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ABSTRACT
Many real world problems have a structure where small
problem instances are embedded within large problem in-
stances, or where solution quality for large problem instances
is loosely correlated to that of small problem instances. This
structure can be exploited because smaller problem instances
typically have smaller search spaces and are cheaper to eval-
uate. We present an evolutionary algorithm, INCREA, which
is designed to incrementally solve a large, noisy, computa-
tionally expensive problem by deriving its initial population
through recursively running itself on problem instances of
smaller sizes. The INCREA algorithm also expands and
shrinks its population each generation and cuts off work
that doesn’t appear to promise a fruitful result. For fur-
ther efficiency, it addresses noisy solution quality efficiently
by focusing on resolving it for small, potentially reusable
solutions which have a much lower cost of evaluation. We
compare INCREA to a general purpose evolutionary algo-
rithm and find that in most cases INCREA arrives at the
same solution in significantly less time.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages
and Software; D.3.4 [Programming Languages]: Proces-
sors—Compilers

General Terms
Algorithms, Experimentation, Languages

1. INTRODUCTION
An off-the-shelf evolutionary algorithm (EA) does not typ-

ically take advantage of shortcuts based on problem prop-
erties and this can sometimes make it impractical because
it takes too long to run. A general shortcut is to solve a
small instance of the problem first then reuse the solution in
a compositional manner to solve the large instance which is
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of interest. Usually solving a small instance is both simpler
(because the search space is smaller) and less expensive (be-
cause the evaluation cost is lower). Reusing a sub-solution
or using it as a starting point makes finding a solution to
a larger instance quicker. This shortcut is particularly ad-
vantageous if solution evaluation cost grows with instance
size. It becomes more advantageous if the evaluation result
is noisy or highly variable which requires additional evalua-
tion sampling.

This shortcut is vulnerable to local optima: a small in-
stance solution might become entrenched in the larger solu-
tion but not be part of the global optimum. Or, non-linear
effects between variables of the smaller and larger instances
may imply the small instance solution is not reusable. How-
ever, because EAs are stochastic and population-based they
are able to avoid potential local optima arising from small
instance solutions and address the potential non-linearity
introduced by the newly active variables in the genome.

In this contribution, we describe an EA called INCREA
which incorporates into its search strategy the aforemen-
tioned shortcut through incremental solving. It solves in-
creasingly larger problem instances by first activating only
the variables in its genome relevant to the smallest instance,
then extending the active portion of its genome and prob-
lem size whenever an instance is solved. It shrinks and
grows its population size adaptively to populate a gene pool
that focuses on high performing solutions in order to avoid
risky, excessively expensive, exploration. It assumes that fit-
ness evaluation is noisy and addresses the noise adaptively
throughout the tuning process.

Problems of practical value with this combination of op-
portunity and requirements exist. We will exemplify the IN-
CREA technique by solving a software engineering problem
known as autotuning. We are developing a programming
language named Petabricks which supports multi-core pro-
gramming. In our case, autotuning arises as a final task
of program compilation and occurs at program installation
time. Its goal is to select parameters and algorithmic choices
for the program to make it run as fast as possible. Because
a program can have varying size inputs, INCREA tunes the
program for small input sizes before incrementing them up
to the point of the maximum expected input sizes.

We proceed in the following manner: Section 2 describes
compilation autotuning, and elaborates upon how it exhibits
the aforementioned properties of interest. Section 3 de-
scribes the design of INCREA. Section 4 discuss its relation
to other relevant EAs. Section 5 experimentally compares
INCREA to a general purpose EA. Section 6 concludes.
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2. AUTOTUNING
When writing programs that require performance, the

programmer is often faced with many alternate ways to im-
plement a set of algorithms. Most often the programmer
chooses a single set based on manual testing. Unfortunately,
with the increasing diversity in architectures, finding one set
that performs well everywhere is impossible for many prob-
lems. A single program might be expected to run on a small,
embedded cell phone, a multi-core desktop or server, a clus-
ter, a grid, or the cloud. The appropriate algorithmic choices
may be very different for each of these architectures.

An example of this type of hand coding of algorithms
can be found in the std::sort routine found in the C++
Standard Template Library. This routine performs merge
sort until there are less than 15 elements in a recursive call
then switches to insertion sort. This cutoff is hardcoded,
even though values 10 times larger can perform better on
modern architectures and entirely different algorithms, such
as bitonic sort, can perform better on parallel vector ma-
chines [3].

This motivates the need for an autotuning capability. The
programmer should be able to provide a choice of algorithms,
describe a range of expected data sizes, and then pass to
the compiler the job of experimentally determining, for any
specific architecture, what cutoff points apply and what al-
gorithms are appropriate for different data ranges.

The autotuners in this paper operate on programs writ-
ten in the PetaBricks programming language [3] which al-
lows the programmer to express algorithmic choices at the
language level without committing to any single one, or any
combination thereof. The task of choosing the fastest al-
gorithm set is delegated to an auotuner which makes the
decision automatically depending on input sizes to each al-
gorithm (and an overall target input size) and a target ar-
chitecture.

2.1 The Autotuning Problem
The autotuner must identify selectors that will determine

which choice of an algorithm will be used during a program
execution so that the program executes as fast as possi-
ble. Formally, a selector s consists of ~Cs = [cs,1, . . . , cs,m−1]

∪ ~As = [αs,1, . . . , αs,m] where ~Cs are the ordered interval

boundaries (cutoffs) associated with algorithms ~As. During
program execution the runtime function SELECT chooses
an algorithm depending on the current input size by refer-
encing the selector as follows:

SELECT (input, s) = αs,i s.t. cs,i > size(input) ≥ cs,i−1

where
cs,0 = min(size(input)) and cs,m = max(size(input)).

The components of ~As are indices into a discrete set of ap-
plicable algorithms available to s, which we denoteAlgorithmss.
The maximum number of intervals is fixed by the PetaBricks
compiler. An example of a selector for a sample sorting al-
gorithm is shown in Figure 1.

In addition to algorithmic choices, the autotuner tunes
parameters such as blocking sizes, sequential/parallel cutoffs
and the number of worker threads. Each tunable is either
a discrete value of a small set indexed by an integer or a
integer in some positive bounded range.

Formally, given a program P , hardware H and input size
n, the autotuner must identify the vector of selectors and

αs,1 = 1

cs,1

= 

150 MaxInputSize0

cs,2

=

106

input size

0: RadixSort

1: InsertionSort

2: QuickSort

3: BogoSort

αs,2 = 2 αs,3 = 0

Algorithmss:

Figure 1: A selector for a sample sorting algorithm
where ~Cs = [150, 106] and ~As = [1, 2, 0]. The selec-
tor selects the InsertionSort algorithm for input sizes
in the range [0; 150), QuickSort for input sizes in
the range [150, 106) and RadixSort for [106,MAXINT ).
BogoSort was suboptimal for all input ranges and is
not used.

vector of tunables such that the following objective function
executionT ime is satisfied:

arg min
s̄,t̄

executionT ime(P,H, n)

2.2 Properties of the Autotuning Problem
Three properties of autotuning influence the design of an

autotuner. First, the cost of fitness evaluation depends heav-
ily on on the input data size used when testing the candi-
date solution. The autotuner does not necessarily have to
use the target input size. For efficiency it could use smaller
sizes to help it find a solution to the target size because is
generally true that smaller input sizes are cheaper to test
on than larger sizes, though exactly how much cheaper de-
pends on the algorithm. For example, when tuning matrix
multiply one would expect testing on a 1024× 1024 matrix
to be about 8 times more expensive than a 512×512 matrix
because the underlying algorithm has O(n3) performance.
While solutions on input sizes smaller than the target size
sometimes are different from what they would be when they
are evolved on the target input size, it can generally be ex-
pected that relative rankings are robust to relatively small
changes in input size. This naturally points to “bottom-up”
tuning methods that incrementally reuse smaller input size
tests or seed them into the initial population for larger input
sizes.

Second, in autotuning the fitness of a solution is its fitness
evaluation cost. Therefore the cost of fitness evaluation is
dependant on the quality of a candidate algorithm. A highly
tuned and optimized program will run more quickly than a
randomly generated one and it will thus be fitter. This im-
plies that fitness evaluations become cheaper as the overall
fitness of the population improves.

Third, significant to autotuning well is recognizing the fact
that fitness evaluation is noisy due to details of the paral-
lel micro-architecture being run on and artifacts of concur-
rent activity in the operating system. The noise can come
from many sources, including: caches and branch prediction;
races between dependant threads to complete work; operat-
ing system artifacts such as scheduling, paging, and I/O;



and, finally, other competing load on the system. This leads
to a design conflict: an autotuner can run fewer tests, risk-
ing incorrectly evaluating relative performance but finishing
quickly, or it can run many tests, likely be more accurate
but finish too slowly. An appropriate strategy is to run
more tests on less expensive (i.e. smaller) input sizes.

The INCREA exploits incremental structure and handles
the noise exemplified in autotuning. We now proceed to
describe a INCREA for autotuning.

3. A BOTTOM UP EA FOR AUTOTUNING

Representation
The INCREA genome, see Figure 2, encodes a list of selec-
tors and tunables as integers each in the range [0,MaxV al)
where MaxV al is the cardinality of each algorithm choice
set for algorithms and MaxInputSize for cutoffs. Each tun-
able has a MaxV al which is the cardinality of its value set
or a bounded integer depending on what it represents.

In order to tune programs of different input sizes the
genome represents a solution for maximum input size and
throughout the run increases the “active” portion of it start-
ing from the selectors and tunables relevant to the smallest
input size. It has length (2m + 1)k + n, where k is the
number of selectors, m the number of interval cutoffs within
each selector and n the number of other tunables defined
for the PetaBricks program. As the algorithm progresses
the number of “active” cutoff and algorithm pairs, which we
call “choices” for each selector in the genome starts at 1 and
then is incremented in step with the algorithm doubling the
current input size each generation.
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Figure 2: A sample genome for m = 2, k = 2 and n =
4. Each gene stores either a cutoff cs,i, an algorithm
αs,i or a tunable value ti.

Fitness evaluation
The fitness of a genome is the inverse of the corresponding
program’s execution time. The execution time is obtained
by timing the PetaBricks program for a specified input size.

Top level Strategy
Figure 3 shows top level pseudocode for INCREA. The al-
gorithm starts with a “parent” population and an input size
of 1 for testing each candidate solution. All choices and tun-
ables are initially set to algorithm 0 and cutoff of MAX INT.
The choice set is grown through mutation on a per candi-
date basis. The input size used for fitness evaluation doubles
each generation.

A generation consists of 2 phases: exploration, and down-
sizing. During exploration, a random parent is used to gen-
erate a child via mutation. Only active choices and tunables
are mutated in this process. The choice set may be enlarged.
The child is added to the population only if it is determined
to be fitter than its parent. The function “fitter” which tests
for this condition increases trials of the parent or child to
improve confidence in their relative fitnesses. Exploration
repeatedly generates a child and tests it against its parent
for some fixed number of MutationAttempts or until the
population growth reaches some hard limit.

During downsizing, the population, which has potentially
grown during exploration, is pruned down to its original size
once it is ranked. The “rankThenPrune” function efficiently
performs additional fitness tests only as necessary to deter-
mine a ranking of which it is reasonably certain.

This strategy is reminiscent but somewhat different from
a (µ + λ)ES [5]. The (µ + λ)ES creates a pool of λ off-
spring each generation by random draws from the parent
population of size µ. Then both offspring and parents are
combined and ranked for selection into the next generation.
The subtle differences in INCREA are that 1) in a “steady
state” manner, INCREA inserts any child which is better
than its parent immediately into the population while par-
ents are still being drawn, and 2) a child must be fitter than
its parent before it gains entry into the population. The
subsequent ranking and pruning of the population matches
the selection strategy of (µ+ λ)ES.

Doubling the input size used for fitness evaluation at each
generation allows the algorithm to learn good selectors for
smaller ranges before it has to find ones for bigger ranges. It
supports subsolution reuse and going forward from a poten-
tially good, non-random starting point. Applying mutation
to only the active choice set and tunables while input size
is doubling brings additional efficiency because this narrows
down the search space while concurrently saving on the cost
of fitness evaluations because testing solutions on smaller
inputs sizes is cheaper.

popu la t i onS i z e = popLowSize
i npu tS i z e s = [ 1 , 2 , 4 , 8 , 16 , . . . . , maxInputSize ]
i n i t i a l i z e populat ion (maxGenomeLength )
for gen = 1 to l og ( maxInputSize )

/∗ exp lora t ion phase : populat ion and ac t i v e
choices may increase ∗/

i nputS i z e = inputS i z e s [ gen ]
for j = 1 to mutationAttempts

parent = random draw from populat ion
ac t iveCho i c e s = getAct iveCho ices ( parent )
/∗ ac t i v e choices could grow ∗/
ch i l d = mutate ( parent , a c t i veCho i c e s )
/∗ requ i res f i t n e s s eva lua t ions ∗/
i f f i t t e r ( ch i ld , parent , i nputS i z e )

populat ion = add ( populat ion , c h i l d )
i f l ength ( populat ion ) >= popHighSize

e x i t exp l o r a t i on phase
end /∗ exp lora t ion phase ∗/
/∗ more t e s t i n g ∗/
populat ion = rankThenPrune ( populat ion ,

popLowSize ,
i nputS i z e )

/∗ discard a l l past f i t n e s s eva lua t ions ∗/
c l e a rRe su l t s ( populat ion )

end /∗ generation loop ∗/
return f i t t e s t populat ion member

Figure 3: Top level strategy of INCREA.



Mutation Operators
The mutators perform different operations based on the type
of value being mutated. For an algorithmic choice, the
new value is drawn from a uniform probability distribu-
tion [0, ||Algorithmss|| − 1]. For a cutoff, the existing value
is scaled by a random value drawn from a log-normal dis-
tribution, i.e. doubling and halving the existing value are
equally likely. The intuition for a log-normal distribution is
that small changes have larger effects on small values than
large values in autotuning. We have confirmed this intuition
experimentally by observing much faster convergence times
with this type of scaling.

The INCREA mutation operator is only applied to choices
that are in the active choice list for the genome. INCREA
has one specialized mutation operator that adds another
choice to the active choice list of the genome and sets the
cutoff to 0.75 times the current input size while choosing the
algorithm randomly. This leaves the behavior for smaller in-
puts the same, while changing the behavior for the current
set of inputs being tested. It also does not allow a new al-
gorithm to be the same as the one for the next lower cutoff.

Noisy Fitness Strategies
Because INCREA must also contend with noisy feedback on
program execution times, it is bolstered to evaluate candi-
date solutions multiple times when it is ranking any pair.
Because care must be taken not to test too frequently, espe-
cially if the input data size is large, it uses an adaptive sam-
pling strategy [1, 8, 9, 16] . The boolean function“fitter”, see
Figure 4, takes care of this concern by running more fitness
trials for candidates s1 and s2 under two criteria. The first
criterion is a t-test [13]. When the t-test result has a confi-
dence, i.e. p-value less than 0.05, s1 and s2 are considered
different and trials are halted. If the t-test cannot confirm
difference, least squares is used to fit a normal distribution
to the percentage difference in the mean execution time of
the two algorithms. If this distribution estimates there is a
95% probability of less than a 1% difference, the two candi-
dates’ fitnesses are considered to be the same. There is also
a parameterized hard upper limit on trials.

The parent ranking before pruning, in function “rank-
ThenPrune”, is optimized to minimize the number of ad-
ditional fitness evaluations. First, it ranks the entire popu-
lation by mean performance without running any additional
trials. It then splits the ranking at the populationLowSize
element into a KEEP list and a DISCARD list. Next, it
sorts the KEEP list by calling the “fitter” function (which
may execute more fitness trials). Next, it compares each
candidate in the DISCARD list to the populationLowSize
element in the KEEP list by calling the “fitter” function.
If any of these candidates are faster, they are moved to the
KEEP list. Finally, the KEEP list is sorted again by call-
ing “fitter” and the first populationLowSize candidates are
the result of the pruning.

This strategy avoids completely testing the elements of the
population that will be discarded. It allocates more testing
time to the candidate that will be kept in the population. It
also exploits the fact that comparing algorithms with larger
differences in performance is cheaper than comparing algo-
rithms with similar performance.

4. RELATED WORK
There exists a large variety of work related to PetaBrick’s

approach of autotuning computer programs. PHiPAC [6]
is an autotuning system for dense matrix multiply, gener-
ating portable C code and search scripts to tune for spe-
cific systems. ATLAS [18] utilizes empirical autotuning to
produce a cache-contained matrix multiply, which is then
used in larger matrix computations in BLAS and LAPACK.
FFTW [10] uses empirical autotuning to combine solvers for
FFTs. Other autotuning systems include SPARSITY [12]
for sparse matrix computations, SPIRAL [14] for digital sig-
nal processing, UHFFT [2] for FFT on multicore systems,
and OSKI [17] for sparse matrix kernels.

Layered learning, [15], used for robot soccer, is broadly
related to our work. Like INCREA, layered learning is
used when a mapping directly from inputs to outputs is not
tractable and when a task can be decomposed to be solved
bottom up. In layered learning however, composition oc-
curs through learning, in the general sense of abstracting
and solving the local concept-learning task. (See [11] where
genetic programming is used for learning.) INCREA com-
bines optimizations, in contrast. Both approaches use do-
main specific knowledge to determine appropriate learning
granularity: input size doubling in INCREA) and subtask
definition in layered learning. Layered learning occurs sep-
arately on each hand designed level with a hand designed
interface between each level. In contrast, INCREA incorpo-
rates the entire composition into one algorithm which auto-
matically lengthens the genome only as needed.

Using an adaptive sampling strategy for fitness estimation
dates back to [1]. A combination of approaches from [9, 16]
inform INCREA’s strategy. In [9] a t-test is evaluated and
found to be effective when an appropriate population size is
not known. In [16] individuals are further evaluated only if
there is some chance that the outcome of the tournaments
they participate in can change. The GPEA may derive some
of its robustness to noise from its use of a relatively large
population. See [7, 4] for discussions of this robustness.

5. EXPERIMENTAL EVALUATION
We now compare INCREA to a general purpose EA we

call GPEA on 4 Petabricks benchmarks: sort (for 2 target
input sizes), matmult which is dense matrix multiply, and
eig which solves for symmetric eigenvalues.

5.1 GPEA
The GPEA uses the same genome representation and op-

erators of INCREA. All selector choices are always active. It
initializes all population members with values drawn from
the distributions used by the mutation operator. It then
loops evaluating the fitness of each member once, performing
tournament selection and applying crossover with pxo = 1.0
then mutation with probability pµ. Crossover swaps algo-
rithms while cutoffs and tunables are swapped or changed
to a random value in between those of the two parents’
genes. Extrapolating from [7, 4], GPEA’s significant pop-
ulation size (100 in our experiments) should provide some
robustness to fitness case noise.

5.2 Experimental Setup
We performed all tests on multiple identical 8-core, dual-

Xeon X5460, systems clocked at 3.16 GHz with 8 GB of
RAM. The systems were running Debian GNU/Linux 5.0.3



function f i t t e r ( s1 , s2 , i nputS i z e )
while s1 . evalCount < evalsLowerLimit

eva lua t eF i tn e s s ( s1 , i nputS i z e )
end
while s2 . evalCount < evalsLowerLimit

eva lua t eF i tn e s s ( s2 , i nputS i z e )
end
while t rue

/∗ Sing le t a i l e d T−t e s t assumes each sample ’ s mean i s normally d i s t r i b u t e d .
I t repor ts p r o b a b i l i t y tha t sample means are same under t h i s assumption ∗/

i f t t e s t ( s1 . eva l sResu l t s , s2 . eva lRe su l t s ) < PvalueLimit /∗ s t a t i s t i c a l l y d i f f e r e n t ∗/
return mean( s1 . eva lRe su l t s ) > mean( s2 . eva lRe su l t s )

end
/∗ Test2Equal i ty : Use l e a s t squares to f i t a normal d i s t r i b u t i on to the percentage

d i f f e r ence in the mean performance of the two algori thms . I f t h i s
d i s t r i b u t i on est imates there i s a 95% pro ba b i l i t y of l e s s than a 1%
d i f f e r ence in true means , consider the two algori thms the same . ∗/

i f Test2Equal i ty ( s1 . eva lResu l t s , s2 . eva lRe su l t s )
return f a l s e

end
/∗ need more information , choose s1 or s2 based on the h i ghes t expected

reduct ion in standard error ∗/
whoToTest = mostInformative ( s1 , s2 ) ;
i f whoToTest == s1 and s1 . testCount < evalsUpperLimit

eva lua t eF i tn e s s ( s1 , i nputS i z e )
e l i f s2 . testCount < evalsUpperLimit

eva lua t eF i tn e s s ( s2 , i nputS i z e )
else

/∗ inconc lus i ve re su l t , no more eva l s l e f t ∗/
return f a l s e

end
end /∗ whi le ∗/

end /∗ f i t t e r ∗/

Figure 4: Pseudocode of function “fitter”.

Parameter Value

confidence required 70%
max trials 5
min trials 1
population high size 10
population low size 2
mutationAttempts 6
standard deviation prior 15%

(a) INCREA

Parameter Value

mutation rate 0.5
crossover rate 1.0
population size 100
tournament size 10
generations 100
evaluations per candidate 1

(b) GPEA

Figure 5: INCREA and GPEA Parameter Settings.

with kernel version 2.6.26. For each test, we chose a tar-
get input size large enough to allow parallelism, and small
enough to converge on a solution within a reasonable amount
of time. Parameters such as the mutation rate, population
size and the number of generations were determined exper-
imentally and kept constant between benchmarks. Parame-
ter values we used are listed in Figure 5.

5.3 INCREA vs GPEA
In practice we might choose parameters of either INCREA

or GPEA to robustly ensure good autotuning or allow the
programmer to vary them while tuning a particular problem
and architecture. In the latter case, considering how quickly
the tuner converges to the final solution is important. To
more extensively compare the two tuners, we ran each tuner
30 times for each benchmark.

Table 1 compares the tuners mean performance with 30
runs based on time to convergence and the performance of
the final solution. To account for noise, time to convergence
is calculated as the first time that a candidate was found that
was within 5% of the best fitness achieved. For all of the
benchmarks except for eig, both tuners arrive at nearly the

same solutions, while for eig INCREA finds a slightly better
solution. For eig and matmult, INCREA converges an order
of magnitude faster than GPEA. For sort, GPEAconverges
faster on the small input size while INCREA converges faster
on the larger input size. If one extrapolates convergences
times to larger input sizes, it is clear that INCREA scales a
lot better than GPEA for sort.

INCREA GPEA SS?

sort-220 Convergence 1464.7± 1992.0 599.2± 362.9 YES (p = 0.03)
Performance 0.037± 0.004 0.034± 0.014 NO

sort-223 Convergence 2058.2± 2850.9 2480.5± 1194.5 NO
Performance 0.275± 0.010 0.276± 0.041 NO

matmult
Convergence 278.5± 185.8 2394.2± 1931.0 YES (p = 10−16)
Performance 0.204± 0.001 0.203± 0.001 NO

eig
Convergence 92.1± 66.4 627.4± 530.2 YES (p = 10−15)
Performance 1.240± 0.025 1.250± 0.014 YES (p = 0.05)

Table 1: Comparison of INCREA and GPEA in
terms of mean time to convergence in seconds and
in terms of execution time of the final configura-
tion. Standard deviation is shown after the ± sym-
bol. The final column is statistical significance de-
termined by a t-test. (Lower is better)

Figure 6 shows aggregate results from 30 runs for both IN-
CREA and GPEA on each benchmark. INCREA generally
has a large amount of variance in its early generations, be-
cause those generations are based on smaller input sizes that
may have different optimal solutions than the largest input
size. However, once INCREA reaches its final generation
it exhibits lower variance than than GPEA. GPEA tends
to converge slowly with gradually decreasing variance. Note
that the first few generations for INCREA are not shown be-
cause, since it was training on extremely small input sizes, it
finds candidates candidates that exceed the timeout set by



our testing framework when run on the largest input size.
These early generations account for a only a small amount
of the total training time.

In 6(a) the INCREA’s best candidate’s execution time
displays a “hump” that is caused because it finds optima
for smaller input sizes that are not reused in the optimal
solution for the target input size.
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Figure 6: Execution time for target input size with
best individual of generation. Mean and standard
deviation (shown in error bars) with 30 runs.

Using sort-220, in Figure 7(a) we examine how many tests
are halted by each tuner, indicating very poor solutions. The
timeout limit for both algorithms is set to be the same factor
of the time of the current best solution. However, in GPEA
this will always be a test with the target input size whereas
with INCREA it is the current input size (which is at least
half the time, half as large). Almost half of GPEA’s initial
population were stopped for timing out, while INCREA ex-
periences most of its timeouts in the later generations where
the difference between good and bad solutions grows with
the larger input sizes. We also examine in Figure 7(b) how
much the population grew each generation during the explo-
ration phase. For INCREA the population expansion during
exploration is larger in the middle generations as it converges
to a final solution.

5.4 Representative runs
We now select a representative run for each benchmark to

focus on run dynamics.

sort: Sorting
Figures 8(a) and 8(b) show results from a representative run
of each autotuner with two different target input sizes re-
spectively. The benchmark consists of insertion-sort, quick-
sort, radix sort, and 2/4/8/16/32-way merge-sorts. On this
Xeon system, sort is relatively easy to tune because the op-
timal solution is relatively simple and the relative costs of
the different algorithms are similar.

For the 220 benchmark, both INCREA and GPEA consis-
tently converge to a very similar solution which consists of
small variations of quick-sort switching to insertion-sort at
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Figure 7: Time out and population growth statis-
tics of INCREA for 30 runs of sort on target input
size 220. Error bars are mean plus and minus one
standard deviation.
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Figure 8: Representative runs of INCREA and
GPEA on each benchmark. The left graphs plot
the execution time (on the target input size) of the
best solution after each generation. The right graph
plots the number of fitness evaluations conducted at
the end of each generation. All graphs use seconds
of training time as the x-axis.



somewhere between 256 and 512. Despite arriving at a sim-
ilar place, the two tuners get there in a very different way.
Table 2, lists the best algorithm for each tuner at each gener-
ation in the run first shown in Figure 8(a). INCREA starts
with small input sizes, where insertion-sort alone performs
well, and for generations 0 to 7 is generating algorithms
that primarily use insertion-sort for the sizes being tested.
From generations 8 to 16, it creates variants of radix-sort
and quicksort that are sequential for the input sizes being
tested. In generation 17 it switches to a parallel quick sort
and proceeds to optimize the cutoff constants on that for the
remaining rounds. The first two of these major phases are
locally optimal for the smaller input sizes they are trained
on.

GPEA starts with the best of a set of random solutions,
which correctly chooses insertion-sort for small input sizes.
It then finds, in generation 3, that quick-sort, rather than
the initially chosen radix-sort, performs better on large input
sizes within the tested range. In generation 6, it refines its
solution by paralellizing quick-sort. The remainder of the
training time is spent looking for the exact values of the
algorithmic cutoffs, which converge to their final values in
generation 29.

INCREA: sort
Input Training

Genome
size Time (s)

20 6.9 Q 64 Qp
21 14.6 Q 64 Qp
22 26.6 I

23 37.6 I

24 50.3 I

25 64.1 I

26 86.5 I

27 115.7 I

28 138.6 I 270 R 1310 Rp
29 160.4 I 270 Q 1310 Qp
210 190.1 I 270 Q 1310 Qp
211 216.4 I 270 Q 3343 Qp
212 250.0 I 189 R 13190 Rp
213 275.5 I 189 R 13190 Rp
214 307.6 I 189 R 17131 Rp
215 341.9 I 189 R 49718 Rp
216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp
218 642.9 I 189 Q 5585 Qp
219 899.8 I 456 Q 5585 Qp
220 1313.8 I 456 Q 5585 Qp

GPEA: sort

Gen
Training

Genome
Time (s)

0 91.4 I 448 R
1 133.2 I 413 R
2 156.5 I 448 R
3 174.8 I 448 Q
4 192.0 I 448 Q
5 206.8 I 448 Q
6 222.9 I 448 Q 4096 Qp
7 238.3 I 448 Q 4096 Qp
8 253.0 I 448 Q 4096 Qp
9 266.9 I 448 Q 4096 Qp
10 281.1 I 371 Q 4096 Qp
11 296.3 I 272 Q 4096 Qp
12 310.8 I 272 Q 4096 Qp

...
27 530.2 I 272 Q 4096 Qp
28 545.6 I 272 Q 4096 Qp
29 559.5 I 370 Q 8192 Qp
30 574.3 I 370 Q 8192 Qp

...

Table 2: Listing of the best genome of each gen-
eration for each autotuner for an example train-
ing run. The genomes are encoded as a list of
algorithms (represented by letters), separated by
the input sizes at which the resulting program will
switch between them. The possible algorithms are:
I = insertion-sort, Q = quick-sort, R = radix-sort,
and Mx = x-way merge-sort. Algorithms may have
a p subscript, which means they are run in paral-
lel with a work stealing scheduler. For clarity, un-
reachable algorithms present in the genome are not
shown.

We classified the possible mutation operations of INCREA
and counted how frequently each was used in creating an off-
spring fitter than its parent. We identified specialized classes
of operations that target specific elements of the genome.
Table 3 lists statistics on each for the run first shown in
Figure 8(a). The class most likely to generate an improved
child scaled both algorithm and parallelism cutoffs. The

Mutation Class Count
Times Effect on fitness
Tried Positive Negative None

Make an algorithm active 8 586 2.7% 83.8% 13.5%
Lognormally scale a cutoff 11 1535 4.4% 50.4% 45.1%
Randomy switch an algorithm 12 1343 2.5% 50.4% 25.7%
Lognormally change a parallism cutoff 2 974 5.2% 38.7% 56.1%

Table 3: Effective and ineffective mutations when
INCREA solves sort (target input size 220.)

class that changed just algorithms were less likely to cause
improvement. Overall only 3.7% of mutations improved can-
didate fitness.

matmult: Dense Matrix Multiply
Figure 8(c) shows comparative results on matmult. The pro-
gram choices are a naive matrix multiply and five different
parallel recursive decompositions, including Strassen’s Al-
gorithm and a cache-oblivious decomposition. A tunable
allows both autotuners to transpose combinations of inputs
and outputs to the problem. To generate a valid solution,
the autotuner must learn to put a base case in the lowest
choice of the selector, otherwise it will create an infinite loop.
Because many random mutations will create candidate algo-
rithms that never terminate when tested, we impose a time
limit on execution.

Both INCREA and GPEA converge to the same solution
for matmult. This solution consists of transposing the sec-
ond input and then doing a parallel cache-oblivious recursive
decomposition down to 64 × 64 blocks which are processed
sequentially.

While both tuners converge to same solution, INCREA
arrives at it much more quickly. This is primarily due to
the n3 complexity of matrix multiply, which makes running
small input size tests extremely cheap compared to larger
input sizes and the large gap between fast and slow con-
figurations. INCREA converges to the final solution in 88
seconds, using 935 trials, before GPEA has evaluated even
20% of its initial population of 100 trials. INCREA con-
verges to a final solution in 9 generations when the input
size has reached 256, while GPEA requires 45 generations
at input size 1024. Overall, INCREA converges 32.8 times
faster than GPEA for matrix multiply.

eig: Symmetric Eigenproblem
Figure 8(d) shows results for eig. Similar to matmult here
INCREA performs much better because of the fast growth
in cost of running tests. This benchmark is unique in that
its timing results have higher variance due to locks and allo-
cation in the underlying libraries used to implement certain
mathematical functions. This high variance makes it diffi-
cult to autotune well, especially for GPEA which only runs
a single test for each candidate algorithm. Both solutions
found were of same structure, but INCREA was able to find
better cutoffs values than the GPEA.

6. CONCLUSIONS
INCREA is an evolutionary algorithm that is efficiently

designed for problems which are suited to incremental short-
cuts and require them because of they have large search
spaces and expensive solution evaluaton. It also efficiently
handles problems which have noisy candidate solution qual-
ity. In the so called “real world”, problems of this sort
abound. A general purpose evolutionary algorithm ignores



the incremental structure that exists in these problems and,
while it may identify a solution, it wastes computation, takes
too long and produces error prone results. INCREA solves
smaller to larger problem instances as generations progress
and it expands and shrinks its genome and population each
generation. For further efficiency, it cuts off work that doesn’t
appear to promise a fruitful result. It addresses noisy solu-
tion quality efficiently by focusing on resolving it for small
solutions which have a much lower cost of evaluation.

We have demonstrated and evaluated a INCREA by solv-
ing the autotuning problem of a research compiler called
PetaBricks for multi-scale architectures. INCREA automat-
ically determines user-defined runtime parameters and algo-
rithmic choices that result in the fastest execution for the
given hardware. We found that INCREA and a general pur-
pose EA both achieve significant speedups on 3 benchmarks
but INCREA is much more efficient because of its exploita-
tion of the problem’s bottom up structure and its greedy
efficiencies. Our future work includes applying INCREA to
problems in wind turbine farm layout.
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