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Bayesian Post-Processing Methods for Jitter
Mitigation in Sampling
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Abstract—Minimum mean squared error (MMSE) estimators
of signals from samples corrupted by jitter (timing noise) and
additive noise are nonlinear, even when the signal prior and
additive noise have normal distributions. This paper develops a
stochastic algorithm based on Gibbs sampling and slice sampling
to approximate the optimal MMSE estimator in this Bayesian for-
mulation. Simulations demonstrate that this nonlinear algorithm
can improve significantly upon the linear MMSE estimator, as
well as the EM algorithm approximation to the maximum like-
lihood (ML) estimator used in classical estimation. Effective off-
chip post-processing to mitigate jitter enables greater jitter to be
tolerated, potentially reducing on-chip ADC power consumption.

Index Terms—sampling, timing noise, jitter, analog-to-digital
conversion, Markov chain Monte Carlo, Gibbs sampling, slice
sampling

I. I NTRODUCTION

Reducing the power consumption of analog-to-digital con-
verters (ADCs) would improve the capabilities of power-
constrained devices like medical implants, wireless sensors,
and cellular phones. Clock circuits that produce jittered (noisy)
sample times naturally consume less power than those with
low phase noise, so allowing high phase noise is one avenue
to reduce power consumption. However, increasing jitter in
an ADC reduces the effective number of bits (ENOB) (rms
accuracy on a dyadic scale) by one for every doubling of
the jitter standard deviation, as described in [1] and [2].
Compensating for the reduced ENOB by designing more
accurate comparators increases power consumption by a factor
of four for every lost bit of accuracy [3]. Thus, to achieve
reduced on-chip power consumption, the lost bits should be
recovered in a different manner.

In [4], the authors post-process the jittered samples, employ-
ing an EM algorithm to perform classical maximum likelihood
(ML) estimation of the signal parameters. This nonlinear clas-
sical estimation technique is capable of tolerating between 1.4
and2 times the jitter standard deviation that can be mitigated
by linear estimation. In this work, nonlinear post-processing is
extended to the Bayesian framework, where the signal parame-
ters are estimated knowing their prior distribution. Here,we do
not require that signal and noise variances are known a priori;
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our hierarchical Bayesian model includes prior distributions
on these parameters. The technique presented here achieves
significant improvement over linear estimation for a wider
range of jitter variance than the EM algorithm from [4],
improving the applicability of nonlinear post-processing.

The block post-processing of the jittered samples is intended
to be performed off-chip (e.g. on a PC), so we do not attempt
to optimize the total power consumption, including the digital
post-processing. However, we are concerned with making
prudent choices in algorithm design so that the computational
complexity of the post-processing is reasonable. The problem
of mitigating jitter also can be motivated by loosening manu-
facturing tolerances (hence reducing cost) or by problems in
which spatial locations of sensors are analogous to sampling
times [5].

A. Problem Formulation

Consider the shift-invariant subspace ofL2(R) associated
with a generating functionh(t) and a signalx(t) in that
subspace:

x(t) =
∑

k∈Z

xkh(t/T − k). (1)

Assuming {h(t/T − k) : k ∈ Z} is a Riesz basis for
the subspace,x(t) is in one-to-one correspondence with the
sequence{xk}k∈Z and the sequence{xk}k∈Z is in ℓ2(Z).
Examples ofh(t) include the functionsinc(t)

∆
= sin(πt)

πt
used throughout this paper, as well as B-splines and wavelet
scaling functions as discussed in [6]. Whileh(t) = sinc(t)
is used for simulations, the developments in this paper are
not specialized to the form ofh(t) in any way. We only
require thath(t) satisfies the Riesz basis condition and that the
sampling prefilters(−t) satisfies the biorthogonality condition
〈h(t/T − k), s(t/T − ℓ)〉 = δk−ℓ, for all k, ℓ ∈ Z. The Riesz
basis condition allows bounding ofL2 error of x(t) in terms
of ℓ2 error ofxk; when{h(t/T−k) : k ∈ Z} is an orthogonal
set, these errors are constant multiples. Whenh(t) = sinc(t),
the shift-invariant subspace is the subspace of signals with
Nyquist sampling periodT . Without loss of generality, we
assumeT = 1.

When observing the signalx(t) through a sampling system
like an ADC, the analog signal is prefiltered bys(−t), and
samplesyn are taken of the result at jittered timestn =
nTs + zn. To model oversampled ADCs, we oversample the
signal by a factor ofM , so the sampling period isTs = 1/M .
The samples are also corrupted by additive noisewn, which
models auxiliary effects like quantization and thermal noise.
Forh(t) = sinc(t), the duals(t) = sinc(t) is an ideal lowpass
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Fig. 1. Block diagram of an abstract ADC with off-chip post-processing. The
signal x(t) is filtered by the sampling prefilters(−t) and sampled at time
tn. These samples are corrupted by additive noisewn to yield yn. The post-
processor estimates the parametersx of x(t) using the vector ofN samples
y from the ADC.

filter with bandwidth2π. The observation model, depicted in
Figure 1, is

yn = [x(t) ∗ s(−t)]t= n

M
+zn

+ wn. (2)

We aim to estimate a block ofK coefficients, assuming the
remaining coefficients are negligible:

x(t) ≈
K−1
∑

k=0

xkh(t− k). (3)

This specializes the observation model to

yn =
K−1
∑

k=0

xkh
( n

M
+ zn − k

)

+ wn. (4)

Grouping the variables into vectors, letx = [x0, . . . , xK−1]
T ,

y = [y0, . . . , yN−1]
T , z = [z0, . . . , zN−1]

T , and w =
[w0, . . . , wN−1]

T . Then, in matrix form,

y = H(z)x+w, (5)

where[H(z)]n,k = h( n
M + zn − k), for n = {0, . . . , N − 1},

andk = {0, . . . ,K−1}. Let hT
n (zn) be thenth row ofH(z).

Also, denote thekth column ofH(z) by Hk(z) and the matrix
with the remainingK − 1 columns byH\k(z). Similarly, let
x\k = [x0, . . . , xk−1, xk+1, . . . , xK−1]

T be the vector of all
but thekth signal coefficient.

In this paper, we assume both the jitter and additive noise
are random, independent of each other and the signalx(t).
Specifically, zn and wn are assumed to be iid zero-mean
Gaussian, with variances equal toσ2

z andσ2
w, respectively. In

keeping with the Bayesian framework, we also choose a prior
for the signal parameters. For convenience, we use an iid zero-
mean Gaussian prior with varianceσ2

x because the observation
model is linear in the parameters. Rather than assuming these
parameters (variances) to be known, we treat them as random
variables and assign a conjugate prior to these parameters.
Thus, σ2

z , σ2
w , and σ2

x are inverse Gamma distributed with
hyperparameters{αz, βz}, {αw, βw}, and {αx, βx}, respec-
tively. These hyperparameters may be selected to be consistent
with in-factory measurement of the noise variances or other
information. The hierarchical Bayesian model is shown in
Figure 2.

To simplify notation, the probability density function (pdf)
of a is written asp(a), and the pdf ofb conditioned on
a is abbreviated asp(b | a) for random a and p(b; a)
for nonrandoma. The subscripts usually included outside

... ...

αx βx

σ2
x

αz βz

σ2
z

αw βw

σ2
w

x0 xk xK−1zn wn

yn

Fig. 2. Hierarchical Bayesian model of the problem. The observation yn
depends on coefficientsx0, . . . , xK−1 and jitter and additive noisezn and
wn. The coefficients all depend on the signal varianceσ2

x, and the jitter and
additive noise depend onσ2

z and σ2
w , respectively. Each of these variances

depend on hyperparametersα andβ. In this model, circled nodes are random
variables, and non-circled nodes are fixed parameters.

the parentheses will be written only when needed to avoid
confusion. Expectations will follow the same convention.

The uniform distribution is written in this paper asU(set);
for instance,U([a, b]) is a uniform distribution over the
interval [a, b], andU({u : p(u) ≥ c}) is a uniform distribution
over the set{u : p(u) ≥ c}. Writing u ∼ U(set) means
thatu is a sample generated from this distribution; analogous
notation is used for the other distributions in this paper. The
inverse Gamma distribution has the density function

IG(s;α, β)
∆
=

βα

Γ(α)
s−α−1e−β/s. (6)

The mean and variance ofs are

E[s] =
β

α− 1
, and var(s) =

β2

(α− 1)2(α− 2)
. (7)

The density function of thed-dimensional normal distribution
with meanµ and covariance matrixΛ is written as

N (a;µ,Λ)
∆
= |2πΛ|−1/2 exp{−

1

2
(a−µ)TΛ−1(a−µ)}. (8)

When performing simulations, specific values are required
for the α’s and β’s. For the signal varianceσ2

x, consider an
unbiased estimate of that variance fromK > 1 observa-
tions generated from a standard normal distribution:sK =

1
K−1

∑K−1
k=0 (xk − x̄)2, wherex̄ = 1

K

∑K−1
k=0 xk is the sample

mean. Then, we fit the inverse Gamma prior hyperparameters
αx andβx to the mean and variance ofsK using (7):

βx

αx − 1
= E[sK ] = 1;

β2
x

(αx − 1)2(αx − 2)
= var(sK) =

2

K − 1
.

(9)
Solving,

αx =
K + 3

2
; βx =

K + 1

2
. (10)
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Similarly for the zero-mean jitter and additive noise variances,
givenN > 1 observations and expected noise variancesE[σ2

z ]
andE[σ2

w ],

αz = αw =
N + 3

2
, βz =

N + 1

2
E
[

σ2
z

]

, andβw =
N + 1

2
E
[

σ2
w

]

.

(11)
For the examples in this paper, we use the sameK andN as
for our signal; in practical applications,K andN are prior
observations performed at a factory (for the noise variances)
or elsewhere (for the signal variance).

The objective of the algorithm presented in this paper is
to find the estimator̂x that minimizes the mean squared
error (MSE)E

[

‖x̂(y) − x‖22
]

, where the observationsy are
implicitly functions of x. Unlike in the classical estimation
framework, we have a prior onx, which allows us to formulate
the minimum mean squared error (MMSE) estimatorx̂MMSE

as the posterior expectation

x̂MMSE
∆
= E[x | y]. (12)

The posterior distributionp(x | y) depends on the likelihood
function p(y | x), which can be expressed as in [4] as a
product of marginal likelihoods:

p(yn | x) =

∫∫∫

N (yn;h
T
n (zn)x, σ

2
w)N (zn; 0, σ

2
z)IG(σ

2
z ;αz , βz)IG(σ

2
w;αw, βw) dzn dσ

2
z dσ

2
w.

(13)
As neither the likelihood nor posterior distribution has a
simple closed form, the majority of this paper is devoted to
approximating these functions using numerical and stochastic
methods.

B. Related Work

Random jitter has been studied extensively throughout the
early signal processing literature (see [7], [8], and [9]).How-
ever, much of the effort in designing reconstruction algorithms
was constrained to linear transformations of the observations.
These papers also analyze the performance of such algorithms;
for example, [9] proves that when the jitter is Gaussian and
small enough, the MSE is approximately13Ω

2
Bσ

2
z , where the

input PSDSxx(jΩ) =
1

2ΩB

is flat. Due to the lack of attention
to nonlinear post-processing, it is not readily apparent from the
literature that these linear estimators are far from optimal. The
effects of jitter on linear MMSE reconstruction of bandlimited
signals are discussed in [10] and extended to the asymptotic
K,N →∞ case and multidimensional signals in [11].

More recently, [12] uses a second-order Taylor series ap-
proximation to perform weighted least-squares fitting of a
jittered random signal. In [13], two post-processing methods
are described for the case when the sample times are discrete
(on a dense grid). Similar to the Gibbs sampler presented
in this work, [14] uses a Metropolis-Hastings Markov chain
Monte Carlo (MCMC) algorithm to estimate the jitter and
jitter variance from a sequence of samples. Also, a maximum
a posteriori (MAP)-based estimator is proposed in [15] to
mitigate read-in and write-out jitter in data storage devices.
Finally, a Gibbs sampler is developed in [16] to estimate the
coefficients and locations of finite rate of innovation signals
from noisy samples.

Preliminary versions of the algorithms and results presented
in this work are also discussed, with further background
material and references, in [17].

C. Outline

In Section II, numerical quadrature is revisited and Gibbs
sampling and slice sampling are reviewed. The linear MMSE
estimator is discussed in Section III. In Section IV, the
Gibbs sampler approximation to the Bayes MMSE estimator
is derived, and slice sampling is used in the implementation.
All these estimators, as well as the EM algorithm from [4]
approximating the ML estimator, are analyzed and compared
via simulations in Section V. Conclusions based on these
simulations, as well as ideas for future research directions,
are discussed in Section VI.

II. BACKGROUND

In general, the likelihood function in the introduction is
described in terms of an integration without a closed form. For-
tunately, numerical methods such as Gauss quadrature, which
approximates the integration in question with a weighted sum
of the integrand evaluated at different locations (abscissas), are
relatively accurate and efficient. A more detailed description
of Gauss quadrature can be found in the background section
of [4], or in [18] or [19]. This paper discusses using Gauss–
Laguerre quadrature to approximate integration with respect
to σ2

z andσ2
w.

However, simply being able to evaluate (approximately) the
likelihood function is insufficient to approximate the Bayes
MMSE estimator. To approximate the expectation in (12), we
propose using a Monte Carlo statistical method combining
Gibbs sampling and slice sampling. Gibbs sampling and slice
sampling are discussed below.

A. Numerical Integration

For integrals of the form
∫∞

−∞ f(x)N (x;µ, σ2) dx, tech-
niques such as Gauss–Legendre and Gauss–Hermite quadra-
ture, Romberg’s method, and Simpson’s rule, are described
in [4]. Similarly, Gauss–Laguerre quadrature can approximate
integrals of the form

∫∞

0
f(x)xae−x dx. The abscissas and

weights for Gauss–Laguerre quadrature can be computed using
the eigenvalue-based method derived in [20].

Let xj andwj be the abscissas and weights for the Gauss–
Laguerre quadrature rule of lengthJ . Then, we can integrate
against the pdf of the inverse Gamma distribution by observ-
ing,
∫ ∞

0

f(x)IG(x;α, β) dx =

∫ ∞

0

βα

Γ(α)
f(x)x−(α+1)e−β/x dx

=

∫ ∞

0

βα

Γ(α)
f

(

β

y

)(

y

β

)α+1
β

y2
e−y dy

=

∫ ∞

0

1

Γ(α)
f

(

β

y

)

yα−1e−y dy

≈
J
∑

j=1

w′
jf(x

′
j),

(14)
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Fig. 3. Quadrature approximations are compared to histograms for p(yn |
x) for different expected values ofσ2

z and σ2
w (α’s and β’s are computed

according to (11)). The quadrature approximations are computed for a dense
grid of 200 values ofyn, and the histograms are generated from100 000
samples ofyn, computed from samples ofσ2

z , σ2
w, zn, andwn according

to (4). The multimodal case (a) favors Gauss–Legendre quadrature; case (b)
favors Gauss–Hermite quadrature; the worst-casen is shown in each. The
legend refers to the quadrature method used for the integralover zn; Gauss–
Laguerre quadrature is used for the integrals with respect to σ2

z andσ2
w.

where x′
j = β/xj , and w′

j = wj/Γ(α). The substitutions
x = β/y anddx = β/y2 dy are made in the second step of
the derivation.

Utilizing a combination of Gauss–Laguerre quadrature and
either Gauss–Hermite quadrature or Gauss–Legendre quadra-
ture, we can approximate the likelihood functionp(yn | x)
using the integral in (13). In particular,

p(yn | x) ≈
J1
∑

j1=1

J2
∑

j2

J3
∑

j3

wj1wj2wj3N (yn;h
T
n (zj3)x, σ

2
wj1

).

(15)
In this equation, the innermost quadrature (overzn) depends
on the value ofσ2

z , so the values ofzj3 depend onσ2
z j2

. Since
the total number of operations scales exponentially with the
number of variables being integrated, we seek to minimize
the choices ofJ1, J2, and J3 for this three-dimensional
summation. To explore the accuracy of this approximation
as a function ofJ1 and J2 (we useJ3 = 129 from [4]),
the quadrature is performed over a dense grid of values of
yn and the results are compared to a histogram generated
empirically, by fixing x to a randomly chosen vector, gen-
erating many samples ofσ2

z , σ2
w, zn, and wn from their

respective prior distributions, and computing the samplesyn
using (4). Comparisons for unimodal and multimodalp(yn;x)
are shown in Figure 3. Based on these comparisons, we choose
Gauss–Laguerre quadrature withJ1 = J2 = 9 to integrate

with respect toσ2
w and σ2

z . This is combined with Gauss–
Hermite quadrature withJ3 = 129 when E[σ2

z ] is small
(< 0.01) and Gauss–Legendre quadrature withJ3 = 129
whenE[σ2

z ] > 0.01. This hybrid quadrature also is used when
computing the expectations in Section III and in the appendix.

B. Gibbs Sampling

The Gibbs sampler is a Markov chain Monte Carlo method
developed in [21]. Details about the Gibbs sampler and its
many variants, including Metropolis-within-Gibbs sampling,
can be found in [22]. When implementing the Gibbs sampler,
one must consider both the number of iterations until the
Markov chain has approximately converged to its stationary
distribution (the “burn-in time”) and the number of samples
that should be taken after convergence to compute the MMSE
estimate. According to [23], separating highly correlatedvari-
ables slows convergence of the Gibbs sampler. The number of
iterations after convergence is connected to both correlation
between successive samples and the variance of the random
variables distributed according to the stationary distribution.

To monitor convergence, heuristics such as the potential
scale reduction factor (PSRF) and the inter-chain and intra-
chain variances are developed in [24], [25]. ConsiderC in-
stances (chains) of the Gibbs sampler running simultaneously.
Define the vectorac,i to be the combined vector of all the
samples for thecth chain at theith iteration. For chainc, the
average is̄ac = 1

i

∑i
j=1 ac,i. Across all chains, the average

is ¯̄a = 1
C

∑C
c=1 āc. Then, following the multivariate extension

to the potential scale reduction factor (PSRF) derived in [25],
define the intra-chain covariance

Wi
∆
=

1

(i − 1)C

C
∑

c=1

i
∑

j=1

(ac,i − āc)(ac,i − āc)
T , (16)

and the inter-chain covariance

Bi
∆
=

1

i− 1

i
∑

j=1

(āc − ¯̄a)(āc − ¯̄a)T . (17)

The posterior variancêVi
∆
= i−1

i Wi+
C+1
C Bi, and the PSRF

R̂p ∆
= i−1

i + C+1
C ‖W

−1
i Bi‖2, where ‖ · ‖2 is the induced

matrix 2-norm. Then, the Gibbs sampler’s Markov chain has
converged when̂Rp = 1, and V̂ stabilizes. To measure the
change inV̂, we compute‖V̂‖1/22 .

C. Slice Sampling

Slice sampling is a Markov chain Monte Carlo method
described in [26] for generating samples from a distribution by
instead sampling uniformly from the subgraph of the pdf and
framing this sampling procedure as a two-stage Gibbs sampler,
depicted in Figure 4.

The difficulty of slice sampling is in representing and
sampling from the slice. In this problem, we show that any
given slice is bounded, and therefore, an interval containing the
slice can be constructed, and the “shrinkage” method described
in [26] can be used. The shrinkage method is an accept-reject
method, where given an interval[L,R] containing part (or all)
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x

y

x(i−1)

x(i)y(i)

p(x(i−1))

x(i) ∼ U({x : p(x) ≥ y(i)})

y(i) ∼ U([0, p(x(i−1))])

(a)

(b)

Fig. 4. Slice sampling ofp(x) illustrated: (a) Sampling is performed by
traversing a Markov chain to approximatep(x), the stationary distribution.
Each iteration consists of (b) uniformly choosing a slice{x : p(x) ≥ y} and
uniformly picking a new samplex from that slice.

of the slice, a sample is generated uniformly from the interval
and accepted if the sample is inside the slice. If the sample
is rejected, the interval shrinks to use the rejected sample
as a new endpoint. Several variants, including shrinking to
the midpoint of the interval instead of or in addition to the
rejected sample, are also described in the rejoinder at the end
of [26]. These variants are compared in the context of the jitter
mitigation problem in Section IV.

III. L INEAR BAYESIAN ESTIMATION

When block post-processing the samples, the linear
Bayesian estimator with minimum MSE is called the linear
MMSE (abbreviated LMMSE) estimator. The general form of
the linear MMSE estimator is given in [27]. For estimating the
random signal coefficientsx using the hierarchical Bayesian
model in Section I,

Λxy =
βx

αx − 1
E[H(z)]T , (18)

Λy =
βx

αx − 1
E[H(z)H(z)

T
] +

βw

αw − 1
I, (19)

andµy = µx = 0. The LMMSE estimator for random jitter
is

x̂LMMSE(y) = E[H(z)]T
(

E[H(z)H(z)
T
] +

βw(αx − 1)

βx(αw − 1)
I

)−1

y.

(20)
The expectations in (20) can be computed off-line using Gauss
quadrature. The error covariance of the LMMSE estimator is
also derived in [27]; for this problem,

ΛLMMSE =
βx

αx − 1

(

I− E[H(z)]T
(

E[H(z)H(z)
T
] +

βw(αx − 1)

βx(αw − 1)
I

)−1

E[H(z)]

)

.

(21)
When no jitter is assumed, the LMMSE estimator simplifies

to

x̂LMMSE|z=0(y) = H(0)
T

(

H(0)H(0)
T
+

βw(αx − 1)

βx(αw − 1)
I

)−1

y.

(22)
This linear estimator is the best linear transformation of the
data that can be performed in the absence of jitter. Hence, the
no-jitter LMMSE estimator is the baseline estimator against

which the nonlinear Bayesian estimators derived later are
measured. The error covariance of this estimator is

ΛLMMSE|z=0 = σ2
x

(

I−H(0)
T

(

H(0)H(0)
T
+

βw(αx − 1)

βx(αw − 1)
I

)−1

H(0)

)

(23)

IV. N ONLINEAR BAYESIAN ESTIMATION

To improve upon the LMMSE estimator, we expand our
consideration to nonlinear functions of the data. The Bayes
MMSE estimator, in its general form in (12), is the nonlinear
function that minimizes the MSE. However, since the posterior
density function for this problem does not have a closed
form, this estimator can be difficult to compute. Since we are
interested in the mean of the posterior pdf, finding the Bayes
MMSE estimator is an obvious application of Monte Carlo
statistical methods, especially the Gibbs sampler described in
Section II.

We propose using Gibbs sampling to produce a sequence
of samples for the random parameters we wish to find, via
traversing a Markov chain to its steady-state distribution, and
average the samples to approximate the estimator. To this end,
samples ofz, x, σ2

x, σ2
w, andσ2

z are generated according to
their full conditional distributions (i.e. the distribution of one
random variable given all the others). To generate samples of
z, we apply slice sampling.

A. Generating zn using Slice Sampling

Consider generating sampleszn from the distributionp(· |
z\n,x, σ

2
x, σ

2
w, σ

2
z ,y), where z\n is the random vector of

all the jitter variables exceptzn. Using Bayes rule and the
independence ofzn andwn,

p(zn | z\n,x, σ
2
x, σ

2
w, σ

2
z ,y) =

p(y | z,x, σ2
x, σ

2
w, σ

2
z)p(z, σ

2
z)p(x | σ

2
x)p(σ

p(z\n,x,y, σ2
x, σ

2
w, σ

2
z)

∝ N (yn;h
T
n (zn)x, σ

2
w)N (zn; 0, σ

2
z).

(24)

Slice sampling is used for generating realizations ofzn
since no tightly enveloping proposal density or other tuning is
necessary; the ability to evaluate an unnormalized form of the
target distribution is sufficient. Each iteration of slice sampling
consists of two uniform sampling problems:

1) Choose a sliceu uniformly from [0, p̃(z
(i)
n |

y,x, σ2
x, σ

2
w, σ

2
z)], wherep̃(z(i)n | y,x, σ2

x, σ
2
w, σ

2
z) is the

unnormalized full conditional density function in (24).
2) Samplez(i+1)

n uniformly from the sliceS
∆
= {zn : p̃(zn |

y,x, σ2
x, σ

2
w, σ

2
z) ≥ u}.

The first step is trivial, since we are sampling from a single
interval. The second step is more difficult. However, since
u ≤ p̃(zn | y,x, σ2

x, σ
2
w, σ

2
z) for all zn in the slice,

log u ≤ −
(yn − hT

n (zn)x)
2

2σ2
w

−
z2n
2σ2

z

− log(2πσzσw)

≤ −
z2n
2σ2

z

− log(2πσzσw). (25)
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Solving for zn, the range of possiblezn is bounded:

|zn| ≤ σz

√

−2 logu− 2 log(2πσwσz). (26)

Using these extreme points for the initial interval containing
the slice, and the “shrinkage” method specified in [26] to
sample from the slice by repeatedly shrinking the interval,
slice sampling becomes a relatively efficient method. The
“shrinkage” method decreases the size of the interval expo-
nentially fast, on average. To see this, consider one iteration
of shrinkage, where the initial pointx0 from the previous step
of slice sampling lies in the interval[L,R]. This initial point
is guaranteed to be in the slice by construction. The expected
size of the new interval[L′, R′], from choosing a new point
x′, is

E[R′ − L′ | R,L, x0] =
1

R− L

[

∫ x0

L

(R − x′) dx′ +

∫ R

x0

(x′ − L) dx′

]

=
R2 − 2RL+ L2

2(R− L)
+

x0(R+ L− x0)−RL

R − L

=
R− L

2
+

x0(R+ L− x0)−RL

R− L
.

(27)

This expectation is quadratic inx0, so the maximum occurs
at the extreme pointx0 = (R+L)/2. The maximum value is

max
x0

E[R′ − L′ | R,L, x0] =
R− L

2
+

((R+ L)/2)(R+ L− (R+ L)/2)−RL

R− L

=
R− L

2
+

(R+ L)2/4−RL

R− L
=

3

4
(R− L).

(28)

Concavity implies that the minima are at the two endpoints
x0 = L andx0 = R. In both cases, the expected size of the
interval is (R− L)/2. Therefore,

1

2
(R− L) ≤ E[R′ − L′ | R,L, x0] ≤

3

4
(R − L), (29)

which implies that at worst, the size of the interval shrinks
to 3/4 its previous size per iteration, on average. Then, given
the initial interval[L0, R0] and previous pointx0, the expected
size of the interval[LI , RI ] after I iterations of the shrinkage
algorithm is

E[RI − LI | R0, L0, x0] = E[E[RI − LI | R0, L0, . . . , RI−1, LI−1, x0] | R0, L0, x0]

≤

(

3

4

)I

(R0 − L0).

(30)

If the target distributionp(x) is continuous, the algorithm
is guaranteed to terminate once the search interval is small
enough. Since the interval size shrinks exponentially fast, on
average, the number of “shrinkage” iterations is approximately
proportional to the log of the fraction of the initial interval
contained in the slice.

In the rejoinder at the end of [26], an alternative binary
search-like midpoint shrinkage algorithm is proposed that
can converge faster on the slice than the original shrinkage
algorithm, at the cost of increasing correlation between suc-
cessive samples, which reduces the overall Gibbs sampler

Algorithm 1 Algorithm for computingzn with slice sampling.

Require: Previous valuez(i−1)
n , x, σ2

x, σ2
z , σ2

w, yn, threshold
τ ≥ 0
Chooseu ∼ U([0, p̃(z

(i−1)
n | x, σ2

x, σ
2
z , σ

2
w, yn)]) (see (24)).

Compute initial interval[L,R] according to (26).
repeat {This is the “shrinkage” algorithm from [26].}

Choosez ∼ U([L,R]).
if p̃(z | x, yn, σ2

x, σ
2
z , σ

2
w) < u then

if z < z
(i−1)
n then

L← z.
else
R← z.

end if
end if
if p̃(z | x, yn, σ

2
x, σ

2
z , σ

2
w) < e−τu then {(Optional)

midpoint-threshold modification from rejoinder in [26].}
if 1

2 (L+R) < z
(i−1)
n then

L← 1
2 (L+R).

else
R← 1

2 (L+R).
end if

end if
until p̃(z | x, σ2

x, σ
2
z , σ

2
w, yn) ≥ u.

return z

convergence speed. In an effort to mitigate the increased
correlation, a hybrid method is proposed in [26] that always
shrinks to the rejected sample, then shrinks to the midpointof
the remaining interval only if the probability of the rejected
sample is sufficiently small (the threshold) relative to theslice.
These algorithms are applied to both unimodal and multimodal
posterior distributionsp(zn | x, z,y, σ2

x, σ
2
z , σ

2
w) in Figure 5.

To compare these methods in the context of the jitter
mitigation, we monitor the convergence of the complete Gibbs
sampler, using the shrinkage methods described above. While
the combined method obviously shrinks the slice much faster
than the original method, the hybrid method’s increased speed
must offset any increased correlation in the accepted samples
in order to be useful. In Figure 6, the convergence metrics
PSRF1/2 and ‖V̂‖1/22 are plotted as a function of the total
number of shrinkage iterations performed. The convergence
rate of the two shrinkage methods are very similar, but in some
cases, as shown in Figure 6a, the hybrid method outperforms
the original shrinkage method.

To summarize, pseudocode of the slice sampling algorithm
using either shrinkage method to generate realizations ofzn
is written in Algorithm 1.
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Fig. 5. Comparisons between the original shrinkage method and the modified thresholding-based shrinkage method for unimodal (a) and multimodal (b)
posterior distributions. The unnormalized distributionp̃(z(i−1)

n | x, σ2
x, σ

2
z , σ

2
w , yn) is evaluated for the previous Gibbs sampler iteration’sz

(i−1)
n and the

slice level shown is selected uniformly from[0, p̃(z(i−1)
n | · · · )]. The shrinkage methods proceed according to Algorithm 1. The midpoint threshold shown

corresponds toτ = 25. Rejected samples are marked with a “×”, and the final accepted sample is marked with a “◦”. In both cases, the thresholding-based
method reduces the size of the interval more quickly than theoriginal method. Especially in the unimodal case, the accepted samplez(i)n is much closer to
the previous iteratez(i−1)

n than would otherwise be expected from the size of the slice.

B. Generating x, σ2
x, σ2

z , and σ2
w

The full conditional distribution onxk does depend on the
other signal parametersx\k:

p(xk | x\k, z, σ
2
x, σ

2
w, σ

2
z ,y) =

p(y | z,x, σ2
w)p(z, σ

2
z )p(x | σ

2
x)p(σ

2
x)p(σ

2
w)

p(x\k, z, σ2
x, σ

2
w, σ

2
z ,y)

∝ N (y;H(z)x, σ2
wI)N (xk; 0, σ

2
x).

(31)

Grouping correlated variables accelerates Gibbs sampler con-
vergence, and the random vectorx can still be generated in
one simple step since

p(x | z, σ2
x, σ

2
w, σ

2
z ,y) ∝ N (y;H(z)x, σ2

wI)N (x;0, σ2
xI)

(32)
implies the posterior distribution ofx is just multivariate
normal with mean

µ
x
= Λx

H(z)
T
y

σ2
w

(33)

and covariance matrix

Λx = σ2
w[H(z)TH(z) +

σ2
w

σ2
x

I]−1. (34)

The Gibbs sampler easily handles the variancesσ2
x, σ2

z , or
σ2
w being random variables. The generation of realizations of

zn and xk proceeds using the previous iteration’s estimates
of σ2

x, σ2
z , andσ2

w instead of the true variances. Each cycle
of the Gibbs sampler generates realizations ofσ2

x, σ2
z andσ2

w

using the observationsy and the current iteration’s values of
z andx. The Gibbs sampler algorithm shown in Algorithm 2
generates realizations from the posterior pdfs forσ2

x, σ2
z , and

σ2
w. Using Bayes rule and the independence ofzn and wn,

these conditional pdfs are

p(σ2
x | x, z,y, σ

2
z , σ

2
w) = p(σ2

x | x) =
p(x | σ2

x)p(σ
2
x)

p(x)

∝ N (x;0, σ2
xI)IG(σ

2
x;αx, βx), (35)

p(σ2
z | x, z,y, σ

2
x, σ

2
w) = p(σ2

z | z) =
p(z | σ2

z)p(σ
2
z)

p(z)
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Fig. 6. One-hundred chains of the Gibbs/slice sampler are run for 1000
iterations each, and the convergence as a function of the total number of
shrinkage iterations is measured by the square root of the PSRF and‖V̂‖

1/2
2 .

The values ofαx, βx, αz , βz, αw, andβw are determined for the expected
values of σ2

x, σ2
z , and σ2

w using (10) and (11). For a given number of
shrinkage iterations, the hybrid rejection-midpoint-threshold method (τ = 25)
outperforms the original rejection-based shrinkage method in (a) and performs
equally well in (b).

∝ N (z;0, σ2
zI)IG(σ

2
z ;αz , βz), (36)

and

p(σ2
w | x, z,y, σ

2
x, σ

2
z) = p(σ2

w | x, z,y) =
p(y | x, z, σ2

w)p(x)p(z)p(σ
2
w)

p(y,x, z)

∝ N (y;H(z)x, σ2
wI)IG(σ

2
w;αw, βw).

(37)

The inverse Gamma distribution is the conjugate prior for the
variance parameter of a Normal distribution (see [28]). There-
fore, the posterior distribution is also an inverse Gamma distri-
bution. Specifically,p(σ2

x | x, z,y, σ
2
z , σ

2
w) = IG(σ

2
x;α

′
x, β

′
x),

where

α′
x = αx +

K

2
; β′

x = βx +
‖x‖22
2

. (38)

Similarly the hyperparameters for the posterior inverse Gamma
distributions onσ2

z andσ2
w are

α′
z = αz +

N

2
; β′

z = βz +
‖z‖22
2

; (39)

α′
w = αw +

N

2
; β′

w = βw +
‖y −H(z)x‖22

2
. (40)

Thus, generating realizations ofσ2
z or σ2

w using such a prior
is as simple as taking the inverse of realizations of a gamma
distribution with the proper choice of hyperparameters. For
those who prefer a non-informative prior, the Jeffreys priors
for σ2

x, σ2
z , and σ2

w are p(σ2
x) = 1/σ2

x, p(σ2
z) = 1/σ2

z , and
p(σ2

w) = 1/σ2
w. Although these priors are improper distri-

butions, they are equivalent to inverse Gamma distributions
with α = β = 0, so the associated posterior distributions

Algorithm 2 Pseudocode for the Gibbs sampler modified to
use slice sampling for thezn’s.
Require: y, I, Ib
z(0) ← 0; x(0) ← x̂LMMSE|z=0(y) from (22); σ2

x
(0)
← 1;

σ2
z
(0)
← 0.01; σ2

w
(0)
← 0.01

for i = 1 : I + Ib do
for n = 0 : N − 1 do

Generatez(i)n using slice sampling in Algorithm 1.
end for
Generatex(i) from N (µ

x
,Λx) using (33) and (34).

Generateσ2
x
(i)

from IG(α′
x, β

′
x) using (38).

Generateσ2
z
(i)

from IG(α′
z, β

′
z) using (39).

Generateσ2
w
(i)

from IG(α′
w , β

′
w) using (40).

end for
x̂← 1

I

∑Ib+I
i=Ib+1 x

(i)

ẑ← 1
I

∑Ib+I
i=Ib+1 z

(i)

σ̂2
x ←

1
I

∑Ib+I
i=Ib+1 σ

2
x
(i)

σ̂2
z ←

1
I

∑Ib+I
i=Ib+1 σ

2
z
(i)

σ̂2
w ←

1
I

∑Ib+I
i=Ib+1 σ

2
w
(i)

return x̂, ẑ, σ̂2
x, σ̂2

z , σ̂2
w

are proper inverse Gamma distributed with the parameters
described above.

Once enough samples have been taken so that the current
state of the Markov chain is sufficiently close to the steady
state, the Gibbs sampling theory tells us that further samples
drawn from the chain can be treated as if they were drawn from
the joint posterior distribution directly. Thus, these additional
samples can be averaged to approximate the Bayes MMSE
estimator. In the complete Gibbs sampler in Algorithm 2,Ib
represents the “burn-in time,” the number of iterations until
the Markov chain has approximately reached its steady state,
and I represents the number of samples to generate after
convergence, which are averaged to form the MMSE estimates.

V. SIMULATION RESULTS

In this section, both the convergence behavior and the
performance of the Gibbs/slice sampler are analyzed. Using
Matlab, aK-parameter signal andN = KM samples of that
signal are generated with pseudo-random jitter and additive
noise;M is the oversampling factor. Then, implementations of
the Gibbs/slice sampler, as well as the linear MMSE estimator
in (20), the no-jitter linear estimator in (22), and the EM
algorithm developed in [4] for approximating the ML estimator
are applied to the samples. The adaptation of the EM algorithm
to randomσ2

w andσ2
z is described in the appendix; however,

the EM algorithm with knownσ2
w and σ2

z is used in these
simulations because adapting to random variances dramatically
increases the computational cost, and the difference in MSEis
negligible. These algorithms are studied in detail for periodic
bandlimited signals with uniformly distributed signal parame-
ters in [17], and in this work, a similar analysis is performed
to analyze the convergence and sensitivity to initial conditions
of the proposed algorithms. This analysis is also similar to
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that performed in [4] for the EM algorithm approximation to
the ML estimator of the non-Bayesian version of this paper’s
problem formulation.

A. Convergence Analysis

As a Markov chain Monte Carlo method, the Gibbs/slice
sampler converges to the appropriate posterior distribution
under certain conditions (see [22]); as long as the sequence
generated by sampling from the steady-state distribution
p(x, z, σ2

x, σ
2
z , σ

2
w | y) is ergodic, the samples can be averaged

to approximate the Bayes MMSE estimate of the signal
parameters. In addition, the steady-state distribution ofan
irreducible chain is unique, so the choice of initialization
should not impact the final estimate generated from the steady-
state samples. Of course, since the chain only converges to the
steady-state in the limit, small transient effects from theinitial
conditions are evaluated.

The rate of convergence of the Gibbs/slice sampler, as
measured by the‖V̂‖1/22 and the square root of the PSRF,
is shown in Figure 7. The results suggest that increasing the
oversampling factorM or the jitter varianceσ2

z or decreasing
the additive noise varianceσ2

w slows the rate of convergence.
In most cases, the Markov chain appears to reach a steady
state within500 iterations; thus, we setIb = 500 iterations
(see Algorithm 2) for the tests that follow.

To establish the number of iterationsI needed after burn-
in, we observe the squared error‖x̂I − x∗‖22, where x̂I is
the Ith estimate ofx, as a function ofI, for I up to 1000,
andx∗ is the true value ofx. Examining the plots in Figure 8,
approximately500 iterations are sufficient to achieve a squared
error within 0.5 dB of the asymptotic MSE (as measured by
I = 1000) for all cases.

The sensitivity to initial conditions of the Gibbs/slice sam-
pler is shown in Figure 9 forIb = I = 500. For 50 trials, the
squared error of the Bayes MMSE estimates are measured for
ten different choices of initial conditions. The ten choices of
initial conditions used are (1)σ(0)

x = 1, σ(0)
z = σ

(0)
w = 0.1, and

all x(0) andz(0) equal to zero, (2)σ(0)
x = 1, σ(0)

z = σ
(0)
w = 0.1,

z(0) equal to zero, and the no-jitter LMMSE estimate for
x(0), (3) the true values ofσ2

x, σ2
z , σ2

w, z, and x, and (4-
10) seven choices of random values ofσ2

x, σ2
z , σ2

w, z and
the corresponding fixed-jitter LMMSE estimates forx. The
squared errors displayed are normalized so that the squared
error for the no-jitter LMMSE estimate starting point equals
one. Although the Gibbs/slice sampler becomes more sensitive
to initial conditions asσz increases, in all cases, the squared
errors for the majority of initial conditions are close to one.
Thus, even though the algorithms are still sensitive to initial
conditions after the burn-in period, especially for largerjitter
variance, the choice of no-jitter LMMSE estimate is about
average.

B. Performance Comparisons

In Figure 10, the performance of the Gibbs/slice sampler is
compared against the linear MMSE and no-jitter linear MMSE
estimators and the EM algorithm approximation to the ML
estimator derived in [4]. The MSE performances are plotted for
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Fig. 7. The convergence of the Gibbs/slice sampler (100 chains, 1500
samples) as a function of the number of samplesIb + I is measured by
the PSRF1/2 and ‖V̂‖

1/2
2 convergence metrics. The‖V̂‖

1/2
2 values are

normalized by the final value for each curve. The parametersαx, βx, αz ,
βz, αw , andβw are determined using (10) and (11). The rate of convergence
depends on the choice of parameters, as demonstrated in the above plots.

different values ofM , σz , andσw to demonstrate the effect of
increasingM , increasingσz, or decreasingσw on the relative
MSE performances. Comparing the Gibbs/slice sampler Bayes
MMSE estimate against the linear estimator, the Gibbs/slice
sampler outperforms the linear MMSE estimator for a large
range of σz , a difference that becomes more pronounced
with higher oversamplingM . In addition, the results suggest
that the Gibbs/slice sampler outperforms classical estimation,
especially for higher jitter variances.

We also compare computation times for the EM algorithm
and the Gibbs/slice sampler. Both converge more slowly for
higher jitter and lower additive noise, and greater oversampling
also lengthens computation. In the case ofK = 10, M = 16,
E[σ2

z ] = 0.52, andE[σ2
w ] = 0.0252, the EM algorithm with

knownσ2
z andσ2

w requires1.6 seconds per trial on average, the
EM algorithm for random noise variances requires24 seconds,
and the Gibbs/slice sampler requires3.1 seconds on average.
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Fig. 8. The convergence of the estimator forx from the Gibbs/slice sampler
(Ib = 500, 1 ≤ I ≤ 1000 samples) is measured from1000 trials by the
MSE of the Gibbs sampler estimate ofx; the MSE is normalized so the MSE
for I = 1000 samples is0 dB. The parametersαx, βx, αz , βz , αw, andβw

are determined using (10) and (11). The rate of convergence (when the error
line stabilizes) depends on the choice of parameters, as demonstrated in the
above plots.

In only an eighth the time, the Gibbs/slice sampler achieves
greater MSE performance than the EM algorithm.

To understand the effectiveness of these methods in mitigat-
ing jitter, the difference in jitter variance as a function of target
MSE is computed based on the performance results and the
maximum observed differences (forE[σ2

z ]
1/2 ≥ 1

2E[σ
2
w]

1/2, to
avoid the region where the MSE plots are flat) are compared
for different values ofM andE[σ2

w ]
1/2. The resulting trends

portrayed in Figure 11 demonstrate that greater improvement is
achievable with increased oversamplingM , and small additive
noise varianceE[σ2

w ]. In addition, the Gibbs/slice sampler
outperforms the classical ML estimator (as approximated by
the EM algorithm in [4]) at high jitter, increasing the factor
of improvement, especially in the high oversampling and low
additive noise variance regimes.

VI. CONCLUSION

The results displayed in this paper suggest that post-
processing jittered samples with a nonlinear algorithm like
Gibbs/slice sampling mitigates the effect of sampling jitter
on the total sampling error. In particular, the expected jitter
standard deviation can be increased by as much as a factor of
2.2, enabling substantial power savings in the analog circuitry
when compared against linear post-processing or classical
nonlinear post-processing (the EM algorithm). Such power
savings may enable significant improvements in battery life
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Fig. 9. The effects of varying initial conditions of the Gibbs/slice sampler
as a function of oversampling factor (a), jitter variance (b), and additive
noise variance (c) are studied by computing the squared errors of the results,
for multiple initial conditions, across50 trials. The squared errors of the
results are normalized relative to the result for initialization with the zero-
jitter LMMSE in (22), so that the squared error of the result for initialization
with this linear estimator is0 dB. The parametersαx, βx, αz , βz, αw , and
βw are determined using (10) and (11).

for implantable cardiac pacemakers and enable the inclusion
of ADCs in ultra-low power devices.

Like the EM algorithm proposed in [4], the Gibbs/slice
sampler proposed here suffers from relatively high compu-
tational complexity and an iterative nature, which may be
unsuitable for embedded applications. Developments in poly-
nomial estimators, such as the Volterra filter-like polynomial
estimators described in [29], may yield similar performance to
the Gibbs/slice sampler proposed here, at least for low levels
of oversampling, without such high online computational cost.
Further investigation is warranted in developing these andsim-
ilar approaches for post-processing jittered samples in ADCs.
Nevertheless, for off-chip post-processing of jittered samples,
the nonlinear Bayesian Gibbs/slice sampler presented here
outperforms both linear MMSE estimator and the nonlinear
classical EM algorithm approximation to the ML estimator.
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Fig. 10. The MSE performance of the Bayes MMSE estimator as computed
using the Gibbs/slice sampler is compared against both the unbiased linear
MMSE estimator (20) and the no-jitter linear MMSE estimator(22), as well
as the EM algorithm approximation to the ML estimator from [4]. The values
of αx, βx, αz , βz , αw , and βw are determined for the averageσ2

x, σ2
z ,

andσ2
w using (10) and (11). The EM algorithm uses the true values ofσ2

x,
σ2
z , andσ2

w , while the linear estimators and the Gibbs/slice sampler treatσ2
x,

σ2
z , andσ2

w as random variables. The error bars above and below each data
point for the estimators delineate the95% confidence intervals for those data
points.

APPENDIX

ML ESTIMATION WITH RANDOM VARIANCES

In [4], the EM algorithm approximation to the ML estimator
is derived in the classical setting for known variancesσ2

z and
σ2
w. To adapt the method for random variances, we introduce

σ2
z andσ2

w as latent variables:

x̂(i) = argmax
x

E

[

log p(y, z, σ2
z , σ

2
w;x) | y; x̂

(i−1)
]

. (41)
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Fig. 11. Jitter improvement from using MMSE (Gibbs/slice sampler) and
ML estimators (EM algorithm with knownσx, σz , andσw) is measured by
interpolating the maximum factor of improvement in jitter tolerance, measured
by E

[

σ2
z

]1/2, relative to using no-jitter LMMSE reconstruction. Holding
E
[

σ2
w

]

fixed, (a) shows the trend in maximum improvement asM increases,

and (b) shows the trend in maximum improvement asE
[

σ2
w

]1/2 increases
while holdingM fixed. The jitter standard deviationσ∗

z corresponding to this
maximum improvement for the MMSE and ML estimators is plotted on the
same axes.

By conditional independence,

p(y, z, σ2
z , σ

2
w ;x) = p(y | z, σ2

w;x)p(z | σ
2
z)p(σ

2
z)p(σ

2
w)

= N (y;H(z)x, σ2
wI)p(z | σ

2
z)p(σ

2
z)p(σ

2
w).
(42)

The terms not involvingx are unnecessary, since we are
differentiating with respect tox in the next step. The derivative
of the expectation in (41) is

E

[

−
2HT (z)(H(z)x − y)

2σ2
w

| y; x̂(i−1)

]

. (43)

Setting the derivative equal to zero yields a linear system in
x:

E

[

HT (z)H(z)

σ2
w

| y; x̂(i−1)

]

x = E

[

H(z)

σ2
w

| y; x̂(i−1)

]T

y.

(44)
As is done in [4], the expectations in (44) become:

E

[

HT (z)H(z)

σ2
w

| y, x̂(i−1)

]

=
N−1
∑

n=0

E

[

hn(zn)h
T
n (zn)

σ2
w

| yn, x̂
(i−1)

]

;

(45)

E

[

H(z)

σ2
w

| y, x̂(i−1)

]

n,:

= E

[

hT
n (zn)

σ2
w

| yn, x̂
(i−1)

]

;

(46)
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The hybrid quadrature method discussed in Section II can
be used to compute the expectations in (45) and (46):

E

[

hn(zn)h
T
n (zn)

σ2
w

| yn, x̂
(i−1)

]

≈
J1
∑

j1=1

J2
∑

j2=1

J3
∑

j3=1

wj1wj2wj3hn(zj3)h
T
n (zj3)

σ2
wj1

p(yn | x̂(i−1))
N
(

yn;h
T
n (zj3)x̂

(i−1), σ2
wj1

)

;

(47)

E

[

hT
n (zn)

σ2
w

| yn, x̂
(i−1)

]

≈
J1
∑

j1=1

J2
∑

j2=1

J3
∑

j3=1

wj1wj2wj3h
T
n (zj3)

σ2
wj1

p(yn | x̂(i−1))
N
(

yn;h
T
n (zj3)x̂

(i−1), σ2
wj1

)

.

(48)

Hybrid quadrature is also used to computep(yn | x̂(i−1))
(see (15)). Then, the EM algorithm becomes iteratively solv-
ing (44) for x̂(i), using the above hybrid quadrature formulas.
However, due to the three-dimensional nature of the hybrid
quadrature formulas, computational cost can increase dramat-
ically.

Due to the increased computational cost of adapting the
EM algorithm to random variances, we compare the MSE
performance of both EM algorithms for the same choices of
parameters used in the performance plots in [4] (1000 trials,
J1 = J2 = 9, J3 = 129). The MSE performance for both
algorithms are almost identical, up to only0.54 dB apart. Thus,
to reduce computation time when comparing performance
against the Gibbs/slice sampler, the EM algorithm with known
variances is used as a proxy for the EM algorithm with random
variances.
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