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Bayesian Post-Processing Methods for Jitter
Mitigation in Sampling

Daniel S. Weller*,Student Member, IEEE, and Vivek K Goyal,Senior Member, |EEE

Abstract—Minimum mean squared error (MMSE) estimators  our hierarchical Bayesian model includes prior distribog
of signals from samples corrupted by jitter (timing noise) ad on these parameters. The technique presented here achieves
additive noise are nonlinear, even when the signal prior and gjgnificant improvement over linear estimation for a wider

additive noise have normal distributions. This paper develps a " . .
stochastic algorithm based on Gibbs sampling and slice sartipg @nge of jitter variance than the EM algorithm froml [4],

to approximate the optimal MMSE estimator in this Bayesian br-  improving the applicability of nonlinear post-processing
mulation. Simulations demonstrate that this nonlinear algrithm The block post-processing of the jittered samples is irgend

can improve significantly upon the linear MMSE estimator, as to be performed off-chip (e.g. on a PC), so we do not attempt
well as the EM algorithm approximation to the maximum like- ;. optimize the total power consumption, including the @igi

lihood (ML) estimator used in classical estimation. Effedve off- ¢ . H d with Ki
chip post-processing to mitigate jitter enables greater fiter to be post-processing. However, we are concerned with making

tolerated, potentially reducing on-chip ADC power consumpion.  Prudent choices in algorithm design so that the computation
complexity of the post-processing is reasonable. The probl
Index Terms—sampling, timing noise, jitter, analog-to-digital of mit@gating jitter also can be mot_ivated by loosening manu
conversion, Markov chain Monte Carlo, Gibbs sampling, slie facturing tolerances (hence reducing cost) or by problems i
sampling which spatial locations of sensors are analogous to sagplin
times [5].
. INTRODUCTION

Reducing the power consumption of analog-to-digital cot Problem Formulation
verters (ADCs) would improve the capabilities of power- Consider the shift-invariant subspace b¥(R) associated
constrained devices like medical implants, wireless sensowith a generating functiorh(¢t) and a signalz(¢) in that
and cellular phones. Clock circuits that produce jittemsoigy) subspace:
sample times naturally consume less power than those with x(t) = Zxkh(t/T — k). (1)
low phase noise, so allowing high phase noise is one avenue kez
to reduce power consumption. However, increasing jitter i : _
an ADC reduces the effective number of bits (ENOB) (r /&ssumlng {h(t/T — k)
accuracy on a dyadic scale) by one for every doubling
the jitter standard deviation, as described [in [1] ahd [2
Compensating for the reduced ENOB by designing mo

accurate comparators increases power consumption bya fa : . : T
of four for every lost bit of accuracy [3]. Thus, to achieveC@ing functions as discussed Ini [6]. Whilt) = sinc(t)

reduced on-chip power consumption, the lost bits should geused f_or_ simulations, the develo_pments in this paper are
recovered in a different manner. not specialized to the form ok(¢) in any way. We only

In [4], the authors post-process the jittered samples, eyapl requirg tha’h(t_) satisfies th-e Riesz ba_s s conditio_n and th_qt the
ing an EM algorithm to perform classical maximum likelihoo ampling prefiltes(~) satisfies the biorthogonality con_dmon
(ML) estimation of the signal parameters. This nonlineasel h(t_/T N k)_’_s(t/T —0) = 6’“‘_4’ for2all k, £ € L. The Riesz
sical estimation technique is capable of tolerating betwieé bas;s condltlon. allows bounding df* error _Ofx(t) In terms
and2 times the jitter standard deviation that can be mitigateOcI £* error of z; when{h(t/T —k) : k €Z}is an orthogonal
by linear estimation. In this work, nonlinear post-procegss set, these errors are constant multiples. Whef = sinc(t),

extended to the Bayesian framework, where the signal pararﬂllee shift-invarignt sub.space i.s the subspace of signalls wit
ters are estimated knowing their prior distribution. Heve,do yquist sampling periodl’. Without loss of generality, we

not require that signal and noise variances are known aiprioarssumg =1L . . .
When observing the signal(t) through a sampling system
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ADC off-chip Q. 5, Oy B QU Bw
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p(x,03), p(oz), p(oy)
Fig. 1. Block diagram of an abstract ADC with off-chip postpessing. The
signal z(t) is filtered by the sampling prefiltes(—t¢) and sampled at time
tn. These samples are corrupted by additive naigeto yield y,,. The post-
processor estimates the parametersf z(t) using the vector ofV samples
y from the ADC.
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1
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z(t) s(—t) =~ y —> estimator > X e
1
L = H
filter with bandwidth2z. The observation model, depicted in

Figure[d, is
Yn = [2(t) * S(_t)]t:%—ﬁ-zn + wn. (2 @

We aim to estimate a block dt’ coefficients, assuming the Fig. 2. Hierarchical Bayesian model of the problem. The plz®n y,,

remaining coefficients are negligible: depends on coefficientsy, ...,z x_1 and jitter and additive noise,, and
K1 wn. The coefficients all depend on the signal varianée and the jitter and
additive noise depend om? and o2, respectively. Each of these variances
x(t) ~ Z Tk h(t — k) (3) depend on hyperparametersand 8. In this model, circled nodes are random
k=0 variables, and non-circled nodes are fixed parameters.

This specializes the observation model to

K-1 n the parentheses will be written only when needed to avoid
Yn = Z zph (M +2n — k) + Wy (4)  confusion. Expectations will follow the same convention.
k=0 The uniform distribution is written in this paper &5set);
Grouping the variables into vectors, tet= [z, ...,zx_;]7, for instance,U([a,b]) is a uniform distribution over the
vy = Wor-.yn-1]Ts z = [20,...,2xv-1]7, and w = intervalfa,b], andU({u : p(u) > c}) is a uniform distribution
[wo, ..., wx—1)T. Then, in matrix form, over the set{u : p(u) > c}. Writing u ~ U(sey means
thatw is a sample generated from this distribution; analogous
vy =H(z)x + w, (5) notation is used for the other distributions in this papdre T

where[H(z)], . = h(2 + 2 — k), for n = {0,...,N — 1}, inverse Gamma distribution has the density function

andk = {0,..., K —1}. LethZ(z,) be thenth row of H(z).
Also, denote théth column ofH(z) by Hj(z) and the matrix
with the remainingK’ — 1 columns byH,;(z). Similarly, let

Ig(s’ a7ﬁ) é I‘ﬁ(:) S—a—le—ﬁ/s. (6)

The mean and variance efare

X\k = [Toy. 0y Tho1, Ty, .- ,zr—1)7 be the vector of all
but the kth signal coefficient. B 82
In this paper, we assume both the jitter and additive noise E[s] = a—1 and  var(s) = (a—12(a-2) ()

are random, independent of each other and the sig(tal _ _ _ _ -
Specifically, z, and w, are assumed to be iid zero-mear he density function of thé-dimensional normal distribution
Gaussian, with variances equald® ando2, respectively. In With meany and covariance matrid is written as
keeping with the Bayesian framework, we also choose a prior A 1/ 1 I
for the signal parameters. For convenience, we use an i@ zerV (a; 1, A) = |2TA] exp{—(a—p) A" (a-p)}. (8)
mean Gaussian prior with varianeé because the observation i ) ) = )
model is linear in the parameters. Rather than assuming thes"When performing simulations, specific va2lues are required
parameters (variances) to be known, we treat them as rand@nthe a’s and 5's. For the signal variance;;, consider an
variables and assign a conjugate prior to these paramet&fPiased estimate of that variance frofd > 1 observa-
Thus. o2. o2. and o2 are inverse Gamma distributed withtions generated from a standard normal distribution: =

1 Yz w? x K—1 _ -1 K—1 A
hyperparameterga., 3.}, {ow, Bw}, and {a., 3.}, respec- K-1 24k=0 (zk — 1:’)2' wherez = & > k=0 xy, i the sample
tively. These hyperparameters may be selected to be censisf®an. Then, we fit the inverse Gamma prior hyperparameters
with in-factory measurement of the noise variances or oth@ and, to the mean and variance sf using [7):

information. The hierarchical Bayesian model is shown in 8 82 9
Figure[2. *— =E[sg] =1; Y =var(sg) = ——.
o . . . . oy —1 (ar — 1)%(a — 2) K-1
To simplify notation, the probability density function (d (9)
of a is written asp(a), and the pdf ofb conditioned on ggying,

a is abbreviated ap(b | a) for randoma and p(b;a) K+3 K+1
for nonrandoma. The subscripts usually included outside WG=—p fo=—75— (10)
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Similarly for the zero-mean jitter and additive noise vades, Preliminary versions of the algorithms and results presgnt
given N > 1 observations and expected noise variarfgeg] in this work are also discussed, with further background

andE[o2], material and references, in_[17].
N+3 N+1 N+1
a: =y = —5—, B = ——E[0Z], andB, = ——E [of] -outine
2 2 2 (11)

o In Sectiondl, numerical quadrature is revisited and Gibbs
For the e_xampl_es in th'_s paper, we use the sdmand V as sampling and slice sampling are reviewed. The linear MMSE
for our signal; in practical applicationdy’” and IV are prior gogimaror is discussed in Sectiénl Ill. In Sectibnl IV, the
observations performed at a factory (for the noise varignCesinpg sampler approximation to the Bayes MMSE estimator
or eIsewh_ere_(for the signal \{anance). _ ) is derived, and slice sampling is used in the implementation
The ObJeCt'Ve_ of th? algorlth_m_ presented in this paper Rl these estimators, as well as the EM algorithm fram [4]
to find the estnpatorx th2at minimizes the mean Squaredapproximating the ML estimator, are analyzed and compared
error (MSE)E [||%(y) —x]|3], where the observations are " ¢imlations in Sectiof V. Conclusions based on these

|fmpI|C|tIy lf(uncucr)]ns of x. Unlike 'r? tr:]e”classmal ?SUma}uon simulations, as well as ideas for future research direstion
ramework, we have a prior ag, which allows us to formulate .o giscussed in Sectiivi.

the minimum mean squared error (MMSE) estimat@se

as the posterior expectation Il. BACKGROUND

XMMSE 2 E[x | y]. (12) In general, the likelihood function in the introduction is
. . - described in terms of an integration without a closed foran- F
The posterlor d'St”bUt_'O@’(X | y) depends on the ,“ke“hOOd tunately, numerical methods such as Gauss quadraturehwhic
function p(y | x), which can be expressed as In [4] as gpnroximates the integration in question with a weighted su
product of marginal likelihoods: of the integrand evaluated at different locations (abasissre
_ N(u.:hT 2V /(2 0. 02)IG (02 ﬁril%gvely.acc%aedang efficient. A more detailed desmipt
Pyn [ %) = (Un; by (2)%, 02 )N (203 0, 02) TG (035 v, G a(gg‘s’ %Ha t(ir8 ¢an“Se found in the background section
(13) of [4], or in [18] or [19]. This paper discusses using Gauss—
As neither the likelihood nor posterior distribution has @aguerre quadrature to approximate integration with respe
simple closed form, the majority of this paper is devoted i@ 52 ands?2.

approximating these functions USing numerical and stdithas However, S|mp|y being able to evaluate (approximate|y) the

methods. likelihood function is insufficient to approximate the Baye
MMSE estimator. To approximate the expectation[in (12), we
B. Related Work propose using a Monte Carlo statistical method combining

ﬁé'bbs sampling and slice sampling. Gibbs sampling and slice

Random jitter has been studied extensively throughout t . )
sampling are discussed below.

early signal processing literature (séé [7], [8], and [$1pw-

ever, much of the effort in designing reconstruction aldonis

was constrained to linear transformations of the obsemati A Numerical Integration

These papers also analyze the performance of such algssithm For integrals of the formffoOO f(@2)N (z; u,0?) dx, tech-

for example, [[9] proves that when the jitter is Gaussian amiques such as Gauss-Legendre and Gauss—Hermite quadra-

small enough, the MSE is approximate}f2%,02, where the ture, Romberg’s method, and Simpson’s rule, are described

input PSDS,...(jQ2) = 55— is flat. Due to the lack of attention in [4]. Similarly, Gauss—Laguerre quadrature can appregém

to nonlinear post-processing, it is not readily apparesttifthe integrals of the formf0°o f(z)x®e~* dz. The abscissas and

literature that these linear estimators are far from ogtifiae  weights for Gauss—Laguerre quadrature can be computegl usin

effects of jitter on linear MMSE reconstruction of bandlied the eigenvalue-based method derived(in [20].

signals are discussed in_[10] and extended to the asymptoti¢et 2; andw; be the abscissas and weights for the Gauss—

K, N — oo case and multidimensional signals in[11]. Laguerre quadrature rule of length Then, we can integrate
More recently, [[12] uses a second-order Taylor series aggainst the pdf of the inverse Gamma distribution by observ-

proximation to perform weighted least-squares fitting of img,

jittered random signal. IN_[13], two post-processing meto , < g

are described for the case when the sample times are disczéte [(x)IG(x; e, B) dx = / mf(a?)x_(““)e_ﬂ/”” dx

(on a dense grid). Similar to the Gibbs sampler presenteti 0 at1

in this work, [14] uses a Metropolis-Hastings Markov chain _ /Oo ﬁf (é) (E) ﬁe—y dy
Monte Carlo (MCMC) algorithm to estimate the jitter and o (o) Y B y?

jitter variance from a sequence of samples. Also, a maximum 1 BY a-1 -y d

a posteriori (MAP)-based estimator is proposed [in] [15] to /0 mf (5) y e 4y

mitigate read-in and write-out jitter in data storage desic J
Finally, a Gibbs sampler is developed in[16] to estimate the ~ Zw/_f(x/_)
- . .. . . . J 77
coefficients and locations of finite rate of innovation signa =1
from noisy samples. (14)
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2000

Gauss-Hermite quad. n with respect tos? and 2. This is combined with Gauss—
15001 - Romberg's method s Hermite quadrature with/; = 129 when E[0?] is small
— — = Simpson’s rule 0.8 = z]
3 Gauss-Legendre quad. E (< 0.01) and Gauss—Legendre quadrature with = 129
£ 1000 1*°g whenE[o2] > 0.01. This hybrid quadrature also is used when
s 1042 computing the expectations in Sectlod Il and in the appendi
500 loa 2‘
% 15 -1 05 o0 05 1 15 2 28 B. Gibbs Sampling
' ' y, ' ' The Gibbs sampler is a Markov chain Monte Carlo method
@K =10, M = 4, E[0?] = 0.75% E[02] = 0.12, J; = developeql in [2_1]. Dgtails about t_he (_Sipbs §amp|er an.d its
Jo =9, J3 =129, n = 19. many variants, including Metropolis-within-Gibbs sanmgjj
can be found in[[22]. When implementing the Gibbs sampler,
6000l Gauss-Hermite quad. 7% one must c_onsider both _the number of iterati(_)ns un_tiI the
so00l| ~_ Romberg's method 140 5 Markov chain has approximately converged to its stationary
- = = Simpson’s rule = .. . « . . .
8 4000l Gauss-Legendre quad. | £ distribution (the “burn-in time”) and the number of samples
%30007 g that should be taken after convergence to compute the MMSE
;% 120 g estimate. According td [23], separating highly correlatad-
2000 o2 ables slows convergence of the Gibbs sampler. The number of
1000 = N iterations after convergence is connected to both coivelat
84 035 03 025 —02 015 01 —005 o between successive samples and the variance of the random
Yn variables distributed according to the stationary distidn.
(b) K =10, M =4, E[02] =E[02] =0.012, J; = Jo = 9, To monitor convergence, heuristics such as the potential
Js =129, n =18 scale reduction factor (PSRF) and the inter-chain and-intra

Fig. 3. Quadrature approximations are compared to histagrar p(y, | Chain variances are developed [nl[24], 1[25]. Considein-

x) for different expected values of2 and o7, (o's and §'s are computed  stances (chains) of the Gibbs sampler running simultargous
according to[(Il1)). The quadrature approximations are coeapfor a dense Defi th t to be th bined t f all th
grid of 200 values ofy,, and the histograms are generated froft 000 efineé the vectom.,; 0 e the Cf’m Ihe vector O a €
samples ofy,, computed from samples @f2, 02, z,, andwy, according Samples for theth chain at theth iteration. For chair, the

to (@). The multimodal cage _(a) favors Gauss-Legendre quiaey casg (b) average isa, = 1 Zi'f1 a. ;. Across all chains, the average
favors Gauss—Hermite quadrature; the worst-casis shown in each. The =)= ’

L= C — . . . .
legend refers to the quadrature method used for the integealz,,; Gauss— 1S a = % Zc:l a.. Then, following the multivariate extension
Laguerre quadrature is used for the integrals with resmpecttand o7, to the potential scale reduction factor (PSRF) derived Bj,[2

define the intra-chain covariance

c i
where 2, = f/z;, andw’, = w;/I'(o). The substitutions w, & 1 a.; —a.)(a.; —a,)T (16)
T = 5/; anddr = 3/y? d';/ are made in the second step of (i—1)C ZZ( ’ (@ A

c=1 j=1
the derivation. . . .
aé‘\d the inter-chain covariance

Utilizing a combination of Gauss—Laguerre quadrature an
either Gauss—Hermite quadrature or Gauss—Legendre gquadra Al &

= =\v= _=\T
ture, we can approximate the likelihood functipty,, | z) B;=-— Z(ac -a)@E.—a). (17)
using the integral in[(13). In particular, =1
I T g The posterior varianc¥,; = =W, + Z4LB;, and the PSRF
Plyn [ 2) = D wjwj,wi, N (yn; bl (z5,)x, 00,5 ). RP é 4+ GHIWB; |2, where | - |» is the induced
ji=1 j2 ja matrix 2-norm. Then, the Gibbs sampler's Markov chain has

. . ) (15) converged whenk? = 1, and V stabilizes. To measure the
In this equation, the innermost quadrature (ovg) depends 1/2

_ change inV, we compute|V|}
on the value of2, so the values of;, depend omfl.z. Since
the total number of operations scales exponentially with th . ]
number of variables being integrated, we seek to minimife Slice Sampling
the choices ofJ;, J,, and Js for this three-dimensional Slice sampling is a Markov chain Monte Carlo method
summation. To explore the accuracy of this approximatiatescribed in[[26] for generating samples from a distribuby
as a function ofJ; and J, (we useJs; = 129 from [4]), instead sampling uniformly from the subgraph of the pdf and
the quadrature is performed over a dense grid of values fedming this sampling procedure as a two-stage Gibbs sample
yn and the results are compared to a histogram generatipicted in Figuré&l4.
empirically, by fixing x to a randomly chosen vector, gen- The difficulty of slice sampling is in representing and
erating many samples of?, o2, z,, and w, from their sampling from the slice. In this problem, we show that any
respective prior distributions, and computing the samples given slice is bounded, and therefore, an interval contgitiie
using [4). Comparisons for unimodal and multimogg},,; x)  slice can be constructed, and the “shrinkage” method detri
are shown in Figurg] 3. Based on these comparisons, we choosf26] can be used. The shrinkage method is an accept-reject
Gauss—-Laguerre quadrature with = J, = 9 to integrate method, where given an intervdl, R] containing part (or all)
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p(zt=1) y @D ~ U([0, p(zt=1))) which the nonlinear Bayesian estimators derived later are
2O ~U{z: plz) > y@D}) measured. The error covariance of this estimator is

w x 1 ! |
AmmsElz—o0 = 02 [ I — H(0)" (H(O)H(O)T + MI) H(0)
...................... Polarw = 1) |
(23)
i IV. NONLINEAR BAYESIAN ESTIMATION
v (b) To improve upon the LMMSE estimator, we expand our

consideration to nonlinear functions of the data. The Bayes
Fig. 4. Slice sampling op(z) illustrated: (a) Sampling is performed by MMSE estimator, in its general form ifi_(lL2), is the nonlinear
tEravir_Sing a Markov Cha;n( bt)o apfproxlimaﬁér),_ the Stlf{itiona(W)diStrifuti%ﬂ- function that minimizes the MSE. However, since the posteri
ach iteration consists o uniformly choosing a sHee: p(z) > y} an [ . .
uniformly picking a new sample from that slice. densny_funct_lon for this pro_b_lem does not hav_e a closed
form, this estimator can be difficult to compute. Since we are
interested in the mean of the posterior pdf, finding the Bayes

of the slice, a sample is generated uniformly from the irtervMMSE estimator is an obvious application of Monte Carlo
and accepted if the sample is inside the slice. If the samjgitistical methods, especially the Gibbs sampler desdrib

is rejected, the interval shrinks to use the rejected samgigctionil.

as a new endpoint. Several variants, including shrinking to\We propose using Gibbs sampling to produce a sequence
the midpoint of the interval instead of or in addition to th@f samples for the random parameters we wish to find, via
rejected sample, are also described in the rejoinder atrttie éraversing a Markov chain to its steady-state distribyteamd

of [26]. These variants are compared in the context of ther jit average the samples to approximate the estimator. To tHis en

mitigation problem in SectiofIV. samples ofz, x, 02, 02, ando? are generated according to

their full conditional distributions (i.e. the distriboti of one
random variable given all the others). To generate samgles o

) ~z, we apply slice sampling.
When block post-processing the samples, the linear

Bayesian estimator with minimum MSE is called the linear . . . .
MMSE (abbreviated LMMSE) estimator. The general form of. Generating z,, using Sice Sampling

the linear MMSE est_injator is given in [2_7]. For_estimating_th Consider generating samples from the distributionp(- |
random signal coefficients using the hierarchical Baye5|anz\mx’0926703]7037},), where z,,, is the random vector of

model in Sectiorll, all the jitter variables except,. Using Bayes rule and the

IIl. LINEAR BAYESIAN ESTIMATION

Bz . independence of,, andw,,
Asy = —"EH@)", (18) o
/Bm . ﬂu} p(Zn | Z\n,X, o_i’a_i”a_z7y) _ p(y | zaxaamvawaaz)p(zaiz)pgx |20m)p(c
Ay = HE[H(Z)H( )1+ . 117 (19) p(z\n,x,y, 03,0%,02)
‘ , v . o N (Yn; hE (2,)x, 02 )N (20, 02).
and gy = e = 0. The LMMSE estimator for random jitter (24)
is
Bu(az — 1) -1 Slice sampling is used for generating realizationszpf
%immse(y) = E[H(z)]" (E[H(Z)H(Z)T] +=2—"——1) ysince no tightly enveloping proposal density or other tgri;
Balaw = 1) 0) necessary; the ability to evaluate an unnormalized fornhef t

The expectations if.(20) can be computed off-line using gadaroet distribution i; sufficient. Each iteration of sli@rpling
guadrature. The error covariance of the LMMSE estimator gonsists of two uniform sampling problems: 0
also derived in[[27]; for this problem, 1) Choose a sliceuw uniformly from [0,p(zn’ |

. le,afc,afj )], whereﬁ(z,(f) |y, x,02,02,02) is the
ALmvise = B I E[H(z)|” (E[H(Z)H(Z)T] I Buw(oz — 1)I)unq@m@%ﬁ qfu_ll conditional denglty flinctmn ih(24).
g —1 Ba(ow — i) Samplez,, "/’ uniformly from the sliceS = {z, : p(zy, |

y,X,02,02,02%) > u}.

Yy Twr Yz

When no jitter is assumed, the LMMSE estimator Slmpllfle?he first step is trivial, since we are sampling from a single

interval. The second step is more difficult. However, since
Buwlae — 1)\ " w<p(zn | y,x, 02,02, 02) for all z, in the slice
w x I) y — p n ya »yYxy w2 n ’

el = 1) (9o —hE(z)x)? 22

to

KLMMsE|z—0(Y) = H(0)" (H(O)H(O)T +

o ) _ ) ) (22) logu < ———"———— — = —log(2m0,04)
This linear estimator is the best linear transformationhs t 20, 207
data that can be performed in the absence of jitter. Henee, th 2
P J © n Jog(2m0.0). (25)

no-jitter LMMSE estimator is the baseline estimator agains = 9,2

z
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Solving for z,,, the range of possible, is bounded: Algorithm 1 Algorithm for computingz,, with slice sampling.
Require: Previous valuey ™V, x, 02, 02, 02, yn, threshold
n| < o.y/—21 — 2log(2moy0.). 26 nor R O Oz Ogpr Yo
on] < 02/ ~2logu — 2loglnoen).  (26) NI

Using these extreme points for the initial interval contain ~ Chooseu ~ U ([0, 5(z5 " | x,02, 02,02, y,)]) (see [ZH)).
the slice, and the “shrinkage” method specified [in] [26] to

sample from the slice by repeatedly shrinking the interval, Compute initial intervalL, R] according to[(26).

slice sampling becomes a relatively efficient method. Therepeat {This is the “shrinkage” algorithm from_[26].
“shrinkage” method decreases the size of the interval expo- Choosez ~ U([L, R)).

nentially fast, on average. To see this, consider one iterat if 5z | x,yn,02,02%,02) < u then
of shrinkage, where the initial point, from the previous step if 2 < 27(11-71) then
of slice sampling lies in the intervdl, R]. This initial point L« 2.
is guaranteed to be in the slice by construction. The exfecte else
size of the new intervalL’, R'], from choosing a new point R+ 2.
x', is end if
1 2o R nd if
E[R — L' | R, L, 2] = —— / (R—a:’)dx’+/ (' — L) daﬁl Pz | X,yn,02,02,02) < e Tu then {(Optional)
R-L|/JL o idpoint-threshold madification from rejoinder in_[2§].

R?—2RL+L?>  ay(R+L—w)—RL if 3(L+R)<2z'" then

_ R—L a9(R+L—10)—RL else 1
=5t BT . R_<—5(L+R).
(27) end if
Thi tation i dratic i th ; end if
IS expectation l§ quaaratic iy, so the ma.XImum occu_rs until (2 | x, Uiadf,oi,yn) -
at the extreme pointo = (R+ L)/2. The maximum valueis . "
—L L)/2 L — Yo = RL
maXE[R/_L/|R,L,I0]:R +((R+ )/2)(R+ (RFL)2) - R
xo 2 R — L
_R-L (R+L)°/4-RL 3
2 R—L = (B-1L)
(28)

Concavity implies that the minima are at the two endpoints
xo = L andxzg = R. In both cases, the expected size of th

Eonvergence speed. In an effort to mitigate the increased
interval is(R — L)/2. Therefore, 9 P g

correlation, a hybrid method is proposed [nl[26] that always
1 shrinks to the rejected sample, then shrinks to the midpafint
2 the remaining interval only if the probability of the rejedt

which implies that at worst, the size of the interval shrinkgample is sufficiently small (the threshold) relative to stiee.

to 3/4 its previous size per iteration, on average. Then, givdi1ese algorithms are applied to both unimodal and multihoda
the initial interval[Lo, Ro] and previous pointo, the expected Posterior distributiong(z,, | x,z,y, os,0%,0,) in Figure[5.
size of the intervalL;, R;] after I iterations of the shrinkage

algorithm is

(R—mgﬂmumeJ@dg%R_m, (29)

To compare these methods in the context of the jitter
E[R; — L1 | Ro, Lo, zo] = E[E[R; — L | Ro, Lo, - .., Rr—1, LrmitigdtioRy we mohitor the convergence of the complete Gibb
3\ ! sampler, using the shrinkage methods described aboveeWhil
< > (Ro — Lo). the combined method obviously shrinks the slice much faster
(30) than the original method, the hybrid method’s increase@dpe
must offset any increased correlation in the accepted ssmpl
If the target distributionp(z) is continuous, the algorithm in order to be useful. In Figurgl 6, the convergence metrics
is guaranteed to terminate once the search interval is smMpdRE/2 and HVHé/Q are plotted as a function of the total
enough. Since the interval size shrinks exponentially, fast number of shrinkage iterations performed. The convergence
average, the number of “shrinkage” iterations is approxétya rate of the two shrinkage methods are very similar, but inesom
proportional to the |Og of the fraction of the initial intexv cases, as shown in F|g 6a, the hybnd method outperforms

contained in the slice. the original shrinkage method.
In the rejoinder at the end of [26], an alternative binary

search-like midpoint shrinkage algorithm is proposed that

can converge faster on the slice than the original shrinkageTo summarize, pseudocode of the slice sampling algorithm
algorithm, at the cost of increasing correlation betweetr swsing either shrinkage method to generate realizations, of
cessive samples, which reduces the overall Gibbs sampkewritten in Algorithm[1.

4
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o . e dlice oL . e slice
n ! 0 !
E | [ I T,
idpt. threshold
ﬁ -50 : i -50 : miapt resnol
= | W I
80 | 80 |
o Q
= -100 : ~ -100 :
-0.5 0 0.5 -05 0 0.5
2 44 ! | 2 4y !
-% YLz Z&ifl) ! _% L L(j’l)
5 | k5 R midpt.
‘© o \ | | © L [
&2 w ‘ 5% L& Y
= l z L« midpt. !
i 1 ‘ ; 1 3 -
3 1 Z7(1z) . ** 27(11)1<_ 5
() K =10, M =16, 0. = 0.1, 0, = 0.05, n = 80, original (left) and thresholding-based (right) methods.
0 0
G 50 " 50
g-w0r [V N sliee S-wo0f VN L slice
iy " o _ N I D
& -150 | & -150 | midpt. threshold
[ U N Y I H T YA T200p | ) J ] N
-6 -4 =2 0 2 4 6 -6 -4 -2 0 2 4 6
1 .
2 G-1) R 2 1 -
2 " ? st D R<z
[ \ g L + midpt:
2, I Rz g2 po
& Lz ! 9 YTRe midpt.
g o . Rz % 3: »—ft?:{
£ T < 2 [ = L <+ midpt.
@7 ]
* g L+ z w4 (i
oM i — 2

(b) K =10, M = 4, o, = 0.5, 0y, = 0.075, n = 20, original (left) and thresholding-based (right) methods.

Fig. 5. Comparisons between the original shrinkage methmtithe modified thresholding-based shrinkage method famedal[(@ and multimoddl (b)
posterior distributions. The unnormalized distributiﬁ(rz,&ifl) | x,02,02,02,yn) is evaluated for the previous Gibbs sampler iteratiozﬁ%ﬁl) and the
slice level shown is selected uniformly fro[ﬁ,ﬁ(zﬁfﬁl) | ---)]. The shrinkage methods proceed according to Algorfihm & fidpoint threshold shown
corresponds ta- = 25. Rejected samples are marked with:a”; and the final accepted sample is marked withod ‘In both cases, the thresholding-based
method reduces the size of the interval more quickly thanotiginal method. Especially in the unimodal case, the ambpamplesz) is much closer to

the previous iterater(f*l) than would otherwise be expected from the size of the slice.

B. Generating x, 02, 02, and o2, and covariance matrix
The full conditional distribution on:;, does depend on the ) . o
other signal parametess Ax =0, [H(z) H(z) + 1] (34)

p(y | z,x,00)p(2, 02)p(x | o2)p(cTwéaBibbs sampler easily handles the varianggss?, or

p(x\,2,02,02,02,y),, being random variables. The generation of realizations of
o N(y; H(z)x, 02 )N (2x; 0, 02). #n and z;, proceeds using the previous iteration’s estimates
31 of o2, a?, and o2 instead of the true variances. Each cycle
of the Gibbs sampler generates realizationghfo? ando?,
Grouping correlated variables accelerates Gibbs sampler cusing the observationg and the current iteration’s values of

vergence, and the random vectorcan still be generated in z andx. The Gibbs sampler algorithm shown in Algoritfitn 2
one simple step since generates realizations from the posterior pdfsdéy o2, and

o2 . Using Bayes rule and the independencezgfand w,,,
p(x|2,02,0%, 02 y) x N(y; H(z)x,02I)N'(x;0,02I)  these conditional pdfs are
(32)

p(l'k | X\kazaaiaaiaa,z?y) =

2 2
implies the posterior distribution ok is just multivariate  p(0? | x,2,y,02,02) = p(c? | x) = M
normal with mean p(x)
H( )T X N(X; 0, 021)19(0’3; Ay, Bz)v (35)
zZ)'y 2 2
the = Ax= 0y B9 (o2 | xzy.otol) = plo? | z) = LELZIE)

o p(z)
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i | 2 Algorithm 2 Pseudocode for the Gibbs sampler modified to
> PSRF~“: original method ) ) ,
T, - = = IVJI¥: original method use slice sampling for the,’s.
% 3 —— PSRF2 hybrid method Require: y, I, 1,
= = . . ~ O
g "'||V||;/2- hybrid method Z(O) <+~ 0; X(O) — XLMMSE\Z:O(y) from @), 0'3( ) — 1;
o 2} 0 0
5, \\ o2 0.01; 62 « 0.01
§ o SETT T e eee————— fori=1:1+1, do
1 2 3 4 5 6 7 8 9 forn=0:N—1do
Total # of shrinkage iterations X 10° ) (i) . . . . .
Generatez,,” using slice sampling in Algorithr] 1.
(@) K =10, M =4,E[062] =052, E [02] =0.12, end for
o Generatex(® from J\/(,ux, Ax) using [33) and[(34).
z° PSRE’Z: Pf_ig"l‘a' ”t‘:”;"d Generateﬂ(z) from ZG (! z, BL) using [38).
2 4 = = -V, original metho Generatefz( from ZG (o, 8.) using [39).
Ky —— PSRFY2 hybrid method 0! Xz Z/ ) -
3 ° - = IVII¥: hybrid method Generater;, " from ZG(evy,, B;,) using [40).
&, end for
T I 1 o1
T, — - X 7 2ui=I,+1 @
2 S g iy il L)
05 1 15 2 25 3 35 T i:11b+11 @
Total # of shrinkage iterations 5 ~2 1 b+ 22
2 2 2 Xl(; Tz I =D+l m( )
b) K =10, M =16, E [oZ| = 0.25%, E |0z, | = 0.1°. ~2 1 Ipy+1 2
_ ®) | [0%] | _[w} 62 ¢ Ly ltl 52
Fig. 6. One-hundred chains of the Gibbs/slice sampler amefou 1000 52 1 Iy+1 o2 (7)
iterations each, and the convergence as a function of tta toetmber of w I £ai=Ip 41 Y g
shrinkage iterations is measured by the square root of tiRFR&d|| V||3/2. return X, z, 63, 6, 0y,

The values ofxg, Bz, az, B2, aw, and By, are determined for the expected
values of o2, o2, and o2, using [I0) and[{d1). For a given number of
shrinkage |terat|ons the hybnd rejection-midpointestnold method7( = 25)

outperforms the original rejection-based shrinkage methffa) and performs are proper inverse Gamma distributed with the parameters
equally well in[(b). described above.
Once enough samples have been taken so that the current
5 5 state of the Markov chain is sufficiently close to the steady
x N(2;0,0°D)IG(075 a2, B2), (36)  gtate, the Gibbs sampling theory tells us that further saspl
and drawn from the chain can be treated as if they were drawn from
the joint posterior distribution directly. Thus, these diddal
x,z, 0. )p(x)s@ngles)can be averaged to approximate the Bayes MMSE
ploy | %2,y,05,02) = plog, | x,2,y) = Ll p(y?x(, Z)estlmz%r In the complete Gibbs sampler in Algorithin/,
x N(y; H(z)x, 02 1)ZG (02 v, Buo)- represents the ‘_‘burn-in time,”_ the number of ?terationsilunt
(37) the Markov chain has approximately reached its steady,state

and I represents the number of samples to generate after

The inverse Gamma distribution is the conjugate prior fer theonvergence, which are averaged to form the MMSE estimates.
variance parameter of a Normal distribution (se€ [28]).ré€he

fore, the posterior distribution is also an inverse Gamrstridi
bution. Specificallyp(o? | x,2,y,02,02) = IG(o2; ., B.),
where

V. SIMULATION RESULTS

In this section, both the convergence behavior and the
K. B =B+ HXH2 (3g) Performance of the Gibbs/slice sampler are analyzed. Using
2’ ¢ Matlab, aK -parameter signal andy = K M samples of that
Similarly the hyperparameters for the postenormversmtha signal are generated with pseudo-random jitter and aeditiv

/
Qg = Qg +

distributions ono? ando?, are noise;M is the oversampling factor. Then, implementations of
N 1212 the Gibbs/slice sampler, as well as the linear MMSE estimato
o =, + —; B =p.+ 2, (39) in (20), the no-jitter linear estimator if_(22), and the EM
2 9 algorithm developed iri [4] for approximating the ML estimiat
o) = ay + X Bl = Buw + w (40) are applied to the samples. The adaptation of the EM algorith

to randomo?, ando? is described in the appendix; however,
Thus, generating realizations of or o2 using such a prior the EM algorithm with knowns2 and o2 is used in these
is as simple as taking the inverse of realizations of a gammiaulations because adapting to random variances draatigtic
distribution with the proper choice of hyperparameters. Fincreases the computational cost, and the difference in MSE
those who prefer a non-informative prior, the Jeffreys rarionegligible. These algorithms are studied in detail for @did
for 02, 02, and o2 arep(c?) = 1/02, p(c?) = 1/02%, and bandlimited signals with uniformly distributed signal pare-
p(c?) = 1/02%. Although these priors are improper distriters in [17], and in this work, a similar analysis is perfodne
butions, they are equivalent to inverse Gamma distribgtioto analyze the convergence and sensitivity to initial cbods

with « = 8 = 0, so the associated posterior distributionsf the proposed algorithms. This analysis is also similar to
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As a Markov chain Monte Carlo method, the Gibbs/slice
sampler converges to the appropriate posterior distohuti
under certain conditions (see_[22]); as long as the sequenci

- -

. . . . 3
that performed in[[4] for the EM algorithm approximation to ——PSRF¥: M =4
the ML estimator of the non-Bayesian version of this paper's =25 - IVIEEM=4
problem formulation. 2 ——PSRF*: M =8
8 2 - VI¥2M=8
[ 2
. =] = PSRFY2 M= 16
A. Convergence Analysis j 15 - == VY= M=16
HLL
o
%]
o

=

o
2]

500 1000 1500

0
generated by sampling from the steady-state distribution Gibbs sampler samples (I, +1)
p(x,z,02,0% 02 | y) is ergodic, the samples can be averaged (@) K = 10, E [02] = 0.252, E [02] = 0.12, M varies.

to approximate the Bayes MMSE estimate of the signal
parameters. In addition, the steady-state distributionaof
irreducible chain is unique, so the choice of initializatio
should not impact the final estimate generated from the gtead
state samples. Of course, since the chain only convergésto t
steady-state in the limit, small transient effects fromitfigal
conditions are evaluated.

The rate of convergence of the Gibbs/slice sampler, as ¢
measured by théV|/* and the square root of the PSRF, o5
. . . . . 0 500 1000 1500
is shown in Figurél7. The results suggest that increasing the Gibbs sampler samples (I, +1)
oversampling facto/ or the jitter variancer? or decreasing
the additive noise variance?, slows the rate of convergence.

In most cases, the Markov chain appears to reach a stead s
state within500 iterations; thus, we sef, = 500 iterations
(see Algorithn{P) for the tests that follow.

To establish the number of iteratiodsneeded after burn-
in, we observe the squared errp%; — x*||3, where%; is
the I'th estimate ofx, as a function off, for I up to 1000,
andx* is the true value ok. Examining the plots in Figuig 8,
approximatelys00 iterations are sufficient to achieve a squared
error within 0.5 dB of the asymptotic MSE (as measured by  25;

3
——PSRFY: E[o?7] = 0.1°

1/2
2

N
3

- - - |IVI* Ef0?) = 0.07
—— PSRFY% E[o?] = 0.25°
- = = |IVI}: Elo?] = 0.25
——PSRF": E[0] = 0.5

N

1/2. 27 _ 2
- = = VIY%Ef? = 05

SRFY2 and relative ||V||

(b) K =10, M =4, E [02] = 0.12, E [02] varies.

z

—— PSRFY: E[o}] = 0.57
- - -IIVI}* El0?] = 0.5
—— PSRFY E[o?] = 0.257
- - = |IVI% El0?] = 0.25
—— PSRF" E[?] = 0.17
= = =|VI}* E[o?] = 0.17

1/2
2

[
[

N

[

PSRF2 and relative ||V|
=
(¢,

500 1000 1500
I = 1000) for all cases. Gibbs sampler samples (I, +1)
The sensitivity to initial conditions of the Gibbs/slicensa (©) K =10, M =4, E [02] = 0.252, E [02,] varies.

pler is shown in FigurE]9 fof, = I = 5(_)0' For 50 trials, the Fig. 7. The convergence of the Gibbs/slice samplgd0(chains, 1500
squared error of the Bayes MMSE estimates are measureddatiples) as a function of the number of samplgst I is measured by

ten different choices of initial conditions. The ten ch@iagf the PSRE/2 and [|V||;/> convergence metrics. ThgV||y/> values are

o S 0) _ ) _ (0) _ normalized by the final value for each curve. The parameigss Sz, o,
Inltla(log:ondltl((()J?S used are (b _(0)1' 0z —(ngw _(0?'1' and Bz, aw, and B, are determined usin§ (110) arld{11). The rate of convergence
allx'®) andz'®) equal to zero, (2§, ' = 1,02’ = 0w’ =0.1, depends on the choice of parameters, as demonstrated ibafe plots.

z(® equal to zero, and the no-jitter LMMSE estimate for
x(, (3) the true values ob2, o2, 02, z, andx, and (4-

; 2 2 )
10) seven choices of random values @f, o2, o3, z and  itferent values of\/, 0., ando,, to demonstrate the effect of

the corresponding fixed-jitter LMMSE estimates fer The increasingl, increasing., or decreasing., on the relative

squared errors displayed are normalized so that the SQUAIREE performances. Comparing the Gibbs/slice sampler Bayes
error for the no-jitter LMMSE estimate starting point eqial\\isg estimate against the linear estimator, the Gibbg/slic
one. Although the Gibbs/slice sampler becomes more seasitismpier outperforms the linear MMSE estimator for a large
to initial conditions asr, increases, in all cases, the squarelf(ijmge of o, a difference that becomes more pronounced
errors for the majority of initial conditions are close t0€on ity higher oversamplingZ. In addition, the results suggest
Thus, even though the algorithms are still sensitive tdahit o+ the Gibbs/slice sampler outperforms classical esitma
conditions after the burn-in period, especially for largter especially for higher jitter variances.
variance, the choice of no-jitter LMMSE estimate is about S ,
average We also compare computation times for the EM algorithm
ge. and the Gibbs/slice sampler. Both converge more slowly for
. higher jitter and lower additive noise, and greater overdarg
B. Performance Comparisons also lengthens computation. In the casedf= 10, M = 16,

In Figure[10, the performance of the Gibbs/slice sampler&os?] = 0.5%, andE[02] = 0.0252, the EM algorithm with
compared against the linear MMSE and no-jitter linear MMSEnowno? ando? requiresl.6 seconds per trial on average, the
estimators and the EM algorithm approximation to the MEM algorithm for random noise variances requi?zdseconds,
estimator derived in [4]. The MSE performances are plotbed fand the Gibbs/slice sampler requirg$ seconds on average.
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w

Fig. 8. The convergence of the estimator fofrom the Gibbs/slice sampler
(I, = 500, 1 < I < 1000 samples) is measured froi000 trials by the
MSE of the Gibbs sampler estimate xfthe MSE is normalized so the MSE
for I = 1000 samples i®) dB. The parameteras, Bz, az, Bz, o, and By ‘ ‘
are determined usin@_(IL0) arld{11). The rate of convergember( the error 0.1 0.25 0.5
line stabilizes) depends on the choice of parameters, asmmted in the average AWGN std. dev. (Eﬁi,]m)
above plots.

relative sqd. err. (dB)
|
(&3]

(c) K =10, M =8, E [02] = 0.25%, E [02] varies.

Fig. 9. The effects of varyi‘ng initial conditi_ons of t_he Giiblice sampler
In only an eighth the time, the Gibbs/slice sampler achiev@g 2 function of oversampling factpr @), jitter variaricg (and additive
S f h h | ith noise variancg (f) are studied by computing the squaredseofahe results,
greater MSE per Ormance.t an the EM algorithm. ) __ for multiple initial conditions, acros$0 trials. The squared errors of the
To understand the effectiveness of these methods in mitigatults are normalized relative to the result for initiafian with the zero-
ing jitter, the difference in jitter variance as a functidrtarget jlt?er LMMSE in @) S0 t_hat the squared error of the resalt ihitialization
MSE i ted b d th f It d gjlth this linear estimator i® dB. The parametera,, Bz, az, B8z, aw, and
- is computed based on the performance results and Hl€yre determined using(10) arfd [11).
maximum observed differences (ffo2]'/? > 1E[02]'/?, to
avoid the region where the MSE plots are flat) are compared
for different values ofM andE[s2]'/2. The resulting trends
portrayed in Figure-11 demonstrate that greater improvéimen
achievable with increased oversamplihfg and small additive . . . .
. ) 5 o pling . : for implantable cardiac pacemakers and enable the inclusio
noise varianceE[s2]. In addition, the Gibbs/slice sampler . .
of ADCs in ultra-low power devices.

outperforms the classical ML estimator (as approximated by
the EM algorithm in [[4]) at high jitter, increasing the facto Like the EM algorithm proposed ir [4], the Gibbs/slice

of improvement, especially in the high oversampling and |0\§’ampler proposed here suffers from relatively high compu-

additive noise variance regimes. tational complexity and an iterative nature, which may be
unsuitable for embedded applications. Developments ig-pol
nomial estimators, such as the \olterra filter-like polyraim
The results displayed in this paper suggest that posistimators described ih [29], may yield similar performate
processing jittered samples with a nonlinear algorithne likhe Gibbs/slice sampler proposed here, at least for lowideve
Gibbs/slice sampling mitigates the effect of samplingejitt of oversampling, without such high online computationaltco
on the total sampling error. In particular, the expecterjit Further investigation is warranted in developing thesesamd
standard deviation can be increased by as much as a factolafapproaches for post-processing jittered samples itC&D
2.2, enabling substantial power savings in the analog cirguitNevertheless, for off-chip post-processing of jitterechples,
when compared against linear post-processing or classitted nonlinear Bayesian Gibbs/slice sampler presented here
nonlinear post-processing (the EM algorithm). Such poweutperforms both linear MMSE estimator and the nonlinear
savings may enable significant improvements in battery lifdassical EM algorithm approximation to the ML estimator.

VI. CONCLUSION
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Fig. 10. The MSE performance of the Bayes MMSE estimator agpcted
using the Gibbs/slice sampler is compared against both riéased linear
MMSE estimator[(2D) and the no-jitter linear MMSE estimaf2B), as well
as the EM algorithm approximation to the ML estimator frarh [Bhe values
of ag, Bz, az, Bz, aw, and B, are determined for the average, o2

and 2, using [I0) and[{d1). The EM algorithm uses the true values,%of
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Fig. 11. Jitter improvement from using MMSE (Gibbs/slicenger) and
ML estimators (EM algorithm with knoww,, o, ando,,) is measured by
|nterpo|at|n9 the maximum factor of improvement in jitteterance, measured
by E |o , relative to using no-jitter LMMSE reconstruction. Holdin
E [02, flxed [(@) shows the trend in maximum improvement\dsincreases,
and[{B) shows the trend in maximum improvement[EaEvfu]1/2 increases
while holding M fixed. The jitter standard deviation’ corresponding to this
maximum improvement for the MMSE and ML estimators is plbtten the
same axes.

By conditional independence,

p(y,2,02,00:x) = ply | z,05;X)p(z | 02)p(c?)p(os,)
= N(y;H(z)x,0.)p(z | 02)p(c2)p(ol).

(42)

The terms not involvingx are unnecessary, since we are
differentiating with respect ta in the next step. The derivative
of the expectation in(41) is

o2, ando? , while the linear estimators and the Gibbs/slice sampéattr2,

0%, ando% as random variables. The error bars above and below each data 2HT(Z)(H(Z)X — y) S (i—1)

point for the estimators delineate tB8% confidence intervals for those data E|- 2 | y; XY . (43)
points. 207,

APPENDIX
ML ESTIMATION WITH RANDOM VARIANCES

In [4], the EM algorithm approximation to the ML estimator

is derived in the classical setting for known varianeésand

o2 . To adapt the method for random variances, we introduce{

o? ando? as latent variables:

£ = argmaxE |logp(y, z,02,02;x) | y; x(lfl)} . (41)

Setting the derivative equal to zero yields a linear system i
X:

HT(z)H(z (i H(z N r
IE|: () ()|y7x(1 1):|X_E|: 0(2) |y,X( 1):| y.

(44)
As is done in[[4], the expectations iEtI44) become:
5((%’—1)} :

p [LOHE) |y gon] Z E[ Palen)
(45)
e ] ]
" (46)
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The hybrid quadrature method discussed in Sedfibn Il c@m] A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Signatconstruction

be used to compute the expectationsﬁj] (45) (46): errors in jittered sampling /EEE Trans. Sgnal Process., vol. 57, no. 12,
pp. 4711-4718, Dec. 2009.

T Ji J2  J3 totic analysis of multidimensional jittede sampling,”
. h, (z,)h;, (2,) |y, %D | & Z Z Z whwjgwja J3 }}Tgém%\; nal}fﬂg Ba? /6158, . d}g\pp 258-268, Jan. 2010.
m &rtis’*dnd

o2 |[i2]—N¢I) . CoX, D. Al reys, “An algorithfor the
J1=1j2=1js= removal of noise and jitter in signals and its applicatiorpitcosecond
(47) eIectncaI measurementRum. Alg., vol. 5, no. 10, pp. 491-508, Oct.
Jv J2 J
E hg(zn) a(i-1)| ! SR whwhwjg Fl;g])& Tu LZ :oc&h@edgme ods for the reconstonctof finite-
T2 | yn, R ~ Z Z Z gha nonunifbunt; sample$EZEE Trans. Signal Process,,
w ST T TP vol. 55, no. 2, pp. 530-541, Feb. 2007.

(48) [14] C Andrieu, A. Doucet, and P. Duvant, “Bayesian estioratof the
variance of a jitter using MCMC,” ifProc. 8th IEEE Sgnal Processing

Hybrid quadrature is also used to computgy, | (i— 1)) Workshop on Satistical Signal and Array Processing, Jun. 1996, pp.

24-27.
(See KIB)) Then, the EM algorlthm becomes 'teratlvely 'SOIY15 X. Zhang and R. Negi, “A MAP-based algorithm for jointtiesation
ing (43) forx(®, using the above hybrid quadrature formulas. ~ of transition jitter and timing error,JEEE Trans. Magn., vol. 43, no. 6,
However, due to the three-dimensional nature of the hybrid PP 2256-2258, Jun. 2007.

. . ] V. Y. F. Tan and V. K. Goyal, “Estimating signals with fiairate of
quadrature formulas, CompUtat'onal cost can increaseatra innovation from noisy samples: A stochastic algorithfEEE Trans.

ically. Sgnal Process,, vol. 56, no. 10, pp. 5135-5146, Oct. 2008.
Due to the increased computational cost of adapting tHe&l D. S. Weller, “Mitigating timing noise in ADCs throughigital post-

. . processing,” SM Thesis, Massachusetts Institute of TdolggpDepart-
EM algorlthm to random variances, we compare the MSE ment of Electrical Engineering and Computer Science, J0682

performance of both EM algorithms for the same choices @] P. K. Kythe and M. R. Schaferkotteidandbook of Computational
parameters used in the performance plots in [4J0( trials, Methods for Integration. Boca Raton, FL: CRC, 2005.
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