logKj

in the fixed-rate case,Rj = H(Q
λj

Kj
) in the variable-rate case, andRj = H(Q

λj

Kj
(Xj) | Qλj−1

Kj−1(Xj−1)) in the Slepian-Wolf
case. We wish to chooseλ to be asymptotically optimal.

As in Section III, we will impose restrictions on the function g and the joint probability distribution function ofXn
1 so that

a local affine approximation is effective.
MF1. g is Lipschitz continuous, and the first and second derivatives of g are defined except possibly on a set of zero Jordan

measure.
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MF2. The source pdff is continuous and supported on[0, 1]n, and is therefore bounded.
MF3. We optimize among companding functionswj that are piecewise differentiable (and therefore a point density description

λj is appropriate).
MF4. Letting gj(x

n
1 ) denote∂g(xn

1 )/∂xj, the integrals
∫ 1

0

f(xj)E
[
|gj(Xn)|2 | Xj = xj

]
λj(xj)

−2 dxj

are defined and positive for allj ∈ {1, 2, . . . , n}.
Constraints MF1–MF4 are more restrictive than they need to be, but this helps in simplifying proofs. For instance, condition
MF4 guarantees that every source variable must be finely quantized for distortion to approach zero. If this is violated for the
jth source variable, it merely implies that a finite-resolution quantization ofXj suffices.

Note that there is no analogue to the monotonicity assumption UF1 in the multivariate case. It can be shown that ifg
is monotonic in each of its variables the optimal fixed-rate distributed quantizer is regular. With the added restriction that
the source variables be independent, it can be shown that theoptimal variable-rate distributed quantizer is also regular, via
techniques similar to those of [26]. Rather than constraining the functiong and the source pdff in this manner, however,
assumption MF3 explicitly restricts optimization to the space of regular companding quantizer sequences, regardlessof whether
regularity is optimal. In Sec. VI it is shown that nonregularcompanding quantizer sequences are asymptotically suboptimal
for a wide variety of functionsg, giving this constraint some validity.

C. High-Resolution Analysis

1) The Distortion-Resolution Function:Our main technical task in finding the optimal quantizers is to justify an approx-
imation of the distortion in terms of point density functions. Since the quantization is distributed, our concept of functional
sensitivity is now extended to each variable separately, with averaging performed over the remaining variables.

Definition 3: The jth functional sensitivity profileof g is defined as

γj(x) =
(

E
[
|gj(Xn

1 )|2 | Xj = x
])1/2

. (17)

Theorem 9:Supposen sourcesXn
1 ∈ [0, 1]n are quantized by a distributed companding quantizerQλ

K
, and suppose that

the source, quantizers, and functiong : [0, 1]n → R satisfy assumptions MF1–4. Letd(K;λ) = E
[
var

(
g(Xn

1 ) | Qλ

K
(Xn

1 )
)]

denote the true distortion-resolution function, and letdHR denote the high-resolution approximate distortion-resolution function:

dHR(K;λ) =

n∑

j=1

1

12K2
j

E

[(
γj(Xj)

λj(Xj)

)2
]

. (18)

Thend(K;λ) ∼ dHR(K;λ), where∼ indicates that the ratio of the two quantities approaches one as the smallest element of
the vectorK grows without bound.

Proof: See Appendix A.
2) Connecting Resolution to Rate:To convert the distortion-resolution function to a distortion-rate function, we first introduce

a slight generalization of the high-resolution resolution-rate relationship.
Lemma 10:If the sourceXn

1 has a density over[0, 1]n with finite differential entropyh(Xn
1 ) and if E [logλj(Xj)] is finite

for all j ∈ {1, . . . , n}, then as each component of the resolution vectorK diverges,

H
(
Qλ

K(Xn
1 )

)
−

n∑

j=1

logKi → h(Xn
1 ) +

n∑

j=1

E [logλj(Xj)] .

Proof: SupposeW = (w1(x1), w2(x2), . . . , wn(xn)) is an n-dimensional companding function that is applied to the
sourceXn

1 prior to quantization by a rectangular lattice quantizerQU with side lengthK−1
j on thejth side, and furthermore

supposeW−1 is then applied to estimate the source. The output of this quantization processW−1(QU (W (Xn
1 ))) is identical

to the scenario we consider, and sinceW−1 is one-to-one, the joint discrete entropy of the outputs areidentical as well:
H(QU (W (Xn

1 ))) = H(Qλ

K(Xn
1 )).

Since the volume of each cell of the rectangular latticeQU is equal toK−1, and since the diameter of each cell falls to
zero, a special case of a result by Csiszár [32], [33] tells us that

lim
K→∞

H(QU (W (Xn
1 )))− logK = h(W (Xn

1 )).

Since the differential entropy of a continuously differentiable function ofX is given byh(f(X)) = h(X)+E [log detJf (X)],
whereJf (X) denotes the Jacobian matrix for the functionf , we may reduce the expression to

lim
K→∞

H(QU (W (Xn
1 ))) − logK = h(Xn

1 ) +

n∑

j=1

E [logλj(Xj)] .
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Recalling thatH(QU (W (Xn
1 ))) = H(Qλ

K(Xn
1 )), the proof is complete.

Armed with this, the distortion-resolution function may bemodified to include considerations of rate.
Lemma 11:Define the fixed-rate, variable-rate, and Slepian-Wolf distortion-resolution functions as

dHR
fr (K;λ) =

n∑

j=1

1

12K2
j

E

[(
γj(Xj)

λj(Xj)

)2
]

,

dHR
vr (K;λ) =

n∑

j=1

1

12
2
−2H(Q

λj

Kj
(Xj))+2h(Xj)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]

,

dHR
sw (K;λ) =

n∑

j=1

1

12
2
−2H(Q

λj

Kj
(Xj)|Q

λj−1

Kj−1 (X
j−1))+2h(Xj |X

j−1)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]

.

Thend(K;λ) ∼ dHR
fr,vr,sw(K;λ).

Proof: By Theorem 9,d(K;λ) ∼ dHR
fr (K;λ). This establishes the first of the asymptotic equalities.

For the second (variable-rate) asymptotic equality, we observe that by Lemma 1,

Kj ∼ 2
−2H(Q

λj

Kj
(Xj))+2h(Xj)+2E[log λj(Xj)]

and therefore thatdHR
vr (K;λ) ∼ dHR(K;λ). Again, by Theorem 9,d(K;λ) ∼ dHR(K;λ).

For the third (Slepian-Wolf) asymptotic equality, we startby noting that by Lemma 10,

j∏

i=1

Ki ∼ 2−2H(Qλj

Kj (X
j))+2h(Xj)+2

∑j
i=1

E[log λj(Xj)],

and similarly
j−1∏

i=1

Ki ∼ 2−2H(Qλj−1

Kj−1 (X
j−1))+2h(Xj−1)+2

∑j−1

i=1
E[log λj−1(Xj−1)].

Dividing the first by the second yields that

Kj ∼ 2
−2H(Q

λj

Kj
(Xj)|Q

λj−1

Kj−1 (X
j−1))+2h(Xj |X

j−1)+2E[log λj(Xj)]

and therefore thatdHR
sw (K;λ) ∼ dHR(K;λ) ∼ d(K;λ).

3) The Distortion-Rate Functions:We may now establish high-resolution approximations to thedistortion-rate function
under each of the three rate constraints.

Lemma 12:Define the fixed-rate, variable-rate, and Slepian-Wolf high-resolution distortion-rate functions as

DHR
fr (R;λ) =

n

12
2−2R/n




n∏

j=1

E

[(
γj(Xj)

λj(Xj)

)2
]


1/n

, (19a)

DHR
vr (R;λ) =

n

12
2−2R/n




n∏

j=1

22h(Xj)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]


1/n

, (19b)

DHR
sw (R;λ) =

n

12
2−2R/n


22h(X

n
1
)

n∏

j=1

22E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]


1/n

. (19c)

ThenDfr,vr,sw(R;λ) ∼ DHR
fr,vr,sw(R;λ).

Proof: See Appendix B.
4) Asymptotically Optimal Distributed Quantizers:The expressions (19) decouple the problem of designingn point densities

λ into n separate problems of designing a single point densityλj . Furthermore, each design problem (the minimization of an
expression in (19)) is of a familiar form. Thus we obtain the following theorem.

Theorem 13:The asymptotic fixed-rate (codebook-constrained) distortion-rate expression (19a) is minimized by the choice

λ∗
j (x) =

(
γ2
j (x)fXj

(x)
)1/3

∫ 1

0

(
γ2
j (t)fXj

(t)
)1/3

dt
, j = 1, 2 . . . , n, (20)
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yielding distortion

DHR
fr (R) =

n

12




n∏

j=1

‖γ2
j fXj

‖1/3




1/n

2−2R/n. (21)

The asymptotic variable-rate (marginal entropy-constrained) distortion-rate expression (19b) is minimized by the choice

λ∗
j (x) =

γj(x)∫ 1

0 γj(t) dt
, j = 1, 2 . . . , n, (22)

yielding distortion

DHR
vr (R) =

n

12




n∏

j=1

22h(Xj)+2E[log γj(Xj)]




1/n

2−2R/n. (23)

The asymptotic Slepian–Wolf (joint entropy-constrained)distortion-rate expression (19c) is optimized by a choice of point
densities identical to the variable-rate case (22). The resulting distortion is

DHR
sw (R) =

n

12


22h(X

n
1
)

n∏

j=1

22E[log γj(Xj)]




1/n

2−2R/n. (24)

The distributed quantizer point densities yielded by the above optimizations are asymptotically optimal.
Proof: To prove (20) gives the optimal point density for fixed-rate coding and (22) gives the optimal point density for

both variable-rate and Slepian–Wolf coding, it suffices to note that minimizing then terms in (19a), (19b), and (19c) separately
gives problems identical to those in Section III.

The proof that the choice ofλ that minimizes the high-resolution expression is asymptotically optimal is virtually identical
to that of Lemma 3, so it is omitted.

D. Variation: Joint Entropy Constraint

Distortion expressions (21) and (23) are minimum distortions subject to a sum-rate constraint. The individual rates given by
Rj = logKj (fixed-rate) or by (6) (variable-rate) implicitly specify no entropy coding or separate entropy coding of theX̂js,
respectively.

If the X̂js are not independent—which is anticipated whenever theXjs are not independent—one may employ Slepian–
Wolf coding of theX̂js without violating the distributed coding requirement implicit in Fig. 1. This lowers the total rate from∑n

j=1 H(X̂j) to H(X̂1, X̂2, . . . , X̂n) and changes the marginal entropy constraint into a joint entropy constraint. While the
optimal compander choice (22) is unchanged by this modification, the resulting distortion-rate function reduces from (23) to
(24).

Some remarks:

1) By comparing (24) to (23), we see that the inclusion of Slepian–Wolf coding has reduced the sum rate to achieve any
given distortion by 


n∑

j=1

h(Xj)


− h(Xn

1 ).

This is, of course, not unexpected as it represents the excess information in the product of marginal probability distributions
as compared to the joint probability distribution. This hasbeen termed themultiinformation[34] and equals the mutual
information whenn = 2.

2) While the resolution allocationK amongst then sources has a unique minimizing choice, there is some flexibility in
rate allocations for the Slepian–Wolf encoder. Any point onthe Slepian–Wolf joint-entropy boundary may be achieved
with arbitrarily low probability of error.

3) The theorem seems to analytically separate correlationsamong sources from functional considerations, exploitingcor-
relation even though the quantizers are regular. In reality, the binning introduced by Slepian–Wolf coding transforms
the scalar quantizers of each source component into nonregular vector quantizers so as to remove redundancy between
sources.
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E. Relationship to Locally-Quadratic Distortion Measures

Linderet al.consider the class of “locally-quadratic” distortion measures for variable-rate high-resolution quantization in [23].
They define locally-quadratic measures as those having the following two properties:

1) Let x be inRn. Fory sufficiently close tox in the Euclidean metric, the distortion betweenx andy is well approximated
by

∑n
i=1 Mi(x)|xi − yi|2, whereMi(x) is a positive scaling factor. In other words, the distortionis a space-varying

non-isotropically scaled MSE.
2) The distortion between two points is zero if and only if thepoints are identical.

For these distortion measures, the authors consider high-resolution variable-rate regular quantization, generalize Bucklew’s
results [24] to non-functional distortion measures, and demonstrate the use of multidimensional companding functions to
implement these quantizers. Of particular interest is the comparison they perform between joint vector quantization and separable
scalar quantization. When Slepian–Wolf coding is employedfor the latter, the scenario is similar to the developments of this
section.

The source of this similarity is the implicit distortion measure we work with:dg(x, y) = |g(x)− g(y)|2. Whenx andy are
very close to each other, Taylor approximation reduces thiserror to a quadratic form:

|g(x)− g(y)|2 ≈
n∑

i=1

∣∣∣∣
∂g(xn

1 )

∂xi

∣∣∣∣
2

|xi − yi|2.

From this, one may obtain the same variable-rate Slepian–Wolf performance as (24) through the analysis in [23].
However, there are important differences between locally-quadratic distortion measures and the functional distortion measures

we consider. First and foremost: a continuous scalar function of n variables,n > 1, is guaranteedto have an uncountable
number of pairsx 6= y for which g(x) = g(y) and therefore thatdg(x, y) = 0. This violates the second condition of a
locally-quadratic distortion measure, and the repercussions are felt most strikingly for non-monotonic functions—those for
which regular quantizers are not necessarily optimal (see Section VI).

The second condition is also violated by functions that are not strictly monotonic in each variable; one finds that without
strictness, variable-rate analysis of the centralized encoding problem is invalidated. Specifically, if the derivative vector

(
∂g(xn

1 )

∂x1
,
∂g(xn

1 )

∂x2
, . . . ,

∂g(xn
1 )

∂xn

)

has nonzero probability of possessing a zero component, theexpected variable-rate distortion as derived by both Bucklew and
Linder et al. is D = 0, regardless of rate. This answer arrives from the null derivative having violated the high-resolution
approximation, and it implies that the distortion falls faster than2−2R/n. In future work, generalizations of our results in
Section VII may be able to address such deficiencies.

V. EXAMPLES

Before moving on to extensions of the basic theory, we present a few examples to show how optimal ordinary scalar
quantization and optimal DFSQ differ. We especially want tohighlight a few simple examples in which performance scaling
with respect ton differ greatly between ordinary and functionally-optimized quantization. To draw attention to this scaling,
we define therate-per-sourceR̄ as the sum-rate divided by the number of sourcesR/n, and hold this quantity constant as the
number of sources increases.

Example 3 (Linear function):Consider the functiong(xn
1 ) =

∑n
j=1 ajxj where theajs are scalars. Then for anyj, γj(x) =

|aj |. Sinceγj(x) does not depend onx, it has no influence on the optimal point density for either the fixed- or variable-rate
case; see (20) and (22).

Although γj(x) gives no information on which values ofXj are more important than others (or rather shows that they are
all equally important) the set ofγjs shows the relative importance of the components. This is reflected in the allocation of
rate. �

Example 4 (Maximum):Let the set of sourcesXn
1 be uniformly distributed on[0, 1]n and hence mutually independent.

Consider the function

g(xn
1 ) = max(x1, x2, . . . , xn).

Note that this function is differentiable outside the setsAi,j = {xn
1 : xi = xj}, wherei, j ∈ {1, . . . , n}. EachAi,j is an

(n − 1)-dimensional plane and therefore has Jordan measure zero, and since a finite union of Jordan-measure-zero sets has
Jordan measure zero, condition MF1 is satisfied. Though verysimple, this function is more interesting than a linear function
because the derivative with respect to one variable dependssharply on all the others. The function is symmetric in its arguments,
so for notational convenience consider only the design of the quantizer forX1.
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Fig. 4. Optimal point densities for Example 4 (maximum),n = 1, 2, . . . , 16. As n increases, the sensitivitiesγj(x) become more unbalanced toward large
x; this is reflected in the point densities, more so in the variable-rate case than in the fixed-rate case.

The partial derivativeg1(xn
1 ) is 1 where the maximum isx1 and is 0 otherwise. Thus,

γ2
1(x) = E

[
|g1(Xn

1 )|2 | X1 = x
]

= P (max(Xn
1 ) = X1 | X1 = x)

= xn−1,

where the final step uses the probability of alln− 1 variablesXn
2 being less thanx.

The optimal point density for fixed-rate quantization is found by evaluating (20) to be

λ1(x) =
1
3 (n+ 2)x(n−1)/3.

The resulting distortion when each quantizer has rateR̄ (equal rate allocations) is found by evaluating (21) to be

DHR
fr (nR̄) =

n

12
‖γ2

1‖1/3 2−2R̄ =
n

12

(
3

n+ 2

)3

2−2R̄

=
9n

4(n+ 2)3
2−2R̄.

The optimal point density for variable-rate quantization is found by evaluating (22) to be

λ1(x) =
1
2 (n+ 1)x(n−1)/2.

Substitutingh(X1) = 0 and22E[log γ1(X1)] = e−n+1 into (23) gives

DHR
vr (nR̄) =

n

12
e−n+1 2−2R̄.

The two computed distortions decrease sharply withn. This is in stark contrast to the results of ordinary quantization.
When functional considerations are ignored, one optimallyuses a uniform quantizer, resulting inE[(Xj − X̂j)

2] ≈ 1
122

−2Rj

for any component. Since the maximum is equal to one of the components, the functional distortion isDHR
ord(nR̄) = 1

122
−2R̄,

unchanging withn.
The optimal point densities computed above are shown in Fig.4. The distortions are presented along with the results of the

following example in Fig. 5. �

Example 5 (Median):Let n = 2m+1, m ∈ N, and again let the set of sourcesXn
1 be uniformly distributed on[0, 1]n. The

function
g(xn

1 ) = median(x1, x2, . . . , xn)

provides a similar but more complicated example. Note that,as in Example 4, this function is differentiable outside the
zero-Jordan-measure setsAi,j , and it therefore satisfies condition MF1.

The partial derivativeg1(xn
1 ) is 1 where the median isx1 and is 0 otherwise. Thus,

γ2
1(x) = E

[
|g1(Xn

1 )|2 | X1 = x
]

= P (median(Xn
1 ) = X1 | X1 = x)

=

(
2m

m

)
xm(1 − x)m,
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Fig. 5. Distortions of optimal fixed- and variable-rate functional quantizers for maximum and median functions from Examples 4 and 5. Shown is the
dependence on the number of variablesn; by plotting D · 12 · 22R̄ we see the performance relative to ordinary quantization.

where the final step uses the binomial probability for the event of exactlym of the 2m variablesXn
2 exceedingx.

The optimal point density for fixed-rate quantization is found by evaluating (20) to be

λ1(x) =
xm/3(1 − x)m/3

B(m/3 + 1,m/3 + 1)

whereB is the beta function. The resulting distortion when each quantizer has ratēR is found by evaluating (21) to be

DHR
fr (nR̄) =

2m+ 1

12
‖γ2

1‖1/3 2−2R̄

=
2m+ 1

12

(
2m

m

)(
B
(m
3

+ 1,
m

3
+ 1

))3

2−2R̄.

To understand the trend for largem, we can substitute in the Stirling approximations
(
2m
m

)
∼ (mπ)−1/222m and

B(m/3 + 1,m/3 + 1) ∼
√
6π/m 2−(2m/3+3/2)

to obtain

DHR
fr (nR̄) ∼ m

6

22m√
mπ

(
6π

m

)3/2

2−(2m+9/2) 2−2R̄ =
π
√
3

16m
2−2R̄.

The optimal point density for variable-rate quantization is found by evaluating (22) to be

λ1(x) =
xm(1− x)m

B(m+ 1,m+ 1)
.

To evaluate the resulting distortion, note thath(X1) = 0 and22E[log γ1(X1)] =
(
2m
m

)
e−2m. Substituting into (23) gives

DHR
vr (nR̄) =

2m+ 1

12

(
2m

m

)
e−2m 2−2R̄.

Using the approximation above for the binomial factor we obtain

DHR
vr (nR̄) ∼ m1/2

6π1/2

(e
2

)−2m

2−2R̄.

The optimal point densities computed above are shown in Fig.6. The distortions are presented along with the results of
Example 4 in Fig. 5.

Note the following similarities to Example 4:DHR
ord is constant with respect ton, DHR

fr decays polynomially withn, and
DHR

vr decays exponentially withn. �

The large performance improvement over ordinary quantization in these examples illustrates the potential benefits of
functional quantization. Additional examples and detailsappear in [35].
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Fig. 6. Optimal point densities for Example 5 (median),n = 1, 3, . . . , 21. Asn increases, the sensitivitiesγj(x) become more unbalanced towardx = 1/2;
this is reflected in the point densities, more so in the variable-rate case than in the fixed-rate case.

x1
x1

x2
x2

g(x1, x2)g(x1, x2)

Fig. 7. Two functions of two variables are shown. The left function is separable andX1 is best quantized by a non-regular quantizer; for the right function
(a rotated version of the left), a regular quantizer is asymptotically optimal. This is due to the right function being “equivalence-free.”

VI. N ON-MONOTONIC FUNCTIONS AND NON-REGULAR QUANTIZATION

The high-resolution approach to quantizer optimization isinherently limited to the design of regular quantizers. In particular,
we have specified compander functions to be monotonic in Section II-A. The analysis of Section IV therefore gave us quantizer
sequences within the class of regular quantizers.

In this section we explore less restrictive alternatives tothe monotonicity requirement. Specifically, we introduce the concept
of equivalence-freeand show that if a function has this property, then non-regular companding quantizer sequences are
asymptotically suboptimal.

Fig. 7 illustrates the concept. The function on the left is aligned with the axes in the sense thatg(x1, x2) depends only on
x1. Since the dependence onx1 is not monotonic, there are pairs of distinct points(x†

1, x
‡
1) whereg(x†

1, x2) = g(x‡
1, x2) and

thus the optimal quantizer at high enough resolution hasQ1(x
†
1) = Q1(x

‡
1), giving a non-regular quantizer. When the argument

vector(x1, x2) of the function is rotated as shown on the right, the resulting function is still non-monotonic. However, there is
no longer a clearly optimal non-regular quantization scheme. Specifically, for some fixedx2 there may be pairs(x†

1, x
‡
1) such

that g(x†
1, x2) = g(x‡

1, x2), but the equality does not hold for allx2. As we shall see, this results in the suboptimality of any
compander that mapsx†

1 in the same way asx‡
1.

Our approach is to first create a model for high-resolution non-regular quantization, then to use this model to expand theclass
of functions for which regular quantization is optimal, andfinally to construct asymptotically optimal non-regular quantizers
when regularity is suboptimal.

A. High-Resolution Non-Regular Quantization

To accommodate non-regular quantization, we extend the compander-based model of quantization. In Bennett’s development
of optimal companding, reviewed in Sec. II, it is natural to requirew to be both monotonic and have a bounded derivative
everywhere; the derivativew′(x) is proportional to the quantizer point densityλ(x) that has been central in our development
thus far. Whether we look atλ or w, the role is to set the relative sizes of the quantization cells.

Since optimal functional quantizers are not necessarily regular, we adapt the conventional development to implement non-
regular quantizers.

Definition 4: A functionw : [0, 1] → [0, 1] is ageneralized companderif it is continuous, piecewise monotonic with a finite
number of pieces, and has bounded derivative over each piece.
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Fig. 8. Example of a generalized companderw1(x1) for a functiong(x1, x2) and the partition resulting from uniform quantization ofw1(X1). Notice that
the compander dictates both the relative sizes of cells and the binning of intervals ofX values.

As in regular companding,w andw−1 are used along with a uniform quantizerQU
K asw−1(QU

K(w(x))). The restriction to
a finite number of pieces is a limitation on the types of non-regular quantizers that can be captured with this model: thosefor
which every quantizer cell is a finite union of intervals. Barring certain pathological situations, this restriction isreasonable.

Along with setting relative sizes of cells,w provides for non-regularity by allowing intervals to be binned together. To
illustrate this, consider a simple example. Suppose that the pair (X1, X2) is uniformly distributed over[0, 1]2, variable rate
quantization is to be performed on both variables, and the function of interest is defined by

g(x1, x2) = x1(
3
4 − x1)(1 − x2).

An optimal functional quantizer—a quantizer forX1 to minimize E[(g(X1, X2)− g(X̂1, X̂2))
2]—should bin togetherX1

values that always yield the sameg(X1, X2). Furthermore, the magnitude of the slope of this quantizer should follow (22).
The choice of

w1(x1) =
64
25x1

(
3
4 − x1

)
+ 16

25

can be shown to be optimal. Bothw1 and the resulting quantizer at resolutionK = 5 are illustrated in Fig. 8b.

B. Equivalence-Free Functions

We now define a broad class of functions for which regular quantization is optimal at sufficiently high resolutions. Consider
the design of thejth quantizer in ann-dimensional distributed functional quantization setting.

We require a set of definitions:
Definition 5: For anys 6= t in the support ofXj , let

vj(s, t) = E [var (g(Xn
1 ) | Xj ∈ {s, t}, {Xi}i6=j)] .

If vj(s, t) = 0 then (s, t) is a functional equivalence in thejth variable. If g has no functional equivalences in any of its
variables, we say it isequivalence-free.

The theorem below demonstrates that for DFSQ with an equivalence-free function, quantizer regularity is necessary for
asymptotic optimality. Specifically, strictly non-regular quantization is shown to introduce a nonzero lower bound onthe
distortion, independent of rate. This is formalized with the aid of generalized companding. To simplify the proof somewhat,
we assume that the marginal probability densityfj(Xj) is nonzero over[0, 1]. This assumption is without loss of generality,
since one may consider the subset of[0, 1] wherefj(Xj) is nonzero.

Theorem 14:Let g be equivalence-free with respect to the pdf ofXn
1 on [0, 1]n. Suppose quantization of eachXj is

performed aŝYj = q(wj(Xj)) wherewj is a generalized compander andq is a uniform quantizer. If there is an indexj, set
S ⊂ [0, 1], and functiont : R → R such thatP (Xj ∈ S) > 0, and, for everys ∈ S, s 6= t(s) andwj(s) = wj(t(s)), then the
distortion has a positive, resolution-independent lower bound.

Proof: See Appendix C.
The positive, rate-independent lower bound shows that the quantizer is suboptimal if the rate is sufficiently high; evennaive

uniform quantization will yield distortion withO(2−2R̄) dependence on rate and thus will eventually outperform the strictly
non-regular quantizer.
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When a function has equivalences, the best asymptotic quantization tactic is to design companders that bin all the equivalent
values in each variable but are otherwise monotonic. In effect, this procedure losslessly converts the function into one that is
equivalence-free. One might consider this a real-valued-source analogue of the functional compression procedure suggested by
Doshi et al. [16].

VII. D ON’ T-CARE INTERVALS AND RATE AMPLIFICATION

Ordinary high-resolution analysis produces point-density functions that reflect the source pdf in the sense that optimal
quantizers never have zero point density where there is nonzero probability density. In fact, having zero point densitywhere
there is nonzero probability density invalidates high-resolution analysis. The situation is more complicated in the functional
setting since the optimal point densities depend on both thefunctional sensitivity profiles and the source probabilitydistribution.
Having zero functional sensitivity where the probability density is nonzero changes the optimal quantizers in the variable-rate
case.

The following example illustrates the potential for failure of the analysis of Section IV-C4. Note that the intricaciesarise
even with a univariate function.

Example 6:Let X have the uniform probability distribution over[0, 1], and suppose the function of interest isg(X) =
min(X, 1/2). It is clear that the optimal quantizer (for both fixed- and variable-rate) has uniform point density on[0, 1/2].
With the functional sensitivity profile given by

γ(x) =

{
1, if x < 1/2;
0, otherwise,

evaluating (12) and (14) is consistent with the intuitive result.
The distortion for the fixed-rate case obtained from (13) is(1/12)(1/2)32−2R. This is sensible since for half of the source

values (X > 1/2) there is zero distortion by having a single codeword at1/2, whereas for the other half of the source values
(X < 1/2), 2R − 1 codewords quantize a random variable uniformly distributed over [0, 1/2]. However, assumption MF4 is
not satisfied by this quantizer point density, so it is unclear whether this expression is an asymptotically valid approximation
for the distortion-rate function.

The variable-rate case is also problematic. SinceE [log γ(X)] = −∞, evaluating (15) yieldsDHR
vr = 0. Both the distortion-

resolution and resolution-rate analyses fail because the quantization is not fine over the full support offX . However, if an
alternative quantization structure is used, the distortion-rate performance can be accurately determined. In this alternative
structure, the first representation bit specifies the eventA = {X < 1/2} or its complement. Since additional bits are useful
only whenA occurs, one can spend2(R − 1) bits in those cases to have an average expenditure ofR bits. The resulting
distortion is

DHR
vr = P (A) dHR

g|A + P (Ac) dHR
g|Ac

= 1
2 · 1

12 (
1
2 )

22−2(2R−2) + 1
2 · 0 = 1

62
−4R.

Note that the exponent in the distortion–rate relationshipis larger than it was in the fixed-rate case. �

In the example, there is an intervalX ∈ [1/2, 1] of source values that need not be distinguished for functionevaluation. Let
us define a term for such intervals before discussing the example further.

Definition 6: An intervalZ ⊂ [0, 1] is called adon’t-care intervalfor the jth variable when thejth functional sensitivity
γj is identically zero onZ, but the probabilityP (Xj ∈ Z) is positive.

In univariate FSQ, at sufficiently high rates, each don’t-care interval corresponding to a distinct value of the function should
be allotted one codeword. This follows from reasoning similar to that given in Section VI-B and is illustrated by Example6.
In the fixed-rate case, the don’t-care intervals simply occupy a few of the2R codewords and have a limited effect. In the
variable-rate case, however, the don’t-care intervals produce a subset of source values that can be allotted very little rate. This
gives more rate to be allotted outside the don’t-care intervals and behavior we refer to asrate amplification.

We derive the high-resolution distortion-resolution function for this quantizer structure in Section VII-A, and in section VII-B
the distortion-rate function is obtained.

A. The Distortion-Resolution Function

In the following analysis we will assume that thejth variable has a finite numberMj of don’t-care intervals{Zj,1, Zj,2, . . . , Zj,Mj
}.

We also assume
P (Xj ∈ Zj) < 1 for j = 1, 2 . . . , n, (25)

whereZj = ∪Mj

i=1Zj,i denotes the union of don’t-care intervals for thejth variable. Without this, there is no improvement
beyondMj levels in representingXj, so the high-resolution approach is wholly inappropriate.We will denote the event
Xj /∈ Zj by Aj .
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At sufficiently high rates, it is intuitive to allot a codeword of Qj to each don’t-care intervalZj,i. The remainingKj −Mj

codewords are assigned optimally to[0, 1]\Zj according to the basic theory developed in Section IV. We refer to this quantizer
structure as adon’t-care quantizer.

Theorem 15:Supposen sourcesXn
1 ∈ [0, 1]n are quantized by a sequence of distributed don’t-care quantizersQw

K . Further
suppose that the sources, quantizers, and functiong : [0, 1]n → R satisfy assumptions MF1–MF3, and assumption MF4 is
replaced by the following: The integrals

∫

[0,1]\Zj

f(xj)E
[
|gj(Xn)|2 | Xj = xj

]
λj(xj)

−2 dxj

are finite for everyj ∈ {1, . . . , n}. Finally, assume each sourceXj hasMj don’t-care intervals satisfying (25). Then the
high-resolution distortion-resolution function is asymptotically accurate to the true distortion-resolution function:

dHR(K;λ) =
n

12




n∏

j=1

P (Aj)

(Kj −Mj)2
E

[(
γj(Xj)

λj(Xj)

)2

| Aj

]


1/n

, (26)

∼ d(K;λ).

Proof: Follows from applying Theorem 9 to the region([0, 1] \ Z1)× · · · × ([0, 1] \ Zn).

B. The Distortion-Rate Functions

In the fixed-rate case, the high-resolution resolution-rate function is unchanged:KHR
fr (R;λ) = 2R. Asymptotic validity is

easily observed:limR→∞ Kfr(R;λ)/KHR
fr (R;λ) = 1. Applying this to the distortion-resolution expression (26), we obtain the

unoptimized high-resolution fixed-rate distortion-rate function:

Dfr(R;λ) ∼ DHR
fr (R;λ) =

n

12




n∏

j=1

P (Aj)

(Kj −Mj)2
E

[(
γj(Xj)

λj(Xj)

)2

| Aj

]


1/n

∼ n

12K2/n




n∏

j=1

P (Aj)E

[(
γj(Xj)

λj(Xj)

)2

| Aj

]


1/n

.

The optimal point densities for fixed-rate quantization aregiven by (20) outside of the don’t-care intervals. These point densities
yield an optimized high-resolution fixed-rate distortion-rate function

DHR
fr (R) =

n

12




n∏

j=1

‖γ2
j fXj

‖1/3




1/n

2−2R/n. (27)

The variable-rate case is a bit more involved. To formalize the analysis, we define discrete random variables to represent
the events of source variables lying in don’t-care intervals.

Definition 7: The random variable

Ij =

{
i, if Xj ∈ Zj,i for i ∈ {1, 2, . . . , Mj};
0, otherwise

is called thejth don’t-care variable. The previously-defined eventAj can be expressed as{Ij = 0}.
At sufficiently high rate, thejth encoder communicatesIj and in addition,only whenIj = 0, a fine quantization ofXj .

The resulting performance is summarized by the following theorem.
Theorem 16:Under the conditions of Theorem 15, the optimal point densities for variable-rate quantization follow (22) and

yield

DHR
vr (R) =

n

12




n∏

j=1

ρ−1
j (28)

×2−2(ρj(R−H(Ij ))+2h(Xj |Aj)+2E[log(γj(Xj))|Aj ]
)1/n

.

whereρj = 1/P (Aj) is theamplificationof Rj .
Proof: See Appendix D.

Some remarks:
1) The quantityH(Ij) may be identified as the cost of communicating the indicator information to the decoder. The

remaining rate,Rj −H(Ij), is amplified by factorρj because additional description ofXj is useful only whenXj /∈ Zj.
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X1

X2

X̂1

X̂2

Y = Y2→1

Q1

Q2

Fig. 9. Suppose the encoder forX2 could send a bit to the encoder forX1. Is there any benefit? How does it compare to sending an additional bit to the
decoder?

The amplification shows that the standard−6 dB/bit-per-source distortion decay may be exceeded in the presence of
don’t-care regions.

2) At moderate rates, it may not be optimal to communicateIj losslessly, and it may be beneficial to includeXj values
with small but positiveγj in don’t-care intervals. Study of this topic is left for specific applications.

3) The rate amplification we have seen in the variable-rate case and the relative lack of importance of don’t-care intervals
in the fixed-rate case have a close analogy in ordinary lossy source coding. Suppose a sourceX is a mixed random
variable with anM -valued discrete component and a continuous component. High-resolution quantization ofX will
allocate one level to each discrete value and the remaining levels to the continuous component. The discrete component
changes the constant factor inΘ(2−2R) fixed-rate operational distortion–rate performance whileit changes the decay
rate in the variable-rate case. See [36] for related Shannon-theoretic (rather than high-resolution quantization) results.

VIII. C HATTING ENCODERS

Our final variation on the basic theory of distributed functional scalar quantization is to allow limited communicationbetween
the encoders. How much can the distortion be reduced via thiscommunication? Echoing the results of the previous section,
we will find dramatically different answers in the fixed- and variable-rate cases.

For notational convenience, we will fix the communication tobe from encoder 2 to encoder 1 though the number of source
variablesn remains general. In accordance with the block diagram of Fig. 9, the informationY = Y2→1 must be conditionally
independent ofX1 givenX2. We consider only the case whereY is a single bit; this suffices to illustrate the key ideas.

In this section, we express the high-resolution distortionas

DHR =
n

12
2−2R/n




n∏

j=1

Dj




1/n

,

where various expressions forDj have been found for different scenarios, including for fixed-rate (21) and variable-rate (23)
quantization. At issue is howD1 is affected byY ; the otherDjs are not affected.

A. Fixed-Rate Quantization

In general, the availability of a single bitY causes one to choose between two potentially-different quantizersQ1|Y=0 and
Q1|Y=1 in the quantization ofX1. We express the optimal quantizers and the resulting distortion contributionD1 by way of
the following concept.

Definition 8: The jth conditional functional sensitivity profileof g givenY = y is defined as

γj|Y (x | y) =
(

E
[
|gj(Xn

1 )|2 | Xj = x, Y = y
])1/2

.

Now several results follow by analogy with Theorem 13. For the case ofY = y, the optimal point density is given by

λ1|Y (x | y) =

(
γ2
1|Y (x | y)fX1|Y (x | y)

)1/3

∫ 1

0

(
γ2
1|Y (t | y)fX1|Y (t | y)

)1/3

dt

resulting in conditional distortion contribution

1

12K2
1

∥∥∥γ2
1|Y=yfX1|Y=y

∥∥∥
1/3

.

Combining the two possibilities forY via total expectation gives

D1 =

1∑

y=0

P (Y = y)
∥∥∥γ2

1|Y=yfX1|Y=y

∥∥∥
1/3

. (29)
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From this expression we reach an important conclusion on theeffect of the chatting bitY .
Theorem 17:For fixed-rate quantization, communication of one bit of information from decoder 2 to decoder 1 will

asymptotically reduceD1 by at most a factor of 4.
Proof: From Theorem 13, the distortion contribution analogous to (29) without the chatting bitY is

∥∥γ2
1fX1

∥∥
1/3

. Thus

the fact we wish to prove is a statement aboutL1/3 quasinorms of weighted densities and their conditional forms.
We proceed as follows:

D1 =

1∑

y=0

∥∥∥P (Y = y) γ2
1|Y (x | y)fX1|Y (x | y)

∥∥∥
1/3

(a)

≥ 1

4

∥∥∥∥∥

1∑

y=0

P (Y = y) γ2
1|Y (x | y)fX1|Y (x | y)

∥∥∥∥∥
1/3

=
1

4

∥∥∥∥∥fX1
(x)

1∑

y=0

P (Y = y) fX1|Y (x | y)
fX1

(x)
γ2
1|Y (x | y)

∥∥∥∥∥
1/3

(b)
=

1

4

∥∥∥∥∥fX1
(x)

1∑

y=0

P (Y = y | X1 = x) γ2
1|Y (x | y)

∥∥∥∥∥
1/3

(c)
=

1

4

∥∥fX1
(x)γ2

1 (x)
∥∥
1/3

,

where (a) uses a quasi-triangle inequality that may be established via well-known inequalities (see Appendix E for a statement
and proof); (b) is an application of Bayes’s Rule; and (c) is based on an evaluation of the (unconditional) functional sensitivity
via the total expectation theorem with conditioning onY . This proves the theorem.

Note that while the bitY leads a reduction ofD1 by at most a factor of 4 and therefore a reduction ofDHR by at most a
factor of 41/n, an identical reduction in distortion is achieved simply byincreasing the rateR to the centralized decoder by
one bit. Generalizing to any number of chatting bits, we obtain the following corollary.

Corollary 18: For fixed-rate functional quantization, communication of some number of bits from encoderj to encoderk
performsat bestas well as increasing the communication to the centralized decoder by the same number of bits.

In general, the idea that bits from encoder 2 to encoder 1 are as good as bits from encoder 1 to the decoder is optimistic.
In particular, if E

[
γ2
1(X1)

]
> 0, thenD1 is bounded away from zero for any amount of communication from encoder 2 to

encoder 1.

B. Variable-Rate Quantization

In a variable-rate scenario, the rate could be made to dependon the chatting bitY , introducing a bit allocation problem
between the cases ofY = 0 andY = 1. Even without such dependence, we can demonstrate that the bit Y can reduce the
first variable’s contribution to the functional distortionby an arbitrary factor.

Analogous to (29),

D1 =

1∑

y=0

P (Y = y) 22h(X1|Y=y)+2E[log γ1|Y =y(X1)] (30)

by comparison with (23). In contrast to theL1/3 quasinorms in (29), this linear combination can be arbitrarily smaller than

22h(X1)+2E[log γ1(X1)].

We demonstrate this through a simple example.
Example 7:Let sourcesX1 andX2 be uniformly distributed on[0, 1]2. We specify the function of interestg through its

partial derivatives. Letg2(x1, x2) = 1 for all (x1, x2) and letg1(x1, x2) be piecewise constant as shown in Fig. 10, whereL
is a positive constant.

While g(x1, x2) is not continuous everywhere and condition MF1 is thereforenot strictly satisfied, the points of discontinuity
fall along the linex2 = 1/2. As observed following the proof of Corollary 8, this variety of discontinuity can be easily and
intuitively merged with high-resolution analysis: one simply places an extra quantizer cell boundary atx2 = 1/2 for every
quantizer in the sequence being considered. This increasesthe resolutionK by 1, but has negligible impact on the rate in the
limit K → ∞.

We can easily derive the first functional sensitivity profileof g to be

γ1(x) =
√

1
2 (L

2 + 1).
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1
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1

1

1

L

L

x1

x2

Fig. 10. Illustration for Example 7. Shown is the unit square[0, 1]2 with quadrants marked with the value ofg1(x1, x2), the derivative ofg with respect
to x1.

This also allows us to find the distortion contribution factor D1 without chatting to be

D1 = 1
4 (L

2 + 1)2.

In this example, one bit aboutX2 is enough to allow the encoder forX1 to perfectly tailor its point density to match the
sensitivity ofg at (X1, X2). Of course, the chatting bit should simply be

Y =

{
0, if X2 > 1/2;
1, otherwise.

The first conditional functional sensitivity profiles forg are then

γ1|Y (x | y) =





1, for Y = 0 andX1 ≤ 1/2
or Y = 1 andX1 > 1/2;

L, otherwise.

Now for either value ofy, we have
∫ 1

0 γ1|Y (x | y) dx = 1
2 (L + 1) and E

[
log γ1|Y=y(X1)

]
= 1

2 logL. Thus, evaluating (30)
gives

D1 = 1
4 (L+ 1)2L.

This is smaller than theD1 with no chatting by about a factor ofL. The performance gap can be made arbitrarily large by
increasingL—all from just one bit of information communicated between encoders per sample. �

C. Comparison with Ordinary Source Coding

The results of this section are strikingly different from those of ordinary source coding. Consider first the discrete scenario
in which we with to recreateXn

1 perfectly at the decoder. Can communication between encoders enable a reduction in the
rate of communication to the decoder? According to Slepian and Wolf, the answer is a resounding “no.” Even in the case of
unlimited collaboration via fused encoders, the minimum sum rate to the decoder remains unchanged.

How about in lossy source coding? If quantization is variable-rate and Slepian–Wolf coding is employed on the quantization
indices, no gains are possible from encoder interactions. This is a consequence of the work of Rebollo-Monederoet al. [8] on
high-resolution Wyner–Ziv coding, where it is shown that there is no gain from supplying the source encoder with the decoder
side information.

IX. SUMMARY

We have developed asymptotically-optimal companding designs of functional quantizers using high-resolution quantization
theory. This has shown that accounting for a function while quantizing a source can lead to arbitrarily large improvements in
distortion. In certain scenarios (Section V), this improvement can grow exponentially with the number of sources. In others
(Section VII), it can grow exponentially with rate.

Additionally, our study of functional quantization has highlighted some striking distinctions between fixed- and variable-rate
cases:

1) For certain simple functions of order statistics, distortion relative to ordinary quantization falls polynomiallywith the
number of sources in the fixed-rate case, whereas in the variable-rate case it falls exponentially.

2) The distortion associated with fixed-rate quantizers will always exhibit−6 dB/bit rate dependence at high rates, whereas
the decay of distortion can be faster in some variable-rate cases.

3) Information sent from encoder-to-encoder can lead to arbitrarily-large improvements in distortion for variable-rate,
whereas for fixed-rate this information can be no more usefulthan an equal amount of information sent to the decoder.

The second and third of these have extensions or analogues beyond functional quantization. Rate amplification is a feature
of quantizing sources with mixed probability distributions, and the results on chatting encoders continue to hold whenthe
function g is the identity operation.
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APPENDIX A
PROOF OFTHEOREM 9

Lemma 19:Let X be a real-valued random variable distributed over a boundedinterval S, and letg(x) be an absolutely
continuous, real-valued function onS with bounded derivativeg′(x). If g′(x) is defined foralmost everyx ∈ S, then
var (g(X)) ≤ var (bX), where b = supx∈S |g′(x)|. If g′(x) is furthermore defined foreveryx ∈ S, then var (g(X)) ≥
var (aX), wherea = infx∈S |g′(x)|.

Proof: Draw X1 andX2 i.i.d. according to the distribution ofX , and define the following functions:

Da(X1, X2) = a(X1 −X2),

Dg(X1, X2) = g(X1)− g(X2),

Db(X1, X2) = b(X1 −X2).

To prove the first part of the lemma, assume the derivative ofg is defined foralmost everyx ∈ S. By the absolute continuity
of g,

Dg(X1, X2) = g(X2)− g(X1) =

∫ X2

X1

g′(x) dx.

Therefore, the magnitude|Dg(X1, X2)| can be bounded above as follows:

|Dg(X1, X2)| ≤
∫ X2

X1

|g′(x)| dx ≤ b|X1 −X2| = |Db(X1, X2)|.

This then implies thatE[D2
g ] ≤ E[D2

b ] and, sinceE[Dg] = E[Db] = 0, that

var(Dg) ≤ var(Db). (31)

Since eachDb andDg is a sum of i.i.d. variables,var(Db) = 2 var(bX) and var(Dg) = 2 var(g(X)). Inserting these into
(31) and dividing by 2 proves the first part of the lemma.

Now to prove the second part of the lemma, assume further thatg′(x) is defined foreveryx ∈ S. By the mean value
theorem, there existsX0 betweenX1 andX2 such that

|Dg(X1, X2)| =
∣∣∣∣∣

∫ X2

X1

g′(x) dx

∣∣∣∣∣ = |g′(X0)(X1 −X2)| ≥ a|X1 −X2| = |Da(X1, X2)|.

As before, this implies that
var(Dg) ≥ var(Da). (32)

Sincevar(Da) = 2 var(aX) andvar(Dg) = 2 var(g(X)), substituting into (32) and dividing by 2 proves the second part of
the lemma.

We now define a functioñgx̃j−1

1

(x) that will appear in the proof of the theorem after we establish properties of the function
in a lemma.

Definition 9: SupposeX̃n
1 is uniformly distributed over a rectangular regionS. The jth reduced-dimension function(with

parameter vector̃xj−1
1 ) is defined as

g̃x̃j−1

1

(x) = E
[
g(X̃n

1 ) | X̃j−1
1 = x̃j−1

1 , X̃j = x
]

.

Lemma 20:Let X̃n
1 be uniformly distributed over a rectangular regionS = S1 × S2 × · · · × Sn, and letg be Lipschitz

continuous overS. If the first and second derivatives ofg are defined and boundedalmost everywherein S, then:
1) g̃x̃j−1

1

(x) is Lipschitz continuous inx.
2) Where defined,|g̃′

x̃j−1

1

(x)| ≤ bj = supxn
1
∈S |gj(xn

1 )|.
If the first and second derivatives ofg are furthermore defined and boundedeverywherein S, then:

3) For all x̃j−1
1 ∈ S1 × S2 × · · · × Sj−1, the derivativẽg′

x̃j−1

1

(x) is defined for allx ∈ Sj .

4) The magnitude of derivative may be lower bounded:|g̃x̃j−1

1

(x)| ≥ aj = infxn
1
∈S |gj(xn

1 )|.
Proof: First, assume that the first and second derivatives ofg are defined and boundedalmost everywherein S.

1) Sinceg̃x̃j−1

1

(x) is an average of functions with a common Lipschitz constant,it too is Lipschitz with this constant.
2) Whereg̃′

x̃j−1

1

(x) is defined, we have
∣∣∣g̃′

x̃j−1

1

(xj)
∣∣∣ =

∣∣∣E
[
gj(X

n
1 ) | X̃j

1 = x̃j
1

]∣∣∣

≤ E
[
|gj(Xn

1 )| | X̃j
1 = x̃j

1

]

≤ bj.
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Now assume that furthermore the first and second derivativesof g are defined and boundedeverywherein S.

3) Sincegj(x̃n
1 ) is defined for allx̃n

1 ∈ S, the average derivativẽg′
x̃j−1

1

(x̃j) is defined for allx̃j ∈ Sj .

4) We now obtain a lower bound on the derivative. As before, wenote thatg̃′
x̃j−1

1

(xj) = E[gj(Xn
1 ) | X̃j

1 = x̃j
1]. Because

the derivatives ofgj are defined everywhere inS, and because the expectation under a uniform distribution is just an
average, the mean value theorem guarantees the existence ofan ex̃j

1

∈ S such thatgj(ex̃j
1

) = E[gj(Xn
1 ) | X̃j

1 = x̃j
1].

Finally, sinceex̃j
1

∈ S, we have|gj(ex̃j
1

)| ≥ aj . To summarize:
∣∣∣g̃′

x̃j−1

1

(xj)
∣∣∣ =

∣∣∣E
[
gj(X

n
1 ) | X̃j

1 = x̃j
1

]∣∣∣

=
∣∣∣gj

(
ex̃j

1

)∣∣∣
≥ aj.

We now bound the variance of the function within a rectangular cell, assuming the source is uniformly distributed. This will
later be adapted to the case where the source is nonuniformlydistributed.

Lemma 21:Let g(xn
1 ) be a Lipschitz continuous function defined over a rectangular cell S = S1 × · · · × Sn with edge

lengths∆1, . . . ,∆n, let aj and bj be lower and upper bounds to|gj(xn
1 )|, when it exists, and letg denote the average value

of g within S:

g =
1∏n

j=1 ∆j

∫

S

g(xn
1 ) dx

n
1 .

If the first and second derivatives ofg are definedalmost everywherein S, then

(∏n
j=1

1
∆j

)∫

S

|g(xn
1 )− g|2 dxn

1 ≤
n∑

j=1

b2j∆
2
j

12
.

If the first and second derivatives ofg are furthermore definedeverywherein S, then

n∑

j=1

a2j∆
2
j

12
≤

(∏n
j=1

1
∆j

)∫

S

|g(xn
1 )− g|2 dxn

1 .

Proof: SinceX̃n
1 is uniformly distributed overS,

1∏n
j=1 ∆j

∫

S

|g(xn
1 )− g|2 dxn

1 = var(g(X̃n
1 )).

This may be expanded by repeated application of the law of total variance:

var(g(X̃n
1 ))

(a)
= E

[
var

(
g(X̃n

1 ) | X̃1

)]
+ var

(
E
[
g(X̃n

1 ) | X̃1

])

(b)
= E

[
E
[
var

(
g(X̃n

1 ) | X̃1, X̃2

)
| X̃1

]
+ var

(
E
[
g(X̃n

1 ) | X̃1, X̃2

]
| X̃1

)]
+ var

(
E
[
g(X̃n

1 ) | X̃1

])

(c)
= E

[
var

(
g(X̃n

1 ) | X̃1, X̃2

)]
+ E

[
var

(
E
[
g(X̃n

1 ) | X̃1, X̃2

]
| X̃1

)]
+ var

(
E
[
g(X̃n

1 ) | X̃1

])

(d)
= E

[
var

(
g(X̃n

1 ) | X̃n−1
1

)]
+

n∑

j=1

E
[
var

(
E
[
g(X̃n

1 ) | X̃j
1

]
| X̃j−1

1

)]

=

n∑

j=1

E
[
var

(
E
[
g(X̃n

1 ) | X̃j
1

]
| X̃j−1

1

)]

=

n∑

j=1

E
[
var

(
g̃X̃j−1

1

(X̃j) | X̃j−1
1

)]
, (33)

where (a) follows from the law of total variance with conditioning onX̃1; (b) uses the law of total variance applied to the
variance within the expectation in the first term, with conditioning performed onX̃2; (c) simplies the first term using iterated
expectation; and (d) applies the law of total variance repeatedly to the variance within the first expectation, as in step(b), with
conditioning onX̃j during thejth iteration.

Upper bound.Let A(x̃j−1
1 ) ∈ Sj be the set of pointsxj ∈ Sj where the derivativẽg′

x̃j−1

1

(xj) is undefined. By Lemma 20,

g̃x̃j−1

1

(xj) is Lipschitz continuous and thereforeA(x̃j−1
1 ) is of measure zero. As such, for every value ofX̃j−1

1 considered
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within the expectation,var
(
g̃X̃j−1

1

(X̃j) | X̃j−1
1

)
is now the variance of a function satisfying the upper bound conditions for

Lemma 19. Applying this upper bound within the expectation,we have

n∑

j=1

E
[
var

(
g̃X̃j−1

1

(X̃j) | X̃j−1
1

)]
≤

n∑

j=1

E
[
var

(
bjX̃j | X̃j−1

1

)
| µ

(
A(X̃j−1

1 )
)
= 0

]

=

n∑

j=1

b2j∆
2
j

12
,

which proves the first half of the lemma.

Lower bound.We return to (33), now assuming that the first and second derivatives ofg are defined everywhere in the cell
S. By Lemma 20, for any choice of̃xj

1 ∈ S1 × · · · × Sj the functiong̃x̃j−1

1

(xj) satisfies the conditions for the lower bound in
Lemma 19. Inserting this lower bound into the expectation, we obtain

n∑

j=1

E
[
var

(
g̃X̃j−1

1

(X̃j) | X̃j−1
1

)]
≥

n∑

j=1

E
[
var

(
aj(X̃j) | X̃j−1

1

)]

=

n∑

j=1

a2j∆
2
j

12
,

which proves the second half of the lemma.

Armed with this lemma, we may now determine upper and lower bounds to the distortion ofg(xn
1 ) within a single quantizer

cell.

Lemma 22:Suppose that over a rectangular cellS ⊂ [0, 1]n the functiong(xn
1 ) is Lipschitz continuous and the probability

densityf(xn
1 ) is continuous, and supposeg(xn

1 ) has bounded first and second derivatives almost-everywherein S. LetAS denote
the subset ofS where the first and second derivatives ofg(xn

1 ) are defined. Then, definingaj = infxn
1
∈S 1AS

(xn
1 )|gj(xn

1 )| and
bj = supxn

1
∈S |gj(xn

1 )|,

f(χ | Xn
1 ∈ S)

n∑

j=1

a2j∆
2
j

12

n∏

i=1

∆i ≤ var (g(Xn
1 )|Xn

1 ∈ S) ≤ f(ξ | Xn
1 ∈ S)

n∑

j=1

b2j∆
2
j

12

n∏

i=1

∆i

for someχ, ξ ∈ S.

Proof: We first prove the lower bound. IfAS is nonempty,aj = 0 for everyj so the lower bound is trivially true. Now
supposeAS is empty and therefore that the first and second derivatives of g(xn

1 ) are defined everywhere inS. In this case,

var (g(Xn
1 ) | Xn

1 ∈ S) =

∫

S

f(xn
1 | Xn

1 ∈ S) (g(Xn
1 )− E [g(Xn

1 ) | Xn
1 ∈ S])2 dxn

1

(a)
= f(χ | Xn

1 ∈ S)

∫

S

(g(Xn
1 )− E [g(Xn

1 ) | Xn
1 ∈ S])

2
dxn

1

= f(χ | Xn
1 ∈ S) (

∏n
i=1 ∆i)

∫

S

1

(
∏n

i=1 ∆i)
(g(Xn

1 )− E [g(Xn
1 ) | Xn

1 ∈ S])
2
dxn

1

(b)
= f(χ | Xn

1 ∈ S) (
∏n

i=1 ∆i)E
[(

g(X̃n
1 )− E [g(Xn

1 ) | Xn
1 ∈ S]

)2
]

(c)

≥ f(χ | Xn
1 ∈ S) (

∏n
i=1 ∆i) var

(
g(X̃n

1 )
)

(d)

≥ f(χ | Xn
1 ∈ S) (

∏n
i=1 ∆i)

n∑

j=1

a2j∆
2
j

12
,

where (a) follows from the first mean value theorem for integration; (b) introduces the random vectorX̃n
1 that is uniform over

S; (c) is true because the variance is the smallest possible mean squared error from a constant estimate; and (d) follows from
the lower bound in Lemma 21.
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For the upper bound, we proceed in a similar manner:

var (g(Xn
1 ) | Xn

1 ∈ S) =

∫

S

f(xn
1 | Xn

1 ∈ S) (g(Xn
1 )− E [g(Xn

1 ) | Xn
1 ∈ S])

2
dxn

1

(a)

≤
∫

S

f(xn
1 | Xn

1 ∈ S) (g(Xn
1 )− gS)

2
dxn

1

(b)
= f(ξ | Xn

1 ∈ S)

∫

S

(g(Xn
1 )− gS)

2
dxn

1

= f(ξ | Xn
1 ∈ S) (

∏n
i=1 ∆i)

∫

S

1∏n
i=1 ∆i

(g(Xn
1 )− gS)

2
dxn

1

(c)

≤ f(ξ | Xn
1 ∈ S) (

∏n
i=1 ∆i)

n∑

j=1

b2j∆
2
j

12
,

where in (a) we reintroduce the notationg =
∫
S g(Xn

1 )
1∏

n
i=1

∆i
for the average value ofg with respect to a uniform distribution,

and the inequality is valid because the expected value of a random variable minimizes the mean-squared error of the estimate;
(b) is due to the first mean value theorem for integration; and(c) follows from the upper bound in Lemma 21.

At this point, we provide a proof of the theorem.
Proof: The distortiond(K;λ) is given by

dg =
∑

in
1

P
(
Xn

1 ∈ Sin
1

)
var

(
g(Xn

1 ) | Xn
1 ∈ Sin

1

)
.

Let A ∈ [0, 1]n denote the set of pointsxn
1 where both the first and second derivatives ofg(xn

1 ) are defined. By assumption
MF1, [0, 1]n \ A has both Jordan and Lebesgue measure zero. Definingain

1
,j = infxn

1
∈Sin

1

1A(x
n
1 )|gj(xn

1 )| and bin
1
,j =

supxn
1
∈Sin

1

|gj(xn
1 )|, we may obtain lower and upper bounds todg by applying Lemma 22 to each term within the summation:

∑

in
1




n∏

j=1

∆in
1
,j


P

(
Xn

1 ∈ Sin
1

)
f(χin

1
| Xn

1 ∈ Sin
1
)

n∑

j=1

a2in
1
,j∆

2
in
1
,j

12
≤ dg

≤
∑

in
1




n∏

j=1

∆in
1
,j


P

(
Xn

1 ∈ Sin
1

)
f(ξin

1
| Xn

1 ∈ Sin
1
)

n∑

j=1

b2in
1
,j∆

2
in
1
,j

12
.

Let Kj be the number of cells in the quantizer forXj. For any cellS of this quantizer,
∫
S λj(xj)dxj = 1/Kj. By continuity

of λj and the first mean value theorem, this implies that the lengthof intervalS is given by(Kjλj(η))
−1 for someη ∈ S.

Therefore,∆in
1
,j in the above expression may be replaced by(Kjλj(ηin

1
)) for someηin

1
∈ Sin

1
:

∑

in
1




n∏

j=1

∆in
1
,j


P

(
Xn

1 ∈ Sin
1

)
f(χin

1
| Xn

1 ∈ Sin
1
)

n∑

j=1

a2in
1
,j

12K2
j λj(ηin

1
)2

≤ dg

≤
∑

in
1




n∏

j=1

∆in
1
,j


P

(
Xn

1 ∈ Sin
1

)
f(ξin

1
| Xn

1 ∈ Sin
1
)

n∑

j=1

b2in
1
,j

12K2
jλj(ηin

1
)2

.

Furthermore, we may recognize thatP
(
Xn

1 ∈ Sin
1

)
f(ξin

1
| Xn

1 ∈ Sin
1
) = f(ξin

1
), simplifying the bounds further:

∑

in
1

f(χin
1
)

n∑

j=1

a2in
1
,j

12K2
jλj(ηin

1
)2

n∏

j=1

∆in
1
,j ≤ dg ≤

∑

in
1

f(ξin
1
)

n∑

j=1

b2in
1
,j

12K2
j λj(ηin

1
)2

n∏

j=1

∆in
1
,j.

Consider thejth term in the lower-bound summation,

∑

in
1

f(χin
1
)

a2in
1
,j

12λj(ηin
1
)

n∏

i=1

∆in
1
,j .

One may observe that this expression approaches a Riemann integral:

1) By Lemma 22,χin
1
∈ Sin

1
.

2) By definition,ain
1
,j is the minimal value of1A(x

n
1 )|gj(xn

1 )| within the cellSin
1
.

3) By its definition,ηin
1

is also an element inSin
1
.
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4) The product
∏n

j=1 ∆in
1
,j is the size of the cell, and because the largest quantizer cell size goes to zero as every element

of the vectorK grows, the mesh of this summation also goes to zero.

SinceA is Jordan-measureable,1A(x
n
1 ) is Riemann integrable. By assumption MF2, the expressionf(xn

1 )gj(x
n
1 )

2/
(
12λj(xj)

2
)

is Riemann integrable. Since the product of two integrable functions is integrable, the Riemann integral of1A(x
n
1 )f(x

n
1 )gj(x

n
1 )

2/
(
12λj(xj)

2
)

is defined and

∑

in
1

f(χin
1
)

a2in
1
,j

12λj(ηin
1
)

n∏

i=1

∆in
1
,j ∼

∫

[0,1]n
f(xn

1 )1A(x
n
1 )

gj(x
n
1 )

2

12λj(xj)2
dxn

1

=

∫

A

f(xn
1 )

gj(x
n
1 )

2

12λj(xj)2
dxn

1

(a)
=

∫

[0,1]n
f(xn

1 )
gj(x

n
1 )

2

12λj(xj)2
dxn

1

(b)
=

∫

[0,1]

f(xj)
γj(xj)

2

12λj(xj)2
dxj ,

where (a) follows from the Jordan measure of[0, 1]n \A being zero; and (b) is the result of integrating overxj−1
1 andxn

j+1.
This relation then yields

∑

in
1

f(χis
1
)

a2in
1
,j

12K2
j λj(ηin

1
)

n∏

i=1

∆in
1
,j ∼

∫

[0,1]

f(xj)
γj(xj)

2

12K2
jλj(xj)2

dxj =
1

12K2
j

E

[(
γj(Xj)

λj(Xj)

)2
]

.

Since this holds for anyj ∈ {1, . . . , n}, it holds for the sum overj as well:

∑

in
1

f(χis
1
)

n∑

j=1

a2in
1
,j

12K2
j λj(ηin

1
)

n∏

i=1

∆in
1
,j ∼

n∑

j=1

1

12K2
j

E

[(
γj(Xj)

λj(Xj)

)2
]

.

Similarly,
∑

in
1

f(ξis
1
)

n∑

j=1

b2in
1
,j

12K2
jλj(ηin

1
)

n∏

i=1

∆in
1
,j ∼

n∑

j=1

1

12K2
j

E

[(
γj(Xj)

λj(Xj)

)2
]

.

Sincedg is bounded between these two quantities, this proves the theorem.

APPENDIX B
PROOF OFLEMMA 12

We start by defining the distortion-resolution optimization function Kfr(R;λ) as the resolution vector that minimizes
dfr(Kfr(R;λ);λ), the distortion subject to a fixed rate constraint. We defineKvr(R;λ) and Ksw(R;λ) analogously, and
we write Kfr,vr,sw when we can combine all three cases to be handled identically. We similarly define the high-resolution
distortion-resolution optimizing functionKHR

fr,vr,sw(R;λ) as the resolution vector that minimizesdHR
fr,vr,sw(K

HR
fr,vr,sw(R;λ);λ)

under a rate constraint. Note that by definitiondfr,vr,sw(Kfr,vr,sw(R;λ);λ) = Dfr,vr,sw(R;λ).
Lemma 23:Under assumptions MF1–4, every component of the vectorsKfr,vr,sw(R;λ) andKHR

fr,vr,sw(R;λ) diverges with
increasingR.

Proof: For a function, source, and quantizer point density that together satisfy conditions MF1–4, we demonstrate that
every component of bothKfr,vr,sw(R;λ) andK

HR
fr,vr,sw(R;λ) diverges. Suppose first that thejth element ofKfr,vr,sw(R;λ)

is bounded by a finite valueK for any R. Then the quantizerQλj

K is a sufficient description ofXj for achieving arbi-
trarily small distortion for the functiong(Xn

1 ). More precisely, there exists a reconstruction functionĝ such thatg(Xn) =

ĝ(Xj−1
1 , Q

λj

K (Xj), X
n
j+1) with probability one. This then implies thatγj(Xj) is zero with probability one, but this violates

condition MF4 and thus every component ofKfr,vr,sw(R;λ) diverges withR.
If the jth component ofKHR

fr,vr,sw has a finite upper boundK, then the high-resolution distortion is lower bounded by

dHR
fr,vr,sw(K;λ) ≥ 1

12K2
E

[(
γj(Xj)

λj(Xj)

)2
]

.

By condition MF4, this lower bound is strictly positive, andtherefore this choice ofKHR
fr,vr,sw is suboptimal.

Using this lemma, we are able to connect the distortion-ratefunction to the high-resolution distortion-resolution function.
Lemma 24:The distortion-rate function is asymptotically equal to the optimized high-resolution distortion-resolution func-

tion: Dfr,vr,sw(R;λ) ∼ dHR
fr,vr,sw(K

HR
fr,vr,sw(R;λ);λ).
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Proof: Since by Lemma 23 bothKfr,vr,sw andKHR
fr,vr,sw diverge in every component, Theorem 9 tells us that

dfr,vr,sw(Kfr,vr,sw(R;λ);λ) ∼ dHR
fr,vr,sw(Kfr,vr,sw(R;λ);λ)

and
dfr,vr,sw(K

HR
fr,vr,sw(R;λ);λ) ∼ dHR

fr,vr,sw(K
HR
fr,vr,sw(R;λ);λ).

Furthermore, by definition we have that

dfr,vr,sw(Kfr,vr,sw(R;λ);λ) ≤ dfr,vr,sw(K
HR
fr,vr,sw(R;λ);λ)

and
dHR
fr,vr,sw(K

HR
fr,vr,sw(R;λ);λ) ≤ dHR

fr,vr,sw(Kfr,vr,sw(R;λ);λ).

Therefore,
Dfr,vr,sw(R;λ) = dfr,vr,sw(Kfr,vr,sw(R;λ);λ) ∼ dHR

fr,vr,sw(K
HR
fr,vr,sw(R;λ);λ).

Before proceeding with the proof, we define three countably infinite subsets ofRn that describe the rate vectors achievable
by a certain choice of point densitiesλ:

Rfr = {(logK1, logK2, . . . , logKn) : K ∈ N
n}, (34)

Rvr = {(H(Qλ1

K1
(X1)), H(Qλ2

K2
(X2)), . . . , H(Qλn

Kn
(Xn))) : K ∈ N

n}, (35)

Rsw = {(H(Qλ1

K1
(X1)), H(Qλ2

K2
(X2) | Qλ1

K1
(X1)), . . . , H(Qλn

Kn
(Xn) | Qλn−1

Kn−1(Xn−1))) : K ∈ N
n}. (36)

Using these definitions and Lemma 24, we may rephrase the distortion-rate functions somewhat:

Dfr(R;λ) ∼ dHR
fr (KHR

fr (R;λ);λ) = min
R∈Rfr:

∑
Rj≤R

n∑

j=1

1

12
2−2Rj E

[(
γj(Xj)

λj(Xj)

)2
]

(37)

Dvr(R;λ) ∼ dHR
vr (KHR

vr (R;λ);λ) = min
R∈Rvr:

∑
Rj≤R

n∑

j=1

1

12
2−2Rj+2h(Xj)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]

(38)

Dsw(R;λ) ∼ dHR
sw (KHR

sw (R;λ);λ) = min
R∈Rsw:

∑
Rj≤R

n∑

j=1

1

12
2−2Rj+2h(Xj |X

j−1)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]

(39)

Additionally, we introduce the concept ofincreasing granularity:
Definition 10: A countably infinite setR ⊂ R

n is said to beincreasingly granularif for any r ≥ 0 there exists a vanishing
nonnegative functionδ(r) : [0,∞) → [0,∞) such that for anyR ∈ R

n whose components are each greater thanr, there exists
a pointR ∈ R within δ(r) of each component ofR: maxj |Rj − Rj | ≤ δ(r). The functionδ(r) is called thegranularity
functionof the setR.

Lemma 25:The setsRfr, Rvr, andRsw are increasingly granular.
Proof: Let r > 0, and let every component ofR ∈ R

n be greater thanr. We prove the granularity of each of the three
sets in turn.
Rfr: Define the pointR ∈ R

n so thatRj = log⌊2Rj⌋. This point is clearly a member ofRfr. Furthermore, we can easily
bound the distance betweenRj andRj :

|Rj −Rj | ≤ log
2Rj

2Rj − 1
≤ log

2r

2r − 1
.

Defining δ(r) = log
(

2r

2r−1

)
→ 0, we have shown thatRfr is increasingly granular.

Rvr: DefineR so thatRj = H(Q
λj

Kj
(Xj)) whereKj is chosen according to

Kj = argmin
K

|Rj − h(Xj)− E [logλj ]− logK| .

We may then bound the distance betweenRj andRj :

|Rj −Rj | ≤
∣∣Rj − h(Xj)− E [logλj ]− logKj

∣∣+ |h(Xj) + E [logλj ] + logKj −Rj |

≤
∣∣Rj − h(Xj)− E [logλj ]− logKj

∣∣+ log
Kj

Kj − 1
→ 0,

where the first term goes to zero by Lemma 10 and the second by Lemma 23.
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Rsw: DefineR so thatRj = H(Q
λj

Kj
(Xj)|Qλj−1

Kj−1(Xj−1)) whereKj is chosen according to

Kj = argmin
K

∣∣Rj − h(Xj | Xj−1)− E [logλj ]− logK
∣∣ .

The distance betweenRj andRj may then be bounded in the following manner:

|Rj −Rj | ≤
∣∣Rj − h(Xj |Xj−1)− E [logλj ]− logKj

∣∣+
∣∣h(Xj |Xj−1) + E [logλj ] + logKj −Rj

∣∣

≤
∣∣Rj − h(Xj |Xj−1)− E [logλj ]− logKj

∣∣+ log
Kj

Kj − 1
→ 0.

To show that the first term goes to zero, we invoke Lemma 10 to state that

H(Q
λj

Kj
(Xj), Q

λj−1

Kj−1(Xj−1))−
j∑

i=1

logKi → h(Xj) + E

[
j∑

i=1

logλi(Xi)

]
.

Subtracting from this the similar expression (also obtained from Lemma 10)

H(Qλj−1

Kj−1(Xj−1))−
j−1∑

i=1

logKi → h(Xj−1) + E

[
j−1∑

i=1

log λi(Xi)

]
,

yields that

Rj − h(Xj | Xj−1)− E [logλj ]− logKj = H(Q
λj

Kj
(Xj)|Qλj−1

Kj−1(Xj−1))− h(Xj | Xj−1)− E [logλj ]− logKj → 0.

We now establish an important property of increasingly granular sets.
Lemma 26:Suppose

f(R) = min
R∈R:

∑
n
j=1

Rj≤R

n∑

j=1

αj2
−Rj ,

and

f̃(R) = min
R∈Rn:

∑
n
j=1

Rj≤R

n∑

j=1

αj2
−Rj ,

whereαj > 0 for all j andR is an increasingly granular subset ofR
n. Thenf(R) ∼ f̃(R).

Proof: SinceR ⊂ R
n, we have that

f̃(R) ≤ f(R).

Let R
∗ = argminR∈Rn:

∑
n
j=1

Rj≤R

∑n
j=1 αj2

−Rj , let R∗
inf indicate the smallest element ofR∗, and let δ(r) be the

granularity function ofR. Since there must be an element ofR within distanceδR∗
inf

of each of the coordinates ofR∗,
we may create a bound in the opposite direction:

f(R) ≤
n∑

j=1

αj2
−(R∗

j−δR∗
inf

)
= 2

δR∗
inf f̃(R).

Becauseαj > 0 for j ∈ {1, . . . , n}, R∗
inf diverges withR and δR∗

inf
vanishes. Combining the two bounds, we have that

f̃(R) ∼ f(R), which proves the lemma.
Applying Lemmas 25 and 26 to (37), (38), and (39), we may widenthe optimization to occur over any positive real-valued

rate vectorR:

Dfr(R;λ) ∼ dHR
fr (KHR

fr (R;λ);λ) ∼ min
R∈Rn:

∑
Rj≤R

n∑

j=1

1

12
2−2Rj E

[(
γj(Xj)

λj(Xj)

)2
]

(40)

Dvr(R;λ) ∼ dHR
vr (KHR

vr (R;λ);λ) ∼ min
R∈Rn:

∑
Rj≤R

n∑

j=1

1

12
2−2Rj+2h(Xj)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]

(41)

Dsw(R;λ) ∼ dHR
sw (KHR

sw (R;λ);λ) ∼ min
R∈Rn:

∑
Rj≤R

n∑

j=1

1

12
2−2Rj+2h(Xj |X

j−1)+2E[log λj(Xj)]E

[(
γj(Xj)

λj(Xj)

)2
]

(42)

The proof is completed by a straightforward application of Lemma 4 to optimize the rate allocation in each of these expressions.
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APPENDIX C
PROOF OFTHEOREM 14

The theorem asserts that when the function is equivalence-free,wj failing to be one-to-one on the support ofXj creates a
component of the distortion that cannot be eliminated by quantizing more finely. The proof here lower-bounds the distortion
by focusing on the contribution from just thejth variable. The bound is especially crude because it is based on observing
{Xi}i6=j andwj(Xj) without quantization and it uses only the contribution fromXj ∈ S ∪ t(S).

We wish to first bound the functional distortion in terms of a contribution from thejth variable:

dg(K;w)
(a)

≥ E
[
var(g(Xn

1 ) | Ŷ n
1 )

]

(b)

≥ E
[
var(g(Xn

1 ) | Ŷj , {Xi}i6=j)
]

(c)

≥ E [var(g(Xn
1 ) | wj(Xj), {Xi}i6=j)]

(d)
= E [var(g(Xn

1 ) | wj(Xj), {Xi}i6=j) | A]P (A)

+ E [var(g(Xn
1 ) | wj(Xj), {Xi}i6=j) | Ac]P (Ac)

(e)

≥ E [var(g(Xn
1 ) | wj(Xj), {Xi}i6=j) | A]P (A)

= E
[
var(g(Xn

1 ) | Xj ∈ w−1
j (Xj), {Xi}i6=j) | A

]
P (A)

(f)
=

∫

x∈S∪t(S)

E
[
var(g(Xn

1 ) | Xj ∈ w−1
j (x), {Xi}i6=j)

]
dx, (43)

whereA is the eventXj ∈ S ∪ t(S). Step (a) will hold with equality when the optimal estimate (the conditional expectation
of g(Xn

1 ) given the quantized values) is used; (b) holds because, for each i 6= j, Ŷi is a function ofXi; (c) holds because
Ŷj is a function ofwj(Xj); (d) is an application of the law of total expectation; (e) holds because the discarded term is
nonnegative; and (f) converts the expectation overA into integral form. It remains to use the hypotheses of the theorem to
bound the conditional variance in the final expression.

Since the function is equivalence free, for every setB ⊂ [0, 1] of cardinality greater than one,

E [var (g(Xn
1 ) | Xj ∈ B, {Xi}i6=j)] > 0.

Sincewj(s) = wj(t(s)) for any s ∈ S, the setw−1
j (xj) is of cardinality greater than one for anyxj in S ∪ t(S). Therefore

for any x ∈ S ∪ t(S),
E
[
var

(
g(Xn

1 ) | Xj ∈ w−1
j (x), {Xi}i6=j

)]
> 0,

and (43) is therefore greater than zero and independent of rate.

APPENDIX D
PROOF OFTHEOREM 16

It is already shown in Theorem 15 that the distortion-resolution expression (26) holds when a codeword is allocated to each
of the don’t-care intervals. After an appropriate rate analysis, we will optimize the point densities outside of the don’t-care
intervals.

The key technical problem is that the rate analysis (6) does not hold when there are intervals wherefX is positive butλ is
not. This is easily remedied by only applying (6) conditioned onAj :

lim
Kj→∞

[
H(X̂j | Aj)− log(Kj −Mj)

]
= h(Xj | Aj) + E [logλj(Xj) | Aj ] . (44)

Note that this approximation can be shown to be asymptotically valid in the same manner as in Lemmas 1 and 2. Now
conditioned onAj , the dependence of distortion and rate onλj is precisely in the standard form of Section IV. Thus,
following Theorem 13, the optimal point density outside ofZj is given by (22).

Since the previous results now give the distortion in terms of the conditional entropiesH(X̂j | Aj), what remains is to
relate these to the rates:

Rj = H(X̂j)
(a)
= H(X̂j, Ij)

= H(Ij) +H(X̂j | Ij)
(b)
= H(Ij) + P (Aj)H(X̂j | Aj),
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where (a) uses thatIj is a deterministic function of̂Xj; and (b) uses that specifying anyIj 6= 0 determinesX̂j uniquely. In
anticipation of evaluating (26), we define the high-rate resolution-rate function as before:

log(KHR
j (Rj ;λj)−Mj) ∼ (P (Aj))

−1 (Rj −H(Ij))

− h(Xj | Aj)− E [log(λj(Xj) | Aj ] .

Asymptotic accuracy of this approximation follows from (44). As before, one may insert this into the high-resolution distortion-
resolution expression (26) and bound the effect of the approximation as a multiplying factor that goes to one. Now evaluating
(26) with optimal point densities (22) gives (28).

APPENDIX E
A QUASI-TRIANGLE INEQUALITY

Lemma 27:The L1/3 “norm” is a quasinorm with constant 4. Equivalently, letting x and y be functionsR → R
+ with

finite L1/3 quasinorms,
‖x+ y‖1/3 ≤ 4

(
‖x‖1/3 + ‖y‖1/3

)
.

Proof: First, we prove the relation4(a3 + b3) ≥ (a+ b)3 for positive real numbersa andb:

4(a3 + b3)− (a+ b)3

= 4a3 + 4b3 − a3 − b3 − 3a2b− 3ab2

= 3(a+ b)(a− b)2 ≥ 0.

Now by this relation, witha =
∫
x(t)1/3 dt andb =

∫
y(t)1/3 dt:

‖x‖1/3 + ‖y‖1/3 =

(∫
x(t)1/3 dt

)3

+

(∫
y(t)1/3 dt

)3

≥ 1

4

(∫ (
x(t)1/3 + y(t)1/3

)
dt

)3

≥ 1

4

(∫ (
(x(t) + y(t))1/3

)
dt

)3

=
1

4
‖x+ y‖1/3,

where the second inequality uses, pointwise overt, the concavity of the cube-root function on[0,∞).
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